Sample records for vector mosquito control

  1. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China.

    PubMed

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun; Chen, Xiao-Guang

    2017-07-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies.

  2. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China

    PubMed Central

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun

    2017-01-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies. PMID:28430562

  3. Current status of genome editing in vector mosquitoes: A review.

    PubMed

    Reegan, Appadurai Daniel; Ceasar, Stanislaus Antony; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Al-Dhabi, Naif Abdullah

    2017-01-16

    Mosquitoes pose a major threat to human health as they spread many deadly diseases like malaria, dengue, chikungunya, filariasis, Japanese encephalitis and Zika. Identification and use of novel molecular tools are essential to combat the spread of vector borne diseases. Genome editing tools have been used for the precise alterations of the gene of interest for producing the desirable trait in mosquitoes. Deletion of functional genes or insertion of toxic genes in vector mosquitoes will produce either knock-out or knock-in mutants that will check the spread of vector-borne diseases. Presently, three types of genome editing tools viz., zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats (CRISPR) and CRISPR associated protein 9 (Cas9) are widely used for the editing of the genomes of diverse organisms. These tools are also applied in vector mosquitoes to control the spread of vector-borne diseases. A few studies have been carried out on genome editing to control the diseases spread by vector mosquitoes and more studies need to be performed with the utilization of more recently invented tools like CRISPR/Cas9 to combat the spread of deadly diseases by vector mosquitoes. The high specificity and flexibility of CRISPR/Cas9 system may offer possibilities for novel genome editing for the control of important diseases spread by vector mosquitoes. In this review, we present the current status of genome editing research on vector mosquitoes and also discuss the future applications of vector mosquito genome editing to control the spread of vectorborne diseases.

  4. The Anopheles gambiae transcriptome - a turning point for malaria control.

    PubMed

    Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J

    2017-04-01

    Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.

  5. Current vector control challenges in the fight against malaria.

    PubMed

    Benelli, Giovanni; Beier, John C

    2017-10-01

    The effective and eco-friendly control of Anopheles vectors plays a key role in any malaria management program. Integrated Vector Management (IVM) suggests making use of the full range of vector control tools available. The strategies for IVM require novel technologies to control outdoor transmission of malaria. Despite the wide number of promising control tools tested against mosquitoes, current strategies for malaria vector control used in most African countries are not sufficient to achieve successful malaria control. The majority of National Malaria Control Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). These methods reduce malaria incidence but generally have little impact on malaria prevalence. In addition to outdoor transmission, growing levels of insecticide resistance in targeted vectors threaten the efficacy of LLINs and IRS. Larvicidal treatments can be useful, but are not recommended for rural areas. The research needed to improve the quality and delivery of mosquito vector control should focus on (i) optimization of processes and methods for vector control delivery; (ii) monitoring of vector populations and biting activity with reliable techniques; (iii) the development of effective and eco-friendly tools to reduce the burden or locally eliminate malaria and other mosquito-borne diseases; (iv) the careful evaluation of field suitability and efficacy of new mosquito control tools to prove their epidemiological impact; (v) the continuous monitoring of environmental changes which potentially affect malaria vector populations; (vi) the cooperation among different disciplines, with main emphasis on parasitology, tropical medicine, ecology, entomology, and ecotoxicology. A better understanding of behavioral ecology of malaria vectors is required. Key ecological obstacles that limit the effectiveness of vector control include the variation in mosquito behavior, development of insecticide resistance, presence of behavioral avoidance, high vector biodiversity, competitive and food web interactions, lack of insights on mosquito dispersal and mating behavior, and the impact of environmental changes on mosquito ecological traits. Overall, the trans-disciplinary cooperation among parasitologists and entomologists is crucial to ensure proper evaluation of the epidemiological impact triggered by novel mosquito vector control strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs.

    PubMed

    Wong, Gwendolyn K L; Jim, C Y

    2016-12-15

    Green roof, an increasingly common constituent of urban green infrastructure, can provide multiple ecosystem services and mitigate climate-change and urban-heat-island challenges. Its adoption has been beset by a longstanding preconception of attracting urban pests like mosquitoes. As more cities may become vulnerable to emerging and re-emerging mosquito-borne infectious diseases, the knowledge gap needs to be filled. This study gauges the habitat preference of vector mosquitoes for extensive green roofs vis-à-vis positive and negative control sites in an urban setting. Seven sites in a university campus were selected to represent three experimental treatments: green roofs (GR), ground-level blue-green spaces as positive controls (PC), and bare roofs as negative controls (NC). Mosquito-trapping devices were deployed for a year from March 2015 to 2016. Human-biting mosquito species known to transmit infectious diseases in the region were identified and recorded as target species. Generalized linear models evaluated the effects of site type, season, and weather on vector-mosquito abundance. Our model revealed site type as a significant predictor of vector mosquito abundance, with considerably more vector mosquitoes captured in PC than in GR and NC. Vector abundance was higher in NC than in GR, attributed to the occasional presence of water pools in depressions of roofing membrane after rainfall. Our data also demonstrated seasonal differences in abundance. Weather variables were evaluated to assess human-vector contact risks under different weather conditions. Culex quinquefasciatus, a competent vector of diseases including lymphatic filariasis and West Nile fever, could be the most adaptable species. Our analysis demonstrates that green roofs are not particularly preferred by local vector mosquitoes compared to bare roofs and other urban spaces in a humid subtropical setting. The findings call for a better understanding of vector ecology in diverse urban landscapes to improve disease control efficacy amidst surging urbanization and changing climate. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mosquito Oviposition Behavior and Vector Control

    PubMed Central

    Day, Jonathan F.

    2016-01-01

    The burden of gene transfer from one mosquito generation to the next falls on the female and her eggs. The selection of an oviposition site that guarantees egg and larval survival is a critical step in the reproductive process. The dangers associated with ephemeral aquatic habitats, lengthy droughts, freezing winters, and the absence of larval nutrition makes careful oviposition site selection by a female mosquito extremely important. Mosquito species exhibit a remarkable diversity of oviposition behaviors that ensure eggs are deposited into microenvironments conducive for successful larval development and the emergence of the next mosquito generation. An understanding of mosquito oviposition behavior is necessary for the development of surveillance and control opportunities directed against specific disease vectors. For example, Aedes aegypti Linnaeus is the vector of viruses causing important human diseases including yellow fever, dengue, chikungunya, and Zika. The preference of this species to oviposit in natural and artificial containers has facilitated the development of Ae. aegypti-specific surveillance and toxic oviposition traps designed to detect and control this important vector species in and around disease foci. A better understanding of the wide diversity of mosquito oviposition behavior will allow the development of new and innovative surveillance and control devices directed against other important mosquito vectors of human and animal disease. PMID:27869724

  8. Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean

    PubMed Central

    Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto

    2015-01-01

    Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951

  9. Biological Control of Mosquito Vectors: Past, Present, and Future

    PubMed Central

    Benelli, Giovanni; Jeffries, Claire L.; Walker, Thomas

    2016-01-01

    Mosquitoes represent the major arthropod vectors of human disease worldwide transmitting malaria, lymphatic filariasis, and arboviruses such as dengue virus and Zika virus. Unfortunately, no treatment (in the form of vaccines or drugs) is available for most of these diseases and vector control is still the main form of prevention. The limitations of traditional insecticide-based strategies, particularly the development of insecticide resistance, have resulted in significant efforts to develop alternative eco-friendly methods. Biocontrol strategies aim to be sustainable and target a range of different mosquito species to reduce the current reliance on insecticide-based mosquito control. In this review, we outline non-insecticide based strategies that have been implemented or are currently being tested. We also highlight the use of mosquito behavioural knowledge that can be exploited for control strategies. PMID:27706105

  10. MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease

    PubMed Central

    2010-01-01

    Background Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk. Results A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC) was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap. Conclusion MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases. PMID:20167090

  11. MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease.

    PubMed

    Foley, Desmond H; Wilkerson, Richard C; Birney, Ian; Harrison, Stanley; Christensen, Jamie; Rueda, Leopoldo M

    2010-02-18

    Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk. A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC) was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap. MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases.

  12. Vector Control During Operation Restore Hope - Somalia

    DTIC Science & Technology

    2008-11-16

    Restore Hope, focusing primarily on pest battalion provided services including and vector control operations. Much of identification of the preventive...and usable arthropod Identification larval mosquito surveys were conducted, materials (i.e., keys) were nonexistent. but only in areas that were...bait would be mosquitoes. The pesticide used for placed adjacent to but away from troop mosquito control ( malathion - ULV) was areas, attracting flies

  13. Countering Vector-Borne disease Threats. Presidential Address Given at the 82nd Annual Meeting of the American Mosquito Control Association, February 2016

    USDA-ARS?s Scientific Manuscript database

    The discovery of new, better and more ecologically friendly ways to prevent human and animal suffering from mosquito transmitted vector-borne diseases continues. Today the risk of vector-borne disease, specifically mosquito transmitted, threats increase dramatically as (1) climate extremes impact th...

  14. The Role of Innate Immunity in Conditioning Mosquito Susceptibility to West Nile Virus

    PubMed Central

    Prasad, Abhishek N.; Brackney, Doug. E.; Ebel, Gregory D.

    2013-01-01

    Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors. PMID:24351797

  15. Transgenic Mosquitoes - Fact or Fiction?

    PubMed

    Wilke, André B B; Beier, John C; Benelli, Giovanni

    2018-06-01

    Technologies for controlling mosquito vectors based on genetic manipulation and the release of genetically modified mosquitoes (GMMs) are gaining ground. However, concrete epidemiological evidence of their effectiveness, sustainability, and impact on the environment and nontarget species is lacking; no reliable ecological evidence on the potential interactions among GMMs, target populations, and other mosquito species populations exists; and no GMM technology has yet been approved by the WHO Vector Control Advisory Group. Our opinion is that, although GMMs may be considered a promising control tool, more studies are needed to assess their true effectiveness, risks, and benefits. Overall, several lines of evidence must be provided before GMM-based control strategies can be used under the integrated vector management framework. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Targeting male mosquito swarms to control malaria vector density

    PubMed Central

    Sawadogo, Simon Peguedwinde; Niang, Abdoulaye; Bilgo, Etienne; Millogo, Azize; Maïga, Hamidou; Dabire, Roch K.; Tripet, Frederic; Diabaté, Abdoulaye

    2017-01-01

    Malaria control programs are being jeopardized by the spread of insecticide resistance in mosquito vector populations. It has been estimated that the spread of resistance could lead to an additional 120000 deaths per year, and interfere with the prospects for sustained control or the feasibility of achieving malaria elimination. Another complication for the development of resistance management strategies is that, in addition to insecticide resistance, mosquito behavior evolves in a manner that diminishes the impact of LLINs and IRS. Mosquitoes may circumvent LLIN and IRS control through preferential feeding and resting outside human houses and/or being active earlier in the evening before people go to sleep. Recent developments in our understanding of mosquito swarming suggest that new tools targeting mosquito swarms can be designed to cut down the high reproductive rate of malaria vectors. Targeting swarms of major malaria vectors may provide an effective control method to counteract behavioral resistance developed by mosquitoes. Here, we evaluated the impact of systematic spraying of swarms of Anopheles gambiae s.l. using a mixed carbamate and pyrethroid aerosol. The impact of this intervention on vector density, female insemination rates and the age structure of males was measured. We showed that the resulting mass killing of swarming males and some mate-seeking females resulted in a dramatic 80% decrease in population size compared to a control population. A significant decrease in female insemination rate and a significant shift in the age structure of the male population towards younger males incapable of mating were observed. This paradigm-shift study therefore demonstrates that targeting primarily males rather than females, can have a drastic impact on mosquito population. PMID:28278212

  17. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics

    PubMed Central

    2011-01-01

    Background Intensive anti-malaria campaigns targeting the Anopheles population have demonstrated substantial reductions in adult mosquito density. Understanding the population dynamics of Anopheles mosquitoes throughout their whole lifecycle is important to assess the likely impact of vector control interventions alone and in combination as well as to aid the design of novel interventions. Methods An ecological model of Anopheles gambiae sensu lato populations incorporating a rainfall-dependent carrying capacity and density-dependent regulation of mosquito larvae in breeding sites is developed. The model is fitted to adult mosquito catch and rainfall data from 8 villages in the Garki District of Nigeria (the 'Garki Project') using Bayesian Markov Chain Monte Carlo methods and prior estimates of parameters derived from the literature. The model is used to compare the impact of vector control interventions directed against adult mosquito stages - long-lasting insecticide treated nets (LLIN), indoor residual spraying (IRS) - and directed against aquatic mosquito stages, alone and in combination on adult mosquito density. Results A model in which density-dependent regulation occurs in the larval stages via a linear association between larval density and larval death rates provided a good fit to seasonal adult mosquito catches. The effective mosquito reproduction number in the presence of density-dependent regulation is dependent on seasonal rainfall patterns and peaks at the start of the rainy season. In addition to killing adult mosquitoes during the extrinsic incubation period, LLINs and IRS also result in less eggs being oviposited in breeding sites leading to further reductions in adult mosquito density. Combining interventions such as the application of larvicidal or pupacidal agents that target the aquatic stages of the mosquito lifecycle with LLINs or IRS can lead to substantial reductions in adult mosquito density. Conclusions Density-dependent regulation of anopheline larvae in breeding sites ensures robust, stable mosquito populations that can persist in the face of intensive vector control interventions. Selecting combinations of interventions that target different stages in the vector's lifecycle will result in maximum reductions in mosquito density. PMID:21798055

  18. Plant extracts as potential mosquito larvicides

    PubMed Central

    Ghosh, Anupam; Chowdhury, Nandita; Chandra, Goutam

    2012-01-01

    Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed. PMID:22771587

  19. Plant extracts as potential mosquito larvicides.

    PubMed

    Ghosh, Anupam; Chowdhury, Nandita; Chandra, Goutam

    2012-05-01

    Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed.

  20. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells

    PubMed Central

    Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki

    2016-01-01

    Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. PMID:27598328

  1. Mathematical modeling of Chikungunya fever control

    NASA Astrophysics Data System (ADS)

    Hincapié-Palacio, Doracelly; Ospina, Juan

    2015-05-01

    Chikungunya fever is a global concern due to the occurrence of large outbreaks, the presence of persistent arthropathy and its rapid expansion throughout various continents. Globalization and climate change have contributed to the expansion of the geographical areas where mosquitoes Aedes aegypti and Aedes albopictus (Stegomyia) remain. It is necessary to improve the techniques of vector control in the presence of large outbreaks in The American Region. We derive measures of disease control, using a mathematical model of mosquito-human interaction, by means of three scenarios: a) a single vector b) two vectors, c) two vectors and human and non-human reservoirs. The basic reproductive number and critical control measures were deduced by using computer algebra with Maple (Maplesoft Inc, Ontario Canada). Control measures were simulated with parameter values obtained from published data. According to the number of households in high risk areas, the goals of effective vector control to reduce the likelihood of mosquito-human transmission would be established. Besides the two vectors, if presence of other non-human reservoirs were reported, the monthly target of effective elimination of the vector would be approximately double compared to the presence of a single vector. The model shows the need to periodically evaluate the effectiveness of vector control measures.

  2. Development and Evaluation of a Pyriproxyfen-treated Device to Control the Dengue Vector, Aedes aegypti (L.) (Diptera: Culicidae)

    DTIC Science & Technology

    2013-03-01

    Jersey: John Wiley & Sons, 2011. Fradin MS, Day JF. Comparative efficacy of insect repellents against mosquito bites. N Engl J Med 2002; 347: 13-8...control of Aedes aegypti mosquitoes , the vectors of these diseases, critically important. We developed and evaluated an Ae. aegypti control device...that is visually-attractive to mosquitoes . This pyriproxyfen-treated device was evaluated for its impact on Ae. aegypti egg production and population

  3. Higher Mosquito Production in Low-Income Neighborhoods of Baltimore and Washington, DC: Understanding Ecological Drivers and Mosquito-Borne Disease Risk in Temperate Cities

    PubMed Central

    LaDeau, Shannon L.; Leisnham, Paul T.; Biehler, Dawn; Bodner, Danielle

    2013-01-01

    Mosquito-vectored pathogens are responsible for devastating human diseases and are (re)emerging in many urban environments. Effective mosquito control in urban landscapes relies on improved understanding of the complex interactions between the ecological and social factors that define where mosquito populations can grow. We compared the density of mosquito habitat and pupae production across economically varying neighborhoods in two temperate U.S. cities (Baltimore, MD and Washington, DC). Seven species of mosquito larvae were recorded. The invasive Aedes albopictus was the only species found in all neighborhoods. Culex pipiens, a primary vector of West Nile virus (WNV), was most abundant in Baltimore, which also had more tire habitats. Both Culex and Aedes pupae were more likely to be sampled in neighborhoods categorized as being below median income level in each city and Aedes pupae density was also greater in container habitats found in these lower income neighborhoods. We infer that lower income residents may experience greater exposure to potential disease vectors and Baltimore residents specifically, were at greater risk of exposure to the predominant WNV vector. However, we also found that resident-reported mosquito nuisance was not correlated with our measured risk index, indicating a potentially important mismatch between motivation needed to engage participation in control efforts and the relative importance of control among neighborhoods. PMID:23583963

  4. A malaria transmission-directed model of mosquito life cycle and ecology

    PubMed Central

    2011-01-01

    Background Malaria is a major public health issue in much of the world, and the mosquito vectors which drive transmission are key targets for interventions. Mathematical models for planning malaria eradication benefit from detailed representations of local mosquito populations, their natural dynamics and their response to campaign pressures. Methods A new model is presented for mosquito population dynamics, effects of weather, and impacts of multiple simultaneous interventions. This model is then embedded in a large-scale individual-based simulation and results for local elimination of malaria are discussed. Mosquito population behaviours, such as anthropophily and indoor feeding, are included to study their effect upon the efficacy of vector control-based elimination campaigns. Results Results for vector control tools, such as bed nets, indoor spraying, larval control and space spraying, both alone and in combination, are displayed for a single-location simulation with vector species and seasonality characteristic of central Tanzania, varying baseline transmission intensity and vector bionomics. The sensitivities to habitat type, anthropophily, indoor feeding, and baseline transmission intensity are explored. Conclusions The ability to model a spectrum of local vector species with different ecologies and behaviours allows local customization of packages of interventions and exploration of the effect of proposed new tools. PMID:21999664

  5. Developing an expanded vector control toolbox for malaria elimination

    PubMed Central

    Tatarsky, Allison; Diabate, Abdoulaye; Chaccour, Carlos J; Marshall, John M; Okumu, Fredros O; Brunner, Shannon; Newby, Gretchen; Williams, Yasmin A; Malone, David; Tusting, Lucy S; Gosling, Roland D

    2017-01-01

    Vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) accounts for most of the malaria burden reductions achieved recently in low and middle-income countries (LMICs). LLINs and IRS are highly effective, but are insufficient to eliminate malaria transmission in many settings because of operational constraints, growing resistance to available insecticides and mosquitoes that behaviourally avoid contact with these interventions. However, a number of substantive opportunities now exist for rapidly developing and implementing more diverse, effective and sustainable malaria vector control strategies for LMICs. For example, mosquito control in high-income countries is predominantly achieved with a combination of mosquito-proofed housing and environmental management, supplemented with large-scale insecticide applications to larval habitats and outdoor spaces that kill off vector populations en masse, but all these interventions remain underused in LMICs. Programmatic development and evaluation of decentralised, locally managed systems for delivering these proactive mosquito population abatement practices in LMICs could therefore enable broader scale-up. Furthermore, a diverse range of emerging or repurposed technologies are becoming available for targeting mosquitoes when they enter houses, feed outdoors, attack livestock, feed on sugar or aggregate into mating swarms. Global policy must now be realigned to mobilise the political and financial support necessary to exploit these opportunities over the decade ahead, so that national malaria control and elimination programmes can access a much broader, more effective set of vector control interventions. PMID:28589022

  6. Biological Control of Mosquito Vectors: Past, Present, and Future.

    PubMed

    Benelli, Giovanni; Jeffries, Claire L; Walker, Thomas

    2016-10-03

    Mosquitoes represent the major arthropod vectors of human disease worldwide transmitting malaria, lymphatic filariasis, and arboviruses such as dengue virus and Zika virus. Unfortunately, no treatment (in the form of vaccines or drugs) is available for most of these diseases andvectorcontrolisstillthemainformofprevention. Thelimitationsoftraditionalinsecticide-based strategies, particularly the development of insecticide resistance, have resulted in significant efforts to develop alternative eco-friendly methods. Biocontrol strategies aim to be sustainable and target a range of different mosquito species to reduce the current reliance on insecticide-based mosquito control. In thisreview, weoutline non-insecticide basedstrategiesthat havebeenimplemented orare currently being tested. We also highlight the use of mosquito behavioural knowledge that can be exploited for control strategies.

  7. Mosquito vector biology and control in Latin America - A 25th Symposium

    USDA-ARS?s Scientific Manuscript database

    The 25th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 81st Annual Meeting in New Orleans, LA, in March 2015. The principal objective, for the previous 24 symposia, was to promote participation in the AMCA by vector control spec...

  8. Mosquito vector biology and control in Latin America - a 24th symposium

    USDA-ARS?s Scientific Manuscript database

    The 24th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 80th Annual Meeting in Seattle, WA in February 2014. The principal objective, as for the previous 23 symposia, was to promote participation in the AMCA by vector control spe...

  9. MOSQUITO VECTOR CONTROL AND BIOLOGY IN LATIN AMERICA- An 18TH SYMPOSIUM

    USDA-ARS?s Scientific Manuscript database

    The 18th Annual Latin American symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 74th Annual Meeting in Sparks, NV, in March 2008. The principal objective, as for the previous 17 symposia, was to promote participation in the AMCA by vector control speci...

  10. An approach of the exact linearization techniques to analysis of population dynamics of the mosquito Aedes aegypti.

    PubMed

    Dos Reis, Célia A; Florentino, Helenice de O; Cólon, Diego; Rosa, Suélia R Fleury; Cantane, Daniela R

    2018-05-01

    Dengue fever, chikungunya and zika are caused by different viruses and mainly transmitted by Aedes aegypti mosquitoes. These diseases have received special attention of public health officials due to the large number of infected people in tropical and subtropical countries and the possible sequels that those diseases can cause. In severe cases, the infection can have devastating effects, affecting the central nervous system, muscles, brain and respiratory system, often resulting in death. Vaccines against these diseases are still under development and, therefore, current studies are focused on the treatment of diseases and vector (mosquito) control. This work focuses on this last topic, and presents the analysis of a mathematical model describing the population dynamics of Aedes aegypti, as well as present the design of a control law for the mosquito population (vector control) via exact linearization techniques and optimal control. This control strategy optimizes the use of resources for vector control, and focuses on the aquatic stage of the mosquito life. Theoretical and computational results are also presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mosquitocidal Effect of Glycosmis pentaphylla Leaf Extracts against Three Mosquito Species (Diptera: Culicidae)

    PubMed Central

    Ramkumar, Govindaraju; Karthi, Sengodan; Muthusamy, Ranganathan; Suganya, Ponnusamy; Natarajan, Devarajan; Kweka, Eliningaya J.; Shivakumar, Muthugounder S.

    2016-01-01

    Background The resistance status of malaria vectors to different classes of insecticides used for public health has raised concern for vector control programmes. Alternative compounds to supplement the existing tools are important to be searched to overcome the existing resistance and persistence of pesticides in vectors and the environment respectively. The mosquitocidal effects of Glycosmis pentaphylla using different solvents of acetone, methanol, chloroform and ethyl acetate extracts against three medically important mosquito vectors was conducted. Methods Glycosmis pentaphylla plant leaves were collected from Kolli Hills, India. The WHO test procedures for larval and adult bioassays were used to evaluate extracts against mosquito vectors, and the chemical composition of extracts identified using GC-MS analysis. Results The larvicidal and adulticidal activity of G. pentaphylla plant extracts clearly impacted the three species of major mosquitoes vectors. Acetone extracts had the highest larvicidal effect against An. stephensi, Cx. quinquefasciatus and Ae. aegypti with the LC50 and LC90 values of 0.0004, 138.54; 0.2669, 73.7413 and 0.0585, 303.746 mg/ml, respectively. The LC50 and LC90 adulticide values of G. pentaphylla leaf extracts in acetone, methanol, chloroform and ethyl acetate, solvents were as follows for Cx. quinquefasciatus, An. stephensi and Ae. Aegypti: 2.957, 5.458, 2.708, and 4.777, 3.449, 6.676 mg/ml respectively. The chemical composition of G. pentaphylla leaf extract has been found in 20 active compounds. Conclusions The plant leaf extracts of G. pentaphylla bioactive molecules which are effective and can be developed as an eco-friendly approach for larvicides and adulticidal mosquitoes vector control. Detailed identification and characterization of mosquitocidal effect of individual bioactive molecules ingredient may result into biodegradable effective tools for the control of mosquito vectors. PMID:27391146

  12. Mosquitocidal Effect of Glycosmis pentaphylla Leaf Extracts against Three Mosquito Species (Diptera: Culicidae).

    PubMed

    Ramkumar, Govindaraju; Karthi, Sengodan; Muthusamy, Ranganathan; Suganya, Ponnusamy; Natarajan, Devarajan; Kweka, Eliningaya J; Shivakumar, Muthugounder S

    2016-01-01

    The resistance status of malaria vectors to different classes of insecticides used for public health has raised concern for vector control programmes. Alternative compounds to supplement the existing tools are important to be searched to overcome the existing resistance and persistence of pesticides in vectors and the environment respectively. The mosquitocidal effects of Glycosmis pentaphylla using different solvents of acetone, methanol, chloroform and ethyl acetate extracts against three medically important mosquito vectors was conducted. Glycosmis pentaphylla plant leaves were collected from Kolli Hills, India. The WHO test procedures for larval and adult bioassays were used to evaluate extracts against mosquito vectors, and the chemical composition of extracts identified using GC-MS analysis. The larvicidal and adulticidal activity of G. pentaphylla plant extracts clearly impacted the three species of major mosquitoes vectors. Acetone extracts had the highest larvicidal effect against An. stephensi, Cx. quinquefasciatus and Ae. aegypti with the LC50 and LC90 values of 0.0004, 138.54; 0.2669, 73.7413 and 0.0585, 303.746 mg/ml, respectively. The LC50 and LC90 adulticide values of G. pentaphylla leaf extracts in acetone, methanol, chloroform and ethyl acetate, solvents were as follows for Cx. quinquefasciatus, An. stephensi and Ae. Aegypti: 2.957, 5.458, 2.708, and 4.777, 3.449, 6.676 mg/ml respectively. The chemical composition of G. pentaphylla leaf extract has been found in 20 active compounds. The plant leaf extracts of G. pentaphylla bioactive molecules which are effective and can be developed as an eco-friendly approach for larvicides and adulticidal mosquitoes vector control. Detailed identification and characterization of mosquitocidal effect of individual bioactive molecules ingredient may result into biodegradable effective tools for the control of mosquito vectors.

  13. Attacking the mosquito on multiple fronts: Insights from the Vector Control Optimization Model (VCOM) for malaria elimination.

    PubMed

    Kiware, Samson S; Chitnis, Nakul; Tatarsky, Allison; Wu, Sean; Castellanos, Héctor Manuel Sánchez; Gosling, Roly; Smith, David; Marshall, John M

    2017-01-01

    Despite great achievements by insecticide-treated nets (ITNs) and indoor residual spraying (IRS) in reducing malaria transmission, it is unlikely these tools will be sufficient to eliminate malaria transmission on their own in many settings today. Fortunately, field experiments indicate that there are many promising vector control interventions that can be used to complement ITNs and/or IRS by targeting a wide range of biological and environmental mosquito resources. The majority of these experiments were performed to test a single vector control intervention in isolation; however, there is growing evidence and consensus that effective vector control with the goal of malaria elimination will require a combination of interventions. We have developed a model of mosquito population dynamic to describe the mosquito life and feeding cycles and to optimize the impact of vector control intervention combinations at suppressing mosquito populations. The model simulations were performed for the main three malaria vectors in sub-Saharan Africa, Anopheles gambiae s.s, An. arabiensis and An. funestus. We considered areas having low, moderate and high malaria transmission, corresponding to entomological inoculation rates of 10, 50 and 100 infective bites per person per year, respectively. In all settings, we considered baseline ITN coverage of 50% or 80% in addition to a range of other vector control tools to interrupt malaria transmission. The model was used to sweep through parameters space to select the best optimal intervention packages. Sample model simulations indicate that, starting with ITNs at a coverage of 50% (An. gambiae s.s. and An. funestus) or 80% (An. arabiensis) and adding interventions that do not require human participation (e.g. larviciding at 80% coverage, endectocide treated cattle at 50% coverage and attractive toxic sugar baits at 50% coverage) may be sufficient to suppress all the three species to an extent required to achieve local malaria elimination. The Vector Control Optimization Model (VCOM) is a computational tool to predict the impact of combined vector control interventions at the mosquito population level in a range of eco-epidemiological settings. The model predicts specific combinations of vector control tools to achieve local malaria elimination in a range of eco-epidemiological settings and can assist researchers and program decision-makers on the design of experimental or operational research to test vector control interventions. A corresponding graphical user interface is available for national malaria control programs and other end users.

  14. Optimal control of malaria: combining vector interventions and drug therapies.

    PubMed

    Khamis, Doran; El Mouden, Claire; Kura, Klodeta; Bonsall, Michael B

    2018-04-24

    The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes. An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout. Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.

  15. MOSQUITO VECTOR CONTROL AND BIOLOGY IN LATIN AMERICA - A 19TH SYMPOSIUM

    USDA-ARS?s Scientific Manuscript database

    The 19th Annual Latin American symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 75th Annual Meeting in New Orleans, LA, in April 2009. The principal objective, as for the previous 18 symposia, was to promote participation in the AMCA by vector control s...

  16. Current procedures of the integrated urban vector-mosquito control as an example in Cotonou (Benin, West Africa) and Wrocław area (Poland).

    PubMed

    Rydzanicz, Katarzyna; Lonc, Elzbieta; Becker, Norbert

    2009-01-01

    Current strategy of Integrated Vector Management (IVM) comprises the general approach of environmentally friendly control measures. With regard to mosquitoes it includes first of all application of microbial insecticides based on Bacillus thuringiensis israelensis (Bti) and B. sphaericus (Bs) delta-endotoxins as well as the reduction of breeding habitats and natural enemy augmentation. It can be achieved thorough implementation of the interdisciplinary program, i. e., understanding of mosquito vector ecology, the appropriate vector-diseases (e. g., malariometric) measurements and training of local personnel responsible for mosquito abatement activities, as well as community involvement. Biocontrol methods as an alternative to chemical insecticides result from the sustainability development concept, growing awareness of environmental pollution and the development of insecticide-resistant strains of vector-mosquito populations in many parts of the world. Although sustainable trends are usually considered in terms of the monetary and training resources within countries, environmental concerns are actually more limiting factors for the duration of an otherwise successful vector control effort. In order to meet these new needs, increasing efforts have been made in search of and application of natural enemies, such as parasites, bacterial pathogens and predators which may control populations of insect vectors. The biological control agent based on the bacterial toxins Bti and Bs has been used in the Wrocław's University and Municipal Mosquito Control Programs since 1998. In West-Africa biocontrol appears to be an effective and safe tool to combat malaria in addition to bed-nets, residual indoor spraying and appropriate diagnosis and treatment of malaria parasites which are the major tools in the WHO Roll Back Malaria Program. IVM studies carried out 2005-2008 in Cotonou (Benin) as well those in Wrocław Irrigated Fields during the last years include the following major steps: 1. Mapping of all breeding sites in the project area and recording data in a geographical information system (GIS/relational database). All districts, streets and houses are numbered for quick reference during the operation; 2. Studying mosquito vector bionomics, migration and vectorial capacity in the project area, before, during and after the routine Bti treatments; 3. Assessment of the optimum for effective larvicide insecticide dosages at major breeding sites against the different target mosquito species; 4. Implementation of the microbial control agents in the integrated routine program. Adaptation of the application equipment to the local situation, training of the field staff, and routine treatments; 5. Conducting surveillance of vector-disease (e. g., malariometric) parameters in the control and experimental area before, during, and after the application of biocontrol agents.

  17. The Effect of Oral Anthelmintics on the Survivorship and Re-feeding Frequency of Anthropophilic Mosquito Disease Vectors

    PubMed Central

    Kobylinski, Kevin C.; Deus, Kelsey M.; Butters, Matt T.; Hongyu, Tan; Gray, Meg; Silva, Ines Marques da; Sylla, Massamba; Foy, Brian D.

    2010-01-01

    In the Tropics, there is substantial temporal and spatial overlap of diseases propagated by anthropophilic mosquito vectors (such as malaria and dengue) and human helminth diseases (such as onchocerciasis and lymphatic filariasis) that are treated though mass drug administrations (MDA). This overlap will result in mosquito vectors imbibing significant quantities of these drugs when they blood feed on humans. Since many anthelmintic drugs have broad anti-invertebrate effects, the possibility of combined helminth control and mosquito-borne disease control through MDA is apparent. It has been previously shown that ivermectin can reduce mosquito survivorship when administered in a blood meal, but more detailed examinations are needed if MDA is to ever be developed into a tool for malaria or dengue control. We examined concentrations of drugs that follow human pharmacokinetics after MDA and that matched with mosquito feeding times, for effects against the anthropophilic mosquito vectors Anopheles gambiae s.s. and Aedes aegypti. Ivermectin was the only human-approved MDA drug we tested that affected mosquito survivorship, and only An. gambiae s.s. were affected at concentrations respecting human pharmacokinetics at indicated doses. Ivermectin also delayed An. gambiae s.s. re-feeding frequency and defecation rates, and two successive ivermectin-spiked blood meals following human pharmacokinetic concentrations compounded mortality effects compared to controls. These findings suggest that ivermectin MDA in Africa may be used to decrease malaria transmission if MDAs were administered more frequently. Such a strategy would broaden the current scope of polyparasitism control already afforded by MDAs, and which is needed in many African villages simultaneously burdened by many parasitic diseases. PMID:20540931

  18. Control of Malaria Vector Mosquitoes by Insecticide-Treated Combinations of Window Screens and Eave Baffles.

    PubMed

    Killeen, Gerry F; Masalu, John P; Chinula, Dingani; Fotakis, Emmanouil A; Kavishe, Deogratius R; Malone, David; Okumu, Fredros

    2017-05-01

    We assessed window screens and eave baffles (WSEBs), which enable mosquitoes to enter but not exit houses, as an alternative to indoor residual spraying (IRS) for malaria vector control. WSEBs treated with water, the pyrethroid lambda-cyhalothrin, or the organophosphate pirimiphos-methyl, with and without a binding agent for increasing insecticide persistence on netting, were compared with IRS in experimental huts. Compared with IRS containing the same insecticide, WSEBs killed similar proportions of Anopheles funestus mosquitoes that were resistant to pyrethroids, carbamates and organochlorines and greater proportions of pyrethroid-resistant, early exiting An. arabiensis mosquitoes. WSEBs with pirimiphos-methyl killed greater proportions of both vectors than lambda-cyhalothrin or lambda-cyhalothrin plus pirimiphos-methyl and were equally efficacious when combined with binding agent. WSEBs required far less insecticide than IRS, and binding agents might enhance durability. WSEBs might enable affordable deployment of insecticide combinations to mitigate against physiologic insecticide resistance and improve control of behaviorally resistant, early exiting vectors.

  19. Common Host-Derived Chemicals Increase Catches of Disease-Transmitting Mosquitoes and Can Improve Early Warning Systems for Rift Valley Fever Virus

    PubMed Central

    Tchouassi, David P.; Sang, Rosemary; Sole, Catherine L.; Bastos, Armanda D. S.; Teal, Peter E. A.; Borgemeister, Christian; Torto, Baldwyn

    2013-01-01

    Rift Valley fever (RVF), a mosquito-borne zoonosis, is a major public health and veterinary problem in sub-Saharan Africa. Surveillance to monitor mosquito populations during the inter-epidemic period (IEP) and viral activity in these vectors is critical to informing public health decisions for early warning and control of the disease. Using a combination of field bioassays, electrophysiological and chemical analyses we demonstrated that skin-derived aldehydes (heptanal, octanal, nonanal, decanal) common to RVF virus (RVFV) hosts including sheep, cow, donkey, goat and human serve as potent attractants for RVFV mosquito vectors. Furthermore, a blend formulated from the four aldehydes and combined with CO2-baited CDC trap without a light bulb doubled to tripled trap captures compared to control traps baited with CO2 alone. Our results reveal that (a) because of the commonality of the host chemical signature required for attraction, the host-vector interaction appears to favor the mosquito vector allowing it to find and opportunistically feed on a wide range of mammalian hosts of the disease, and (b) the sensitivity, specificity and superiority of this trapping system offers the potential for its wider use in surveillance programs for RVFV mosquito vectors especially during the IEP. PMID:23326620

  20. Genetic modification of Anopheles stephensi for resistance to multiple Plasmodium falciparum strains does not influence susceptibility to o'nyong'nyong virus or insecticides, or Wolbachia-mediated resistance to the malaria parasite.

    PubMed

    Pike, Andrew; Dimopoulos, George

    2018-01-01

    Mosquitoes that have been genetically engineered for resistance to human pathogens are a potential new tool for controlling vector-borne disease. However, genetic modification may have unintended off-target effects that could affect the mosquitoes' utility for disease control. We measured the resistance of five genetically modified Plasmodium-suppressing Anopheles stephensi lines to o'nyong'nyong virus, four classes of insecticides, and diverse Plasmodium falciparum field isolates and characterized the interactions between our genetic modifications and infection with the bacterium Wolbachia. The genetic modifications did not alter the mosquitoes' resistance to either o'nyong'nyong virus or insecticides, and the mosquitoes were equally resistant to all tested P. falciparum strains, regardless of Wolbachia infection status. These results indicate that mosquitoes can be genetically modified for resistance to malaria parasite infection and remain compatible with other vector-control measures without becoming better vectors for other pathogens.

  1. What does not kill them makes them stronger: larval environment and infectious dose alter mosquito potential to transmit filarial worms.

    PubMed

    Breaux, Jennifer A; Schumacher, Molly K; Juliano, Steven A

    2014-07-07

    For organisms with complex life cycles, larval environments can modify adult phenotypes. For mosquitoes and other vectors, when physiological impacts of stressors acting on larvae carry over into the adult stage they may interact with infectious dose of a vector-borne pathogen, producing a range of phenotypes for vector potential. Investigation of impacts of a common source of stress, larval crowding and intraspecific competition, on adult vector interactions with pathogens may increase our understanding of the dynamics of pathogen transmission by mosquito vectors. Using Aedes aegypti and the nematode parasite Brugia pahangi, we demonstrate dose dependency of fitness effects of B. pahangi infection on the mosquito, as well as interactions between competitive stress among larvae and infectious dose for resulting adults that affect the physiological and functional ability of mosquitoes to act as vectors. Contrary to results from studies on mosquito-arbovirus interactions, our results suggest that adults from crowded larvae may limit infection better than do adults from uncrowded controls, and that mosquitoes from high-quality larval environments are more physiologically and functionally capable vectors of B. pahangi. Our results provide another example of how the larval environment can have profound effects on vector potential of resulting adults. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Analysis of population structure and insecticide resistance in mosquitoes of the genus Culex, Anopheles and Aedes from different environments of Greece with a history of mosquito borne disease transmission.

    PubMed

    Fotakis, Emmanouil A; Chaskopoulou, Alexandra; Grigoraki, Linda; Tsiamantas, Alexandros; Kounadi, Stella; Georgiou, Loukas; Vontas, John

    2017-10-01

    Greece has been recently affected by several mosquito borne diseases with the West Nile Virus (WNV) outbreak in 2010 being one of the largest reported in Europe. Currently at the epicenter of an economic and refugee crisis and visited by over 16 million tourists a year the integrated management of diseases transmitted by mosquitoes is a public health and economic priority. Vector control programs rely mainly on insecticides, however data on insecticide resistance and the mosquito fauna is essential for successful applications. We determined the mosquito species composition and population dynamics in areas of increased vulnerability to vector borne disease transmission, as well as investigated the resistance status of major nuisance and disease vectors to insecticides. High mosquito densities were recorded in Thessaloniki and Evros, with Aedes caspius, a nuisance species, Culex pipiens, a known vector of WNV and Anopheles hyrcanus a potential vector of malaria being among the most prevalent species. Both vector species populations reached their peak in late summer. Aedes albopictus was recorded at high densities in Thessaloniki, but not in Evros. Notably, Cx. pipiens hybrids, which show an opportunistic biting behavior and are suspected to be involved in the transmission of the WNV, were recorded in considerable numbers in Thessaloniki and Attica. Culex pipiens and An. hyrcanus, but not Ae. caspius mosquitoes, showed moderate levels of resistance to deltamethrin. The presence of resistance in areas not exposed to vector control indicates that other factors could be selecting for resistance, i.e. pesticide applications for agriculture. Both L1014F and L101C kdr mutations were detected in Cx. pipiens populations. Anopheles hyrcanus resistance was not associated with mutations at the L1014 site. The Ace-1 mutations conferring insensitivity to organophosphates and carbamates were detected at low frequencies in all Cx. pipiens populations. Increased activity of P450s and esterases was found in Cx. pipiens individuals from Thessaloniki. Our study contributes evidence for sustainable and efficient vector control strategies and the prevention of disease outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Mosquito Surveillance for Prevention and Control of Emerging Mosquito-Borne Diseases in Portugal — 2008–2014

    PubMed Central

    Osório, Hugo C.; Zé-Zé, Líbia; Amaro, Fátima; Alves, Maria J.

    2014-01-01

    Mosquito surveillance in Europe is essential for early detection of invasive species with public health importance and prevention and control of emerging pathogens. In Portugal, a vector surveillance national program—REVIVE (REde de VIgilância de VEctores)—has been operating since 2008 under the custody of Portuguese Ministry of Health. The REVIVE is responsible for the nationwide surveillance of hematophagous arthropods. Surveillance for West Nile virus (WNV) and other flaviviruses in adult mosquitoes is continuously performed. Adult mosquitoes—collected mainly with Centre for Disease Control light traps baited with CO2—and larvae were systematically collected from a wide range of habitats in 20 subregions (NUTS III). Around 500,000 mosquitoes were trapped in more than 3,000 trap nights and 3,500 positive larvae surveys, in which 24 species were recorded. The viral activity detected in mosquito populations in these years has been limited to insect specific flaviviruses (ISFs) non-pathogenic to humans. Rather than emergency response, REVIVE allows timely detection of changes in abundance and species diversity providing valuable knowledge to health authorities, which may take control measures of vector populations reducing its impact on public health. This work aims to present the REVIVE operation and to expose data regarding mosquito species composition and detected ISFs. PMID:25396768

  4. Biological Control Strategies for Mosquito Vectors of Arboviruses.

    PubMed

    Huang, Yan-Jang S; Higgs, Stephen; Vanlandingham, Dana L

    2017-02-10

    Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.

  5. Biological Control Strategies for Mosquito Vectors of Arboviruses

    PubMed Central

    Huang, Yan-Jang S.; Higgs, Stephen; Vanlandingham, Dana L.

    2017-01-01

    Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses. PMID:28208639

  6. Monitoring Malaria Vector Control Interventions: Effectiveness of Five Different Adult Mosquito Sampling Methods

    PubMed Central

    Onyango, Shirley A.; Kitron, Uriel; Mungai, Peter; Muchiri, Eric M.; Kokwaro, Elizabeth; King, Charles H.; Mutuku, Francis M.

    2014-01-01

    Long-term success of ongoing malaria control efforts based on mosquito bed nets (long-lasting insecticidal net) and indoor residual spraying is dependent on continuous monitoring of mosquito vectors, and thus on effective mosquito sampling tools. The objective of our study was to identify the most efficient mosquito sampling tool(s) for routine vector surveillance for malaria and lymphatic filariasis transmission in coastal Kenya. We evaluated relative efficacy of five collection methods—light traps associated with a person sleeping under a net, pyrethrum spray catches, Prokopack aspirator, clay pots, and urine-baited traps—in four villages representing three ecological settings along the south coast of Kenya. Of the five methods, light traps were the most efficient for collecting female Anopheles gambiae s.l. (Giles) (Diptera: Culicidae) and Anopheles funestus (Giles) (Diptera: Culicidae) mosquitoes, whereas the Prokopack aspirator was most efficient in collecting Culex quinquefasciatus (Say) (Diptera: Culicidae) and other culicines. With the low vector densities here, and across much of sub-Saharan Africa, wherever malaria interventions, long-lasting insecticidal nets, and/or indoor residual spraying are in place, the use of a single mosquito collection method will not be sufficient to achieve a representative sample of mosquito population structure. Light traps will remain a relevant tool for host-seeking mosquitoes, especially in the absence of human landing catches. For a fair representation of the indoor mosquito population, light traps will have to be supplemented with aspirator use, which has potential for routine monitoring of indoor resting mosquitoes, and can substitute the more labor-intensive and intrusive pyrethrum spray catches. There are still no sufficiently efficient mosquito collection methods for sampling outdoor mosquitoes, particularly those that are bloodfed. PMID:24180120

  7. Mosquito-disseminated pyriproxyfen yields high breeding-site coverage and boosts juvenile mosquito mortality at the neighborhood scale.

    PubMed

    Abad-Franch, Fernando; Zamora-Perea, Elvira; Ferraz, Gonçalo; Padilla-Torres, Samael D; Luz, Sérgio L B

    2015-04-01

    Mosquito-borne pathogens pose major public health challenges worldwide. With vaccines or effective drugs still unavailable for most such pathogens, disease prevention heavily relies on vector control. To date, however, mosquito control has proven difficult, with low breeding-site coverage during control campaigns identified as a major drawback. A novel tactic exploits the egg-laying behavior of mosquitoes to have them disseminate tiny particles of a potent larvicide, pyriproxyfen (PPF), from resting to breeding sites, thus improving coverage. This approach has yielded promising results at small spatial scales, but its wider applicability remains unclear. We conducted a four-month trial within a 20-month study to investigate mosquito-driven dissemination of PPF dust-particles from 100 'dissemination stations' (DSs) deployed in a 7-ha sub-area to surveillance dwellings and sentinel breeding sites (SBSs) distributed over an urban neighborhood of about 50 ha. We assessed the impact of the trial by measuring juvenile mosquito mortality and adult mosquito emergence in each SBS-month. Using data from 1,075 dwelling-months, 2,988 SBS-months, and 29,922 individual mosquitoes, we show that mosquito-disseminated PPF yielded high coverage of dwellings (up to 100%) and SBSs (up to 94.3%). Juvenile mosquito mortality in SBSs (about 4% at baseline) increased by over one order of magnitude during PPF dissemination (about 75%). This led to a >10-fold decrease of adult mosquito emergence from SBSs, from approximately 1,000-3,000 adults/month before to about 100 adults/month during PPF dissemination. By expanding breeding-site coverage and boosting juvenile mosquito mortality, a strategy based on mosquito-disseminated PPF has potential to substantially enhance mosquito control. Sharp declines in adult mosquito emergence can lower vector/host ratios, reducing the risk of disease outbreaks. This approach is a very promising complement to current and novel mosquito control strategies; it will probably be especially relevant for the control of urban disease vectors, such as Aedes and Culex species, that often cause large epidemics.

  8. Mosquito-Disseminated Pyriproxyfen Yields High Breeding-Site Coverage and Boosts Juvenile Mosquito Mortality at the Neighborhood Scale

    PubMed Central

    Abad-Franch, Fernando; Zamora-Perea, Elvira; Ferraz, Gonçalo; Padilla-Torres, Samael D.; Luz, Sérgio L. B.

    2015-01-01

    Background Mosquito-borne pathogens pose major public health challenges worldwide. With vaccines or effective drugs still unavailable for most such pathogens, disease prevention heavily relies on vector control. To date, however, mosquito control has proven difficult, with low breeding-site coverage during control campaigns identified as a major drawback. A novel tactic exploits the egg-laying behavior of mosquitoes to have them disseminate tiny particles of a potent larvicide, pyriproxyfen (PPF), from resting to breeding sites, thus improving coverage. This approach has yielded promising results at small spatial scales, but its wider applicability remains unclear. Methodology/Principal Findings We conducted a four-month trial within a 20-month study to investigate mosquito-driven dissemination of PPF dust-particles from 100 ‘dissemination stations’ (DSs) deployed in a 7-ha sub-area to surveillance dwellings and sentinel breeding sites (SBSs) distributed over an urban neighborhood of about 50 ha. We assessed the impact of the trial by measuring juvenile mosquito mortality and adult mosquito emergence in each SBS-month. Using data from 1,075 dwelling-months, 2,988 SBS-months, and 29,922 individual mosquitoes, we show that mosquito-disseminated PPF yielded high coverage of dwellings (up to 100%) and SBSs (up to 94.3%). Juvenile mosquito mortality in SBSs (about 4% at baseline) increased by over one order of magnitude during PPF dissemination (about 75%). This led to a >10-fold decrease of adult mosquito emergence from SBSs, from approximately 1,000–3,000 adults/month before to about 100 adults/month during PPF dissemination. Conclusions/Significance By expanding breeding-site coverage and boosting juvenile mosquito mortality, a strategy based on mosquito-disseminated PPF has potential to substantially enhance mosquito control. Sharp declines in adult mosquito emergence can lower vector/host ratios, reducing the risk of disease outbreaks. This approach is a very promising complement to current and novel mosquito control strategies; it will probably be especially relevant for the control of urban disease vectors, such as Aedes and Culex species, that often cause large epidemics. PMID:25849040

  9. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    PubMed Central

    Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

  10. A computer simulation model of Wolbachia invasion for disease vector population modification.

    PubMed

    Guevara-Souza, Mauricio; Vallejo, Edgar E

    2015-10-05

    Wolbachia invasion has been proved to be a promising alternative for controlling vector-borne diseases, particularly Dengue fever. Creating computer models that can provide insight into how vector population modification can be achieved under different conditions would be most valuable for assessing the efficacy of control strategies for this disease. In this paper, we present a computer model that simulates the behavior of native mosquito populations after the introduction of mosquitoes infected with the Wolbachia bacteria. We studied how different factors such as fecundity, fitness cost of infection, migration rates, number of populations, population size, and number of introduced infected mosquitoes affect the spread of the Wolbachia bacteria among native mosquito populations. Two main scenarios of the island model are presented in this paper, with infected mosquitoes introduced into the largest source population and peripheral populations. Overall, the results are promising; Wolbachia infection spreads among native populations and the computer model is capable of reproducing the results obtained by mathematical models and field experiments. Computer models can be very useful for gaining insight into how Wolbachia invasion works and are a promising alternative for complementing experimental and mathematical approaches for vector-borne disease control.

  11. A new in vitro bioassay system for discovery and quantitative evaluation of mosquito repellents

    USDA-ARS?s Scientific Manuscript database

    Mosquitoes are vectors of many pathogens that cause human diseases. Although prevention and control of immature stages is the best method to control mosquitoes, repellents play a significant role in reducing the risk of these diseases by preventing mosquito bites. The In vitro K & D bioassay system ...

  12. Aquatic insect predators and mosquito control.

    PubMed

    Shaalan, Essam Abdel-Salam; Canyon, Deon V

    2009-12-01

    Mosquitoes are serious biting pests and obligate vectors of many vertebrate pathogens. Their immature larval and pupal life stages are a common feature in most tropical and many temperate water bodies and often form a significant proportion of the biomass. Control strategies rely primarily on the use of larvicides and environmental modification to reduce recruitment and adulticides during periods of disease transmission. Larvicides are usually chemical but can involve biological toxins, agents or organisms. The use of insect predators in mosquito control has been exploited in a limited fashion and there is much room for further investigation and implementation. Insects that are recognized as having predatorial capacity with regard to mosquito prey have been identified in the Orders Odonata, Coleoptera, Diptera (primarily aquatic predators), and Hemiptera (primarily surface predators). Although their capacity is affected by certain biological and physical factors, they could play a major role in mosquito control. Furthermore, better understanding for the mosquitoes-predators relationship(s) could probably lead to satisfactory reduction of mosquito-borne diseases by utilizing either these predators in control programs, for instance biological and/or integrated control, or their kairomones as mosquitoes' ovipoisting repellents. This review covers the predation of different insect species on mosquito larvae, predator-prey-habitat relationships, co-habitation developmental issues, survival and abundance, oviposition avoidance, predatorial capacity and integrated vector control.

  13. Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities.

    PubMed

    Mendenhall, Ian H; Manuel, Menchie; Moorthy, Mahesh; Lee, Theodore T M; Low, Dolyce H W; Missé, Dorothée; Gubler, Duane J; Ellis, Brett R; Ooi, Eng Eong; Pompon, Julien

    2017-06-01

    Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore's vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management.

  14. Identification of Wolbachia Strains in Mosquito Disease Vectors

    PubMed Central

    Osei-Poku, Jewelna; Han, Calvin; Mbogo, Charles M.; Jiggins, Francis M.

    2012-01-01

    Wolbachia bacteria are common endosymbionts of insects, and some strains are known to protect their hosts against RNA viruses and other parasites. This has led to the suggestion that releasing Wolbachia-infected mosquitoes could prevent the transmission of arboviruses and other human parasites. We have identified Wolbachia in Kenyan populations of the yellow fever vector Aedes bromeliae and its relative Aedes metallicus, and in Mansonia uniformis and Mansonia africana, which are vectors of lymphatic filariasis. These Wolbachia strains cluster together on the bacterial phylogeny, and belong to bacterial clades that have recombined with other unrelated strains. These new Wolbachia strains may be affecting disease transmission rates of infected mosquito species, and could be transferred into other mosquito vectors as part of control programs. PMID:23185484

  15. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Benelli, Giovanni

    2016-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide, with special reference to tropical and subtropical countries. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, the mosquito larvicidal activity of Pinus kesiya leaf essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the P. kesiya EO contained 18 compounds. Major constituents were α-pinene, β-pinene, myrcene and germacrene D. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 52, 57, and 62µg/ml, respectively. Notably, the EO was safer towards several aquatic non-target organisms Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 4135 to 8390µg/ml. Overall, this research adds basic knowledge to develop newer and safer natural larvicides from Pinaceae plants against malaria, dengue and filariasis mosquito vectors. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems.

    PubMed

    Dietrich, Isabelle; Jansen, Stephanie; Fall, Gamou; Lorenzen, Stephan; Rudolf, Martin; Huber, Katrin; Heitmann, Anna; Schicht, Sabine; Ndiaye, El Hadji; Watson, Mick; Castelli, Ilaria; Brennan, Benjamin; Elliott, Richard M; Diallo, Mawlouth; Sall, Amadou A; Failloux, Anna-Bella; Schnettler, Esther; Kohl, Alain; Becker, Stefanie C

    2017-01-01

    The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference (RNAi) has been characterized as an important innate immune defense mechanism used by mosquitoes to limit replication of positive-sense RNA flaviviruses and togaviruses; however, little is known about its role against negative-strand RNA viruses such as RVFV. We show that virus-specific small RNAs are produced in infected mosquito cells, in Drosophila melanogaster cells, and, most importantly, also in RVFV vector mosquitoes. By addressing the production of small RNAs in adult Aedes sp. and Culex quinquefasciatus mosquitoes, we showed the presence of virus-derived Piwi-interacting RNAs (piRNAs) not only in Aedes sp. but also in C. quinquefasciatus mosquitoes, indicating that antiviral RNA interference in C. quinquefasciatus mosquitoes is similar to the described activities of RNAi in Aedes sp. mosquitoes. We also show that these have antiviral activity, since silencing of RNAi pathway effectors enhances viral replication. Moreover, our data suggest that RVFV does not encode a suppressor of RNAi. These findings point toward a significant role of RNAi in the control of RVFV in mosquitoes. IMPORTANCE Rift Valley fever virus (RVFV; Phlebovirus , Bunyaviridae ) is an emerging zoonotic mosquito-borne pathogen of high relevance for human and animal health. Successful strategies of intervention in RVFV transmission by its mosquito vectors and the prevention of human and veterinary disease rely on a better understanding of the mechanisms that govern RVFV-vector interactions. Despite its medical importance, little is known about the factors that govern RVFV replication, dissemination, and transmission in the invertebrate host. Here we studied the role of the antiviral RNA interference immune pathways in the defense against RVFV in natural vector mosquitoes and mosquito cells and draw comparisons to the model insect Drosophila melanogaster . We found that RVFV infection induces both the exogenous small interfering RNA (siRNA) and piRNA pathways, which contribute to the control of viral replication in insects. Furthermore, we demonstrate the production of virus-derived piRNAs in Culex quinquefasciatus mosquitoes. Understanding these pathways and the targets within them offers the potential of the development of novel RVFV control measures in vector-based strategies.

  17. RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems

    PubMed Central

    Jansen, Stephanie; Fall, Gamou; Lorenzen, Stephan; Rudolf, Martin; Huber, Katrin; Heitmann, Anna; Schicht, Sabine; Ndiaye, El Hadji; Watson, Mick; Castelli, Ilaria; Elliott, Richard M.; Diallo, Mawlouth; Sall, Amadou A.; Failloux, Anna-Bella; Schnettler, Esther

    2017-01-01

    ABSTRACT The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference (RNAi) has been characterized as an important innate immune defense mechanism used by mosquitoes to limit replication of positive-sense RNA flaviviruses and togaviruses; however, little is known about its role against negative-strand RNA viruses such as RVFV. We show that virus-specific small RNAs are produced in infected mosquito cells, in Drosophila melanogaster cells, and, most importantly, also in RVFV vector mosquitoes. By addressing the production of small RNAs in adult Aedes sp. and Culex quinquefasciatus mosquitoes, we showed the presence of virus-derived Piwi-interacting RNAs (piRNAs) not only in Aedes sp. but also in C. quinquefasciatus mosquitoes, indicating that antiviral RNA interference in C. quinquefasciatus mosquitoes is similar to the described activities of RNAi in Aedes sp. mosquitoes. We also show that these have antiviral activity, since silencing of RNAi pathway effectors enhances viral replication. Moreover, our data suggest that RVFV does not encode a suppressor of RNAi. These findings point toward a significant role of RNAi in the control of RVFV in mosquitoes. IMPORTANCE Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is an emerging zoonotic mosquito-borne pathogen of high relevance for human and animal health. Successful strategies of intervention in RVFV transmission by its mosquito vectors and the prevention of human and veterinary disease rely on a better understanding of the mechanisms that govern RVFV-vector interactions. Despite its medical importance, little is known about the factors that govern RVFV replication, dissemination, and transmission in the invertebrate host. Here we studied the role of the antiviral RNA interference immune pathways in the defense against RVFV in natural vector mosquitoes and mosquito cells and draw comparisons to the model insect Drosophila melanogaster. We found that RVFV infection induces both the exogenous small interfering RNA (siRNA) and piRNA pathways, which contribute to the control of viral replication in insects. Furthermore, we demonstrate the production of virus-derived piRNAs in Culex quinquefasciatus mosquitoes. Understanding these pathways and the targets within them offers the potential of the development of novel RVFV control measures in vector-based strategies. PMID:28497117

  18. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities.

    PubMed

    Ramirez, Jose Luis; Short, Sarah M; Bahia, Ana C; Saraiva, Raul G; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George

    2014-10-01

    Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.

  19. The interplay between mosquitoes, entomopathogens and symbiotic microbes: A niche for the development of novel microbial-derived vector control strategies

    USDA-ARS?s Scientific Manuscript database

    The current outbreak of Zika virus in the Americas has highlighted the need for improved methods of control. This concern is exacerbated if we consider that all three major arboviruses (Zika, dengue, and chikungunya virus) are transmitted efficiently by two wide spread mosquito vectors: Aedes aegypt...

  20. Zoophagic behaviour of anopheline mosquitoes in southwest Ethiopia: opportunity for malaria vector control.

    PubMed

    Massebo, Fekadu; Balkew, Meshesha; Gebre-Michael, Teshome; Lindtjørn, Bernt

    2015-12-18

    Increased understanding of the feeding behaviours of malaria vectors is important to determine the frequency of human-vector contact and to implement effective vector control interventions. Here we assess the relative feeding preferences of Anopheles mosquitoes in relation to cattle and human host abundance in southwest Ethiopia. We collected female Anopheles mosquitoes bi-weekly using Centers for Disease Control and prevention (CDC) light traps, pyrethrum spray catches (PSCs) and by aspirating from artificial pit shelters, and determined mosquito blood meal origins using a direct enzyme-linked immunosorbent assay (ELISA). Both Anopheles arabiensis Patton and An. marshalli (Theobald) showed preference of bovine blood meal over humans regardless of higher human population sizes. The relative feeding preference of An. arabiensis on bovine blood meal was 4.7 times higher than that of human blood. Anopheles marshalli was 6 times more likely to feed on bovine blood meal than humans. The HBI of An. arabiensis and An. marshalli significantly varied between the collection methods, whereas the bovine feeding patterns was not substantially influenced by collection methods. Even though the highest HBI of An. arabiensis and An. marshalli was from indoor CDC traps collections, a substantial number of An. arabiensis (65%) and An. marshalli (63%) had contact with cattle. Anopheles arabiensis (44%) and An. marshalli (41%) had clearly taken bovine blood meals outdoors, but they rested indoors. Anopheles mosquitoes are zoophagic and mainly feed on bovine blood meals than humans. Hence, it is important to consider treatment of cattle with appropriate insecticide to control the zoophagic malaria vectors in southwest Ethiopia. Systemic insecticides like ivermectin and its member eprinomectin could be investigated to control the pyrethroid insecticides resistant vectors.

  1. Novel Methods for Mosquito Control using RNAi.

    USDA-ARS?s Scientific Manuscript database

    The discovery and development of novel insecticides for vector control is a primary focus of toxicology research conducted at the Mosquito and Fly Research Unit, Gainesville, FL. Targeting critical genes/proteins in mosquitoes using RNA interference (RNAi) is being investigated as a method to devel...

  2. An analysis of community perceptions of mosquito-borne disease control and prevention in Sint Eustatius, Caribbean Netherlands

    PubMed Central

    Leslie, Teresa E.; Carson, Marianne; van Coeverden, Els; De Klein, Kirsten; Braks, Marieta; Krumeich, Anja

    2017-01-01

    ABSTRACT Background: In the Caribbean, mosquito-borne diseases are a public health threat. In Sint Eustatius, dengue, Chikungunya and Zika are now endemic. To control and prevent mosquito-borne diseases, the Sint Eustatius Public Health Department relies on the community to assist with the control of Aedes aegypti mosquito. Unfortunately, community based interventions are not always simple, as community perceptions and responses shape actions and influence behavioural responses Objective: The aim of this study was to determine how the Sint Eustatius population perceives the Aedes aegypti mosquito, mosquito-borne diseases and prevention and control measures and hypothesized that increased knowledge of the virus, vector, control and prevention should result in a lower AQ1 prevalence and incidence of mosquito-borne diseases. Methods: This study was conducted in Sint Eustatius island in the Eastern Caribbean. We combined qualitative and quantitative designs. We conducted interviews and focus groups discussions among community member and health professional in 2013 and 2015. We also conducted cross-sectional survey to assess local knowledge on the vector, virus, and control and prevention. Results: The population is knowledgeable; ©however, mosquito-borne diseases are not the highest health priority. While local knowledge is sometimes put into action, it happens on the 20 household/individual level as opposed to the community level. After the 2014 CHIK outbreak, there was an increase in knowledge about mosquito control and mosquito-borne diseases. Discussion: In the context of Sint Eustatius, when controlling the Aedes population it may be a strategic option to focus on the household level rather than the community and build collaborations with households by supporting them when they actively practice mosquito 25 control. To further increase the level of knowledge on the significance of mosquito-borne diseases, it may also be an option to contextualize the issue of the virus, vector, prevention and control into a broader context. Conclusion: As evidenced by the increasing number of mosquito-borne diseases on the island, it appears that knowledge amongst the lay community may not be transferred into 30 action. This may be attributed to the perception of the Sint Eustatius populations that mosquitoes and the viruses they carry are not a high priority in comparison to other health concerns. PMID:28766466

  3. An analysis of community perceptions of mosquito-borne disease control and prevention in Sint Eustatius, Caribbean Netherlands.

    PubMed

    Leslie, Teresa E; Carson, Marianne; Coeverden, Els van; De Klein, Kirsten; Braks, Marieta; Krumeich, Anja

    2017-01-01

    In the Caribbean, mosquito-borne diseases are a public health threat. In Sint Eustatius, dengue, Chikungunya and Zika are now endemic. To control and prevent mosquito-borne diseases, the Sint Eustatius Public Health Department relies on the community to assist with the control of Aedes aegypti mosquito. Unfortunately, community based interventions are not always simple, as community perceptions and responses shape actions and influence behavioural responses Objective: The aim of this study was to determine how the Sint Eustatius population perceives the Aedes aegypti mosquito, mosquito-borne diseases and prevention and control measures and hypothesized that increased knowledge of the virus, vector, control and prevention should result in a lower AQ1 prevalence and incidence of mosquito-borne diseases. This study was conducted in Sint Eustatius island in the Eastern Caribbean. We combined qualitative and quantitative designs. We conducted interviews and focus groups discussions among community member and health professional in 2013 and 2015. We also conducted cross-sectional survey to assess local knowledge on the vector, virus, and control and prevention. The population is knowledgeable; ©however, mosquito-borne diseases are not the highest health priority. While local knowledge is sometimes put into action, it happens on the 20 household/individual level as opposed to the community level. After the 2014 CHIK outbreak, there was an increase in knowledge about mosquito control and mosquito-borne diseases. In the context of Sint Eustatius, when controlling the Aedes population it may be a strategic option to focus on the household level rather than the community and build collaborations with households by supporting them when they actively practice mosquito 25 control. To further increase the level of knowledge on the significance of mosquito-borne diseases, it may also be an option to contextualize the issue of the virus, vector, prevention and control into a broader context. As evidenced by the increasing number of mosquito-borne diseases on the island, it appears that knowledge amongst the lay community may not be transferred into 30 action. This may be attributed to the perception of the Sint Eustatius populations that mosquitoes and the viruses they carry are not a high priority in comparison to other health concerns.

  4. Predictive modeling of mosquito abundance and dengue transmission in Kenya

    NASA Astrophysics Data System (ADS)

    Caldwell, J.; Krystosik, A.; Mutuku, F.; Ndenga, B.; LaBeaud, D.; Mordecai, E.

    2017-12-01

    Approximately 390 million people are exposed to dengue virus every year, and with no widely available treatments or vaccines, predictive models of disease risk are valuable tools for vector control and disease prevention. The aim of this study was to modify and improve climate-driven predictive models of dengue vector abundance (Aedes spp. mosquitoes) and viral transmission to people in Kenya. We simulated disease transmission using a temperature-driven mechanistic model and compared model predictions with vector trap data for larvae, pupae, and adult mosquitoes collected between 2014 and 2017 at four sites across urban and rural villages in Kenya. We tested predictive capacity of our models using four temperature measurements (minimum, maximum, range, and anomalies) across daily, weekly, and monthly time scales. Our results indicate seasonal temperature variation is a key driving factor of Aedes mosquito abundance and disease transmission. These models can help vector control programs target specific locations and times when vectors are likely to be present, and can be modified for other Aedes-transmitted diseases and arboviral endemic regions around the world.

  5. Spatial autocorrelation of West Nile virus vector mosquito abundance in a seasonally wet suburban environment

    NASA Astrophysics Data System (ADS)

    Trawinski, P. R.; Mackay, D. S.

    2009-03-01

    The objective of this study is to quantify and model spatial dependence in mosquito vector populations and develop predictions for unsampled locations using geostatistics. Mosquito control program trap sites are often located too far apart to detect spatial dependence but the results show that integration of spatial data over time for Cx. pipiens-restuans and according to meteorological conditions for Ae. vexans enables spatial analysis of sparse sample data. This study shows that mosquito abundance is spatially correlated and that spatial dependence differs between Cx. pipiens-restuans and Ae. vexans mosquitoes.

  6. Sterile-Insect Methods for Control of Mosquito-Borne Diseases: An Analysis

    PubMed Central

    Benedict, Mark; Bellini, Romeo; Clark, Gary G.; Dame, David A.; Service, Mike W.; Dobson, Stephen L.

    2010-01-01

    Abstract Effective vector control, and more specifically mosquito control, is a complex and difficult problem, as illustrated by the continuing prevalence (and spread) of mosquito-transmitted diseases. The sterile insect technique and similar methods control certain agricultural insect pest populations in a species-specific, environmentally sound, and effective manner; there is increased interest in applying this approach to vector control. Such an approach, like all others in use and development, is not a one-size-fits-all solution, and will be more appropriate in some situations than others. In addition, the proposed release of pest insects, and more so genetically modified pest insects, is bound to raise questions in the general public and the scientific community as to such a method's efficacy, safety, and sustainability. This article attempts to address these concerns and indicate where sterile-insect methods are likely to be useful for vector control. PMID:19725763

  7. Reflections on the Anopheles gambiae genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector borne diseases.

    PubMed

    Tabachnick, Walter J

    2003-09-01

    The completion of the Anopheles gambiae Giles genome sequencing project is a milestone toward developing more effective strategies in reducing the impact of malaria and other vector borne diseases. The successes in developing transgenic approaches using mosquitoes have provided another essential new tool for further progress in basic vector genetics and the goal of disease control. The use of transgenic approaches to develop refractory mosquitoes is also possible. The ability to use genome sequence to identify genes, and transgenic approaches to construct refractory mosquitoes, has provided the opportunity that with the future development of an appropriate genetic drive system, refractory transgenes can be released into vector populations leading to nontransmitting mosquitoes. An. gambiae populations incapable of transmitting malaria. This compelling strategy will be very difficult to achieve and will require a broad substantial research program for success. The fundamental information that is required on genome structure, gene function and environmental effects on genetic expression are largely unknown. The ability to predict gene effects on phenotype is rudimentary, particularly in natural populations. As a result, the release of a refractory transgene into natural mosquito populations is imprecise and there is little ability to predict unintended consequences. The new genetic tools at hand provide opportunities to address an array of important issues, many of which can have immediate impact on the effectiveness of a host of strategies to control vector borne disease. Transgenic release approaches represent only one strategy that should be pursued. A balanced research program is required.

  8. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control

    PubMed Central

    Gabrieli, Paolo; Buckee, Caroline O.; Catteruccia, Flaminia

    2016-01-01

    The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E) is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance. PMID:27977810

  9. Effects of Organic Amendments on Microbiota Associated with the Culex nigripalpus Mosquito Vector of the Saint Louis Encephalitis and West Nile Viruses.

    PubMed

    Duguma, Dagne; Hall, Michael W; Smartt, Chelsea T; Neufeld, Josh D

    2017-01-01

    Pollution from nutrients in aquatic habitats has been linked to increases in disease vectors, including mosquitoes and other pestiferous insects. One possibility is that changes in mosquito microbiomes are impacted by nutrient enrichments and that these changes affect various traits, including larval development, susceptibility to larval control agents, and susceptibility of the adult mosquitoes to pathogens. We tested this hypothesis using field mesocosms supplemented with low- and high-organic-nutrient regimens and then sampled microbial communities associated with the naturally colonizing Culex nigripalpus mosquito vector. By high-throughput sequencing of 16S rRNA gene sequences, we found no significant differences in overall microbial communities associated with sampled mosquitoes, despite detecting discernible differences in environmental variables, including pH, dissolved oxygen, and nutrient amendments. Nevertheless, indicator species analysis revealed that members of the Clostridiales were significantly associated with mosquitoes that originated from high-nutrient enrichments. In contrast, members of the Burkholderiales were associated with mosquitoes from the low-nutrient enrichment. High bacterial variability associated with the life stages of the C. nigripalpus was largely unaffected by levels of nutrient enrichments that impacted larval microbial resources, including bacteria, ciliates, and flagellates in the larval environments. IMPORTANCE Mosquito microbiota provide important physiological and ecological attributes to mosquitoes, including an impact on their susceptibility to pathogens, fitness, and sensitivity to mosquito control agents. Culex nigripalpus mosquito populations transmit various pathogens, including the Saint Louis and West Nile viruses, and proliferate in nutrient-rich environments, such as in wastewater treatment wetlands. Our study examined whether increases in nutrients within larval mosquito developmental habitats impact microbial communities associated with C. nigripalpus mosquitoes. We characterized the effects of organic enrichments on microbiomes associated with C. nigripalpus mosquitoes and identified potential bacterial microbiota that will be further investigated for whether they alter mosquito life history traits and for their potential role in the development of microbial-based control strategies.

  10. Informing new or improved vector control tools for reducing the malaria burden in Tanzania: a qualitative exploration of perceptions of mosquitoes and methods for their control among the residents of Dar es Salaam.

    PubMed

    Makungu, Christina; Stephen, Stephania; Kumburu, Salome; Govella, Nicodem J; Dongus, Stefan; Hildon, Zoe Jane-Lara; Killeen, Gerry F; Jones, Caroline

    2017-10-11

    The effectiveness of malaria prevention with long-lasting insecticidal nets and indoor residual spraying is limited by emerging insecticide resistance, evasive mosquito behaviours that include outdoor biting, sub-optimal implementation and inappropriate use. New vector control interventions are required and their potential effectiveness will be enhanced if existing household perceptions and practices are integrated into intervention design. This qualitative descriptive study used focus groups discussions, in-depth interviews and photovoice methods to explore mosquito control perceptions and practices among residents in four study sites in Dar es Salaam, Tanzania. Mosquitoes were perceived as a growing problem, directly attributed to widespread environmental deterioration and lack of effective mosquito control interventions. Malaria and nuisance biting were perceived as the main problem caused by mosquitoes. Breeding sites were clearly distinguished from resting sites but residents did not differentiate between habitats producing malaria vector mosquitoes and others producing mostly nuisance mosquitoes. The most frequently mentioned protection methods in the wealthiest locations were bed nets, aerosol insecticide sprays, window screens, and fumigation, while bed nets were most frequently mentioned and described as 'part of the culture' in the least wealthy locations. Mosquito-proofed housing was consistently viewed as desirable, but considered unaffordable outside wealthiest locations. Slapping and covering up with clothing were most commonly used to prevent biting outdoors. Despite their utility outdoors, topical repellents applied to the skin were considered expensive, and viewed with suspicion due to perceived side effects. Improving the local environment was the preferred method for preventing outdoor biting. Affordability, effectiveness, availability, practicality, as well as social influences, such as government recommendations, socialization and internalization (familiarization and habit) were described as key factors influencing uptake. Outdoor transmission is widely accepted as an obstacle to malaria elimination. Larval source management, targeting both malaria vectors and nuisance-biting mosquitoes, is the preferred method for mosquito control among the residents of Dar es Salaam and should be prioritized for development alongside new methods for outdoor personal protection. Even if made available, effective and affordable, these additional interventions may require time and user experience to achieve positive reputations and trustworthiness.

  11. Malaria Vector Control Still Matters despite Insecticide Resistance.

    PubMed

    Alout, Haoues; Labbé, Pierrick; Chandre, Fabrice; Cohuet, Anna

    2017-08-01

    Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Managing mosquito spaces: Citizen self-governance of disease vectors in a desert landscape.

    PubMed

    vonHedemann, Nicolena; Robbins, Paul; Butterworth, Melinda K; Landau, Katheryn; Morin, Cory W

    2017-01-01

    Public health agencies' strategies to control disease vectors have increasingly included "soft" mosquito management programs that depend on citizen education and changing homeowner behaviors. In an effort to understand public responses to such campaigns, this research assesses the case of Tucson, Arizona, where West Nile virus presents a serious health risk and where management efforts have focused on public responsibility for mosquito control. Using surveys, interviews, and focus groups, we conclude that citizens have internalized responsibilities for mosquito management but also expect public management of parks and waterways while tending to reject the state's interference with privately owned parcels. Resident preferences for individualized mosquito management hinge on the belief that mosquito-borne diseases are not a large threat, a pervasive distrust of state management, and a fear of the assumed use of aerial pesticides by state managers. Opinions on who is responsible for mosquitoes hinge on both perceptions of mosquito ecology and territorial boundaries, with implications for future disease outbreaks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Climate-based models for West Nile Culex mosquito vectors in the Northeastern US

    NASA Astrophysics Data System (ADS)

    Gong, Hongfei; Degaetano, Arthur T.; Harrington, Laura C.

    2011-05-01

    Climate-based models simulating Culex mosquito population abundance in the Northeastern US were developed. Two West Nile vector species, Culex pipiens and Culex restuans, were included in model simulations. The model was optimized by a parameter-space search within biological bounds. Mosquito population dynamics were driven by major environmental factors including temperature, rainfall, evaporation rate and photoperiod. The results show a strong correlation between the timing of early population increases (as early warning of West Nile virus risk) and decreases in late summer. Simulated abundance was highly correlated with actual mosquito capture in New Jersey light traps and validated with field data. This climate-based model simulates the population dynamics of both the adult and immature mosquito life stage of Culex arbovirus vectors in the Northeastern US. It is expected to have direct and practical application for mosquito control and West Nile prevention programs.

  14. Efficiency Evaluation of Nozawa-Style Black Light Trap for Control of Anopheline Mosquitoes

    PubMed Central

    Lee, Hee Il; Seo, Bo Youl; Shin, E-Hyun; Burkett, Douglas A.; Lee, Jong-Koo

    2009-01-01

    House-residual spraying and insecticide-treated bed nets have achieved some success in controlling anthropophilic and endophagic vectors. However, these methods have relatively low efficacy in Korea because Anopheles sinensis, the primary malaria vector, is highly zoophilic and exophilic. So, we focused our vector control efforts within livestock enclosures using ultraviolet black light traps as a mechanical control measure. We found that black light traps captured significantly more mosquitoes at 2 and 2.5 m above the ground (P < 0.05). We also evaluated the effectiveness of trap spacing within the livestock enclosure. In general, traps spaced between 4 and 7 m apart captured mosquitoes more efficiently than those spaced closer together (P > 0.05). Based on these findings, we concluded that each black light trap in the livestock enclosures killed 7,586 female mosquitoes per trap per night during the peak mosquito season (July-August). In May-August 2003, additional concurrent field trials were conducted in Ganghwa county. We got 74.9% reduction (P < 0.05) of An. sinensis in human dwellings and 61.5% reduction (P > 0.05) in the livestock enclosures. The black light trap operation in the livestock enclosures proved to be an effective control method and should be incorporated into existing control strategies in developed countries. PMID:19488423

  15. Countering a Bioterrorist Introduction of Pathogen-Infected Mosquitoes through Mosquito Control

    USDA-ARS?s Scientific Manuscript database

    A workshop titled “Counteracting Bioterrorist Introduction of Pathogen-Infected Vector Mosquitoes” was held in Gainesville, Florida on May 20-22, 2010 to discuss (1) disease and vector surveillance, (2) pre-bioterrorist attack preparations, (3) actions during an ongoing bioterrorist attack, and (4) ...

  16. Multiple Resistances and Complex Mechanisms of Anopheles sinensis Mosquito: A Major Obstacle to Mosquito-Borne Diseases Control and Elimination in China

    PubMed Central

    Fang, Qiang; Hartsel, Joshua; Zhou, Guofa; Shi, Linna; Fang, Fujin; Zhu, Changliang; Yan, Guiyun

    2014-01-01

    Malaria, dengue fever, and filariasis are three of the most common mosquito-borne diseases worldwide. Malaria and lymphatic filariasis can occur as concomitant human infections while also sharing common mosquito vectors. The overall prevalence and health significance of malaria and filariasis have made them top priorities for global elimination and control programmes. Pyrethroid resistance in anopheline mosquito vectors represents a highly significant problem to malaria control worldwide. Several methods have been proposed to mitigate insecticide resistance, including rotational use of insecticides with different modes of action. Anopheles sinensis, an important malaria and filariasis vector in Southeast Asia, represents an interesting mosquito species for examining the consequences of long-term insecticide rotation use on resistance. We examined insecticide resistance in two An. Sinensis populations from central and southern China against pyrethroids, organochlorines, organophosphates, and carbamates, which are the major classes of insecticides recommended for indoor residual spray. We found that the mosquito populations were highly resistant to the four classes of insecticides. High frequency of kdr mutation was revealed in the central population, whereas no kdr mutation was detected in the southern population. The frequency of G119S mutation in the ace-1 gene was moderate in both populations. The classification and regression trees (CART) statistical analysis found that metabolic detoxification was the most important resistance mechanism, whereas target site insensitivity of L1014 kdr mutation played a less important role. Our results indicate that metabolic detoxification was the dominant mechanism of resistance compared to target site insensitivity, and suggests that long-term rotational use of various insecticides has led An. sinensis to evolve a high insecticide resistance. This study highlights the complex network of mechanisms conferring multiple resistances to chemical insecticides in mosquito vectors and it has important implication for designing and implementing vector resistance management strategies. PMID:24852174

  17. Mosquito biting activity on humans & detection of Plasmodium falciparum infection in Anopheles stephensi in Goa, India.

    PubMed

    Korgaonkar, Nandini S; Kumar, Ashwani; Yadav, Rajpal S; Kabadi, Dipak; Dash, Aditya P

    2012-01-01

    Knowledge of the bionomics of mosquitoes, especially of disease vectors, is essential to plan appropriate vector avoidance and control strategies. Information on biting activity of vectors during the night hours in different seasons is important for choosing personal protection measures. This study was carried out to find out the composition of mosquito fauna biting on humans and seasonal biting trends in Goa, India. Biting activities of all mosquitoes including vectors were studied from 1800 to 0600 h during 85 nights using human volunteers in 14 different localities of three distinct ecotypes in Goa. Seasonal biting trends of vector species were analysed and compared. Seasonal biting periodicity during different phases of night was also studied using William's mean. A total of 4,191 mosquitoes of five genera and 23 species were collected. Ten species belonged to Anopheles, eight to Culex, three to Aedes and one each to Mansonia and Armigeres. Eleven vector species had human hosts, including malaria vectors Anopheles stephensi (1.3%), An. fluviatilis (1.8%), and An. culicifacies (0.76%); filariasis vectors Culex quinquefasciatus (40.8%) and Mansonia uniformis (1.8%); Japanese encephalitis vectors Cx. tritaeniorhynchus (17.4%), Cx. vishnui (7.7%), Cx. pseudovishnui (0.1%), and Cx. gelidus (2.4%); and dengue and chikungunya vectors Aedes albopictus (0.9%) and Ae. aegypti (0.6%). Two An. stephensi of the total 831 female anophelines, were found positive for P. falciparum sporozoites. The entomological inoculation rate (EIR) of P. falciparum was 18.1 and 2.35 for Panaji city and Goa, respectively. Most of the mosquito vector species were collected in all seasons and throughout the scotophase. Biting rates of different vector species differed during different phases of night and seasons. Personal protection methods could be used to stop vector-host contact.

  18. Screening Mosquito House Entry Points as a Potential Method for Integrated Control of Endophagic Filariasis, Arbovirus and Malaria Vectors

    PubMed Central

    Ogoma, Sheila B.; Lweitoijera, Dickson W.; Ngonyani, Hassan; Furer, Benjamin; Russell, Tanya L.; Mukabana, Wolfgang R.; Killeen, Gerry F.; Moore, Sarah J.

    2010-01-01

    Background Partial mosquito-proofing of houses with screens and ceilings has the potential to reduce indoor densities of malaria mosquitoes. We wish to measure whether it will also reduce indoor densities of vectors of neglected tropical diseases. Methodology The main house entry points preferred by anopheline and culicine vectors were determined through controlled experiments using specially designed experimental huts and village houses in Lupiro village, southern Tanzania. The benefit of screening different entry points (eaves, windows and doors) using PVC-coated fibre glass netting material in terms of reduced indoor densities of mosquitoes was evaluated compared to the control. Findings 23,027 mosquitoes were caught with CDC light traps; 77.9% (17,929) were Anopheles gambiae sensu lato, of which 66.2% were An. arabiensis and 33.8% An. gambiae sensu stricto. The remainder comprised 0.2% (50) An. funestus, 10.2% (2359) Culex spp. and 11.6% (2664) Mansonia spp. Screening eaves reduced densities of Anopheles gambiae s. l. (Relative ratio (RR)  = 0.91; 95% CI = 0.84, 0.98; P = 0.01); Mansonia africana (RR = 0.43; 95% CI = 0.26, 0.76; P<0.001) and Mansonia uniformis (RR = 0.37; 95% CI = 0.25, 0.56; P<0.001) but not Culex quinquefasciatus, Cx. univittatus or Cx. theileri. Numbers of these species were reduced by screening windows and doors but this was not significant. Significance This study confirms that across Africa, screening eaves protects households against important mosquito vectors of filariasis, Rift Valley Fever and O'Nyong nyong as well as malaria. While full house screening is required to exclude Culex species mosquitoes, screening of eaves alone or fitting ceilings has considerable potential for integrated control of other vectors of filariasis, arbovirus and malaria. PMID:20689815

  19. Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: implications for disease vector surveillance.

    PubMed

    Johnston, Emily; Weinstein, Phillip; Slaney, David; Flies, Andrew S; Fricker, Stephen; Williams, Craig

    2014-06-01

    Understanding the factors influencing mosquito distribution is important for effective surveillance and control of nuisance and disease vector mosquitoes. The goal of this study was to determine how trap height and distance to the city center influenced the abundance and species of mosquitoes collected in Adelaide, South Australia. Mosquito communities were sampled at two heights (<2 m and ~10 m) along an urban-rural gradient. A total of 5,133 mosquitoes was identified over 176 trap nights. Aedes notoscriptus, Ae. vigilax, and Culex molestus were all more abundant in lower traps while Cx. quinquefasciatus (an ornithophilic species) was found to be more abundant in high traps. Distance to city center correlated strongly with the abundance of Ae. vigilax, Ae. camptorhynchus, Cx. globocoxitus, and Cx. molestus, all of which were most common at the sites farthest from the city and closest to the saltmarsh. Overall, the important disease vectors in South Australia (Ae. vigilax, Ae. camptorhynchus, Ae. notoscriptus, and Cx. annulirostris) were more abundant in low traps farthest from the city and closest to the saltmarsh. The current mosquito surveillance practice of setting traps within two meters of the ground is effective for sampling populations of the important disease vector species in South Australia. © 2014 The Society for Vector Ecology.

  20. Does fluoride influence oviposition of Anopheles stephensi in stored water habitats in an urban setting?

    PubMed

    Thomas, Shalu; Ravishankaran, Sangamithra; Johnson Amala Justin, N A; Asokan, Aswin; Maria Jusler Kalsingh, T; Mathai, Manu Thomas; Valecha, Neena; Eapen, Alex

    2016-11-09

    The physico-chemical characteristics of lentic aquatic habitats greatly influence mosquito species in selecting suitable oviposition sites; immature development, pupation and adult emergence, therefore are considerations for their preferred ecological niche. Correlating water quality parameters with mosquito breeding, as well as immature vector density, are useful for vector control operations in identifying and targeting potential breeding habitats. A total of 40 known habitats of Anopheles stephensi, randomly selected based on a vector survey in parallel, were inspected for the physical and chemical nature of the aquatic environment. Water samples were collected four times during 2013, representing four seasons (i.e., ten habitats per season). The physico-chemical variables and mosquito breeding were statistically analysed to find their correlation with immature density of An. stephensi and also co-inhabitation with other mosquito species. Anopheles stephensi prefer water with low nitrite content and high phosphate content. Parameters such as total dissolved solids, electrical conductivity, total hardness, chloride, fluoride and sulfate had a positive correlation in habitats with any mosquito species breeding (p < 0.05) and also in habitats with An. stephensi alone breeding. Fluoride was observed to have a strong positive correlation with immature density of An. stephensi in both overhead tanks and wells. Knowledge of larval ecology of vector mosquitoes is a key factor in risk assessment and for implementing appropriate and sustainable vector control operations. The presence of fluoride in potential breeding habitats and a strong positive correlation with An. stephensi immature density is useful information, as fluoride can be considered an indicator/predictor of vector breeding. Effective larval source management can be focussed on specified habitats in vulnerable areas to reduce vector abundance and malaria transmission.

  1. Exploring the potential of using cattle for malaria vector surveillance and control: a pilot study in western Kenya.

    PubMed

    Njoroge, Margaret M; Tirados, Inaki; Lindsay, Steven W; Vale, Glyn A; Torr, Stephen J; Fillinger, Ulrike

    2017-01-10

    Malaria vector mosquitoes with exophilic and zoophilic tendencies, or with a high acceptance of alternative blood meal sources when preferred human blood-hosts are unavailable, may help maintain low but constant malaria transmission in areas where indoor vector control has been scaled up. This residual transmission might be addressed by targeting vectors outside the house. Here we investigated the potential of insecticide-treated cattle, as routinely used for control of tsetse and ticks in East Africa, for mosquito control. The malaria vector population in the study area was investigated weekly for 8 months using two different trapping tools: light traps indoors and cattle-baited traps (CBTs) outdoors. The effect of the application of the insecticide deltamethrin and the acaricide amitraz on cattle on host-seeking Anopheles arabiensis was tested experimentally in field-cages and the impact of deltamethrin-treated cattle explored under field conditions on mosquito densities on household level. CBTs collected on average 2.8 (95% CI: 1.8-4.2) primary [Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.)] and 6.3 (95% CI: 3.6-11.3) secondary malaria vectors [An. ivulorum and An. coustani (s.l.)] per trap night and revealed a distinct, complementary seasonality. At the same time on average only 1.4 (95% CI: 0.8-2.3) primary and 1.1 (95% CI: 0.6-2.0) secondary malaria vectors were collected per trap night with light traps indoors. Amitraz had no effect on survival of host-seeking An. arabiensis under experimental conditions but deltamethrin increased mosquito mortality (OR 19, 95% CI: 7-50), but only for 1 week. In the field, vector mortality in association with deltamethrin treatment was detected only with CBTs and only immediately after the treatment (OR 0.25, 95% CI: 0.13-0.52). Entomological sampling with CBTs highlights that targeting cattle for mosquito control has potential since it would not only target naturally zoophilic malaria vectors but also opportunistic feeders that lack access to human hosts as is expected in residual malaria transmission settings. However, the deltamethrin formulation tested here although used widely to treat cattle for tsetse and tick control, is not suitable for the control of malaria vectors since it causes only moderate initial mortality and has little residual activity.

  2. [Mosquitoes as vectors for exotic pathogens in Germany].

    PubMed

    Becker, N; Krüger, A; Kuhn, C; Plenge-Bönig, A; Thomas, S M; Schmidt-Chanasit, J; Tannich, E

    2014-05-01

    As a result of intensified globalization of international trade and of substantial travel activities, mosquito-borne exotic pathogens are becoming an increasing threat for Europe. In Germany some 50 different mosquito species are known, several of which have vector competence for pathogens. During the last few years a number of zoonotic arboviruses that are pathogenic for humans have been isolated from mosquitoes in Germany including Usutu, Sindbis and Batai viruses. In addition, filarial worms, such as Dirofilaria repens have been repeatedly detected in mosquitoes from the federal state of Brandenburg. Other pathogens, in particular West Nile virus, are expected to emerge sooner or later in Germany as the virus is already circulating in neighboring countries, e.g. France, Austria and the Czech Republic. In upcoming years the risk for arbovirus transmission might increase in Germany due to increased occurrence of new so-called "invasive" mosquito species, such as the Asian bush mosquito Ochlerotatus japonicus or the Asian tiger mosquito Aedes albopictus. These invasive species are characterized by high vector competence for a broad range of pathogens and a preference for human blood meals. For risk assessment, a number of mosquito and pathogen surveillance projects have been initiated in Germany during the last few years; however, mosquito control strategies and plans of action have to be developed and put into place to allow early and efficient action against possible vector-borne epidemics.

  3. Efficacy of extracts of Bacillus thuringiensis israelensis for the control of mosquito vectors.

    USDA-ARS?s Scientific Manuscript database

    More than 1 million human cases of Chikungunya were recently reported in India. Aedes aegypti (the yellow fever mosquito) is an important disease vector in India where it transmits Chikungunya, dengue, and yellow fever viruses to humans. In this study, scientists from Bharathiar University in Coim...

  4. Analysis of near infrared spectra for age-grading of wild populations of Anopheles gambiae

    USDA-ARS?s Scientific Manuscript database

    A greater understanding of the age-structure of mosquito populations, especially malaria vectors such as Anopheles gambiae, is important for assessing the risk of infectious mosquitoes, and how vector control interventions may affect this structure. The use of near-infrared spectroscopy (NIRS) for a...

  5. Mosquitoes of field and forest: the scale of habitat segregation in a diverse mosquito assemblage.

    PubMed

    Reiskind, M H; Griffin, R H; Janairo, M S; Hopperstad, K A

    2017-03-01

    Knowledge of the distribution of arthropod vectors across a landscape is important in determining the risk for vector-borne disease. This has been well explored for ticks, but not for mosquitoes, despite their importance in the transmission of a variety of pathogens. This study examined the importance of habitat, habitat edges, and the scale at which mosquito abundance and diversity vary in a rural landscape by trapping along transects from grassland areas into forest patches. Significant patterns of vector diversity and distinct mosquito assemblages across habitats were found. The scale of individual species' responses to habitat edges was often dramatic, with several species rarely straying even 10 m from the edge. The present results suggest blood-seeking mosquito species are faithful to certain habitats, which has consequences for patterns of vector diversity and risk for pathogen transmission. This implies that analysts of risk for pathogen transmission and foci of control, and developers of land management strategies should assess habitat at a finer scale than previously considered. © 2016 The Royal Entomological Society.

  6. Evidence of man-vector contact in torn long-lasting insecticide-treated nets

    PubMed Central

    2013-01-01

    Background Studies indicate that physical damage to long-lasting insecticide-treated nets (LLINs) occurs at a surprisingly rapid rate following net distribution. To what extent does such damage affect the impact of LLINs? Can vectors pass a compromised LLIN barrier to bite? Do more resistant vectors enter the insecticide-treated nets (ITNs) through holes? Methods The study was carried out in three geo-locations. Two types of LLINs (polyester and polyethylene) with ‘standardized’ physical damage were compared with similarly damaged, but non-insecticidal (control) nets. The proportionate Holes Index (pHI) of each net was 276. Mosquitoes were captured inside the nets, identified taxonomically, and subjected to molecular analysis to estimate Knock-down resistance (Kdr) frequency. Results The most commonly observed species was Anopheles gambiae, accounting for approximately 70% (1,076/1,550) of the total mosquitoes collected both in LLINs and non-insecticidal nets. When compared with controls, number of vectors captured in torn LLINs was significantly reduced. Nonetheless in a night, an average of 5 An. gambiae s.l could enter the damaged LLINs to bite. Similar numbers of resistant mosquitoes were collected in both LLINs and non-insecticidal (control) nets (p > 0.05). Conclusions At a pHI of 276, man-vector contact was observed in torn LLINs. The insecticide at the surface of LLINs could only reduce the number of vectors. Resistant mosquitoes have opportunity to enter both non-insecticidal (control) nets and LLINs to bite. PMID:23941585

  7. Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities

    PubMed Central

    Manuel, Menchie; Low, Dolyce H. W.; Missé, Dorothée; Gubler, Duane J.; Ellis, Brett R.; Ooi, Eng Eong; Pompon, Julien

    2017-01-01

    Background Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. Methods We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. Results We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Conclusions Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore’s vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management. PMID:28650959

  8. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?

    PubMed Central

    Macias, Vanessa M.; Ohm, Johanna R.; Rasgon, Jason L.

    2017-01-01

    Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease. PMID:28869513

  9. Is outdoor vector control needed for malaria elimination? An individual-based modelling study.

    PubMed

    Zhu, Lin; Müller, Günter C; Marshall, John M; Arheart, Kristopher L; Qualls, Whitney A; Hlaing, WayWay M; Schlein, Yosef; Traore, Sekou F; Doumbia, Seydou; Beier, John C

    2017-07-03

    Residual malaria transmission has been reported in many areas even with adequate indoor vector control coverage, such as long-lasting insecticidal nets (LLINs). The increased insecticide resistance in Anopheles mosquitoes has resulted in reduced efficacy of the widely used indoor tools and has been linked with an increase in outdoor malaria transmission. There are considerations of incorporating outdoor interventions into integrated vector management (IVM) to achieve malaria elimination; however, more information on the combination of tools for effective control is needed to determine their utilization. A spatial individual-based model was modified to simulate the environment and malaria transmission activities in a hypothetical, isolated African village setting. LLINs and outdoor attractive toxic sugar bait (ATSB) stations were used as examples of indoor and outdoor interventions, respectively. Different interventions and lengths of efficacy periods were tested. Simulations continued for 420 days, and each simulation scenario was repeated 50 times. Mosquito populations, entomologic inoculation rates (EIRs), probabilities of local mosquito extinction, and proportion of time when the annual EIR was reduced below one were compared between different intervention types and efficacy periods. In the village setting with clustered houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population and EIR in short term, increased the probability of local mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one compared to 50% LLINs alone, but there was no significant difference in EIR in short term between 50% LLINs and outdoor ATSBs. In the village setting with dispersed houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, but there were no significant difference in the probability of mosquito extinction and the time when annual EIR is less than one between 50% LLIN and outdoor ATSBs; and there was no significant difference in EIR between all three interventions. A minimum of 2 months of efficacy period is needed to bring out the best possible effect of the vector control tools, and to achieve long-term mosquito reduction, a minimum of 3 months of efficacy period is needed. The results highlight the value of incorporating outdoor vector control into IVM as a supplement to traditional indoor practices for malaria elimination in Africa, especially in village settings of clustered houses where LLINs alone is far from sufficient.

  10. New repellent effective against African malaria mosquito Anopheles gambiae: implications for vector control.

    PubMed

    Hodson, C N; Yu, Y; Plettner, E; Roitberg, B D

    2016-12-01

    Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is a vector for Plasmodium, the causative agent of malaria. Current control strategies to reduce the impact of malaria focus on reducing the frequency of mosquito attacks on humans, thereby decreasing Plasmodium transmission. A need for new repellents effective against Anopheles mosquitoes has arisen because of changes in vector behaviour as a result of control strategies and concern over the health impacts of current repellents. The response of A. gambiae to potential repellents was investigated through an electroantennogram screen and the most promising of these candidates (1-allyloxy-4-propoxybenzene, 3c{3,6}) chosen for behavioural testing. An assay to evaluate the blood-host seeking behaviour of A. gambiae towards a simulated host protected with this repellent was then performed. The compound 3c{3,6} was shown to be an effective repellent, causing mosquitoes to reduce their contact with a simulated blood-host and probe less at the host odour. Thus, 3c{3,6} may be an effective repellent for the control of A. gambiae. © 2016 The Royal Entomological Society.

  11. Mosquito vector biology and control in latin america-a 24th symposium.

    PubMed

    Clark, Gary G; Fernández-Salas, Ildefonso

    2014-09-01

    The 24th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 80th Annual Meeting in Seattle, WA, in February 2014. The principal objective, for the previous 23 symposia, was to promote participation in the AMCA by vector control specialists, public health workers, and academicians from Latin America. This publication includes summaries of 26 presentations that were given orally in Spanish or presented as posters by participants from Colombia, Mexico, and the USA. Topics addressed in the symposium included: surveillance, ecology, chemical control, studies of dengue viruses, and insecticide resistance associated with Aedes aegypti; Anopheles vectors of malaria; essential oils; and ethnic groups and vector-borne diseases.

  12. Combining Synthetic Human Odours and Low-Cost Electrocuting Grids to Attract and Kill Outdoor-Biting Mosquitoes: Field and Semi-Field Evaluation of an Improved Mosquito Landing Box

    PubMed Central

    Matowo, Nancy S.; Koekemoer, Lizette L.; Moore, Sarah J.; Mmbando, Arnold S.; Mapua, Salum A.; Coetzee, Maureen; Okumu, Fredros O.

    2016-01-01

    Background On-going malaria transmission is increasingly mediated by outdoor-biting vectors, especially where indoor insecticidal interventions such as long-lasting insecticide treated nets (LLINs) are widespread. Often, the vectors are also physiologically resistant to insecticides, presenting major obstacles for elimination. We tested a combination of electrocuting grids with synthetic odours as an alternative killing mechanism against outdoor-biting mosquitoes. Methods An odour-baited device, the Mosquito Landing Box (MLB), was improved by fitting it with low-cost electrocuting grids to instantly kill mosquitoes attracted to the odour lure, and automated photo switch to activate attractant-dispensing and mosquito-killing systems between dusk and dawn. MLBs fitted with one, two or three electrocuting grids were compared outdoors in a malaria endemic village in Tanzania, where vectors had lost susceptibility to pyrethroids. MLBs with three grids were also tested in a large semi-field cage (9.6×9.6×4.5m), to assess effects on biting-densities of laboratory-reared Anopheles arabiensis on volunteers sitting near MLBs. Results Significantly more mosquitoes were killed when MLBs had two or three grids, than one grid in wet and dry seasons (P<0.05). The MLBs were highly efficient against Mansonia species and malaria vector, An. arabiensis. Of all mosquitoes, 99% were non-blood fed, suggesting host-seeking status. In the semi-field, the MLBs reduced mean number of malaria mosquitoes attempting to bite humans fourfold. Conclusion The improved odour-baited MLBs effectively kill outdoor-biting malaria vector mosquitoes that are behaviourally and physiologically resistant to insecticidal interventions e.g. LLINs. The MLBs reduce human-biting vector densities even when used close to humans, and are insecticide-free, hence potentially antiresistance. The devices could either be used as surveillance tools or complementary mosquito control interventions to accelerate malaria elimination where outdoor transmission is significant. PMID:26789733

  13. Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for the surveillance of vector mosquitoes.

    PubMed

    Li, Yiji; Su, Xinghua; Zhou, Guofa; Zhang, Hong; Puthiyakunnon, Santhosh; Shuai, Shufen; Cai, Songwu; Gu, Jinbao; Zhou, Xiaohong; Yan, Guiyun; Chen, Xiao-Guang

    2016-08-12

    The surveillance of vector mosquitoes is important for the control of mosquito-borne diseases. To identify a suitable surveillance tool for the adult dengue vector Aedes albopictus, the efficacy of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap (MOT) on the capture of vector mosquitoes were comparatively evaluated in this study. The capture efficiencies of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for common vector mosquitoes were tested in a laboratory setting, through the release-recapture method, and at two field sites of Guangzhou, China from June 2013 to May 2014. The captured mosquitoes were counted, species identified and compared among the three traps on the basis of species. In the release-recapture experiments in a laboratory setting, the BG-Sentinel trap caught significantly more Aedes albopictus and Culex quinquefasciatus than the CDC light trap and Mosquito-ovitrap, except for Anopheles sinensis. The BG-Sentinel trap had a higher efficacy in capturing female rather than male Ae. albopictus and Cx. quinquefasciatus, but the capture in CDC light traps displayed no significant differences. In the field trial, BG-Sentinel traps collected more Aedes albopictus than CDC light traps and MOTs collected in both urban and suburban areas. The BG-Sentinel trap was more sensitive for monitoring the population density of Aedes albopictus than the CDC light trap and MOT during the peak months of the year 2013. However, on an average, CDC light traps captured significantly more Cx. quinquefasciatus than BG-Sentinel traps. The population dynamics of Cx. quinquefasciatus displayed a significant seasonal variation, with the lowest numbers in the middle of the year. This study indicates that the BG-Sentinel trap is more effective than the commonly used CDC light trap and MOT in sampling adult Aedes albopictus and Culex quinquefasciatus. We recommend its use in the surveillance of dengue vector mosquitoes in China.

  14. In silico models for predicting vector control chemicals targeting Aedes aegypti

    PubMed Central

    Devillers, J.; Lagneau, C.; Lattes, A.; Garrigues, J.C.; Clémenté, M.M.; Yébakima, A.

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

  15. Determining the efficacy of guppies and pyriproxyfen (Sumilarv® 2MR) combined with community engagement on dengue vectors in Cambodia: study protocol for a randomized controlled trial.

    PubMed

    Hustedt, John; Doum, Dyna; Keo, Vanney; Ly, Sokha; Sam, BunLeng; Chan, Vibol; Alexander, Neal; Bradley, John; Prasetyo, Didot Budi; Rachmat, Agus; Muhammad, Shafique; Lopes, Sergio; Leang, Rithea; Hii, Jeffrey

    2017-08-04

    Evidence on the effectiveness of low-cost, sustainable, biological vector-control tools for the Aedes mosquitoes is limited. Therefore, the purpose of this trial is to estimate the impact of guppy fish (guppies), in combination with the use of the larvicide pyriproxyfen (Sumilarv® 2MR), and Communication for Behavioral Impact (COMBI) activities to reduce entomological indices in Cambodia. In this cluster randomized controlled, superiority trial, 30 clusters comprising one or more villages each (with approximately 170 households) will be allocated, in a 1:1:1 ratio, to receive either (1) three interventions (guppies, Sumilarv® 2MR, and COMBI activities), (2) two interventions (guppies and COMBI activities), or (3) control (standard vector control). Households will be invited to participate, and entomology surveys among 40 randomly selected households per cluster will be carried out quarterly. The primary outcome will be the population density of adult female Aedes mosquitoes (i.e., number per house) trapped using adult resting collections. Secondary outcome measures will include the House Index, Container Index, Breteau Index, Pupae Per House, Pupae Per Person, mosquito infection rate, guppy fish coverage, Sumilarv® 2MR coverage, and percentage of respondents with knowledge about Aedes mosquitoes causing dengue. In the primary analysis, adult female Aedes density and mosquito infection rates will be aggregated over follow-up time points to give a single rate per cluster. This will be analyzed by negative binomial regression, yielding density ratios. This trial is expected to provide robust estimates of the intervention effect. A rigorous evaluation of these vector-control interventions is vital to developing an evidence-based dengue control strategy and to help direct government resources. Current Controlled Trials, ID: ISRCTN85307778 . Registered on 25 October 2015.

  16. The Anopheles gambiae 2La chromosome inversion is associated with susceptibility to Plasmodium falciparum in Africa

    PubMed Central

    Riehle, Michelle M; Bukhari, Tullu; Gneme, Awa; Guelbeogo, Wamdaogo M; Coulibaly, Boubacar; Fofana, Abdrahamane; Pain, Adrien; Bischoff, Emmanuel; Renaud, Francois; Beavogui, Abdoul H; Traore, Sekou F; Sagnon, N’Fale; Vernick, Kenneth D

    2017-01-01

    Chromosome inversions suppress genetic recombination and establish co-adapted gene complexes, or supergenes. The 2La inversion is a widespread polymorphism in the Anopheles gambiae species complex, the major African mosquito vectors of human malaria. Here we show that alleles of the 2La inversion are associated with natural malaria infection levels in wild-captured vectors from West and East Africa. Mosquitoes carrying the more-susceptible allele (2L+a) are also behaviorally less likely to be found inside houses. Vector control tools that target indoor-resting mosquitoes, such as bednets and insecticides, are currently the cornerstone of malaria control in Africa. Populations with high levels of the 2L+a allele may form reservoirs of persistent outdoor malaria transmission requiring novel measures for surveillance and control. The 2La inversion is a major and previously unappreciated component of the natural malaria transmission system in Africa, influencing both malaria susceptibility and vector behavior. DOI: http://dx.doi.org/10.7554/eLife.25813.001 PMID:28643631

  17. The Anopheles gambiae 2La chromosome inversion is associated with susceptibility to Plasmodium falciparum in Africa.

    PubMed

    Riehle, Michelle M; Bukhari, Tullu; Gneme, Awa; Guelbeogo, Wamdaogo M; Coulibaly, Boubacar; Fofana, Abdrahamane; Pain, Adrien; Bischoff, Emmanuel; Renaud, Francois; Beavogui, Abdoul H; Traore, Sekou F; Sagnon, N'Fale; Vernick, Kenneth D

    2017-06-23

    Chromosome inversions suppress genetic recombination and establish co-adapted gene complexes, or supergenes. The 2La inversion is a widespread polymorphism in the Anopheles gambiae species complex, the major African mosquito vectors of human malaria. Here we show that alleles of the 2La inversion are associated with natural malaria infection levels in wild-captured vectors from West and East Africa. Mosquitoes carrying the more-susceptible allele (2L+ a ) are also behaviorally less likely to be found inside houses. Vector control tools that target indoor-resting mosquitoes, such as bednets and insecticides, are currently the cornerstone of malaria control in Africa. Populations with high levels of the 2L+ a allele may form reservoirs of persistent outdoor malaria transmission requiring novel measures for surveillance and control. The 2La inversion is a major and previously unappreciated component of the natural malaria transmission system in Africa, influencing both malaria susceptibility and vector behavior.

  18. Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors.

    PubMed

    Nyasembe, Vincent O; Tchouassi, David P; Pirk, Christian W W; Sole, Catherine L; Torto, Baldwyn

    2018-02-01

    The global spread of vector-borne diseases remains a worrying public health threat, raising the need for development of new combat strategies for vector control. Knowledge of vector ecology can be exploited in this regard, including plant feeding; a critical resource that mosquitoes of both sexes rely on for survival and other metabolic processes. However, the identity of plant species mosquitoes feed on in nature remains largely unknown. By testing the hypothesis about selectivity in plant feeding, we employed a DNA-based approach targeting trnH-psbA and matK genes and identified host plants of field-collected Afro-tropical mosquito vectors of dengue, Rift Valley fever and malaria being among the most important mosquito-borne diseases in East Africa. These included three plant species for Aedes aegypti (dengue), two for both Aedes mcintoshi and Aedes ochraceus (Rift Valley fever) and five for Anopheles gambiae (malaria). Since plant feeding is mediated by olfactory cues, we further sought to identify specific odor signatures that may modulate host plant location. Using coupled gas chromatography (GC)-electroantennographic detection, GC/mass spectrometry and electroantennogram analyses, we identified a total of 21 antennally-active components variably detected by Ae. aegypti, Ae. mcintoshi and An. gambiae from their respective host plants. Whereas Ae. aegypti predominantly detected benzenoids, Ae. mcintoshi detected mainly aldehydes while An. gambiae detected sesquiterpenes and alkenes. Interestingly, the monoterpenes β-myrcene and (E)-β-ocimene were consistently detected by all the mosquito species and present in all the identified host plants, suggesting that they may serve as signature cues in plant location. This study highlights the utility of molecular approaches in identifying specific vector-plant associations, which can be exploited in maximizing control strategies such as such as attractive toxic sugar bait and odor-bait technology.

  19. Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors

    PubMed Central

    Nyasembe, Vincent O.; Tchouassi, David P.; Pirk, Christian W. W.; Sole, Catherine L.

    2018-01-01

    The global spread of vector-borne diseases remains a worrying public health threat, raising the need for development of new combat strategies for vector control. Knowledge of vector ecology can be exploited in this regard, including plant feeding; a critical resource that mosquitoes of both sexes rely on for survival and other metabolic processes. However, the identity of plant species mosquitoes feed on in nature remains largely unknown. By testing the hypothesis about selectivity in plant feeding, we employed a DNA-based approach targeting trnH-psbA and matK genes and identified host plants of field-collected Afro-tropical mosquito vectors of dengue, Rift Valley fever and malaria being among the most important mosquito-borne diseases in East Africa. These included three plant species for Aedes aegypti (dengue), two for both Aedes mcintoshi and Aedes ochraceus (Rift Valley fever) and five for Anopheles gambiae (malaria). Since plant feeding is mediated by olfactory cues, we further sought to identify specific odor signatures that may modulate host plant location. Using coupled gas chromatography (GC)-electroantennographic detection, GC/mass spectrometry and electroantennogram analyses, we identified a total of 21 antennally-active components variably detected by Ae. aegypti, Ae. mcintoshi and An. gambiae from their respective host plants. Whereas Ae. aegypti predominantly detected benzenoids, Ae. mcintoshi detected mainly aldehydes while An. gambiae detected sesquiterpenes and alkenes. Interestingly, the monoterpenes β-myrcene and (E)-β-ocimene were consistently detected by all the mosquito species and present in all the identified host plants, suggesting that they may serve as signature cues in plant location. This study highlights the utility of molecular approaches in identifying specific vector-plant associations, which can be exploited in maximizing control strategies such as such as attractive toxic sugar bait and odor-bait technology. PMID:29462150

  20. Return of epidemic dengue in the United States: implications for the public health practitioner.

    PubMed

    Bouri, Nidhi; Sell, Tara Kirk; Franco, Crystal; Adalja, Amesh A; Henderson, D A; Hynes, Noreen A

    2012-01-01

    Conditions that facilitate sustained dengue transmission exist in the United States, and outbreaks have occurred during the past decade in Texas, Hawaii, and Florida. More outbreaks can also be expected in years to come. To combat dengue, medical and public health practitioners in areas with mosquito vectors that are competent to transmit the virus must be aware of the threat of reemergent dengue, and the need for early reporting and control to reduce the impact of dengue outbreaks. Comprehensive dengue control includes human and vector surveillance, vector management programs, and community engagement efforts. Public health, medical, and vector-control communities must collaborate to prevent and control disease spread. Policy makers should understand the role of mosquito abatement and community engagement in the prevention and control of the disease.

  1. Annotated differentially expressed salivary proteins of susceptible and insecticide-resistant mosquitoes of Anopheles stephensi.

    PubMed

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito-parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins may play a role in regulating mosquito biting behavior patterns and may have implications in the development of malaria parasites in resistant mosquitoes during parasite transmission.

  2. Impacts of the creation, expansion and management of English wetlands on mosquito presence and abundance - developing strategies for future disease mitigation.

    PubMed

    Medlock, Jolyon M; Vaux, Alexander G C

    2015-03-03

    The incidence of mosquito-borne diseases is increasing in Europe, partly due to the incursion of a number of invasive species known to be vectors of dengue and chikungunya viruses, but also due to the involvement of native species in the transmission of West Nile virus and malaria. For some of these pathogens, there is a risk of the re-emergence of vector-borne diseases that were once widespread in Europe, but declined partly due to large-scale land-drainage projects. Some mosquito species exploit container habitats as breeding sites in urban areas; an adaptation to human-made micro-habitats resulting from increased urbanisation. However, many species thrive in natural wetland ecosystems. Owing to the impacts of climate change there is an urgent need for environmental adaptation, such as the creation of new wetlands to mitigate coastal and inland flooding. In some cases, these initiatives can be coupled with environmental change strategies to protect a range of endangered flora and fauna species by enhancing and extending wetland landscapes, which may by driven by European legislation, particularly in urban areas. This paper reviews field studies conducted in England to assess the impact of newly created wetlands on mosquito colonisation in a) coastal, b) urban and c) arable reversion habitats. It also considers the impact of wetland management on mosquito populations and explores the implications of various water and vegetation management options on the range of British mosquito species. Understanding the impact of wetland creation and management strategies on mosquito prevalence and the potential risk of increasing the levels of nuisance or disease vector species will be crucial in informing health and well-being risk assessments, guiding targeted control, and anticipating the social effects of extreme weather and climate change. Although new wetlands will certainly extend aquatic habitats for mosquitoes, not all species will become a major nuisance or a vector concern as a result. Understanding how the design and management of wetlands might exacerbate mosquito densities is crucial if we are to manage nuisance mosquitoes and control vector species in the event of a disease outbreak. This entomological evidence-base will ensure that control strategies achieve optimal efficacy at minimal cost.

  3. Large-Scale Removal of Invasive Honeysuckle Decreases Mosquito and Avian Host Abundance.

    PubMed

    Gardner, Allison M; Muturi, Ephantus J; Overmier, Leah D; Allan, Brian F

    2017-12-01

    Invasive species rank second only to habitat destruction as a threat to native biodiversity. One consequence of biological invasions is altered risk of exposure to infectious diseases in human and animal populations. The distribution and prevalence of mosquito-borne diseases depend on the complex interactions between the vector, the pathogen, and the human or wildlife reservoir host. These interactions are highly susceptible to disturbance by invasive species, including terrestrial plants. We conducted a 2-year field experiment using a Before-After/Control-Impact design to examine how removal of invasive Amur honeysuckle (Lonicera maackii) in a forest fragment embedded within a residential neighborhood affects the abundance of mosquitoes, including two of the most important vectors of West Nile virus, Culex pipiens and Cx. restuans. We also assessed any potential changes in avian communities and local microclimate associated with Amur honeysuckle removal. We found that (1) removal of Amur honeysuckle reduces the abundance of both vector and non-vector mosquito species that commonly feed on human hosts, (2) the abundance and composition of avian hosts is altered by honeysuckle removal, and (3) areas invaded with honeysuckle support local microclimates that are favorable to mosquito survival. Collectively, our investigations demonstrate the role of a highly invasive understory shrub in determining the abundance and distribution of mosquitoes and suggest potential mechanisms underlying this pattern. Our results also give rise to additional questions regarding the general impact of invasive plants on vector-borne diseases and the spatial scale at which removal of invasive plants may be utilized to effect disease control.

  4. Small-scale land-use variability affects Anopheles spp. distribution and concomitant Plasmodium infection in humans and mosquito vectors in southeastern Madagascar.

    PubMed

    Zohdy, Sarah; Derfus, Kristin; Headrick, Emily G; Andrianjafy, Mbolatiana Tovo; Wright, Patricia C; Gillespie, Thomas R

    2016-02-24

    Deforestation and land-use change have the potential to alter human exposure to malaria. A large percentage of Madagascar's original forest cover has been lost to slash-and-burn agriculture, and malaria is one of the top causes of mortality on the island. In this study, the influence of land-use on the distribution of Plasmodium vectors and concomitant Plasmodium infection in humans and mosquito vectors was examined in the southeastern rainforests of Madagascar. From June to August 2013, health assessments were conducted on individuals living in sixty randomly selected households in six villages bordering Ranomafana National Park. Humans were screened for malaria using species-specific rapid diagnostic tests (RDTs), and surveyed about insecticide-treated bed net (ITN) usage. Concurrently, mosquitoes were captured in villages and associated forest and agricultural sites. All captured female Anopheline mosquitoes were screened for Plasmodium spp. using a circumsporozoite enzyme-linked immunosorbent assay (csELISA). Anopheles spp. dominated the mosquito communities of agricultural and village land-use sites, accounting for 41.4 and 31.4 % of mosquitoes captured respectively, whereas Anopheles spp. accounted for only 1.6 % of mosquitoes captured from forest sites. Interestingly, most Anopheles spp. (67.7 %) were captured in agricultural sites in close proximity to animal pens, and 90.8 % of Anopheles mosquitoes captured in agricultural sites were known vectors of malaria. Three Anopheline mosquitoes (0.7 %) were positive for malaria (Plasmodium vivax-210) and all positive mosquitoes were collected from agricultural or village land-use sites. Ten humans (3.7 %) tested were positive for P. falciparum, and 23.3 % of those surveyed reported never sleeping under ITNs. This study presents the first report of malaria surveillance in humans and the environment in southeastern Madagascar. These findings suggest that even during the winter, malaria species are present in both humans and mosquitoes; with P. falciparum found in humans, and evidence of P. vivax-210 in mosquito vectors. The presence of P. vivax in resident vectors, but not humans may relate to the high incidence of humans lacking the Duffy protein. The majority of mosquito vectors were found in agricultural land-use sites, in particular near livestock pens. These findings have the potential to inform and improve targeted malaria control and prevention strategies in the region.

  5. Evaluation of Commercial Agrochemicals as New Tools for Malaria Vector Control.

    PubMed

    Hoppé, Mark; Hueter, Ottmar F; Bywater, Andy; Wege, Philip; Maienfisch, Peter

    2016-10-01

    Malaria is a vector-borne and life-threatening disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. The vector control insecticide market represents a small fraction of the crop protection market and is estimated to be valued at up to $500 million at the active ingredient level. Insecticide resistance towards the current WHOPES-approved products urgently requires the development of new tools to protect communities against the transmission of malaria. The evaluation of commercial products for malaria vector control is a viable and cost effective strategy to identify new malaria vector control products. Several examples of such spin-offs from crop protection insecticides are already evidencing the success of this strategy, namely pirimiphos-methyl for indoor residual sprays and spinosad, diflubenzuron, novaluron, and pyriproxifen for mosquito larvae control, a supplementary technology for control of malaria vectors. In our study the adulticidal activities of 81 insecticides representing 23 insecticidal modes of action classes, 34 fungicides from 6 fungicidal mode of action classes and 15 herbicides from 2 herbicidal modes of action classes were tested in a newly developed screening system. WHOPES approved insecticides for malaria vector control consistently caused 80-100% mortality of adult Anopheles stephensi at application rates between 0.2 and 20 mg active ingradient (AI) litre -1 . Chlorfenapyr, fipronil, carbosulfan and endosulfan showed the expected good activity. Four new insecticides and three fungicides with promising activity against adult mosquitoes were identified, namely the insecticides acetamiprid, thiamethoxam, thiocyclam and metaflumizone and the fungicides diflumetorin, picoxystrobin, and fluazinam. Some of these compounds certainly deserve to be further evaluated for malaria vector control. This is the first report describing good activity of commercial fungicides against malaria vectors.

  6. Intraspecific Competition and Population Dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Paixão, C. A.; Charret, I. C.; Lima, R. R.

    2012-04-01

    We report computational simulations for the evolution of the population of the dengue vector, Aedes aegypti mosquitoes. The results suggest that controlling the mosquito population, on the basis of intraspecific competition at the larval stage, can be an efficient mechanism for controlling the spread of the epidemic. The results also show the presence of a kind of genetic evolution in vector population, which results mainly in increasing the average lifespan of individuals in adulthood.

  7. Using a new odour-baited device to explore options for luring and killing outdoor-biting malaria vectors: a report on design and field evaluation of the Mosquito Landing Box

    PubMed Central

    2013-01-01

    Background Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the ‘Mosquito Landing Box’ (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Methods Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. Results There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P≤0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P≤0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). Conclusion While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance. PMID:23642306

  8. Mosquito Avoidance Practices and Knowledge of Arboviral Diseases in Cities with Differing Recent History of Disease

    PubMed Central

    Haenchen, Steven D.; Hayden, Mary H.; Dickinson, Katherine L.; Walker, Kathleen; Jacobs, Elizabeth E.; Brown, Heidi E.; Gunn, Jayleen K. L.; Kohler, Lindsay N.; Ernst, Kacey C.

    2016-01-01

    As the range of dengue virus (DENV) transmission expands, an understanding of community uptake of prevention and control strategies is needed both in geographic areas where the virus has recently been circulating and in areas with the potential for DENV introduction. Personal protective behaviors such as the use of mosquito repellent to limit human–vector contact and the reduction of vector density through elimination of oviposition sites are the primary control methods for Aedes aegypti, the main vector of DENV. Here, we examined personal mosquito control measures taken by individuals in Key West, FL, in 2012, which had experienced a recent outbreak of DENV, and Tucson, AZ, which has a high potential for introduction but has not yet experienced autochthonous transmission. In both cities, there was a positive association between the numbers of mosquitoes noticed outdoors and the overall number of avoidance behaviors, use of repellent, and removal of standing water. Increased awareness and perceived risk of DENV were associated with increases in one of the most effective household prevention behaviors, removal of standing water, but only in Key West. PMID:27527634

  9. The mode of action of spatial repellents and their impact on vectorial capacity of Anopheles gambiae sensu stricto.

    PubMed

    Ogoma, Sheila B; Ngonyani, Hassan; Simfukwe, Emmanuel T; Mseka, Antony; Moore, Jason; Maia, Marta F; Moore, Sarah J; Lorenz, Lena M

    2014-01-01

    Malaria vector control relies on toxicity of insecticides used in long lasting insecticide treated nets and indoor residual spraying. This is despite evidence that sub-lethal insecticides reduce human-vector contact and malaria transmission. The impact of sub-lethal insecticides on host seeking and blood feeding of mosquitoes was measured. Taxis boxes distinguished between repellency and attraction inhibition of mosquitoes by measuring response of mosquitoes towards or away from Transfluthrin coils and humans. Protective effective distance of coils and long-term effects on blood feeding were measured in the semi-field tunnel and in a Peet Grady chamber. Laboratory reared pyrethroid susceptible Anopheles gambiae sensu stricto mosquitoes were used. In the taxis boxes, a higher proportion of mosquitoes (67%-82%) were activated and flew towards the human in the presence of Transfluthrin coils. Coils did not hinder attraction of mosquitoes to the human. In the semi-field Tunnel, coils placed 0.3 m from the human reduced feeding by 86% (95% CI [0.66; 0.95]) when used as a "bubble" compared to 65% (95% CI [0.51; 0.76]) when used as a "point source". Mosquitoes exposed to coils inside a Peet Grady chamber were delayed from feeding normally for 12 hours but there was no effect on free flying and caged mosquitoes exposed in the semi-field tunnel. These findings indicate that airborne pyrethroids minimize human-vector contact through reduced and delayed blood feeding. This information is useful for the development of target product profiles of spatial repellent products that can be used to complement mainstream malaria vector control tools.

  10. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes

    PubMed Central

    Rodgers, Faye H.

    2017-01-01

    Manipulation of the mosquito gut microbiota can lay the foundations for novel methods for disease transmission control. Mosquito blood feeding triggers a significant, transient increase of the gut microbiota, but little is known about the mechanisms by which the mosquito controls this bacterial growth whilst limiting inflammation of the gut epithelium. Here, we investigate the gut epithelial response to the changing microbiota load upon blood feeding in the malaria vector Anopheles coluzzii. We show that the synthesis and integrity of the peritrophic matrix, which physically separates the gut epithelium from its luminal contents, is microbiota dependent. We reveal that the peritrophic matrix limits the growth and persistence of Enterobacteriaceae within the gut, whilst preventing seeding of a systemic infection. Our results demonstrate that the peritrophic matrix is a key regulator of mosquito gut homeostasis and establish functional analogies between this and the mucus layers of the mammalian gastrointestinal tract. PMID:28545061

  11. Comparison of Methods for Xenomonitoring in Vectors of Lymphatic Filariasis in Northeastern Tanzania

    PubMed Central

    Irish, Seth R.; Stevens, William M. B.; Derua, Yahya A.; Walker, Thomas; Cameron, Mary M.

    2015-01-01

    Monitoring Wuchereria bancrofti infection in mosquitoes (xenomonitoring) can play an important role in determining when lymphatic filariasis has been eliminated, or in focusing control efforts. As mosquito infection rates can be low, a method for collecting large numbers of mosquitoes is necessary. Gravid traps collected large numbers of Culex quinquefasciatus in Tanzania, and a collection method that targets mosquitoes that have already fed could result in increased sensitivity in detecting W. bancrofti-infected mosquitoes. The aim of this experiment was to test this hypothesis by comparing U.S. Centers for Disease Control and Prevention (CDC) light traps with CDC gravid traps in northeastern Tanzania, where Cx. quinquefasciatus is a vector of lymphatic filariasis. After an initial study where small numbers of mosquitoes were collected, a second study collected 16,316 Cx. quinquefasciatus in 60 gravid trap-nights and 240 light trap-nights. Mosquitoes were pooled and tested for presence of W. bancrofti DNA. Light and gravid traps collected similar numbers of mosquitoes per trap-night, but the physiological status of the mosquitoes was different. The estimated infection rate in mosquitoes collected in light traps was considerably higher than in mosquitoes collected in gravid traps, so light traps can be a useful tool for xenomonitoring work in Tanzania. PMID:26350454

  12. Anopheline Reproductive Biology: Impacts on Vectorial Capacity and Potential Avenues for Malaria Control.

    PubMed

    Mitchell, Sara N; Catteruccia, Flaminia

    2017-12-01

    Vectorial capacity is a mathematical approximation of the efficiency of vector-borne disease transmission, measured as the number of new infections disseminated per case per day by an insect vector. Multiple elements of mosquito biology govern their vectorial capacity, including survival, population densities, feeding preferences, and vector competence. Intriguingly, biological pathways essential to mosquito reproductive fitness directly or indirectly influence a number of these elements. Here, we explore this complex interaction, focusing on how the interplay between mating and blood feeding in female Anopheles not only shapes their reproductive success but also influences their ability to sustain Plasmodium parasite development. Central to malaria transmission, mosquito reproductive biology has recently become the focus of research strategies aimed at malaria control, and we discuss promising new methods based on the manipulation of key reproductive steps. In light of widespread resistance to all public health-approved insecticides targeting mosquito reproduction may prove crucial to the success of malaria-eradication campaigns. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. An experimental hut study to quantify the effect of DDT and airborne pyrethroids on entomological parameters of malaria transmission

    PubMed Central

    2014-01-01

    Background Current malaria vector control programmes rely on insecticides with rapid contact toxicity. However, spatial repellents can also be applied to reduce man-vector contact, which might ultimately impact malaria transmission. The aim of this study was to quantify effects of airborne pyrethroids from coils and DDT used an indoor residual spray (IRS) on entomological parameters that influence malaria transmission. Methods The effect of Transfluthrin and Metofluthrin coils compared to DDT on house entry, exit and indoor feeding behaviour of Anopheles gambiae sensu lato were measured in experimental huts in the field and in the semi-field. Outcomes were deterrence - reduction in house entry of mosquitoes; irritancy or excito-repellency – induced premature exit of mosquitoes; blood feeding inhibition and effect on mosquito fecundity. Results Transfluthrin coils, Metofluthrin coils and DDT reduced human vector contact through deterrence by 38%, 30% and 8%, respectively and induced half of the mosquitoes to leave huts before feeding (56%, 55% and 48%, respectively). Almost all mosquitoes inside huts with Metofluthrin and Transfluthrin coils and more than three quarters of mosquitoes in the DDT hut did not feed, almost none laid eggs and 67%, 72% and 70% of all mosquitoes collected from Transfluthrin, Metofluthrin and DDT huts, respectively had died after 24 hours. Conclusion This study highlights that airborne pyrethroids and DDT affect a range of anopheline mosquito behaviours that are important parameters in malaria transmission, namely deterrence, irritancy/excito-repellency and blood-feeding inhibition. These effects are in addition to significant toxicity and reduced mosquito fecundity that affect mosquito densities and, therefore, provide community protection against diseases for both users and non-users. Airborne insecticides and freshly applied DDT had similar effects on deterrence, irritancy and feeding inhibition. Therefore, it is suggested that airborne pyrethroids, if delivered in suitable formats, may complement existing mainstream vector control tools. PMID:24693934

  14. 3D mosquito screens to create window double screen traps for mosquito control.

    PubMed

    Khattab, Ayman; Jylhä, Kaisa; Hakala, Tomi; Aalto, Mikko; Malima, Robert; Kisinza, William; Honkala, Markku; Nousiainen, Pertti; Meri, Seppo

    2017-08-29

    Mosquitoes are vectors for many diseases such as malaria. Insecticide-treated bed nets and indoor residual spraying of insecticides are the principal malaria vector control tools used to prevent malaria in the tropics. Other interventions aim at reducing man-vector contact. For example, house screening provides additive or synergistic effects to other implemented measures. We used commercial screen materials made of polyester, polyethylene or polypropylene to design novel mosquito screens that provide remarkable additional benefits to those commonly used in house screening. The novel design is based on a double screen setup made of a screen with 3D geometric structures parallel to a commercial mosquito screen creating a trap between the two screens. Owing to the design of the 3D screen, mosquitoes can penetrate the 3D screen from one side but cannot return through the other side, making it a unidirectional mosquito screen. Therefore, the mosquitoes are trapped inside the double screen system. The permissiveness of both sides of the 3D screens for mosquitoes to pass through was tested in a wind tunnel using the insectary strain of Anopheles stephensi. Among twenty-five tested 3D screen designs, three designs from the cone, prism, or cylinder design groups were the most efficient in acting as unidirectional mosquito screens. The three cone-, prism-, and cylinder-based screens allowed, on average, 92, 75 and 64% of Anopheles stephensi mosquitoes released into the wind tunnel to penetrate the permissive side and 0, 0 and 6% of mosquitoes to escape through the non-permissive side, respectively. A cone-based 3D screen fulfilled the study objective. It allowed capturing 92% of mosquitoes within the double screen setup inside the wind tunnel and blocked 100% from escaping. Thus, the cone-based screen effectively acted as a unidirectional mosquito screen. This 3D screen-based trap design could therefore be used in house screening as a means of avoiding infective bites and reducing mosquito population size.

  15. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors?

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Arivoli, Subramanian; Tennyson, Samuel; Benelli, Giovanni

    2016-05-01

    Mosquitoes (Diptera: Culicidae) are important vectors of terms of public health relevance, especially in tropical and sub-tropical regions. The continuous and indiscriminate use of conventional pesticides for the control of mosquito vectors has resulted in the development of resistance and negative impacts on non-target organisms and the environment. Therefore, there is a need for development of effective mosquito control tools. In this study, the larvicidal and repellent activity of Zingiber nimmonii rhizome essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti, and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy (GC-MS). GC-MS revealed that the Z. nimmonii EO contained at least 33 compounds. Major constituents were myrcene, β-caryophyllene, α-humulene, and α-cadinol. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus, with LC50 values of 41.19, 44.46, and 48.26 μg/ml, respectively. Repellency bioassays at 1.0, 2.0, and 5.0 mg/cm(2) of Z. nimmonii EO gave 100 % protection up to 120, 150, and 180 min. against An. stephensi, followed by Ae. aegypti (90, 120, and 150 min) and Cx. quinquefasciatus (60, 90, and 120 min). Furthermore, the EO was safer towards two non-target aquatic organisms, Diplonychus indicus and Gambusia affinis, with LC50 values of 3241.53 and 9250.12 μg/ml, respectively. Overall, this research adds basic knowledge to develop newer and safer natural larvicides and repellent from Zingiberaceae plants against malaria, dengue, and filariasis mosquito vectors.

  16. Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation.

    PubMed Central

    Bond, J. Guillermo; Rojas, Julio C.; Arredondo-Jiménez, Juan I.; Quiroz-Martínez, Humberto; Valle, Javier; Williams, Trevor

    2004-01-01

    Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica. PMID:15475337

  17. Plant-based strategies for mosquito control

    USDA-ARS?s Scientific Manuscript database

    Mosquitoes transmit some of the most devastating emerging infectious diseases of humans, domestic animals, and wildlife. Although vector control by use of chemical insecticides has played an important role in prevention and management of these diseases, their sustained use remains questionable due t...

  18. Dengue and Chikungunya Vector Control Pocket Guide

    USDA-ARS?s Scientific Manuscript database

    This technical guide consolidates information and procedures for surveillance and control of mosquitoes that transmit dengue and chikungunya viruses. The guide focuses on mosquitoes that transmit dengue but also makes reference to chikungunya and yellow fever because the pathogens that cause these ...

  19. Transcriptome of the adult female malaria mosquito vector Anopheles albimanus.

    PubMed

    Martínez-Barnetche, Jesús; Gómez-Barreto, Rosa E; Ovilla-Muñoz, Marbella; Téllez-Sosa, Juan; García López, David E; Dinglasan, Rhoel R; Ubaida Mohien, Ceereena; MacCallum, Robert M; Redmond, Seth N; Gibbons, John G; Rokas, Antonis; Machado, Carlos A; Cazares-Raga, Febe E; González-Cerón, Lilia; Hernández-Martínez, Salvador; Rodríguez López, Mario H

    2012-05-30

    Human Malaria is transmitted by mosquitoes of the genus Anopheles. Transmission is a complex phenomenon involving biological and environmental factors of humans, parasites and mosquitoes. Among more than 500 anopheline species, only a few species from different branches of the mosquito evolutionary tree transmit malaria, suggesting that their vectorial capacity has evolved independently. Anopheles albimanus (subgenus Nyssorhynchus) is an important malaria vector in the Americas. The divergence time between Anopheles gambiae, the main malaria vector in Africa, and the Neotropical vectors has been estimated to be 100 My. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to explore the mosquito biology beyond the An. gambiae complex. We sequenced the transcriptome of the An. albimanus adult female. By combining Sanger, 454 and Illumina sequences from cDNA libraries derived from the midgut, cuticular fat body, dorsal vessel, salivary gland and whole body, we generated a single, high-quality assembly containing 16,669 transcripts, 92% of which mapped to the An. darlingi genome and covered 90% of the core eukaryotic genome. Bidirectional comparisons between the An. gambiae, An. darlingi and An. albimanus predicted proteomes allowed the identification of 3,772 putative orthologs. More than half of the transcripts had a match to proteins in other insect vectors and had an InterPro annotation. We identified several protein families that may be relevant to the study of Plasmodium-mosquito interaction. An open source transcript annotation browser called GDAV (Genome-Delinked Annotation Viewer) was developed to facilitate public access to the data generated by this and future transcriptome projects. We have explored the adult female transcriptome of one important New World malaria vector, An. albimanus. We identified protein-coding transcripts involved in biological processes that may be relevant to the Plasmodium lifecycle and can serve as the starting point for searching targets for novel control strategies. Our data increase the available genomic information regarding An. albimanus several hundred-fold, and will facilitate molecular research in medical entomology, evolutionary biology, genomics and proteomics of anopheline mosquito vectors. The data reported in this manuscript is accessible to the community via the VectorBase website (http://www.vectorbase.org/Other/AdditionalOrganisms/).

  20. A Simple Colorimetric Assay for Specific Detection of Glutathione-S Transferase Activity Associated with DDT Resistance in Mosquitoes

    PubMed Central

    Rajatileka, Shavanti; Steven, Andrew; Hemingway, Janet; Ranson, Hilary; Paine, Mark; Vontas, John

    2010-01-01

    Background Insecticide-based methods represent the most effective means of blocking the transmission of vector borne diseases. However, insecticide resistance poses a serious threat and there is a need for tools, such as diagnostic tests for resistance detection, that will improve the sustainability of control interventions. The development of such tools for metabolism-based resistance in mosquito vectors lags behind those for target site resistance mutations. Methodology/Principal Findings We have developed and validated a simple colorimetric assay for the detection of Epsilon class Glutathione transferases (GST)-based DDT resistance in mosquito species, such as Aedes aegypti, the major vector of dengue and yellow fever worldwide. The colorimetric assay is based on the specific alkyl transferase activity of Epsilon GSTs for the haloalkene substrate iodoethane, which produces a dark blue colour highly correlated with AaGSTE2-2-overexpression in individual mosquitoes. The colour can be measured visually and spectrophotometrically. Conclusions/Significance The novel assay is substantially more sensitive compared to the gold standard CDNB assay and allows the discrimination of moderate resistance phenotypes. We anticipate that it will have direct application in routine vector monitoring as a resistance indicator and possibly an important impact on disease vector control. PMID:20824165

  1. An age-structured model to evaluate the potential of novel malaria-control interventions: a case study of fungal biopesticide sprays

    PubMed Central

    Hancock, P.A; Thomas, M.B; Godfray, H.C.J

    2008-01-01

    It has recently been proposed that mosquito vectors of human diseases, particularly malaria, may be controlled by spraying with fungal biopesticides that increase the rate of adult mortality. Though fungal pathogens do not cause instantaneous mortality, they can kill mosquitoes before they are old enough to transmit disease. A model is developed (i) to explore the potential for fungal entomopathogens to reduce significantly infectious mosquito populations, (ii) to assess the relative value of the many different fungal strains that might be used, and (iii) to help guide the tactical design of vector-control programmes. The model follows the dynamics of different classes of adult mosquitoes with the risk of mortality due to the fungus being assumed to be a function of time since infection (modelled using the Weibull distribution). It is shown that substantial reductions in mosquito numbers are feasible for realistic assumptions about mosquito, fungus and malaria biology and moderate to low daily fungal infection probability. The choice of optimal fungal strain and spraying regime is shown to depend on local mosquito and malaria biology. Fungal pathogens may also influence the ability of mosquitoes to transmit malaria and such effects are shown to further reduce vectorial capacity. PMID:18765347

  2. Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases.

    PubMed

    Benelli, Giovanni; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Conti, Barbara; Nicoletti, Marcello

    2015-02-01

    Mosquitoes (Diptera: Culicidae) represent an important threat to millions of people worldwide, since they act as vectors for important pathogens, such as malaria, yellow fever, dengue and West Nile. Control programmes mainly rely on chemical treatments against larvae, indoor residual spraying and insecticide-treated bed nets. In recent years, huge efforts have been carried out to propose new eco-friendly alternatives, with a special focus on the evaluation of plant-borne mosquitocidal compounds. Major examples are neem-based products (Azadirachta indica A. Juss, Meliaceae) that have been proven as really effective against a huge range of pests of medical and veterinary importance, including mosquitoes. Recent research highlighted that neem cake, a cheap by-product from neem oil extraction, is an important source of mosquitocidal metabolites. In this review, we examined (i) the latest achievements about neem cake metabolomics with special reference to nor-terpenoid and related content; (ii) the neem cake ovicidal, larvicidal and pupicidal toxicity against Aedes, Anopheles and Culex mosquito vectors; (iii) its non-target effects against vertebrates; and (iv) its oviposition deterrence effects on mosquito females. Overall, neem cake can be proposed as an eco-friendly and low-cost source of chemicals to build newer and safer control tools against mosquito vectors.

  3. Preliminary results on the control of Aedes spp. in a remote Guatemalan community vulnerable to dengue, chikungunya and Zika virus: community participation and use of low-cost ecological ovillantas for mosquito control

    PubMed Central

    Ulibarri, Gerard; Betanzos, Angel; Betanzos, Mireya; Rojas, Juan Jacobo

    2017-01-01

    Objective: To study the effectiveness of an integrated intervention of health worker training, a low-cost ecological mosquito ovitrap, and community engagement on Aedes spp. mosquito control over 10 months in 2015 in an urban remote community in Guatemala at risk of dengue, chikungunya and Zika virus transmission. Methods: We implemented a three-component integrated intervention consisting of: web-based training of local health personnel in vector control, cluster-randomized assignment of an ecological modified ovitrap (ovillantas: ovi=egg, llanta=tire) or standard ovitraps to capture Aedes spp. mosquito eggs (no efforts have been taken to determine the exact Aedes species at this moment), and community engagement to promote participation of community members and health personnel in the understanding and maintenance of ovitraps for mosquito control. The intervention was implemented in local collaboration with Guatemala’s  Ministry of Health’s Vector Control Programme, and in international collaboration with the National Institute of Public Health in Mexico. Findings: Eighty percent of the 25 local health personnel enrolled in the training programme received accreditation of their improved knowledge of vector control. When ovillantas were used in a cluster of ovitraps (several in proximity), significantly more eggs were trapped by  ecological ovillantas than standard ovitraps over the 10 month (42 week) study period (t=5.2577; p<0.05). Repetitive filtering and recycling of the attractant solution (or water) kept the ovillanta clean, free from algae growth. Among both community members and health workers, the levels of knowledge, interest, and participation in community mosquito control and trapping increased. Recommendations for enhancing and sustaining community mosquito control were identified. Conclusion: Our three-component integrated intervention proved beneficial to this remote community at risk of mosquito-borne diseases such as dengue, chikungunya, and Zika. The combination of training of health workers, cluster use of low-cost ecological ovillanta to destroy the second generation of mosquitoes, and community engagement ensured the project met local needs and fostered collaboration and participation of the community, which can help improve sustainability. The ovillanta intervention and methodology may be modified to target other species such as Culex, should it be established that such mosquitoes carry Zika virus in addition to Aedes. PMID:28105304

  4. First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions

    PubMed Central

    2011-01-01

    Background Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to infect insecticide-resistant malaria vectors under field conditions, and to see whether the virulence and viability of the fungal conidia decreased after exposure to ambient African field conditions. Methods This study used the fungus Beauveria bassiana to infect the insecticide-resistant malaria vector Anopheles gambiae s.s (Diptera: Culicidae) VKPER laboratory colony strain. Fungal conidia were applied to polyester netting and kept under West African field conditions for varying periods of time. The virulence of the fungal-treated netting was tested 1, 3 and 5 days after net application by exposing An. gambiae s.s. VKPER mosquitoes in WHO cone bioassays carried out under field conditions. In addition, the viability of B. bassiana conidia was measured after up to 20 days exposure to field conditions. Results The results show that B. bassiana infection caused significantly increased mortality with the daily risk of dying being increased by 2.5× for the fungus-exposed mosquitoes compared to the control mosquitoes. However, the virulence of the B. bassiana conidia decreased with increasing time spent exposed to the field conditions, the older the treatment on the net, the lower the fungus-induced mortality rate. This is likely to be due to the climate because laboratory trials found no such decline within the same trial time period. Conidial viability also decreased with increasing exposure to the net and natural abiotic environmental conditions. After 20 days field exposure the conidial viability was 30%, but the viability of control conidia not exposed to the net or field conditions was 79%. Conclusions This work shows promise for the use of B. bassiana fungal conidia against insecticide-resistant mosquitoes in the field, but further work is required to examine the role of environmental conditions on fungal virulence and viability with a view to eventually making the fungal conidia delivery system more able to withstand the ambient African climate. PMID:21288359

  5. Monitoring the age of mosquito populations using near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Mosquito control with bednets, residual sprays or fumigation remains the most effective tool for preventing vector-borne diseases such as malaria, dengue and Zika, though there are no widely used entomological methods for directly assessing its efficacy. Mosquito age is the most informative method f...

  6. Pilot longitudinal mosquito surveillance study in the Danube Delta Biosphere Reserve and the first reports of Anopheles algeriensis Theobald, 1903 and Aedes hungaricus Mihályi, 1955 for Romania.

    PubMed

    Török, Edina; Tomazatos, Alexandru; Cadar, Daniel; Horváth, Cintia; Keresztes, Lujza; Jansen, Stephanie; Becker, Norbert; Kaiser, Achim; Popescu, Octavian; Schmidt-Chanasit, Jonas; Jöst, Hanna; Lühken, Renke

    2016-04-11

    Mosquito-borne viruses (moboviruses) are of growing importance in many countries of Europe. In Romania and especially in the Danube Delta Biosphere Reserve (DDBR), mosquito and mobovirus surveillance are not performed on a regular basis. However, this type of study is crucially needed to evaluate the risk of pathogen transmission, to understand the ecology of emerging moboviruses, or to plan vector control programmes. We initiated a longitudinal mosquito surveillance study with carbon dioxide-baited Heavy Duty Encephalitis Vector Survey traps at four sampling sites to analyse the spatio-temporal pattern of the (i) mosquito species composition and diversity, (ii) functional groups of mosquitoes (oviposition sites, overwintering stage, and number of generations), and (iii) the occurrence of potential West Nile virus (WNV) vectors. During 2014, a total of 240,546 female mosquitoes were collected. All species were identified using morphological characteristics and further confirmed by mitochondrial cytochrome c oxidase subunit I (COI) gene analysis of selected specimens. The two most common taxa were Coquilettidia richiardii (40.9 %) and Anopheles hyrcanus (34.1 %), followed by Culex pipiens (sensu lato) (s.l.)/Cx. torrentium (7.7 %), Aedes caspius (5.7 %), Cx. modestus (4.0 %), An. maculipennis (s.l.) (3.9 %), and Ae. vexans (3.0 %). A further seven species were less common in the area studied, including two new records for Romania: An. algeriensis and Ae. hungaricus. Phylogenetic analysis of COI gene demonstrated the evolutionary relatedness of most species with specimens of the same species collected in other European regions, except Ae. detritus and An. algeriensis, which exhibited high genetic diversity. Due to the dominance of Cq. richiardii and An. hyrcanus (75 % of all collected specimens), the overall phenology and temporal pattern of functional groups basically followed the phenology of both species. A huge proportion of the mosquito population in the course of the entire sampling period can be classified as potential WNV vectors. With 40 % of all collected specimens, the most frequent species Cq. richiardii is probably the most important vector of WNV in the DDBR. This is the first DNA-barcoding supported analysis of the mosquito fauna in the DDBR. The detection of two new species highlights the lack of knowledge about the mosquito fauna in Romania and in the DDBR in particular. The results provide detailed insights into the spatial-temporal mosquito species composition, which might lead to a better understanding of mobovirus activity in Romania and thus, can be used for the development of vector control programs.

  7. Evaluation of attractive toxic sugar bait (ATSB)-barrier for control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida

    USDA-ARS?s Scientific Manuscript database

    We evaluated the efficacy of attractive toxic sugar baits (ATSB) in the laboratory and the field with the Environmental Protection Agency exempt active ingredient eugenol against vector and nuisance mosquitoes. In the laboratory, eugenol combined in attractive sugar bait (ASB) solution provided high...

  8. Pest Management Practices for the Military: Novel Field Studies to Develop Methods to Protect Deployed Troops from Mosquito, Filth/Biting Flies, and Sand Fly Vectors

    USDA-ARS?s Scientific Manuscript database

    New techniques that we developed to protect deployed military troops from the threat of vector-borne diseases and are also applicable for use by civilian mosquito control program use are described. Techniques illustrated included (1) novel military personal protection methods, (2) barrier treatments...

  9. Adult vector control, mosquito ecology and malaria transmission

    PubMed Central

    Brady, Oliver J.; Godfray, H. Charles J.; Tatem, Andrew J.; Gething, Peter W.; Cohen, Justin M.; McKenzie, F. Ellis; Alex Perkins, T.; Reiner, Robert C.; Tusting, Lucy S.; Scott, Thomas W.; Lindsay, Steven W.; Hay, Simon I.; Smith, David L.

    2015-01-01

    Background Standard advice regarding vector control is to prefer interventions that reduce the lifespan of adult mosquitoes. The basis for this advice is a decades-old sensitivity analysis of ‘vectorial capacity’, a concept relevant for most malaria transmission models and based solely on adult mosquito population dynamics. Recent advances in micro-simulation models offer an opportunity to expand the theory of vectorial capacity to include both adult and juvenile mosquito stages in the model. Methods In this study we revisit arguments about transmission and its sensitivity to mosquito bionomic parameters using an elasticity analysis of developed formulations of vectorial capacity. Results We show that reducing adult survival has effects on both adult and juvenile population size, which are significant for transmission and not accounted for in traditional formulations of vectorial capacity. The elasticity of these effects is dependent on various mosquito population parameters, which we explore. Overall, control is most sensitive to methods that affect adult mosquito mortality rates, followed by blood feeding frequency, human blood feeding habit, and lastly, to adult mosquito population density. Conclusions These results emphasise more strongly than ever the sensitivity of transmission to adult mosquito mortality, but also suggest the high potential of combinations of interventions including larval source management. This must be done with caution, however, as policy requires a more careful consideration of costs, operational difficulties and policy goals in relation to baseline transmission. PMID:25733562

  10. Wolbachia: A biological control strategy against arboviral diseases.

    PubMed

    Mohanty, Ipsita; Rath, Animesha; Mahapatra, Namita; Hazra, Rupenangshu K

    2016-01-01

    Vector-borne diseases particularly those transmitted by mosquitoes like Dengue are among the leading causes of mortality and morbidity in human population. There are no effective vaccines or treatment against dengue fever till date and the control methods are limited. So, new approaches are urgently in need to reverse these trends. Vector control is currently the primary intervention tool. Strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. Wolbachia an endosymbiont of arthropod vectors is being explored as a novel ecofriendly control strategy. Studies in Drosophila have shown that Wolbachia can confer resistance to diverse RNA viruses and protect flies from virus-induced mortality. This review was focused on biology of the Wolbachia and its implication as a control measure for arboviral diseases mainly Dengue and Chikungunya.

  11. Combining indoor and outdoor methods for controlling malaria vectors: an ecological model of endectocide-treated livestock and insecticidal bed nets.

    PubMed

    Yakob, Laith; Cameron, Mary; Lines, Jo

    2017-03-13

    Malaria is spread by mosquitoes that are increasingly recognised to have diverse biting behaviours. How a mosquito in a specific environment responds to differing availability of blood-host species is largely unknown and yet critical to vector control efficacy. A parsimonious mathematical model is proposed that accounts for a diverse range of host-biting behaviours and assesses their impact on combining long-lasting insecticidal nets (LLINs) with a novel approach to malaria control: livestock treated with insecticidal compounds ('endectocides') that kill biting mosquitoes. Simulations of a malaria control programme showed marked differences across biting ecologies in the efficacy of both LLINs as a stand-alone tool and the combination of LLINs with endectocide-treated cattle. During the intervals between LLIN mass campaigns, concordant use of endectocides is projected to reduce the bounce-back in malaria prevalence that can occur as LLIN efficacy decays over time, especially if replacement campaigns are delayed. Integrating these approaches can also dramatically improve the attainability of local elimination; endectocidal treatment schedules required to achieve this aim are provided for malaria vectors with different biting ecologies. Targeting blood-feeding mosquitoes by treating livestock with endectocides offers a potentially useful complement to existing malaria control programmes centred on LLIN distribution. This approach is likely to be effective against vectors with a wide range of host-preferences and biting behaviours, with the exception of species that are so strictly anthropophilic that most blood meals are taken on humans even when humans are much less available than non-human hosts. Identifying this functional relationship in wild mosquito populations and ascertaining the extent to which it differs, within as well as between species, is a critical next step before targets can be set for employing this novel approach and combination.

  12. Synthetic predator cues impair immune function and make the biological pesticide Bti more lethal for vector mosquitoes.

    PubMed

    Op De Beeck, Lin; Janssens, Lizanne; Stoks, Robby

    2016-03-01

    The control of vector mosquitoes is one of the biggest challenges facing humankind with the use of chemical pesticides often leading to environmental impact and the evolution of resistance. Although to a lesser extent, this also holds for Bacillus thuringiensis israelensis (Bti), the most widely used biological pesticide to control mosquito populations. This raises the need for the development of integrated pest management strategies that allow the reduction of Bti concentrations without loss of the mosquito control efficiency. To this end, we tested in a laboratory experiment the combined effects of larval exposure to a sublethal Bti concentration and predation risk cues on life history and physiology of larval and adult Culex pipiens mosquitoes. Besides natural predator kairomones and prey alarm cues, we also tested synthetic kairomones of Notonecta predators. Neither Bti nor predation risk cues affected mortality, yet when both stressors were combined mortality increased on average by 133% compared to the treatment with only predation risk cues. This synergistic interaction was also present when Bti was combined with synthetic kairomones. This was further reflected in changes of the composite index of population performance, which suggested lowered per capita growth rates in mosquitoes exposed to Bti but only when Bti was combined with synthetic kairomones. Furthermore, predation risk cues shortened larval development time, reduced mass at metamorphosis in males, and had an immunosuppressive effect in larval and adult mosquitoes which may affect the mosquito vector competence. We provide the first demonstration that synthetic kairomones may generate similar effects on prey as natural kairomones. The identified immunosuppressive effect of synthetic kairomones and the novel lethal synergism type between a biological pesticide and synthetic predator kairomones provide an important proof of principle illustrating the potential of this combination for integrated mosquito control and should in a next step be evaluated under more natural conditions. It may guide novel integrated pest management programs with Bti that incorporate synthetic kairomones and thereby can reduce environmental impact and evolution of resistance creating more efficient and sustainable mosquito control.

  13. The potential for fungal biopesticides to reduce malaria transmission under diverse environmental conditions.

    PubMed

    Heinig, R L; Paaijmans, Krijn P; Hancock, Penelope A; Thomas, Matthew B

    2015-12-01

    The effectiveness of conventional malaria vector control is being threatened by the spread of insecticide resistance. One promising alternative to chemicals is the use of naturally-occurring insect-killing fungi. Numerous laboratory studies have shown that isolates of fungal pathogens such as Beauveria bassiana can infect and kill adult mosquitoes, including those resistant to chemical insecticides.Unlike chemical insecticides, fungi may take up to a week or more to kill mosquitoes following exposure. This slow kill speed can still reduce malaria transmission because the malaria parasite itself takes at least eight days to complete its development within the mosquito. However, both fungal virulence and parasite development rate are strongly temperature-dependent, so it is possible that biopesticide efficacy could vary across different transmission environments.We examined the virulence of a candidate fungal isolate against two key malaria vectors at temperatures from 10-34 °C. Regardless of temperature, the fungus killed more than 90% of exposed mosquitoes within the predicted duration of the malarial extrinsic incubation period, a result that was robust to realistic diurnal temperature variation.We then incorporated temperature sensitivities of a suite of mosquito, parasite and fungus life-history traits that are important determinants of malaria transmission into a stage-structured malaria transmission model. The model predicted that, at achievable daily fungal infection rates, fungal biopesticides have the potential to deliver substantial reductions in the density of malaria-infectious mosquitoes across all temperatures representative of malaria transmission environments. Synthesis and applications . Our study combines empirical data and theoretical modelling to prospectively evaluate the potential of fungal biopesticides to control adult malaria vectors. Our results suggest that Beauveria bassiana could be a potent tool for malaria control and support further development of fungal biopesticides to manage infectious disease vectors.

  14. Emergency mosquito aerial spray response to the 2004 Florida hurricanes Charley, Frances, Ivan, and Jeanne: an overview of control results.

    PubMed

    Simpson, Jennifer E

    2006-09-01

    In total, 43 aerial spray missions were conducted in 26 Florida counties to control mosquito populations after each of the 4 hurricanes making landfall in Florida in 2004. Mosquitoes were trapped before and after each spray mission to determine the percentage (%) of control for the West Nile virus vector Culex nigripalpus (64.1%), the floodwater pest mosquito Psorophora columbiae (69.7%), and for all species combined (67.7%). A discussion on these results and suggestions for future efforts are presented.

  15. Mosquito ovicidal properties of Ageratina adenophora (Family: Asteraceae) against filariasis vector, Culex quinquefasciatus (Diptera: Culicidae)

    USDA-ARS?s Scientific Manuscript database

    Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternativ...

  16. A natural agonist of mosquito TRPA1 from the medicinal plant Cinnamosma fragrans that is toxic, antifeedant, and repellent to the yellow fever mosquito Aedes aegypti.

    PubMed

    Inocente, Edna Alfaro; Shaya, Marguerite; Acosta, Nuris; Rakotondraibe, L Harinantenaina; Piermarini, Peter M

    2018-02-01

    Plants produce various secondary metabolites that offer a potential source of novel insecticides and repellents for the control of mosquito vectors. Plants of the genus Cinnamosma are endemic to, and widely-distributed throughout, the island of Madagascar. The barks of these species are commonly used in traditional medicines for treating a wide range of maladies. The therapeutic nature of the bark is thought to be associated with its enrichment of pungent drimane sesquiterpenes, which elicit antifeedant and toxic effects in some insects. Here we test the hypothesis that a bark extract of Cinnamosma fragrans (CINEX) and its major drimane sesquiterpenes are insecticidal, antifeedant, and repellent to Aedes aegypti, the principal mosquito vector of chikungunya, dengue, yellow fever, and Zika viruses. We demonstrate that CINEX is 1) toxic to larval and adult female mosquitoes, and 2) antifeedant and repellent to adult female mosquitoes. Moreover, we show that cinnamodial (CDIAL), a sesquiterpene dialdehyde isolated from CINEX, duplicates these bioactivities and exhibits similar toxic potency against pyrethroid-susceptible and -resistant strains of Ae. aegypti. Importantly, we show that CDIAL is an agonist of heterologously-expressed mosquito Transient Receptor Potential A1 (TRPA1) channels, and the antifeedant activity of CDIAL is dampened in a TRPA1-deficient strain of Ae. aegypti (TRPA1-/-). Intriguingly, TRPA1-/- mosquitoes do not exhibit toxic resistance to CDIAL. The data indicate that modulation of TRPA1 is required for the sensory detection and avoidance of CDIAL by mosquitoes, but not for inducing the molecule's toxicity. Our study suggests that CDIAL may serve as a novel chemical platform for the development of natural product-based insecticides and repellents for controlling mosquito vectors.

  17. Characterization and expression analysis of gene encoding heme peroxidase HPX15 in major Indian malaria vector Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Kajla, Mithilesh; Kakani, Parik; Choudhury, Tania Pal; Gupta, Kuldeep; Gupta, Lalita; Kumar, Sanjeev

    2016-06-01

    The interaction of mosquito immune system with Plasmodium is critical in determining the vector competence. Thus, blocking the crucial mosquito molecules that regulate parasite development might be effective in controlling the disease transmission. In this study, we characterized a full-length AsHPX15 gene from the major Indian malaria vector Anopheles stephensi. This gene is true ortholog of Anopheles gambiae heme peroxidase AgHPX15 (AGAP013327), which modulates midgut immunity and regulates Plasmodium falciparum development. We found that AsHPX15 is highly induced in mosquito developmental stages and blood fed midguts. In addition, this is a lineage-specific gene that has identical features and 65-99% amino acids identity with other HPX15 genes present in eighteen worldwide-distributed anophelines. We discuss that the conserved HPX15 gene might serve as a common target to manipulate mosquito immunity and arresting Plasmodium development inside the vector host. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Germ line transformation of the yellow fever mosquito, Aedes aegypti, mediated by transpositional insertion of a piggyBac vector.

    PubMed

    Lobo, N F; Hua-Van, A; Li, X; Nolen, B M; Fraser, M J

    2002-04-01

    Mosquito-vectored diseases such as yellow fever and dengue fever continue to have a substantial impact on human populations world-wide. Novel strategies for control of these mosquito vectored diseases can arise through the development of reliable systems for genetic manipulation of the insect vector. A piggyBac vector marked with the Drosophila melanogaster cinnabar (cn) gene was used to transform the white-eyed khw strain of Aedes aegypti. Microinjection of preblastoderm embryos resulted in four families of cinnabar transformed insects. An overall transformation frequency of 4%, with a range of 0% to as high as 13% for individual experiments, was achieved when using a heat-shock induced transposase providing helper plasmid. Southern hybridizations indicated multiple insertion events in three of four transgenic lines, while the presence of duplicated target TTAA sites at either ends of individual insertions confirmed characteristic piggyBac transposition events in these three transgenic lines. The transgenic phenotype has remained stable for more than twenty generations. The transformations effected using the piggyBac element establish the potential of this element as a germ-line transformation vector for Aedine mosquitoes.

  19. Repellent Plants Provide Affordable Natural Screening to Prevent Mosquito House Entry in Tropical Rural Settings—Results from a Pilot Efficacy Study

    PubMed Central

    Mng'ong'o, Frank C.; Sambali, Joseph J.; Sabas, Eustachkius; Rubanga, Justine; Magoma, Jaka; Ntamatungiro, Alex J.; Turner, Elizabeth L.; Nyogea, Daniel; Ensink, Jeroen H. J.; Moore, Sarah J.

    2011-01-01

    Sustained malaria control is underway using a combination of vector control, prompt diagnosis and treatment of malaria cases. Progress is excellent, but for long-term control, low-cost, sustainable tools that supplement existing control programs are needed. Conventional vector control tools such as indoor residual spraying and house screening are highly effective, but difficult to deliver in rural areas. Therefore, an additional means of reducing mosquito house entry was evaluated: the screening of mosquito house entry points by planting the tall and densely foliated repellent plant Lantana camara L. around houses. A pilot efficacy study was performed in Kagera Region, Tanzania in an area of high seasonal malaria transmission, where consenting families within the study village planted L. camara (Lantana) around their homes and were responsible for maintaining the plants. Questionnaire data on house design, socioeconomic status, malaria prevention knowledge, attitude and practices was collected from 231 houses with Lantana planted around them 90 houses without repellent plants. Mosquitoes were collected using CDC Light Traps between September 2008 and July 2009. Data were analysed with generalised negative binomial regression, controlling for the effect of sampling period. Indoor catches of mosquitoes in houses with Lantana were compared using the Incidence Rate Ratio (IRR) relative to houses without plants in an adjusted analysis. There were 56% fewer Anopheles gambiae s.s. (IRR 0.44, 95% CI 0.28–0.68, p<0.0001); 83% fewer Anopheles funestus s.s. (IRR 0.17, 95% CI 0.09–0.32, p<0.0001), and 50% fewer mosquitoes of any kind (IRR 0.50, 95% CI 0.38–0.67, p<0.0001) in houses with Lantana relative to controls. House screening using Lantana reduced indoor densities of malaria vectors and nuisance mosquitoes with broad community acceptance. Providing sufficient plants for one home costs US $1.50 including maintenance and labour costs, (30 cents per person). L. camara mode of action and suitability for mosquito control is discussed. PMID:22022471

  20. Repellent plants provide affordable natural screening to prevent mosquito house entry in tropical rural settings--results from a pilot efficacy study.

    PubMed

    Mng'ong'o, Frank C; Sambali, Joseph J; Sabas, Eustachkius; Rubanga, Justine; Magoma, Jaka; Ntamatungiro, Alex J; Turner, Elizabeth L; Nyogea, Daniel; Ensink, Jeroen H J; Moore, Sarah J

    2011-01-01

    Sustained malaria control is underway using a combination of vector control, prompt diagnosis and treatment of malaria cases. Progress is excellent, but for long-term control, low-cost, sustainable tools that supplement existing control programs are needed. Conventional vector control tools such as indoor residual spraying and house screening are highly effective, but difficult to deliver in rural areas. Therefore, an additional means of reducing mosquito house entry was evaluated: the screening of mosquito house entry points by planting the tall and densely foliated repellent plant Lantana camara L. around houses. A pilot efficacy study was performed in Kagera Region, Tanzania in an area of high seasonal malaria transmission, where consenting families within the study village planted L. camara (Lantana) around their homes and were responsible for maintaining the plants. Questionnaire data on house design, socioeconomic status, malaria prevention knowledge, attitude and practices was collected from 231 houses with Lantana planted around them 90 houses without repellent plants. Mosquitoes were collected using CDC Light Traps between September 2008 and July 2009. Data were analysed with generalised negative binomial regression, controlling for the effect of sampling period. Indoor catches of mosquitoes in houses with Lantana were compared using the Incidence Rate Ratio (IRR) relative to houses without plants in an adjusted analysis. There were 56% fewer Anopheles gambiae s.s. (IRR 0.44, 95% CI 0.28-0.68, p<0.0001); 83% fewer Anopheles funestus s.s. (IRR 0.17, 95% CI 0.09-0.32, p<0.0001), and 50% fewer mosquitoes of any kind (IRR 0.50, 95% CI 0.38-0.67, p<0.0001) in houses with Lantana relative to controls. House screening using Lantana reduced indoor densities of malaria vectors and nuisance mosquitoes with broad community acceptance. Providing sufficient plants for one home costs US $1.50 including maintenance and labour costs, (30 cents per person). L. camara mode of action and suitability for mosquito control is discussed.

  1. Effects of landscape anthropization on mosquito community composition and abundance

    NASA Astrophysics Data System (ADS)

    Ferraguti, Martina; Martínez-de La Puente, Josué; Roiz, David; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2016-07-01

    Anthropogenic landscape transformation has an important effect on vector-borne pathogen transmission. However, the effects of urbanization on mosquito communities are still only poorly known. Here, we evaluate how land-use characteristics are related to the abundance and community composition of mosquitoes in an area with endemic circulation of numerous mosquito-borne pathogens. We collected 340 829 female mosquitoes belonging to 13 species at 45 localities spatially grouped in 15 trios formed by 1 urban, 1 rural and 1 natural area. Mosquito abundance and species richness were greater in natural and rural areas than in urban areas. Environmental factors including land use, vegetation and hydrological characteristics were related to mosquito abundance and community composition. Given the differing competences of each species in pathogen transmission, these results provide valuable information on the transmission potential of mosquito-borne pathogens that will be of great use in public and animal health management by allowing, for instance, the identification of the priority areas for pathogen surveillance and vector control.

  2. Effects of landscape anthropization on mosquito community composition and abundance

    PubMed Central

    Ferraguti, Martina; Martínez-de la Puente, Josué; Roiz, David; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2016-01-01

    Anthropogenic landscape transformation has an important effect on vector-borne pathogen transmission. However, the effects of urbanization on mosquito communities are still only poorly known. Here, we evaluate how land-use characteristics are related to the abundance and community composition of mosquitoes in an area with endemic circulation of numerous mosquito-borne pathogens. We collected 340 829 female mosquitoes belonging to 13 species at 45 localities spatially grouped in 15 trios formed by 1 urban, 1 rural and 1 natural area. Mosquito abundance and species richness were greater in natural and rural areas than in urban areas. Environmental factors including land use, vegetation and hydrological characteristics were related to mosquito abundance and community composition. Given the differing competences of each species in pathogen transmission, these results provide valuable information on the transmission potential of mosquito-borne pathogens that will be of great use in public and animal health management by allowing, for instance, the identification of the priority areas for pathogen surveillance and vector control. PMID:27373794

  3. Schools as Potential Risk Sites for Vector-Borne Disease Transmission: Mosquito Vectors in Rural Schools in Two Municipalities in Colombia.

    PubMed

    Olano, Víctor Alberto; Matiz, María Inés; Lenhart, Audrey; Cabezas, Laura; Vargas, Sandra Lucía; Jaramillo, Juan Felipe; Sarmiento, Diana; Alexander, Neal; Stenström, Thor Axel; Overgaard, Hans J

    2015-09-01

    Dengue and other vector-borne diseases are of great public health importance in Colombia. Vector surveillance and control activities are often focused at the household level. Little is known about the importance of nonhousehold sites, including schools, in maintaining vector-borne disease transmission. The objectives of this paper were to determine the mosquito species composition in rural schools in 2 municipalities in Colombia and to assess the potential risk of vector-borne disease transmission in school settings. Entomological surveys were carried out in rural schools during the dry and rainy seasons of 2011. A total of 12 mosquito species were found: Aedes aegypti, Anopheles pseudopunctipennis, Culex coronator, Cx. quinquefasciatus, and Limatus durhamii in both immature and adult forms; Ae. fluviatilis, Cx. nigripalpus, Cx. corniger, and Psorophora ferox in immature forms only; and Ae. angustivittatus, Haemagogus equinus, and Trichoprosopon lampropus in adult forms only. The most common mosquito species was Cx. quinquefasciatus. Classrooms contained the greatest abundance of adult female Ae. aegypti and Cx. quinquefasciatus. The most common Ae. aegypti breeding sites were containers classified as "others" (e.g., cans), followed by containers used for water storage. A high level of Ae. aegypti infestation was found during the wet season. Our results suggest that rural schools are potentially important foci for the transmission of dengue and other mosquito-borne diseases. We propose that public health programs should be implemented in rural schools to prevent vector-borne diseases.

  4. Malaria vector populations across ecological zones in Guinea Conakry and Mali, West Africa.

    PubMed

    Coulibaly, Boubacar; Kone, Raymond; Barry, Mamadou S; Emerson, Becky; Coulibaly, Mamadou B; Niare, Oumou; Beavogui, Abdoul H; Traore, Sekou F; Vernick, Kenneth D; Riehle, Michelle M

    2016-04-08

    Malaria remains a pervasive public health problem in sub-Saharan West Africa. Here mosquito vector populations were explored across four sites in Mali and the Republic of Guinea (Guinea Conakry). The study samples the major ecological zones of malaria-endemic regions in West Africa within a relatively small distance. Mosquito vectors were sampled from larval pools, adult indoor resting sites, and indoor and outdoor human-host seeking adults. Mosquitoes were collected at sites spanning 350 km that represented arid savannah, humid savannah, semi-forest and deep forest ecological zones, in areas where little was previously known about malaria vector populations. 1425 mosquito samples were analysed by molecular assays to determine species, genetic attributes, blood meal sources and Plasmodium infection status. Anopheles gambiae and Anopheles coluzzii were the major anophelines represented in all collections across the ecological zones, with A. coluzzii predominant in the arid savannah and A. gambiae in the more humid sites. The use of multiple collection methodologies across the sampling sites allows assessment of potential collection bias of the different methods. The L1014F kdr insecticide resistance mutation (kdr-w) is found at high frequency across all study sites. This mutation appears to have swept almost to fixation, from low frequencies 6 years earlier, despite the absence of widespread insecticide use for vector control. Rates of human feeding are very high across ecological zones, with only small fractions of animal derived blood meals in the arid and humid savannah. About 30 % of freshly blood-fed mosquitoes were positive for Plasmodium falciparum presence, while the rate of mosquitoes with established infections was an order of magnitude lower. The study represents detailed vector characterization from an understudied area in West Africa with endemic malaria transmission. The deep forest study site includes the epicenter of the 2014 Ebola virus epidemic. With new malaria control interventions planned in Guinea, these data provide a baseline measure and an opportunity to assess the outcome of future interventions.

  5. The Cost of Dengue Vector Control Activities in Malaysia by Different Service Providers.

    PubMed

    Packierisamy, P Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Venugopalan, B; Halasa, Yara A; Shepard, Donald S

    2015-11-01

    We examined variations in dengue vector control costs and resource consumption between the District Health Departments (DHDs) and Local Authorities (LAs) to assist informed decision making as to the future roles of these agencies in the delivery of dengue vector control services in Malaysia. Data were collected from the vector control units of DHDs and LAs in 8 selected districts. We captured costs and resource consumption in 2010 for premise inspection for mosquito breeding sites, fogging to destroy adult mosquitoes and larviciding of potential breeding sites. Overall, DHDs spent US$5.62 million or US$679 per case and LAs spent US$2.61 million or US$499 per case. The highest expenditure for both agencies was for fogging, 51.0% and 45.8% of costs for DHDs and LAs, respectively. The DHDs had higher resource costs for human personnel, vehicles, pesticides, and equipment. The findings provide some evidence to rationalize delivery of dengue vector control services in Malaysia. © 2015 APJPH.

  6. Household Dengue Prevention Interventions, Expenditures, and Barriers to Aedes aegypti Control in Machala, Ecuador.

    PubMed

    Heydari, Naveed; Larsen, David A; Neira, Marco; Beltrán Ayala, Efraín; Fernandez, Prissila; Adrian, Jefferson; Rochford, Rosemary; Stewart-Ibarra, Anna M

    2017-02-16

    The Aedes aegypti mosquito is an efficient vector for the transmission of Zika, chikungunya, and dengue viruses, causing major epidemics and a significant social and economic burden throughout the tropics and subtropics. The primary means of preventing these diseases is household-level mosquito control. However, relatively little is known about the economic burden of Ae. aegypti control in resource-limited communities. We surveyed residents from 40 households in a high-risk community at the urban periphery in the city of Machala, Ecuador, on dengue perceptions, vector control interventions, household expenditures, and factors influencing purchasing decisions. The results of this study show that households spend a monthly median of US$2.00, or 1.90% (range: 0.00%, 9.21%) of their family income on Ae. aegypti control interventions. Households reported employing, on average, five different mosquito control and dengue prevention interventions, including aerosols, liquid sprays, repellents, mosquito coils, and unimpregnated bed nets. We found that effectiveness and cost were the most important factors that influence people's decisions to purchase a mosquito control product. Our findings will inform the development and deployment of new Ae. aegypti control interventions by the public health and private sectors, and add to prior studies that have focused on the economic burden of dengue-like illness.

  7. Household Dengue Prevention Interventions, Expenditures, and Barriers to Aedes aegypti Control in Machala, Ecuador

    PubMed Central

    Heydari, Naveed; Larsen, David A.; Neira, Marco; Beltrán Ayala, Efraín; Fernandez, Prissila; Adrian, Jefferson; Rochford, Rosemary; Stewart-Ibarra, Anna M.

    2017-01-01

    The Aedes aegypti mosquito is an efficient vector for the transmission of Zika, chikungunya, and dengue viruses, causing major epidemics and a significant social and economic burden throughout the tropics and subtropics. The primary means of preventing these diseases is household-level mosquito control. However, relatively little is known about the economic burden of Ae. aegypti control in resource-limited communities. We surveyed residents from 40 households in a high-risk community at the urban periphery in the city of Machala, Ecuador, on dengue perceptions, vector control interventions, household expenditures, and factors influencing purchasing decisions. The results of this study show that households spend a monthly median of US$2.00, or 1.90% (range: 0.00%, 9.21%) of their family income on Ae. aegypti control interventions. Households reported employing, on average, five different mosquito control and dengue prevention interventions, including aerosols, liquid sprays, repellents, mosquito coils, and unimpregnated bed nets. We found that effectiveness and cost were the most important factors that influence people’s decisions to purchase a mosquito control product. Our findings will inform the development and deployment of new Ae. aegypti control interventions by the public health and private sectors, and add to prior studies that have focused on the economic burden of dengue-like illness. PMID:28212349

  8. Using remote sensing, ecological niche modeling, and Geographic Information Systems for Rift Valley fever risk assessment in the United States

    NASA Astrophysics Data System (ADS)

    Tedrow, Christine Atkins

    The primary goal in this study was to explore remote sensing, ecological niche modeling, and Geographic Information Systems (GIS) as aids in predicting candidate Rift Valley fever (RVF) competent vector abundance and distribution in Virginia, and as means of estimating where risk of establishment in mosquitoes and risk of transmission to human populations would be greatest in Virginia. A second goal in this study was to determine whether the remotely-sensed Normalized Difference Vegetation Index (NDVI) can be used as a proxy variable of local conditions for the development of mosquitoes to predict mosquito species distribution and abundance in Virginia. As part of this study, a mosquito surveillance database was compiled to archive the historical patterns of mosquito species abundance in Virginia. In addition, linkages between mosquito density and local environmental and climatic patterns were spatially and temporally examined. The present study affirms the potential role of remote sensing imagery for species distribution prediction, and it demonstrates that ecological niche modeling is a valuable predictive tool to analyze the distributions of populations. The MaxEnt ecological niche modeling program was used to model predicted ranges for potential RVF competent vectors in Virginia. The MaxEnt model was shown to be robust, and the candidate RVF competent vector predicted distribution map is presented. The Normalized Difference Vegetation Index (NDVI) was found to be the most useful environmental-climatic variable to predict mosquito species distribution and abundance in Virginia. However, these results indicate that a more robust prediction is obtained by including other environmental-climatic factors correlated to mosquito densities (e.g., temperature, precipitation, elevation) with NDVI. The present study demonstrates that remote sensing and GIS can be used with ecological niche and risk modeling methods to estimate risk of virus establishment in mosquitoes and transmission to humans. Maps delineating the geographic areas in Virginia with highest risk for RVF establishment in mosquito populations and RVF disease transmission to human populations were generated in a GIS using human, domestic animal, and white-tailed deer population estimates and the MaxEnt potential RVF competent vector species distribution prediction. The candidate RVF competent vector predicted distribution and RVF risk maps presented in this study can help vector control agencies and public health officials focus Rift Valley fever surveillance efforts in geographic areas with large co-located populations of potential RVF competent vectors and human, domestic animal, and wildlife hosts. Keywords. Rift Valley fever, risk assessment, Ecological Niche Modeling, MaxEnt, Geographic Information System, remote sensing, Pearson's Product-Moment Correlation Coefficient, vectors, mosquito distribution, mosquito density, mosquito surveillance, United States, Virginia, domestic animals, white-tailed deer, ArcGIS

  9. Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa

    PubMed Central

    2010-01-01

    Background Based on highly successful demonstrations in Israel that attractive toxic sugar bait (ATSB) methods can decimate local populations of mosquitoes, this study determined the effectiveness of ATSB methods for malaria vector control in the semi-arid Bandiagara District of Mali, West Africa. Methods Control and treatment sites, selected along a road that connects villages, contained man-made ponds that were the primary larval habitats of Anopheles gambiae and Anopheles arabiensis. Guava and honey melons, two local fruits shown to be attractive to An. gambiae s.l., were used to prepare solutions of Attractive Sugar Bait (ASB) and ATSB that additionally contained boric acid as an oral insecticide. Both included a color dye marker to facilitate determination of mosquitoes feeding on the solutions. The trial was conducted over a 38-day period, using CDC light traps to monitor mosquito populations. On day 8, ASB solution in the control site and ATSB solution in the treatment site were sprayed using a hand-pump on patches of vegetation. Samples of female mosquitoes were age-graded to determine the impact of ATSB treatment on vector longevity. Results Immediately after spraying ATSB in the treatment site, the relative abundance of female and male An. gambiae s.l. declined about 90% from pre-treatment levels and remained low. In the treatment site, most females remaining after ATSB treatment had not completed a single gonotrophic cycle, and only 6% had completed three or more gonotrophic cycles compared with 37% pre-treatment. In the control site sprayed with ASB (without toxin), the proportion of females completing three or more gonotrophic cycles increased from 28.5% pre-treatment to 47.5% post-treatment. In the control site, detection of dye marker in over half of the females and males provided direct evidence that the mosquitoes were feeding on the sprayed solutions. Conclusion This study in Mali shows that even a single application of ATSB can substantially decrease malaria vector population densities and longevity. It is likely that ATSB methods can be used as a new powerful tool for the control of malaria vectors, particularly since this approach is highly effective for mosquito control, technologically simple, inexpensive, and environmentally safe. PMID:20663142

  10. Larvicidal activity of Morinda citrifolia L. (Noni) (Family: Rubiaceae) leaf extract against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Shanthakumar, Shanmugam Perumal; Vincent, Savariar; Hwang, Jiang-Shiou

    2012-10-01

    Morinda citrifolia leaf extract was tested for larvicidal activity against three medically important mosquito vectors such as malarial vector Anopheles stephensi, dengue vector Aedes aegypti, and filarial vector Culex quinquefasciatus. The plant material was shade dried at room temperature and powdered coarsely. From the leaf, 1-kg powder was macerated with 3.0 L of hexane, chloroform, acetone, methanol, and water sequentially for a period of 72 h each and filtered. The yield of extracts was hexane (13.56 g), chloroform (15.21 g), acetone (12.85 g), methanol (14.76 g), and water (12.92 g), respectively. The extracts were concentrated at reduced temperature on a rotary vacuum evaporator and stored at a temperature of 4°C. The M. citrifolia leaf extract at 200, 300, 400, 500, and 600 ppm caused a significant mortality of three mosquito species. Hexane, chloroform, acetone, and water caused moderate considerable mortality; however, the highest larval mortality was methanolic extract, observed in three mosquito vectors. The larval mortality was observed after 24-h exposure. No mortality was observed in the control. The third larvae of Anopheles stephensi had values of LC(50) = 345.10, 324.26, 299.97, 261.96, and 284.59 ppm and LC(90) = 653.00, 626.58, 571.89, 505.06, and 549.51 ppm, respectively. The Aedes aegypti had values of LC(50) = 361.75, 343.22, 315.40, 277.92, and 306.98 ppm and LC(90) = 687.39, 659.02, 611.35, 568.18, and 613.25 ppm, respectively. The Culex quinquefasciatus had values of LC(50) = 382.96, 369.85, 344.34, 330.42, and 324.64 ppm and LC(90) = 726.18, 706.57, 669.28, 619.63, and 644.47 ppm, respectively. The results of the leaf extract of M. citrifolia are promising as good larvicidal activity against the mosquito vector Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. This is a new eco-friendly approach for the control of vector control programs. Therefore, this study provides first report on the larvicidal activities against three species of mosquito vectors of this plant extracts from India.

  11. Eliminating malaria vectors

    PubMed Central

    2013-01-01

    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations. PMID:23758937

  12. More than one rabbit out of the hat: Radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations.

    PubMed

    Bourtzis, Kostas; Lees, Rosemary Susan; Hendrichs, Jorge; Vreysen, Marc J B

    2016-05-01

    Mosquitoes (Diptera: Culicidae) and tsetse flies (Diptera: Glossinidae) are bloodsucking vectors of human and animal pathogens. Mosquito-borne diseases (malaria, filariasis, dengue, zika, and chikungunya) cause severe mortality and morbidity annually, and tsetse fly-borne diseases (African trypanosomes causing sleeping sickness in humans and nagana in livestock) cost Sub-Saharan Africa an estimated US$ 4750 million annually. Current reliance on insecticides for vector control is unsustainable: due to increasing insecticide resistance and growing concerns about health and environmental impacts of chemical control there is a growing need for novel, effective and safe biologically-based methods that are more sustainable. The integration of the sterile insect technique has proven successful to manage crop pests and disease vectors, particularly tsetse flies, and is likely to prove effective against mosquito vectors, particularly once sex-separation methods are improved. Transgenic and symbiont-based approaches are in development, and more advanced in (particularly Aedes) mosquitoes than in tsetse flies; however, issues around stability, sustainability and biosecurity have to be addressed, especially when considering population replacement approaches. Regulatory issues and those relating to intellectual property and economic cost of application must also be overcome. Standardised methods to assess insect quality are required to compare and predict efficacy of the different approaches. Different combinations of these three approaches could be integrated to maximise their benefits, and all have the potential to be used in tsetse and mosquito area-wide integrated pest management programmes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Annotated Differentially Expressed Salivary Proteins of Susceptible and Insecticide-Resistant Mosquitoes of Anopheles stephensi

    PubMed Central

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito—parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins may play a role in regulating mosquito biting behavior patterns and may have implications in the development of malaria parasites in resistant mosquitoes during parasite transmission. PMID:25742511

  14. USDA Mosquito Control Product Research for the US Military

    USDA-ARS?s Scientific Manuscript database

    New techniques that were developed at the USDA to protect deployed military troops from the threat of vector-borne diseases and are also applicable for use by civilian mosquito control program use are described. Techniques to be illustrated include: (1) novel military personal protection methods, (2...

  15. Preparing the United States for Zika Virus: Pre-emptive Vector Control and Personal Protection.

    PubMed

    Diaz, James H

    2016-12-01

    Discovered in 1947 in a monkey in the Zika forest of Uganda, Zika virus was dismissed as a cause of a mild illness that was confined to Africa and Southeast Asia and transmitted by Aedes mosquitoes. In 2007, Zika virus appeared outside of its endemic borders in an outbreak on the South Pacific Island of Yap. In 2013, Zika virus was associated with a major neurological complication, Guillain-Barré syndrome, in a larger outbreak in the French Polynesian Islands. From the South Pacific, Zika invaded Brazil in 2015 and caused another severe neurological complication, fetal microcephaly. The mosquito-borne transmission of Zika virus can be propagated by sexual transmission and, possibly, by blood transfusions, close personal contacts, and organ transplants, like other flaviviruses. Since these combined mechanisms of infectious disease transmission could result in catastrophic incidences of severe neurological diseases in adults and children, the public should know what to expect from Zika virus, how to prevent infection, and what the most likely failures in preventive measures will be. With federal research funding stalled, a Zika vaccine is far away. The only national strategies to prepare the United States for Zika virus invasion now are effective vector control measures and personal protection from mosquito bites. In addition to a basic knowledge of Aedes mosquito vectors and their biting behaviors, an understanding of simple household vector control measures, and the selection of the best chemical and physical mosquito repellents will be required to repel the Zika threat. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  16. Motility and infectivity of Plasmodium berghei sporozoites expressing avian Plasmodium gallinaceum circumsporozoite protein.

    PubMed

    Tewari, Rita; Rathore, Dharmendar; Crisanti, Andrea

    2005-05-01

    Avian and rodent malaria sporozoites selectively invade different vertebrate cell types, namely macrophages and hepatocytes, and develop in distantly related vector species. To investigate the role of the circumsporozoite (CS) protein in determining parasite survival in different vector species and vertebrate host cell types, we replaced the endogenous CS protein gene of the rodent malaria parasite Plasmodium berghei with that of the avian parasite P. gallinaceum and control rodent parasite P. yoelii. In anopheline mosquitoes, P. berghei parasites carrying P. gallinaceum and rodent parasite P. yoelii CS protein gene developed into oocysts and sporozoites. Plasmodium gallinaceum CS expressing transgenic sporozoites, although motile, failed to invade mosquito salivary glands and to infect mice, which suggests that motility alone is not sufficient for invasion. Notably, a percentage of infected Anopheles stephensi mosquitoes showed melanotic encapsulation of late stage oocysts. This was not observed in control infections or in A. gambiae infections. These findings shed new light on the role of the CS protein in the interaction of the parasite with both the mosquito vector and the rodent host.

  17. The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti

    PubMed Central

    Bian, Guowu; Xu, Yao; Lu, Peng; Xie, Yan; Xi, Zhiyong

    2010-01-01

    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement. PMID:20368968

  18. House-to-house human movement drives dengue virus transmission

    PubMed Central

    Stoddard, Steven T.; Forshey, Brett M.; Morrison, Amy C.; Paz-Soldan, Valerie A.; Vazquez-Prokopec, Gonzalo M.; Astete, Helvio; Reiner, Robert C.; Vilcarromero, Stalin; Elder, John P.; Halsey, Eric S.; Kochel, Tadeusz J.; Kitron, Uriel; Scott, Thomas W.

    2013-01-01

    Dengue is a mosquito-borne disease of growing global health importance. Prevention efforts focus on mosquito control, with limited success. New insights into the spatiotemporal drivers of dengue dynamics are needed to design improved disease-prevention strategies. Given the restricted range of movement of the primary mosquito vector, Aedes aegypti, local human movements may be an important driver of dengue virus (DENV) amplification and spread. Using contact-site cluster investigations in a case-control design, we demonstrate that, at an individual level, risk for human infection is defined by visits to places where contact with infected mosquitoes is likely, independent of distance from the home. Our data indicate that house-to-house human movements underlie spatial patterns of DENV incidence, causing marked heterogeneity in transmission rates. At a collective level, transmission appears to be shaped by social connections because routine movements among the same places, such as the homes of family and friends, are often similar for the infected individual and their contacts. Thus, routine, house-to-house human movements do play a key role in spread of this vector-borne pathogen at fine spatial scales. This finding has important implications for dengue prevention, challenging the appropriateness of current approaches to vector control. We argue that reexamination of existing paradigms regarding the spatiotemporal dynamics of DENV and other vector-borne pathogens, especially the importance of human movement, will lead to improvements in disease prevention. PMID:23277539

  19. Relationships between anopheline mosquitoes and topography in West Timor and Java, Indonesia.

    PubMed

    Ndoen, Ermi; Wild, Clyde; Dale, Pat; Sipe, Neil; Dale, Mike

    2010-08-26

    Malaria is a serious health issue in Indonesia. Mosquito control is one aspect of an integrated malaria management programme. To focus resources on priority areas, information is needed about the vectors and their habitats. This research aimed to identify the relationship between anopheline mosquitoes and topography in West Timor and Java. Study areas were selected in three topographic types in West Timor and Java. These were: coastal plain, hilly (rice field) and highland. Adult mosquitoes were captured landing on humans identified to species level and counted. Eleven species were recorded, four of which were significant for malaria transmission: Anopheles aconitus, Anopheles barbirostris, Anopheles subpictus and Anopheles sundaicus. Each species occupied different topographies, but only five were significantly associated: Anopheles annularis, Anopheles vagus and Anopheles subpictus (Java only) with hilly rice fields; Anopheles barbirostris, Anopheles maculatus and Anopheles subpictus (West Timor only) with coastal areas. Information on significant malaria vectors associated with specific topography is useful for planning the mosquito control aspect of malaria management.

  20. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies).

    PubMed

    Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe

    2009-10-26

    The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. These results suggest that the high level of insecticide resistance found in Ae. aegypti mosquitoes from Martinique island is the consequence of both target-site and metabolic based resistance mechanisms. Insecticide resistance levels and associated mechanisms are discussed in relation with the environmental context of Martinique Island. These finding have important implications for dengue vector control in Martinique and emphasizes the need to develop new tools and strategies for maintaining an effective control of Aedes mosquito populations worldwide.

  1. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies)

    PubMed Central

    Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe

    2009-01-01

    Background The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. Results The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. Conclusion These results suggest that the high level of insecticide resistance found in Ae. aegypti mosquitoes from Martinique island is the consequence of both target-site and metabolic based resistance mechanisms. Insecticide resistance levels and associated mechanisms are discussed in relation with the environmental context of Martinique Island. These finding have important implications for dengue vector control in Martinique and emphasizes the need to develop new tools and strategies for maintaining an effective control of Aedes mosquito populations worldwide. PMID:19857255

  2. Willingness to Pay for Mosquito Control in Key West, Florida and Tucson, Arizona.

    PubMed

    Dickinson, Katherine L; Hayden, Mary H; Haenchen, Steven; Monaghan, Andrew J; Walker, Kathleen R; Ernst, Kacey C

    2016-04-01

    Mosquito-borne illnesses like West Nile virus (WNV) and dengue are growing threats to the United States. Proactive mosquito control is one strategy to reduce the risk of disease transmission. In 2012, we measured the public's willingness to pay (WTP) for increased mosquito control in two cities: Key West, FL, where there have been recent dengue outbreaks, and Tucson, AZ, where dengue vectors are established and WNV has been circulating for over a decade. Nearly three quarters of respondents in both cities (74% in Tucson and 73% in Key West) would be willing to pay $25 or more annually toward an increase in publicly funded mosquito control efforts. WTP was positively associated with income (both cities), education (Key West), and perceived mosquito abundance (Tucson). Concerns about environmental impacts of mosquito control were associated with lower WTP in Key West. Expanded mosquito control efforts should incorporate public opinion as they respond to evolving disease risks. © The American Society of Tropical Medicine and Hygiene.

  3. Mission Accomplished? We Need a Guide to the 'Post Release' World of Wolbachia for Aedes-borne Disease Control.

    PubMed

    Ritchie, Scott A; van den Hurk, Andrew F; Smout, Michael J; Staunton, Kyran M; Hoffmann, Ary A

    2018-03-01

    Historically, sustained control of Aedes aegypti, the vector of dengue, chikungunya, yellow fever, and Zika viruses, has been largely ineffective. Subsequently, two novel 'rear and release' control strategies utilizing mosquitoes infected with Wolbachia are currently being developed and deployed widely. In the incompatible insect technique, male Aedes mosquitoes, infected with Wolbachia, suppress populations through unproductive mating. In the transinfection strategy, both male and female Wolbachia-infected Ae. aegypti mosquitoes rapidly infect the wild population with Wolbachia, blocking virus transmission. It is critical to monitor the long-term stability of Wolbachia in host populations, and also the ability of this bacterium to continually inhibit virus transmission. Ongoing release and monitoring programs must be future-proofed should political support weaken when these vectors are successfully controlled. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Distribution and phylogeny of Wolbachia strains in wild mosquito populations in Sri Lanka.

    PubMed

    Nugapola, N W Nalaka P; De Silva, W A Priyanka P; Karunaratne, S H P Parakrama

    2017-05-10

    Wolbachia are a group of maternally inherited intracellular bacteria known to be widespread among arthropods. Infections with Wolbachia cause declines of host populations, and also induce host resistance to a wide range of pathogens. Over the past few decades, researchers were curious to use Wolbachia as a biological tool to control mosquito vectors. During the present study, assessment of the prevalence of Wolbachia infections among wild mosquito populations in Sri Lanka where mosquito-borne diseases are a major health concern, was carried out for the first time. DNA was extracted from the abdomens of mosquitoes, collected from seven provinces, and screened for the presence of Wolbachia by PCR using wsp and groE primers. Group-specific and strain-specific primers were used to classify Wolbachia into the supergroups A and B, and into the strains Mel, AlbA and Pip. A total of 330 individual mosquitoes belonging to 22 species and 7 genera were screened. Eighty-seven mosquitoes (26.36%) belonging to four species (i.e. Aedes albopictus, Culex quinquefasciatus, Armigeres subalbatus and Mansonia uniformis) were positive for Wolbachia infections. Primary vector of the dengue fever, Ae. aegypti was negative for Wolbachia infections while the secondary vector, Ae. albopictus, showed a very high infection rate. The filarial vector C. quinquefasciatus had a relatively high rate of infection. Japanese encephalitis vectors C. gelidus and C. triteaneorynchus, and the Anopheles vectors of malaria were negative for Wolbachia infections. Nine sequences of Wolbachia-positive PCR products were deposited in the GenBank and compared with other available data. Aedes albopictus was infected with both Wolbachia strains A (AlbA) and B (Pip) supergroups. Phylogenetic analysis of the wsp sequences showed two major branches confirming identities obtained from the PCR screening with strain-specific primers. Wolbachia infections were found only among four mosquito species in Sri Lanka: Aedes albopictus, Culex quinquefasciatus, Armigeres subalbatus and Mansonia uniformis. Sequence data showed high haplotype diversity among the Wolbachia strains.

  5. Human IgG Antibody Response to Aedes Nterm-34kDa Salivary Peptide, an Epidemiological Tool to Assess Vector Control in Chikungunya and Dengue Transmission Area

    PubMed Central

    Elanga Ndille, Emmanuel; Doucoure, Souleymane; Poinsignon, Anne; Mouchet, François; Cornelie, Sylvie; D’Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck

    2016-01-01

    Background Arboviral diseases are an important public health concerns. Vector control remains the sole strategy to fight against these diseases. Because of the important limits of methods currently used to assess human exposure to Aedes mosquito bites, much effort is being devoted to develop new indicators. Recent studies have reported that human antibody (Ab) responses to Aedes aegypti Nterm-34kDa salivary peptide represent a promising biomarker tool to evaluate the human-Aedes contact. The present study aims investigate whether such biomarker could be used for assessing the efficacy of vector control against Aedes. Methodology/Principal findings Specific human IgG response to the Nterm-34kDa peptide was assessed from 102 individuals living in urban area of Saint-Denis at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes mosquitoes. IgG response decreased after 2 weeks (P < 0.0001), and remained low for 4 weeks post-intervention (P = 0.0002). The specific IgG decrease was associated with the decline of Aedes mosquito density, as estimated by entomological parameters and closely correlated to vector control implementation and was not associated with the use of individual protection, daily commuting outside of the house, sex and age. Our findings indicate a probable short-term decrease of human exposure to Aedes bites just after vector control implementation. Conclusion/Significance Results provided in the present study indicate that IgG Ab response to Aedes aegypti Nterm-34kDa salivary peptide could be a relevant short-time indicator for evaluating the efficacy of vector control interventions against Aedes species. PMID:27906987

  6. Human IgG Antibody Response to Aedes Nterm-34kDa Salivary Peptide, an Epidemiological Tool to Assess Vector Control in Chikungunya and Dengue Transmission Area.

    PubMed

    Elanga Ndille, Emmanuel; Doucoure, Souleymane; Poinsignon, Anne; Mouchet, François; Cornelie, Sylvie; D'Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck

    2016-12-01

    Arboviral diseases are an important public health concerns. Vector control remains the sole strategy to fight against these diseases. Because of the important limits of methods currently used to assess human exposure to Aedes mosquito bites, much effort is being devoted to develop new indicators. Recent studies have reported that human antibody (Ab) responses to Aedes aegypti Nterm-34kDa salivary peptide represent a promising biomarker tool to evaluate the human-Aedes contact. The present study aims investigate whether such biomarker could be used for assessing the efficacy of vector control against Aedes. Specific human IgG response to the Nterm-34kDa peptide was assessed from 102 individuals living in urban area of Saint-Denis at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes mosquitoes. IgG response decreased after 2 weeks (P < 0.0001), and remained low for 4 weeks post-intervention (P = 0.0002). The specific IgG decrease was associated with the decline of Aedes mosquito density, as estimated by entomological parameters and closely correlated to vector control implementation and was not associated with the use of individual protection, daily commuting outside of the house, sex and age. Our findings indicate a probable short-term decrease of human exposure to Aedes bites just after vector control implementation. Results provided in the present study indicate that IgG Ab response to Aedes aegypti Nterm-34kDa salivary peptide could be a relevant short-time indicator for evaluating the efficacy of vector control interventions against Aedes species.

  7. Co-occurrence of viruses and mosquitoes at the vectors' optimal climate range: An underestimated risk to temperate regions?

    PubMed

    Blagrove, Marcus S C; Caminade, Cyril; Waldmann, Elisabeth; Sutton, Elizabeth R; Wardeh, Maya; Baylis, Matthew

    2017-06-01

    Mosquito-borne viruses have been estimated to cause over 100 million cases of human disease annually. Many methodologies have been developed to help identify areas most at risk from transmission of these viruses. However, generally, these methodologies focus predominantly on the effects of climate on either the vectors or the pathogens they spread, and do not consider the dynamic interaction between the optimal conditions for both vector and virus. Here, we use a new approach that considers the complex interplay between the optimal temperature for virus transmission, and the optimal climate for the mosquito vectors. Using published geolocated data we identified temperature and rainfall ranges in which a number of mosquito vectors have been observed to co-occur with West Nile virus, dengue virus or chikungunya virus. We then investigated whether the optimal climate for co-occurrence of vector and virus varies between "warmer" and "cooler" adapted vectors for the same virus. We found that different mosquito vectors co-occur with the same virus at different temperatures, despite significant overlap in vector temperature ranges. Specifically, we found that co-occurrence correlates with the optimal climatic conditions for the respective vector; cooler-adapted mosquitoes tend to co-occur with the same virus in cooler conditions than their warmer-adapted counterparts. We conclude that mosquitoes appear to be most able to transmit virus in the mosquitoes' optimal climate range, and hypothesise that this may be due to proportionally over-extended vector longevity, and other increased fitness attributes, within this optimal range. These results suggest that the threat posed by vector-competent mosquito species indigenous to temperate regions may have been underestimated, whilst the threat arising from invasive tropical vectors moving to cooler temperate regions may be overestimated.

  8. Repelling mosquitoes with essential oils

    NASA Astrophysics Data System (ADS)

    Riley, L.

    2017-12-01

    Mosquitoes carry diseases than can lead to serious illness and death. According to the World Health Organization, mosquitoes infect over 300 million people a year with Malaria and Dengue Fever, two life threatening diseases vectored by mosquitoes. Although insecticides are the most effective way to control mosquitoes, they are not always environmentally friendly. Therefore, alternative tactics should be considered. In this study, we looked at the repellency of various essential oils on female Aedes aegypti through a series of laboratory assays.

  9. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-11-01

    Mosquitoes (Diptera: Culicidae) are a key threat for millions of people and animals worldwide, since they act as vectors for devastating pathogens and parasites, including malaria, dengue, Japanese encephalitis, filiariasis and Zika virus. Mosquito young instars are usually targeted using organophosphates, insect growth regulators and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. In this scenario, newer and safer tools have been recently implemented to enhance mosquito control. The concrete potential of screening plant species as sources of metabolites for entomological and parasitological purposes is worthy of attention, as recently elucidated by the Y. Tu's example. Here we investigated the toxicity of Heracleum sprengelianum (Apiaceae) leaf essential oil and its major compounds toward third instar larvae of the malaria vector Anopheles subpictus, the arbovirus vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. GC-MS analysis showed that EO major components were lavandulyl acetate (17.8%) and bicyclogermacrene (12.9%). The EO was toxic to A. subpictus, A. albopictus, and C. tritaeniorhynchus, with LC50 of 33.4, 37.5 and 40.9µg/ml, respectively. Lavandulyl acetate was more toxic to mosquito larvae if compared to bicyclogermacrene. Their LC50 were 4.17 and 10.3µg/ml for A. subpictus, 4.60 and 11.1µg/ml for A. albopictus, 5.11 and 12.5µg/ml for C. tritaeniorhynchus. Notably, the EO and its major compounds were safer to three non-target mosquito predators, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 ranging from 206 to 4219µg/ml. Overall, this study highlights that H. sprengelianum EO is a promising source of eco-friendly larvicides against three important mosquito vectors with moderate toxicity against non-target aquatic organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Adult vector control, mosquito ecology and malaria transmission.

    PubMed

    Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J; Gething, Peter W; Cohen, Justin M; McKenzie, F Ellis; Alex Perkins, T; Reiner, Robert C; Tusting, Lucy S; Scott, Thomas W; Lindsay, Steven W; Hay, Simon I; Smith, David L

    2015-03-01

    Standard advice regarding vector control is to prefer interventions that reduce the lifespan of adult mosquitoes. The basis for this advice is a decades-old sensitivity analysis of 'vectorial capacity', a concept relevant for most malaria transmission models and based solely on adult mosquito population dynamics. Recent advances in micro-simulation models offer an opportunity to expand the theory of vectorial capacity to include both adult and juvenile mosquito stages in the model. In this study we revisit arguments about transmission and its sensitivity to mosquito bionomic parameters using an elasticity analysis of developed formulations of vectorial capacity. We show that reducing adult survival has effects on both adult and juvenile population size, which are significant for transmission and not accounted for in traditional formulations of vectorial capacity. The elasticity of these effects is dependent on various mosquito population parameters, which we explore. Overall, control is most sensitive to methods that affect adult mosquito mortality rates, followed by blood feeding frequency, human blood feeding habit, and lastly, to adult mosquito population density. These results emphasise more strongly than ever the sensitivity of transmission to adult mosquito mortality, but also suggest the high potential of combinations of interventions including larval source management. This must be done with caution, however, as policy requires a more careful consideration of costs, operational difficulties and policy goals in relation to baseline transmission. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  11. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan

    2015-03-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. Mosquito control is to enhance the health and quality of life of county residents and visitors through the reduction of mosquito populations. Mosquito control is a serious concern in developing countries like India due to the lack of general awareness, development of resistance, and socioeconomic reasons. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, larvicidal activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using C. asiatica plant leaves against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Cx. quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (40, 80, 120, 160, and 200 μg/mL) were tested against the larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus. The synthesized AgNPs from C. asiatica were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis (EDX). Considerable mortality was evident after the treatment of C. asiatica for all three important vector mosquitoes. The LC50 and LC90 values of C. asiatica aqueous leaf extract appeared to be effective against An. stephensi (LC50, 90.17 μg/mL; LC90, 165.18 μg/mL) followed by Ae. aegypti (LC50, 96.59 μg/mL; LC90, 173.83 μg/mL) and Cx. quinquefasciatus (LC50, 103.08 μg/mL; LC90, 183.16 μg/mL). Synthesized AgNPs against the vector mosquitoes of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus had the following LC50 and LC90 values: An. stephensi had LC50 and LC90 values of 17.95 and 33.03 μg/mL; Ae. aegypti had LC50 and LC90 values of 19.32 and 34.87 μg/mL; and Cx. quinquefasciatus had LC50 and LC90 values of 20.92 and 37.41 μg/mL. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of C. asiatica and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized AgNPs.

  12. Insecticide Resistance and Malaria Vector Control: The Importance of Fitness Cost Mechanisms in Determining Economically Optimal Control Trajectories

    PubMed Central

    Brown, Zachary S.; Dickinson, Katherine L.; Kramer, Randall A.

    2014-01-01

    The evolutionary dynamics of insecticide resistance in harmful arthropods has economic implications, not only for the control of agricultural pests (as has been well studied), but also for the control of disease vectors, such as malaria-transmitting Anopheles mosquitoes. Previous economic work on insecticide resistance illustrates the policy relevance of knowing whether insecticide resistance mutations involve fitness costs. Using a theoretical model, this article investigates economically optimal strategies for controlling malaria-transmitting mosquitoes when there is the potential for mosquitoes to evolve resistance to insecticides. Consistent with previous literature, we find that fitness costs are a key element in the computation of economically optimal resistance management strategies. Additionally, our models indicate that different biological mechanisms underlying these fitness costs (e.g., increased adult mortality and/or decreased fecundity) can significantly alter economically optimal resistance management strategies. PMID:23448053

  13. Synthesis and Mosquitocidal Activity of a Series of Hydrazone Derivatives against Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    Background: Aedes aegypti is an important mosquito vector for the transmission of several infectious diseases. Current insecticides play a vital role in controlling mosquitoes; however, the frequent use of insecticides has led to the development of insecticide resistance. In order to control mosquit...

  14. Clustering of host-seeking activity of Anopheles gambiae mosquitoes at the top surface of a human-baited bed net

    PubMed Central

    2013-01-01

    Background Knowledge of the interactions between mosquitoes and humans, and how vector control interventions affect them, is sparse. A study exploring host-seeking behaviour at a human-occupied bed net, a key event in such interactions, is reported here. Methods Host-seeking female Anopheles gambiae activity was studied using a human-baited ‘sticky-net’ (a bed net without insecticide, coated with non-setting adhesive) to trap mosquitoes. The numbers and distribution of mosquitoes captured on each surface of the bed net were recorded and analysed using non-parametric statistical methods and random effects regression analysis. To confirm sticky-net reliability, the experiment was repeated using a pitched sticky-net (tilted sides converging at apex, i.e., neither horizontal nor vertical). The capture efficiency of horizontal and vertical sticky surfaces were compared, and the potential repellency of the adhesive was investigated. Results In a semi-field experiment, more mosquitoes were caught on the top (74-87%) than on the sides of the net (p < 0.001). In laboratory experiments, more mosquitoes were caught on the top than on the sides in human-baited tests (p < 0.001), significantly different to unbaited controls (p < 0.001) where most mosquitoes were on the sides (p = 0.047). In both experiments, approximately 70% of mosquitoes captured on the top surface were clustered within a 90 × 90 cm (or lesser) area directly above the head and chest (p < 0.001). In pitched net tests, similar clustering occurred over the sleeper’s head and chest in baited tests only (p < 0.001). Capture rates at horizontal and vertical surfaces were not significantly different and the sticky-net was not repellent. Conclusion This study demonstrated that An. gambiae activity occurs predominantly within a limited area of the top surface of bed nets. The results provide support for the two-in-one bed net design for managing pyrethroid-resistant vector populations. Further exploration of vector behaviour at the bed net interface could contribute to additional improvements in insecticide-treated bed net design or the development of novel vector control tools. PMID:23902661

  15. A Modified Experimental Hut Design for Studying Responses of Disease-Transmitting Mosquitoes to Indoor Interventions: The Ifakara Experimental Huts

    PubMed Central

    Okumu, Fredros O.; Moore, Jason; Mbeyela, Edgar; Sherlock, Mark; Sangusangu, Robert; Ligamba, Godfrey; Russell, Tanya; Moore, Sarah J.

    2012-01-01

    Differences between individual human houses can confound results of studies aimed at evaluating indoor vector control interventions such as insecticide treated nets (ITNs) and indoor residual insecticide spraying (IRS). Specially designed and standardised experimental huts have historically provided a solution to this challenge, with an added advantage that they can be fitted with special interception traps to sample entering or exiting mosquitoes. However, many of these experimental hut designs have a number of limitations, for example: 1) inability to sample mosquitoes on all sides of huts, 2) increased likelihood of live mosquitoes flying out of the huts, leaving mainly dead ones, 3) difficulties of cleaning the huts when a new insecticide is to be tested, and 4) the generally small size of the experimental huts, which can misrepresent actual local house sizes or airflow dynamics in the local houses. Here, we describe a modified experimental hut design - The Ifakara Experimental Huts- and explain how these huts can be used to more realistically monitor behavioural and physiological responses of wild, free-flying disease-transmitting mosquitoes, including the African malaria vectors of the species complexes Anopheles gambiae and Anopheles funestus, to indoor vector control-technologies including ITNs and IRS. Important characteristics of the Ifakara experimental huts include: 1) interception traps fitted onto eave spaces and windows, 2) use of eave baffles (panels that direct mosquito movement) to control exit of live mosquitoes through the eave spaces, 3) use of replaceable wall panels and ceilings, which allow safe insecticide disposal and reuse of the huts to test different insecticides in successive periods, 4) the kit format of the huts allowing portability and 5) an improved suite of entomological procedures to maximise data quality. PMID:22347415

  16. The Effects of Climate Change and Globalization on Mosquito Vectors: Evidence from Jeju Island, South Korea on the Potential for Asian Tiger Mosquito (Aedes albopictus) Influxes and Survival from Vietnam Rather Than Japan

    PubMed Central

    Jeong, Ji Yeon; Yoo, Seung Jin; Koh, Young-Sang; Lee, Seogjae; Heo, Sang Taek; Seong, Seung-Yong; Lee, Keun Hwa

    2013-01-01

    Background Climate change affects the survival and transmission of arthropod vectors as well as the development rates of vector-borne pathogens. Increased international travel is also an important factor in the spread of vector-borne diseases (VBDs) such as dengue, West Nile, yellow fever, chikungunya, and malaria. Dengue is the most important vector-borne viral disease. An estimated 2.5 billion people are at risk of infection in the world and there are approximately 50 million dengue infections and an estimated 500,000 individuals are hospitalized with dengue haemorrhagic fever annually. The Asian tiger mosquito (Aedes albopictus) is one of the vectors of dengue virus, and populations already exist on Jeju Island, South Korea. Currently, colder winter temperatures kill off Asian tiger mosquito populations and there is no evidence of the mosquitos being vectors for the dengue virus in this location. However, dengue virus-bearing mosquito vectors can inflow to Jeju Island from endemic area such as Vietnam by increased international travel, and this mosquito vector's survival during colder winter months will likely occur due to the effects of climate change. Methods and Results In this section, we show the geographical distribution of medically important mosquito vectors such as Ae. albopictus, a vector of both dengue and chikungunya viruses; Culex pipiens, a vector of West Nile virus; and Anopheles sinensis, a vector of Plasmodium vivax, within Jeju Island, South Korea. We found a significant association between the mean temperature, amount of precipitation, and density of mosquitoes. The phylogenetic analyses show that an Ae. albopictus, collected in southern area of Jeju Island, was identical to specimens found in Ho Chi Minh, Vietnam, and not Nagasaki, Japan. Conclusion Our results suggest that mosquito vectors or virus-bearing vectors can transmit from epidemic regions of Southeast Asia to Jeju Island and can survive during colder winter months. Therefore, Jeju Island is no longer safe from vector borne diseases (VBDs) due to the effects of globalization and climate change, and we should immediately monitor regional climate change to identify newly emerging VBDs. PMID:23894312

  17. The effects of climate change and globalization on mosquito vectors: evidence from Jeju Island, South Korea on the potential for Asian tiger mosquito (Aedes albopictus) influxes and survival from Vietnam rather than Japan.

    PubMed

    Lee, Su Hyun; Nam, Kwang Woo; Jeong, Ji Yeon; Yoo, Seung Jin; Koh, Young-Sang; Lee, Seogjae; Heo, Sang Taek; Seong, Seung-Yong; Lee, Keun Hwa

    2013-01-01

    Climate change affects the survival and transmission of arthropod vectors as well as the development rates of vector-borne pathogens. Increased international travel is also an important factor in the spread of vector-borne diseases (VBDs) such as dengue, West Nile, yellow fever, chikungunya, and malaria. Dengue is the most important vector-borne viral disease. An estimated 2.5 billion people are at risk of infection in the world and there are approximately 50 million dengue infections and an estimated 500,000 individuals are hospitalized with dengue haemorrhagic fever annually. The Asian tiger mosquito (Aedes albopictus) is one of the vectors of dengue virus, and populations already exist on Jeju Island, South Korea. Currently, colder winter temperatures kill off Asian tiger mosquito populations and there is no evidence of the mosquitos being vectors for the dengue virus in this location. However, dengue virus-bearing mosquito vectors can inflow to Jeju Island from endemic area such as Vietnam by increased international travel, and this mosquito vector's survival during colder winter months will likely occur due to the effects of climate change. In this section, we show the geographical distribution of medically important mosquito vectors such as Ae. albopictus, a vector of both dengue and chikungunya viruses; Culex pipiens, a vector of West Nile virus; and Anopheles sinensis, a vector of Plasmodium vivax, within Jeju Island, South Korea. We found a significant association between the mean temperature, amount of precipitation, and density of mosquitoes. The phylogenetic analyses show that an Ae. albopictus, collected in southern area of Jeju Island, was identical to specimens found in Ho Chi Minh, Vietnam, and not Nagasaki, Japan. Our results suggest that mosquito vectors or virus-bearing vectors can transmit from epidemic regions of Southeast Asia to Jeju Island and can survive during colder winter months. Therefore, Jeju Island is no longer safe from vector borne diseases (VBDs) due to the effects of globalization and climate change, and we should immediately monitor regional climate change to identify newly emerging VBDs.

  18. Evaluation of a peridomestic mosquito trap for integration into an Aedes aegypti (Diptera: Culicidae) push-pull control strategy.

    PubMed

    Salazar, Ferdinand V; Achee, Nicole L; Grieco, John P; Prabaripai, Atchariya; Eisen, Lars; Shah, Pankhil; Chareonviriyaphap, Theeraphap

    2012-06-01

    We determined the feasibility of using the BG-Sentinel™ mosquito trap (BGS) as the pull component in a push-pull strategy to reduce indoor biting by Aedes aegypti. This included evaluating varying numbers of traps (1-4) and mosquito release numbers (10, 25, 50, 100, 150, 200, and 250) on recapture rates under screen house conditions. Based on these variations in trap and mosquito numbers, release intervals were rotated through a completely randomized design with environmental factors (temperature, relative humidity, and light intensity) and monitored throughout each experiment. Data from four sampling time points (05:30, 09:30, 13:30, and 17:30) indicate a recapture range among treatments of 66-98%. Furthermore, 2-3 traps were as effective in recapturing mosquitoes as 4 traps for all mosquito release numbers. Time trends indicate Day 1 (the day the mosquitoes were released) as the "impact period" for recapture with peak numbers of marked mosquitoes collected at 09:30 or 4 h post-release. Information from this study will be used to guide the configuration of the BGS trap component of a push-pull vector control strategy currently in the proof-of-concept stage of development in Thailand and Peru. © 2012 The Society for Vector Ecology.

  19. Diversity of Mosquitoes (Diptera: Culicidae) Attracted to Human Subjects in Rubber Plantations, Secondary Forests, and Villages in Luang Prabang Province, Northern Lao PDR.

    PubMed

    Tangena, Julie-Anne A; Thammavong, Phoutmany; Malaithong, Naritsara; Inthavong, Thavone; Ouanesamon, Phuthasone; Brey, Paul T; Lindsay, Steve W

    2017-11-07

    The impact of the rapid expansion of rubber plantations in South-East Asia on mosquito populations is uncertain. We compared the abundance and diversity of adult mosquitoes using human-baited traps in four typical rural habitats in northern Lao PDR: secondary forests, immature rubber plantations, mature rubber plantations, and villages. Generalized estimating equations were used to explore differences in mosquito abundance between habitats, and Simpson's diversity index was used to measure species diversity. Over nine months, 24,927 female mosquitoes were collected, including 51 species newly recorded in Lao PDR. A list of the 114 mosquito species identified is included. More mosquitoes, including vector species, were collected in the secondary forest than immature rubber plantations (rainy season, odds ratio [OR] 0.33, 95% confidence interval [CI] 0.31-0.36; dry season, 0.46, 95% CI 0.41-0.51), mature rubber plantations (rainy season, OR 0.25, 95% CI 0.23-0.27; dry season, OR 0.25, 95% CI 0.22-0.28), and villages (rainy season, OR 0.13, 95% CI 0.12-0.14; dry season, 0.20, 95% CI 0.18-0.23). All habitats showed high species diversity (Simpson's indexes between 0.82-0.86) with vectors of dengue, Japanese encephalitis (JE), lymphatic filariasis, and malaria. In the secondary forests and rubber plantations, Aedes albopictus (Skuse), a dengue vector, was the dominant mosquito species, while in the villages, Culex vishnui (Theobald), a JE vector, was most common. This study has increased the overall knowledge of mosquito fauna in Lao PDR. The high abundance of Ae. albopictus in natural and man-made forests warrants concern, with vector control measures currently only implemented in cities and villages. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Protection against mosquito vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus using a novel insect repellent, ethyl anthranilate.

    PubMed

    Islam, Johirul; Zaman, Kamaruz; Tyagi, Varun; Duarah, Sanjukta; Dhiman, Sunil; Chattopadhyay, Pronobesh

    2017-10-01

    Growing concern on the application of synthetic mosquito repellents in the recent years has instigated the identification and development of better alternatives to control different mosquito-borne diseases. In view of above, present investigation evaluates the repellent activity of ethyl anthranilate (EA), a non-toxic, FDA approved volatile food additive against three known mosquito vectors namely, Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus under laboratory conditions following standard protocols. Three concentration levels (2%, 5% and 10% w/v) of EA were tested against all the three selected mosquito species employing K & D module and arm-in-cage method to determine the effective dose (ED 50 ) and complete protection time (CPT), respectively. The repellent activity of EA was further investigated by modified arm-in-cage method to determine the protection over extended spatial ranges against all mosquito species. All behavioural situations were compared with the well-documented repellent N,N-diethylphenyl acetamide (DEPA) as a positive control. The findings demonstrated that EA exhibited significant repellent activity against all the three mosquitoes species. The ED 50 values of EA, against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus were found to be 0.96%, 5.4% and 3.6% w/v, respectively. At the concentration of 10% w/v, it provided CPTs of 60, 60 and 30min, respectively, against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus mosquitoes. Again in spatial repellency evaluation, EA was found to be extremely effective in repelling all the three tested species of mosquitoes. Ethyl anthranilate provided comparable results to standard repellent DEPA during the study. Results have concluded that the currently evaluated chemical, EA has potential repellent activity against some well established mosquito vectors. The study emphasizes that repellent activity of EA could be exploited for developing effective, eco-friendly, acceptable and safer alternative to the existing harmful repellents for personal protection against different hematophagous mosquito species. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Species composition of mosquito and public perception about Dengue vector of hemorrhagic fever in Bareng Tenes Malang

    NASA Astrophysics Data System (ADS)

    Gama, Zulfaidah Penata; Pratiwi, Jenvia Rista

    2017-11-01

    Dengue Hemorrhagic Fever (DHF) is a mosquito-borne tropical disease caused by the dengue virus. Aedes aegypti and Aedes albopictus are the mosquito vectors of DHF. Malang city was an endemic region of dengue disease in East Java. One of the villages that had a high number of DHF cases was Bareng Tenes. The Case Fatality Rate (CFR) in Malang city totaled 5 patients out of 879 cases (Health Department of Malang city, 2010). Bareng Tenes RW 02 was one of the densely populated regions of Malang city. The objectives of this research were to identify mosquito composition and to analyze the public perception about the DHF vectors in Bareng Tenes RW 02 Malang. This research used two kinds of survey methods of mosquitoes. The first method for collecting larvae was used by direct capture using pipettes from artificial containers and the second method was collecting egg of mosquitoes by using an ovitrap. Public perception was calculated using the questionnaire technique. The accidental sampling technique in this research was Likert scale. The composition of mosquitoes found in Bareng Tenes RW 02 was Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. The mosquito survey showed that Aedes aegypti was the dominant species and the IVI value for the ovitrap survey was 118.06% while the value of IVI for the larval survey was 103.51%. Based on the public perception data, it showed that the community has a very good understanding of DHF knowledge, DHF vectors and ways of DHF prevention, but the undertaken activities by the community have not yet appeared to control the mosquito population especially for their larvae.

  2. Entomological investigations into an epidemic of Japanese encephalitis (JE) in northern districts of West Bengal, India (2011-2012).

    PubMed

    Mariappan, T; Samuel, P Philip; Thenmozhi, V; Paramasivan, R; Sharma, Puran Kumar; Biswas, Asit Kumar; Tyagi, B K

    2014-05-01

    Japanese encephalitis (JE) is one of the most important arboviral diseases of human beings with outbreaks in many parts of Southeast Asia including India. We present the entomological findings of an outbreak occurred in northern part of West Bengal during 2011-2012 with special emphasis on the role of JE vectors in different seasons. Adult mosquito collections were made with the help of mouth aspirators, aided by flash lights during day time resting inside human and animal habitations as indoor, and resting outside field grasses, bushes, underneath of culverts and bridges as outdoor, and in and around the pig enclosures and cattle sheds during dusk period in JE affected villages from Cooch Behar, Dakshin Dinajpur, Darjeeling and Jalpaiguri districts in North West Bengal. In all study villages, a long handled with enamel bowl dipper was used to obtain immature stages of mosquitoes from various breeding habitats. A total of 19 different types of mosquito breeding habitats were examined for vectors of JE. From these habitats, 23.7 per cent were positive for breeding during the study period. Overall, nine different species were recorded through emergence, but none was positive for JE virus when subjected for detection of virus. Adult mosquitoes of more than 50 per cent of the potential JE vector species obtained through dusk and the rest through indoor and outdoor collections in all seasons. Altogether, 27 different species were recorded. Most of these were JE vectors. Our results showed that in addition to Cx. vishnui subgroup, detection of JE virus antigen in Cx. quinquefasciatus indicated the possible maintenance of JE virus in nature through poor vector mosquitoes throughout the year. Since, all potential vector species reported elsewhere in India were also found in this region and fluctuated in density in different seasons, a proper integrated vector control programme needs to be implemented to control JE transmission.

  3. Entomological investigations into an epidemic of Japanese encephalitis (JE) in northern districts of West Bengal, India (2011-2012)

    PubMed Central

    Mariappan, T.; Samuel, P. Philip; Thenmozhi, V.; Paramasivan, R.; Sharma, Puran Kumar; Biswas, Asit Kumar; Tyagi, B.K.

    2014-01-01

    Background & objectives: Japanese encephalitis (JE) is one of the most important arboviral diseases of human beings with outbreaks in many parts of Southeast Asia including India. We present the entomological findings of an outbreak occurred in northern part of West Bengal during 2011-2012 with special emphasis on the role of JE vectors in different seasons. Methods: Adult mosquito collections were made with the help of mouth aspirators, aided by flash lights during day time resting inside human and animal habitations as indoor, and resting outside field grasses, bushes, underneath of culverts and bridges as outdoor, and in and around the pig enclosures and cattle sheds during dusk period in JE affected villages from Cooch Behar, Dakshin Dinajpur, Darjeeling and Jalpaiguri districts in North West Bengal. In all study villages, a long handled with enamel bowl dipper was used to obtain immature stages of mosquitoes from various breeding habitats. Results: A total of 19 different types of mosquito breeding habitats were examined for vectors of JE. From these habitats, 23.7 per cent were positive for breeding during the study period. Overall, nine different species were recorded through emergence, but none was positive for JE virus when subjected for detection of virus. Adult mosquitoes of more than 50 per cent of the potential JE vector species obtained through dusk and the rest through indoor and outdoor collections in all seasons. Altogether, 27 different species were recorded. Most of these were JE vectors. Interpretation & conclusions: Our results showed that in addition to Cx. vishnui subgroup, detection of JE virus antigen in Cx. quinquefasciatus indicated the possible maintenance of JE virus in nature through poor vector mosquitoes throughout the year. Since, all potential vector species reported elsewhere in India were also found in this region and fluctuated in density in different seasons, a proper integrated vector control programme needs to be implemented to control JE transmission. PMID:25027086

  4. Host-feeding patterns of mosquito species in Germany.

    PubMed

    Börstler, Jessica; Jöst, Hanna; Garms, Rolf; Krüger, Andreas; Tannich, Egbert; Becker, Norbert; Schmidt-Chanasit, Jonas; Lühken, Renke

    2016-06-03

    Mosquito-borne pathogens are of growing importance in many countries of Europe including Germany. At the same time, the transmission cycles of most mosquito-borne pathogens (e.g. viruses or filarial parasites) are not completely understood. There is especially a lack of knowledge about the vector capacity of the different mosquito species, which is strongly influenced by their host-feeding patterns. While this kind of information is important to identify the relevant vector species, e.g. to direct efficient control measures, studies about the host-feeding patterns of mosquito species in Germany are scarce and outdated. Between 2012 and 2015, 775 blood-fed mosquito specimens were collected. Sampling was conducted with Heavy Duty Encephalitis Vector Survey traps, Biogents Sentinel traps, gravid traps, hand-held aspirators, sweep nets, and human-bait collection. The host species for each mosquito specimen was identified with polymerase chain reactions and subsequent Sanger sequencing of the cytochrome b gene. A total of 32 host species were identified for 23 mosquito species, covering 21 mammalian species (including humans) and eleven bird species. Three mosquito species accounted for nearly three quarters of all collected blood-fed mosquitoes: Aedes vexans (363 specimens, 46.8 % of all mosquito specimens), Culex pipiens pipiens form pipiens (100, 12.9 %) and Ochlerotatus cantans (99, 12.8 %). Non-human mammals dominated the host species (572 specimens, 73.8 % of all mosquito specimens), followed by humans (152, 19.6 %) and birds (51, 6.6 %). The most common host species were roe deer (Capreolus capreolus; 258 mosquito specimens, 33.3 % of all mosquito specimens, 65 % of all mosquito species), humans (Homo sapiens; 152, 19.6 %, 90 %), cattle (Bos taurus; 101, 13.0 %, 60 %), and wild boar (Sus scrofa; 116, 15.0 %, 50 %). There were no statistically significant differences in the spatial-temporal host-feeding patterns of the three most common mosquito species. Although the collected blood-fed mosquito species had a strong overlap of host species, two different host-feeding groups were identified with mosquito species feeding on (i) non-human mammals and humans or (ii) birds, non-human mammals, and humans, which make them potential vectors of pathogens only between mammals or between mammals and birds, respectively. Due to the combination of their host-feeding patterns and wide distribution in Germany, Cx. pipiens pipiens form pipiens and Cx. torrentium are potentially most important vectors for pathogens transmitted from birds to humans and the species Ae. vexans for pathogens transmitted from non-human mammals to humans. Finally, the presented study indicated a much broader host range compared to the classifications found in the literature for some of the species, which highlights the need for studies on the host-feeding patterns of mosquitoes to further assess their vector capacity and the disease ecology in Europe.

  5. Larvicidal and Adulticidal Activity of Chroman and Chromene Analogues against Susceptible and Permethrin-Resistant Mosquito Strains.

    PubMed

    Meepagala, Kumudini M; Estep, Alden S; Becnel, James J

    2016-06-22

    Mosquitoes play a major role as vectors that transmit parasitic and viral diseases worldwide, especially in tropical and subtropical countries. Mosquito borne diseases not only affect humans but they also affect livestock in many parts of the world. They carry diseases that are lethal to dogs and horses. Dog heartworm disease (Dirofilaria immitis) is a parasitic disease spread through mosquitoes. This disease is not limited to dogs, but it can affect other animals and humans as well. Eastern equine encephalitis (EEE) and West Nile virus (WNV) are also mosquito borne diseases that affect the central nervous system of horses and cause severe complications and death. Emergence of resistance among mosquitoes to current pesticides has increased the importance of the search for alternate compounds that are effective and environmentally benign with diverse modes of actions than those that are commercially available. Aedes aegypti mosquitoes are the primary vector for transmission of Zika viral fever, yellow fever, dengue fever, and chikungunya. Mosquito control is currently the best strategy to prevent mosquito borne diseases. There are numerous approaches for control of potentially dangerous mosquito populations. These approaches include the use of adulticides (insecticides), larvicides, and, to a limited extent, the use of repellents. Our previous studies have shown the mosquito repellent activity of chromenes. In the present study, we demonstrate larvicidal and adulticidal activity of chroman and chromene analogues against a permethrin susceptible laboratory strain as well as activity against a permethrin-resistant strain of Aedes aegypti.

  6. Environmental and social-demographic predictors of the southern house mosquito Culex quinquefasciatus in New Orleans, Louisiana.

    PubMed

    Moise, Imelda K; Riegel, Claudia; Muturi, Ephantus J

    2018-04-17

    Understanding the major predictors of disease vectors such as mosquitoes can guide the development of effective and timely strategies for mitigating vector-borne disease outbreaks. This study examined the influence of selected environmental, weather and sociodemographic factors on the spatial and temporal distribution of the southern house mosquito Culex quinquefasciatus Say in New Orleans, Louisiana, USA. Adult mosquitoes were collected over a 4-year period (2006, 2008, 2009 and 2010) using CDC gravid traps. Socio-demographic predictors were obtained from the United States Census Bureau, 2005-2009 American Community Survey and the City of New Orleans Department of Code Enforcement. Linear mixed effects models and ERDAS image processing software were used for statistical analysis and image processing. Only two of the 22 predictors examined were significant predictors of Cx. quinquefasciatus abundance. Mean temperature during the week of mosquito collection was positively associated with Cx. quinquefasciatus abundance while developed high intensity areas were negatively associated with Cx. quinquefasciatus abundance. The findings of this study illustrate the power and utility of integrating biophysical and sociodemographic data using GIS analysis to identify the biophysical and sociodemographic processes that increase the risk of vector mosquito abundance. This knowledge can inform development of accurate predictive models that ensure timely implementation of mosquito control interventions.

  7. St. Louis Encephalitis virus mosquito vectors dynamics in three different environments in relation to remotely sensed environmental conditions.

    PubMed

    Batallán, Gonzalo P; Estallo, Elizabet L; Flores, Fernando S; Sartor, Paolo; Contigiani, Marta S; Almirón, Walter R

    2015-06-01

    In Argentina the St. Louis Encephalitis virus (SLEV) is an endemic and widely distributed pathogen transmitted by the cosmopolitan mosquito Culex quinquefasciatus. During two outbreaks in Córdoba city, in 2005 and 2010, Culex interfor was also found infected, but its role as vector of SLEV is poorly known. This mosquito species is distributed from central Argentina to southern Brazil. The primary aim of this study was to analyze the population dynamic of Cx. interfor and Cx. quinquefasciatus in three different environments (urban, suburban and non-urban) in relation to remotely sensed environmental data for vegetation (NDVI and NDWI) and temperature (brightness temperature). Cx. quinquefasciatus and Cx. interfor were found at the three sampled sites, being both the most abundant Culex species, with peaks in early and midsummer. Temporal distribution patterns of both mosquito species were highly correlated in a non-urban area of high SLEV risk transmission. Cx. quinquefasciatus and Cx. interfor were associated with the most urbanized site and the non-urban environment, respectively; high significant correlations were detected between vegetation indices and abundance of both mosquito species confirming these associations. These data provide a foundation for building density maps of these two SLEV mosquito vectors using remotely sensed data to help inform vector control programs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Heterogeneity of Mosquito (Diptera: Culicidae) Control Community Size, Research Productivity, and Arboviral Diseases Across the United States.

    PubMed

    Hamer, Gabriel L

    2016-05-01

    Multiple factors lead to extensive variation in mosquito and mosquito-borne virus control programs throughout the United States. This variation is related to differences in budgets, number of personnel, operational activities targeting nuisance or vector species, integration of Geographical Information Systems, and the degree of research and development to improve management interventions through collaboration with academic institutions. To highlight this heterogeneity, the current study evaluates associations among the size of a mosquito control community, the research productivity, and the mosquito-borne virus human disease burden among states within the continental United States. I used the attendance at state mosquito and vector control meetings as a proxy for the size of the mosquito control community in each state. To judge research productivity, I used all peer-reviewed publications on mosquitoes and mosquito-borne viruses using data originating in each state over a 5- and 20-yr period. Total neuroinvasive human disease cases caused by mosquito-borne viruses were aggregated for each state. These data were compared directly and after adjusting for differences in human population size for each state. Results revealed that mean meeting attendance was positively correlated with the number of publications in each state, but not after correcting for the size of the population in each state. Additionally, human disease cases were positively correlated with the number of publications in each state. Finally, mean meeting attendance and human disease cases were only marginally positively associated, and no correlation existed after correcting for human population size. These analyses indicated that the mosquito control community size, research productivity, and mosquito-borne viral human disease burden varied greatly among states. The mechanisms resulting in this variation were discussed and the consequences of this variation are important given the constantly changing environment due to invasive mosquito species and arboviruses, urbanization, immigration, global travel, and climate change. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Rajeswary, Mohan

    2013-12-01

    Mosquitoes act as a vector for most of the life-threatening diseases like malaria, yellow fever, dengue fever, chikungunya fever, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management, emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, the larvicidal activity of silver nanoparticles (AgNPs) synthesized using Sida acuta plant leaf extract against late third instar larvae of Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti was determined. Range of concentrations of synthesized AgNPs (10, 20, 30, 40, and 50 μg/mL) and aqueous leaf extract (50, 100, 150, 200, and 250 μg/mL) were tested against the larvae of C. quinquefasciatus, A. stephensi and A. aegypti. The synthesized AgNPs from S. acuta leaf were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Larvae were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of S. acuta for all three important vector mosquitoes. The LC50 and LC90 values of S. acuta aqueous leaf extract appeared to be most effective against A. stephensi (LC50, 109.94 μg/mL and LC90, 202.42 μg/mL) followed by A. aegypti LC50 (119.32 μg/mL and LC90, 213.84 μg/mL) and C. quinquefasciatus (LC50, 130.30 μg/mL and LC90, 228.20 μg/mL). Synthesized AgNPs against the vector mosquitoes of A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 21.92, and 41.07 μg/mL; A. aegypti had LC50 and LC90 values of 23.96, and 44.05 μg/mL; C. quinquefasciatus had LC50 and LC90 values of 26.13 and 47.52 μg/mL. These results suggest that the use of S. acuta synthesized silver nanoparticles can be a rapid, environmentally safer biopesticide which can form a novel approach to develop effective biocides for controlling the target vector mosquitoes. This is the first report on the mosquito larvicidal activity of the plant aqueous extract and synthesized nanoparticles.

  10. Zika Virus Vector Competency of Mosquitoes, Gulf Coast, United States.

    PubMed

    Hart, Charles E; Roundy, Christopher M; Azar, Sasha R; Huang, Jing H; Yun, Ruimei; Reynolds, Erin; Leal, Grace; Nava, Martin R; Vela, Jeremy; Stark, Pamela M; Debboun, Mustapha; Rossi, Shannan; Vasilakis, Nikos; Thangamani, Saravanan; Weaver, Scott C

    2017-03-01

    Zika virus has recently spread throughout the Americas. Although Aedes aegypti mosquitoes are considered the primary vector, Culex quinquefasciatus and mosquitoes of other species may also be vectors. We tested Cx. quinquefasciatus and Ae. taeniorhynchus mosquitoes from the US Gulf Coast; both were refractory to infection and incapable of transmission.

  11. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas

    PubMed Central

    Díaz-González, Esteban E.; Kautz, Tiffany F.; Dorantes-Delgado, Alicia; Malo-García, Iliana R.; Laguna-Aguilar, Maricela; Langsjoen, Rose M.; Chen, Rubing; Auguste, Dawn I.; Sánchez-Casas, Rosa M.; Danis-Lozano, Rogelio; Weaver, Scott C.; Fernández-Salas, Ildefonso

    2015-01-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)–positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown. PMID:26416113

  12. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas.

    PubMed

    Díaz-González, Esteban E; Kautz, Tiffany F; Dorantes-Delgado, Alicia; Malo-García, Iliana R; Laguna-Aguilar, Maricela; Langsjoen, Rose M; Chen, Rubing; Auguste, Dawn I; Sánchez-Casas, Rosa M; Danis-Lozano, Rogelio; Weaver, Scott C; Fernández-Salas, Ildefonso

    2015-12-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)-positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown. © The American Society of Tropical Medicine and Hygiene.

  13. An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile Virus.

    PubMed

    Turell, Michael J; Dohm, David J; Sardelis, Michael R; Oguinn, Monica L; Andreadis, Theodore G; Blow, Jamie A

    2005-01-01

    ABSTRACT Since first discovered in the New York City area in 1999, West Nile virus (WNV) has become established over much of the continental United States and has been responsible for >10,000 cases of severe disease and 400 human fatalities, as well as thousands of fatal infections in horses. To develop appropriate surveillance and control strategies, the identification of which mosquito species are competent vectors and how various factors influence their ability to transmit this virus must be determined. Therefore, we evaluated numerous mosquito species for their ability to transmit WNV under laboratory conditions. This report contains data for several mosquito species not reported previously, as well as a summary of transmission data compiled from previously reported studies. Mosquitoes were allowed to feed on chickens infected with WNV isolated from a crow that died during the 1999 outbreak in New York City. These mosquitoes were tested approximately 2 wk later to determine infection, dissemination, and transmission rates. All Culex species tested were competent vectors in the laboratory and varied from highly efficient vectors (e.g., Culex tarsalis Coquillett) to moderately efficient ones (e.g., Culex nigripalpus Theobald). Nearly all of the Culex species tested could serve as efficient enzootic or amplifying vectors for WNV. Several container-breeding Aedes and Ochlerotatus species were highly efficient vectors under laboratory conditions, but because of their feeding preferences, would probably not be involved in the maintenance of WNV in nature. However, they would be potential bridge vectors between the avian-Culex cycle and mammalian hosts. In contrast, most of the surface pool-breeding Aedes and Ochlerotatus species tested were relatively inefficient vectors under laboratory conditions and would probably not play a significant role in transmitting WNV in nature. In determining the potential for a mosquito species to become involved in transmitting WNV, it is necessary to consider not only its laboratory vector competence but also its abundance, host-feeding preference, involvement with other viruses with similar transmission cycles, and whether WNV has been isolated from this species under natural conditions.

  14. Modeling Dynamics of Culex pipiens Complex Populations and Assessing Abatement Strategies for West Nile Virus

    PubMed Central

    Pawelek, Kasia A.; Hager, Elizabeth J.; Hunt, Gregg J.

    2014-01-01

    The primary mosquito species associated with underground stormwater systems in the United States are the Culex pipiens complex species. This group represents important vectors of West Nile virus (WNV) throughout regions of the continental U.S. In this study, we designed a mathematical model and compared it with surveillance data for the Cx. pipiens complex collected in Beaufort County, South Carolina. Based on the best fit of the model to the data, we estimated parameters associated with the effectiveness of public health insecticide (adulticide) treatments (primarily pyrethrin products) as well as the birth, maturation, and death rates of immature and adult Cx. pipiens complex mosquitoes. We used these estimates for modeling the spread of WNV to obtain more reliable disease outbreak predictions and performed numerical simulations to test various mosquito abatement strategies. We demonstrated that insecticide treatments produced significant reductions in the Cx. pipiens complex populations. However, abatement efforts were effective for approximately one day and the vector mosquitoes rebounded until the next treatment. These results suggest that frequent insecticide applications are necessary to control these mosquitoes. We derived the basic reproductive number (ℜ0) to predict the conditions under which disease outbreaks are likely to occur and to evaluate mosquito abatement strategies. We concluded that enhancing the mosquito death rate results in lower values of ℜ0, and if ℜ0<1, then an epidemic will not occur. Our modeling results provide insights about control strategies of the vector populations and, consequently, a potential decrease in the risk of a WNV outbreak. PMID:25268229

  15. Use and effectiveness of commercial flit-spray insecticides in control of mosquito population in Sagamu, Southwest Nigeria.

    PubMed

    Adedeji, A A; Ahmed, I A; Akinwunmi, M; Aina, S A; Tikare, O; Adeboye, A F; Badmos, S O; Adedeji, K A; Fehintola, F A; Amoo, A O J

    2012-06-01

    Control of mosquito vector is crucial to reducing the burden of malaria in endemic region. In the present study, we investigated the use of commercial insecticides in families and their effectiveness in control of mosquito population in Sagamu, southwest Nigeria. A pretested structured questionnaire was used to determine mosquito adulticides techniques employed in the community and most commonly used adulticides were evaluated for effectiveness by exposing adult mosquitoes to varying concentrations of the insecticides and responses monitored. Families differ in methods adopted to prevent mosquito and use of flit-spray insecticide was commoner. Although parents constitute 64% of those applying the insecticide, 22.2% were children. Household pyrethroid insecticide products of Baygon (Imiprothrin, Prallethrin plus Cyfluthrin), Mobil (Neopynamin, Prallethrin plus Cyphenothrin) and Raid (Pynamin forte, Neopynamin plus Deltimethrin) were three commonly used in the community. The exposure tie interval for eath of osquitoes was shorter with Raid (100% at 8 minutes) when compared with Mobil (80%) and Baygon (85%) at 10 minutes (p = 0.005). Kaplan-Meier survival curve of cumulative probability of surviving exposure to insecticide was lowest with Raid (log rank 2 = 14.56, P = 0.001). Although flit-spray insecticides are affordable with simple application tool, inexplicit use-instruction on labels may cause discrepancies in application. Monitoring responses of mosquitoes to commercial flit-spray insecticide may support effective control technique and prevention of vector resistance in poor resource communities.

  16. Environmentally friendly tool to control mosquito populations without risk of insecticide resistance: the Lehmann’s funnel entry trap

    PubMed Central

    2013-01-01

    Background Current malaria control strategies have cut down the malaria burden in many endemic areas, however the emergence and rapid spread of insecticide and drug resistance undermine the success of these efforts. There is growing concern that malaria eradication will not be achieved without the introduction of novel control tools. One approach that has been developed in the last few years is based on house screening to reduce indoor mosquito vector densities and consequently decrease malaria transmission. Here screening and trapping were combined in one tool to control mosquito populations. The trap does not require an insecticide or even an attractant, yet it effectively collects incoming resistant and susceptible mosquitoes and kills them. Results Performance of the funnel entry trap was tested in low and high malaria vector density areas. An overall reduction of 70 to 80% of mosquito density was seen in both. Species and molecular forms of Anopheles gambiae identification indicated no variation in the number of Anopheles arabiensis and the molecular forms of An. gambiae between houses and traps. Mosquitoes collected in the traps and in houses were highly resistant to pyrethroids (0.9 kdr-based mechanism). Conclusion There is a global consensus that new intervention tools are needed to cross the last miles in malaria elimination/eradication. The funnel entry trap showed excellent promise in suppressing mosquito densities even in area of high insecticide resistance. It requires no chemicals and is self-operated. PMID:23758904

  17. Harnessing mosquito-Wolbachia symbiosis for vector and disease control.

    PubMed

    Bourtzis, Kostas; Dobson, Stephen L; Xi, Zhiyong; Rasgon, Jason L; Calvitti, Maurizio; Moreira, Luciano A; Bossin, Hervé C; Moretti, Riccardo; Baton, Luke Anthony; Hughes, Grant L; Mavingui, Patrick; Gilles, Jeremie R L

    2014-04-01

    Mosquito species, members of the genera Aedes, Anopheles and Culex, are the major vectors of human pathogens including protozoa (Plasmodium sp.), filariae and of a variety of viruses (causing dengue, chikungunya, yellow fever, West Nile). There is lack of efficient methods and tools to treat many of the diseases caused by these major human pathogens, since no efficient vaccines or drugs are available; even in malaria where insecticide use and drug therapies have reduced incidence, 219 million cases still occurred in 2010. Therefore efforts are currently focused on the control of vector populations. Insecticides alone are insufficient to control mosquito populations since reduced susceptibility and even resistance is being observed more and more frequently. There is also increased concern about the toxic effects of insecticides on non-target (even beneficial) insect populations, on humans and the environment. During recent years, the role of symbionts in the biology, ecology and evolution of insect species has been well-documented and has led to suggestions that they could potentially be used as tools to control pests and therefore diseases. Wolbachia is perhaps the most renowned insect symbiont, mainly due to its ability to manipulate insect reproduction and to interfere with major human pathogens thus providing new avenues for pest control. We herein present recent achievements in the field of mosquito-Wolbachia symbiosis with an emphasis on Aedes albopictus. We also discuss how Wolbachia symbiosis can be harnessed for vector control as well as the potential to combine the sterile insect technique and Wolbachia-based approaches for the enhancement of population suppression programs. Copyright © 2013 International Atomic Energy Agency 2013. Published by Elsevier B.V. All rights reserved.

  18. The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector.

    PubMed

    Akbari, Omar S; Antoshechkin, Igor; Amrhein, Henry; Williams, Brian; Diloreto, Race; Sandler, Jeremy; Hay, Bruce A

    2013-09-04

    Mosquitoes are vectors of a number of important human and animal diseases. The development of novel vector control strategies requires a thorough understanding of mosquito biology. To facilitate this, we used RNA-seq to identify novel genes and provide the first high-resolution view of the transcriptome throughout development and in response to blood feeding in a mosquito vector of human disease, Aedes aegypti, the primary vector for Dengue and yellow fever. We characterized mRNA expression at 34 distinct time points throughout Aedes development, including adult somatic and germline tissues, by using polyA+ RNA-seq. We identify a total of 14,238 novel new transcribed regions corresponding to 12,597 new loci, as well as many novel transcript isoforms of previously annotated genes. Altogether these results increase the annotated fraction of the transcribed genome into long polyA+ RNAs by more than twofold. We also identified a number of patterns of shared gene expression, as well as genes and/or exons expressed sex-specifically or sex-differentially. Expression profiles of small RNAs in ovaries, early embryos, testes, and adult male and female somatic tissues also were determined, resulting in the identification of 38 new Aedes-specific miRNAs, and ~291,000 small RNA new transcribed regions, many of which are likely to be endogenous small-interfering RNAs and Piwi-interacting RNAs. Genes of potential interest for transgene-based vector control strategies also are highlighted. Our data have been incorporated into a user-friendly genome browser located at www.Aedes.caltech.edu, with relevant links to Vectorbase (www.vectorbase.org).

  19. Biological control of mosquitoes in scrap tires in Brownsville, Texas, USA and Matamoros, Tamaulipas, Mexico.

    PubMed

    Uejio, Christopher K; Hayden, Mary H; Zielinski-Gutierrez, Emily; Lopez, Jose Luis Robles; Barrera, Roberto; Amador, Manuel; Thompson, Gregory; Waterman, Stephen H

    2014-06-01

    Dengue periodically circulates in southern Texas and neighboring Tamaulipas, Mexico; thus, a closer examination of human and vector ecology at the northern limits of North American transmission may improve prevention activities. Scrap tires produce large mosquito populations and increase the risk of dengue transmission. Some households choose not to pay tire disposal fees, and many tires are illegally dumped in residential areas. Biological control may provide low-cost and environmentally friendly mosquito control. This pilot study evaluated the ability of Mesocyclops longisetus to reduce mosquito populations in existing residential scrap tire piles. Mosquito populations were measured by the number of all mosquito pupae within tires or adult Aedes aegypti and Ae. albopictus near piles. Mesocyclops longisetus treated piles did not significantly reduce total mosquito pupae (P = 0.07) in Matamoros, Mexico. The study also evaluated the efficacy of native Toxorhynchites moctezuma which preferentially colonized tire piles under vegetation cover in Brownsville, TX. Toxorhynchites moctezuma larvae significantly reduced total mosquito pupae, but the strength of control diminished over time.

  20. Conceptual framework and rationale

    PubMed Central

    Robinson, Alan S; Knols, Bart GJ; Voigt, Gabriella; Hendrichs, Jorge

    2009-01-01

    The sterile insect technique (SIT) has been shown to be an effective and sustainable genetic approach to control populations of selected major pest insects, when part of area-wide integrated pest management (AW-IPM) programmes. The technique introduces genetic sterility in females of the target population in the field following their mating with released sterile males. This process results in population reduction or elimination via embryo lethality caused by dominant lethal mutations induced in sperm of the released males. In the past, several field trials have been carried out for mosquitoes with varying degrees of success. New technology and experience gained with other species of insect pests has encouraged a reassessment of the use of the sterility principle as part of integrated control of malaria vectors. Significant technical and logistic hurdles will need to be overcome to develop the technology and make it effective to suppress selected vector populations, and its application will probably be limited to specific ecological situations. Using sterile males to control mosquito vector populations can only be effective as part of an AW-IPM programme. The area-wide concept entails the targeting of the total mosquito population within a defined area. It requires, therefore, a thorough understanding of the target pest population biology especially as regards mating behaviour, population dynamics, dispersal and level of reproductive isolation. The key challenges for success are: 1) devising methods to monitor vector populations and measuring competitiveness of sterile males in the field, 2) designing mass rearing, sterilization and release strategies that maintain competitiveness of the sterile male mosquitoes, 3) developing methods to separate sexes in order to release only male mosquitoes and 4) adapting suppression measures and release rates to take into account the high reproductive rate of mosquitoes. Finally, success in area-wide implementation in the field can only be achieved if close attention is paid to political, socio-economic and environmental sensitivities and an efficient management organization is established taking into account the interests of all potential stakeholders of an AW-IPM programme. PMID:19917070

  1. Mass mosquito trapping for malaria control in western Kenya: study protocol for a stepped wedge cluster-randomised trial.

    PubMed

    Hiscox, Alexandra; Homan, Tobias; Mweresa, Collins K; Maire, Nicolas; Di Pasquale, Aurelio; Masiga, Daniel; Oria, Prisca A; Alaii, Jane; Leeuwis, Cees; Mukabana, Wolfgang R; Takken, Willem; Smith, Thomas A

    2016-07-26

    Increasing levels of insecticide resistance as well as outdoor, residual transmission of malaria threaten the efficacy of existing vector control tools used against malaria mosquitoes. The development of odour-baited mosquito traps has led to the possibility of controlling malaria through mass trapping of malaria vectors. Through daily removal trapping against a background of continued bed net use it is anticipated that vector populations could be suppressed to a level where continued transmission of malaria will no longer be possible. A stepped wedge cluster-randomised trial design was used for the implementation of mass mosquito trapping on Rusinga Island, western Kenya (the SolarMal project). Over the course of 2 years (2013-2015) all households on the island were provided with a solar-powered mosquito trapping system. A continuous health and demographic surveillance system combined with parasitological surveys three times a year, successive rounds of mosquito monitoring and regular sociological studies allowed measurement of intervention outcomes before, during and at completion of the rollout of traps. Data collection continued after achieving mass coverage with traps in order to estimate the longer term effectiveness of this novel intervention. Solar energy was exploited to provide electric light and mobile phone charging for each household, and the impacts of these immediate tangible benefits upon acceptability of and adherence to the use of the intervention are being measured. This study will be the first to evaluate whether the principle of solar-powered mass mosquito trapping could be an effective tool for elimination of malaria. If proven to be effective, this novel approach to malaria control would be a valuable addition to the existing strategies of long-lasting insecticide-treated nets and case management. Sociological studies provide a knowledge base for understanding the usage of this novel tool. Trialregister.nl: NTR3496 - SolarMal. Registered on 20 June 2012.

  2. [Biological factors influencing infectious diseases transmitted by invasive species of mosquitoes].

    PubMed

    Boštíková, Vanda; Pasdiorová, Markéta; Marek, Jan; Prášil, Petr; Salavec, Miloslav; Sleha, Radek; Střtítecká, Hana; Blažek, Pavel; Hanovcová, Irena; Šošovičková, Renáta; Špliňo, Milan; Smetana, Jan; Chlíbek, Roman; Hytych, Václav; Kuča, Kamil; Boštík, Pavel

    2016-06-01

    Studies focused on arbovirus diseases transmitted by invasive species of mosquitoes have become increasingly significant in recent years, due to the fact that these vectors have successfully migrated to Europe and become established in the region. Mosquitoes, represented by more than 3 200 species, occur naturally worldwide, except in Antarctica. They feed on the blood of warm-blooded animals and by this route, they are capable of transmitting dangerous diseases. Some species can travel a distance of 10 km per night and can fly continuously for up to 4 hours at a speed of 1-2 km/h. Most species are active at night, in the evening or morning. It usually takes a mosquito female about 50 seconds to penetrate the skin of mammals and the subsequent blood meal usually takes about 2.5 minutes. Mosquitoes live for several weeks or months, depending on the environmental conditions. The VectorNet project is a European network of information exchange and sharing of data relating to the geographical distribution of arthropod vectors and transmission of infectious agents between human populations and animals. It aims at the development of strategic plans and vaccination policies which are the main tasks of this time, as well as the development and application of new disinfectants to control vector populations.

  3. Mosquito politics: local vector control policies and the spread of West Nile Virus in the Chicago region.

    PubMed

    Tedesco, Carmen; Ruiz, Marilyn; McLafferty, Sara

    2010-11-01

    Differences in mosquito control practices at the local level involve the interplay of place, scale and politics. During the Chicago West Nile Virus (WNV) outbreak of 2002, mosquito abatement districts represent distinct suburban clusters of human WNV cases, independent of characteristics of the local population, housing and physical environment. We examine how the contrasting actions of four districts reveal a distinct local politics of mosquito control that may have contributed to local-scale geographic differences in WNV incidence. This politics is rooted in political, economic and philosophical differences within and between administrative boundaries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Parasite killing in malaria non-vector mosquito Anopheles culicifacies species B: implication of nitric oxide synthase upregulation.

    PubMed

    Vijay, Sonam; Rawat, Manmeet; Adak, Tridibes; Dixit, Rajnikant; Nanda, Nutan; Srivastava, Harish; Sharma, Joginder K; Prasad, Godavarthi B K S; Sharma, Arun

    2011-04-04

    Anopheles culicifacies, the main vector of human malaria in rural India, is a complex of five sibling species. Despite being phylogenetically related, a naturally selected subgroup species B of this sibling species complex is found to be a poor vector of malaria. We have attempted to understand the differences between vector and non-vector Anopheles culicifacies mosquitoes in terms of transcriptionally activated nitric oxide synthase (AcNOS) physiologies to elucidate the mechanism of refractoriness. Identification of the differences between genes and gene products that may impart refractory phenotype can facilitate development of novel malaria transmission blocking strategies. We conducted a study on phylogenetically related susceptible (species A) and refractory (species B) sibling species of An. culicifacies mosquitoes to characterize biochemical and molecular differences in AcNOS gene and gene elements and their ability to inhibit oocyst growth. We demonstrate that in species B, AcNOS specific activity and nitrite/nitrates in mid-guts and haemolymph were higher as compared to species A after invasion of the mid-gut by P. vivax at the beginning and during the course of blood feeding. Semiquantitative RT-PCR and real time PCR data of AcNOS concluded that this gene is more abundantly expressed in midgut of species B than in species A and is transcriptionally upregulated post blood meals. Dietary feeding of L-NAME along with blood meals significantly inhibited midgut AcNOS activity leading to an increase in oocyst production in An. culicifacies species B. We hypothesize that upregulation of mosquito innate cytotoxicity due to NOS in refractory strain to Plasmodium vivax infection may contribute to natural refractoriness in An. culicifacies mosquito population. This innate capacity of refractory mosquitoes could represent the ancestral function of the mosquito immune system against the parasite and could be utilized to understand the molecular basis of refractoriness in planning effective vector control strategies.

  5. Parasite Killing in Malaria Non-Vector Mosquito Anopheles culicifacies Species B: Implication of Nitric Oxide Synthase Upregulation

    PubMed Central

    Vijay, Sonam; Rawat, Manmeet; Adak, Tridibes; Dixit, Rajnikant; Nanda, Nutan; Srivastava, Harish; Sharma, Joginder K.; Prasad, Godavarthi B. K. S.; Sharma, Arun

    2011-01-01

    Background Anopheles culicifacies, the main vector of human malaria in rural India, is a complex of five sibling species. Despite being phylogenetically related, a naturally selected subgroup species B of this sibling species complex is found to be a poor vector of malaria. We have attempted to understand the differences between vector and non-vector Anopheles culicifacies mosquitoes in terms of transcriptionally activated nitric oxide synthase (AcNOS) physiologies to elucidate the mechanism of refractoriness. Identification of the differences between genes and gene products that may impart refractory phenotype can facilitate development of novel malaria transmission blocking strategies. Methodology/Principal Findings We conducted a study on phylogenetically related susceptible (species A) and refractory (species B) sibling species of An. culicifacies mosquitoes to characterize biochemical and molecular differences in AcNOS gene and gene elements and their ability to inhibit oocyst growth. We demonstrate that in species B, AcNOS specific activity and nitrite/nitrates in mid-guts and haemolymph were higher as compared to species A after invasion of the mid-gut by P. vivax at the beginning and during the course of blood feeding. Semiquantitative RT-PCR and real time PCR data of AcNOS concluded that this gene is more abundantly expressed in midgut of species B than in species A and is transcriptionally upregulated post blood meals. Dietary feeding of L-NAME along with blood meals significantly inhibited midgut AcNOS activity leading to an increase in oocyst production in An. culicifacies species B. Conclusions/Significance We hypothesize that upregulation of mosquito innate cytotoxicity due to NOS in refractory strain to Plasmodium vivax infection may contribute to natural refractoriness in An. culicifacies mosquito population. This innate capacity of refractory mosquitoes could represent the ancestral function of the mosquito immune system against the parasite and could be utilized to understand the molecular basis of refractoriness in planning effective vector control strategies. PMID:21483693

  6. Simplified Models of Vector Control Impact upon Malaria Transmission by Zoophagic Mosquitoes

    PubMed Central

    Kiware, Samson S.; Chitnis, Nakul; Moore, Sarah J.; Devine, Gregor J.; Majambere, Silas; Merrill, Stephen; Killeen, Gerry F.

    2012-01-01

    Background High coverage of personal protection measures that kill mosquitoes dramatically reduce malaria transmission where vector populations depend upon human blood. However, most primary malaria vectors outside of sub-Saharan Africa can be classified as “very zoophagic,” meaning they feed occasionally (<10% of blood meals) upon humans, so personal protection interventions have negligible impact upon their survival. Methods and Findings We extended a published malaria transmission model to examine the relationship between transmission, control, and the baseline proportion of bloodmeals obtained from humans (human blood index). The lower limit of the human blood index enables derivation of simplified models for zoophagic vectors that (1) Rely on only three field-measurable parameters. (2) Predict immediate and delayed (with and without assuming reduced human infectivity, respectively) impacts of personal protection measures upon transmission. (3) Illustrate how appreciable indirect communal-level protection for non-users can be accrued through direct personal protection of users. (4) Suggest the coverage and efficacy thresholds required to attain epidemiological impact. The findings suggest that immediate, indirect, community-wide protection of users and non-users alike may linearly relate to the efficacy of a user’s direct personal protection, regardless of whether that is achieved by killing or repelling mosquitoes. High protective coverage and efficacy (≥80%) are important to achieve epidemiologically meaningful impact. Non-users are indirectly protected because the two most common species of human malaria are strict anthroponoses. Therefore, the small proportion of mosquitoes that are killed or diverted while attacking humans can represent a large proportion of those actually transmitting malaria. Conclusions Simplified models of malaria transmission by very zoophagic vectors may be used by control practitioners to predict intervention impact interventions using three field-measurable parameters; the proportion of human exposure to mosquitoes occurring when an intervention can be practically used, its protective efficacy when used, and the proportion of people using it. PMID:22701527

  7. Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents

    PubMed Central

    2012-01-01

    Background Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. Results Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. Conclusions Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy. PMID:22449130

  8. Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico.

    PubMed

    Somers, Gerard; Brown, Julia E; Barrera, Roberto; Powell, Jeffrey R

    2011-11-01

    Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50-100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future.

  9. Genetics and Morphology of Aedes aegypti (Diptera: Culicidae) in Septic Tanks in Puerto Rico

    PubMed Central

    SOMERS, GERARD; BROWN, JULIA E.; BARRERA, ROBERTO; POWELL, JEFFREY R.

    2012-01-01

    Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50–100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future. PMID:22238867

  10. Evidence of anopheline mosquito resistance to agrochemicals in northern Thailand.

    PubMed

    Overgaard, Hans J; Sandve, Simen R; Suwonkerd, Wannapa

    2005-01-01

    The objective of this study was to assess insecticide resistance in anopheline mosquito populations in agroecosystems with high and low insecticide use in a malaria endemic area in Chiang Mai province in northern Thailand. Anopheline mosquitoes were collected in May and June 2004 from two locations with different agricultural insecticide intensity (HIGH and LOW), but similar in vector control strategies. The F1-generation of Anopheles maculatus s.s. and An. sawadwongporni were subjected to diagnostic doses of methyl parathion (MeP) and cypermethrin (Cyp), both commonly used insecticides in fruit orchards in Thailand. An. minimus A from the HIGH location was subjected to diagnostic doses to Cyp. CDC bottle bioassays were used to determine insecticide susceptibility. Time-mortality data were subjected to Probit analyses to estimate lethal time values (LT50 and LT90). Lethal time ratios (LTR) were computed to determine differences in lethal time response between populations from HIGH and LOW locations. The mortality of An. maculatus to MeP was 74% and 92% in the HIGH and LOW locations, respectively. The corresponding figures for An. sawadwongporni were 94% and 99%. There was no indication of resistance to Cyp for all species tested in either location. The LT90 and LT50 values of An. maculatus s.s. subjected to diagnostic doses of MeP were significantly different between locations (p<0.05). Reduced susceptibility to MeP in mosquito populations in the HIGH location is caused by intensive agricultural pest control and not by vector control activities, because organophosphates have never been used for vector control in the area. Our results indicate that there are still susceptible anopheline populations to pyrethroids, which is consistent with other research from the region. Therefore, there is presently no direct threat to vector control. However increased use of pyrethroids in agriculture may cause problems for future vector control.

  11. Baseline malaria vector transmission dynamics in communities in Ahafo mining area in Ghana.

    PubMed

    Dery, Dominic B; Asante, Kwaku P; Zandoh, Charles; Febir, Lawrence G; Brown, Charles; Adjei, George; Antwi-Dadzie, Yaw; Mahama, Emmanuel; Tchum, Kofi; Dosoo, David; Amenga-Etego, Seeba; Adda, Robert; Mensah, Christine; Owusu-Sekyere, Kwabena B; Anderson, Chris; Krieger, Gary; Owusu-Agyei, Seth

    2015-04-07

    Malaria vector dynamics are relevant prior to commencement of mining activities. A baseline entomology survey was conducted in Asutifi and Tano (referred to as Ahafo) in the Brong-Ahafo geo-political region of Ghana during preparatory stages for mining by Newmont Ghana Gold Limited. Between November 2006 and August 2007, eight Centre for Disease Control light traps were set daily (Monday-Friday) to collect mosquitoes. Traps were hanged in rooms that were selected from a pool of 1,100 randomly selected houses. Types of materials used in construction of houses were recorded and mosquito prevention measures were assessed from occupants. A total of 5,393 mosquitoes were caught that comprised Anopheles gambiae (64.8%), Anopheles funestus (4.2%), as well as Culicines, comprising of Culex (30.4%) and Aedes species (0.6%). The entomological inoculation rate in Asutifi (279 infective bites/person/month) and Tano (487 infective bites/person/month) demonstrate relatively high malaria transmission in Ahafo. The presence or absence of Anopheles vectors in rooms was influenced by the type of roofing material (OR 2.33, 95%CI: 1.29-4.22, p = 0.01) as well as the presence of eaves gaps (OR 1.80, 95%CI: 1.37-2.37, p < 0.01). It was also associated with bed net availability in the room (OR 1.39, 95%CI: 1.08-1.80, p = 0.01). Over 80% of the houses were roofed with corrugated zinc sheets. Over 60% of the houses in Ahafo had no eaves gaps to give access to mosquito entry and exit into rooms and mosquito bed net coverage was over 50%. Other measures used in preventing mosquito bites included; coil (22.1%), insecticide spray (9.4%), repellent cream (4.0%) and smoky fires (1.1%), contributed minimally to individual mosquito preventive measures in impact areas. Similarly, levels of protection; coil (16.9%), insecticide spray (2.8%) and repellent cream (0.3%) for the non-impact areas, depict low individual prevention measures. The survey identified areas where intensified vector control activities would be beneficial. It also demonstrates that transmission in Asutifi and Tano is high even before the commencement of mining operations. This study serves as baseline information to assess impact of mining activities in relation to future vector control interventions.

  12. Diversity and function of bacterial microbiota in the mosquito holobiont

    PubMed Central

    2013-01-01

    Mosquitoes (Diptera: Culicidae) have been shown to host diverse bacterial communities that vary depending on the sex of the mosquito, the developmental stage, and ecological factors. Some studies have suggested a potential role of microbiota in the nutritional, developmental and reproductive biology of mosquitoes. Here, we present a review of the diversity and functions of mosquito-associated bacteria across multiple variation factors, emphasizing recent findings. Mosquito microbiota is considered in the context of possible extended phenotypes conferred on the insect hosts that allow niche diversification and rapid adaptive evolution in other insects. These kinds of observations have prompted the recent development of new mosquito control methods based on the use of symbiotically-modified mosquitoes to interfere with pathogen transmission or reduce the host life span and reproduction. New opportunities for exploiting bacterial function for vector control are highlighted. PMID:23688194

  13. Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae).

    PubMed

    Zittra, Carina; Vitecek, Simon; Obwaller, Adelheid G; Rossiter, Heidemarie; Eigner, Barbara; Zechmeister, Thomas; Waringer, Johann; Fuehrer, Hans-Peter

    2017-04-26

    Vector-pathogen dynamics are controlled by fluctuations of potential vector communities, such as the Culicidae. Assessment of mosquito community diversity and, in particular, identification of environmental parameters shaping these communities is therefore of key importance for the design of adequate surveillance approaches. In this study, we assess effects of climatic parameters and habitat structure on mosquito communities in eastern Austria to deliver these highly relevant baseline data. Female mosquitoes were sampled twice a month from April to October 2014 and 2015 at 35 permanent and 23 non-permanent trapping sites using carbon dioxide-baited traps. Differences in spatial and seasonal abundance patterns of Culicidae taxa were identified using likelihood ratio tests; possible effects of environmental parameters on seasonal and spatial mosquito distribution were analysed using multivariate statistical methods. We assessed community responses to environmental parameters based on 14-day-average values that affect ontogenesis. Altogether 29,734 female mosquitoes were collected, and 21 of 42 native as well as two of four non-native mosquito species were reconfirmed in eastern Austria. Statistical analyses revealed significant differences in mosquito abundance between sampling years and provinces. Incidence and abundance patterns were found to be linked to 14-day mean sunshine duration, humidity, water-level maxima and the amount of precipitation. However, land cover classes were found to be the most important factor, effectively assigning both indigenous and non-native mosquito species to various communities, which responded differentially to environmental variables. These findings thus underline the significance of non-climatic variables for future mosquito prediction models and the necessity to consider these in mosquito surveillance programmes.

  14. Enzootic mosquito vector species at equine encephalitis transmission foci in the República de Panamá.

    PubMed

    Torres, Rolando; Samudio, Rafael; Carrera, Jean-Paul; Young, Josue; Márquez, Ricardo; Hurtado, Lisbeth; Weaver, Scott; Chaves, Luis Fernando; Tesh, Robert; Cáceres, Lorenzo

    2017-01-01

    The identification of mosquito vector species present at arboviral enzootic transmission foci is important to understand transmission eco-epidemiology and to propose and implement prevention and control strategies that reduce vector-borne equine encephalitis transmission. The goal of this study was to identify mosquito species potentially involved in the transmission of enzootic equine encephalitis, in relation to their abundance and diversity at three endemic regions in the República de Panamá. We sampled adult mosquitoes during the dry and rainy season of Panamá. We employed CDC light traps with octanol, EV traps with CO2 and Trinidad 17 traps baited with live hamsters. Traps were deployed in the peridomicile and extradomicile of houses from 18:00 to 6:00 h. We estimated the abundance and diversity of sampled species. We collected a total of 4868 mosquitoes, belonging to 45 species and 11 genera, over 216 sampling nights. Culex (Melanoconion) pedroi, a major Venezuelan equine encephalitis vector was relatively rare (< 2.0% of all sampled mosquitoes). We also found Cx. (Mel) adamesi, Cx. (Mel) crybda, Cx. (Mel) ocossa, Cx. (Mel) spissipes, Cx. (Mel) taeniopus, Cx. (Mel) vomerifer, Aedes scapularis, Ae. angustivittatus, Coquillettidia venezuelensis, Cx. nigripalpus, Cx. declarator, Mansonia titillans, M. pseudotitillans and Psorophora ferox all species known to be vectorially competent for the transmission of arboviruses. Abundance and diversity of mosquitoes in the sampled locations was high, when compared with similar surveys in temperate areas. Information from previous reports about vectorial competence / capacity of the sampled mosquito species suggest that sampled locations have all the elements to support enzootic outbreaks of Venezuelan and Eastern equine encephalitides.

  15. Enzootic mosquito vector species at equine encephalitis transmission foci in the República de Panamá

    PubMed Central

    Torres, Rolando; Samudio, Rafael; Carrera, Jean-Paul; Young, Josue; Márquez, Ricardo; Hurtado, Lisbeth; Weaver, Scott; Chaves, Luis Fernando; Tesh, Robert

    2017-01-01

    The identification of mosquito vector species present at arboviral enzootic transmission foci is important to understand transmission eco-epidemiology and to propose and implement prevention and control strategies that reduce vector-borne equine encephalitis transmission. The goal of this study was to identify mosquito species potentially involved in the transmission of enzootic equine encephalitis, in relation to their abundance and diversity at three endemic regions in the República de Panamá. We sampled adult mosquitoes during the dry and rainy season of Panamá. We employed CDC light traps with octanol, EV traps with CO2 and Trinidad 17 traps baited with live hamsters. Traps were deployed in the peridomicile and extradomicile of houses from 18:00 to 6:00 h. We estimated the abundance and diversity of sampled species. We collected a total of 4868 mosquitoes, belonging to 45 species and 11 genera, over 216 sampling nights. Culex (Melanoconion) pedroi, a major Venezuelan equine encephalitis vector was relatively rare (< 2.0% of all sampled mosquitoes). We also found Cx. (Mel) adamesi, Cx. (Mel) crybda, Cx. (Mel) ocossa, Cx. (Mel) spissipes, Cx. (Mel) taeniopus, Cx. (Mel) vomerifer, Aedes scapularis, Ae. angustivittatus, Coquillettidia venezuelensis, Cx. nigripalpus, Cx. declarator, Mansonia titillans, M. pseudotitillans and Psorophora ferox all species known to be vectorially competent for the transmission of arboviruses. Abundance and diversity of mosquitoes in the sampled locations was high, when compared with similar surveys in temperate areas. Information from previous reports about vectorial competence / capacity of the sampled mosquito species suggest that sampled locations have all the elements to support enzootic outbreaks of Venezuelan and Eastern equine encephalitides. PMID:28937995

  16. Use of insecticide-treated house screens to reduce infestations of dengue virus vectors, Mexico.

    PubMed

    Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J; Kroeger, Axel; Arredondo-Jimenez, Juan I

    2015-02-01

    Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control.

  17. Spray characterization of ULV sprayers typically used in vector control

    USDA-ARS?s Scientific Manuscript database

    Numerous spray machines are used to apply products for the control of human disease vectors, such as mosquitoes and flies. However, the selection and setup of these machines significantly affect the level of control achieved during an application. The droplet spectra produced by nine different ULV...

  18. Vector competence of Aedes aegypti mosquitoes for filarial nematodes is affected by age and nutrient limitation.

    PubMed

    Ariani, Cristina V; Juneja, Punita; Smith, Sophia; Tinsley, Matthew C; Jiggins, Francis M

    2015-01-01

    Mosquitoes are one of the most important vectors of human disease. The ability of mosquitoes to transmit disease is dependent on the age structure of the population, as mosquitoes must survive long enough for the parasites to complete their development and infect another human. Age could have additional effects due to mortality rates and vector competence changing as mosquitoes senesce, but these are comparatively poorly understood. We have investigated these factors using the mosquito Aedes aegypti and the filarial nematode Brugia malayi. Rather than observing any effects of immune senescence, we found that older mosquitoes were more resistant, but this only occurred if they had previously been maintained on a nutrient-poor diet of fructose. Constant blood feeding reversed this decline in vector competence, meaning that the number of parasites remained relatively unchanged as mosquitoes aged. Old females that had been maintained on fructose also experienced a sharp spike in mortality after an infected blood meal ("refeeding syndrome") and few survived long enough for the parasite to develop. Again, this effect was prevented by frequent blood meals. Our results indicate that old mosquitoes may be inefficient vectors due to low vector competence and high mortality, but that frequent blood meals can prevent these effects of age. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Mosquitoes and other aquatic insects in fallow field biotopes and rice paddy fields.

    PubMed

    Ohba, S Y; Matsuo, T; Takagi, M

    2013-03-01

    Fallow field biotopes that develop from abandoned rice fields are man-made wetlands that provide new habitats for various aquatic animals. Although consideration of such biotopes generally focuses on their positive aspects, this study evaluated the negative aspects of establishing fallow field biotopes with regard to mosquito breeding sites. To determine whether fallow field biotopes become breeding habitats for vector mosquitoes, we evaluated mosquito fauna in fallow field biotopes and adjacent rice fields. We found larvae of Anopheles lesteri, Anopheles sinensis and Culex tritaeniorhynchus (all: Diptera: Culicidae) in the biotopes. Although abundances of mosquito larvae in the biotopes and rice fields were statistically similar, mosquito abundances in rice fields increased dramatically in August when the water level reduced after the rainy season. The abundance and variety of the mosquitoes' natural predators were greater in biotopes than in rice fields because the former are a permanent and stable aquatic environment. A generalized linear mixed model showed a negative effect of predator diversity on mosquito larvae abundance in both habitats. Although fallow field biotopes become breeding habitats for vector mosquitoes, establishing biotopes from fallow fields in order to protect various aquatic animals, including mosquito insect predators, may help to control mosquito breeding. © 2012 The Royal Entomological Society.

  20. S argassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens.

    PubMed

    Madhiyazhagan, Pari; Murugan, Kadarkarai; Kumar, Arjunan Naresh; Nataraj, Thiyagarajan; Dinesh, Devakumar; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Mahesh Kumar, Palanisamy; Suresh, Udaiyan; Roni, Mathath; Nicoletti, Marcello; Alarfaj, Abdullah A; Higuchi, Akon; Munusamy, Murugan A; Benelli, Giovanni

    2015-11-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Furthermore, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. In this research, silver nanoparticles (AgNP) were synthesized using the aqueous extract of the seaweed Sargassum muticum. The production of AgNP was confirmed by surface plasmon resonance band illustrated in UV-vis spectrophotometry. AgNP were characterized by FTIR, SEM, EDX, and XRD analyses. AgNP were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and mean size was 43-79 nm. Toxicity of AgNP was assessed against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. In laboratory, AgNP were highly toxic against larvae and pupae of the three mosquito species. Maximum efficacy was observed against A. stephensi larvae, with LC50 ranging from 16.156 ppm (larva I) to 28.881 ppm (pupa). In the field, a single treatment with AgNP (10 × LC50) in water storage reservoirs was effective against the three mosquito vectors, allowing complete elimination of larval populations after 72 h. In ovicidal experiments, egg hatchability was reduced by 100% after treatment with 30 ppm of AgNP. Ovideterrence assays highlighted that 10 ppm of AgNP reduced oviposition rates of more than 70% in A. aegypti, A. stephensi, and C. quinquefasciatus (OAI = -0.61, -0.63, and -0.58, respectively). Antibacterial properties of AgNP were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. AgNP tested at 50 ppm evoked growth inhibition zones larger than 5 mm in all tested bacteria. Overall, the chance to use S. muticum-synthesized AgNP for control of mosquito vectors seems promising since they are effective at low doses and may constitute an advantageous alternative to build newer and safer mosquito control tools. This is the first report about ovicidal activity of metal nanoparticles against mosquito vectors.

  1. Relationship between exposure to vector bites and antibody responses to mosquito salivary gland extracts.

    PubMed

    Fontaine, Albin; Pascual, Aurélie; Orlandi-Pradines, Eve; Diouf, Ibrahima; Remoué, Franck; Pagès, Frédéric; Fusaï, Thierry; Rogier, Christophe; Almeras, Lionel

    2011-01-01

    Mosquito-borne diseases are major health problems worldwide. Serological responses to mosquito saliva proteins may be useful in estimating individual exposure to bites from mosquitoes transmitting these diseases. However, the relationships between the levels of these IgG responses and mosquito density as well as IgG response specificity at the genus and/or species level need to be clarified prior to develop new immunological markers to assess human/vector contact. To this end, a kinetic study of antibody levels against several mosquito salivary gland extracts from southeastern French individuals living in three areas with distinct ecological environments and, by implication, distinct Aedes caspius mosquito densities were compared using ELISA. A positive association was observed between the average levels of IgG responses against Ae. caspius salivary gland extracts and spatial Ae. caspius densities. Additionally, the average level of IgG responses increased significantly during the peak exposure to Ae. caspius at each site and returned to baseline four months later, suggesting short-lived IgG responses. The species-specificity of IgG antibody responses was determined by testing antibody responses to salivary gland extracts from Cx. pipiens, a mosquito that is present at these three sites at different density levels, and from two other Aedes species not present in the study area (Ae. aegypti and Ae. albopictus). The IgG responses observed against these mosquito salivary gland extracts contrasted with those observed against Ae. caspius salivary gland extracts, supporting the existence of species-specific serological responses. By considering different populations and densities of mosquitoes linked to environmental factors, this study shows, for the first time, that specific IgG antibody responses against Ae. caspius salivary gland extracts may be related to the seasonal and geographical variations in Ae. caspius density. Characterisation of such immunological-markers may allow the evaluation of the effectiveness of vector-control strategies or estimation of the risk of vector-borne disease transmission.

  2. Relationship between Exposure to Vector Bites and Antibody Responses to Mosquito Salivary Gland Extracts

    PubMed Central

    Orlandi-Pradines, Eve; Diouf, Ibrahima; Remoué, Franck; Pagès, Frédéric; Fusaï, Thierry; Rogier, Christophe; Almeras, Lionel

    2011-01-01

    Mosquito-borne diseases are major health problems worldwide. Serological responses to mosquito saliva proteins may be useful in estimating individual exposure to bites from mosquitoes transmitting these diseases. However, the relationships between the levels of these IgG responses and mosquito density as well as IgG response specificity at the genus and/or species level need to be clarified prior to develop new immunological markers to assess human/vector contact. To this end, a kinetic study of antibody levels against several mosquito salivary gland extracts from southeastern French individuals living in three areas with distinct ecological environments and, by implication, distinct Aedes caspius mosquito densities were compared using ELISA. A positive association was observed between the average levels of IgG responses against Ae. caspius salivary gland extracts and spatial Ae. caspius densities. Additionally, the average level of IgG responses increased significantly during the peak exposure to Ae. caspius at each site and returned to baseline four months later, suggesting short-lived IgG responses. The species-specificity of IgG antibody responses was determined by testing antibody responses to salivary gland extracts from Cx. pipiens, a mosquito that is present at these three sites at different density levels, and from two other Aedes species not present in the study area (Ae. aegypti and Ae. albopictus). The IgG responses observed against these mosquito salivary gland extracts contrasted with those observed against Ae. caspius salivary gland extracts, supporting the existence of species-specific serological responses. By considering different populations and densities of mosquitoes linked to environmental factors, this study shows, for the first time, that specific IgG antibody responses against Ae. caspius salivary gland extracts may be related to the seasonal and geographical variations in Ae. caspius density. Characterisation of such immunological-markers may allow the evaluation of the effectiveness of vector-control strategies or estimation of the risk of vector-borne disease transmission. PMID:22195000

  3. Challenges in undertaking mosquito surveillance at UK seaports and airports to prevent the entry and establishment of invasive vector species.

    PubMed

    Murphy, Gai; Vaux, Alex; Medlock, Jolyon

    2013-01-01

    Port health authorities have played an important role in the control of infectious diseases worldwide. The International Health Regulations (2005) further clarifies this role and provides a legal statutory instrument that aims to assist the international community to prevent and respond to global public health risks. Eleven UK sea and airports participated in a pilot, investigating the challenges ports could face in attempting to monitor for mosquitoes. The study also examined the types of habitat that could support mosquitoes. There is a concern that exotic vector species, such as Aedes albopictus, could invade and become established in the UK. Environments in and around the ports differed, and this was reflected in the species of mosquitoes caught. Ports used different methods to collect mosquitoes and developed a range of techniques for surveying, which suited the conditions at their port. This paper discusses the implications of invasive mosquito surveillance to UK port health authorities.

  4. Discovery of Rigidified α,β-Unsaturated Imines as New Resistance-breaking Insecticides for Malaria Vector Control.

    PubMed

    Arlt, Alexander; Böhnke, Niels; Horstmann, Sebastian; Vermeer, Arnoldus W P; Werner, Stefan; Velten, Robert

    2016-10-01

    During our continuous search for new resistance-breaking insecticides applicable to malaria vector control, a new class of α,β-unsaturated imines was identified by applying the principle of conformational rigidification as a powerful tool for compound optimisation. Herein we describe the successful synthesis of these compounds and their biological test results. Our lead compound 16 from this insecticidal class outperforms market standards, notably for the control of mosquito strains that exhibit either metabolic or target-site resistance to these established insecticides. In our model system for insecticide-treated mosquito nets the compound reveals long-lasting efficacy for up to several months.

  5. wFlu: Characterization and Evaluation of a Native Wolbachia from the Mosquito Aedes fluviatilis as a Potential Vector Control Agent

    PubMed Central

    Gonçalves, Daniela da Silva; Moreira, Luciano Andrade

    2013-01-01

    There is currently considerable interest and practical progress in using the endosymbiotic bacteria Wolbachia as a vector control agent for human vector-borne diseases. Such vector control strategies may require the introduction of multiple, different Wolbachia strains into target vector populations, necessitating the identification and characterization of appropriate endosymbiont variants. Here, we report preliminary characterization of wFlu, a native Wolbachia from the neotropical mosquito Aedes fluviatilis, and evaluate its potential as a vector control agent by confirming its ability to cause cytoplasmic incompatibility, and measuring its effect on three parameters determining host fitness (survival, fecundity and fertility), as well as vector competence (susceptibility) for pathogen infection. Using an aposymbiotic strain of Ae. fluviatilis cured of its native Wolbachia by antibiotic treatment, we show that in its natural host wFlu causes incomplete, but high levels of, unidirectional cytoplasmic incompatibility, has high rates of maternal transmission, and no detectable fitness costs, indicating a high capacity to rapidly spread through host populations. However, wFlu does not inhibit, and even enhances, oocyst infection with the avian malaria parasite Plasmodium gallinaceum. The stage- and sex-specific density of wFlu was relatively low, and with limited tissue distribution, consistent with the lack of virulence and pathogen interference/symbiont-mediated protection observed. Unexpectedly, the density of wFlu was also shown to be specifically-reduced in the ovaries after bloodfeeding Ae. fluviatilis. Overall, our observations indicate that the Wolbachia strain wFlu has the potential to be used as a vector control agent, and suggests that appreciable mutualistic coevolution has occurred between this endosymbiont and its natural host. Future work will be needed to determine whether wFlu has virulent host effects and/or exhibits pathogen interference when artificially-transfected to the novel mosquito hosts that are the vectors of human pathogens. PMID:23555728

  6. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats

    PubMed Central

    Devine, Gregor J.; Perea, Elvira Zamora; Killeen, Gerry F.; Stancil, Jeffrey D.; Clark, Suzanne J.; Morrison, Amy C.

    2009-01-01

    Vector control is a key means of combating mosquito-borne diseases and the only tool available for tackling the transmission of dengue, a disease for which no vaccine, prophylaxis, or therapeutant currently exists. The most effective mosquito control methods include a variety of insecticidal tools that target adults or juveniles. Their successful implementation depends on impacting the largest proportion of the vector population possible. We demonstrate a control strategy that dramatically improves the efficiency with which high coverage of aquatic mosquito habitats can be achieved. The method exploits adult mosquitoes as vehicles of insecticide transfer by harnessing their fundamental behaviors to disseminate a juvenile hormone analogue (JHA) between resting and oviposition sites. A series of field trials undertaken in an Amazon city (Iquitos, Peru) showed that the placement of JHA dissemination stations in just 3–5% of the available resting area resulted in almost complete coverage of sentinel aquatic habitats. More than control mortality occurred in 95–100% of the larval cohorts of Aedes aegypti developing at those sites. Overall reductions in adult emergence of 42–98% were achieved during the trials. A deterministic simulation model predicts amplifications in coverage consistent with our observations and highlights the importance of the residual activity of the insecticide for this technique. PMID:19561295

  7. Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses.

    PubMed

    Van Roey, Karel; Sokny, Mao; Denis, Leen; Van den Broeck, Nick; Heng, Somony; Siv, Sovannaroth; Sluydts, Vincent; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2014-12-01

    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1-97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological impact of large scale use of topical repellents on arthropod borne diseases.

  8. Field Evaluation of Picaridin Repellents Reveals Differences in Repellent Sensitivity between Southeast Asian Vectors of Malaria and Arboviruses

    PubMed Central

    Denis, Leen; Van den Broeck, Nick; Heng, Somony; Siv, Sovannaroth; Sluydts, Vincent; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2014-01-01

    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1–97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological impact of large scale use of topical repellents on arthropod borne diseases. PMID:25522134

  9. Identifying the effective concentration for spatial repellency of the dengue vector Aedes aegypti

    PubMed Central

    2012-01-01

    Background Current efforts are underway to quantify the chemical concentration in a treated air space that elicits a spatial repellent (deterrent) response in a vector population. Such information will facilitate identifying the optimum active ingredient (AI) dosage and intervention coverage important for the development of spatial repellent tools – one of several novel strategies being evaluated for vector-borne disease control. This study reports initial findings from air sampling experiments conducted under field conditions to describe the relationship between air concentrations of repellent AIs and deterrent behavior in the dengue vector, Aedes aegypti. Methods Air samples were taken inside and outdoors of experimental huts located in Pu Tuey Village, Kanchanaburi Province, Thailand in conjunction with mosquito behavioral evaluations. A mark-release-recapture study design using interception traps was used to measure deterrency of Ae. aegypti against 0.00625% metofluthrin coils and DDT-treated fabric (2g/m2) within separate experimental trials. Sentinel mosquito cohorts were positioned adjacent to air sampling locations to monitor knock down responses to AI within the treated air space. Air samples were analyzed using two techniques: the U.S. Environmental Protection Agency (USEPA) Compendium Method TO-10A and thermal desorption (TD). Results Both the USEPA TO-10A and TD air sampling methods were able to detect and quantify volatized AIs under field conditions. Air samples indicated concentrations of both repellent chemicals below thresholds required for toxic responses (mortality) in mosquitoes. These concentrations elicited up to a 58% and 70% reduction in Ae. aegypti entry (i.e., deterrency) into treated experimental huts using metofluthrin coils and DDT-treated fabric, respectively. Minimal knock down was observed in sentinel mosquito cohorts positioned adjacent to air sampling locations during both chemical evaluations. Conclusions This study is the first to describe two air sampling methodologies that are appropriate for detecting and quantifying repellent chemicals within a treated air space during mosquito behavior evaluations. Results demonstrate that the quantity of AI detected by the mosquito vector, Ae. aegypti, that elicits repellency is far lower than that needed for toxicity. These findings have important implications for evaluation and optimization of new vector control tools that function through mosquito behavior modification as opposed to mortality. PMID:23273133

  10. On the analysis of competitive displacement in dengue disease transmission

    NASA Astrophysics Data System (ADS)

    Wijaya, Karunia P.; Nuraini, Nuning; Soewono, Edy; Handayani, Dewi

    2014-03-01

    We study a host-vector model involving the interplay of competitive displacement mechanism in a specific DENV serotype, both in human blood and mosquito blood. Using phylogenetic analysis, world virologists investigate the severe manifestations of dengue fever caused by the displacements within weakly virulent pathogens (native strains) by more virulent pathogens (invasive strains) in one serotype. We construct SIR model for human and SI model for mosquito to explore the key determinants of those displacements. Analysis of nonnegativity and boundedness of the solution as well as the basic reproduction number (R0) are taken into account for verifying the model into biological meaningfulness. To generate predictions of the outcomes of control strategies, we derive an optimal control model which involves two control apparatus: fluid infusion (for human) and fumigation (for vector). Numerical results show the dynamics of host-vector in an observation period, both under control and without control.

  11. Evidence of natural Wolbachia infections and molecular identification of field populations of Culex pipiens complex (Diptera: Culicidae) mosquitoes in western Turkey.

    PubMed

    Morçiçek, Burçin; Taskin, Belgin Gocmen; Doğaç, Ersin; Doğaroğlu, Taylan; Taskin, Vatan

    2018-06-01

    Establishing reliable risk projection information about the distribution pattern of members of the Culex pipiens complex is of particular interest, as these mosquitoes are competent vectors for certain disease-causing pathogens. Wolbachia, a maternally inherited bacterial symbiont, are distributed in various arthropod species and can induce cytoplasmic incompatibility, i.e., reduced egg hatch, in certain crosses. It is being considered as a tool for population control of mosquito disease vectors. The Aegean region is characterized by highly populated, rural, and agricultural areas and is also on the route of the migratory birds. In this study, a fragment of the 658 bp of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene, which includes the barcode region, was employed to differentiate Cx. pipiens complex species found in this region. Moreover, for the first time, the prevalence of Wolbachia endobacteria in these natural populations was examined using PCR amplification of a specific wsp gene. Our results revealed a widespread (more than 90%, n=121) presence of the highly efficient West Nile virus vector Cx. quinquefasciatus in the region. We also found that Wolbachia infection is widespread; the average prevalence was 62% in populations throughout the region. This study provided valuable information about the composition of Cx. pipiens complex mosquitoes and the prevalence of Wolbachia infection in these populations in the Aegean region. This information will be helpful in tracking mosquito-borne diseases and designing and implementing Wolbachia-based control strategies in the region. © 2018 The Society for Vector Ecology.

  12. Pesticide susceptibility status of Anopheles mosquitoes in four flood-affected districts of South Punjab, Pakistan.

    PubMed

    Rathor, Hamayun Rashid; Nadeem, Ghazala; Khan, Imtinan Akram

    2013-01-01

    Recent floods drastically increased the burden of disease, in particular the incidence of malaria, in the southern districts of the Punjab province in Pakistan. Control of malaria vector mosquitoes in these districts requires the adoption of an appropriate evidence-based policy on the use of pesticides, and having the latest information on the insecticide resistance status of malaria vector mosquitoes is essential for designing effective disease prevention policy. Using World Health Organization (WHO) test kits, the present study utilized papers impregnated with DDT, malathion, deltamethrin, lambda-cyhalothrin, and permethrin, to determine the insecticide susceptibility/resistance status of malaria vector mosquitoes in four flood-affected districts. The test results showed that both Anopheles stephensi and Anopheles culicifacies remained resistant to DDT and malathion. Tests with three commonly used pyrethroids, permethrin, lambda-cyhalothrin, and deltamethrin, detected resistance in the majority of cases, but in a number of localities mortalities with these three pyrethroids ranged from 80-97% and were therefore placed under verification-required status. This status indicates the presence of susceptible individuals in these populations. These results suggest that if appropriate resistance management strategies are applied in these areas, then the development of high levels of resistance can still be prevented or slowed. This study forms an important evidence base for the strategic planning of vector control in the four flood-affected districts.

  13. Assessing the Susceptibility Status of Mosquitoes (Diptera: Culicidae) in a Dirofilariasis Focus, Northwestern Iran

    PubMed Central

    Ataie, Abolfazl; Moosa-Kazemi, Seyed Hassan; Vatandoost, Hassan; Yaghoobi-Ershadi, Mohammad Reza; Bakhshi, Hasan; Anjomruz, Mehdi

    2015-01-01

    Background: Mosquitoes are considered as the vectors of dirofilariasis and some vector borne disease in Iran. The objective of this study was to determine the susceptibility level of the vectors to various insecticides recommended by WHO for any control measures in an endemic area in northwestern Iran. Methods: Mosquito larval and adult collections were carried out using different methods provided by WHO including dipping and hand catch techniques. The susceptibility level was assessed to DDT 4%, malathion 5%, propoxur 0.1%, deltamethrin 0.05% and lambda-cyhalothrin 0.05%. Results: Totally, 749 adults and 5060 larvae of Culicidae mosquitoes were collected comprising seven species of adult and larvae, including: Anopheles claviger, An. maculipennis, An. sacharovi, Culex hortensis, Cx. pipiens, Cx. theileri and Culiseta longiaerolata. Frequency of larvae and adults of An. maculipennis was very low, so susceptibility tests on this species did not performed. Results showed that Cx. theileri, Cs. longiaerolata and Cx. pipiens were resistant to DDT 4%, lambda-cyhalothrin 0.05%, and propoxur 0.1% whereas found tolerant to deltamethrin 0.05% and malathion 5%. The LT50 and LT90 values for five insecticides were calculated. Conclusion: We suggest the same study in different parts of the world to obtain the data due to bionomic and susceptibility status of dirofilariasis vectors. This information will help the health authorities for monitoring and evaluation of control measures. PMID:26114140

  14. MIRO and IRbase: IT Tools for the Epidemiological Monitoring of Insecticide Resistance in Mosquito Disease Vectors

    PubMed Central

    Dialynas, Emmanuel; Topalis, Pantelis; Vontas, John; Louis, Christos

    2009-01-01

    Background Monitoring of insect vector populations with respect to their susceptibility to one or more insecticides is a crucial element of the strategies used for the control of arthropod-borne diseases. This management task can nowadays be achieved more efficiently when assisted by IT (Information Technology) tools, ranging from modern integrated databases to GIS (Geographic Information System). Here we describe an application ontology that we developed de novo, and a specially designed database that, based on this ontology, can be used for the purpose of controlling mosquitoes and, thus, the diseases that they transmit. Methodology/Principal Findings The ontology, named MIRO for Mosquito Insecticide Resistance Ontology, developed using the OBO-Edit software, describes all pertinent aspects of insecticide resistance, including specific methodology and mode of action. MIRO, then, forms the basis for the design and development of a dedicated database, IRbase, constructed using open source software, which can be used to retrieve data on mosquito populations in a temporally and spatially separate way, as well as to map the output using a Google Earth interface. The dependency of the database on the MIRO allows for a rational and efficient hierarchical search possibility. Conclusions/Significance The fact that the MIRO complies with the rules set forward by the OBO (Open Biomedical Ontologies) Foundry introduces cross-referencing with other biomedical ontologies and, thus, both MIRO and IRbase are suitable as parts of future comprehensive surveillance tools and decision support systems that will be used for the control of vector-borne diseases. MIRO is downloadable from and IRbase is accessible at VectorBase, the NIAID-sponsored open access database for arthropod vectors of disease. PMID:19547750

  15. A highly stable blood meal alternative for rearing Aedes and Anopheles mosquitoes.

    PubMed

    Baughman, Ted; Peterson, Chelsea; Ortega, Corrie; Preston, Sarah R; Paton, Christopher; Williams, Jessica; Guy, Amy; Omodei, Gavin; Johnson, Brian; Williams, Helen; O'Neill, Scott L; Ritchie, Scott A; Dobson, Stephen L; Madan, Damian

    2017-12-01

    We investigated alternatives to whole blood for blood feeding of mosquitoes with a focus on improved stability and compatibility with mass rearing programs. In contrast to whole blood, an artificial blood diet of ATP-supplemented plasma was effective in maintaining mosquito populations and was compatible with storage for extended periods refrigerated, frozen, and as a lyophilized powder. The plasma ATP diet supported rearing of both Anopheles and Aedes mosquitoes. It was also effective in rearing Wolbachia-infected Aedes mosquitoes, suggesting compatibility with vector control efforts.

  16. Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan

    2014-05-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. The use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In the present study, the larvicidal activity of silver nanoparticles (AgNPs) synthesized using Feronia elephantum plant leaf extract against late third-instar larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. The range of concentrations of synthesized AgNPs (5, 10, 15, 20, and 25 μg mL(-1)) and aqueous leaf extract (25, 50, 75, 100, and 125 μg mL(-1)) were tested against the larvae of A. stephensi, A. aegypti, and C. quinquefasciatus. Larvae were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of F. elephantum for all three important vector mosquitoes. The synthesized AgNPs from F. elephantum were highly toxic than crude leaf aqueous extract to three important vector mosquito species. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy analysis (EDX). Synthesized AgNPs against the vector mosquitoes A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 11.56 and 20.56 μg mL(-1); A. aegypti had LC50 and LC90 values of 13.13 and 23.12 μg mL(-1); and C. quinquefasciatus had LC50 and LC90 values of 14.19 and 24.30 μg mL(-1). No mortality was observed in the control. These results suggest that the green synthesis of silver nanoparticles using F. elephantum has the potential to be used as an ideal eco-friendly approach for the control of A. stephensi, A. aegypti, and C. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized nanoparticles.

  17. Control of Culex quinquefasciatus in a storm drain system in Florida with attractive toxic sugar baits (ATSB)

    USDA-ARS?s Scientific Manuscript database

    Mosquitoes of the Culex pipiens group, including Culex quinquefasciatus, are important vectors of West Nile virus and other viruses around the world. Control of these mosquitoes in urban areas is often difficult because of the use of storm drains and other man-made structures as larval habitats. I...

  18. Economic evaluation of an area-wide integrated pest management program to control the Asian tiger mosquito in New Jersey

    USDA-ARS?s Scientific Manuscript database

    Aedes albopictus is the most invasive mosquito in the world, an important disease vector, and a biting nuisance that limits outdoor activities. Area-wide integrated pest management (AW-IPM) is the recommended control strategy. We conducted an economic evaluation of the AW-IPM project in Mercer and ...

  19. Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito.

    PubMed

    Deletre, Emilie; Martin, Thibaud; Campagne, Pascal; Bourguet, Denis; Cadin, Andy; Menut, Chantal; Bonafos, Romain; Chandre, Fabrice

    2013-01-01

    Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mosquitoes or to prevent mosquito contact with humans, therefore arises. In laboratory conditions, the effects (i.e., repellent, irritant and toxic) of 20 plant extracts, mainly essential oils, were assessed on adults of Anopheles gambiae, a primary vector of malaria. Their effects were compared to those of DEET and permethrin, used as positive controls. Most plant extracts had irritant, repellent and/or toxic effects on An. gambiae adults. The most promising extracts, i.e. those combining the three types of effects, were from Cymbopogon winterianus, Cinnamomum zeylanicum and Thymus vulgaris. The irritant, repellent and toxic effects occurred apparently independently of each other, and the behavioural response of adult An. gambiae was significantly influenced by the concentration of the plant extracts. Mechanisms underlying repellency might, therefore, differ from those underlying irritancy and toxicity. The utility of the efficient plant extracts for vector control as an alternative to pyrethroids may thus be envisaged.

  20. Field Evaluation of a Push-Pull System to Reduce Malaria Transmission

    PubMed Central

    Menger, David J.; Omusula, Philemon; Holdinga, Maarten; Homan, Tobias; Carreira, Ana S.; Vandendaele, Patrice; Derycke, Jean-Luc; Mweresa, Collins K.; Mukabana, Wolfgang Richard; van Loon, Joop J. A.; Takken, Willem

    2015-01-01

    Malaria continues to place a disease burden on millions of people throughout the tropics, especially in sub-Saharan Africa. Although efforts to control mosquito populations and reduce human-vector contact, such as long-lasting insecticidal nets and indoor residual spraying, have led to significant decreases in malaria incidence, further progress is now threatened by the widespread development of physiological and behavioural insecticide-resistance as well as changes in the composition of vector populations. A mosquito-directed push-pull system based on the simultaneous use of attractive and repellent volatiles offers a complementary tool to existing vector-control methods. In this study, the combination of a trap baited with a five-compound attractant and a strip of net-fabric impregnated with micro-encapsulated repellent and placed in the eaves of houses, was tested in a malaria-endemic village in western Kenya. Using the repellent delta-undecalactone, mosquito house entry was reduced by more than 50%, while the traps caught high numbers of outdoor flying mosquitoes. Model simulations predict that, assuming area-wide coverage, the addition of such a push-pull system to existing prevention efforts will result in up to 20-fold reductions in the entomological inoculation rate. Reductions of such magnitude are also predicted when mosquitoes exhibit a high resistance against insecticides. We conclude that a push-pull system based on non-toxic volatiles provides an important addition to existing strategies for malaria prevention. PMID:25923114

  1. Repellent, Irritant and Toxic Effects of 20 Plant Extracts on Adults of the Malaria Vector Anopheles gambiae Mosquito

    PubMed Central

    Deletre, Emilie; Martin, Thibaud; Campagne, Pascal; Bourguet, Denis; Cadin, Andy; Menut, Chantal; Bonafos, Romain; Chandre, Fabrice

    2013-01-01

    Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mosquitoes or to prevent mosquito contact with humans, therefore arises. In laboratory conditions, the effects (i.e., repellent, irritant and toxic) of 20 plant extracts, mainly essential oils, were assessed on adults of Anopheles gambiae, a primary vector of malaria. Their effects were compared to those of DEET and permethrin, used as positive controls. Most plant extracts had irritant, repellent and/or toxic effects on An. gambiae adults. The most promising extracts, i.e. those combining the three types of effects, were from Cymbopogon winterianus, Cinnamomum zeylanicum and Thymus vulgaris. The irritant, repellent and toxic effects occurred apparently independently of each other, and the behavioural response of adult An. gambiae was significantly influenced by the concentration of the plant extracts. Mechanisms underlying repellency might, therefore, differ from those underlying irritancy and toxicity. The utility of the efficient plant extracts for vector control as an alternative to pyrethroids may thus be envisaged. PMID:24376515

  2. Preliminary efficacy investigations of oral fipronil against Anopheles arabiensis when administered to Zebu cattle (Bos indicus) under field conditions.

    PubMed

    Poché, Richard M; Githaka, Naftaly; van Gool, Frans; Kading, Rebekah C; Hartman, Daniel; Polyakova, Larisa; Abworo, Edward Okoth; Nene, Vishvanath; Lozano-Fuentes, Saul

    2017-12-01

    Globally, malaria remains one of the most important vector-borne diseases despite the extensive use of vector control, including indoor residual spraying (IRS) and insecticide-treated nets (ITNs). These control methods target endophagic vectors, whereas some malaria vectors, such as Anopheles arabiensis, preferentially feed outdoors on cattle, making it a complicated vector to control using conventional strategies. Our study evaluated whether treating cattle with a capsule containing the active ingredient (AI) fipronil could reduce vector density and sporozoite rates, and alter blood feeding behavior, when applied in a small-scale field study. A pilot field study was carried out in the Samia District, Western Kenya, from May to July 2015. Four plots, each comprised of 50 huts used for sleeping, were randomly designated to serve as control or treatment. A week before cattle treatment, baseline mosquito collections were performed inside the houses using mechanical aspirators. Animals in the treatment (and buffer) were administered a single oral application of fipronil at ∼0.5mg/kg of body weight. Indoor mosquito collections were performed once a week for four weeks following treatment. Female mosquitoes were first identified morphologically to species complex, followed by PCR-based methods to obtain species identity, sporozoite presence, and the host source of the blood meal. All three species of anophelines found in the study area (An. gambiae s.s., An. arabiensis, An. funestus s.s.) were actively transmitting Plasmodium falciparum during the study period. The indoor resting density of An. arabiensis was significantly reduced in treatment plot one at three weeks post-treatment (T1) (efficacy=89%; T1 density=0.08, 95% credibility intervals [0.05, 0.10]; control plot density=0.78 [0.22, 0.29]) and at four weeks post-treatment (efficacy=64%; T1 density=0.16 [0.08, 0.14]; control plot density=0.48 [0.17, 0.22]). The reduction of An. arabiensis mosquitoes captured in the treatment plot two was higher: zero females were collected after treatment. The indoor resting density of An. gambiae s.s. was not significantly different between the treatment (T1, T2) and their corresponding control plots (C1, C2). An. funestus s.s. showed an increase in density over time. The results of this preliminary study suggest that treating cattle orally with fipronil, to target exophagic and zoophagic malaria vectors, could be a valuable control strategy to supplement existing vector control interventions which target endophilic anthropophilic species. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. A push-pull system to reduce house entry of malaria mosquitoes

    PubMed Central

    2014-01-01

    Background Mosquitoes are the dominant vectors of pathogens that cause infectious diseases such as malaria, dengue, yellow fever and filariasis. Current vector control strategies often rely on the use of pyrethroids against which mosquitoes are increasingly developing resistance. Here, a push-pull system is presented, that operates by the simultaneous use of repellent and attractive volatile odorants. Method/Results Experiments were carried out in a semi-field set-up: a traditional house which was constructed inside a screenhouse. The release of different repellent compounds, para-menthane-3,8-diol (PMD), catnip oil e.o. and delta-undecalactone, from the four corners of the house resulted in significant reductions of 45% to 81.5% in house entry of host-seeking malaria mosquitoes. The highest reductions in house entry (up to 95.5%), were achieved by simultaneously repelling mosquitoes from the house (push) and removing them from the experimental set-up using attractant-baited traps (pull). Conclusions The outcome of this study suggests that a push-pull system based on attractive and repellent volatiles may successfully be employed to target mosquito vectors of human disease. Reductions in house entry of malaria vectors, of the magnitude that was achieved in these experiments, would likely affect malaria transmission. The repellents used are non-toxic and can be used safely in a human environment. Delta-undecalactone is a novel repellent that showed higher effectiveness than the established repellent PMD. These results encourage further development of the system for practical implementation in the field. PMID:24674451

  4. The distribution of potential West Nile virus vectors, Culex pipiens pipiens and Culex pipiens quinquefasciatus (Diptera: Culicidae), in Mexico City

    PubMed Central

    2011-01-01

    Background Culex spp. mosquitoes are considered to be the most important vectors of West Nile virus (WNV) detected in at least 34 species of mosquitoes in the United States. In North America, Culex pipiens pipiens, Culex pipiens quinquefasciatus, and Culex tarsalis are all competent vectors of WNV, which is considered to be enzootic in the United States and has also been detected in equines and birds in many states of Mexico and in humans in Nuevo Leon. There is potential for WNV to be introduced into Mexico City by various means including infected mosquitoes on airplanes, migrating birds, ground transportation and infected humans. Little is known of the geographic distribution of Culex pipiens complex mosquitoes and hybrids in Mexico City. Culex pipiens pipiens preferentially feed on avian hosts; Culex pipiens quinquefasciatus have historically been considered to prefer mammalian hosts; and hybrids of these two species could theoretically serve as bridge vectors to transmit WNV from avian hosts to humans and other mammalian hosts. In order to address the potential of WNV being introduced into Mexico City, we have determined the identity and spatial distribution of Culex pipiens complex mosquitoes and their hybrids. Results Mosquito larvae collected from 103 sites throughout Mexico City during 2004-2005 were identified as Culex, Culiseta or Ochlerotatus by morphological analysis. Within the genus Culex, specimens were further identified as Culex tarsalis or as belonging to the Culex pipiens complex. Members of the Culex pipiens complex were separated by measuring the ratio of the dorsal and ventral arms (DV/D ratio) of the male genitalia and also by using diagnostic primers designed for the Ace.2 gene. Culex pipiens quinquefasciatus was the most abundant form collected. Conclusions Important WNV vectors species, Cx. p. pipiens, Cx. p. quinquefasciatus and Cx. tarsalis, are all present in Mexico City. Hybrids of Cx. p. pipiens and Cx. p. quinquefasciatus were also collected and identified. The presence and abundance of these WNV competent vectors is a cause for concern. Understanding the distribution of these vectors can help improve viral surveillance activities and mosquito control efforts in Mexico City. PMID:21554725

  5. The distribution of potential West Nile virus vectors, Culex pipiens pipiens and Culex pipiens quinquefasciatus (Diptera: Culicidae), in Mexico City.

    PubMed

    Diaz-Badillo, Alvaro; Bolling, Bethany G; Perez-Ramirez, Gerardo; Moore, Chester G; Martinez-Munoz, Jorge P; Padilla-Viveros, America A; Camacho-Nuez, Minerva; Diaz-Perez, Alfonso; Beaty, Barry J; Munoz, Maria de Lourdes

    2011-05-09

    Culex spp. mosquitoes are considered to be the most important vectors of West Nile virus (WNV) detected in at least 34 species of mosquitoes in the United States. In North America, Culex pipiens pipiens, Culex pipiens quinquefasciatus, and Culex tarsalis are all competent vectors of WNV, which is considered to be enzootic in the United States and has also been detected in equines and birds in many states of Mexico and in humans in Nuevo Leon. There is potential for WNV to be introduced into Mexico City by various means including infected mosquitoes on airplanes, migrating birds, ground transportation and infected humans. Little is known of the geographic distribution of Culex pipiens complex mosquitoes and hybrids in Mexico City. Culex pipiens pipiens preferentially feed on avian hosts; Culex pipiens quinquefasciatus have historically been considered to prefer mammalian hosts; and hybrids of these two species could theoretically serve as bridge vectors to transmit WNV from avian hosts to humans and other mammalian hosts. In order to address the potential of WNV being introduced into Mexico City, we have determined the identity and spatial distribution of Culex pipiens complex mosquitoes and their hybrids. Mosquito larvae collected from 103 sites throughout Mexico City during 2004-2005 were identified as Culex, Culiseta or Ochlerotatus by morphological analysis. Within the genus Culex, specimens were further identified as Culex tarsalis or as belonging to the Culex pipiens complex. Members of the Culex pipiens complex were separated by measuring the ratio of the dorsal and ventral arms (DV/D ratio) of the male genitalia and also by using diagnostic primers designed for the Ace.2 gene. Culex pipiens quinquefasciatus was the most abundant form collected. Important WNV vectors species, Cx. p. pipiens, Cx. p. quinquefasciatus and Cx. tarsalis, are all present in Mexico City. Hybrids of Cx. p. pipiens and Cx. p. quinquefasciatus were also collected and identified. The presence and abundance of these WNV competent vectors is a cause for concern. Understanding the distribution of these vectors can help improve viral surveillance activities and mosquito control efforts in Mexico City.

  6. Assessment of ICount software, a precise and fast egg counting tool for the mosquito vector Aedes aegypti.

    PubMed

    Gaburro, Julie; Duchemin, Jean-Bernard; Paradkar, Prasad N; Nahavandi, Saeid; Bhatti, Asim

    2016-11-18

    Widespread in the tropics, the mosquito Aedes aegypti is an important vector of many viruses, posing a significant threat to human health. Vector monitoring often requires fecundity estimation by counting eggs laid by female mosquitoes. Traditionally, manual data analyses have been used but this requires a lot of effort and is the methods are prone to errors. An easy tool to assess the number of eggs laid would facilitate experimentation and vector control operations. This study introduces a built-in software called ICount allowing automatic egg counting of the mosquito vector, Aedes aegypti. ICount egg estimation compared to manual counting is statistically equivalent, making the software effective for automatic and semi-automatic data analysis. This technique also allows rapid analysis compared to manual methods. Finally, the software has been used to assess p-cresol oviposition choices under laboratory conditions in order to test the system with different egg densities. ICount is a powerful tool for fast and precise egg count analysis, freeing experimenters from manual data processing. Software access is free and its user-friendly interface allows easy use by non-experts. Its efficiency has been tested in our laboratory with oviposition dual choices of Aedes aegypti females. The next step will be the development of a mobile application, based on the ICount platform, for vector monitoring surveys in the field.

  7. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand

    PubMed Central

    2013-01-01

    Physiological resistance and behavioral responses of mosquito vectors to insecticides are critical aspects of the chemical-based disease control equation. The complex interaction between lethal, sub-lethal and excitation/repellent ('excito-repellent’) properties of chemicals is typically overlooked in vector management and control programs. The development of “physiological” resistance, metabolic and/or target site modifications, to insecticides has been well documented in many insect groups and disease vectors around the world. In Thailand, resistance in many mosquito populations has developed to all three classes of insecticidal active ingredients currently used for vector control with a majority being synthetic-derived pyrethroids. Evidence of low-grade insecticide resistance requires immediate countermeasures to mitigate further intensification and spread of the genetic mechanisms responsible for resistance. This can take the form of rotation of a different class of chemical, addition of a synergist, mixtures of chemicals or concurrent mosaic application of different classes of chemicals. From the gathered evidence, the distribution and degree of physiological resistance has been restricted in specific areas of Thailand in spite of long-term use of chemicals to control insect pests and disease vectors throughout the country. Most surprisingly, there have been no reported cases of pyrethroid resistance in anopheline populations in the country from 2000 to 2011. The precise reasons for this are unclear but we assume that behavioral avoidance to insecticides may play a significant role in reducing the selection pressure and thus occurrence and spread of insecticide resistance. The review herein provides information regarding the status of physiological resistance and behavioral avoidance of the primary mosquito vectors of human diseases to insecticides in Thailand from 2000 to 2011. PMID:24294938

  8. Modelling malaria control by introduction of larvivorous fish.

    PubMed

    Lou, Yijun; Zhao, Xiao-Qiang

    2011-10-01

    Malaria creates serious health and economic problems which call for integrated management strategies to disrupt interactions among mosquitoes, the parasite and humans. In order to reduce the intensity of malaria transmission, malaria vector control may be implemented to protect individuals against infective mosquito bites. As a sustainable larval control method, the use of larvivorous fish is promoted in some circumstances. To evaluate the potential impacts of this biological control measure on malaria transmission, we propose and investigate a mathematical model describing the linked dynamics between the host-vector interaction and the predator-prey interaction. The model, which consists of five ordinary differential equations, is rigorously analysed via theories and methods of dynamical systems. We derive four biologically plausible and insightful quantities (reproduction numbers) that completely determine the community composition. Our results suggest that the introduction of larvivorous fish can, in principle, have important consequences for malaria dynamics, but also indicate that this would require strong predators on larval mosquitoes. Integrated strategies of malaria control are analysed to demonstrate the biological application of our developed theory.

  9. Multiple insecticide resistance mechanisms in Anopheles gambiae s.l. populations from Cameroon, Central Africa.

    PubMed

    Nwane, Philippe; Etang, Josiane; Chouaїbou, Mouhamadou; Toto, Jean Claude; Koffi, Alphonsine; Mimpfoundi, Rémy; Simard, Frédéric

    2013-02-22

    Increasing incidence of DDT and pyrethroid resistance in Anopheles mosquitoes is seen as a limiting factor for malaria vector control. The current study aimed at an in-depth characterization of An. gambiae s.l. resistance to insecticides in Cameroon, in order to guide malaria vector control interventions. Anopheles gambiae s.l. mosquitoes were collected as larvae and pupae from six localities spread throughout the four main biogeographical domains of Cameroon and reared to adults in insectaries. Standard WHO insecticide susceptibility tests were carried out with 4% DDT, 0.75% permethrin and 0.05% deltamethrin. Mortality rates and knockdown times (kdt50 and kdt95) were determined and the effect of pre-exposure to the synergists DEF, DEM and PBO was assessed. Tested mosquitoes were identified to species and molecular forms (M or S) using PCR-RFLP. The hot ligation method was used to depict kdr mutations and biochemical assays were conducted to assess detoxifying enzyme activities. The An. arabiensis population from Pitoa was fully susceptible to DDT and permethrin (mortality rates>98%) and showed reduced susceptibility to deltamethrin. Resistance to DDT was widespread in An. gambiae s.s. populations and heterogeneous levels of susceptibility to permethrin and deltamethrin were observed. In many cases, prior exposure to synergists partially restored insecticide knockdown effect and increased mortality rates, suggesting a role of detoxifying enzymes in increasing mosquito survival upon challenge by pyrethroids and, to a lower extent DDT. The distribution of kdr alleles suggested a major role of kdr-based resistance in the S form of An. gambiae. In biochemical tests, all but one mosquito population overexpressed P450 activity, whereas baseline GST activity was low and similar in all field mosquito populations and in the control. In Cameroon, multiple resistance mechanisms segregate in the S form of An. gambiae resulting in heterogeneous resistance profiles, whereas in the M form and An. arabiensis insecticide tolerance seems to be essentially mediated by enzyme-based detoxification. Synergists partially restored susceptibility to pyrethroid insecticides, and might help mitigate the impact of vector resistance in the field. However, additional vector control tools are needed to further impact on malaria transmission in such settings.

  10. Aedes-Borne Virus-Mosquito Interactions: Mass Spectrometry Strategies and Findings.

    PubMed

    Pando-Robles, Victoria; Batista, Cesar V

    2017-06-01

    Aedes-borne viruses are responsible for high-impact neglected tropical diseases and unpredictable outbreaks such as the ongoing Zika epidemics. Aedes mosquitoes spread different arboviruses such as Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus, among others, and are responsible for the continuous emergence and reemergence of these pathogens. These viruses have complex transmission cycles that include two hosts, namely the Aedes mosquito as a vector and susceptible vertebrate hosts. Human infection with arboviruses causes diseases that range from subclinical or mild to febrile diseases, encephalitis, and hemorrhagic fever. Infected mosquitoes do not show detectable signs of disease, even though the virus maintains a lifelong persistent infection. The infection of the Aedes mosquito by viruses involves a molecular crosstalk between cell and viral proteins. An understanding of how mosquito vectors and viruses interact is of fundamental interest, and it also offers novel perspectives for disease control. In recent years, mass spectrometry (MS)-based strategies in combination with bioinformatics have been successfully applied to identify and quantify global changes in cellular proteins, lipids, peptides, and metabolites in response to viral infection. Although the information about proteomics in the Aedes mosquito is limited, the information that has been reported can set up the basis for future studies. This review reflects how MS-based approaches have extended our understanding of Aedes mosquito biology and the development of DENV and CHIKV infection in the vector. Finally, this review discusses future challenges in the field.

  11. SOURCE REDUCTION BEHAVIOR AS AN INDEPENDENT MEASUREMENT OF THE IMPACT OF A PUBLIC HEALTH EDUCATION CAMPAIGN IN AN INTEGRATED VECTOR MANAGEMENT PROGRAM FOR THE ASIAN TIGER MOSQUITO

    USDA-ARS?s Scientific Manuscript database

    The goal of this study was to evaluate the effectiveness of a public health educational campaign to reduce backyard mosquito-larval habitats. Three communities each, within two New Jersey counties, were randomly selected to receive (1) both education and mosquito control, (2) education only, and (3)...

  12. Discovering and Designing New Insecticides and their Development Vector Control.

    USDA-ARS?s Scientific Manuscript database

    The discovery and development of novel insecticides for vector control is a primary focus of toxicology research conducted at the Mosquito and Fly Research Unit, Gainesville, FL. To identify new active ingredients, the screening of large numbers of experimental compounds is conducted using a primary...

  13. Detection of Invasive Mosquito Vectors Using Environmental DNA (eDNA) from Water Samples

    PubMed Central

    Schneider, Judith; Valentini, Alice; Dejean, Tony; Montarsi, Fabrizio; Taberlet, Pierre

    2016-01-01

    Repeated introductions and spread of invasive mosquito species (IMS) have been recorded on a large scale these last decades worldwide. In this context, members of the mosquito genus Aedes can present serious risks to public health as they have or may develop vector competence for various viral diseases. While the Tiger mosquito (Aedes albopictus) is a well-known vector for e.g. dengue and chikungunya viruses, the Asian bush mosquito (Ae. j. japonicus) and Ae. koreicus have shown vector competence in the field and the laboratory for a number of viruses including dengue, West Nile fever and Japanese encephalitis. Early detection and identification is therefore crucial for successful eradication or control strategies. Traditional specific identification and monitoring of different and/or cryptic life stages of the invasive Aedes species based on morphological grounds may lead to misidentifications, and are problematic when extensive surveillance is needed. In this study, we developed, tested and applied an environmental DNA (eDNA) approach for the detection of three IMS, based on water samples collected in the field in several European countries. We compared real-time quantitative PCR (qPCR) assays specific for these three species and an eDNA metabarcoding approach with traditional sampling, and discussed the advantages and limitations of these methods. Detection probabilities for eDNA-based approaches were in most of the specific comparisons higher than for traditional survey and the results were congruent between both molecular methods, confirming the reliability and efficiency of alternative eDNA-based techniques for the early and unambiguous detection and surveillance of invasive mosquito vectors. The ease of water sampling procedures in the eDNA approach tested here allows the development of large-scale monitoring and surveillance programs of IMS, especially using citizen science projects. PMID:27626642

  14. Detection of Invasive Mosquito Vectors Using Environmental DNA (eDNA) from Water Samples.

    PubMed

    Schneider, Judith; Valentini, Alice; Dejean, Tony; Montarsi, Fabrizio; Taberlet, Pierre; Glaizot, Olivier; Fumagalli, Luca

    2016-01-01

    Repeated introductions and spread of invasive mosquito species (IMS) have been recorded on a large scale these last decades worldwide. In this context, members of the mosquito genus Aedes can present serious risks to public health as they have or may develop vector competence for various viral diseases. While the Tiger mosquito (Aedes albopictus) is a well-known vector for e.g. dengue and chikungunya viruses, the Asian bush mosquito (Ae. j. japonicus) and Ae. koreicus have shown vector competence in the field and the laboratory for a number of viruses including dengue, West Nile fever and Japanese encephalitis. Early detection and identification is therefore crucial for successful eradication or control strategies. Traditional specific identification and monitoring of different and/or cryptic life stages of the invasive Aedes species based on morphological grounds may lead to misidentifications, and are problematic when extensive surveillance is needed. In this study, we developed, tested and applied an environmental DNA (eDNA) approach for the detection of three IMS, based on water samples collected in the field in several European countries. We compared real-time quantitative PCR (qPCR) assays specific for these three species and an eDNA metabarcoding approach with traditional sampling, and discussed the advantages and limitations of these methods. Detection probabilities for eDNA-based approaches were in most of the specific comparisons higher than for traditional survey and the results were congruent between both molecular methods, confirming the reliability and efficiency of alternative eDNA-based techniques for the early and unambiguous detection and surveillance of invasive mosquito vectors. The ease of water sampling procedures in the eDNA approach tested here allows the development of large-scale monitoring and surveillance programs of IMS, especially using citizen science projects.

  15. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years.

    PubMed

    Mwangangi, Joseph M; Mbogo, Charles M; Orindi, Benedict O; Muturi, Ephantus J; Midega, Janet T; Nzovu, Joseph; Gatakaa, Hellen; Githure, John; Borgemeister, Christian; Keating, Joseph; Beier, John C

    2013-01-08

    Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya. Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates. Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR = 0.94, 95% CI 0.90-0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010. Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in many areas An. arabiensis has replaced An. gambiae as the major malaria vector. This has important implications for malaria epidemiology and control given that this vector predominately rests and feeds on humans outdoors. Strategies for vector control need to continue focusing on tools for protecting residents inside houses but additionally employ outdoor control tools because these are essential for further reducing the levels of malaria transmission.

  16. Molecular detection of six (endo-) symbiotic bacteria in Belgian mosquitoes: first step towards the selection of appropriate paratransgenesis candidates.

    PubMed

    Raharimalala, Fara Nantenaina; Boukraa, S; Bawin, T; Boyer, S; Francis, F

    2016-04-01

    Actually, the use of symbiotic bacteria is one of alternative solution to avoid vector resistance to pesticides. In Belgium, among 31 identified mosquito species, 10 were considered as potential vectors. Given to introduction risks of arbovirosis, the purpose of this study was to investigate the presence of symbiosis bacteria in potential mosquito vectors. Eleven species caught from 12 sites in Belgium were used: Culex pipiens s.l., Culex torrentium, Culex hortensis, Anopheles claviger, Anopheles maculipennis s.l., Anopheles plumbeus, Culiseta annulata, Ochlerotatus geniculatus, Ochlerotatus dorsalis, Aedes albopictus, and Coquillettidia richiardii. Six genera of symbiotic bacteria were screened: Wolbachia sp., Comamonas sp, Delftia sp., Pseudomonas sp., Acinetobacter sp., and Asaia sp. A total of 173 mosquito individuals (144 larvae and 29 adults) were used for the polymerase chain reaction screening. Wolbachia was not found in any Anopheles species nor Cx. torrentium. A total absence of Comamonas and Delftia was observed in all species. Acinetobacter, Pseudomonas, and Asaia were found in most of species with a high prevalence for Pseudomonas. These results were discussed to develop potential strategy and exploit the variable occurrence of symbiotic bacteria to focus on them to propose biological ways of mosquito control.

  17. Hydrology of malaria: Model development and application to a Sahelian village

    NASA Astrophysics Data System (ADS)

    Bomblies, Arne; Duchemin, Jean-Bernard; Eltahir, Elfatih A. B.

    2008-12-01

    We present a coupled hydrology and entomology model for the mechanistic simulation of local-scale response of malaria transmission to hydrological and climatological determinants in semiarid, desert fringe environments. The model is applied to the Sahel village of Banizoumbou, Niger, to predict interannual variability in malaria vector mosquito populations that lead to variations in malaria transmission. Using a high-resolution, small-scale distributed hydrology model that incorporates remotely sensed data for land cover and topography, we simulate the formation and persistence of the pools constituting the primary breeding habitat of Anopheles gambiae s.l. mosquitoes, the principal regional malaria vector mosquitoes. An agent-based mosquito population model is coupled to the distributed hydrology model, with aquatic-stage and adult-stage components. Through a dependence of aquatic-stage mosquito development and adult emergence on pool persistence, we model small-scale hydrology as a dominant control of mosquito abundance. For each individual adult mosquito, the model tracks attributes relevant to population dynamics and malaria transmission, which are updated as mosquitoes interact with their environment, humans, and animals. Weekly field observations were made in 2005 and 2006. A 16% increase in rainfall between the two years was accompanied by a 132% increase in mosquito abundance between 2005 and 2006. The model reproduces mosquito population variability at seasonal and interannual timescales and highlights individual pool persistence as a dominant control. Future developments of the presented model can be used in the evaluation of impacts of climate change on malaria, as well as the a priori evaluation of environmental management-based interventions.

  18. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan.

    PubMed

    Nunes, Rodrigo Dutra; Ventura-Martins, Guilherme; Moretti, Débora Monteiro; Medeiros-Castro, Priscilla; Rocha-Santos, Carlucio; Daumas-Filho, Carlos Renato de Oliveira; Bittencourt-Cunha, Paula Rego Barros; Martins-Cardoso, Karina; Cudischevitch, Cecília Oliveira; Menna-Barreto, Rubem Figueiredo Sadok; Oliveira, José Henrique Maia; Gusmão, Desiely Silva; Alves Lemos, Francisco José; Alviano, Daniela Sales; Oliveira, Pedro Lagerblad; Lowenberger, Carl; Majerowicz, David; Oliveira, Ricardo Melo; Mesquita, Rafael Dias; Atella, Georgia Correa; Silva-Neto, Mário Alberto Cardoso

    2016-10-01

    Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses.

  19. Genomic approaches for understanding dengue: insights from the virus, vector, and host.

    PubMed

    Sim, Shuzhen; Hibberd, Martin L

    2016-03-02

    The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host-pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.

  20. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes.

    PubMed

    Vloet, Rianka P M; Vogels, Chantal B F; Koenraadt, Constantianus J M; Pijlman, Gorben P; Eiden, Martin; Gonzales, Jose L; van Keulen, Lucien J M; Wichgers Schreur, Paul J; Kortekaas, Jeroen

    2017-12-01

    Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus of the genus Phlebovirus that is highly pathogenic to ruminants and humans. The disease is currently confined to Africa and the Arabian Peninsula, but globalization and climate change may facilitate introductions of the virus into currently unaffected areas via infected animals or mosquitoes. The consequences of such an introduction will depend on environmental factors, the availability of susceptible ruminants and the capacity of local mosquitoes to transmit the virus. We have previously demonstrated that lambs native to the Netherlands are highly susceptible to RVFV and we here report the vector competence of Culex (Cx.) pipiens, the most abundant and widespread mosquito species in the country. Vector competence was first determined after artificial blood feeding of laboratory-reared mosquitoes using the attenuated Clone 13 strain. Subsequently, experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs were performed. Finally, the transmission of RVFV from viremic lambs to mosquitoes was studied. Artificial feeding experiments using Clone 13 demonstrated that indigenous, laboratory-reared Cx. pipiens mosquitoes are susceptible to RVFV and that the virus can be transmitted via their saliva. Experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs confirmed the vector competence of Cx. pipiens mosquitoes from the Netherlands. To subsequently investigate transmission of the virus under more natural conditions, mosquitoes were allowed to feed on RVFV-infected lambs during the viremic period. We found that RVFV is efficiently transmitted from lambs to mosquitoes, although transmission was restricted to peak viremia. Interestingly, in the mosquito-exposed skin samples, replication of RVFV was detected in previously unrecognized target cells. We here report the vector competence of Cx. pipiens mosquitoes from the Netherlands for RVFV. Both laboratory-reared mosquitoes and well as those hatched from field-collected eggs were found to be competent vectors. Moreover, RVFV was transmitted efficiently from indigenous lambs to mosquitoes, although the duration of host infectivity was found to be shorter than previously assumed. Interestingly, analysis of mosquito-exposed skin samples revealed previously unidentified target cells of the virus. Our findings underscore the value of including natural target species in vector competence experiments.

  1. International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil.

    PubMed

    Corbel, Vincent; Fonseca, Dina M; Weetman, David; Pinto, João; Achee, Nicole L; Chandre, Fabrice; Coulibaly, Mamadou B; Dusfour, Isabelle; Grieco, John; Juntarajumnong, Waraporn; Lenhart, Audrey; Martins, Ademir J; Moyes, Catherine; Ng, Lee Ching; Raghavendra, Kamaraju; Vatandoost, Hassan; Vontas, John; Muller, Pie; Kasai, Shinji; Fouque, Florence; Velayudhan, Raman; Durot, Claire; David, Jean-Philippe

    2017-06-02

    Vector-borne diseases transmitted by insect vectors such as mosquitoes occur in over 100 countries and affect almost half of the world's population. Dengue is currently the most prevalent arboviral disease but chikungunya, Zika and yellow fever show increasing prevalence and severity. Vector control, mainly by the use of insecticides, play a key role in disease prevention but the use of the same chemicals for more than 40 years, together with the dissemination of mosquitoes by trade and environmental changes, resulted in the global spread of insecticide resistance. In this context, innovative tools and strategies for vector control, including the management of resistance, are urgently needed. This report summarizes the main outputs of the first international workshop on Insecticide resistance in vectors of arboviruses held in Rio de Janeiro, Brazil, 5-8 December 2016. The primary aims of this workshop were to identify strategies for the development and implementation of standardized insecticide resistance management, also to allow comparisons across nations and across time, and to define research priorities for control of vectors of arboviruses. The workshop brought together 163 participants from 28 nationalities and was accessible, live, through the web (> 70,000 web-accesses over 3 days).

  2. Dengue and yellow fever virus vectors: seasonal abundance, diversity and resting preferences in three Kenyan cities.

    PubMed

    Agha, Sheila B; Tchouassi, David P; Bastos, Armanda D S; Sang, Rosemary

    2017-12-29

    The transmission patterns of dengue (DENV) and yellow fever (YFV) viruses, especially in urban settings, are influenced by Aedes (Stegomyia) mosquito abundance and behavior. Despite recurrent dengue outbreaks on the Kenyan coast, these parameters remain poorly defined in this and other areas of contrasting dengue endemicity in Kenya. In assessing the transmission risk of DENV/YFV in three Kenyan cities, we determined adult abundance and resting habits of potential Aedes (Stegomyia) vectors in Kilifi (dengue-outbreak prone), and Nairobi and Kisumu (no dengue outbreaks reported). In addition, mosquito diversity, an important consideration for changing mosquito-borne disease dynamics, was compared. Between October 2014 and June 2016, host-seeking adult mosquitoes were sampled using CO 2 -baited BG-Sentinel traps (12 traps daily) placed in vegetation around homesteads, across study sites in the three major cities. Also, indoor and outdoor resting mosquitoes were sampled using Prokopack aspirators. Three samplings, each of five consecutive days, were conducted during the long-rains, short-rains and dry season for each city. Inter-city and seasonal variation in mosquito abundance and diversity was evaluated using general linear models while mosquito-resting preference (indoors vs outdoors) was compared using Chi-square test. Aedes aegypti, which comprised 60% (n = 7772) of the total 12,937 host-seeking mosquitoes collected, had comparable numbers in Kisumu (45.2%, n = 3513) and Kilifi (37.7%, n = 2932), both being significantly higher than Nairobi (17.1%, n = 1327). Aedes aegypti abundance was significantly lower in the short-rains and dry season relative to the long-rains (P < 0.0001). Aedes bromeliae, which occurred in low numbers, did not differ significantly between seasons or cities. Mosquito diversity was highest during the long-rains and in Nairobi. Only 10% (n = 43) of the 450 houses aspirated were found positive for resting Ae. aegypti, with overall low captures in all areas. Aedes aegypti densities were comparable indoors/outdoors in Kilifi; but with higher densities outdoors than indoors in Kisumu and Nairobi. The presence and abundance of Ae. aegypti near human habitations and dwellings, especially in Kilifi/Kisumu, is suggestive of increased DENV transmission risk due to higher prospects of human vector contact. Despite low abundance of Ae. bromeliae suggestive of low YFV transmission risk, its proximity to human habitation as well as the observed diversity of potential YFV vectors should be of public health concern and monitored closely for targeted control. The largely outdoor resting behavior for Ae. aegypti provides insights for targeted adult vector control especially during emergency outbreak situations.

  3. Heterogeneous Feeding Patterns of the Dengue Vector, Aedes aegypti, on Individual Human Hosts in Rural Thailand

    PubMed Central

    Harrington, Laura C.; Fleisher, Andrew; Ruiz-Moreno, Diego; Vermeylen, Francoise; Wa, Chrystal V.; Poulson, Rebecca L.; Edman, John D.; Clark, John M.; Jones, James W.; Kitthawee, Sangvorn; Scott, Thomas W.

    2014-01-01

    Background Mosquito biting frequency and how bites are distributed among different people can have significant epidemiologic effects. An improved understanding of mosquito vector-human interactions would refine knowledge of the entomological processes supporting pathogen transmission and could reveal targets for minimizing risk and breaking pathogen transmission cycles. Methodology and principal findings We used human DNA blood meal profiling of the dengue virus (DENV) vector, Aedes aegypti, to quantify its contact with human hosts and to infer epidemiologic implications of its blood feeding behavior. We determined the number of different people bitten, biting frequency by host age, size, mosquito age, and the number of times each person was bitten. Of 3,677 engorged mosquitoes collected and 1,186 complete DNA profiles, only 420 meals matched people from the study area, indicating that Ae. aegypti feed on people moving transiently through communities to conduct daily business. 10–13% of engorged mosquitoes fed on more than one person. No biting rate differences were detected between high- and low-dengue transmission seasons. We estimate that 43–46% of engorged mosquitoes bit more than one person within each gonotrophic cycle. Most multiple meals were from residents of the mosquito collection house or neighbors. People ≤25 years old were bitten less often than older people. Some hosts were fed on frequently, with three hosts bitten nine times. Interaction networks for mosquitoes and humans revealed biologically significant blood feeding hotspots, including community marketplaces. Conclusion and significance High multiple-feeding rates and feeding on community visitors are likely important features in the efficient transmission and rapid spread of DENV. These results help explain why reducing vector populations alone is difficult for dengue prevention and support the argument for additional studies of mosquito feeding behavior, which when integrated with a greater understanding of human behavior will refine estimates of risk and strategies for dengue control. PMID:25102306

  4. Zika mosquito vectors: the jury is still out.

    PubMed

    Leal, Walter S

    2016-01-01

    After a 40-year hiatus, the International Congress of Entomology (ICE 2016) convened in Orlando, Florida (September 25-30, 2016). One of the symposia at ICE 2016, the Zika Symposium, covered multiple aspects of the Zika epidemic, including epidemiology, sexual transmission, genetic tools for reducing transmission, and particularly vector competence. While there was a consensus among participants that the yellow fever mosquito, Aedes aegypti , is a vector of the Zika virus, there is growing evidence indicating that the range of mosquito vectors might be wider than anticipated. In particular, three independent groups from Canada, China, and Brazil presented and discussed laboratory and field data strongly suggesting that the southern house mosquito, Culex quinquefasciatus , also known as the common mosquito, is highly likely to be a vector in certain environments.

  5. Acoustic control of mosquito larvae in artificial drinking water containers

    USDA-ARS?s Scientific Manuscript database

    Acoustic larvicide devices are part of an emerging technology that provides a non-chemical and non-biological means to reduce larval populations of key medically important mosquito species such as Aedes aegypti in containers or catchments of water. These devices could benefit integrated vector manag...

  6. Spectral sensitivity of the nocturnal mosquito, Culex quinquefasciatus

    USDA-ARS?s Scientific Manuscript database

    The nocturnal mosquito, Culex quinquefasciatus,as a vector of West Nile virus is the target of many surveillance and control efforts. Surveillance of this species primarily consists of light traps baited with a variety of chemical lures. While much research has focused on optimization of the olfa...

  7. Insecticide susceptibility and dengue vector status of wild Stegomyia albopicta in a strategically important area of Assam, India

    PubMed Central

    2014-01-01

    Background Dengue vector control programmes are facing operational challenges due to resistance against commonly used insecticides throughout the endemic countries. Recently, there has been appreciable increase in the dengue cases in India, however, no recent data are available on susceptible status of dengue vectors. We have studied the susceptibility level of St. albopicta to commonly used insecticides in India. Adult mosquitoes were tested for the presence of dengue virus. Methods St. albopicta larval bioassays were carried out to determine the lethal concentrations (LC10, LC50 and LC99) and the resistance ratios (RR10, RR50 and RR99) for temephos. Susceptibility to 4% DDT, 0.05% deltamethrin and 5% malathion was assessed following standard procedure. Knock-down times (KDT10, KDT50 and KDT99) were estimated and knock-down resistance ratios (KRR10, KRR50 and KRR99) were calculated. VectorTest™ dengue antigen assay was used to detect the dengue virus in the field collected mosquitoes. Results In larval bioassays, the RR ranged from 1.4 (for RR99) to 1.7 (for RR50), which suggested that the tested St. albopicta were susceptible to temephos. There was no deviation among the lethal concentration data from linearity (r2 = 0.61). Adult St. albopicta mosquitoes were resistant to DDT, while fully susceptible to deltamethrin and malathion. The knock-down values (KDT10, KDT50 and KDT99) obtained for DDT displayed straight line in log-dose-probit analysis and follow linear regression model. The KRR99 for DDT was 4.9, which indicated a 4.9 folds increase in knock-down resistance to DDT. However, for malathion and deltamethrin, the KRR99 values were 1.6 and 1.5 respectively suggesting that mosquitoes were knock-down sensitive. None of the mosquito pool was dengue virus positive. Conclusion St. albopicta showed resistance to DDT and reduced sensitivity to deltamethrin and malathion. This data on insecticide resistance could help public health authorities in India to design more effective vector control measures. More dengue vector specimens need to be scanned to identify the potential dengue vector. PMID:24981885

  8. Crowdsourcing Vector Surveillance: Using Community Knowledge and Experiences to Predict Densities and Distribution of Outdoor-Biting Mosquitoes in Rural Tanzania.

    PubMed

    Mwangungulu, Stephen Peter; Sumaye, Robert David; Limwagu, Alex Julius; Siria, Doreen Josen; Kaindoa, Emmanuel Wilson; Okumu, Fredros Oketch

    2016-01-01

    Lack of reliable techniques for large-scale monitoring of disease-transmitting mosquitoes is a major public health challenge, especially where advanced geo-information systems are not regularly applicable. We tested an innovative crowd-sourcing approach, which relies simply on knowledge and experiences of residents to rapidly predict areas where disease-transmitting mosquitoes are most abundant. Guided by community-based resource persons, we mapped boundaries and major physical features in three rural Tanzanian villages. We then selected 60 community members, taught them basic map-reading skills, and offered them gridded maps of their own villages (grid size: 200m×200m) so they could identify locations where they believed mosquitoes were most abundant, by ranking the grids from one (highest density) to five (lowest density). The ranks were interpolated in ArcGIS-10 (ESRI-USA) using inverse distance weighting (IDW) method, and re-classified to depict areas people believed had high, medium and low mosquito densities. Finally, we used odor-baited mosquito traps to compare and verify actual outdoor mosquito densities in the same areas. We repeated this process for 12 months, each time with a different group of 60 residents. All entomological surveys depicted similar geographical stratification of mosquito densities in areas classified by community members as having high, medium and low vector abundance. These similarities were observed when all mosquito species were combined, and also when only malaria vectors were considered. Of the 12,412 mosquitoes caught, 60.9% (7,555) were from areas considered by community members as having high mosquito densities, 28% (3,470) from medium density areas, and 11.2% (1,387) from low density areas. This study provides evidence that we can rely on community knowledge and experiences to identify areas where mosquitoes are most abundant or least abundant, even without entomological surveys. This crowd-sourcing method could be further refined and validated to improve community-based planning of mosquito control operations at low-cost.

  9. Crowdsourcing Vector Surveillance: Using Community Knowledge and Experiences to Predict Densities and Distribution of Outdoor-Biting Mosquitoes in Rural Tanzania

    PubMed Central

    Limwagu, Alex Julius; Siria, Doreen Josen; Kaindoa, Emmanuel Wilson; Okumu, Fredros Oketch

    2016-01-01

    Lack of reliable techniques for large-scale monitoring of disease-transmitting mosquitoes is a major public health challenge, especially where advanced geo-information systems are not regularly applicable. We tested an innovative crowd-sourcing approach, which relies simply on knowledge and experiences of residents to rapidly predict areas where disease-transmitting mosquitoes are most abundant. Guided by community-based resource persons, we mapped boundaries and major physical features in three rural Tanzanian villages. We then selected 60 community members, taught them basic map-reading skills, and offered them gridded maps of their own villages (grid size: 200m×200m) so they could identify locations where they believed mosquitoes were most abundant, by ranking the grids from one (highest density) to five (lowest density). The ranks were interpolated in ArcGIS-10 (ESRI-USA) using inverse distance weighting (IDW) method, and re-classified to depict areas people believed had high, medium and low mosquito densities. Finally, we used odor-baited mosquito traps to compare and verify actual outdoor mosquito densities in the same areas. We repeated this process for 12 months, each time with a different group of 60 residents. All entomological surveys depicted similar geographical stratification of mosquito densities in areas classified by community members as having high, medium and low vector abundance. These similarities were observed when all mosquito species were combined, and also when only malaria vectors were considered. Of the 12,412 mosquitoes caught, 60.9% (7,555) were from areas considered by community members as having high mosquito densities, 28% (3,470) from medium density areas, and 11.2% (1,387) from low density areas. This study provides evidence that we can rely on community knowledge and experiences to identify areas where mosquitoes are most abundant or least abundant, even without entomological surveys. This crowd-sourcing method could be further refined and validated to improve community-based planning of mosquito control operations at low-cost. PMID:27253869

  10. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.

    PubMed

    Neafsey, Daniel E; Waterhouse, Robert M; Abai, Mohammad R; Aganezov, Sergey S; Alekseyev, Max A; Allen, James E; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W; Blandin, Stephanie A; Brockman, Andrew I; Burkot, Thomas R; Burt, Austin; Chan, Clara S; Chauve, Cedric; Chiu, Joanna C; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L M; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B; Guelbeogo, Wamdaogo M; Hall, Andrew B; Han, Mira V; Hlaing, Thaung; Hughes, Daniel S T; Jenkins, Adam M; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C; Kirmitzoglou, Ioannis K; Koekemoer, Lizette L; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K N; Lirakis, Manolis; Lobo, Neil F; Lowy, Ernesto; MacCallum, Robert M; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N; Moore, Wendy; Murphy, Katherine A; Naumenko, Anastasia N; Nolan, Tony; Novoa, Eva M; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A; Pakpour, Nazzy; Papathanos, Philippos A; Peery, Ashley N; Povelones, Michael; Prakash, Anil; Price, David P; Rajaraman, Ashok; Reimer, Lisa J; Rinker, David C; Rokas, Antonis; Russell, Tanya L; Sagnon, N'Fale; Sharakhova, Maria V; Shea, Terrance; Simão, Felipe A; Simard, Frederic; Slotman, Michel A; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J; Thomas, Gregg W C; Tojo, Marta; Topalis, Pantelis; Tubio, José M C; Unger, Maria F; Vontas, John; Walton, Catherine; Wilding, Craig S; Willis, Judith H; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K; Collins, Frank H; Cornman, Robert S; Crisanti, Andrea; Donnelly, Martin J; Emrich, Scott J; Fontaine, Michael C; Gelbart, William; Hahn, Matthew W; Hansen, Immo A; Howell, Paul I; Kafatos, Fotis C; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A T; Ribeiro, José M; Riehle, Michael A; Sharakhov, Igor V; Tu, Zhijian; Zwiebel, Laurence J; Besansky, Nora J

    2015-01-02

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. Copyright © 2015, American Association for the Advancement of Science.

  11. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    PubMed Central

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  12. Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence.

    PubMed

    Ciota, Alexander T; Bialosuknia, Sean M; Zink, Steven D; Brecher, Matthew; Ehrbar, Dylan J; Morrissette, Madeline N; Kramer, Laura D

    2017-07-01

    In the Western Hemisphere, Zika virus is thought to be transmitted primarily by Aedes aegypti mosquitoes. To determine the extent to which Ae. albopictus mosquitoes from the United States are capable of transmitting Zika virus and the influence of virus dose, virus strain, and mosquito species on vector competence, we evaluated multiple doses of representative Zika virus strains in Ae. aegypti and Ae. albopictus mosquitoes. Virus preparation (fresh vs. frozen) significantly affected virus infectivity in mosquitoes. We calculated 50% infectious doses to be 6.1-7.5 log 10 PFU/mL; minimum infective dose was 4.2 log 10 PFU/mL. Ae. albopictus mosquitoes were more susceptible to infection than Ae. aegypti mosquitoes, but transmission efficiency was higher for Ae. aegypti mosquitoes, indicating a transmission barrier in Ae. albopictus mosquitoes. Results suggest that, although Zika virus transmission is relatively inefficient overall and dependent on virus strain and mosquito species, Ae. albopictus mosquitoes could become major vectors in the Americas.

  13. Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence

    PubMed Central

    Bialosuknia, Sean M.; Zink, Steven D.; Brecher, Matthew; Ehrbar, Dylan J.; Morrissette, Madeline N.; Kramer, Laura D.

    2017-01-01

    In the Western Hemisphere, Zika virus is thought to be transmitted primarily by Aedes aegypti mosquitoes. To determine the extent to which Ae. albopictus mosquitoes from the United States are capable of transmitting Zika virus and the influence of virus dose, virus strain, and mosquito species on vector competence, we evaluated multiple doses of representative Zika virus strains in Ae. aegypti and Ae. albopictus mosquitoes. Virus preparation (fresh vs. frozen) significantly affected virus infectivity in mosquitoes. We calculated 50% infectious doses to be 6.1–7.5 log10 PFU/mL; minimum infective dose was 4.2 log10 PFU/mL. Ae. albopictus mosquitoes were more susceptible to infection than Ae. aegypti mosquitoes, but transmission efficiency was higher for Ae. aegypti mosquitoes, indicating a transmission barrier in Ae. albopictus mosquitoes. Results suggest that, although Zika virus transmission is relatively inefficient overall and dependent on virus strain and mosquito species, Ae. albopictus mosquitoes could become major vectors in the Americas. PMID:28430564

  14. Development and assessment of plant-based synthetic odor baits for surveillance and control of Malaria vectors

    USDA-ARS?s Scientific Manuscript database

    Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based syntheti...

  15. Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae).

    PubMed

    Silva, Jéssica Barreto Lopes; Magalhães Alves, Debora; Bottino-Rojas, Vanessa; Pereira, Thiago Nunes; Sorgine, Marcos Henrique Ferreira; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2017-01-01

    Dengue represents a serious threat to human health, with billions of people living at risk of the disease. Wolbachia pipientis is a bacterial endosymbiont common to many insect species. Wolbachia transinfections in mosquito disease vectors have great value for disease control given the bacterium's ability to spread into wild mosquito populations, and to interfere with infections of pathogens, such as dengue virus. Aedes fluviatilis is a mosquito with a widespread distribution in Latin America, but its status as a dengue vector has not been clarified. Ae. fluviatilis is also naturally infected by the wFlu Wolbachia strain, which has been demonstrated to enhance infection with the avian malarial parasite Plasmodium gallinaceum. We performed experimental infections of Ae. fluviatilis with DENV-2 and DENV-3 isolates from Brazil via injection or oral feeding to provide insight into its competence for the virus. We also examined the effect of the native Wolbachia infection on the virus using a mosquito line where the wFlu infection had been cleared by antibiotic treatment. Through RT-qPCR, we observed that Ae. fluviatilis could become infected with both viruses via either method of infection, although at a lower rate than Aedes aegypti, the primary dengue vector. We then detected DENV-2 and DENV-3 in the saliva of injected mosquitoes, and observed that injection of DENV-3-infected saliva produced subsequent infections in naïve Ae. aegypti. However, across our data we observed no difference in prevalence of infection and viral load between Wolbachia-infected and -uninfected mosquitoes, suggesting that there is no effect of wFlu on dengue virus. Our results highlight that Ae. fluviatilis could potentially serve as a dengue vector under the right circumstances, although further testing is required to determine if this occurs in the field.

  16. Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae)

    PubMed Central

    Silva, Jéssica Barreto Lopes; Magalhães Alves, Debora; Bottino-Rojas, Vanessa; Pereira, Thiago Nunes; Sorgine, Marcos Henrique Ferreira; Caragata, Eric Pearce

    2017-01-01

    Dengue represents a serious threat to human health, with billions of people living at risk of the disease. Wolbachia pipientis is a bacterial endosymbiont common to many insect species. Wolbachia transinfections in mosquito disease vectors have great value for disease control given the bacterium’s ability to spread into wild mosquito populations, and to interfere with infections of pathogens, such as dengue virus. Aedes fluviatilis is a mosquito with a widespread distribution in Latin America, but its status as a dengue vector has not been clarified. Ae. fluviatilis is also naturally infected by the wFlu Wolbachia strain, which has been demonstrated to enhance infection with the avian malarial parasite Plasmodium gallinaceum. We performed experimental infections of Ae. fluviatilis with DENV-2 and DENV-3 isolates from Brazil via injection or oral feeding to provide insight into its competence for the virus. We also examined the effect of the native Wolbachia infection on the virus using a mosquito line where the wFlu infection had been cleared by antibiotic treatment. Through RT-qPCR, we observed that Ae. fluviatilis could become infected with both viruses via either method of infection, although at a lower rate than Aedes aegypti, the primary dengue vector. We then detected DENV-2 and DENV-3 in the saliva of injected mosquitoes, and observed that injection of DENV-3-infected saliva produced subsequent infections in naïve Ae. aegypti. However, across our data we observed no difference in prevalence of infection and viral load between Wolbachia-infected and -uninfected mosquitoes, suggesting that there is no effect of wFlu on dengue virus. Our results highlight that Ae. fluviatilis could potentially serve as a dengue vector under the right circumstances, although further testing is required to determine if this occurs in the field. PMID:28732048

  17. A qualitative study of community perception and acceptance of biological larviciding for malaria mosquito control in rural Burkina Faso.

    PubMed

    Dambach, Peter; Jorge, Margarida Mendes; Traoré, Issouf; Phalkey, Revati; Sawadogo, Hélène; Zabré, Pascal; Kagoné, Moubassira; Sié, Ali; Sauerborn, Rainer; Becker, Norbert; Beiersmann, Claudia

    2018-03-23

    Vector and malaria parasite's rising resistance against pyrethroid-impregnated bed nets and antimalarial drugs highlight the need for additional control measures. Larviciding against malaria vectors is experiencing a renaissance with the availability of environmentally friendly and target species-specific larvicides. In this study, we analyse the perception and acceptability of spraying surface water collections with the biological larvicide Bacillus thuringiensis israelensis in a single health district in Burkina Faso. A total of 12 focus group discussions and 12 key informant interviews were performed in 10 rural villages provided with coverage of various larvicide treatments (all breeding sites treated, the most productive breeding sites treated, and untreated control). Respondents' knowledge about the major risk factors for malaria transmission was generally good. Most interviewees stated they performed personal protective measures against vector mosquitoes including the use of bed nets and sometimes mosquito coils and traditional repellents. The acceptance of larviciding in and around the villages was high and the majority of respondents reported a relief in mosquito nuisance and malarial episodes. There was high interest in the project and demand for future continuation. This study showed that larviciding interventions received positive resonance from the population. People showed a willingness to be involved and financially support the program. The positive environment with high acceptance for larviciding programs would facilitate routine implementation. An essential factor for the future success of such programs would be inclusion in regional or national malaria control guidelines.

  18. Evaluation of low density polyethylene and nylon for delivery of synthetic mosquito attractants

    PubMed Central

    2012-01-01

    Background Synthetic odour baits present an unexploited potential for sampling, surveillance and control of malaria and other mosquito vectors. However, application of such baits is impeded by the unavailability of robust odour delivery devices that perform reliably under field conditions. In the present study the suitability of low density polyethylene (LDPE) and nylon strips for dispensing synthetic attractants of host-seeking Anopheles gambiae mosquitoes was evaluated. Methods Baseline experiments assessed the numbers of An. gambiae mosquitoes caught in response to low density polyethylene (LDPE) sachets filled with attractants, attractant-treated nylon strips, control LDPE sachets, and control nylon strips placed in separate MM-X traps. Residual attraction of An. gambiae to attractant-treated nylon strips was determined subsequently. The effects of sheet thickness and surface area on numbers of mosquitoes caught in MM-X traps containing the synthetic kairomone blend dispensed from LDPE sachets and nylon strips were also evaluated. Various treatments were tested through randomized 4 × 4 Latin Square experimental designs under semi-field conditions in western Kenya. Results Attractant-treated nylon strips collected 5.6 times more An. gambiae mosquitoes than LDPE sachets filled with the same attractants. The attractant-impregnated nylon strips were consistently more attractive (76.95%; n = 9,120) than sachets containing the same attractants (18.59%; n = 2,203), control nylon strips (2.17%; n = 257) and control LDPE sachets (2.29%; n = 271) up to 40 days post-treatment (P < 0.001). The higher catches of mosquitoes achieved with nylon strips were unrelated to differences in surface area between nylon strips and LDPE sachets. The proportion of mosquitoes trapped when individual components of the attractant were dispensed in LDPE sachets of optimized sheet thicknesses was significantly higher than when 0.03 mm-sachets were used (P < 0.001). Conclusion Nylon strips continuously dispense synthetic mosquito attractants several weeks post treatment. This, added to the superior performance of nylon strips relative to LDPE material in dispensing synthetic mosquito attractants, opens up the opportunity for showcasing the effectiveness of odour-baited devices for sampling, surveillance and control of disease vectors. PMID:22992518

  19. Evaluation of low density polyethylene and nylon for delivery of synthetic mosquito attractants.

    PubMed

    Mukabana, Wolfgang R; Mweresa, Collins K; Omusula, Philemon; Orindi, Benedict O; Smallegange, Renate C; van Loon, Joop Ja; Takken, Willem

    2012-09-19

    Synthetic odour baits present an unexploited potential for sampling, surveillance and control of malaria and other mosquito vectors. However, application of such baits is impeded by the unavailability of robust odour delivery devices that perform reliably under field conditions. In the present study the suitability of low density polyethylene (LDPE) and nylon strips for dispensing synthetic attractants of host-seeking Anopheles gambiae mosquitoes was evaluated. Baseline experiments assessed the numbers of An. gambiae mosquitoes caught in response to low density polyethylene (LDPE) sachets filled with attractants, attractant-treated nylon strips, control LDPE sachets, and control nylon strips placed in separate MM-X traps. Residual attraction of An. gambiae to attractant-treated nylon strips was determined subsequently. The effects of sheet thickness and surface area on numbers of mosquitoes caught in MM-X traps containing the synthetic kairomone blend dispensed from LDPE sachets and nylon strips were also evaluated. Various treatments were tested through randomized 4 × 4 Latin Square experimental designs under semi-field conditions in western Kenya. Attractant-treated nylon strips collected 5.6 times more An. gambiae mosquitoes than LDPE sachets filled with the same attractants. The attractant-impregnated nylon strips were consistently more attractive (76.95%; n = 9,120) than sachets containing the same attractants (18.59%; n = 2,203), control nylon strips (2.17%; n = 257) and control LDPE sachets (2.29%; n = 271) up to 40 days post-treatment (P < 0.001). The higher catches of mosquitoes achieved with nylon strips were unrelated to differences in surface area between nylon strips and LDPE sachets. The proportion of mosquitoes trapped when individual components of the attractant were dispensed in LDPE sachets of optimized sheet thicknesses was significantly higher than when 0.03 mm-sachets were used (P < 0.001). Nylon strips continuously dispense synthetic mosquito attractants several weeks post treatment. This, added to the superior performance of nylon strips relative to LDPE material in dispensing synthetic mosquito attractants, opens up the opportunity for showcasing the effectiveness of odour-baited devices for sampling, surveillance and control of disease vectors.

  20. Entomopathogenic fungi for mosquito control: A review

    PubMed Central

    Scholte, Ernst-Jan; Knols, Bart G.J.; Samson, Robert A.; Takken, Willem

    2004-01-01

    Fungal diseases in insects are common and widespread and can decimate their populations in spectacular epizootics. Virtually all insect orders are susceptible to fungal diseases, including Dipterans. Fungal pathogens such as Lagenidium, Coelomomyces and Culicinomyces are known to affect mosquito populations, and have been studied extensively. There are, however, many other fungi that infect and kill mosquitoes at the larval and/or adult stage. The discovery, in 1977, of the selective mosquito-pathogenic bacterium Bacillus thuringiensis Berliner israelensis (Bti) curtailed widespread interest in the search for other suitable biological control agents. In recent years interest in mosquito-killing fungi is reviving, mainly due to continuous and increasing levels of insecticide resistance and increasing global risk of mosquito-borne diseases. This review presents an update of published data on mosquito-pathogenic fungi and mosquito-pathogen interactions, covering 13 different fungal genera. Notwithstanding the potential of many fungi as mosquito control agents, only a handful have been commercialized and are marketed for use in abatement programs. We argue that entomopathogenic fungi, both new and existing ones with renewed/improved efficacies may contribute to an expansion of the limited arsenal of effective mosquito control tools, and that they may contribute in a significant and sustainable manner to the control of vector-borne diseases such as malaria, dengue and filariasis. PMID:15861235

  1. Seasonal profiles of Aedes aegypti (Diptera: Culicidae) larval habitats in an urban area of Costa Rica with a history of mosquito control

    PubMed Central

    Troyo, Adriana; Calderón-Arguedas, Olger; Fuller, Douglas O.; Solano, Mayra E.; Avendaño, Adrian; Arheart, Kristopher L.; Chadee, Dave D.; Beier, John C.

    2008-01-01

    Dengue is the most important arboviral disease worldwide and the principal vector-borne disease in Costa Rica. Control of Aedes aegypti populations through source reduction is still considered the most effective way of prevention and control, although it has proven ineffective or unsustainable in many areas with a history of mosquito control. In this study, seasonal profiles and productivity of Aedes aegypti were analyzed in the city of Puntarenas, Costa Rica, where vector control has been practiced for more than ten years. Households contained more than 80% of larval habitats identified, although presence of habitats was more likely in other locations like lots and streets. In the wet season, habitats in the “other” category, like appliances, small manholes, and miscellaneous containers, were the most frequent habitats observed as well as the most common and productive habitats for Ae. aegypti. In the dry season, domestic animal drinking containers were very common, although concrete washtubs contained 79% of Ae. aegypti pupae collected. Individually, non-disposable habitats were as likely or more likely to contain mosquito larvae, and large containers were more likely to harbor mosquito larvae than the small ones only in the dry season. Considering various variables in the logistic regressions, predictors for Ae. aegypti in a habitat were habitat type (p<0.001), setting (p=0.043), and disposability (p=0.022) in the wet season and habitat capacity in the dry season (p=0.025). Overall, traditional Ae. aegypti larval indices and pupal indices in Puntarenas were high enough to allow viral transmission during the wet season. In spite of continued vector control, it has not been possible to reduce vector densities below threshold levels in Puntarenas, and the habitat profiles show that non-household locations, as well as non-disposable containers, should be targeted in addition to the standard control activities. PMID:18697310

  2. Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past.

    PubMed

    Russell, Richard C; Currie, Bart J; Lindsay, Michael D; Mackenzie, John S; Ritchie, Scott A; Whelan, Peter I

    2009-03-02

    Dengue transmission in Australia is currently restricted to Queensland, where the vector mosquito Aedes aegypti is established. Locally acquired infections have been reported only from urban areas in the north-east of the state, where the vector is most abundant. Considerable attention has been drawn to the potential impact of climate change on dengue distribution within Australia, with projections for substantial rises in incidence and distribution associated with increasing temperatures. However, historical data show that much of Australia has previously sustained both the vector mosquito and dengue viruses. Although current vector distribution is restricted to Queensland, the area inhabited by A. aegypti is larger than the disease-transmission areas, and is not restricted by temperature (or vector-control programs); thus, it is unlikely that rising temperatures alone will bring increased vector or virus distribution. Factors likely to be important to dengue and vector distribution in the future include increased dengue activity in Asian and Pacific nations that would raise rates of virus importation by travellers, importation of vectors via international ports to regions without A. aegypti, higher rates of domestic collection and storage of water that would provide habitat in urban areas, and growing human populations in northern Australia. Past and recent successful control initiatives in Australia lend support to the idea that well resourced and functioning surveillance programs, and effective public health intervention capabilities, are essential to counter threats from dengue and other mosquito-borne diseases. Models projecting future activity of dengue (or other vector-borne disease) with climate change should carefully consider the local historical and contemporary data on the ecology and distribution of the vector and local virus transmission.

  3. Review: artificial container-breeding mosquitoes and cemeteries: a perfect match.

    PubMed

    Vezzani, Darío

    2007-02-01

    Artificial container-breeding mosquitoes, such as Aedes aegypti, Ae. albopictus, and Culex pipiens, are well-recognized vectors of diseases throughout the world. Cemeteries are considered major sources of mosquitoes and the results of more than 30 studies concerning mosquitoes in cemeteries have been published over the last decade. The characteristics of these environments in regard to the availability of resources for mosquito development were discussed. Also, studies about early detection of Aedes vectors, ecological issues, and mosquito control performed in cemeteries were reviewed. Among 31 mosquito species found breeding in cemeteries from 16 countries, the invasive Ae. aegypti and Ae. albopictus were the most frequent ones. Species of the genus Ochlerotatus, Culex, Toxorhynchites, Culiseta, Armigeres, Lutzia, Uranotaenia, and Tripteroides were also reported. Overall, cemeteries are highly suitable habitats for artificial container-breeding mosquitoes due to the great availability of the different resources that they need (i.e. sugar substances, blood, shelter and water-filled containers). In addition, these places are mostly ideal settings to perform studies in urbanized areas because of high mosquito abundance, heterogeneity of macro- and microhabitats, and an easier access in comparison with private premises. However, the feasibility of a cemetery as a study area must be evaluated in each case considering the objectives of the study and cemetery characteristics.

  4. Effects of Reservoir Characteristics on Malaria and its vector Abundance: A Case Study of the Bongo District of Ghana

    NASA Astrophysics Data System (ADS)

    Ofosu, E.; Awuah, E.; Annor, F. O.

    2009-04-01

    In the seven (7) administrative zones of the Bongo District of the Upper East Region of Ghana, the occurrences of malaria and relative abundance of the principal malaria vector, Anopheles species, were studied as a function of the presence and characteristics of reservoirs during the rainy season. Case studies in the sub-Sahara Africa indicate that malaria transmission may increase decrease or remain largely unchanged as a consequence of reservoir presence. Analysis made, shows that the distance from reservoir to settlement and surface area of reservoirs significantly affected adult Anopheles mosquito abundance. Percentage of inhabitants using insecticide treated nets, livestock population density, human population density and Anopheles mosquito abundance significantly affected the occurrence of malaria. The results suggest that vector control targeted at reservoir characteristics and larval control, and supplemented by high patronage of insecticide treated nets may be an effective approach for epidemic malaria control in the Bongo District. Key Words: Bongo District, Reservoir, Anopheles species, Malaria, Vector abundance.

  5. Variations in household microclimate affect outdoor-biting behaviour of malaria vectors

    PubMed Central

    Ngowo, Halfan S.; Kaindoa, Emmanuel Wilson; Matthiopoulos, Jason; Ferguson, Heather M.; Okumu, Fredros O.

    2017-01-01

    Background: Mosquito behaviours including the degree to which they bite inside houses or outside is a crucial determinant of human exposure to malaria. Whilst seasonality in mosquito vector abundance is well documented, much less is known about the impact of climate on mosquito behaviour. We investigated how variations in household microclimate affect outdoor-biting by malaria vectors, Anopheles arabiensis and Anopheles funestus. Methods: Mosquitoes were sampled indoors and outdoors weekly using human landing catches at eight households in four villages in south-eastern Tanzania, resulting in 616 trap-nights over 12 months. Daily temperature, relative humidity and rainfall were recorded. Generalized additive mixed models (GAMMs) were used to test associations between mosquito abundance and the microclimatic conditions. Generalized linear mixed models (GLMMs) were used to investigate the influence of microclimatic conditions on the tendency of vectors to bite outdoors (proportion of outdoor biting). Results:  An. arabiensis abundance peaked during high rainfall months (February-May), whilst An. funestus density remained stable into the dry season (May-August) . Across the range of observed household temperatures, a rise of 1 ºC marginally increased nightly An. arabiensis abundance (~11%), but more prominently increased An. funestus abundance (~66%). The abundance of An. arabiensis and An. funestus showed strong positive associations with time-lagged rainfall (2-3 and 3-4 weeks before sampling). The degree of outdoor biting in An. arabiensis was significantly associated with the relative temperature difference between indoor and outdoor environments, with exophily increasing as temperature inside houses became relatively warmer. The exophily of An. funestus did not vary with temperature differences.   Conclusions: This study demonstrates that malaria vector An. arabiensis shifts the location of its biting from indoors to outdoors in association with relative differences in microclimatic conditions. These environmental impacts could give rise to seasonal variation in mosquito biting behaviour and degree of protection provided by indoor-based vector control strategies. PMID:29552642

  6. Olfactory basis of floral preference of the malaria vector Anopheles gambiae (Diptera: Culicidae) among common African plants.

    PubMed

    Nikbakhtzadeh, Mahmood R; Terbot, John W; Otienoburu, Philip E; Foster, Woodbridge A

    2014-12-01

    Mosquitoes of both sexes feed on plants to obtain sugar. Nocturnal species probably locate the plants primarily by their volatile semiochemicals that also form the basis for the mosquitoes' innate plant-species preferences. To evaluate these olfactory preferences quantitatively, we used a two-choice wind-tunnel olfactometer to measure the upwind orientation of Anopheles gambiae Giles, an important vector of malaria in equatorial Africa, toward odor plumes produced by nine plant species common where this mosquito occurs. These plants are reported to induce feeding behaviors in An. gambiae and to produce floral or extrafloral nectar. Results presented here demonstrated that the volatiles of S. didymobotrya, P. hysterophorus, S. occidentalis, and L. camara, in descending order of numbers of mosquitoes responding, were all attractive, compared to a control plant species, whereas D. stramonium, R. communis, S. bicapsularis, T. stans, and T. diversifolia were not. As expected, chromatographic analysis of the headspace of attractive plants whose volatiles were captured by stir-bar sorptive extraction revealed a wide range of compounds, primarily terpenoids. Once their bioactivity and attractiveness for An. gambiae, alone and in blends, has been firmly established, some of these semiochemicals may have applications in population sampling and control. © 2014 The Society for Vector Ecology.

  7. Host attraction and biting behaviour of Anopheles mosquitoes in South Halmahera, Indonesia.

    PubMed

    St Laurent, Brandyce; Burton, Timothy A; Zubaidah, Siti; Miller, Helen C; Asih, Puji B; Baharuddin, Amirullah; Kosasih, Sully; Shinta; Firman, Saya; Hawley, William A; Burkot, Thomas R; Syafruddin, Din; Sukowati, Supratman; Collins, Frank H; Lobo, Neil F

    2017-08-02

    Indonesia is home to a variety of malaria vectors whose specific bionomic traits remain largely uncharacterized. Species-specific behaviours, such as host feeding preferences, impact the dynamics of malaria transmission and the effectiveness of vector control interventions. To examine species-specific host attraction and feeding behaviours, a Latin square design was used to compare Anopheles mosquitoes attracted to human, cow, and goat-baited tents. Anopheles mosquitoes were collected hourly from the inside walls of each baited tent. Species were morphologically and then molecularly identified using rDNA ITS2 sequences. The head and thorax of individual specimens were analysed for Plasmodium DNA using PCR. Bloodmeals were identified using a multiplex PCR. A total of 1024, 137, and 74 Anopheles were collected over 12 nights in cow, goat, and human-baited tents, respectively. The species were identified as Anopheles kochi, Anopheles farauti s.s., Anopheles hackeri, Anopheles hinesorum, Anopheles indefinitus, Anopheles punctulatus, Anopheles tessellatus, Anopheles vagus, and Anopheles vanus, many of which are known to transmit human malaria. Molecular analysis of blood meals revealed a high level of feeding on multiple host species in a single night. Anopheles kochi, An. indefinitus, and An. vanus were infected with Plasmodium vivax at rates comparable to primary malaria vectors. The species distributions of Anopheles mosquitoes attracted to human, goat, and cow hosts were similar. Eight of nine sporozoite positive samples were captured with animal-baited traps, indicating that even predominantly zoophilic mosquitoes may be contributing to malaria transmission. Multiple host feeding and flexibility in blood feeding behaviour have important implications for malaria transmission, malaria control, and the effectiveness of intervention and monitoring methods, particularly those that target human-feeding vectors.

  8. Entomological indices of Aedes aegypti at some international airports and seaports of southern India--a report.

    PubMed

    Sharma, S N; Kumar, S; Das, B P; Thomas, T G; Kumar, K; Katyal, R; Gill, K S; Bora, D; Lal, S; Saxena, V K

    2005-09-01

    Entomological surveys were undertaken at some of the international airports/seaports (Bangalore, Calicut, Chennai, Cochin, Thiruvanathapuram and Vishakapatnam) to find out the breeding prevalence of dengue vector mosquito in diverse breeding containers from 1998 to 2004. Three vector indices (House index, Container index and Breateu index) were used to assess the breeding potential at each airport/seaport. International Health Regulations urged national governments to keep all the international airports/seaports and peripheral areas up to 400 meters free from Aedes aegypti mosquitoes. However, surveys revealed high vector indices at all the airports and seaports. Health authorities of airports/seaports need to take cognizance of these facts and develop action plan for appropriate control measures with emphasis on vector surveillance.

  9. Toxicity and synergistic activities of Chalcones against Aedes aegypti (Diptera: Culicidae) and Drosophila melanogaster (Diptera: Drosophilidae)

    USDA-ARS?s Scientific Manuscript database

    Mosquito-borne illnesses are of great concern throughout the world, and chemical insecticides are commonly employed to decrease mosquito populations. However, the developmental insecticide pipeline for vector control has primarily been filled by repurposed agricultural products, and is hampered by t...

  10. Aerial ULV application of Dibrom against Aedes aegypti in simulated urban and rural residences

    USDA-ARS?s Scientific Manuscript database

    Reaching endophilic Aedes aegypti mosquito vectors of dengue located in human residences with aerial ULV pesticide applications is a prominent complication in operational wide area public health mosquito control activities. We conducted separate trials with a military C-130 fixed wing aircraft fitte...

  11. Aedes albopictus and Culex pipiens implicated as natural vectors of Dirofilaria repens in central Italy.

    PubMed

    Cancrini, G; Scaramozzino, P; Gabrielli, S; Di Paolo, M; Toma, L; Romi, R

    2007-11-01

    To identify the natural vectors of Dirofilaria repens Railliet et Henry, entomological samplings were carried out in four sites within the Lazio region, foci of canine subcutaneous dirofilariasis. Collections were made in 2002-2003 by means of dog-baited and miniature Centers for Disease Control and Prevention traps as well as on humans. Microscopy identified 1576 attracted mosquito females as belonging to six species, but molecular diagnostics detected filarial DNA only in Culex pipiens L. and Aedes albopictus (Skuse, 1894). Dirofilaria immitis Leidy DNA, D. repens DNA, or both were found in the head and thorax of both mosquitoes. The simultaneous presence of vectors showing diurnal and nocturnal activity patterns is of concern for animal and human health. The finding of D. immitis DNA in mosquitoes in areas where only D. repens was been recovered in dogs also demonstrates that this filarial parasite circulates among carnivores (wild or domesticated pets).

  12. Mosquito distribution in a saltmarsh: determinants of eggs in a variable environment.

    PubMed

    Rowbottom, Raylea; Carver, Scott; Barmuta, Leon A; Weinstein, Philip; Allen, Geoff R

    2017-06-01

    Two saltmarsh mosquitoes dominate the transmission of Ross River virus (RRV, Togoviridae: Alphavirus), one of Australia's most prominent mosquito-borne diseases. Ecologically, saltmarshes vary in their structure, including habitat types, hydrological regimes, and diversity of aquatic fauna, all of which drive mosquito oviposition behavior. Understanding the distribution of vector mosquitoes within saltmarshes can inform early warning systems, surveillance, and management of vector populations. The aim of this study was to identify the distribution of Ae. camptorhynchus, a known vector for RRV, across a saltmarsh and investigate the influence that other invertebrate assemblage might have on Ae. camptorhynchus egg dispersal. We demonstrate that vegetation is a strong indicator for Ae. camptorhynchus egg distribution, and this was not correlated with elevation or other invertebrates located at this saltmarsh. Also, habitats within this marsh are less frequently inundated, resulting in dryer conditions. We conclude that this information can be applied in vector surveillance and monitoring of temperate saltmarsh environments and also provides a baseline for future investigations into understanding mosquito vector habitat requirements. © 2017 The Society for Vector Ecology.

  13. Push by a net, pull by a cow: can zooprophylaxis enhance the impact of insecticide treated bed nets on malaria control?

    PubMed Central

    2014-01-01

    Background Mass insecticide treated bed net (ITN) deployment, and its associated coverage of populations at risk, had “pushed” a decline in malaria transmission. However, it is unknown whether malaria control is being enhanced by zooprophylaxis, i.e., mosquitoes diverted to feed on hosts different from humans, a phenomenon that could further reduce malaria entomological transmission risk in areas where livestock herding is common. Methods Between May and July 2009, we collected mosquitoes in 104 houses from three neighboring villages with high ITN coverage (over 80%), along Lake Victoria. We also performed a census of livestock in the area and georeferenced tethering points for all herds, as well as, mosquito larval habitats. Bloodmeal contents from sampled mosquitoes were analyzed, and each mosquito was individually tested for malaria sporozoite infections. We then evaluated the association of human density, ITN use, livestock abundance and larval habitats with mosquito abundance, bloodfeeding on humans and malaria sporozoite rate using generalized linear mixed effects models. Results We collected a total of 8123 mosquitoes, of which 1664 were Anopheles spp. malaria vectors over 295 household spray catches. We found that vector household abundance was mainly driven by the number of householders (P < 0.05), goats/sheep tethered around the house (P < 0.05) and ITNs, which halved mosquito abundance (P < 0.05). In general, similar patterns were observed for Anopheles arabiensis, but not An. gambiae s.s. and An. funestus s.s., whose density did not increase with the presence of livestock animals. Feeding on humans significantly increased in all species with the number of householders (P < 0.05), and only significantly decreased for An. arabiensis in the presence of cattle (P < 0.05). Only 26 Anopheles spp. vectors had malaria sporozoites with the sporozoite rate significantly decreasing as the proportion of cattle feeding mosquitoes increased (P < 0.05). Conclusion Our data suggest that cattle, in settings with large ITN coverage, have the potential to drive an unexpected “push-pull” malaria control system, where An. arabiensis mosquitoes “pushed” out of human contact by ITNs are likely being further “pulled” by cattle. PMID:24472517

  14. Genetic approaches to interfere with malaria transmission by vector mosquitoes

    PubMed Central

    Wang, Sibao; Jacobs-Lorena, Marcelo

    2013-01-01

    Malaria remains one of the world’s most devastating diseases, causing over one million deaths every year. The most vulnerable stages of Plasmodium development in the vector mosquito occur in the midgut lumen, making the midgut a prime target for intervention. Mosquito transgenesis and paratransgenesis are two novel strategies that aim at rendering the vector incapable of sustaining Plasmodium development. Mosquito transgenesis involves direct genetic engineering of the mosquito itself for delivery of anti-Plasmodium effector molecules. Conversely, paratransgenesis involves the genetic modification of mosquito symbionts for expression of anti-pathogen effector molecules. Here we consider both genetic manipulation strategies for rendering mosquitoes refractory to Plasmodium infection, and discuss challenges for the translation of laboratory findings to field applications. PMID:23395485

  15. Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity.

    PubMed

    Fouad, Hatem; Hongjie, Li; Yanmei, Ding; Baoting, Yu; El-Shakh, Ahmed; Abbas, Ghulam; Jianchu, Mo

    2017-11-01

    Culex pipiens pallens are the most common mosquito's vector in Asia. In order to protect the people from diseases, the anti-mosquito population is necessary that uses safe and new bio-pesticides such as bacteria-AgNPs. In our report, we used two kinds of bacteria to synthesize silver nanoparticles to examine the toxic effect on the larvae and pupae of Cx. pipiens pallens and also used as antimicrobial activity. The biosynthesis of AgNPs and its characterization was carried out by UV-Vis spectrophotometry, FTIR, TEM, SEM, and EDX. The larvicidal and pupicidal assays revealed that the lethal concentration LC 50 values of Bacillus amyloliquefaciens-AgNPs were 0.72 ppm (I), 0.73 ppm (II), 0.69 ppm (III), 1.16 ppm (IV), and 4.18 (Pupae), while LC 50 values of Bacillus subtilis-AgNPs were 0.60 ppm (I), 0.62 ppm (II), 0.21 ppm (III), 0.28 ppm (IV), and 3.46 ppm (Pupae) after 72 h of exposure. Antibacterial activity test of AgNPs reveals better results against rice pathogenic bacteria than bacteria alone. Thus, bacteria-mediated silver nanoparticles have a rapid effect on vector mosquito and microbial pathogen suggesting savings of energy and resources. Hence, bacteria-AgNPs may be used in the future as an effective weapon to control vector mosquito and harmful bacteria.

  16. Usefulness and accuracy of MALDI-TOF mass spectrometry as a supplementary tool to identify mosquito vector species and to invest in development of international database.

    PubMed

    Raharimalala, F N; Andrianinarivomanana, T M; Rakotondrasoa, A; Collard, J M; Boyer, S

    2017-09-01

    Arthropod-borne diseases are important causes of morbidity and mortality. The identification of vector species relies mainly on morphological features and/or molecular biology tools. The first method requires specific technical skills and may result in misidentifications, and the second method is time-consuming and expensive. The aim of the present study is to assess the usefulness and accuracy of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a supplementary tool with which to identify mosquito vector species and to invest in the creation of an international database. A total of 89 specimens belonging to 10 mosquito species were selected for the extraction of proteins from legs and for the establishment of a reference database. A blind test with 123 mosquitoes was performed to validate the MS method. Results showed that: (a) the spectra obtained in the study with a given species differed from the spectra of the same species collected in another country, which highlights the need for an international database; (b) MALDI-TOF MS is an accurate method for the rapid identification of mosquito species that are referenced in a database; (c) MALDI-TOF MS allows the separation of groups or complex species, and (d) laboratory specimens undergo a loss of proteins compared with those isolated in the field. In conclusion, MALDI-TOF MS is a useful supplementary tool for mosquito identification and can help inform vector control. © 2017 The Royal Entomological Society.

  17. Interdependence of domestic malaria prevention measures and mosquito-human interactions in urban Dar es Salaam, Tanzania.

    PubMed

    Geissbühler, Yvonne; Chaki, Prosper; Emidi, Basiliana; Govella, Nicodemus J; Shirima, Rudolf; Mayagaya, Valeliana; Mtasiwa, Deo; Mshinda, Hassan; Fillinger, Ulrike; Lindsay, Steven W; Kannady, Khadija; de Castro, Marcia Caldas; Tanner, Marcel; Killeen, Gerry F

    2007-09-19

    Successful malaria vector control depends on understanding behavioural interactions between mosquitoes and humans, which are highly setting-specific and may have characteristic features in urban environments. Here mosquito biting patterns in Dar es Salaam, Tanzania are examined and the protection against exposure to malaria transmission that is afforded to residents by using an insecticide-treated net (ITN) is estimated. Mosquito biting activity over the course of the night was estimated by human landing catch in 216 houses and 1,064 residents were interviewed to determine usage of protection measures and the proportion of each hour of the night spent sleeping indoors, awake indoors, and outdoors. Hourly variations in biting activity by members of the Anopheles gambiae complex were consistent with classical reports but the proportion of these vectors caught outdoors in Dar es Salaam was almost double that of rural Tanzania. Overall, ITNs confer less protection against exophagic vectors in Dar es Salaam than in rural southern Tanzania (59% versus 70%). More alarmingly, a biting activity maximum that precedes 10 pm and much lower levels of ITN protection against exposure (38%) were observed for Anopheles arabiensis, a vector of modest importance locally, but which predominates transmission in large parts of Africa. In a situation of changing mosquito and human behaviour, ITNs may confer lower, but still useful, levels of personal protection which can be complemented by communal transmission suppression at high coverage. Mosquito-proofing houses appeared to be the intervention of choice amongst residents and further options for preventing outdoor transmission include larviciding and environmental management.

  18. Culex quinquefasciatus from Rio de Janeiro Is Not Competent to Transmit the Local Zika Virus

    PubMed Central

    Ferreira-de-Brito, Anielly; de Miranda, Rafaella Moraes; Barbosa da Silva, Keli Antunes; de Castro, Marcia Gonçalves; Raphael, Lidiane M. S.; Failloux, Anna-Bella; Bonaldo, Myrna C.; Lourenço-de-Oliveira, Ricardo

    2016-01-01

    Background The Americas have suffered a dramatic epidemic of Zika since May in 2015, when Zika virus (ZIKV) was first detected in Brazil. Mosquitoes belonging to subgenus Stegomyia of Aedes, particularly Aedes aegypti, are considered the primary vectors of ZIKV. However, the rapid spread of the virus across the continent raised several concerns about the transmission dynamics, especially about potential mosquito vectors. The purpose of this work was to assess the vector competence of the house mosquito Culex quinquefasciatus from an epidemic Zika area, Rio de Janeiro, Brazil, for local circulating ZIKV isolates. Methodology/Principal Findings Culex quinquefasciatus and Ae. aegypti (positive control of ZIKV infection) from Rio de Janeiro were orally exposed to two ZIKV strains isolated from human cases from Rio de Janeiro (Rio-U1 and Rio-S1). Fully engorged mosquitoes were held in incubators at 26 ± 1°C, 12 h:12 h light:dark cycle and 70 ± 10% humidity. For each combination mosquito population—ZIKV strain, 30 specimens were examined for infection, dissemination and transmission rates, at 7, 14 and 21 days after virus exposure by analyzing body (thorax plus abdomen), head and saliva respectively. Infection rates were minimal to completely absent in all Cx. quinquefasciatus-virus combinations and were significantly high for Ae. aegypti. Moreover, dissemination and transmission were not detected in any Cx. quinquefasciatus mosquitoes whatever the incubation period and the ZIKV isolate. In contrast, Ae. aegypti ensured high viral dissemination and moderate to very high transmission. Conclusions/Significance The southern house mosquito Cx. quinquefasciatus from Rio de Janeiro was not competent to transmit local strains of ZIKV. Thus, there is no experimental evidence that Cx. quinquefasciatus likely plays a role in the ZIKV transmission. Consequently, at least in Rio, mosquito control to reduce ZIKV transmission should remain focused on Ae. aegypti. PMID:27598421

  19. Modified mosquito landing boxes dispensing transfluthrin provide effective protection against Anopheles arabiensis mosquitoes under simulated outdoor conditions in a semi-field system.

    PubMed

    Andrés, Marta; Lorenz, Lena M; Mbeleya, Edgar; Moore, Sarah J

    2015-06-24

    Efforts to control malaria vectors have primarily focused on scaling-up of long-lasting insecticidal nets (LLINs) and indoor residual spraying. Although highly efficient against indoor-biting and indoor-resting vectors, these interventions have lower impact on outdoor-biting mosquitoes. Innovative vector control tools are required to prevent outdoor human-mosquito contacts. In this work, the potential of spatial repellents, delivered in an active system that requires minimal user compliance, to provide personal protection against exophagic mosquitoes active in the early evening was explored. A device previously used as an odour-baited lure and kill apparatus, the mosquito landing box (MLB), was modified to dispense the volatile synthetic pyrethroid, transfluthrin, as a spatial repellent. The MLB has an active odour-dispensing mechanism that uses a solar-powered fan and switches on at dusk to provide long duration dispensing of volatile compounds without the need for the user to remember to employ it. Two MLBs were located 5 m from a human volunteer to investigate the repellent effects of a transfluthrin 'bubble' created between the MLBs. Transfluthrin was emanated from polyester strips, hanging inside the MLB odour-dispensing unit. A fully randomized cross-over design was performed in a large, semi-field, screened cage to assess the effect of the repellent against laboratory-reared Anopheles arabiensis mosquitoes under ambient outdoor conditions. The knock-down capacity of the transfluthrin-treated strips was also evaluated at different time points up to 3 weeks after being impregnated to measure duration of efficacy. The protective transfluthrin bubble provided 68.9% protection against An. arabiensis bites under these simulated outdoor conditions. Volatile transfluthrin caused low mortality among mosquitoes in the semi-field system. Transfluthrin-treated strips continued to knock down mosquitoes in laboratory tests, 3 weeks after impregnation, although this effect diminished with time. Modified MLBs can be used as efficient and long-lasting dispensers of volatile spatial repellents such as transfluthrin, thereby providing high levels of protection against outdoor-biting mosquitoes in the peri-domestic space. They have a potential role in combatting outdoor malaria transmission without interfering with effective indoor interventions such as LLINs.

  20. Ecology of West Nile virus across four European countries: review of weather profiles, vector population dynamics and vector control response.

    PubMed

    Chaskopoulou, Alexandra; L'Ambert, Gregory; Petric, Dusan; Bellini, Romeo; Zgomba, Marija; Groen, Thomas A; Marrama, Laurence; Bicout, Dominique J

    2016-09-02

    West Nile virus (WNV) represents a serious burden to human and animal health because of its capacity to cause unforeseen and large epidemics. Until 2004, only lineage 1 and 3 WNV strains had been found in Europe. Lineage 2 strains were initially isolated in 2004 (Hungary) and in 2008 (Austria) and for the first time caused a major WNV epidemic in 2010 in Greece with 262 clinical human cases and 35 fatalities. Since then, WNV lineage 2 outbreaks have been reported in several European countries including Italy, Serbia and Greece. Understanding the interaction of ecological factors that affect WNV transmission is crucial for preventing or decreasing the impact of future epidemics. The synchronous co-occurrence of competent mosquito vectors, virus, bird reservoir hosts, and susceptible humans is necessary for the initiation and propagation of an epidemic. Weather is the key abiotic factor influencing the life-cycles of the mosquito vector, the virus, the reservoir hosts and the interactions between them. The purpose of this paper is to review and compare mosquito population dynamics, and weather conditions, in three ecologically different contexts (urban/semi-urban, rural/agricultural, natural) across four European countries (Italy, France, Serbia, Greece) with a history of WNV outbreaks. Local control strategies will be described as well. Improving our understanding of WNV ecology is a prerequisite step for appraising and optimizing vector control strategies in Europe with the ultimate goal to minimize the probability of WNV infection.

  1. A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control.

    PubMed

    Killeen, G F; McKenzie, F E; Foy, B D; Schieffelin, C; Billingsley, P F; Beier, J C

    2000-05-01

    Malaria transmission intensity is modeled from the starting perspective of individual vector mosquitoes and is expressed directly as the entomologic inoculation rate (EIR). The potential of individual mosquitoes to transmit malaria during their lifetime is presented graphically as a function of their feeding cycle length and survival, human biting preferences, and the parasite sporogonic incubation period. The EIR is then calculated as the product of 1) the potential of individual vectors to transmit malaria during their lifetime, 2) vector emergence rate relative to human population size, and 3) the infectiousness of the human population to vectors. Thus, impacts on more than one of these parameters will amplify each other's effects. The EIRs transmitted by the dominant vector species at four malaria-endemic sites from Papua New Guinea, Tanzania, and Nigeria were predicted using field measurements of these characteristics together with human biting rate and human reservoir infectiousness. This model predicted EIRs (+/- SD) that are 1.13 +/- 0.37 (range = 0.84-1.59) times those measured in the field. For these four sites, mosquito emergence rate and lifetime transmission potential were more important determinants of the EIR than human reservoir infectiousness. This model and the input parameters from the four sites allow the potential impacts of various control measures on malaria transmission intensity to be tested under a range of endemic conditions. The model has potential applications for the development and implementation of transmission control measures and for public health education.

  2. Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations.

    PubMed

    Campo-Duarte, Doris E; Vasilieva, Olga; Cardona-Salgado, Daiver; Svinin, Mikhail

    2018-06-01

    Wolbachia-based biocontrol has recently emerged as a potential method for prevention and control of dengue and other vector-borne diseases. Major vector species, such as Aedes aegypti females, when deliberately infected with Wolbachia become less capable of getting viral infections and transmitting the virus to human hosts. In this paper, we propose an explicit sex-structured population model that describes an interaction of uninfected (wild) male and female mosquitoes and those deliberately infected with wMelPop strain of Wolbachia in the same locality. This particular strain of Wolbachia is regarded as the best blocker of dengue and other arboviral infections. However, wMelPop strain of Wolbachia also causes the loss of individual fitness in Aedes aegypti mosquitoes. Our model allows for natural introduction of the decision (or control) variable, and we apply the optimal control approach to simulate wMelPop Wolbachia infestation of wild Aedes aegypti populations. The control action consists in continuous periodic releases of mosquitoes previously infected with wMelPop strain of Wolbachia in laboratory conditions. The ultimate purpose of control is to find a tradeoff between reaching the population replacement in minimum time and with minimum cost of the control effort. This approach also allows us to estimate the number of Wolbachia-carrying mosquitoes to be released in day-by-day control action. The proposed method of biological control is safe to human health, does not contaminate the environment, does not make harm to non-target species, and preserves their interaction with mosquitoes in the ecosystem.

  3. Repellents and New “Spaces of Concern” in Global Health

    PubMed Central

    Kelly, Ann H.; Koudakossi, Hermione N. Boko; Moore, Sarah J.

    2017-01-01

    ABSTRACT Today, malaria prevention hinges upon two domestic interventions: insecticide-treated bed nets and indoor residual spraying. As mosquitoes grow resistant to these tools, however, novel approaches to vector control have become a priority area of malaria research and development. Spatial repellency, a volumetric mode of action that seeks to reduce disease transmission by creating an atmosphere inimical to mosquitoes, represents one way forward. Drawing from research that sought to develop new repellent chemicals in conversation with users from sub-Saharan Africa and the United States, we consider the implications of a non-insecticidal paradigm of vector control for how we understand the political ecology of malaria. PMID:28594568

  4. Can vector control play a useful supplementary role against bancroftian filariasis?

    PubMed Central

    Maxwell, C. A.; Mohammed, K.; Kisumku, U.; Curtis, C. F.

    1999-01-01

    A single campaign of mass treatment for bancroftian filariasis with diethylcarbamazine (DEC) in Makunduchi, a town in Zanzibar, United Republic of Tanzania, combined with elimination of mosquito breeding in pit latrines with polystyrene beads was followed by a progressive decline over a 5-year period in the microfilarial rate from 49% to 3%. Evidence that vector control had contributed to this long-term decline was obtained by comparison with another town, Moga, where a DEC campaign was used without vector control and where resurgence of microfilariae could be observed 3-6 years after the campaign. In Zanzibar town, treatment of 3844 wet pit latrines and cesspits with polystyrene beads reduced the adult mosquito population in houses by about 65%. Supplementary treatment of open drains and marshes with Bacillus sphaericus produced little or no additional reduction compared to a sector of the town where only pit treatment with polystyrene was carried out. The cost and effort of achieving the 65% reduction in mosquito population could hardly be justified for its impact on filariasis alone, but its noticeable impact on biting nuisance might help to gain community support for an integrated programme. PMID:10083712

  5. Dengue in Java, Indonesia: Relevance of Mosquito Indices as Risk Predictors

    PubMed Central

    Wijayanti, Siwi P. M.; Sunaryo, Sunaryo; Suprihatin, Suprihatin; McFarlane, Melanie; Rainey, Stephanie M.; Dietrich, Isabelle; Schnettler, Esther; Biek, Roman; Kohl, Alain

    2016-01-01

    Background No vaccine is currently available for dengue virus (DENV), therefore control programmes usually focus on managing mosquito vector populations. Entomological surveys provide the most common means of characterising vector populations and predicting the risk of local dengue virus transmission. Despite Indonesia being a country strongly affected by DENV, only limited information is available on the local factors affecting DENV transmission and the suitability of available survey methods for assessing risk. Methodology/principal findings We conducted entomological surveys in the Banyumas Regency (Central Java) where dengue cases occur on an annual basis. Four villages were sampled during the dry and rainy seasons: two villages where dengue was endemic, one where dengue cases occurred sporadically and one which was dengue-free. In addition to data for conventional larvae indices, we collected data on pupae indices, and collected adult mosquitoes for species identification in order to determine mosquito species composition and population density. Traditionally used larval indices (House indices, Container indices and Breteau indices) were found to be inadequate as indicators for DENV transmission risk. In contrast, species composition of adult mosquitoes revealed that competent vector species were dominant in dengue endemic and sporadic villages. Conclusions/significance Our data suggested that the utility of traditional larvae indices, which continue to be used in many dengue endemic countries, should be re-evaluated locally. The results highlight the need for validation of risk indicators and control strategies across DENV affected areas here and perhaps elsewhere in SE Asia. PMID:26967524

  6. Dengue in Java, Indonesia: Relevance of Mosquito Indices as Risk Predictors.

    PubMed

    Wijayanti, Siwi P M; Sunaryo, Sunaryo; Suprihatin, Suprihatin; McFarlane, Melanie; Rainey, Stephanie M; Dietrich, Isabelle; Schnettler, Esther; Biek, Roman; Kohl, Alain

    2016-03-01

    No vaccine is currently available for dengue virus (DENV), therefore control programmes usually focus on managing mosquito vector populations. Entomological surveys provide the most common means of characterising vector populations and predicting the risk of local dengue virus transmission. Despite Indonesia being a country strongly affected by DENV, only limited information is available on the local factors affecting DENV transmission and the suitability of available survey methods for assessing risk. We conducted entomological surveys in the Banyumas Regency (Central Java) where dengue cases occur on an annual basis. Four villages were sampled during the dry and rainy seasons: two villages where dengue was endemic, one where dengue cases occurred sporadically and one which was dengue-free. In addition to data for conventional larvae indices, we collected data on pupae indices, and collected adult mosquitoes for species identification in order to determine mosquito species composition and population density. Traditionally used larval indices (House indices, Container indices and Breteau indices) were found to be inadequate as indicators for DENV transmission risk. In contrast, species composition of adult mosquitoes revealed that competent vector species were dominant in dengue endemic and sporadic villages. Our data suggested that the utility of traditional larvae indices, which continue to be used in many dengue endemic countries, should be re-evaluated locally. The results highlight the need for validation of risk indicators and control strategies across DENV affected areas here and perhaps elsewhere in SE Asia.

  7. Evaluating the Vector Control Potential of the In2Care® Mosquito Trap Against Aedes aegypti and Aedes albopictus Under Semifield Conditions in Manatee County, Florida.

    PubMed

    Buckner, Eva A; Williams, Katie F; Marsicano, Ambyr L; Latham, Mark D; Lesser, Christopher R

    2017-09-01

    Successful integrated vector management programs may need new strategies in addition to conventional larviciding and adulticiding strategies to target Aedes aegypti and Ae. albopictus, which can develop in small, often cryptic, artificial and natural containers. The In2Care® mosquito trap was recently developed to target and kill larval and adult stages of these invasive container-inhabiting Aedes mosquitoes by utilizing autodissemination. Gravid females that visit the trap pick up pyriproxyfen (PPF) that they later transfer to nearby larval habitats as well as Beauveria bassiana spores that slowly kill them. We assessed the efficacy of the In2Care mosquito trap in a semifield setting against locally sourced strains of Ae. aegypti and Ae. albopictus. We found that the In2Care mosquito trap is attractive to gravid Ae. aegypti and Ae. albopictus females and serves as an egg sink, preventing any adult emergence from the trap (P = 0.0053 for both species). Adult females successfully autodisseminated PPF to surrounding water-filled containers, leading to a statistically significant reduction in new mosquito emergence (P ≤ 0.0002 for both species). Additionally, we found effective contamination with Beauveria bassiana spores, which significantly reduced the survivorship of exposed Ae. aegypti and Ae. albopictus (P ≤ 0.008 for both species in all experimental setups). In summary, the In2Care mosquito trap successfully killed multiple life stages of 2 main mosquito vector species found in Florida under semifield conditions.

  8. Spatio-temporal patterns of distribution of West Nile virus vectors in eastern Piedmont Region, Italy

    PubMed Central

    2011-01-01

    Background West Nile Virus (WNV) transmission in Italy was first reported in 1998 as an equine outbreak near the swamps of Padule di Fucecchio, Tuscany. No other cases were identified during the following decade until 2008, when horse and human outbreaks were reported in Emilia Romagna, North Italy. Since then, WNV outbreaks have occurred annually, spreading from their initial northern foci throughout the country. Following the outbreak in 1998 the Italian public health authority defined a surveillance plan to detect WNV circulation in birds, horses and mosquitoes. By applying spatial statistical analysis (spatial point pattern analysis) and models (Bayesian GLMM models) to a longitudinal dataset on the abundance of the three putative WNV vectors [Ochlerotatus caspius (Pallas 1771), Culex pipiens (Linnaeus 1758) and Culex modestus (Ficalbi 1890)] in eastern Piedmont, we quantified their abundance and distribution in space and time and generated prediction maps outlining the areas with the highest vector productivity and potential for WNV introduction and amplification. Results The highest abundance and significant spatial clusters of Oc. caspius and Cx. modestus were in proximity to rice fields, and for Cx. pipiens, in proximity to highly populated urban areas. The GLMM model showed the importance of weather conditions and environmental factors in predicting mosquito abundance. Distance from the preferential breeding sites and elevation were negatively associated with the number of collected mosquitoes. The Normalized Difference Vegetation Index (NDVI) was positively correlated with mosquito abundance in rice fields (Oc. caspius and Cx. modestus). Based on the best models, we developed prediction maps for the year 2010 outlining the areas where high abundance of vectors could favour the introduction and amplification of WNV. Conclusions Our findings provide useful information for surveillance activities aiming to identify locations where the potential for WNV introduction and local transmission are highest. Such information can be used by vector control offices to stratify control interventions in areas prone to the invasion of WNV and other mosquito-transmitted pathogens. PMID:22152822

  9. Spatio-temporal patterns of distribution of West Nile virus vectors in eastern Piedmont Region, Italy.

    PubMed

    Bisanzio, Donal; Giacobini, Mario; Bertolotti, Luigi; Mosca, Andrea; Balbo, Luca; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M

    2011-12-09

    West Nile Virus (WNV) transmission in Italy was first reported in 1998 as an equine outbreak near the swamps of Padule di Fucecchio, Tuscany. No other cases were identified during the following decade until 2008, when horse and human outbreaks were reported in Emilia Romagna, North Italy. Since then, WNV outbreaks have occurred annually, spreading from their initial northern foci throughout the country. Following the outbreak in 1998 the Italian public health authority defined a surveillance plan to detect WNV circulation in birds, horses and mosquitoes. By applying spatial statistical analysis (spatial point pattern analysis) and models (Bayesian GLMM models) to a longitudinal dataset on the abundance of the three putative WNV vectors [Ochlerotatus caspius (Pallas 1771), Culex pipiens (Linnaeus 1758) and Culex modestus (Ficalbi 1890)] in eastern Piedmont, we quantified their abundance and distribution in space and time and generated prediction maps outlining the areas with the highest vector productivity and potential for WNV introduction and amplification. The highest abundance and significant spatial clusters of Oc. caspius and Cx. modestus were in proximity to rice fields, and for Cx. pipiens, in proximity to highly populated urban areas. The GLMM model showed the importance of weather conditions and environmental factors in predicting mosquito abundance. Distance from the preferential breeding sites and elevation were negatively associated with the number of collected mosquitoes. The Normalized Difference Vegetation Index (NDVI) was positively correlated with mosquito abundance in rice fields (Oc. caspius and Cx. modestus). Based on the best models, we developed prediction maps for the year 2010 outlining the areas where high abundance of vectors could favour the introduction and amplification of WNV. Our findings provide useful information for surveillance activities aiming to identify locations where the potential for WNV introduction and local transmission are highest. Such information can be used by vector control offices to stratify control interventions in areas prone to the invasion of WNV and other mosquito-transmitted pathogens.

  10. Long term impacts of combined sewer overflow remediation on water quality and population dynamics of Culex quinquefasciatus, the main urban West Nile virus vector in Atlanta, GA.

    PubMed

    Lund, Andrea; McMillan, Joseph; Kelly, Rosmarie; Jabbarzadeh, Shirin; Mead, Daniel G; Burkot, Thomas R; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M

    2014-02-01

    Combined sewers are a significant source of urban water pollution due to periodic discharges into natural streams. Such events (called combined sewer overflows, or CSOs) contribute to the impairment of natural waterways and are associated with increased mosquito productivity and elevated risk of West Nile virus transmission. We investigated the impact of CSOs on water quality and immature mosquito productivity in the city of Atlanta, Georgia, one year before and four years after CSO facility remediation. Water quality (ammonia, phosphate, nitrate and dissolved oxygen concentrations), immature mosquitoes (larvae and pupae), water temperature and rainfall were quantified biweekly between June-October at two urban creeks during 2008-2012. A before-after control-intervention design tested the impact of remediation on mosquito productivity and water quality, whereas generalized linear mixed-effect models quantified the factors explaining the long term impacts of remediation on mosquito productivity. Ammonia and phosphate concentrations and late immature (fourth-instar and pupae) mosquito populations were significantly higher in CSO than in non-CSO creeks, while dissolved oxygen concentrations were lower. Remediation significantly improved water quality estimates (particularly ammonia and dissolved oxygen) and reduced the number of overflows, mosquito productivity and the overall contribution of CSO-affected streams as sources of vectors of West Nile virus. The quality of water in CSOs provided a suitable habitat for immature mosquitoes. Remediation of the CSO facility through the construction of a deep storage tunnel improved water quality indices and reduced the productivity of mosquito species that can serve as vectors of West Nile virus. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Opportunities for Improved Chagas Disease Vector Control Based on Knowledge, Attitudes and Practices of Communities in the Yucatan Peninsula, Mexico

    PubMed Central

    Rosecrans, Kathryn; Cruz-Martin, Gabriela; King, Ashley; Dumonteil, Eric

    2014-01-01

    Background Chagas disease is a vector-borne parasitic disease of major public health importance. Current prevention efforts are based on triatomine vector control to reduce transmission to humans. Success of vector control interventions depends on their acceptability and value to affected communities. We aimed to identify opportunities for and barriers to improved vector control strategies in the Yucatan peninsula, Mexico. Methodology/principal findings We employed a sequence of qualitative and quantitative research methods to investigate knowledge, attitudes and practices surrounding Chagas disease, triatomines and vector control in three rural communities. Our combined data show that community members are well aware of triatomines and are knowledgeable about their habits. However, most have a limited understanding of the transmission dynamics and clinical manifestations of Chagas disease. While triatomine control is not a priority for community members, they frequently use domestic insecticide products including insecticide spray, mosquito coils and plug-in repellents. Families spend about $32 US per year on these products. Alternative methods such as yard cleaning and window screens are perceived as desirable and potentially more effective. Screens are nonetheless described as unaffordable, in spite of a cost comparable to the average annual spending on insecticide products. Conclusion/Significance Further education campaigns and possibly financing schemes may lead families to redirect their current vector control spending from insecticide products to window screens. Also, synergism with mosquito control efforts should be further explored to motivate community involvement and ensure sustainability of Chagas disease vector control. PMID:24676038

  12. North American Wetlands and Mosquito Control

    PubMed Central

    Rey, Jorge R.; Walton, William E.; Wolfe, Roger J.; Connelly, Roxanne; O’Connell, Sheila M.; Berg, Joe; Sakolsky-Hoopes, Gabrielle E.; Laderman, Aimlee D.

    2012-01-01

    Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere. PMID:23222252

  13. Species composition, seasonal occurrence, habitat preference and altitudinal distribution of malaria and other disease vectors in eastern Nepal.

    PubMed

    Dhimal, Meghnath; Ahrens, Bodo; Kuch, Ulrich

    2014-11-28

    It is increasingly recognized that climate change can alter the geographical distribution of vector-borne diseases (VBDs) with shifts of disease vectors to higher altitudes and latitudes. In particular, an increasing risk of malaria and dengue fever epidemics in tropical highlands and temperate regions has been predicted in different climate change scenarios. The aim of this paper is to expand the current knowledge on the seasonal occurrence and altitudinal distribution of malaria and other disease vectors in eastern Nepal. Adult mosquitoes resting indoors and outdoors were collected using CDC light trap and aspirators with the support of flash light. Mosquito larvae were collected using locally constructed dippers. We assessed the local residents' perceptions of the distribution and occurrence of mosquitoes using key informant interview techniques. Generalized linear models were fitted to assess the effect of season, resting site and topography on the abundance of malaria vectors. The known malaria vectors in Nepal, Anopheles fluviatilis, Anopheles annularis and Anopheles maculatus complex members were recorded from 70 to 1,820 m above sea level (asl). The vectors of chikungunya and dengue virus, Aedes aegypti and Aedes albopictus, the vector of lymphatic filariasis, Culex quinquefasciatus, and that of Japanese encephalitis, Culex tritaeniorhynchus, were found from 70 to 2,000 m asl in eastern Nepal. Larvae of Anopheles, Culex and Aedes species were recorded up to 2,310 m asl. Only season had a significant effect on the abundance of An. fluviatilis, season and resting site on the abundance of An. maculatus complex members, and season, resting site and topography on the abundance of An. annularis. The perceptions of people on mosquito occurrence are consistent with entomological findings. This study provides the first vertical distribution records of vector mosquitoes in eastern Nepal and suggests that the vectors of malaria and other diseases have already established populations in the highlands due to climatic and other environmental changes. As VBD control programmes have not been focused on the highlands of Nepal, these findings call for actions to start monitoring, surveillance and research on VBDs in these previously disease-free, densely populated and economically important regions.

  14. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis.

    PubMed

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-02-03

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases.

  15. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis

    NASA Astrophysics Data System (ADS)

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-02-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases.

  16. Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Paulpandi, Manickam; Althbyani, Abdulaziz Dakhellah Meqbel; Subramaniam, Jayapal; Madhiyazhagan, Pari; Wang, Lan; Suresh, Udaiyan; Kumar, Palanisamy Mahesh; Mohan, Jagathish; Rajaganesh, Rajapandian; Wei, Hui; Kalimuthu, Kandasamy; Parajulee, Megha N; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Mosquitoes are blood-feeding insects serving as the most important vectors for spreading human pathogens and parasites. Dengue is a viral disease mainly vectored through the bite of Aedes mosquitoes. Its transmission has recently increased in urban and semi-urban areas of tropical and subtropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depend on effective vector control measures. Mangrove plants have been used in Indian traditional medicine for a wide array of purposes. In this research, we proposed a method for biosynthesis of antiviral and mosquitocidal silver nanoparticles (AgNP) using the aqueous extract of Bruguiera cylindrica leaves. AgNP were characterized using a variety of biophysical analyses, including UV-visible spectrophotometry, Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Bruguiera cilyndrica aqueous extract and green-synthesized AgNP were tested against the primary dengue vector Aedes aegypti. AgNP were the most effective. LC50 values ranged from 8.93 ppm (larva I) to 30.69 ppm (pupa). In vitro experiments showed that 30 μg/ml of AgNP significantly inhibited the production of dengue viral envelope (E) protein in vero cells and downregulated the expression of dengue viral E gene. Concerning nontarget effects, we observed that the predation efficiency of Carassius auratus against A. aegypti was not affected by exposure at sublethal doses of AgNP. Predation in the control was 71.81 % (larva II) and 50.43 % (larva III), while in an AgNP-treated environment, predation was boosted to 90.25 and 76.81 %, respectively. Overall, this study highlights the concrete potential of green-synthesized AgNP in the fight against dengue virus. Furthermore, B. cylindrica-synthesized AgNP can be employed at low doses to reduce larval and pupal population of A. aegypti, without detrimental effects of predation rates of mosquito predators, such as C. auratus.

  17. Source Reduction Behavior as an Independent Measurement of the Impact of a Public Health Education Campaign in an Integrated Vector Management Program for the Asian Tiger Mosquito

    PubMed Central

    Bartlett-Healy, Kristen; Hamilton, George; Healy, Sean; Crepeau, Taryn; Unlu, Isik; Farajollahi, Ary; Fonseca, Dina; Gaugler, Randy; Clark, Gary G.; Strickman, Daniel

    2011-01-01

    The goal of this study was to evaluate the effectiveness of a public health educational campaign to reduce backyard mosquito-larval habitats. Three communities each, within two New Jersey counties, were randomly selected to receive: (1) both education and mosquito control, (2) education only, and (3) no education or mosquito control. Four separate educational events included a 5-day elementary school curriculum in the spring, and three door to door distributions of educational brochures. Before and after each educational event, the numbers of mosquito-larval container habitats were counted in 50 randomly selected homes per study area. Container surveys allowed us to measure source reduction behavior. Although we saw reductions in container habitats in sites receiving education, they were not significantly different from the control. Our results suggest that traditional passive means of public education, which were often considered the gold standard for mosquito control programs, are not sufficient to motivate residents to reduce backyard mosquito-larval habitats. PMID:21655124

  18. Entomologic and Virologic Investigation of Chikungunya, Singapore

    PubMed Central

    Tan, Li-Kiang; Tan, Cheong-Huat; Tan, Sharon S.Y.; Hapuarachchi, Hapuarachchige C.; Pok, Kwoon-Yong; Lai, Yee-Ling; Lam-Phua, Sai-Gek; Bucht, Göran; Lin, Raymond T.P.; Leo, Yee-Sin; Tan, Boon-Hian; Han, Hwi-Kwang; Ooi, Peng-Lim S; James, Lyn; Khoo, Seow-Poh

    2009-01-01

    Local transmission of chikungunya, a debilitating mosquito-borne viral disease, was first reported in Singapore in January 2008. After 3 months of absence, locally acquired Chikungunya cases resurfaced in May 2008, causing an outbreak that resulted in a total of 231 cases by September 2008. The circulating viruses were related to East, Central, and South African genotypes that emerged in the Indian Ocean region in 2005. The first local outbreak was due to a wild-type virus (alanine at codon 226 of the envelope 1 gene) and occurred in an area where Aedes aegypti mosquitoes were the primary vector. Strains isolated during subsequent outbreaks showed alanine to valine substitution (A226V) and largely spread in areas predominated by Ae. albopictus mosquitoes. These findings led to a revision of the current vector control strategy in Singapore. This report highlights the use of entomologic and virologic data to assist in the control of chikungunya in disease-endemic areas. PMID:19751586

  19. Entomologic and virologic investigation of Chikungunya, Singapore.

    PubMed

    Ng, Lee-Ching; Tan, Li-Kiang; Tan, Cheong-Huat; Tan, Sharon S Y; Hapuarachchi, Hapuarachchige C; Pok, Kwoon-Yong; Lai, Yee-Ling; Lam-Phua, Sai-Gek; Bucht, Göran; Lin, Raymond T P; Leo, Yee-Sin; Tan, Boon-Hian; Han, Hwi-Kwang; Ooi, Peng-Lim S; James, Lyn; Khoo, Seow-Poh

    2009-08-01

    Local transmission of chikungunya, a debilitating mosquito-borne viral disease, was first reported in Singapore in January 2008. After 3 months of absence, locally acquired Chikungunya cases resurfaced in May 2008, causing an outbreak that resulted in a total of 231 cases by September 2008. The circulating viruses were related to East, Central, and South African genotypes that emerged in the Indian Ocean region in 2005. The first local outbreak was due to a wild-type virus (alanine at codon 226 of the envelope 1 gene) and occurred in an area where Aedes aegypti mosquitoes were the primary vector. Strains isolated during subsequent outbreaks showed alanine to valine substitution (A226V) and largely spread in areas predominated by Ae. albopictus mosquitoes. These findings led to a revision of the current vector control strategy in Singapore. This report highlights the use of entomologic and virologic data to assist in the control of chikungunya in disease-endemic areas.

  20. The use of annual killifish in the biocontrol of the aquatic stages of mosquitoes in temporary bodies of fresh water; a potential new tool in vector control

    PubMed Central

    2010-01-01

    Background Mosquitoes that breed in temporary pools in remote areas that dry up seasonally are especially difficult to control through chemical or biological means. The annual killifish has been suggested as a means of eradicating the aquatic stages of mosquitoes in transient pools because they can maintain permanent populations in such habitats by undergoing suspended animation or diapause during the embryonic stages to survive periodic drought. However, very little is known about the predatory activity of annual killifish and their usefulness in mosquito control. Results The annual killifish, Nothobranchius guentheri, native to Tanzania, was used in this investigation. Food preference was tested under laboratory conditions by feeding juvenile killifish with 2nd instar mosquito larvae of Culex quinquefasciatus in the presence of alternative food sources, such as rotifers and chironomid larvae. Semi-field tests were conducted by introduction of hibernating killifish embryos and juvenile fish to artificial ponds in an outdoor open environment that allowed natural oviposition of Cx. quinquefasciatus. Food preference studies show that N. guentheri preferred to prey on mosquito larvae than either chironomid or rotifers. When hibernating killifish embryos were added to ponds simultaneously with the addition of freshwater, the embryos hatched and fed on mosquito larval population resulting in complete elimination of the immature stages. The introduction of juvenile fish to ponds with high density of mosquito larvae resulted in total eradication of the mosquito population due to predation by fish. Complete biocontrol of the mosquito larval population was achieved in the presence of 3 fish per m2 of pond surface area. Conclusions The annual killifish provides yet another tool that may be employed in the eradication diseases carried by mosquitoes through vector control, particularly in temporary bodies of freshwater. The fish can be conveniently transported in the absence of water in the form of hibernating embryos. Once introduced either as embryos or juveniles in ponds, the annual killifish can effectively reduce the larval population because of its aggressive predatory activity. PMID:20492714

  1. Biological nanopesticides: a greener approach towards the mosquito vector control.

    PubMed

    Mishra, Prabhakar; Tyagi, Brij Kishore; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2018-04-01

    Mosquitoes, being a vector for some potentially dreadful diseases, pose a considerable threat to people all around the world. The control over the growth and propagation of mosquitoes comprises conventional pesticides, insect growth regulators and other microbial control agents. However, the usage of these common chemicals and conventional pesticides eventually has a negative impact on human health as well as the environment, which therefore becomes a major concern. The lacuna allows nanotechnology to come into action and exploit nanopesticides. Nanopesticides are majorly divided into two categories-synthetic and biological. Several nanoformulations serve as a promising nanopesticide viz. nanoparticles, e.g. biologically synthesised nanoparticles through plant extracts, nanoemulsions prepared using the essential oils like neem oil and citronella oil and nanoemulsion of conventional pesticides like pyrethroids. These green approaches of synthesising nanopesticides make use of non-toxic and biologically derived compounds and hence are eco-friendly with a better target specificity. Even though there are numerous evidences to show the effectiveness of these nanopesticides, very few efforts have been made to study the possible non-target effects on other organisms prevalent in the aquatic ecosystem. This study focuses on the role of these nanopesticides towards the vector control and its eco-safe property against the other non-target species.

  2. Assessment of geraniol-incorporated polymers to control Aedes albopictus (Diptera: culicidae)

    PubMed Central

    Chuaycharoensuk, T.; Manguin, S.; Duvallet, G.; Chareonviriyaphap, T.

    2012-01-01

    Effective control of mosquito borne diseases has proven extremely difficult with both vector and pathogen remaining entrenched and expanding in many disease endemic areas. When lacking an effective vaccine, vector control methods targeting both larval habitats and adult mosquito populations remain the primary strategy for reducing risk. Aedes albopictus from Thailand was used as a reference baseline for evaluation of natural insecticides incorporated in polymer disks and pellets and tested both in laboratory and field conditions. In laboratory and field tests, the highest larval mortality was obtained with disks or pellets containing IKHC (Insect Killer Highly Concentrate) from Fulltec AG Company. This product is reputed to contain geraniol as an active ingredient. With pellets, high mortality of Ae. albopictus larvae (92%) was observed in presence of 1 g of pellets per 500 ml of water at day 1st, and the mortality was 100% at day 1st for larvae in presence of 5 or 10 g of pellets. Fulltec AG Company has not accepted to give us the exact composition of their IKHC product. Therefore, we cannot recommend it, but the principle of using monoterpenes like geraniol, incorporated into polymer disks or pellets as natural larvicide needs more attention as it could be considered as a powerful alternative in mosquito vector control. PMID:22910616

  3. Insecticide exposure impacts vector-parasite interactions in insecticide-resistant malaria vectors.

    PubMed

    Alout, Haoues; Djègbè, Innocent; Chandre, Fabrice; Djogbénou, Luc Salako; Dabiré, Roch Kounbobr; Corbel, Vincent; Cohuet, Anna

    2014-07-07

    Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles-Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Chikungunya Virus–Vector Interactions

    PubMed Central

    Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891

  5. Entomologic studies after a St. Louis encephalitis epidemic in Grand Junction, Colorado.

    PubMed

    Tasi, T F; Smith, G C; Ndukwu, M; Jakob, W L; Happ, C M; Kirk, L J; Francy, D B; Lampert, K J

    1988-08-01

    In 1986, after a St. Louis encephalitis epidemic in Grand Junction, Colorado, in 1985, vector mosquitoes in the city were surveyed to correlate their bionomics and infection rates with the occurrence of human disease. No human cases were reported, but mosquito surveillance disclosed St. Louis encephalitis virus in Culex tarsalis and Culex pipiens pipiens. Mosquitoes were collected with gravid traps designed to attract Cx. p. pipiens and with Centers for Disease Control light traps. Culex p. pipiens was the predominant vector mosquito collected and was captured chiefly in gravid traps. The Culex tarsalis population emerged and expanded approximately one month earlier than did the Cx. p. pipiens population. Consequently, Cx. p. pipiens was the predominant vector species after August. Infection rates throughout the surveillance period (June to September) were severalfold higher in Cx. tarsalis than in Cx. p. pipiens; however, in late summer, diminished numbers of Cx. tarsalis and a persistent population of Cx. p. pipiens resulted in relatively larger numbers of infected Cx. p. pipiens. Thus, the participation of Cx. p. pipiens as a St. Louis encephalitis vector would have been underestimated in previous studies employing light traps alone. These studies provide further evidence that Cx. p. pipiens-associated urban St. Louis encephalitis and rural Cx. tarsalis-associated St. Louis encephalitis cycles may coexist in the West.

  6. Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases.

    PubMed

    Thongsripong, Panpim; Chandler, James Angus; Green, Amy B; Kittayapong, Pattamaporn; Wilcox, Bruce A; Kapan, Durrell D; Bennett, Shannon N

    2018-01-01

    Vector-borne diseases are a major health burden, yet factors affecting their spread are only partially understood. For example, microbial symbionts can impact mosquito reproduction, survival, and vectorial capacity, and hence affect disease transmission. Nonetheless, current knowledge of mosquito-associated microbial communities is limited. To characterize the bacterial and eukaryotic microbial communities of multiple vector species collected from different habitat types in disease endemic areas, we employed next-generation 454 pyrosequencing of 16S and 18S rRNA amplicon libraries, also known as metabarcoding. We investigated pooled whole adult mosquitoes of three medically important vectors, Aedes aegypti , Ae. albopictus , and Culex quinquefasciatus, collected from different habitats across central Thailand where we previously characterized mosquito diversity. Our results indicate that diversity within the mosquito microbiota is low, with the majority of microbes assigned to one or a few taxa. Two of the most common eukaryotic and bacterial genera recovered ( Ascogregarina and Wolbachia, respectively) are known mosquito endosymbionts with potentially parasitic and long evolutionary relationships with their hosts. Patterns of microbial composition and diversity appeared to differ by both vector species and habitat for a given species, although high variability between samples suggests a strong stochastic element to microbiota assembly. In general, our findings suggest that multiple factors, such as habitat condition and mosquito species identity, may influence overall microbial community composition, and thus provide a basis for further investigations into the interactions between vectors, their microbial communities, and human-impacted landscapes that may ultimately affect vector-borne disease risk.

  7. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan

    PubMed Central

    Nunes, Rodrigo Dutra; Ventura-Martins, Guilherme; Moretti, Débora Monteiro; Medeiros-Castro, Priscilla; Rocha-Santos, Carlucio; Daumas-Filho, Carlos Renato de Oliveira; Bittencourt-Cunha, Paula Rego Barros; Martins-Cardoso, Karina; Cudischevitch, Cecília Oliveira; Menna-Barreto, Rubem Figueiredo Sadok; Oliveira, José Henrique Maia; Gusmão, Desiely Silva; Alves Lemos, Francisco José; Alviano, Daniela Sales; Oliveira, Pedro Lagerblad; Lowenberger, Carl; Majerowicz, David; Oliveira, Ricardo Melo; Mesquita, Rafael Dias; Atella, Georgia Correa

    2016-01-01

    Background Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. Results Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. Conclusion The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses. PMID:27732590

  8. Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes.

    PubMed

    Tran, Tam T; Janssens, Lizanne; Dinh, Khuong V; Op de Beeck, Lin; Stoks, Robby

    2016-07-01

    How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.

  9. Paratransgenesis to control malaria vectors: a semi-field pilot study.

    PubMed

    Mancini, Maria Vittoria; Spaccapelo, Roberta; Damiani, Claudia; Accoti, Anastasia; Tallarita, Mario; Petraglia, Elisabetta; Rossi, Paolo; Cappelli, Alessia; Capone, Aida; Peruzzi, Giulia; Valzano, Matteo; Picciolini, Matteo; Diabaté, Abdoulaye; Facchinelli, Luca; Ricci, Irene; Favia, Guido

    2016-03-10

    Malaria still remains a serious health burden in developing countries, causing more than 1 million deaths annually. Given the lack of an effective vaccine against its major etiological agent, Plasmodium falciparum, and the growing resistance of this parasite to the currently available drugs repertoire and of Anopheles mosquitoes to insecticides, the development of innovative control measures is an imperative to reduce malaria transmission. Paratransgenesis, the modification of symbiotic organisms to deliver anti-pathogen effector molecules, represents a novel strategy against Plasmodium development in mosquito vectors, showing the potential to reduce parasite development. However, the field application of laboratory-based evidence of paratransgenesis imposes the use of more realistic confined semi-field environments. Large cages were used to evaluate the ability of bacteria of the genus Asaia expressing green fluorescent protein (Asaia (gfp)), to diffuse in Anopheles stephensi and Anopheles gambiae target mosquito populations. Asaia (gfp) was introduced in large cages through the release of paratransgenic males or by sugar feeding stations. Recombinant bacteria transmission was directly detected by fluorescent microscopy, and further assessed by molecular analysis. Here we show the first known trial in semi-field condition on paratransgenic anophelines. Modified bacteria were able to spread at high rate in different populations of An. stephensi and An. gambiae, dominant malaria vectors, exploring horizontal ways and successfully colonising mosquito midguts. Moreover, in An. gambiae, vertical and trans-stadial diffusion mechanisms were demonstrated. Our results demonstrate the considerable ability of modified Asaia to colonise different populations of malaria vectors, including pecies where its association is not primary, in large environments. The data support the potential to employ transgenic Asaia as a tool for malaria control, disclosing promising perspective for its field application with suitable effector molecules.

  10. [Preliminary evaluation of the insecticide susceptibility in Anopheles gambiae and Culex quinquefasciatus from Lobito (Angola), using WHO standard assay].

    PubMed

    Toto, J C; Besnard, P; Le Mire, J; Almeida, D S I; Dos Santos, M A; Fortes, F; Foumane, V; Simard, F; Awono-Ambene, H P; Carnevale, P

    2011-10-01

    Field collections of the most common urban mosquito vectors Anopheles gambiae and Culex quinquefasciatus were carried out in June 2003, March 2004 and November 2005 to gather preliminary data on the insecticide susceptibility in mosquitoes from Lobito (Angola) using the WHO standard bioassays. Bioassays were performed on F0 adults emerging from the field larval collections and on unfed adults from landing catches on volunteers. Batches of mosquitoes from three selected locations (Alto Liro, San Jao and Bela Vista) were exposed for 1 hour to several insecticides such as DDT 4%, carbosulfan 0.4%, permethrin 1%, deltamethrin 0.05% and cyfluthrin 0.15%, in order to estimate the immediate knockdown times (kdT50 and kdT95) and the mortality rate after exposure. The results revealed that mosquito susceptibility to insecticides varied depending on the insecticide, the site and the period of collection. The main local malaria vector A. gambiae (both M and S forms) was basically resistant to DDT and susceptible to all pyrethoids, regardless of the period and the site of collections. The overall mortality rate due to DDT was 73% in Alto Liro, 89% in San Jao and varied depending on the period in Bela Vista between 95% in March 2004 and 100% in November 2005. The mortality due to pyrethoids was 100% at all locations, with the kdT50 and KdT95 times ranging between 9 and 16 minutes and between 18 and 29 minutes, respectively. Concerning the C. quinquefasciatus, populations from Yard and Caponte were resistant to all insecticides tested; the mortality rate was 40% with deltamethrin and 70% with permethrin, while no lethal effect was observed with DDT or carbosulfan. In conclusion, despite its probable high resistance to DDT, the main local malaria vector A. gambiae remained fully susceptible to pyrethroids. This could forecast a good biological efficacy of the scheduled vector control interventions in Angola, based on a large-scale distribution of long-lasting, insecticide-treated nets and on the implementation of indoor residual spraying. The local vector control programme must include well-adapted IEC campaigns and full participation of the community for better management of the insecticide resistance in targeted mosquitoes and for better control of malaria vector populations.

  11. Rift Valley fever virus and European mosquitoes: vector competence of Culex pipiens and Stegomyia albopicta (= Aedes albopictus).

    PubMed

    Brustolin, M; Talavera, S; Nuñez, A; Santamaría, C; Rivas, R; Pujol, N; Valle, M; Verdún, M; Brun, A; Pagès, N; Busquets, N

    2017-12-01

    Rift Valley fever (RVF) is a mosquito-borne disease caused by the Rift Valley fever virus (RVFV). Rift Valley fever affects a large number of species, including human, and has severe impact on public health and the economy, especially in African countries. The present study examined the vector competence of three different European mosquito species, Culex pipiens (Linnaeus, 1758) form molestus (Diptera: Culicidae), Culex pipiens hybrid form and Stegomyia albopicta (= Aedes albopictus) (Skuse, 1894) (Diptera: Culicidae). Mosquitoes were artificially fed with blood containing RVFV. Infection, disseminated infection and transmission efficiency were evaluated. This is the first study to assess the transmission efficiency of European mosquito species using a virulent RVFV strain. The virus disseminated in Cx. pipiens hybrid form and in S. albopicta. Moreover, infectious viral particles were isolated from saliva of both species, showing their RVFV transmission capacity. The presence of competent Cx. pipiens and S. albopicta in Spain indicates that an autochthonous outbreak of RVF may occur if the virus is introduced. These findings provide information that will help health authorities to set up efficient entomological surveillance and RVFV vector control programmes. © 2017 The Authors. Medical and Veterinary Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.

  12. Increasing our knowledge of male mosquito biology in relation to genetic control programmes

    USDA-ARS?s Scientific Manuscript database

    The enormous burden placed on populations worldwide by mosquito-borne diseases, most notably malaria and dengue, is currently being tackled by the use of insecticides sprayed in residences or applied to bednets, and in the case of dengue vectors through reduction of larval breeding sites. However, t...

  13. Mosquito and filth fly control in desert and temperate environments with a synergized pesticide mister and barrier treatment

    USDA-ARS?s Scientific Manuscript database

    U.S. military operations face significant negative impacts on mission readiness from disease-vector and nuisance filth flies, mosquitoes, and sand flies. Through the Deployed War Fighter Protection Program (DWFP) we previously developed small scale 9 ft by 3 ft pesticide-treated perimeters enhanced ...

  14. A generic model for a single strain mosquito-transmitted disease with memory on the host and the vector.

    PubMed

    Sardar, Tridip; Rana, Sourav; Bhattacharya, Sabyasachi; Al-Khaled, Kamel; Chattopadhyay, Joydev

    2015-05-01

    In the present investigation, three mathematical models on a common single strain mosquito-transmitted diseases are considered. The first one is based on ordinary differential equations, and other two models are based on fractional order differential equations. The proposed models are validated using published monthly dengue incidence data from two provinces of Venezuela during the period 1999-2002. We estimate several parameters of these models like the order of the fractional derivatives (in case of two fractional order systems), the biting rate of mosquito, two probabilities of infection, mosquito recruitment and mortality rates, etc., from the data. The basic reproduction number, R0, for the ODE system is estimated using the data. For two fractional order systems, an upper bound for, R0, is derived and its value is obtained using the published data. The force of infection, and the effective reproduction number, R(t), for the three models are estimated using the data. Sensitivity analysis of the mosquito memory parameter with some important responses is worked out. We use Akaike Information Criterion (AIC) to identify the best model among the three proposed models. It is observed that the model with memory in both the host, and the vector population provides a better agreement with epidemic data. Finally, we provide a control strategy for the vector-borne disease, dengue, using the memory of the host, and the vector. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Insecticide resistance to permethrin and malathion and associated mechanisms in Aedes aegypti mosquitoes from St. Andrew Jamaica

    PubMed Central

    Francis, Sheena; Saavedra-Rodriguez, Karla; Perera, Rushika; Paine, Mark; Black, William C.

    2017-01-01

    The emergence of novel diseases spread by the Aedes aegypti mosquito in Jamaica and the Caribbean, has prompted studies on insecticide resistance towards effective management of the vector. Though Jamaica has been using the organophosphate insecticide malathion in its vector control program for more than 30 years, resistance to the pesticide has not been tested in over a decade. We analyzed resistance to malathion and the pyrethroid insecticide, permethrin on mosquitoes collected across St. Andrew, Jamaica, and analyzed the molecular basis of resistance. The Center for Disease Control (CDC) bioassay revealed that Ae. aegypti mosquitoes from St. Andrew, Jamaica were resistant to permethrin (15 μg/bottle) with mortalities at 0–8% at 30 minute exposure time, while contact with malathion (50 μg/bottle) revealed ≤ 50% mortality at 15 minutes, which increased to 100% at 45 minutes. The standard susceptible New Orleans (NO) strain exhibited 100% mortality within15 minutes. The activities of multifunction oxidases and p-nitro phenyl-acetate esterases were significantly greater in most Jamaican populations in comparison to the NO strain, while activities of glutathione-S-transferase, acetylcholinesterase, α-esterase and ß-esterase activity were relatively equal, or lower than that of the control strain. The frequency of knockdown resistance mutations in the voltage dependent sodium channel gene were measured. All collections were fixed for Cys1,534 while 56% of mosquitoes were Ile1,016/Val1,016 heterozygotes, and 33% were Ile1,016 homozygotes. Aedes aegypti from St. Andrew Jamaica are resistant to permethrin with variations in the mode of mechanism, and possibly developing resistance to malathion. Continued monitoring of resistance is critically important to manage the spread of the vector in the country. PMID:28650966

  16. Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan; Hoti, S L; Khater, Hanem F; Benelli, Giovanni

    2016-08-01

    Mosquitoes (Diptera: Culicidae) are vectors of important pathogens and parasites, including malaria, dengue, chikungunya, Japanese encephalitis, lymphatic filariasis and Zika virus. The application of synthetic insecticides causes development of resistance, biological magnification of toxic substances through the food chain, and adverse effects on the environment and human health. In this scenario, eco-friendly control tools of mosquito vectors are a priority. Here single-step fabrication of silver nanoparticles (AgNP) using a cheap aqueous leaf extract of Zornia diphylla as reducing and capping agent pf Ag(+) ions has been carried out. Biosynthesized AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of Z. diphylla leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the Z. diphylla leaf extract and Ag NP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized Ag NP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 12.53, 13.42 and 14.61μg/ml, respectively. Biosynthesized Ag NP were found safer to non-target organisms Chironomus circumdatus, Anisops bouvieri and Gambusia affinis, with the respective LC50 values ranging from 613.11 to 6903.93μg/ml, if compared to target mosquitoes. Overall, our results highlight that Z. diphylla-fabricated Ag NP are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against other non-target organisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Behavioral responses of two dengue virus vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), to DUET and its components.

    PubMed

    Clark, Gary G; Golden, Frances V; Allan, Sandra A; Cooperband, Miriam F; McNelly, James R

    2013-09-01

    Ultralow volume droplets of DUET, prallethrin, and sumithrin at a sublethal dose were applied to unfed (nonbloodfed) and bloodfed female Aedes aegypti L. and Aedes albopictus (Skuse) in a wind tunnel. Control spray droplets only contained inert ingredients. Individual mosquitoes were videotaped before, during, and after spraying and various behaviors analyzed. During the spray periods of all three pesticide treatments, mosquitoes spent a greater percentage of time moving, and the distance moved was greater than for mosquitoes in the control treatments. In the postspray period, the percent of time moving increased for mosquitoes exposed to all pesticide treatments compared with the controls. After treatment, all females spent more time walking compared with controls, with unfed Ae. aegypti females walking more after exposure to DUET and sumithrin than after exposure to prallethrin and the control. Pesticide exposure increased flying in both species. Sumithrin exposure increased activity and velocity of unfed mosquitoes more than bloodfed mosquitoes. DUET and sumithrin treatments enhanced activity of Ae. aegypti females more than Ae. albopictus females.

  18. Comparative evaluation of the Ifakara tent trap-B, the standardized resting boxes and the human landing catch for sampling malaria vectors and other mosquitoes in urban Dar es Salaam, Tanzania

    PubMed Central

    Sikulu, Maggy; Govella, Nicodem J; Ogoma, Sheila B; Mpangile, John; Kambi, Said H; Kannady, Khadija; Chaki, Prosper C; Mukabana, Wolfgang R; Killeen, Gerry F

    2009-01-01

    Background Frequent, sensitive and accurate sampling of Anopheles mosquitoes is a prerequisite for effective management of malaria vector control programmes. The most reliable existing means to measure mosquito density is the human landing catch (HLC). However, the HLC technique raises major ethical concerns because of the necessity to expose humans to vectors of malaria and a variety of other pathogens. Furthermore, it is a very arduous undertaking that requires intense supervision, which is severely limiting in terms of affordability and sustainability. Methods A community-based, mosquito sampling protocol, using the Ifakara tent trap-B (ITT-B) and standardized resting boxes (SRB), was developed and evaluated in terms of the number and sample composition of mosquitoes caught by each, compared to rigorously controlled HLC. Mosquitoes were collected once and three times every week by the HLC and the alternative methods, respectively, in the same time and location. Results Overall, the three traps caught 44,848 mosquitoes. The ITT-B, HLC and SRB caught 168, 143 and 46 Anopheles gambiae s.l. as well as 26,315, 13,258 and 4,791 Culex species respectively. The ITT-B was three- and five-times cheaper than the HLC per mosquito caught for An. gambiae and Cx. Species, respectively. Significant correlations between the numbers caught by HLC and ITT-B were observed for both An. gambiae s.l. (P < 0.001) and Cx. species (P = 0.003). Correlation between the catches with HLC and SRB were observed for Cx. species (P < 0.001) but not An. gambiae s.l. (P = 0.195), presumably because of the low density of the latter. Neither ITT-B nor SRB exhibited any obvious density dependence for sampling the two species. Conclusion SRBs exhibited poor sensitivity for both mosquito taxa and are not recommended in this setting. However, this protocol is affordable and effective for routine use of the ITT-B under programmatic conditions. Nevertheless, it is recommended that the trap and the protocol be evaluated further at full programmatic scales to establish effectiveness under fully representative conditions of routine practice. PMID:19674477

  19. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania.

    PubMed

    Lwetoijera, Dickson; Harris, Caroline; Kiware, Samson; Dongus, Stefan; Devine, Gregor J; McCall, Philip J; Majambere, Silas

    2014-04-29

    Malaria vector control strategies that target adult female mosquitoes are challenged by the emergence of insecticide resistance and behavioural resilience. Conventional larviciding is restricted by high operational costs and inadequate knowledge of mosquito-breeding habitats in rural settings that might be overcome by the juvenile hormone analogue, Pyriproxyfen (PPF). This study assessed the potential for Anopheles arabiensis to pick up and transfer lethal doses of PPF from contamination sites to their breeding habitats (i.e. autodissemination of PPF). A semi-field system (SFS) with four identical separate chambers was used to evaluate PPF-treated clay pots for delivering PPF to resting adult female mosquitoes for subsequent autodissemination to artificial breeding habitats within the chambers. In each chamber, a tethered cow provided blood meals to laboratory-reared, unfed female An. arabiensis released in the SFS. In PPF-treated chambers, clay pot linings were dusted with 0.2 - 0.3 g AI PPF per pot. Pupae were removed from the artificial habitats daily, and emergence rates calculated. Impact of PPF on emergence was determined by comparing treatment with an appropriate control group. Mean (95% CI) adult emergence rates were (0.21 ± 0.299) and (0.95 ± 0.39) from PPF-treated and controls respectively (p < 0.0001). Laboratory bioassay of water samples from artificial habitats in these experiments resulted in significantly lower emergence rates in treated chambers (0.16 ± 0.23) compared to controls 0.97 ± 0.05) (p < 0.0001). In experiments where no mosquitoes introduced, there were no significant differences between control and treatment, indicating that transfer of PPF to breeding sites only occurred when mosquitoes were present; i.e. that autodissemination had occurred. Treatment of a single clay pot reduced adult emergence in six habitats to (0.34 ± 0.13) compared to (0.98 ± 0.02) in the controls (p < 0.0001), showing a high level of habitats coverage amplification of the autodissemination event. The study provides proof of principle for the autodissemination of PPF to breeding habitats by malaria vectors. These findings highlight the potential for this technique for outdoor control of malaria vectors and call for the testing of this technique in field trials.

  20. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania

    PubMed Central

    2014-01-01

    Background Malaria vector control strategies that target adult female mosquitoes are challenged by the emergence of insecticide resistance and behavioural resilience. Conventional larviciding is restricted by high operational costs and inadequate knowledge of mosquito-breeding habitats in rural settings that might be overcome by the juvenile hormone analogue, Pyriproxyfen (PPF). This study assessed the potential for Anopheles arabiensis to pick up and transfer lethal doses of PPF from contamination sites to their breeding habitats (i.e. autodissemination of PPF). Methods A semi-field system (SFS) with four identical separate chambers was used to evaluate PPF-treated clay pots for delivering PPF to resting adult female mosquitoes for subsequent autodissemination to artificial breeding habitats within the chambers. In each chamber, a tethered cow provided blood meals to laboratory-reared, unfed female An. arabiensis released in the SFS. In PPF-treated chambers, clay pot linings were dusted with 0.2 – 0.3 g AI PPF per pot. Pupae were removed from the artificial habitats daily, and emergence rates calculated. Impact of PPF on emergence was determined by comparing treatment with an appropriate control group. Results Mean (95% CI) adult emergence rates were (0.21 ± 0.299) and (0.95 ± 0.39) from PPF-treated and controls respectively (p < 0.0001). Laboratory bioassay of water samples from artificial habitats in these experiments resulted in significantly lower emergence rates in treated chambers (0.16 ± 0.23) compared to controls 0.97 ± 0.05) (p < 0.0001). In experiments where no mosquitoes introduced, there were no significant differences between control and treatment, indicating that transfer of PPF to breeding sites only occurred when mosquitoes were present; i.e. that autodissemination had occurred. Treatment of a single clay pot reduced adult emergence in six habitats to (0.34 ± 0.13) compared to (0.98 ± 0.02) in the controls (p < 0.0001), showing a high level of habitats coverage amplification of the autodissemination event. Conclusion The study provides proof of principle for the autodissemination of PPF to breeding habitats by malaria vectors. These findings highlight the potential for this technique for outdoor control of malaria vectors and call for the testing of this technique in field trials. PMID:24779515

  1. Chemosensory responses to the repellent nepeta essential oil and its major component nepetalactone by the yellow fever mosquito, aedes aegypti, a vector of zika virus

    USDA-ARS?s Scientific Manuscript database

    Nepeta essential oil (Neo) (catnip) and its major component, nepetalactone, have long been known to repel insects including mosquitoes. However, the neural mechanisms through which these repellents are detected by mosquitoes, including the yellow fever mosquito Aedes aegypti, an important vector of...

  2. Attractive toxic sugar baits for controlling mosquitoes: a qualitative study in Bagamoyo, Tanzania.

    PubMed

    Maia, Marta Ferreira; Tenywa, Frank Chelestino; Nelson, Hannah; Kambagha, Athumani; Ashura, Abigail; Bakari, Ibrahim; Mruah, Deogratis; Simba, Aziza; Bedford, Ally

    2018-01-10

    Malaria elimination is unlikely to be achieved without the implementation of new vector control interventions capable of complementing insecticide-treated nets and indoor residual spraying. Attractive-toxic sugar baits (ATSBs) are considered a new vector control paradigm. They are technologically appropriate as they are simple and affordable to produce. ATSBs kill both female and male mosquitoes attracted to sugar feed on a sugary solution containing a mosquitocidal agent and may be used indoors or outdoors. This study explored the views and perceptions on ATSBs of community members from three Coastal Tanzanian communities. Three communities were chosen to represent coastal urban, peri-urban and rural areas. Sensitization meetings were held with a total of sixty community members where ATSBs were presented and explained their mode of action. At the end of the meeting, one ATSB was given to each participant for a period of 2 weeks, after which they were invited to participate in focus group discussions (FGDs) to provide feedback on their experience. Over 50% of the participants preferred to use the bait indoors although they had been instructed to place it outdoors. Participants who used the ATSBs indoors reported fewer mosquitoes inside their homes, but were disappointed not to find the dead mosquitoes in the baits, although they had been informed that this was unlikely to happen. Most participants disliked the appearance of the bait and some thought it to be reminiscent of witchcraft. Neighbours that did not participate in the FGDs or sensitizations were sceptical of the baits. This study delivers insight on how communities in Coastal Tanzania are likely to perceive ATSBs and provides important information for future trials investigating the efficacy of ATSBs against malaria. This new vector control tool will require sensitization at community level regarding its mode of action in order to increase the acceptance and confidence in ATSBs for mosquito control given that most people are not familiar with the new paradigm. A few recommendations for product development and delivery are discussed.

  3. Changes in the Genetic Structure of Aedes aegypti (Diptera: Culicidae) Populations in Queensland, Australia, Across Two Seasons: Implications for Potential Mosquito Releases

    PubMed Central

    ENDERSBY, N. M.; HOFFMANN, A. A.; WHITE, V. L.; RITCHIE, S. A.; JOHNSON, P. H.; WEEKS, A. R.

    2012-01-01

    Diseases transmitted by mosquitoes could be controlled if vector populations were replaced with strains that have reduced vector competency. Such a strategy is being developed for control of dengue virus which is transmitted by Aedes aegypti (L.) (Diptera: Culicidae). Mosquitoes artificially infected with the bacterium, Wolbachia pipientis Hertig, are being assessed as candidates for release at the adult stage with the aim of replacement of the wild population. Wolbachia can reduce the capacity of Ae. aegypti to transmit dengue virus and has potential to be driven through the natural population via a system of cytoplasmic incompatibility. Deployment of benign mosquito strains will be influenced by population size and structure of wild-type Ae. aegypti in proposed release areas, as well as rates of gene flow among populations in the wet and dry tropical seasons. Mosquitoes from northern Queensland were screened with genetic markers to find an optimal locality for release of a benign strain of Ae. aegypti. The inland towns of Chillagoe and Charters Towers and the coastal town of Ingham had mosquito populations that were partly genetically isolated from mosquitoes in other areas across both seasons. These locations may be suitable release sites if it is important for the released strain to be restricted during initial phases of implementation. Smaller genetic differences were also evident among other regions and were consistent over two seasons (wet and dry). PMID:21936318

  4. Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Mehlhorn, Heinz; Barnard, Donald R; Benelli, Giovanni

    2016-02-01

    Mosquito vectors are responsible for transmitting diseases such as malaria, dengue, chikungunya, Japanese encephalitis, dengue, and lymphatic filariasis. The use of synthetic insecticides to control mosquito vectors has caused physiological resistance and adverse environmental effects, in addition to high operational cost. Biosynthesis of silver nanoparticles has been proposed as an alternative to traditional control tools. In the present study, green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Bauhinia variegata by reduction of Ag(+) ions from silver nitrate solution has been investigated. The bioreduced silver nanoparticles were characterized by UV–visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD). Leaf extract and synthesized AgNPs were evaluated against the larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to aqueous extract, synthesized AgNPs showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 and LC90 values of 41.96, 46.16, and 51.92 μg/mL and 82.93, 89.42, and 97.12 μg/mL, respectively. Overall, this study proves that B. variegata is a potential bioresource for stable, reproducible nanoparticle synthesis and may be proposed as an efficient mosquito control agent.

  5. Malaria transmission and vector behaviour in a forested malaria focus in central Vietnam and the implications for vector control

    PubMed Central

    2010-01-01

    Background In Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province. Methods Five entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses. Results The mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium-infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and Anopheles pampanai as vectors. Conclusion The vector behaviour and spatio-temporal patterns of malaria transmission in Southeast Asia impose new challenges when changing objectives from control to elimination of malaria and make it necessary to focus not only on the known main vector species. Moreover, effective tools to prevent malaria transmission in the early evening and in the early morning, when the treated bed net cannot be used, need to be developed. PMID:21182774

  6. Malaria transmission and vector behaviour in a forested malaria focus in central Vietnam and the implications for vector control.

    PubMed

    Van Bortel, Wim; Trung, Ho Dinh; Hoi, Le Xuan; Van Ham, Nguyen; Van Chut, Nguyen; Luu, Nguyen Dinh; Roelants, Patricia; Denis, Leen; Speybroeck, Niko; D'Alessandro, Umberto; Coosemans, Marc

    2010-12-23

    In Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province. Five entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses. The mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium-infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and Anopheles pampanai as vectors. The vector behaviour and spatio-temporal patterns of malaria transmission in Southeast Asia impose new challenges when changing objectives from control to elimination of malaria and make it necessary to focus not only on the known main vector species. Moreover, effective tools to prevent malaria transmission in the early evening and in the early morning, when the treated bed net cannot be used, need to be developed.

  7. Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation

    PubMed Central

    Liu, Kun; Tsujimoto, Hitoshi; Cha, Sung-Jae; Agre, Peter; Rasgon, Jason L.

    2011-01-01

    Altered patterns of malaria endemicity reflect, in part, changes in feeding behavior and climate adaptation of mosquito vectors. Aquaporin (AQP) water channels are found throughout nature and confer high-capacity water flow through cell membranes. The genome of the major malaria vector mosquito Anopheles gambiae contains at least seven putative AQP sequences. Anticipating that transmembrane water movements are important during the life cycle of A. gambiae, we identified and characterized the A. gambiae aquaporin 1 (AgAQP1) protein that is homologous to AQPs known in humans, Drosophila, and sap-sucking insects. When expressed in Xenopus laevis oocytes, AgAQP1 transports water but not glycerol. Similar to mammalian AQPs, water permeation of AgAQP1 is inhibited by HgCl2 and tetraethylammonium, with Tyr185 conferring tetraethylammonium sensitivity. AgAQP1 is more highly expressed in adult female A. gambiae mosquitoes than in males. Expression is high in gut, ovaries, and Malpighian tubules where immunofluorescence microscopy reveals that AgAQP1 resides in stellate cells but not principal cells. AgAQP1 expression is up-regulated in fat body and ovary by blood feeding but not by sugar feeding, and it is reduced by exposure to a dehydrating environment (42% relative humidity). RNA interference reduces AgAQP1 mRNA and protein levels. In a desiccating environment (<20% relative humidity), mosquitoes with reduced AgAQP1 protein survive significantly longer than controls. These studies support a role for AgAQP1 in water homeostasis during blood feeding and humidity adaptation of A. gambiae, a major mosquito vector of human malaria in sub-Saharan Africa. PMID:21444767

  8. Environmental and biological factors influencing Culex pipiens quinquefasciatus (Diptera: Culicidae) vector competence for West Nile Virus.

    PubMed

    Richards, Stephanie L; Lord, Cynthia C; Pesko, Kendra N; Tabachnick, Walter J

    2010-07-01

    Interactions between environmental and biological factors affect the vector competence of Culex pipiens quinquefasciatus for West Nile virus. Three age cohorts from two Cx. p. quinquefasciatus colonies were fed blood containing a low- or high-virus dose, and each group was held at two different extrinsic incubation temperatures (EIT) for 13 days. The colonies differed in the way that they responded to the effects of the environment on vector competence. The effects of mosquito age on aspects of vector competence were dependent on the EIT and dose, and they changed depending on the colony. Complex interactions must be considered in laboratory studies of vector competence, because the extent of the genetic and environmental variation controlling vector competence in nature is largely unknown. Differences in the environmental (EIT and dose) and biological (mosquito age and colony) effects from previous studies of Cx. p. quinquefasciatus vector competence for St. Louis encephalitis virus are discussed.

  9. Lethal and Pre-Lethal Effects of a Fungal Biopesticide Contribute to Substantial and Rapid Control of Malaria Vectors

    PubMed Central

    Blanford, Simon; Shi, Wangpeng; Christian, Riann; Marden, James H.; Koekemoer, Lizette L.; Brooke, Basil D.; Coetzee, Maureen; Read, Andrew F.; Thomas, Matthew B.

    2011-01-01

    Rapidly emerging insecticide resistance is creating an urgent need for new active ingredients to control the adult mosquitoes that vector malaria. Biopesticides based on the spores of entomopathogenic fungi have shown considerable promise by causing very substantial mortality within 7–14 days of exposure. This mortality will generate excellent malaria control if there is a high likelihood that mosquitoes contact fungi early in their adult lives. However, where contact rates are lower, as might result from poor pesticide coverage, some mosquitoes will contact fungi one or more feeding cycles after they acquire malaria, and so risk transmitting malaria before the fungus kills them. Critics have argued that ‘slow acting’ fungal biopesticides are, therefore, incapable of delivering malaria control in real-world contexts. Here, utilizing standard WHO laboratory protocols, we demonstrate effective action of a biopesticide much faster than previously reported. Specifically, we show that transient exposure to clay tiles sprayed with a candidate biopesticide comprising spores of a natural isolate of Beauveria bassiana, could reduce malaria transmission potential to zero within a feeding cycle. The effect resulted from a combination of high mortality and rapid fungal-induced reduction in feeding and flight capacity. Additionally, multiple insecticide-resistant lines from three key African malaria vector species were completely susceptible to fungus. Thus, fungal biopesticides can block transmission on a par with chemical insecticides, and can achieve this where chemical insecticides have little impact. These results support broadening the current vector control paradigm beyond fast-acting chemical toxins. PMID:21897846

  10. Evaluation of resting traps to examine the behaviour and ecology of mosquito vectors in an area of rapidly changing land use in Sabah, Malaysian Borneo.

    PubMed

    Brown, Rebecca; Hing, Chua Tock; Fornace, Kimberly; Ferguson, Heather M

    2018-06-14

    Widespread deforestation occurring in the tropics is hypothesized to impact the transmission of vector-borne diseases (VBD). Predicting how environmental changes will impact VBD transmission is dependent on understanding the ecology and behaviour of potential vector species outside of domestic settings. However there are few reliable sampling tools for measuring the habitat preference and host choice of mosquito vectors; with almost none suitable for sampling recently blood-fed, resting mosquitoes. This study evaluated the use of two mosquito traps: the resting bucket (RB) and sticky resting bucket (SRB) traps relative to CDC backpack aspiration (CDC) for sampling mosquitoes resting in a range of habitats representing a gradient of deforestation. Eight habitats were selected for sampling around two villages in Kudat District, Malaysian Borneo, to reflect the range of habitats available to mosquitoes in and around human dwellings, and nearby forest habitats where reservoir hosts are present: secondary forest (edge, interior and canopy); plantations (palm and rubber); and human settlements (inside, under and around houses). Over 31 days, 2243 mosquitoes were collected in 5748 discrete collections. Nine mosquito genera were sampled with Aedes and Culex species being present in all habitats and most abundant. RB and CDC backpack aspiration were most efficient for sampling Culex whereas CDC backpack aspiration and SRB were most efficient for Aedes. Most Aedes identified to species level were Ae. albopictus (91%), with their abundance being highest in forest edge habitats. In contrast, Culex were most abundant under houses. Most blood-fed mosquitoes (76%) were found in human settlements; with humans and chickens being the only blood source. RB and SRB traps proved capable of sampling mosquitoes resting in all sampled habitats. However, sampling efficiency was generally low (c.0.1 per trap per day), necessitating traps to be deployed in high numbers for mosquito detection. None of the traps were effective for sampling zoonotic malaria vectors; however, SRB collected relatively higher numbers of the dengue vector Ae. albopictus. The higher abundance of mosquitoes in forest edge habitats indicates the potential value of these traps for investigating sylvatic dengue transmission. This study has demonstrated the merits in application of simple resting traps for characterising mosquito vector resting behaviour outside of the home.

  11. Vector control in developed countries

    PubMed Central

    Peters, Richard F.

    1963-01-01

    The recent rapid growth of California's population, leading to competition for space between residential, industrial and agricultural interests, the development of its water resources and increasing water pollution provide the basic ingredients of its present vector problems. Within the past half-century, the original mosquito habitats provided by nature have gradually given place to even more numerous and productive habitats of man-made character. At the same time, emphasis in mosquito control has shifted from physical to chemical, with the more recent extension to biological approaches as well. The growing domestic fly problem, continuing despite the virtual disappearance of the horse, is attributable to an increasing amount of organic by-products, stemming from growing communities, expanding industries and changing agriculture. The programme for the control of disease vectors and pest insects and animals directs its major effort to the following broad areas: (1) water management (including land preparation), (2) solid organic wastes management (emphasizing utilization), (3) community management (including design, layout, and storage practices of buildings and grounds), and (4) recreational area management (related to wildlife management). It is apparent that vector control can often employ economics as an ally in securing its objectives. Effective organization of the environment to produce maximum economic benefits to industry, agriculture, and the community results generally in conditions unfavourable to the survival of vector and noxious animal species. Hence, vector prevention or suppression is preferable to control as a programme objective. PMID:20604166

  12. Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen.

    PubMed

    Jaber, Sana; Mercier, Alex; Knio, Khouzama; Brun, Sylvain; Kambris, Zakaria

    2016-09-05

    Insects are well known vectors of human and animal pathogens and millions of people are killed by mosquito-borne diseases every year. The use of insecticides to target insect vectors has been hampered by the issues of toxicity to the environment and by the selection of resistant insects. Therefore, biocontrol strategies based on naturally occurring microbial pathogens emerged as a promising control alternative. The entomopathogenic fungus Beauveria bassiana is well characterized and have been approved by the United States Environmental Protection Agency as a pest biological control method. However, thousands of other fungi are unexploited and it is important to identify and use different fungi for biocontrol with possibly some vector specific strains. The aim of this study was to identify new fungal entomopathogens that may be used as potential mosquito biocontrol agents. Cadavers of arthropods were collected from pesticide free areas and the fungi associated isolated, cultured and identified. Then the ability of each isolate to kill laboratory insects was assayed and compared to that of B. bassiana. In total we have isolated and identified 42 fungal strains from 17 different arthropod cadavers. Twenty four fungal isolates were cultivated in the laboratory and were able to induce sporulation. When fungal spores were microinjected into Drosophila melanogaster, eight isolates proved to be highly pathogenic while the remaining strains showed moderate or no pathogenicity. Then a selection of isolates was tested against Aedes mosquitoes in a model mimicking natural infections. Only one fungus (Aspergillus nomius) was as pathogenic as B. bassiana and able to kill 100 % of the mosquitoes. The obtained results are encouraging and demonstrate the feasibility of this simple approach for the identification of new potential mosquito killers. Indeed, it is essential to anticipate and prepare biocontrol methods to fight the expansion of mosquitoes' habitat predicted in certain geographical areas in association with the occurring climatic changes.

  13. SYBR green-based one step quantitative real-time polymerase chain reaction assay for the detection of Zika virus in field-caught mosquitoes.

    PubMed

    Tien, Wei-Ping; Lim, Gareth; Yeo, Gladys; Chiang, Suzanna Nicole; Chong, Chee-Seng; Ng, Lee-Ching; Hapuarachchi, Hapuarachchige Chanditha

    2017-09-19

    The monitoring of vectors is one of the key surveillance measures to assess the risk of arbovirus transmission and the success of control strategies in endemic regions. The recent re-emergence of Zika virus (ZIKV) in the tropics, including Singapore, emphasizes the need to develop cost-effective, rapid and accurate assays to monitor the virus spread by mosquitoes. As ZIKV infections largely remain asymptomatic, early detection of ZIKV in the field-caught mosquitoes enables timely implementation of appropriate mosquito control measures. We developed a rapid, sensitive and specific real-time reverse transcription polymerase chain reaction (rRT-PCR) assay for the detection of ZIKV in field-caught mosquitoes. The primers and PCR cycling conditions were optimized to minimize non-specific amplification due to cross-reactivity with the genomic material of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, Culex tritaeniorhynchus, Culex sitiens and Anopheles sinensis, as well as accompanying microbiota. The performance of the assay was further evaluated with a panel of flaviviruses and alphaviruses as well as in field-caught Ae. aegypti mosquitoes confirmed to be positive for ZIKV. As compared to a probe-based assay, the newly developed assay demonstrated 100% specificity and comparable detection sensitivity for ZIKV in mosquitoes. Being a SYBR Green-based method, the newly-developed assay is cost-effective and easy to adapt, thus is applicable to large-scale vector surveillance activities in endemic countries, including those with limited resources and expertise. The amplicon size (119 bp) also allows sequencing to confirm the virus type. The primers flank relatively conserved regions of ZIKV genome, so that, the assay is able to detect genetically diverse ZIKV strains. Our findings, therefore, testify the potential use of the newly-developed assay in vector surveillance programmes for ZIKV in endemic regions.

  14. Dispersal of male and female Culex quinquefasciatus and Aedes albopictus mosquitoes using stable isotope enrichment

    PubMed Central

    Roark, E. Brendan; Hamer, Gabriel L.

    2017-01-01

    The dispersal patterns of mosquito vectors are important drivers of vector-borne infectious disease dynamics and understanding movement patterns is pivotal to devise successful intervention strategies. Here, we investigate the dispersal patterns of two globally important mosquito vectors, Aedes albopictus and Culex quinquefasciatus, by marking naturally-occurring larvae with stable isotopes (13C or 15N). Marked individuals were captured with 32 CDC light trap, 32 gravid trap, and 16 BG Sentinel at different locations within two-kilometer radii of six larval habitats enriched with either 13C or 15N. In total, 720 trap nights from July to August 2013 yielded a total of 32,140 Cx. quinquefasciatus and 7,722 Ae. albopictus. Overall, 69 marked female mosquitoes and 24 marked male mosquitoes were captured throughout the study period. The distance that Cx. quinquefasciatus females traveled differed for host-seeking and oviposition-seeking traps, with females seeking oviposition sites traveling further than those seeking hosts. Our analysis suggests that 41% of Cx. quinquefasciatus females that were host-seeking occurred 1–2 kilometer from their respective natal site, while 59% remained within a kilometer of their natal site. In contrast, 59% of Cx. quinquefasciatus females that were seeking oviposition sites occurred between 1–2 kilometer away from their larval habitat, while 15% occurred > 2 kilometer away from their natal site. Our analysis estimated that approximately 100% of Ae. albopictus females remained within 1 km of their respective natal site, with 79% occurring within 250m. In addition, we found that male Ae. albopictus dispersed farther than females, suggesting male-biased dispersal in this Ae. albopictus population. This study provides important insights on the dispersal patterns of two globally relevant vector species, and will be important in planning next generation vector control strategies that mitigate mosquito-borne disease through sterile insect techniques, novel Wolbachia infection, and gene drive strategies. PMID:28135281

  15. Viral Paratransgenesis in the Malaria Vector Anopheles gambiae

    PubMed Central

    Ren, Xiaoxia; Hoiczyk, Egbert; Rasgon, Jason L.

    2008-01-01

    Paratransgenesis, the genetic manipulation of insect symbiotic microorganisms, is being considered as a potential method to control vector-borne diseases such as malaria. The feasibility of paratransgenic malaria control has been hampered by the lack of candidate symbiotic microorganisms for the major vector Anopheles gambiae. In other systems, densonucleosis viruses (DNVs) are attractive agents for viral paratransgenesis because they infect important vector insects, can be genetically manipulated and are transmitted to subsequent generations. However, An. gambiae has been shown to be refractory to DNV dissemination. We discovered, cloned and characterized the first known DNV (AgDNV) capable of infection and dissemination in An. gambiae. We developed a flexible AgDNV-based expression vector to express any gene of interest in An. gambiae using a two-plasmid helper-transducer system. To demonstrate proof-of-concept of the viral paratransgenesis strategy, we used this system to transduce expression of an exogenous gene (enhanced green fluorescent protein; EGFP) in An. gambiae mosquitoes. Wild-type and EGFP-transducing AgDNV virions were highly infectious to An. gambiae larvae, disseminated to and expressed EGFP in epidemiologically relevant adult tissues such as midgut, fat body and ovaries and were transmitted to subsequent mosquito generations. These proof-of-principle data suggest that AgDNV could be used as part of a paratransgenic malaria control strategy by transduction of anti-Plasmodium peptides or insect-specific toxins in Anopheles mosquitoes. AgDNV will also be extremely valuable as an effective and easy-to-use laboratory tool for transient gene expression or RNAi in An. gambiae. PMID:18725926

  16. Co-occurrence Patterns of the Dengue Vector Aedes aegypti and Aedes mediovitattus, a Dengue Competent Mosquito in Puerto Rico

    PubMed Central

    Little, Eliza; Barrera, Roberto; Seto, Karen C.; Diuk-Wasser, Maria

    2015-01-01

    Aedes aegypti is implicated in dengue transmission in tropical and subtropical urban areas around the world. Ae. aegypti populations are controlled through integrative vector management. However, the efficacy of vector control may be undermined by the presence of alternative, competent species. In Puerto Rico, a native mosquito, Ae. mediovittatus, is a competent dengue vector in laboratory settings and spatially overlaps with Ae. aegypti. It has been proposed that Ae. mediovittatus may act as a dengue reservoir during inter-epidemic periods, perpetuating endemic dengue transmission in rural Puerto Rico. Dengue transmission dynamics may therefore be influenced by the spatial overlap of Ae. mediovittatus, Ae. aegypti, dengue viruses, and humans. We take a landscape epidemiology approach to examine the association between landscape composition and configuration and the distribution of each of these Aedes species and their co-occurrence. We used remotely sensed imagery from a newly launched satellite to map landscape features at very high spatial resolution. We found that the distribution of Ae. aegypti is positively predicted by urban density and by the number of tree patches, Ae. mediovittatus is positively predicted by the number of tree patches, but negatively predicted by large contiguous urban areas, and both species are predicted by urban density and the number of tree patches. This analysis provides evidence that landscape composition and configuration is a surrogate for mosquito community composition, and suggests that mapping landscape structure can be used to inform vector control efforts as well as to inform urban planning. PMID:21989642

  17. A SIMPLIFIED MODEL FOR PREDICTING MALARIA ENTOMOLOGIC INOCULATION RATES BASED ON ENTOMOLOGIC AND PARASITOLOGIC PARAMETERS RELEVANT TO CONTROL

    PubMed Central

    KILLEEN, GERRY F.; McKENZIE, F. ELLIS; FOY, BRIAN D.; SCHIEFFELIN, CATHERINE; BILLINGSLEY, PETER F.; BEIER, JOHN C.

    2008-01-01

    Malaria transmission intensity is modeled from the starting perspective of individual vector mosquitoes and is expressed directly as the entomologic inoculation rate (EIR). The potential of individual mosquitoes to transmit malaria during their lifetime is presented graphically as a function of their feeding cycle length and survival, human biting preferences, and the parasite sporogonic incubation period. The EIR is then calculated as the product of 1) the potential of individual vectors to transmit malaria during their lifetime, 2) vector emergence rate relative to human population size, and 3) the infectiousness of the human population to vectors. Thus, impacts on more than one of these parameters will amplify each other’s effects. The EIRs transmitted by the dominant vector species at four malaria-endemic sites from Papua New Guinea, Tanzania, and Nigeria were predicted using field measurements of these characteristics together with human biting rate and human reservoir infectiousness. This model predicted EIRs (± SD) that are 1.13 ± 0.37 (range = 0.84–1.59) times those measured in the field. For these four sites, mosquito emergence rate and lifetime transmission potential were more important determinants of the EIR than human reservoir infectiousness. This model and the input parameters from the four sites allow the potential impacts of various control measures on malaria transmission intensity to be tested under a range of endemic conditions. The model has potential applications for the development and implementation of transmission control measures and for public health education. PMID:11289661

  18. Generation of a Lineage II Powassan Virus (Deer Tick Virus) cDNA Clone: Assessment of Flaviviral Genetic Determinants of Tick and Mosquito Vector Competence.

    PubMed

    Kenney, Joan L; Anishchenko, Michael; Hermance, Meghan; Romo, Hannah; Chen, Ching-I; Thangamani, Saravanan; Brault, Aaron C

    2018-05-21

    The Flavivirus genus comprises a diverse group of viruses that utilize a wide range of vertebrate hosts and arthropod vectors. The genus includes viruses that are transmitted solely by mosquitoes or vertebrate hosts as well as viruses that alternate transmission between mosquitoes or ticks and vertebrates. Nevertheless, the viral genetic determinants that dictate these unique flaviviral host and vector specificities have been poorly characterized. In this report, a cDNA clone of a flavivirus that is transmitted between ticks and vertebrates (Powassan lineage II, deer tick virus [DTV]) was generated and chimeric viruses between the mosquito/vertebrate flavivirus, West Nile virus (WNV), were constructed. These chimeric viruses expressed the prM and E genes of either WNV or DTV in the heterologous nonstructural (NS) backbone. Recombinant chimeric viruses rescued from cDNAs were characterized for their capacity to grow in vertebrate and arthropod (mosquito and tick) cells as well as for in vivo vector competence in mosquitoes and ticks. Results demonstrated that the NS elements were insufficient to impart the complete mosquito or tick growth phenotypes of parental viruses; however, these NS genetic elements did contribute to a 100- and 100,000-fold increase in viral growth in vitro in tick and mosquito cells, respectively. Mosquito competence was observed only with parental WNV, while infection and transmission potential by ticks were observed with both DTV and WNV-prME/DTV chimeric viruses. These data indicate that NS genetic elements play a significant, but not exclusive, role for vector usage of mosquito- and tick-borne flaviviruses.

  19. Current status of Plasmodium knowlesi vectors: a public health concern?

    PubMed

    Vythilingam, I; Wong, M L; Wan-Yussof, W S

    2018-01-01

    Plasmodium knowlesi a simian malaria parasite is currently affecting humans in Southeast Asia. Malaysia has reported the most number of cases and P. knowlesi is the predominant species occurring in humans. The vectors of P. knowlesi belong to the Leucosphyrus group of Anopheles mosquitoes. These are generally described as forest-dwelling mosquitoes. With deforestation and changes in land-use, some species have become predominant in farms and villages. However, knowledge on the distribution of these vectors in the country is sparse. From a public health point of view it is important to know the vectors, so that risk factors towards knowlesi malaria can be identified and control measures instituted where possible. Here, we review what is known about the knowlesi malaria vectors and ascertain the gaps in knowledge, so that future studies could concentrate on this paucity of data in-order to address this zoonotic problem.

  20. Insect Repellents: Modulators of mosquito odorant receptor activity

    USDA-ARS?s Scientific Manuscript database

    Mosquitoes vector numerous pathogens that cause diseases including malaria, yellow fever, dengue fever and chikungunya. DEET, IR3535, Picaridin and 2-undecanone are insect repellents that are used to prevent interactions between humans and a broad array of disease vectors including mosquitoes. While...

  1. Mosquito populations dynamics associated with climate variations.

    PubMed

    Wilke, André Barretto Bruno; Medeiros-Sousa, Antônio Ralph; Ceretti-Junior, Walter; Marrelli, Mauro Toledo

    2017-02-01

    Mosquitoes are responsible for the transmission of numerous serious pathogens. Members of the Aedes and Culex genera, which include many important vectors of mosquito-borne diseases, are highly invasive and adapted to man-made environments. They are spread around the world involuntarily by humans and are highly adapted to urbanized environments, where they are exposed to climate-related abundance drivers. We investigated Culicidae fauna in two urban parks in the city of São Paulo to analyze the correlations between climatic variables and the population dynamics of mosquitoes in these urban areas. Mosquitoes were collected monthly over one year, and sampling sufficiency was evaluated after morphological identification of the specimens. The average monthly temperature and accumulated rainfall for the collection month and previous month were used to explain climate-related abundance drivers for the six most abundant species (Aedes aegypti, Aedes albopictus, Aedes fluviatilis, Aedes scapularis, Culex nigripalpus and Culex quinquefasciatus) and then analyzed using generalized linear statistical models and the Akaike Information Criteria corrected for small samples (AICc). The strength of evidence in favor of each model was evaluated using Akaike weights, and the explanatory model power was measured by McFadden's Pseudo-R 2 . Associations between climate and mosquito abundance were found in both parks, indicating that predictive models based on climate variables can provide important information on mosquito population dynamics. We also found that this association is species-dependent. Urbanization processes increase the abundance of a few mosquito species that are well adapted to man-made environments and some of which are important vectors of pathogens. Predictive models for abundance based on climate variables may help elucidate the population dynamics of urban mosquitoes and their impact on the risk of disease transmission, allowing better predictive scenarios to be developed and supporting the implementation of vector mosquito control strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Reverse chemical ecology approach for the identification of a mosquito oviposition attractant

    USDA-ARS?s Scientific Manuscript database

    Pheromones and other semiochemicals play a crucial role in today’s integrated pest and vector management strategies for controlling populations of insects causing loses to agriculture and vectoring diseases to humans. These semiochemicals are typically discovered by bioassay-guided approaches. Here,...

  3. Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum.

    PubMed

    Lambrechts, Louis; Halbert, Jean; Durand, Patrick; Gouagna, Louis C; Koella, Jacob C

    2005-01-11

    Most studies on the resistance of mosquitoes to their malaria parasites focus on the response of a mosquito line or colony against a single parasite genotype. In natural situations, however, it may be expected that mosquito-malaria relationships are based, as are many other host-parasite systems, on host genotype by parasite genotype interactions. In such systems, certain hosts are resistant to one subset of the parasite's genotypes, while other hosts are resistant to a different subset. To test for genotype by genotype interactions between malaria parasites and their anopheline vectors, different genetic backgrounds (families consisting of the F1 offspring of individual females) of the major African vector Anopheles gambiae were challenged with several isolates of the human malaria parasite Plasmodium falciparum (obtained from naturally infected children in Kenya). Averaged across all parasites, the proportion of infected mosquitoes and the number of oocysts found in their midguts were similar in all mosquito families. Both indices of resistance, however, differed considerably among isolates of the parasite. In particular, no mosquito family was most resistant to all parasites, and no parasite isolate was most infectious to all mosquitoes. These results suggest that the level of mosquito resistance depends on the interaction between its own and the parasite's genotype. This finding thus emphasizes the need to take into account the range of genetic diversity exhibited by mosquito and malaria field populations in ideas and studies concerning the control of malaria.

  4. Evaluation of sticky traps for adult Aedes mosquitoes in Malaysia: a potential monitoring and surveillance tool for the efficacy of control strategies.

    PubMed

    Roslan, Muhammad Aidil; Ngui, Romano; Vythilingam, Indra; Sulaiman, Wan Yusoff Wan

    2017-12-01

    The present study compared the performance of sticky traps in order to identify the most effective and practical trap for capturing Aedes aegypti and Aedes albopictus mosquitoes. Three phases were conducted in the study, with Phase 1 evaluating the five prototypes (Models A, B, C, D, and E) of sticky trap release-and-recapture using two groups of mosquito release numbers (five and 50) that were released in each replicate. Similarly, Phase 2 compared the performance between Model E and the classical ovitrap that had been modified (sticky ovitrap), using five and 50 mosquito release numbers. Further assessment of both traps was carried out in Phase 3, in which both traps were installed in nine sampling grids. Results from Phase 1 showed that Model E was the trap that recaptured higher numbers of mosquitoes when compared to Models A, B, C, and D. Further assessment between Model E and the modified sticky ovitrap (known as Model F) found that Model F outperformed Model E in both Phases 2 and 3. Thus, Model F was selected as the most effective and practical sticky trap, which could serve as an alternative tool for monitoring and controlling dengue vectors in Malaysia. © 2017 The Society for Vector Ecology.

  5. Factors influencing the spatial distribution of Anopheles larvae in Coimbatore District, Tamil Nadu, India.

    PubMed

    Arjunan, Naresh Kumar; Kadarkarai, Murugan; Kumar, Shobana; Pari, Madhiyazhagan; Thiyagarajan, Nataraj; Vincent, C Thomas; Barnard, Donald R

    2015-12-01

    Malaria causes extensive morbidity and mortality in humans and results in significant economic losses in India. The distribution of immature malaria-transmitting Anopheles mosquitoes was studied in 17 villages in Coimbatore District as a prelude to the development and implementation of vector control strategies that are intended to reduce the risk of human exposure to potentially infectious mosquitoes. Eight Anopheles species were recorded. The most numerous species were Anopheles vagus, Anopheles subpictus, and Anopheles hyrcanus. The location of mosquito development sites and the density of larvae in each village was evaluated for correlation with selected demographic, biologic, and land use parameters using remote sensing and geographic information systems (GIS) technology. We found the number of mosquito development sites in a village and the density of larvae in such sites to be positively correlated with human population density but not the surface area (km(2)) of the village. The number of mosquito development sites and the density of larvae in each site were not correlated. Data from this study are being used to construct a GIS-based mapping system that will enable the location of aquatic habitats with Anopheles larvae in the Coimbatore District, Tamil Nadu, India as target sites for the application of vector control. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. An SIR-Dengue transmission model with seasonal effects and impulsive control.

    PubMed

    Páez Chávez, Joseph; Götz, Thomas; Siegmund, Stefan; Wijaya, Karunia Putra

    2017-07-01

    In recent decades, Dengue fever and its deadly complications, such as Dengue hemorrhagic fever, have become one of the major mosquito-transmitted diseases, with an estimate of 390 million cases occurring annually in over 100 tropical and subtropical countries, most of which belonging to the developing world. Empirical evidence indicates that the most effective mechanism to reduce Dengue infections is to combat the disease-carrying vector, which is often implemented via chemical pesticides to destroy mosquitoes in their adult or larval stages. The present paper considers an SIR epidemiological model describing the vector-to-host and host-to-vector transmission dynamics. The model includes pesticide control represented in terms of periodic impulsive perturbations, as well as seasonal fluctuations of the vector growth and transmission rates of the disease. The effectiveness of the control strategy is studied numerically in detail by means of path-following techniques for non-smooth dynamical systems. Special attention is given to determining the optimal timing of the pesticide applications, in such a way that the number of infections and the required amount of pesticide are minimized. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Guidance for Evaluating the Safety of Experimental Releases of Mosquitoes, Emphasizing Mark-Release-Recapture Techniques

    PubMed Central

    Charlwood, J. Derek; Harrington, Laura C.; Lounibos, L. Philip; Reisen, William K.; Tabachnick, Walter J.

    2018-01-01

    Abstract Experimental releases of mosquitoes are performed to understand characteristics of populations related to the biology, ability to transmit pathogens, and ultimately their control. In this article, we discuss considerations related to the safety of experimental releases of living mosquitoes, applying principles of good practice in vector biology that protect human health and comfort. We describe specific factors of experimental releases of mosquitoes that we believe are critical to inform institutional biosafety committees and similar review boards to which proposals to conduct mosquito release experiments have been submitted. In this study, “experimental releases” means those that do not significantly increase vector capacity or nuisance biting relative to the unperturbed natural baseline. This document specifically does not address releases of mosquitoes for ongoing control programs or trials of new control methods for which broader assessments of risk are required. It also does not address releases of transgenic or exotic (non-native) mosquito species, both of which require particular regulatory approval. Experimental releases may include females and males and evaluation must consider their effects based on the number released, their genotype and phenotype, the environment into which they are released, and postrelease collection activities. We consider whether increases of disease transmission and nuisance biting might result from proposed experimental releases against the backdrop of natural population size variation. We recommend that experimental releases be conducted in a manner that can be reasonably argued to have insignificant negative effects. Reviewers of proposals for experimental releases should expect applicants to provide such an argument based on evidence from similar studies and their planned activities. This document provides guidance for creating and evaluating such proposals. PMID:29337660

  8. Guidance for Evaluating the Safety of Experimental Releases of Mosquitoes, Emphasizing Mark-Release-Recapture Techniques.

    PubMed

    Benedict, Mark Q; Charlwood, J Derek; Harrington, Laura C; Lounibos, L Philip; Reisen, William K; Tabachnick, Walter J

    2018-01-01

    Experimental releases of mosquitoes are performed to understand characteristics of populations related to the biology, ability to transmit pathogens, and ultimately their control. In this article, we discuss considerations related to the safety of experimental releases of living mosquitoes, applying principles of good practice in vector biology that protect human health and comfort. We describe specific factors of experimental releases of mosquitoes that we believe are critical to inform institutional biosafety committees and similar review boards to which proposals to conduct mosquito release experiments have been submitted. In this study, "experimental releases" means those that do not significantly increase vector capacity or nuisance biting relative to the unperturbed natural baseline. This document specifically does not address releases of mosquitoes for ongoing control programs or trials of new control methods for which broader assessments of risk are required. It also does not address releases of transgenic or exotic (non-native) mosquito species, both of which require particular regulatory approval. Experimental releases may include females and males and evaluation must consider their effects based on the number released, their genotype and phenotype, the environment into which they are released, and postrelease collection activities. We consider whether increases of disease transmission and nuisance biting might result from proposed experimental releases against the backdrop of natural population size variation. We recommend that experimental releases be conducted in a manner that can be reasonably argued to have insignificant negative effects. Reviewers of proposals for experimental releases should expect applicants to provide such an argument based on evidence from similar studies and their planned activities. This document provides guidance for creating and evaluating such proposals.

  9. Combined effect of seaweed (Sargassum wightii) and Bacillus thuringiensis var. israelensis on the coastal mosquito,Anopheles sundaicus, in Tamil Nadu, India

    USDA-ARS?s Scientific Manuscript database

    Studies were made of the extract of Sargassum wightii combined with Bacillus thuringiensis var. israelensis (Bti) for control of the malaria vector Anopheles sundaicus. Treatment of mosquito larvae with 0.001% S. wightii extract indicated median lethal concentrations (LC50) of 88, 73, 134, 156, and...

  10. Japanese encephalitis on Saipan: a survey of suspected mosquito vectors.

    PubMed

    Mitchell, C J; Savage, H M; Smith, G C; Flood, S P; Castro, L T; Roppul, M

    1993-04-01

    An outbreak of Japanese encephalitis (JE) occurred on Saipan, Commonwealth of Northern Mariana Islands, in October 1990. Adult and larval mosquitoes were collected during September-October 1991 to retrospectively determine the probable mosquito vector(s). Virus was not isolated from 119 mosquito pools composed of 7,250 adult specimens as follows: Aedes vexans nocturnis (14%), Culex tritaeniorhynchus (39%), Cx. sitiens group (11%), Culex (Culex) species (35%), and < 1% each of Ae. albopictus, Ae. oakleyi, Aedes saipanensis, Cx. annulirostris marianae, and Cx. fuscanus. Three additional species were collected only as larvae: Anopheles indefinitus, Ae. neopandani, and Cx. quinquefasciatus. Among the vectors of JE incriminated in other areas, Cx. tritaeniorhynchus was the predominant species in our collections and the principal species feeding on swine. This is the first published record of the occurrence of this species on Saipan. Culex tritaeniorhynchus is abundant and widely distributed on the southern half of Saipan where human JE cases occurred in 1990, and where swine seroconversions were detected. Although the identity of the mosquito vector(s) responsible for the 1990 outbreak cannot be established with certainty, our results suggest that Cx. tritaeniorhychus was probably involved.

  11. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach.

    PubMed

    Mitsakakis, Konstantinos; Hin, Sebastian; Müller, Pie; Wipf, Nadja; Thomsen, Edward; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-02-03

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium , is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.

  12. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach

    PubMed Central

    Mitsakakis, Konstantinos; Hin, Sebastian; Wipf, Nadja; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-01-01

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach. PMID:29401670

  13. GLOBE Observer Mosquito Habitat Mapper: Geoscience and Public Health Connections

    NASA Astrophysics Data System (ADS)

    Low, R.; Boger, R. A.

    2017-12-01

    The global health crisis posed by vector-borne diseases is so great in scope that it is clearly insurmountable without the active help of tens-or hundreds- of thousands of individuals, working to identify and eradicate risk in communities around the world. Mobile devices equipped with data collection capabilities and visualization opportunities are lowering the barrier for participation in data collection efforts. The GLOBE Observer Mosquito Habitat Mapper (MHM) provides citizen scientists with an easy to use mobile platform to identify and locate mosquito breeding sites in their community. The app also supports the identification of vector taxa in the larvae development phase via a built-in key, which provides important information for scientists and public health officials tracking the rate of range expansion of invasive vector species and associated health threats. GO Mosquito is actively working with other citizen scientist programs across the world to ensure interoperability of data through standardization of metadata fields specific to vector monitoring, and through the development of APIs that allow for data exchange and shared data display through a UN-sponsored proof of concept project, Global Mosquito Alert. Avenues of application for mosquito vector data-both directly, by public health entities, and by modelers who employ remotely sensed environmental data to project mosquito population dynamics and epidemic disease will be featured.

  14. Zika Virus in Salivary Glands of Five Different Species of Wild-Caught Mosquitoes from Mexico.

    PubMed

    Elizondo-Quiroga, Darwin; Medina-Sánchez, Aarón; Sánchez-González, Jorge M; Eckert, Kristen Allison; Villalobos-Sánchez, Erendira; Navarro-Zúñiga, Antonio Rigoberto; Sánchez-Tejeda, Gustavo; Correa-Morales, Fabián; González-Acosta, Cassandra; Arias, Carlos F; López, Susana; Del Ángel, Rosa María; Pando-Robles, Victoria; Elizondo-Quiroga, Armando E

    2018-01-16

    Zika virus (ZIKV) is a mosquito-borne pathogen, and Aedes aegypti has been identified as the main vector of the disease. Other mosquito species in the Aedes and Culex genera have been suggested to have the potential for being competent vectors based on experimental exposition of mosquitoes to an infectious blood meal containing ZIKV. Here, we report the isolation in cell culture of ZIKV obtained from different body parts of wild-caught female mosquitoes (Ae. aegypti, Ae. vexans, Cx. quinquefasciatus, Cx. coronator, and Cx. tarsalis) and whole male mosquitoes (Ae. aegypti and Cx. quinquefasciatus) in Mexico. Importantly, this is the first report that shows the presence of the virus in the salivary glands of the wild-caught female mosquitoes species, Cx. coronator, Cx. tarsalis, and Ae. vexans. Our findings strongly suggest that all the species reported herein are potential vectors for ZIKV.

  15. Field efficacy of expanded polystyrene and shredded waste polystyrene beads for mosquito control in artificial pools and field trials, Islamic Republic of Iran.

    PubMed

    Soltani, A; Vatandoost, H; Jabbari, H; Mesdaghinia, A R; Mahvi, A H; Younesian, M; Hanafi-Bojd, A A; Bozorgzadeh, S

    2012-10-01

    Concerns about traditional chemical pesticides has led to increasing research into novel mosquito control methods. This study compared the effectiveness of 2 different types of polystyrene beads for control of mosquito larvae in south-east Islamic Republic of Iran. Simulated field trials were done in artificial pools and field trials were carried out in 2 villages in an indigenous malaria area using WHO-recommended methods. Application of expanded polystyrene beads or shredded, waste polystyrene chips to pool surfaces produced a significant difference between pre-treatment and post-treatment density of mosquitoes (86% and 78% reduction respectively 2 weeks after treatment). There was no significant difference between the efficacy of the 2 types of material. The use of polystyrene beads as a component of integrated vector management with other supportive measures could assist in the control of mosquito-borne diseases in the Islamic Republic of Iran and neighbouring countries.

  16. The Hydrology of Malaria: Model Development and Application to a Sahelian Village

    NASA Astrophysics Data System (ADS)

    Bomblies, A.; Duchemin, J.; Eltahir, E. A.

    2008-12-01

    We present a coupled hydrology and entomology model for the mechanistic simulation of local-scale response of malaria transmission to hydrological and climatological determinants in semi-arid, desert fringe environments. The model is applied to the Sahel village of Banizoumbou, Niger, to predict interannual variability in malaria vector mosquito populations which lead to variations in malaria transmission. Using a high-resolution, small-scale distributed hydrology model that incorporates remotely-sensed data for land cover and topography, we simulate the formation and persistence of the pools constituting the primary breeding habitat of Anopheles gambiae s.l. mosquitoes, the principal regional malaria vector mosquitoes. An agent-based mosquito population model is coupled to the distributed hydrology model, with aquatic stage and adult stage components. For each individual adult mosquito, the model tracks attributes relevant to population dynamics and malaria transmission, which are updated as mosquitoes interact with their environment, humans, and animals. Weekly field observations were made in 2005 and 2006. The model reproduces mosquito population variability at seasonal and interannual time scales, and highlights individual pool persistence as a dominant control. Future developments to the presented model can be used in the evaluation of impacts of climate change on malaria, as well as the a priori evaluation of environmental management-based interventions.

  17. Meta-analyses of the proportion of Japanese encephalitis virus infection in vectors and vertebrate hosts.

    PubMed

    Oliveira, Ana R S; Cohnstaedt, Lee W; Strathe, Erin; Hernández, Luciana Etcheverry; McVey, D Scott; Piaggio, José; Cernicchiaro, Natalia

    2017-09-07

    Japanese encephalitis (JE) is a zoonosis in Southeast Asia vectored by mosquitoes infected with the Japanese encephalitis virus (JEV). Japanese encephalitis is considered an emerging exotic infectious disease with potential for introduction in currently JEV-free countries. Pigs and ardeid birds are reservoir hosts and play a major role on the transmission dynamics of the disease. The objective of the study was to quantitatively summarize the proportion of JEV infection in vectors and vertebrate hosts from data pertaining to observational studies obtained in a systematic review of the literature on vector and host competence for JEV, using meta-analyses. Data gathered in this study pertained to three outcomes: proportion of JEV infection in vectors, proportion of JEV infection in vertebrate hosts, and minimum infection rate (MIR) in vectors. Random-effects subgroup meta-analysis models were fitted by species (mosquito or vertebrate host species) to estimate pooled summary measures, as well as to compute the variance between studies. Meta-regression models were fitted to assess the association between different predictors and the outcomes of interest and to identify sources of heterogeneity among studies. Predictors included in all models were mosquito/vertebrate host species, diagnostic methods, mosquito capture methods, season, country/region, age category, and number of mosquitos per pool. Mosquito species, diagnostic method, country, and capture method represented important sources of heterogeneity associated with the proportion of JEV infection; host species and region were considered sources of heterogeneity associated with the proportion of JEV infection in hosts; and diagnostic and mosquito capture methods were deemed important contributors of heterogeneity for the MIR outcome. Our findings provide reference pooled summary estimates of vector competence for JEV for some mosquito species, as well as of sources of variability for these outcomes. Moreover, this work provides useful guidelines when interpreting vector and host infection proportions or prevalence from observational studies, and contributes to further our understanding of vector and vertebrate host competence for JEV, elucidating information on the relative importance of vectors and hosts on JEV introduction and transmission.

  18. Limited impacts of truck-based ultra-low-volume applications of mosquito adulticides on mortality in honey bees (Apis mellifera).

    PubMed

    Rinkevich, F D; Margotta, J W; Pokhrel, V; Walker, T W; Vaeth, R H; Hoffman, W C; Fritz, B K; Danka, R G; Rinderer, T E; Aldridge, R L; Linthicum, K J; Ottea, J A; Healy, K B

    2017-12-01

    Adulticides applied against mosquitoes can reduce vector populations during times of high arbovirus transmission. However, impacts of these insecticides on pollinators and other non-target organisms are of concern to mosquito control professionals, beekeepers and others. We evaluated mortality of Culex quinquefasciatus and Apis mellifera when caged insects were exposed to low and high label rates of four common adulticides (Aqua-Pursuit™ [permethrin], Duet® [prallethrin + sumithrin], Fyfanon® [malathion] and Scourge® [resmethrin]) at six distances up to 91.4 m from a truck-mounted ultra-low-volume sprayer. Honey bee mortality was both absolutely low (61 m had limited impacts on honey bee mortality while providing effective mosquito control.

  19. Oviposition Site Selection by the Dengue Vector Aedes aegypti and Its Implications for Dengue Control

    PubMed Central

    Wong, Jacklyn; Stoddard, Steven T.; Astete, Helvio; Morrison, Amy C.; Scott, Thomas W.

    2011-01-01

    Background Because no dengue vaccine or antiviral therapy is commercially available, controlling the primary mosquito vector, Aedes aegypti, is currently the only means to prevent dengue outbreaks. Traditional models of Ae. aegypti assume that population dynamics are regulated by density-dependent larval competition for food and little affected by oviposition behavior. Due to direct impacts on offspring survival and development, however, mosquito choice in oviposition site can have important consequences for population regulation that should be taken into account when designing vector control programs. Methodology/Principal Findings We examined oviposition patterns by Ae. aegypti among 591 naturally occurring containers and a set of experimental containers in Iquitos, Peru. Using larval starvation bioassays as an indirect measure of container food content, we assessed whether females select containers with the most food for their offspring. Our data indicate that choice of egg-laying site is influenced by conspecific larvae and pupae, container fill method, container size, lid, and sun exposure. Although larval food positively influenced oviposition, our results did not support the hypothesis that females act primarily to maximize food for larvae. Females were most strongly attracted to sites containing immature conspecifics, even when potential competitors for their progeny were present in abundance. Conclusion/Significance Due to strong conspecific attraction, egg-laying behavior may contribute more to regulating Ae. aegypti populations than previously thought. If highly infested containers are targeted for removal or larvicide application, females that would have preferentially oviposited in those sites may instead distribute their eggs among other suitable, previously unoccupied containers. Strategies that kill mosquitoes late in their development (i.e., insect growth regulators that kill pupae rather than larvae) will enhance vector control by creating “egg sinks,” treated sites that exploit conspecific attraction of ovipositing females, but reduce emergence of adult mosquitoes via density-dependent larval competition and late acting insecticide. PMID:21532736

  20. Insecticide susceptibility status and major detoxifying enzymes' activity in Aedes albopictus (Skuse), vector of dengue and chikungunya in Northern part of West Bengal, India.

    PubMed

    Bharati, Minu; Saha, Dhiraj

    2017-06-01

    Mosquitoes belonging to Aedes genus, Aedes aegypti and Aedes albopictus transmit many globally important arboviruses including Dengue (DENV) and Chikungunya (CHIKV). Vector control with the use of insecticide remains the suitable method of choice to stop the transmission of these diseases. However, vector control throughout the world is failing to achieve its target results because of the worldwide development of insecticide resistance in mosquitoes. To assess the insecticide susceptibility status of Aedes albopictus from northern part of West Bengal, the susceptibility of eight different Aedes albopictus populations were tested against a commonly used larvicide (temephos) and some adulticides (malathion, deltamethrin and lambda cyhalothrin) along with the major insecticide detoxifying enzymes' activity in them. Through this study, it was revealed that most of the populations were found susceptible to temephos except Nagrakata (NGK) and Siliguri (SLG), which showed both a higher resistance ratio (RR 99 ) and a lower susceptibility, thereby reflecting the development of resistance against temephos in them. However, all tested adulticides caused 100% mortality in all the population implying their potency in control of this mosquito in this region of India. Through the study of carboxylesterase activity, it was revealed that the NGK population showed a 9.6 fold higher level of activity than susceptible population. The same population also showed a lower level of susceptibility and a higher resistance ratio (RR 99 ), indicating a clear correlation between susceptibility to temephos and carboxylesterase enzymes' activity in this population. This preliminary data reflects that the NGK population is showing a trend towards resistance development and with time, there is possibility that this resistance phenomenon will spread to other populations. With the recurrence of dengue and chikungunya, this data on insecticide susceptibility status of Aedes albopictus could help the authorities engaged in vector control programmes to formulate effective measures against this mosquito in this region. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China.

    PubMed

    Qin, Qian; Li, Yiji; Zhong, Daibin; Zhou, Ning; Chang, Xuelian; Li, Chunyuan; Cui, Liwang; Yan, Guiyun; Chen, Xiao-Guang

    2014-03-03

    Malaria is one of the most important public health problems in Southeast Asia, including Hainan Island, China. Vector control is the main malaria control measure, and insecticide resistance is a major concern for the effectiveness of chemical insecticide control programs. The objective of this study is to determine the resistance status of the main malaria vector species to pyrethroids and other insecticides recommended by the World Health Organization (WHO) for indoor residual sprays. The larvae and pupae of Anopheles mosquitoes were sampled from multiple sites in Hainan Island, and five sites yielded sufficient mosquitoes for insecticide susceptibility bioassays. Bioassays of female adult mosquitoes three days after emergence were conducted in the two most abundant species, Anopheles sinensis and An. vagus, using three insecticides (0.05% deltamethrin, 4% DDT, and 5% malathion) and following the WHO standard tube assay procedure. P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were measured. Mutations at the knockdown resistance (kdr) gene and the ace-1 gene were detected by DNA sequencing and PCR-RFLP analysis, respectively. An. sinensis and An. vagus were the predominant Anopheles mosquito species. An. sinensis was found to be resistant to DDT and deltamethrin. An. vagus was susceptible to deltamethrin but resistant to DDT and malathion. Low kdr mutation (L1014F) frequency (<10%) was detected in An. sinensis, but no kdr mutation was detected in An. vagus populations. Modest to high (45%-75%) ace-1 mutation frequency was found in An. sinensis populations, but no ace-1 mutation was detected in An. vagus populations. Significantly higher P450 monooxygenase and carboxylesterase activities were detected in deltamethrin-resistant An. sinensis, and significantly higher P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were found in malathion-resistant An. vagus mosquitoes. Multiple insecticide resistance was found in An. sinensis and An. vagus in Hainan Island, a malaria-endemic area of China. Cost-effective integrated vector control programs that go beyond synthetic insecticides are urgently needed.

  2. Use of a tandem affinity purification assay to detect interactions between West Nile and dengue viral proteins and proteins of the mosquito vector

    PubMed Central

    Colpitts, Tonya M.; Cox, Jonathan; Nguyen, Annie; Feitosa, Fabiana; Krishnan, Manoj N.; Fikrig, Erol

    2011-01-01

    West Nile and dengue viruses are (re)emerging mosquito-borne flaviviruses that cause significant morbidity and mortality in man. The identification of mosquito proteins that associate with flaviviruses may provide novel targets to inhibit infection of the vector or block transmission to humans. Here, a tandem affinity purification (TAP) assay was used to identify 18 mosquito proteins that interact with dengue and West Nile capsid, envelope, NS2A or NS2B proteins. We further analyzed the interaction of mosquito cadherin with dengue and West Nile virus envelope protein using co-immunoprecipitation and immunofluorescence. Blocking the function of select mosquito factors, including actin, myosin, PI3-kinase and myosin light chain kinase, reduced both dengue and West Nile virus infection in mosquito cells. We show that the TAP method may be used in insect cells to accurately identify flaviviral-host protein interactions. Our data also provides several targets for interrupting flavivirus infection in mosquito vectors. PMID:21700306

  3. Nest Mosquito Trap quantifies contact rates between nesting birds and mosquitoes.

    PubMed

    Caillouët, Kevin A; Riggan, Anna E; Rider, Mark; Bulluck, Lesley P

    2012-06-01

    Accurate estimates of host-vector contact rates are required for precise determination of arbovirus transmission intensity. We designed and tested a novel mosquito collection device, the Nest Mosquito Trap (NMT), to collect mosquitoes as they attempt to feed on unrestrained nesting birds in artificial nest boxes. In the laboratory, the NMT collected nearly one-third of the mosquitoes introduced to the nest boxes. We then used these laboratory data to estimate our capture efficiency of field-collected bird-seeking mosquitoes collected over 66 trap nights. We estimated that 7.5 mosquitoes per trap night attempted to feed on nesting birds in artificial nest boxes. Presence of the NMT did not have a negative effect on avian nest success when compared to occupied nest boxes that were not sampled with the trap. Future studies using the NMT may elucidate the role of nestlings in arbovirus transmission and further refine estimates of nesting bird and vector contact rates. © 2012 The Society for Vector Ecology.

  4. Optimized Pan-species and Speciation Duplex Real-time PCR Assays for Plasmodium Parasites Detection in Malaria Vectors

    PubMed Central

    Sandeu, Maurice Marcel; Moussiliou, Azizath; Moiroux, Nicolas; Padonou, Gilles G.; Massougbodji, Achille; Corbel, Vincent; Tuikue Ndam, Nicaise

    2012-01-01

    Background An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. Methods Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. Results The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. Conclusion This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations. PMID:23285168

  5. Sterculia guttata seeds extractives--an effective mosquito larvicide.

    PubMed

    Katade, Sushama R; Pawar, Pushpa V; Wakharkar, Radhika D; Deshpande, Nirmala R

    2006-08-01

    The larvicidal activity of ethanol, chloroform and hexane soxhlet extracts obtained from S. guttata seeds was investigated against the IVth instar larvae of Dengue fever vector, Aedes aegypti and filarial vector, Culex quinquefasciatus. All extracts including fractions of ethanol extract exhibited 100% larval kill within 24 hr exposure period at 500 ppm concentration. Fraction A1 of ethanol was found to be most promising; its LC50 was 21.552 and 35.520 ppm against C. quinquefasciatus and A. aegypti respectively. Naturally occurring S. guttata seed derived fractions merit further study as potential mosquito larval control agents or lead compounds.

  6. Surveillance of Mosquitoes (Diptera: Culicidae) in Southern Iowa, 2016.

    PubMed

    Kovach, Kristofer B; Smith, Ryan C

    2018-05-19

    The mosquito fauna of Iowa has been extensively investigated over several decades, providing a wealth of information regarding species distributions, relative abundance, temporal activity patterns, and identifying vectors of medical importance. However, these investigations have had unequal coverage, leaving the mosquito fauna in some parts of the state, including southern Iowa, largely uncharacterized. With the heightened public health threat of Zika virus in the summer of 2016, greater emphasis was placed on surveying for two potential Zika virus vectors: Aedes (Stegomyia) albopictus (Skuse) and Aedes (Stegomyia) aegypti (Linnaeus). Southern Iowa became an area of interest due to the range of Ae. Albopictus, potentially extending into this part of the state. Employing CO2-baited Centers for Disease Control and Prevention light traps and BG-Sentinel traps, our targeted trapping efforts in southern Iowa did not yield either Ae. albopictus or Ae. aegypti. However, the geographical expansion of our trapping efforts did lend valuable insights into the mosquito fauna of southern Iowa. Mosquito species such as Aedes atropalpus (Coquillett), Culex erraticus (Dyar and Knab), and several Psorophora species once presumed rare or uncommon in the state were found to be more prevalent in this ecologically diverse region, augmenting our understanding of mosquito distributions in the state. Moreover, these surveillance efforts established baseline data for continued monitoring of the potential introduction and spread of invasive mosquito species in Iowa as part of an integrated mosquito management program.

  7. Zika virus infection-the next wave after dengue?

    PubMed

    Wong, Samson Sai-Yin; Poon, Rosana Wing-Shan; Wong, Sally Cheuk-Ying

    2016-04-01

    Zika virus was initially discovered in east Africa about 70 years ago and remained a neglected arboviral disease in Africa and Southeast Asia. The virus first came into the limelight in 2007 when it caused an outbreak in Micronesia. In the ensuing decade, it spread widely in other Pacific islands, after which its incursion into Brazil in 2015 led to a widespread epidemic in Latin America. In most infected patients the disease is relatively benign. Serious complications include Guillain-Barré syndrome and congenital infection which may lead to microcephaly and maculopathy. Aedes mosquitoes are the main vectors, in particular, Ae. aegypti. Ae. albopictus is another potential vector. Since the competent mosquito vectors are highly prevalent in most tropical and subtropical countries, introduction of the virus to these areas could readily result in endemic transmission of the disease. The priorities of control include reinforcing education of travellers to and residents of endemic areas, preventing further local transmission by vectors, and an integrated vector management programme. The container habitats of Ae. aegypti and Ae. albopictus means engagement of the community and citizens is of utmost importance to the success of vector control. Copyright © 2016. Published by Elsevier B.V.

  8. Composition and Genetic Diversity of Mosquitoes (Diptera: Culicidae) on Islands and Mainland Shores of Kenya’s Lakes Victoria and Baringo

    PubMed Central

    Ajamma, Yvonne Ukamaka; Villinger, Jandouwe; Omondi, David; Salifu, Daisy; Onchuru, Thomas Ogao; Njoroge, Laban; Muigai, Anne W. T.; Masiga, Daniel K.

    2016-01-01

    The Lake Baringo and Lake Victoria regions of Kenya are associated with high seroprevalence of mosquito-transmitted arboviruses. However, molecular identification of potential mosquito vector species, including morphologically identified ones, remains scarce. To estimate the diversity, abundance, and distribution of mosquito vectors on the mainland shores and adjacent inhabited islands in these regions, we collected and morphologically identified adult and immature mosquitoes and obtained the corresponding sequence variation at cytochrome c oxidase 1 (COI) and internal transcribed spacer region 2 (ITS2) gene regions. A total of 63 species (including five subspecies) were collected from both study areas, 47 of which have previously been implicated as disease vectors. Fourteen species were found only on island sites, which are rarely included in mosquito diversity surveys. We collected more mosquitoes, yet with lower species composition, at Lake Baringo (40,229 mosquitoes, 32 species) than at Lake Victoria (22,393 mosquitoes, 54 species). Phylogenetic analysis of COI gene sequences revealed Culex perexiguus and Cx. tenagius that could not be distinguished morphologically. Most Culex species clustered into a heterogeneous clade with closely related sequences, while Culex pipiens clustered into two distinct COI and ITS2 clades. These data suggest limitations in current morphological identification keys. This is the first DNA barcode report of Kenyan mosquitoes. To improve mosquito species identification, morphological identifications should be supported by their molecular data, while diversity surveys should target both adults and immatures. The diversity of native mosquito disease vectors identified in this study impacts disease transmission risks to humans and livestock. PMID:27402888

  9. Mosquito-Disseminated Insecticide for Citywide Vector Control and Its Potential to Block Arbovirus Epidemics: Entomological Observations and Modeling Results from Amazonian Brazil

    PubMed Central

    Abad-Franch, Fernando; Luz, Sérgio L. B.

    2017-01-01

    Background Mosquito-borne viruses threaten public health worldwide. When the ratio of competent vectors to susceptible humans is low enough, the virus’s basic reproductive number (R0) falls below 1.0 (each case generating, on average, <1.0 additional case) and the infection fades out from the population. Conventional mosquito control tactics, however, seldom yield R0 < 1.0. A promising alternative uses mosquitoes to disseminate a potent growth-regulator larvicide, pyriproxyfen (PPF), to aquatic larval habitats; this kills most mosquito juveniles and substantially reduces adult mosquito emergence. We tested mosquito-disseminated PPF in Manacapuru, a 60,000-inhabitant city (~650 ha) in Amazonian Brazil. Methods and Findings We sampled juvenile mosquitoes monthly in 100 dwellings over four periods in February 2014–January 2016: 12 baseline months, 5 mo of citywide PPF dissemination, 3 mo of focal PPF dissemination around Aedes-infested dwellings, and 3 mo after dissemination ended. We caught 19,434 juvenile mosquitoes (66% Aedes albopictus, 28% Ae. aegypti) in 8,271 trap-months. Using generalized linear mixed models, we estimated intervention effects on juvenile catch and adult emergence while adjusting for dwelling-level clustering, unequal sampling effort, and weather-related confounders. Following PPF dissemination, Aedes juvenile catch decreased by 79%–92% and juvenile mortality increased from 2%–7% to 80%–90%. Mean adult Aedes emergence fell from 1,077 per month (range 653–1,635) at baseline to 50.4 per month during PPF dissemination (range 2–117). Female Aedes emergence dropped by 96%–98%, such that the number of females emerging per person decreased to 0.06 females per person-month (range 0.002–0.129). Deterministic models predict, under plausible biological-epidemiological scenarios, that the R0 of typical Aedes-borne viruses would fall from 3–45 at baseline to 0.004–0.06 during PPF dissemination. The main limitations of our study were that it was a before–after trial lacking truly independent replicates and that we did not measure mosquito-borne virus transmission empirically. Conclusions Mosquito-disseminated PPF has potential to block mosquito-borne virus transmission citywide, even under adverse scenarios. Our results signal new avenues for mosquito-borne disease prevention, likely including the effective control of Aedes-borne dengue, Zika, and chikungunya epidemics. Cluster-randomized controlled trials will help determine whether mosquito-disseminated PPF can, as our findings suggest, develop into a major tool for improving global public health. PMID:28095414

  10. Vector Competence of New Zealand Mosquitoes for Selected Arboviruses

    PubMed Central

    Kramer, Laura D.; Chin, Pam; Cane, Rachel P.; Kauffman, Elizabeth B.; Mackereth, Graham

    2011-01-01

    New Zealand (NZ) historically has been free of arboviral activity with the exception of Whataroa virus (Togaviridae: Alphavirus), which is established in bird populations and is transmitted by local mosquitoes. This naive situation is threatened by global warming, invasive mosquitoes, and tourism. To determine the threat of selected medically important arboviruses to NZ, vector competence assays were conducted using field collected endemic and introduced mosquito species. Four alphaviruses (Togaviridae): Barmah Forest virus, Chikungunya virus, Ross River virus, and Sindbis virus, and five flaviviruses (Flaviviridae): Dengue virus 2, Japanese encephalitis virus, Murray Valley encephalitis virus, West Nile virus, and Yellow fever virus were evaluated. Results indicate some NZ mosquito species are highly competent vectors of selected arboviruses, particularly alphaviruses, and may pose a threat were one of these arboviruses introduced at a time when the vector was prevalent and the climatic conditions favorable for virus transmission. PMID:21734146

  11. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection.

    PubMed

    Bonizzoni, Mariangela; Dunn, W Augustine; Campbell, Corey L; Olson, Ken E; Marinotti, Osvaldo; James, Anthony A

    2012-01-01

    Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1-4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes.

  12. Development and validation of a climate-based ensemble prediction model for West Nile Virus infection rates in Culex mosquitoes, Suffolk County, New York.

    PubMed

    Little, Eliza; Campbell, Scott R; Shaman, Jeffrey

    2016-08-09

    West Nile Virus (WNV) is an endemic public health concern in the United States that produces periodic seasonal epidemics. Underlying these outbreaks is the enzootic cycle of WNV between mosquito vectors and bird hosts. Identifying the key environmental conditions that facilitate and accelerate this cycle can be used to inform effective vector control. Here, we model and forecast WNV infection rates among mosquito vectors in Suffolk County, New York using readily available meteorological and hydrological conditions. We first validate a statistical model built with surveillance data between 2001 and 2009 (m09) and specify a set of new statistical models using surveillance data from 2001 to 2012 (m12). This ensemble of new models is then used to make predictions for 2013-2015, and multimodel inference is employed to provide a formal probabilistic interpretation across the disparate individual model predictions. The findings of the m09 and m12 models align; with the ensemble of m12 models indicating an association between warm, dry early spring (April) conditions and increased annual WNV infection rates in Culex mosquitoes. This study shows that real-time climate information can be used to predict WNV infection rates in Culex mosquitoes prior to its seasonal peak and before WNV spillover transmission risk to humans is greatest.

  13. Hydrology and Mosquito Population Dynamics around a Hydropower Reservoir in Africa

    NASA Astrophysics Data System (ADS)

    Endo, N.; Eltahir, E. A.

    2013-12-01

    Malaria is associated with dams because their reservoirs provide mosquitoes, the vector of malaria, with permanent breeding sites. The risk of contracting malaria is likely to be enhanced following the increasing trend of hydropower dam construction to satisfy the expanding energy needs in developing countries. A close examination of its adverse health impacts is critical in the design, construction, and operation phases. We will present results of extensive field studies in 2012 and 2013 around the Koka Reservoir, Ethiopia. The results uncover the importance of reservoir management especially after the rainy seasons. Furthermore, we show the capability of a newly modified hydrology, entomology and malaria transmission simulator, HYDREMATS (Bomblies et al, 2008), and its potential as a tool for evaluating environmental management strategies to control malaria. HYDREMATS was developed to represent how the hydrology in nearby villages is impacted by the reservoir system, and the role of different types of vector ecologies associated with different Anopheles mosquito species. The hydrology component of HYDREMATS simulates three different mosquito breeding habitats: rain-fed pools, groundwater pools, and shoreline water. The entomology component simulates the life cycles of An. funestus and An. arabiensis, the two main vectors around the reservoir. The model was calibrated over the 2012-2013 period. The impact of reservoir water level management on the mosquito population is explored based on numerical model simulations and field experiments.

  14. Mosquito communities and disease risk influenced by land use change and seasonality in the Australian tropics.

    PubMed

    Meyer Steiger, Dagmar B; Ritchie, Scott A; Laurance, Susan G W

    2016-07-07

    Anthropogenic land use changes have contributed considerably to the rise of emerging and re-emerging mosquito-borne diseases. These diseases appear to be increasing as a result of the novel juxtapositions of habitats and species that can result in new interchanges of vectors, diseases and hosts. We studied whether the mosquito community structure varied between habitats and seasons and whether known disease vectors displayed habitat preferences in tropical Australia. Using CDC model 512 traps, adult mosquitoes were sampled across an anthropogenic disturbance gradient of grassland, rainforest edge and rainforest interior habitats, in both the wet and dry seasons. Nonmetric multidimensional scaling (NMS) ordinations were applied to examine major gradients in the composition of mosquito and vector communities. We captured ~13,000 mosquitoes from 288 trap nights across four study sites. A community analysis identified 29 species from 7 genera. Even though mosquito abundance and richness were similar between the three habitats, the community composition varied significantly in response to habitat type. The mosquito community in rainforest interiors was distinctly different to the community in grasslands, whereas forest edges acted as an ecotone with shared communities from both forest interiors and grasslands. We found two community patterns that will influence disease risk at out study sites, first, that disease vectoring mosquito species occurred all year round. Secondly, that anthropogenic grasslands adjacent to rainforests may increase the probability of novel disease transmission through changes to the vector community on rainforest edges, as most disease transmitting species predominantly occurred in grasslands. Our results indicate that the strong influence of anthropogenic land use change on mosquito communities could have potential implications for pathogen transmission to humans and wildlife.

  15. Hydrologic variability and the dynamics of West Nile virus transmission

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.

    2011-12-01

    West Nile virus (WNV) first emerged in North America in New York City during 1999 and since that time has spread throughout the continent and settled into a pattern of local endemicity in which outbreaks of variable size develop in some years but not others. Predicting where and when these outbreaks will develop is an issue of considerable public health importance. Spillover transmission of WNV to humans typically occurs when infection rates among vector mosquitoes are elevated. Mosquito infection rates are not constant through time but instead increase when newly emergent mosquitoes can more readily acquire WNV by blood-meal feeding on available, infected animal hosts. Such an increase of vector mosquito infection rates is termed amplification and is facilitated for WNV by intense zoonotic transmission of the virus among vector mosquitoes and avian hosts. Theory, observation and model simulations indicate that amplification is favored when mosquito breeding habitats and bird nesting and roosting habitats overlap. Both vector mosquitoes and vertebrate hosts depend on water resources; mosquitoes are critically dependent on the availability of standing water, as the first 3 stages of the mosquito life cycle, egg, larvae, pupae, are aquatic. Here it is shown that hydrologic variability often determines where and when vector mosquitoes and avian hosts congregate together, and when the amplification of WNV is more likely. Measures of land surface wetness and pooling, from ground observation, satellite observation, or numerical modeling, can provide reliable estimates of where and when WNV transmission hotspots will arise. Examples of this linkage between hydrology and WNV activity are given for Florida, Colorado and New York, and an operational system for monitoring and forecasting WNV risk in space and time is presented for Florida.

  16. Predicting the mosquito species and vertebrate species involved in the theoretical transmission of Rift Valley fever virus in the United States.

    PubMed

    Golnar, Andrew J; Turell, Michael J; LaBeaud, A Desiree; Kading, Rebekah C; Hamer, Gabriel L

    2014-09-01

    Rift Valley fever virus (RVFV) is a mosquito-borne virus in the family Bunyaviridiae that has spread throughout continental Africa to Madagascar and the Arabian Peninsula. The establishment of RVFV in North America would have serious consequences for human and animal health in addition to a significant economic impact on the livestock industry. Published and unpublished data on RVFV vector competence, vertebrate host competence, and mosquito feeding patterns from the United States were combined to quantitatively implicate mosquito vectors and vertebrate hosts that may be important to RVFV transmission in the United States. A viremia-vector competence relationship based on published mosquito transmission studies was used to calculate a vertebrate host competence index which was then combined with mosquito blood feeding patterns to approximate the vector and vertebrate amplification fraction, defined as the relative contribution of the mosquito or vertebrate host to pathogen transmission. Results implicate several Aedes spp. mosquitoes and vertebrates in the order Artiodactyla as important hosts for RVFV transmission in the U.S. Moreover, this study identifies critical gaps in knowledge which would be necessary to complete a comprehensive analysis identifying the different contributions of mosquitoes and vertebrates to potential RVFV transmission in the U.S. Future research should focus on (1) the dose-dependent relationship between viremic exposure and the subsequent infectiousness of key mosquito species, (2) evaluation of vertebrate host competence for RVFV among North American mammal species, with particular emphasis on the order Artiodactyla, and (3) identification of areas with a high risk for RVFV introduction so data on local vector and host populations can help generate geographically appropriate amplification fraction estimates.

  17. Predicting the Mosquito Species and Vertebrate Species Involved in the Theoretical Transmission of Rift Valley Fever Virus in the United States

    PubMed Central

    Golnar, Andrew J.; Turell, Michael J.; LaBeaud, A. Desiree; Kading, Rebekah C.; Hamer, Gabriel L.

    2014-01-01

    Rift Valley fever virus (RVFV) is a mosquito-borne virus in the family Bunyaviridiae that has spread throughout continental Africa to Madagascar and the Arabian Peninsula. The establishment of RVFV in North America would have serious consequences for human and animal health in addition to a significant economic impact on the livestock industry. Published and unpublished data on RVFV vector competence, vertebrate host competence, and mosquito feeding patterns from the United States were combined to quantitatively implicate mosquito vectors and vertebrate hosts that may be important to RVFV transmission in the United States. A viremia-vector competence relationship based on published mosquito transmission studies was used to calculate a vertebrate host competence index which was then combined with mosquito blood feeding patterns to approximate the vector and vertebrate amplification fraction, defined as the relative contribution of the mosquito or vertebrate host to pathogen transmission. Results implicate several Aedes spp. mosquitoes and vertebrates in the order Artiodactyla as important hosts for RVFV transmission in the U.S. Moreover, this study identifies critical gaps in knowledge which would be necessary to complete a comprehensive analysis identifying the different contributions of mosquitoes and vertebrates to potential RVFV transmission in the U.S. Future research should focus on (1) the dose-dependent relationship between viremic exposure and the subsequent infectiousness of key mosquito species, (2) evaluation of vertebrate host competence for RVFV among North American mammal species, with particular emphasis on the order Artiodactyla, and (3) identification of areas with a high risk for RVFV introduction so data on local vector and host populations can help generate geographically appropriate amplification fraction estimates. PMID:25211133

  18. Using Hydrologic Modeling to Screen Potential Environmental Management Methods for Malaria Vector Control in Niger

    NASA Astrophysics Data System (ADS)

    Gianotti, R. L.; Bomblies, A.; Eltahir, E. A.

    2008-12-01

    This study describes the use of HYDREMATS, a physically-based distributed hydrology model, to investigate environmental management methods for malaria vector control in the Sahelian village of Banizoumbou, Niger. The model operates at fine spatial and temporal scales to enable explicit simulation of individual pool dynamics and isolation of mosquito breeding habitats. The results showed that leveling of topographic depressions where temporary breeding habitats form during the rainy season could reduce the persistence time of a pool to less than the time needed for establishment of mosquito breeding, approximately 7 days. Increasing the surface soil permeability by ploughing could also reduce the persistence time of a pool but this technique was not as effective as leveling. Therefore it is considered that leveling should be the preferred of the two options where possible. This investigation demonstrates that management methods that modify the hydrologic environment have significant potential to contribute to malaria vector control and human health improvement in Sahelian Africa.

  19. Hydrologic modeling to screen potential environmental management methods for malaria vector control in Niger

    NASA Astrophysics Data System (ADS)

    Gianotti, Rebecca L.; Bomblies, Arne; Eltahir, Elfatih A. B.

    2009-08-01

    This paper describes the first use of Hydrology-Entomology and Malaria Transmission Simulator (HYDREMATS), a physically based distributed hydrology model, to investigate environmental management methods for malaria vector control in the Sahelian village of Banizoumbou, Niger. The investigation showed that leveling of topographic depressions where temporary breeding habitats form during the rainy season, by altering pool basin microtopography, could reduce the pool persistence time to less than the time needed for establishment of mosquito breeding, approximately 7 days. Undertaking soil surface plowing can also reduce pool persistence time by increasing the infiltration rate through an existing pool basin. Reduction of the pool persistence time to less than the rainfall interstorm period increases the frequency of pool drying events, removing habitat for subadult mosquitoes. Both management approaches could potentially be considered within a given context. This investigation demonstrates that management methods that modify the hydrologic environment have significant potential to contribute to malaria vector control in water-limited, Sahelian Africa.

  20. Insecticidal and repellent activity of Hiptage benghalensis L. Kruz (Malpighiaceae) against mosquito vectors.

    PubMed

    Lalrotluanga; Ngente, Lalchawimawii; Nachimuthu, Senthil Kumar; Guruswami, Gurusubramanian

    2012-09-01

    Plant-based insecticides for vector control are urgently needed for Anopheles barbirostris, Culex quinquefasciatus, and Aedes albopictus which are the primary vectors of malaria, lymphatic filariasis, and dengue, respectively, in India and other South East Asian countries. In the present study, larvicidal, adulticidal, and repellent activities of acetone root bark extract of Hiptage benghalensis were tested against the larvae and adults of the three mosquito vectors. The acetone root bark extracts of H. benghalensis was more effective as larvicides with low LC(50) (11.15-16.78 ppm) and LT50 (1.25-4.84 h at 200 and 400 ppm) values. Results of log probit analysis (at 95 % confidence level) and regression analysis of crude acetone root bark extract of H. benghalensis revealed that lethal concentration (LC(50)) values gradually decreased with the exposure periods; lethal time (LT(50)) decreased with the concentration, and the mortality is positively correlated with the concentration. The order of susceptibility of the three mosquito species was as follows: A. albopictus > A. barbirostris > C. quinquefascitus. Biochemical changes were also evidenced in third instar larvae of three mosquito species following a sublethal exposure for 24 h. The level of sugar, glycogen, lipids, and proteins was significantly (P < 0.05) reduced in larvae treated with H. benghalensis. The acetone root bark extracts of H. benghalensis is less toxic to adults and repelled laboratory-reared female A. barbirostris, A. albopictus, and C. quinquefascitus with the short median protection times of 57.66-135, 72.41-134.16, and 47.66-93 min, respectively. The present investigation proves it as a potent larvicide against A. albopictus, A. barbirostris, and C. quinquefascitus, which can be recommended to control these mosquito species on its breeding site. However, further investigations are needed to confirm the lethal effects of H. benghalensis in field conditions and its impact on the nontarget organisms.

  1. “Looking over the Backyard Fence”: Householders and Mosquito Control

    PubMed Central

    Mainali, Samir; Lamichhane, Ram Sharan; Clark, Kim; Beatty, Shelley; Fatouros, Maria; Neville, Peter; Oosthuizen, Jacques

    2017-01-01

    (1) Background: Vector-borne diseases are a significant public health problem in Western Australia. Mosquitoes are responsible for the transmission of a number of pathogens and may pose a serious nuisance problem. Prevention efforts in the State are multi-faceted and include physical, chemical, and cultural control methods for restricting mosquito breeding. This is less complex where breeding areas are located within public open spaces. In Australia’s developed urban areas, breeding sites are, however, frequently located within private residential landholdings, where the scope of public health officials to act is constrained by law and practicality. Consequently, mosquito prevention in these locations is predominantly the responsibility of the residents. This research addressed a gap, both in understanding the degree to which “backyard” mosquito breeding has the potential to contribute to local mosquito problems, and in assessing what residents “think and do” about mosquito control within their home environment. (2) Methods: The study was conducted in the Town of Bassendean, a metropolitan Local Government Area of Perth, Western Australia, in close proximity to two natural, productive mosquito breeding sites, namely Ashfield Flats and Bindaring Park. A total of 150 householders were randomly surveyed during the summer of 2015–2016, to gauge residents’ knowledge, attitudes, and practices (KAP (knowledge, attitudes, and practices) Survey) in regards to mosquitoes, their breeding and ecology, and avoidance or minimization strategies. The survey comprised nine questions covering residents’ knowledge (3 questions), attitudes (3 questions), and practices (3 questions), as well as additional questions regarding the basic demographics of the resident. Larvae were collected from backyard containers and reared to adults for species identification. A series of Encephalitis Vector Surveillance carbon dioxide (EVS CO2) traps were also deployed, to assess adult mosquito density and species composition. (3) Results: Aedes notoscriptus (Skuse), a known container-inhabiting species, accounted for just over 50% of all mosquitoes identified. Most residents were aware of mosquito-borne disease and its risk in their local area. While the majority (79%) of the sample correctly identified Ross River virus as the most common infection in WA, a significant gap in the general knowledge of residents in regards to mosquito biology and breeding habits, was noted. Furthermore, only 50% of residents reported using personal protective measures to reduce mosquito bites and only one in six residents undertook physical or chemical mosquito control around their home. Additionally, 60% of respondents believed that mosquito control was “a job for the council and the state government”, rather than for individual householders. (4) Conclusions: A significant gap in the knowledge of residents in the study area existed in regards to the general knowledge of mosquitoes and their breeding habits; types of treatments that could be employed within the home; and the residents’ responsibility for the management of mosquito breeding on their private property. A public education campaign has been deployed to educate the residents. PMID:28257079

  2. Anti-mosquito plants as an alternative or incremental method for malaria vector control among rural communities of Bagamoyo District, Tanzania

    PubMed Central

    2014-01-01

    Background Plants represent one of the most accessible resources available for mosquito control by communities in Tanzania. However, no documented statistics exist for their contribution in the management of mosquitoes and other insects except through verbal and some publications. This study aimed at assessing communities’ knowledge, attitudes and practices of using plants as an alternative method for mosquito control among selected communities in a malaria-prone area in Tanzania. Methods Questionnaires were administered to 202 respondents from four villages of Bagamoyo District, Pwani Region, in Tanzania followed by participatory rural appraisal with village health workers. Secondary data collection for plants mentioned by the communities was undertaken using different search engines such as googlescholar, PubMED and NAPRALERT. Results Results showed about 40.3% of respondents used plants to manage insects, including mosquitoes. A broad profile of plants are used, including “mwarobaini” (Azadirachta indica) (22.5%), “mtopetope” (Annona spp) (20.8%), “mchungwa/mlimau” (Citrus spp) (8.3%), “mvumbashi/uvumbati” (Ocimum spp) (7.4%), “mkorosho” (Anacadium occidentale) (7.1%), “mwembe” (5.4%) (Mangifera indica), “mpera” (4.1%) (Psidium spp) and “maganda ya nazi” (4.1%) (Cocos nucifera). Majority of respondents collected these plants from the wild (54.2%), farms (28.9%) and/or home gardens (6%). The roles played by these plants in fighting mosquitoes is reflected by the majority that deploy them with or without bed-nets (p > 0.55) or insecticidal sprays (p >0.22). Most respondents were aware that mosquitoes transmit malaria (90.6%) while few respondents associated elephantiasis/hydrocele (46.5%) and yellow fever (24.3%) with mosquitoes. Most of the ethnobotanical uses mentioned by the communities were consistent with scientific information gathered from the literature, except for Psidium guajava, which is reported for the first time in insect control. Conclusion This survey has indicated some knowledge gap among community members in managing mosquito vectors using plant. The communities need a basic health education and sensitization for effective exploitation of this valuable tool for reducing mosquitoes and associated disease burdens. On the other hand, the government of Tanzania should strengthen advocacy of botanical pesticides development, registration and regulation for public health benefits because they are source of pest control tools people rely on them. PMID:25015092

  3. Anti-mosquito plants as an alternative or incremental method for malaria vector control among rural communities of Bagamoyo District, Tanzania.

    PubMed

    Innocent, Ester; Hassanali, Ahmed; Kisinza, William Nw; Mutalemwa, Prince Pp; Magesa, Stephen; Kayombo, Edmund

    2014-07-11

    Plants represent one of the most accessible resources available for mosquito control by communities in Tanzania. However, no documented statistics exist for their contribution in the management of mosquitoes and other insects except through verbal and some publications. This study aimed at assessing communities' knowledge, attitudes and practices of using plants as an alternative method for mosquito control among selected communities in a malaria-prone area in Tanzania. Questionnaires were administered to 202 respondents from four villages of Bagamoyo District, Pwani Region, in Tanzania followed by participatory rural appraisal with village health workers. Secondary data collection for plants mentioned by the communities was undertaken using different search engines such as googlescholar, PubMED and NAPRALERT. Results showed about 40.3% of respondents used plants to manage insects, including mosquitoes. A broad profile of plants are used, including "mwarobaini" (Azadirachta indica) (22.5%), "mtopetope" (Annona spp) (20.8%), "mchungwa/mlimau" (Citrus spp) (8.3%), "mvumbashi/uvumbati" (Ocimum spp) (7.4%), "mkorosho" (Anacadium occidentale) (7.1%), "mwembe" (5.4%) (Mangifera indica), "mpera" (4.1%) (Psidium spp) and "maganda ya nazi" (4.1%) (Cocos nucifera). Majority of respondents collected these plants from the wild (54.2%), farms (28.9%) and/or home gardens (6%). The roles played by these plants in fighting mosquitoes is reflected by the majority that deploy them with or without bed-nets (p > 0.55) or insecticidal sprays (p >0.22). Most respondents were aware that mosquitoes transmit malaria (90.6%) while few respondents associated elephantiasis/hydrocele (46.5%) and yellow fever (24.3%) with mosquitoes. Most of the ethnobotanical uses mentioned by the communities were consistent with scientific information gathered from the literature, except for Psidium guajava, which is reported for the first time in insect control. This survey has indicated some knowledge gap among community members in managing mosquito vectors using plant. The communities need a basic health education and sensitization for effective exploitation of this valuable tool for reducing mosquitoes and associated disease burdens. On the other hand, the government of Tanzania should strengthen advocacy of botanical pesticides development, registration and regulation for public health benefits because they are source of pest control tools people rely on them.

  4. Efficacy of Two Common Methods of Application of Residual Insecticide for Controlling the Asian Tiger Mosquito, Aedes albopictus (Skuse), in Urban Areas.

    PubMed

    Marini, Lorenzo; Baseggio, Alberto; Drago, Andrea; Martini, Simone; Manella, Paolo; Romi, Roberto; Mazzon, Luca

    2015-01-01

    After its first introduction in the 1980's the Asian tiger mosquito, Aedes albopictus (Skuse), has spread throughout Southern Europe. Ae. albopictus is considered an epidemiologically important vector for the transmission of many viral pathogens such as the yellow fever virus, dengue fever and Chikungunya fever, as well as several filarial nematodes such as Dirofilaria immitis or D. repens. It is therefore crucial to develop measures to reduce the risks of disease transmission by controlling the vector populations. The aim of the study was to compare the efficacy of two application techniques (mist vs. stretcher sprayer) and two insecticides (Etox based on the nonester pyrethroid Etofenprox vs. Microsin based on the pyrethroid type II Cypermetrin) in controlling adult tiger mosquito populations in highly populated areas. To test the effect of the two treatments pre- and post-treatment human landing rate counts were conducted for two years. After one day from the treatment we observed a 100% population decrease in mosquito abundance with both application methods and both insecticides. However, seven and 14 days after the application the stretcher sprayer showed larger population reductions than the mist sprayer. No effect of insecticide type after one day and 14 days was found, while Etox caused slightly higher population reduction than Microsin after seven days. Emergency measures to locally reduce the vector populations should adopt adulticide treatments using stretcher sprayers. However, more research is still needed to evaluate the potential negative effects of adulticide applications on non-target organisms.

  5. The influence of diet on the use of near-infrared spectroscopy to determine the age of female Aedes aegypti mosquitoes

    USDA-ARS?s Scientific Manuscript database

    Interventions targeting adult mosquitoes are used to combat transmission of vector-borne diseases, including dengue. Without available vaccines, targeting the primary vector, Aedes aegypti, is essential to prevent transmission. Older mosquitoes (>/='7 days) are of greatest epidemiological significan...

  6. Community Response to a Public Health Threat-VEE

    ERIC Educational Resources Information Center

    McDonald, John L.; Vuturo, Anthony F.

    1975-01-01

    After identifying the mosquito as the Venezuelan equine encephalitis vector, health officials worked with the community to eliminate mosquito breeding sites. By educating the public first, cooperation was received in opening drainage areas and stocking water collection areas with mosquito eating fish to interrupt the host-vector-recipient cycle.…

  7. Interaction of Flavivirus with their mosquito vectors and their impact on the human health in the Americas.

    PubMed

    Valderrama, Anayansi; Díaz, Yamilka; López-Vergès, Sandra

    2017-10-28

    Some of the major arboviruses with public health importance, such as dengue, yellow fever, Zika and West Nile virus are mosquito-borne or mosquito-transmitted Flavivirus. Their principal vectors are from the family Culicidae, Aedes aegypti and Aedes albopictus being responsible of the urban cycles of dengue, Zika and yellow fever virus. These vectors are highly competent for transmission of many arboviruses. The genetic variability of the vectors, the environment and the viral diversity modulate the vector competence, in this context, it is important to determine which vector species is responsible of an outbreak in areas where many vectors coexist. As some vectors can transmit several flaviviruses and some flaviviruses can be transmitted by different species of vectors, through this review we expose importance of yellow fever, dengue and Zika virus in the world and the Americas, as well as the updated knowledge about these flaviviruses in their interaction with their mosquito vectors, guiding us on what is probably the beginning of a new stage in which the simultaneity of outbreaks will occur more frequently. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A pre-intervention study of malaria vector abundance in Rio Muni, Equatorial Guinea: Their role in malaria transmission and the incidence of insecticide resistance alleles

    PubMed Central

    Ridl, Frances C; Bass, Chris; Torrez, Miguel; Govender, Dayanandan; Ramdeen, Varsha; Yellot, Lee; Edu, Amado Edjang; Schwabe, Christopher; Mohloai, Peter; Maharaj, Rajendra; Kleinschmidt, Immo

    2008-01-01

    Background Following the success of the malaria control intervention on the island of Bioko, malaria control by the use of indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLITN) was extended to Rio Muni, on the mainland part of Equatorial Guinea. This manuscript reports on the malaria vectors present and the incidence of insecticide resistant alleles prior to the onset of the programme. Methods Anopheles mosquitoes were captured daily using window traps at 30 sentinel sites in Rio Muni, from December 2006 to July 2007. The mosquitoes were identified to species and their sporozoite rates, knockdown resistance (kdr) and acetylcholinesterase (AChE) sensitivity measured, to define the role of vector species in malaria transmission and their potential susceptibility to insecticides. Results A total of 6,162 Anopheles mosquitoes were collected of which 4,808 were morphologically identified as Anopheles gambiae s.l., 120 Anopheles funestus, 1,069 Anopheles moucheti, and 165 Anopheles nili s.l.. Both M and S molecular forms of Anopheles gambiae s.s. and Anopheles melas were identified. Anopheles ovengensis and Anopheles carnevalei were the only two members of the An. nili group to be identified. Using the species-specific sporozoite rates and the average number of mosquitoes per night, the number of infective mosquitoes per trap per 100 nights for each species complex was calculated as a measure of transmission risk. Both kdr-w and kdr-e alleles were present in the S-form of An. gambiae s.s. (59% and 19% respectively) and at much lower frequencies in the M-form (9.7% and 1.8% respectively). The kdr-w and kdr-e alleles co-occurred in 103 S-form and 1 M-form specimens. No insensitive AChE was detected. Conclusion Anopheles gambiae s.s, a member of the Anopheles gambiae complex was shown to be the major vector in Rio Muni with the other three groups playing a relatively minor role in transmission. The demonstration of a high frequency of kdr alleles in mosquito populations before the onset of a malaria control programme shows that continuous entomological surveillance including resistance monitoring will be of critical importance to ensure the chosen insecticide remains effective. PMID:18823554

  9. Efficacy of Mosquito Traps for Collecting Potential West Nile Mosquito Vectors in a Natural Mediterranean Wetland

    PubMed Central

    Roiz, David; Roussel, Marion; Muñoz, Joaquin; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2012-01-01

    Surveillance, research, and control of mosquito-borne diseases such as West Nile virus require efficient methods for sampling mosquitoes. We compared the efficacy of BG-Sentinel and Centers for Disease Control and Prevention (CDC)-CO2 traps in terms of the abundances of host-seeking and blood-fed female mosquitoes and the origin of mosquito bloodmeals. Our results indicate that BG-Sentinel traps that use CO2 and attractants are as effective as CDC-CO2 traps for Culex mosquito species, Ochlerotatus caspius, and they are also highly efficient at capturing Anopheles atroparvus host-seeking and blood-fed females with or without CO2. The CDC-CO2 trap is the least efficient method for capturing blood-fed females. BG-Sentinel traps with attractants and CO2 were significantly better at capturing mosquitoes that had fed on mammals than the unbaited BG-Sentinel and CDC-CO2 traps in the cases of An. atroparvus and Cx. theileri. These results may help researchers to optimize trapping methods by obtaining greater sample sizes and saving time and money. PMID:22492149

  10. Effectiveness of Print Education at Reducing Urban Mosquito Infestation through Improved Resident-Based Management.

    PubMed

    Bodner, Danielle; LaDeau, Shannon L; Biehler, Dawn; Kirchoff, Nicole; Leisnham, Paul T

    2016-01-01

    Improving resident-based management and knowledge of mosquitoes is often an integral component of integrated mosquito management, especially in urban landscapes with considerable mosquito habitat on privately owned lands. This study tested the effectiveness of print education materials at reducing urban mosquito exposure through improving resident knowledge of, and attitudes towards, mosquitoes and mosquito management in Washington DC, USA. There was a specific focus on the removal of water-filled containers that are utilized by the developmental stages of the two most common vector species in the region, Aedes albopictus and Culex pipiens. Households in six neighborhoods that varied in socio-economic status were administered knowledge, attitude, and practice (KAP) surveys in 2010 and 2012, and had their yards surveyed for container habitats and immature mosquitoes (larvae and pupae) in 2010, 2011, and 2012. Half the households (intervention, n = 120) received education materials in 2011 and 2012 to yield a before-after control-intervention (BACI) design. Unexpectedly, residents in intervention households were more likely to show decreased concern for mosquito-borne illnesses than residents in control households, which did not receive materials. Moreover, there was a greater probability that control households reduced containers in 2012 than intervention households, particularly when they had low numbers of baseline (2010) containers. Irrespective of control, reductions in containers were associated with decreased abundances of immature mosquitoes. Overall, our findings suggest that print education materials may have unintended negative effects on resident attitudes and household management of mosquito production. We recommend that mosquito control agencies need to carefully consider their content of print messages and the effectiveness of strategies that passively convey information with little or no engagement with control professionals.

  11. Effectiveness of Print Education at Reducing Urban Mosquito Infestation through Improved Resident-Based Management

    PubMed Central

    Bodner, Danielle; LaDeau, Shannon L.; Biehler, Dawn; Kirchoff, Nicole; Leisnham, Paul T.

    2016-01-01

    Improving resident-based management and knowledge of mosquitoes is often an integral component of integrated mosquito management, especially in urban landscapes with considerable mosquito habitat on privately owned lands. This study tested the effectiveness of print education materials at reducing urban mosquito exposure through improving resident knowledge of, and attitudes towards, mosquitoes and mosquito management in Washington DC, USA. There was a specific focus on the removal of water-filled containers that are utilized by the developmental stages of the two most common vector species in the region, Aedes albopictus and Culex pipiens. Households in six neighborhoods that varied in socio-economic status were administered knowledge, attitude, and practice (KAP) surveys in 2010 and 2012, and had their yards surveyed for container habitats and immature mosquitoes (larvae and pupae) in 2010, 2011, and 2012. Half the households (intervention, n = 120) received education materials in 2011 and 2012 to yield a before-after control-intervention (BACI) design. Unexpectedly, residents in intervention households were more likely to show decreased concern for mosquito-borne illnesses than residents in control households, which did not receive materials. Moreover, there was a greater probability that control households reduced containers in 2012 than intervention households, particularly when they had low numbers of baseline (2010) containers. Irrespective of control, reductions in containers were associated with decreased abundances of immature mosquitoes. Overall, our findings suggest that print education materials may have unintended negative effects on resident attitudes and household management of mosquito production. We recommend that mosquito control agencies need to carefully consider their content of print messages and the effectiveness of strategies that passively convey information with little or no engagement with control professionals. PMID:27171195

  12. Mosquito Biology and Mosquito-Borne Disease Awareness Among Island Communities In Malaysia.

    PubMed

    Shafie, Aziz; Roslan, Muhammad Aidil; Ngui, Romano; Lim, Yvonne Ai Lian; Sulaiman, Wan Yusoff Wan

    2016-12-01

    Mosquito-borne diseases have been increasing at an alarming rate over the past decades. In Malaysia, one finds several important mosquito-borne diseases such as Japanese encephalitis, dengue, malaria, and chikungunya. Mosquito surveillance and control programs are the most effective way of detecting and controlling mosquito-borne diseases, but these programs are less effective without an aware and well-informed general public. In 2014 we used a questionnaire to evaluate the extent of awareness of basic mosquito biology and mosquito-borne diseases in 6 villages, Kampung Masjid, Kampung Teluk Gedung, Kampung Teluk Dalam, Kampung Ujung Kelawai, Kampung Sungai Pinang Besar, and Kampung Sungai Pinang Kechil on Pangkor Island, Malaysia. A total of 1,012 individuals responded to the questionnaire, consisting of 790 Malay (78.1%), 164 Chinese (16.2%), and 58 Indian (5.7%). More than 60% (Malay = 73.7%, Chinese = 64.0%, Indian = 79.3%) of the respondents were familiar with basic mosquito biology and practiced personal protection against mosquito bites, and the association was statistically significant (P = 0.02). However, the majority of the respondents had limited knowledge on mosquito-borne diseases, and this varied significantly among the 3 ethnic groups (P = 0.0001). Our recommendations are to improve and intensify public health education outreach programs to the island residents and to encourage community participation in vector control programs.

  13. Dopamine receptor antagonists as new mode-of-action insecticide leads for control of Aedes and Culex mosquito vectors.

    PubMed

    Nuss, Andrew B; Ejendal, Karin F K; Doyle, Trevor B; Meyer, Jason M; Lang, Emma G; Watts, Val J; Hill, Catherine A

    2015-03-01

    New mode-of-action insecticides are sought to provide continued control of pesticide resistant arthropod vectors of neglected tropical diseases (NTDs). We previously identified antagonists of the AaDOP2 D1-like dopamine receptor (DAR) from the yellow fever mosquito, Aedes aegypti, with toxicity to Ae. aegypti larvae as leads for novel insecticides. To extend DAR-based insecticide discovery, we evaluated the molecular and pharmacological characteristics of an orthologous DAR target, CqDOP2, from Culex quinquefasciatus, the vector of lymphatic filariasis and West Nile virus. CqDOP2 has 94.7% amino acid identity to AaDOP2 and 28.3% identity to the human D1-like DAR, hD1. CqDOP2 and AaDOP2 exhibited similar pharmacological responses to biogenic amines and DAR antagonists in cell-based assays. The antagonists amitriptyline, amperozide, asenapine, chlorpromazine and doxepin were between 35 to 227-fold more selective at inhibiting the response of CqDOP2 and AaDOP2 in comparison to hD1. Antagonists were toxic to both C. quinquefasciatus and Ae. aegypti larvae, with LC50 values ranging from 41 to 208 μM 72 h post-exposure. Orthologous DOP2 receptors identified from the African malaria mosquito, Anopheles gambiae, the sand fly, Phlebotomus papatasi and the tsetse fly, Glossina morsitans, had high sequence similarity to CqDOP2 and AaDOP2. DAR antagonists represent a putative new insecticide class with activity against C. quinquefasciatus and Ae. aegypti, the two most important mosquito vectors of NTDs. There has been limited change in the sequence and pharmacological properties of the DOP2 DARs of these species since divergence of the tribes Culicini and Aedini. We identified antagonists selective for mosquito versus human DARs and observed a correlation between DAR pharmacology and the in vivo larval toxicity of antagonists. These data demonstrate that sequence similarity can be predictive of target potential. On this basis, we propose expanded insecticide discovery around orthologous DOP2 targets from additional dipteran vectors.

  14. Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan

    2014-06-01

    Mosquitoes transmit dreadful diseases to human beings wherein biological control of these vectors using plant-derived molecules would be an alternative to reduce mosquito population. In the present study activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using Helitropium indicum plant leaves against late third instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (30, 60, 90, 120, and 150 μg/mL) were tested against the larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The synthesized AgNPs from H. indicum were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy analysis, transmission electron microscopy, and histogram. The synthesized AgNPs showed larvicidal effects after 24 h of exposure. Considerable mortality was evident after the treatment of H. indicum for all three important vector mosquitoes. The LC50 and LC90 values of H. indicum aqueous leaf extract appeared to be effective against A. stephensi (LC50, 68.73 μg/mL; LC90, 121.07 μg/mL) followed by A. aegypti (LC50, 72.72 μg/mL; LC90, 126.86 μg/mL) and C. quinquefasciatus (LC50, 78.74 μg/mL; LC90, 134.39 μg/mL). Synthesized AgNPs against the vector mosquitoes of A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 18.40 and 32.45 μg/mL, A. aegypti had LC50 and LC90 values of 20.10 and 35.97 μg/mL, and C. quinquefasciatus had LC50 and LC90 values of 21.84 and 38.10 μg/mL. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H. indicum and green synthesis of silver nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of A. stephensi, A. aegypti, and C. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized nanoparticles.

  15. Empirical evidence of the effect of school gathering on the dynamics of dengue epidemics.

    PubMed

    Hernández-Suárez, Carlos M; Mendoza-Cano, Oliver

    2016-01-01

    Dengue fever is an important vector-transmitted disease that affects more than 100 countries worldwide. Locations where individuals tend to gather may play an important role in disease transmission in the presence of the vector. By controlling mosquitoes' breeding places, this study aims to analyze the effect of reducing transmission in elementary schools (grades 1-9) on the dynamics of the epidemic at a regional level. In 2007, we implemented a massive campaign in a region of México (Colima state, 5,191 km(2), population 568,000) focused on training janitors to locate and avoid mosquitoes' breeding places, the objective being to maintain elementary schools free of mosquitoes. We observed 45% reduction in dengue incidence compared to the previous year. In contrast, the rest of Mexico observed an 81% increase in incidence on average. Costs associated with campaigns focusing on cleaning schools are very low and results seem to be promising. Nevertheless, more controlled studies are needed.

  16. Quantifying seasonal and diel variation in Anopheline and Culex human biting rates in Southern Ecuador.

    PubMed

    Ryan, Sadie J; Lippi, Catherine A; Boersch-Supan, Philipp H; Heydari, Naveed; Silva, Mercy; Adrian, Jefferson; Noblecilla, Leonardo F; Ayala, Efraín B; Encalada, Mayling D; Larsen, David A; Krisher, Jesse T; Krisher, Lyndsay; Fregosi, Lauren; Stewart-Ibarra, Anna M

    2017-11-22

    Quantifying mosquito biting rates for specific locations enables estimation of mosquito-borne disease risk, and can inform intervention efforts. Measuring biting itself is fraught with ethical concerns, so the landing rate of mosquitoes on humans is often used as a proxy measure. Southern coastal Ecuador was historically endemic for malaria (Plasmodium falciparum and Plasmodium vivax), although successful control efforts in the 2000s eliminated autochthonous transmission (since 2011). This study presents an analysis of data collected during the elimination period. Human landing catch (HLC) data for three mosquito taxa: two malaria vectors, Anopheles albimanus and Anopheles punctimacula, and grouped Culex spp. were examined for this study. These data were collected by the National Vector Control Service of the Ministry of Health over a 5-year time span (2007-2012) in five cities in southern coastal Ecuador, at multiple households, in all months of the year, during dusk-dawn (18:00-6:00) hours, often at both indoor and outdoor locations. Hurdle models were used to determine if biting activity was fundamentally different for the three taxa, and to identify spatial and temporal factors influencing bite rate. Due to the many different approaches to studying and quantifying bite rates in the literature, a glossary of terms was created, to facilitate comparative studies in the future. Biting trends varied significantly with species and time. All taxa exhibited exophagic feeding behavior, and outdoor locations increased both the odds and incidence of bites across taxa. Anopheles albimanus was most frequently observed biting, with an average of 4.7 bites/h. The highest and lowest respective months for significant biting activity were March and July for An. albimanus, July and August for An. punctimacula, and February and July for Culex spp. Fine-scale differences in endophagy and exophagy, and temporal differences among months and hours exist in biting patterns among mosquito taxa in southern coastal Ecuador. This analysis provides detailed information for targeting vector control activities, and household level vector prevention strategies. These data were collected as part of routine vector surveillance conducted by the Ministry of Health, and such data have not been collected since. Reinstating such surveillance measures would provide important information to aid in preventing malaria re-emergence.

  17. A realistic host-vector transmission model for describing malaria prevalence pattern.

    PubMed

    Mandal, Sandip; Sinha, Somdatta; Sarkar, Ram Rup

    2013-12-01

    Malaria continues to be a major public health concern all over the world even after effective control policies have been employed, and considerable understanding of the disease biology have been attained, from both the experimental and modelling perspective. Interactions between different general and local processes, such as dependence on age and immunity of the human host, variations of temperature and rainfall in tropical and sub-tropical areas, and continued presence of asymptomatic infections, regulate the host-vector interactions, and are responsible for the continuing disease prevalence pattern.In this paper, a general mathematical model of malaria transmission is developed considering short and long-term age-dependent immunity of human host and its interaction with pathogen-infected mosquito vector. The model is studied analytically and numerically to understand the role of different parameters related to mosquitoes and humans. To validate the model with a disease prevalence pattern in a particular region, real epidemiological data from the north-eastern part of India was used, and the effect of seasonal variation in mosquito density was modelled based on local climactic data. The model developed based on general features of host-vector interactions, and modified simply incorporating local environmental factors with minimal changes, can successfully explain the disease transmission process in the region. This provides a general approach toward modelling malaria that can be adapted to control future outbreaks of malaria.

  18. The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes

    PubMed Central

    Ramirez, Jose L.; Dimopoulos, George

    2010-01-01

    Dengue virus has become one of the most important arboviral pathogens affecting the world today. The virus is transmitted among humans by the mosquitoes Aedes aegypti and Ae. albopictus. Like other vector-borne pathogens, this virus encounters innate immune defenses within the mosquito vector that limit infection. We have previously demonstrated the involvement of the Toll pathway in the anti-dengue defense at 7 days after infection. In the present study, we have investigated the activity of this immune signaling pathway against different dengue virus serotypes at the early stages of infection in laboratory and field-derived mosquito strains. Our studies corroborate the importance of the Toll pathway in the anti-dengue defense repertoire at 3 days after an infectious blood meal, when new virions are released from the midgut for dissemination and infection of other mosquito tissues. These immune defenses are furthermore conserved among different Ae. aegypti strains and can act against a broad range of dengue virus serotypes. PMID:20079370

  19. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae)

    USDA-ARS?s Scientific Manuscript database

    Mosquitoes transmit pathogens that cause millions of human deaths each year. Dengue virus is transmitted to humans in tropical and subtropical areas by Aedes aegypti (Diptera: Culicidae). The use of synthetic insecticides to control this mosquito is accompanied by high operational costs and adverse...

  20. Sand fly control in Kenya with residual pesticide application on HESCO barriers

    USDA-ARS?s Scientific Manuscript database

    US military operations in hot-arid regions still face significant impacts from mosquito and sand fly vectors of diseases. Personal protective measures (PPM) such as DEET or treated bed nets and clothing can reduce contact with disease vectors and nuisance insects; however, irregular use of PPM coupl...

  1. Human and Environmental Influences on Ecosystem Services and West Nile Virus Vector Infection in Suffolk County, New York (USA)

    EPA Science Inventory

    Healthy, functioning aquatic ecosystems provide the ecosystem service of mosquito population control. Nutrient and pesticide pollution, along with destruction and filling of wetlands, lead to impaired waterbodies that are less effective in vector regulation due to reduction or re...

  2. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives

    PubMed Central

    Bonizzoni, Mariangela; Gasperi, Giuliano; Chen, Xioaguang; James, Anthony A.

    2013-01-01

    One of the most dynamic events in public health is being mediated by the global spread of the invasive mosquito Aedes albopictus. Its rapid expansion and vectorial capacity for various arboviruses affect an increasingly larger proportion of the world population. Responses to the challenges of controlling this vector are expected to be enhanced by an increased knowledge of its biology, ecology, and vector competence. Details of population genetics and structure will allow following, and possibly predicting, the geographical and temporal dynamics of its expansion, and will inform the practical operations of control programs. Experts are coming together now to describe the history, characterize the present circumstances, and collaborate on future efforts to understand and mitigate this emerging public health threat. PMID:23916878

  3. The Extinction of Dengue through Natural Vulnerability of Its Vectors

    PubMed Central

    Williams, Craig R.; Bader, Christie A.; Kearney, Michael R.; Ritchie, Scott A.; Russell, Richard C.

    2010-01-01

    Background Dengue is the world's most important mosquito-borne viral illness. Successful future management of this disease requires an understanding of the population dynamics of the vector, especially in the context of changing climates. Our capacity to predict future dynamics is reflected in our ability to explain the significant historical changes in the distribution and abundance of the disease and its vector. Methodology/Principal Findings Here we combine daily weather records with simulation modelling techniques to explain vector (Aedes aegypti (L.)) persistence within its current and historic ranges in Australia. We show that, in regions where dengue presently occurs in Australia (the Wet Tropics region of Far North Queensland), conditions are persistently suitable for year-round adult Ae. aegypti activity and oviposition. In the historic range, however, the vector is vulnerable to periodic extinction due to the combined influence of adult activity constraints and stochastic loss of suitable oviposition sites. Conclusions/Significance These results, together with changes in water-storage behaviour by humans, can explain the observed historical range contraction of the disease vector. For these reasons, future eradication of dengue in wet tropical regions will be extremely difficult through classical mosquito control methods alone. However, control of Ae. aegypti in sub-tropical and temperate regions will be greatly facilitated by government policy regulating domestic water-storage. Exploitation of the natural vulnerabilities of dengue vectors (e.g., habitat specificity, climatic limitations) should be integrated with the emerging novel transgenic and symbiotic bacterial control techniques to develop future control and elimination strategies. PMID:21200424

  4. Green Nanoparticles for Mosquito Control

    PubMed Central

    Soni, Namita; Prakash, Soam

    2014-01-01

    Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag) and gold (Au) nanoparticles (NPs) were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum) (C. zyelanicum or C. verum J. Presl). Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vector Anopheles stephensi and filariasis vector Culex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM). The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77 nm AgNPs and 46.48 nm AuNPs). The larvae of An. stephensi were found highly susceptible to the synthesized AgNPs and AuNPs than the Cx. quinquefasciatus. These results suggest that the C. zeylanicum synthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito. PMID:25243210

  5. Vector bionomics and malaria transmission along the Thailand-Myanmar border: a baseline entomological survey.

    PubMed

    Kwansomboon, N; Chaumeau, V; Kittiphanakun, P; Cerqueira, D; Corbel, V; Chareonviriyaphap, T

    2017-06-01

    Baseline entomological surveys were conducted in four sentinel sites along the Thailand-Myanmar border to address vector bionomics and malaria transmission in the context of a study on malaria elimination. Adult Anopheles mosquitoes were collected using human-landing catch and cow-bait collection in four villages during the rainy season from May-June, 2013. Mosquitoes were identified to species level by morphological characters and by AS-PCR. Sporozoite indexes were determined on head/thoraces of primary and secondary malaria vectors using real-time PCR. A total of 4,301 anopheles belonging to 12 anopheline taxa were identified. Anopheles minimus represented >98% of the Minimus Complex members (n=1,683), whereas the An. maculatus group was composed of two dominant species, An. sawadwongporni and An. maculatus. Overall, 25 Plasmodium-positive mosquitoes (of 2,323) were found, representing a sporozoite index of 1.1% [95%CI 0.66-1.50]. The transmission intensity as measured by the EIR strongly varied according to the village (ANOVA, F=17.67, df=3, P<0.0001). Our findings highlight the diversity and complexity of the biting pattern of malaria vectors along the Thailand-Myanmar border that represent a formidable challenge for malaria control and elimination. © 2017 The Society for Vector Ecology.

  6. Landing response of Aedes (Stegomyia) polynesiensis mosquitoes to coloured targets.

    PubMed

    Chambers, E W; Bossin, H C; Ritchie, S A; Russell, R C; Dobson, S L

    2013-09-01

    Aedes polynesiensis Marks (Diptera: Culicidae) is the primary vector of lymphatic filariasis (LF) in the island countries and territories of the South Pacific. In the development of a novel control tool, the response of Ae. polynesiensis to six different colours (three solid fabrics, two patterned fabrics and a plastic tarp) was measured using a digital photographic system. Adult mosquitoes were placed into an environmental chamber and allowed to choose between a white target and one of six experimental targets. Mosquito landing frequency and landing duration were calculated. Adult female Ae. polynesiensis preferred all of the experimental targets to the white control target. Mosquito landing frequency was highest for the solid targets (black, navy blue and red) followed in turn by the two colour pattern targets and the polyethylene target. Mosquito landing duration was greater for experimental targets when compared with white control targets. Mosquito landing frequencies did not change over time during the course of the assay. The response of male Ae. polynesiensis was also measured when exposed to a 100% cotton black target. Male mosquitoes preferred the black target to the white control target, although at levels lower than that observed in female mosquitoes. The results suggest that future investigations evaluating the visual responses of Ae. polynesiensis mosquitoes are warranted, with a special emphasis on semi-field and field-based experiments. © 2013 The Royal Entomological Society.

  7. Analyzing Mosquito (Diptera: Culicidae) Diversity in Pakistan by DNA Barcoding

    PubMed Central

    Ashfaq, Muhammad; Hebert, Paul D. N.; Mirza, Jawwad H.; Khan, Arif M.; Zafar, Yusuf; Mirza, M. Sajjad

    2014-01-01

    Background Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. Methodology/Principal Findings Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010–2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0–2.4%, while congeneric species showed from 2.3–17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. Conclusions As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations. PMID:24827460

  8. Analyzing mosquito (Diptera: culicidae) diversity in Pakistan by DNA barcoding.

    PubMed

    Ashfaq, Muhammad; Hebert, Paul D N; Mirza, Jawwad H; Khan, Arif M; Zafar, Yusuf; Mirza, M Sajjad

    2014-01-01

    Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010-2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0-2.4%, while congeneric species showed from 2.3-17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations.

  9. Early warning of West Nile virus mosquito vector: climate and land use models successfully explain phenology and abundance of Culex pipiens mosquitoes in north-western Italy.

    PubMed

    Rosà, Roberto; Marini, Giovanni; Bolzoni, Luca; Neteler, Markus; Metz, Markus; Delucchi, Luca; Chadwick, Elizabeth A; Balbo, Luca; Mosca, Andrea; Giacobini, Mario; Bertolotti, Luigi; Rizzoli, Annapaola

    2014-06-12

    West Nile Virus (WNV) is an emerging global health threat. Transmission risk is strongly related to the abundance of mosquito vectors, typically Culex pipiens in Europe. Early-warning predictors of mosquito population dynamics would therefore help guide entomological surveillance and thereby facilitate early warnings of transmission risk. We analysed an 11-year time series (2001 to 2011) of Cx. pipiens mosquito captures from the Piedmont region of north-western Italy to determine the principal drivers of mosquito population dynamics. Linear mixed models were implemented to examine the relationship between Cx. pipiens population dynamics and environmental predictors including temperature, precipitation, Normalized Difference Water Index (NDWI) and the proximity of mosquito traps to urban areas and rice fields. Warm temperatures early in the year were associated with an earlier start to the mosquito season and increased season length, and later in the year, with decreased abundance. Early precipitation delayed the start and shortened the length of the mosquito season, but increased total abundance. Conversely, precipitation later in the year was associated with a longer season. Finally, higher NDWI early in the year was associated with an earlier start to the season and increased season length, but was not associated with abundance. Proximity to rice fields predicted higher total abundance when included in some models, but was not a significant predictor of phenology. Proximity to urban areas was not a significant predictor in any of our models. Predicted variations in start of the season and season length ranged from one to three weeks, across the measured range of variables. Predicted mosquito abundance was highly variable, with numbers in excess of 1000 per trap per year when late season temperatures were low (average 21°C) to only 150 when late season temperatures were high (average 30°C). Climate data collected early in the year, in conjunction with local land use, can be used to provide early warning of both the timing and magnitude of mosquito outbreaks. This potentially allows targeted mosquito control measures to be implemented, with implications for prevention and control of West Nile Virus and other mosquito borne diseases.

  10. Differential Larval Toxicity and Oviposition Altering Activity of Some Indigenous Plant Extracts against Dengue and Chikungunya Vector Aedes albopictus.

    PubMed

    Yadav, Ruchi; Tyagi, Varun; Tikar, Sachin N; Sharma, Ajay K; Mendki, Murlidhar J; Jain, Ashok K; Sukumaran, Devanathan

    2014-12-01

    Mosquitoes are well known as vectors of several disease causing pathogens. The extensive use of synthetic insecticides in the mosquito control strategies resulted to the development of pesticide resistance and fostered environmental deterioration. Hence in recent years plants become alternative source of mosquito control agents. The present study assessed the larvicidal and oviposition altering activity of six different plants species-Alstonia scholaris, Callistemon viminalis, Hyptis suaveolens, Malvastrum coromandelianum, Prosopis juliflora, Vernonia cinerea against Aedes albopictus mosquito in laboratory. Leaf extracts of all the six plants species in five different solvents of various polarities were used in the range of 20-400ppm for larval bioassay and 50,100 and 200ppm for cage bioassay (for the study of oviposition behavior) against Ae. albopictus. The larval mortality data were recorded after 24 h and subjected to Probit analysis to determine the lethal concentrations (LC50), while OAI (Oviposition activity index) was calculated for oviposition altering activity of the plant extracts. Vernonia cinerea extract in acetone and C. viminalis extract in isopropanol were highly effective against Aedes albopictus larvae with LC50 value 64.57, 71.34ppm respectively. Acetone extract of P. juliflora found to be strong oviposition-deterrent which inhibited >2 fold egg laying (OAI-0.466) at 100ppm. Vernonia cinerea and C. viminallis leaf extracts have the potential to be used as larvicide and P. juliflora as an oviposition-deterrent for the control of Ae. albopictus mosquito.

  11. A tool box for operational mosquito larval control: preliminary results and early lessons from the Urban Malaria Control Programme in Dar es Salaam, Tanzania

    PubMed Central

    Fillinger, Ulrike; Kannady, Khadija; William, George; Vanek, Michael J; Dongus, Stefan; Nyika, Dickson; Geissbühler, Yvonne; Chaki, Prosper P; Govella, Nico J; Mathenge, Evan M; Singer, Burton H; Mshinda, Hassan; Lindsay, Steven W; Tanner, Marcel; Mtasiwa, Deo; de Castro, Marcia C; Killeen, Gerry F

    2008-01-01

    Background As the population of Africa rapidly urbanizes, large populations could be protected from malaria by controlling aquatic stages of mosquitoes if cost-effective and scalable implementation systems can be designed. Methods A recently initiated Urban Malaria Control Programme in Dar es Salaam delegates responsibility for routine mosquito control and surveillance to modestly-paid community members, known as Community-Owned Resource Persons (CORPs). New vector surveillance, larviciding and management systems were designed and evaluated in 15 city wards to allow timely collection, interpretation and reaction to entomologic monitoring data using practical procedures that rely on minimal technology. After one year of baseline data collection, operational larviciding with Bacillus thuringiensis var. israelensis commenced in March 2006 in three selected wards. Results The procedures and staff management systems described greatly improved standards of larval surveillance relative to that reported at the outset of this programme. In the first year of the programme, over 65,000 potential Anopheles habitats were surveyed by 90 CORPs on a weekly basis. Reaction times to vector surveillance at observations were one day, week and month at ward, municipal and city levels, respectively. One year of community-based larviciding reduced transmission by the primary malaria vector, Anopheles gambiae s.l., by 31% (95% C.I. = 21.6–37.6%; p = 0.04). Conclusion This novel management, monitoring and evaluation system for implementing routine larviciding of malaria vectors in African cities has shown considerable potential for sustained, rapidly responsive, data-driven and affordable application. Nevertheless, the true programmatic value of larviciding in urban Africa can only be established through longer-term programmes which are stably financed and allow the operational teams and management infrastructures to mature by learning from experience. PMID:18218148

  12. Household-Level Expenditure on Protective Measures Against Mosquitoes on the Island of La Réunion, France

    PubMed Central

    Thuilliez, Josselin; Bellia, Claire; Dehecq, Jean-Sébastien; Reilhes, Olivier

    2014-01-01

    Background For decades La Réunion has experienced a number of epidemics that have resulted in efforts to control the density of Aedes species on this Island. This study was conducted to assess household-level expenditure on protective measures against mosquito nuisance on the Island of La Réunion in 2012. Methodology/Principal Findings Data was collected during a cross-sectional survey of 1024 households and used to determine the relationship between the use of chemically-based protective measures and subjective and objective indicators of the density of Aedes albopictus. The average household expenditure in July 2012 was USD 9.86 and the total household-level expenditure over a one-year period was extrapolated to USD 28.05million (range: USD 25.58 million to USD 30.76 million). Much of this money was spent on measures thought to be relatively ineffective against Aedes mosquitoes. Expenditure on protective measures was not influenced by the level of knowledge on mosquitoes or by the visual nuisance they generated at home, but rather by the perception of risk related to a future epidemic of chikungunya and socioeconomic factors. Most importantly, household spending on protective measures was found to be influenced by a measure of zone-level mosquito density (the Breteau index), but not by objective indicators of the presence of mosquitoes within or around the house. Conclusions/Significance Household-level expenditure on chemically-based protective measures is high when compared to the investment made by public entities to achieve vector control, and it is differentially influenced by subjective and objective measures of mosquito density. The current situation could be improved, firstly by ensuring that the public is well-informed about mosquitoes and the effectiveness of various protective measures, and secondly by implementing interventions that could either complement current vector-control strategies and improve their effectiveness on a country-level, or that would steer the population toward the appropriate behaviours. PMID:24392170

  13. Identification of environmental covariates of West Nile virus vector mosquito population abundance.

    PubMed

    Trawinski, Patricia R; Mackay, D Scott

    2010-06-01

    The rapid spread of West Nile virus (WNv) in North America is a major public health concern. Culex pipiens-restuans is the principle mosquito vector of WNv in the northeastern United States while Aedes vexans is an important bridge vector of the virus in this region. Vector mosquito abundance is directly dependent on physical environmental factors that provide mosquito habitats. The objective of this research is to determine landscape elements that explain the population abundance and distribution of WNv vector mosquitoes using stepwise linear regression. We developed a novel approach for examining a large set of landscape variables based on a land use and land cover classification by selecting variables in stages to minimize multicollinearity. We also investigated the distance at which landscape elements influence abundance of vector populations using buffer distances of 200, 400, and 1000 m. Results show landscape effects have a significant impact on Cx. pipiens-estuans population distribution while the effects of landscape features are less important for prediction of Ae. vexans population distributions. Cx. pipiens-restuans population abundance is positively correlated with human population density, housing unit density, and urban land use and land cover classes and negatively correlated with age of dwellings and amount of forested land.

  14. Local environmental and meteorological conditions influencing the invasive mosquito Ae. albopictus and arbovirus transmission risk in New York City.

    PubMed

    Little, Eliza; Bajwa, Waheed; Shaman, Jeffrey

    2017-08-01

    Ae. albopictus, an invasive mosquito vector now endemic to much of the northeastern US, is a significant public health threat both as a nuisance biter and vector of disease (e.g. chikungunya virus). Here, we aim to quantify the relationships between local environmental and meteorological conditions and the abundance of Ae. albopictus mosquitoes in New York City. Using statistical modeling, we create a fine-scale spatially explicit risk map of Ae. albopictus abundance and validate the accuracy of spatiotemporal model predictions using observational data from 2016. We find that the spatial variability of annual Ae. albopictus abundance is greater than its temporal variability in New York City but that both local environmental and meteorological conditions are associated with Ae. albopictus numbers. Specifically, key land use characteristics, including open spaces, residential areas, and vacant lots, and spring and early summer meteorological conditions are associated with annual Ae. albopictus abundance. In addition, we investigate the distribution of imported chikungunya cases during 2014 and use these data to delineate areas with the highest rates of arboviral importation. We show that the spatial distribution of imported arboviral cases has been mostly discordant with mosquito production and thus, to date, has provided a check on local arboviral transmission in New York City. We do, however, find concordant areas where high Ae. albopictus abundance and chikungunya importation co-occur. Public health and vector control officials should prioritize control efforts to these areas and thus more cost effectively reduce the risk of local arboviral transmission. The methods applied here can be used to monitor and identify areas of risk for other imported vector-borne diseases.

  15. Local environmental and meteorological conditions influencing the invasive mosquito Ae. albopictus and arbovirus transmission risk in New York City

    PubMed Central

    Bajwa, Waheed; Shaman, Jeffrey

    2017-01-01

    Ae. albopictus, an invasive mosquito vector now endemic to much of the northeastern US, is a significant public health threat both as a nuisance biter and vector of disease (e.g. chikungunya virus). Here, we aim to quantify the relationships between local environmental and meteorological conditions and the abundance of Ae. albopictus mosquitoes in New York City. Using statistical modeling, we create a fine-scale spatially explicit risk map of Ae. albopictus abundance and validate the accuracy of spatiotemporal model predictions using observational data from 2016. We find that the spatial variability of annual Ae. albopictus abundance is greater than its temporal variability in New York City but that both local environmental and meteorological conditions are associated with Ae. albopictus numbers. Specifically, key land use characteristics, including open spaces, residential areas, and vacant lots, and spring and early summer meteorological conditions are associated with annual Ae. albopictus abundance. In addition, we investigate the distribution of imported chikungunya cases during 2014 and use these data to delineate areas with the highest rates of arboviral importation. We show that the spatial distribution of imported arboviral cases has been mostly discordant with mosquito production and thus, to date, has provided a check on local arboviral transmission in New York City. We do, however, find concordant areas where high Ae. albopictus abundance and chikungunya importation co-occur. Public health and vector control officials should prioritize control efforts to these areas and thus more cost effectively reduce the risk of local arboviral transmission. The methods applied here can be used to monitor and identify areas of risk for other imported vector-borne diseases. PMID:28832586

  16. Toxicity of β-citronellol, geraniol and linalool from Pelargonium roseum essential oil against the West Nile and filariasis vector Culex pipiens (Diptera: Culicidae).

    PubMed

    Tabari, Mohaddeseh Abouhosseini; Youssefi, Mohammad Reza; Esfandiari, Aryan; Benelli, Giovanni

    2017-10-01

    Insect vectors are responsible for spreading devastating parasites and pathogens. A large number of botanicals have been suggested for eco-friendly control programs against mosquito vectors, and some of them are aromatic plants. Pelargonium roseum, a species belonging to the Geraniaceae family, due to its pleasant rose-like odor may represent a suitable candidate as mosquito repellent and/or larvicide. In this research, we evaluated the toxicity of the essential oil from P. roseum and its major constituents against the West Nile and filariasis vector Culex pipiens. The chemical composition of P. roseum essential oil was analyzed by gas chromatography-mass spectroscopy. Major constituents were citronellol (35.9%), geraniol (18.5%), and linalool (5.72%). The bioactivity of P. roseum essential oil and its three major compounds on larvae and egg rafts of Cx. pipiens was evaluated. The essential oil had a significant toxic effect on larvae and egg rafts of Cx. pipiens, with 50% lethal concentration (LC 50 ) values of 5.49 and 0.45μg/mL, respectively. Major constituents, geraniol, citronellol and linalool resulted in LC 50 values of 6.86, 7.64 and 14.87μg/mL on larvae, and 0.8, 0.67 and 1.27μg/mL on egg rafts. Essential oil and two of its constituents, citronellol and geraniol showed moderate knock-down on Cx. pipiens adults. Overall, the present investigation revealed that the major components of P. roseum and specially the whole essential oil could be helpful in developing novel and safe mosquito control tools and also offer an environmentally safe and cheap tool for reducing Cx. pipiens mosquito populations. Copyright © 2017. Published by Elsevier Ltd.

  17. How effective is integrated vector management against malaria and lymphatic filariasis where the diseases are transmitted by the same vector?

    PubMed

    Stone, Christopher M; Lindsay, Steve W; Chitnis, Nakul

    2014-12-01

    The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account. We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control. Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration predicted to be required for filariasis elimination.

  18. Automated innovative diagnostic, data management and communication tool, for improving malaria vector control in endemic settings.

    PubMed

    Vontas, John; Mitsakakis, Konstantinos; Zengerle, Roland; Yewhalaw, Delenasaw; Sikaala, Chadwick Haadezu; Etang, Josiane; Fallani, Matteo; Carman, Bill; Müller, Pie; Chouaïbou, Mouhamadou; Coleman, Marlize; Coleman, Michael

    2016-01-01

    Malaria is a life-threatening disease that caused more than 400,000 deaths in sub-Saharan Africa in 2015. Mass prevention of the disease is best achieved by vector control which heavily relies on the use of insecticides. Monitoring mosquito vector populations is an integral component of control programs and a prerequisite for effective interventions. Several individual methods are used for this task; however, there are obstacles to their uptake, as well as challenges in organizing, interpreting and communicating vector population data. The Horizon 2020 project "DMC-MALVEC" consortium will develop a fully integrated and automated multiplex vector-diagnostic platform (LabDisk) for characterizing mosquito populations in terms of species composition, Plasmodium infections and biochemical insecticide resistance markers. The LabDisk will be interfaced with a Disease Data Management System (DDMS), a custom made data management software which will collate and manage data from routine entomological monitoring activities providing information in a timely fashion based on user needs and in a standardized way. The ResistanceSim, a serious game, a modern ICT platform that uses interactive ways of communicating guidelines and exemplifying good practices of optimal use of interventions in the health sector will also be a key element. The use of the tool will teach operational end users the value of quality data (relevant, timely and accurate) to make informed decisions. The integrated system (LabDisk, DDMS & ResistanceSim) will be evaluated in four malaria endemic countries, representative of the vector control challenges in sub-Saharan Africa, (Cameroon, Ivory Coast, Ethiopia and Zambia), highly representative of malaria settings with different levels of endemicity and vector control challenges, to support informed decision-making in vector control and disease management.

  19. Insecticide-Treated Nets Can Reduce Malaria Transmission by Mosquitoes Which Feed Outdoors

    PubMed Central

    Govella, Nicodem J.; Okumu, Fredros O.; Killeen, Gerry F.

    2010-01-01

    Insecticide treated nets (ITNs) represent a powerful means for controlling malaria in Africa because the mosquito vectors feed primarily indoors at night. The proportion of human exposure that occurs indoors, when people are asleep and can conveniently use ITNs, is therefore very high. Recent evidence suggests behavioral changes by malaria mosquito populations to avoid contact with ITNs by feeding outdoors in the early evening. We adapt an established mathematical model of mosquito behavior and malaria transmission to illustrate how ITNs can achieve communal suppression of malaria transmission exposure, even where mosquito evade them and personal protection is modest. We also review recent reports from Tanzania to show that conventional mosquito behavior measures can underestimate the potential of ITNs because they ignore the importance of human movements. PMID:20207866

  20. Development of Dirofilaria immitis and Dirofilaria repens in Aedes japonicus and Aedes geniculatus.

    PubMed

    Silaghi, Cornelia; Beck, Relja; Capelli, Gioia; Montarsi, Fabrizio; Mathis, Alexander

    2017-02-20

    The mosquito-borne filarial nematodes Dirofilaria immitis and Dirofilaria repens primarily affect dogs but also cats, causing heartworm disease or subcutaneous dirofilariosis, respectively, and both may also cause zoonotic diseases in humans. Several mosquito species have been reported as competent vectors for these nematodes, but no data are available for the invasive mosquito species Aedes japonicus (Theobald, 1901). The objective of this study was to describe the development of both D. immitis and D. repens under standardised experimental laboratory conditions in mosquitoes. For this purpose, both a laboratory strain and field-collected individuals of the invasive mosquito species Ae. japonicus and, for comparative purposes, a laboratory strain of Aedes geniculatus, a rare indigenous species sharing habitats with Ae. japonicus, and of the tropical species Aedes aegypti were used. Anticoagulated microfilariaemic blood was fed at a density of 3000 mf/ml to mosquitoes with a hemotek system. Blood-fed mosquitoes were incubated at 27 °C and 85% relative humidity, and specimens were dissected under the microscope at pre-set time points to observe developmental stages of both Dirofilaria species. Additionally, real-time PCRs were carried out in some microscopically negative samples to determine the infection rates. In field-collected Ae. japonicus infectious L3 larvae of both D. immitis and D. repens developed, rendering this mosquito species an efficient vector for both filarial species. Additionally, Ae. geniculatus was shown to be an equally efficient vector for both filarial species. Aedes japonicus mosquitoes from a laboratory colony were refractory to D. immitis but susceptible to D. repens, whereas Ae. aegypti was refractory to both filarial species. To our knowledge, Aedes japonicus was for the first time shown to be an efficient vector for both D. immitis and D. repens, indicating that this invasive and locally highly abundant species may contribute to a transmission of filarial worms. The data emphasize the necessity to perform vector competence studies with local mosquito populations as basis for risk assessments. We further demonstrated that detection of filarial DNA in a mosquito species alone does not allow to draw reliable conclusions with regard to its vector competence.

  1. Identification and Optimization of New Leads for Malaria Vector Control.

    PubMed

    Hueter, Ottmar F; Hoppé, Mark; Wege, Philip; Maienfisch, Peter

    2016-10-01

    A significant proportion of the world's population remains at risk from malaria, and whilst great progress has been made in reducing the number of malaria cases globally through the use of vector control insecticides, these gains are under threat from the emergence of insecticide resistance. The spread of resistance in the vector populations, principally to pyrethroids, is driving the need for the development of new tools for malaria vector control. In order to identify new leads 30,000 compounds from the Syngenta corporate chemical collection were tested in a newly developed screening platform. More than 3000 compounds (10%) showed activity at ≤200 mg active ingredient (AI) litre -1 against Anopheles stephensi. Further evaluation resulted in the identification of 12 viable leads for the control of adult mosquitoes, most originating from current or former insecticide projects. Surprisingly, one of these leads emerged from a former PPO herbicide project and one from a former complex III fungicide project. This indicates that representatives of certain herbicide and fungicide projects and modes of action can also represent a valuable source of leads for malaria vector control. Optimization of the diphenyl ether lead 1 resulted in the identification of the cyano-pyridyl compound 31. This compound 31 exhibits good activity against mosquito species including rdl resistant Anopheles. It is only slightly weaker than permethrin and does not show relevant levels of cross-resistance to the organochlorine insecticide dieldrin.

  2. Larvicidal and repellent properties of Adansonia digitata against medically important human malarial vector mosquito Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Krishnappa, K; Elumalai, K; Dhanasekaran, S; Gokulakrishnan, J

    2012-06-01

    Development of plant-based alternative compounds for mosquito control has gained importance now-a-days, in view of increasing resistance in mosquito vectors to existing insecticides. The larvicidal and repellent activities of benzene, chloroform, hexane and methanol leaf extracts of Indian medicinal plant, Adansonia digitata were investigated against malarial vector, Anopheles stephensi. In all, 25 III instar larvae of An. stephensi were exposed to various concentrations (30-180 mg/l) in the laboratory by using the standard protocol described by WHO (2005). The larvae were exposed for 24 h and mortalities were subjected to log-probit analysis. Repellent activity of crude leaf extract at the dosages of 2, 4 and 6 mg/cm2 was evaluated in a net cage (45 × 30 × 45 cm) containing 100 blood starved female mosquitoes of An. stephensi using the protocol of WHO (1996). Preliminary phytochemical analysis of A. digitata showed the presence of triterpenoids and saponins. The LC50 and LC90 values of hexane, benzene, chloroform, and methanol extracts of A. digitata against An. stephensi larvae in 24 h were 111.32, 97.13, 88.55, 78.18 and 178.63, 176.19, 168.14, 155.42 mg/l, respectively. The repellent activity of methanol extract was found to be most effective and at higher concentration of 6 mg/cm2 benzene, chloroform hexane and methanol extracts provided 100% protection up to 150, 180, 120 and 210 min against An. stephensi, respectively. The preliminary study indicated that A. digitata showed larvicidal and repellent activities against An. stephensi and could be used for controlling mosquitoes. Further studies are indicated to purify the active compounds from these plants for developing larvicide and repellents.

  3. Influence of the agrochemicals used for rice and vegetable cultivation on insecticide resistance in malaria vectors in southern Côte d'Ivoire.

    PubMed

    Chouaïbou, Mouhamadou S; Fodjo, Behi K; Fokou, Gilbert; Allassane, Ouattara F; Koudou, Benjamin G; David, Jean-Philippe; Antonio-Nkondjio, Christophe; Ranson, Hilary; Bonfoh, Bassirou

    2016-08-24

    Vector control can contribute to the development of resistance to insecticides in malaria vectors. As the swamps and wetlands used for some agricultural activities constitute productive breeding sites for many mosquito species, agricultural pest control may increase the selection pressure for insecticide resistance in mosquitoes. Understanding the use of agrochemicals by farmers is important to plan and initiate effective integrated pest and vector management interventions. A knowledge-attitude-practice study, using questionnaires, was undertaken with 102 rice farmers in Tiassalé and 106 vegetable farmers in Dabou (South Côte d'Ivoire) in order to generate information on pesticide usage. In addition, insecticide susceptibility bioassays were conducted using adult mosquitoes obtained from larvae collected within farms, and the persistence of agricultural pesticides in the farming environment, including sediment and mosquito breeding site water, was investigated by HPLC. Herbicides and insecticides appeared to be the most frequently used pesticides for both crops. Amino phosphonates (mostly glyphosate) represented the most used herbicides (45 % for rice up to 89 % for vegetables). Pyrethroids appeared to be the most used insecticides (accounting for 90 % of all the insecticide use reported). Approximately 75 % of respondents had not been to school and do not understand product labels. Only about 45 % of farmers respect the recommended pesticide dosage and about 10-15 % of pesticides used for rice and vegetable, respectively, are not recommended for these crops. As per WHO criteria, the mosquito local populations from the two localities were resistant to three of the four insecticides tested, as mortalities were less than 35 % for deltamethrin, DDT and bendiocarb. Higher susceptibility was observed for malathion, although the population was considered resistant in Dabou (80 % mortality) and susceptible in Tiassalé (98 % mortality). With the exception of glyphosate, residues from each of six chemicals tested for were detected in each of the sites visited in the two localities. The study describes the use of insecticides and herbicides on crops and highlights the importance of considering agriculture practices when attempting to manage resistance in malaria vectors. Inter-sectoral collaboration between agriculture and public health is required to develop efficient integrated pest and vector management interventions.

  4. Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae.

    PubMed

    Alout, Haoues; Dabiré, Roch K; Djogbénou, Luc S; Abate, Luc; Corbel, Vincent; Chandre, Fabrice; Cohuet, Anna

    2016-07-19

    Insecticide resistance raises concerns for the control of vector-borne diseases. However, its impact on parasite transmission could be diverse when considering the ecological interactions between vector and parasite. Thus we investigated the fitness cost associated with insecticide resistance and Plasmodium falciparum infection as well as their interactive cost on Anopheles gambiae survival and fecundity. In absence of infection, we observed a cost on fecundity associated with insecticide resistance. However, survival was higher for mosquito bearing the kdr mutation and equal for those with the ace-1(R) mutation compared to their insecticide susceptible counterparts. Interestingly, Plasmodium infection reduced survival only in the insecticide resistant strains but not in the susceptible one and infection was associated with an increase in fecundity independently of the strain considered. This study provides evidence for a survival cost associated with infection by Plasmodium parasite only in mosquito selected for insecticide resistance. This suggests that the selection of insecticide resistance mutation may have disturbed the interaction between parasites and vectors, resulting in increased cost of infection. Considering the fitness cost as well as other ecological aspects of this natural mosquito-parasite combination is important to predict the epidemiological impact of insecticide resistance.

  5. Unexpected anthropophily in the potential secondary malaria vectors Anopheles coustani s.l. and Anopheles squamosus in Macha, Zambia.

    PubMed

    Fornadel, Christen M; Norris, Laura C; Franco, Veronica; Norris, Douglas E

    2011-08-01

    Anopheles coustani s.l. and Anopheles squamosus are sub-Saharan mosquito species that have been implicated in malaria transmission. Although generally believed to be of negligible importance due to their overwhelmingly zoophilic behavior, An. coustani s.l. and An. squamosus made up a large proportion of the anophelines collected by human landing catches during the 2007-2008 and 2008-2009 rainy seasons in Macha, Zambia. Further, polymerase chain reaction-based blood meal identification showed that the majority of blood meals from these mosquito species caught in human-baited Centers for Disease Control light traps were from human hosts. Although no An. coustani s.l. or An. squamosus were found to be positive for Plasmodium, the demonstrated anthropophilic tendencies of these mosquitoes in southern Zambia suggest their potential as secondary malaria vectors.

  6. Risk of exposure to potential vector mosquitoes for rural workers in Northern Lao PDR

    PubMed Central

    Thammavong, Phoutmany; Lindsay, Steve W.; Brey, Paul T.

    2017-01-01

    Background One major consequence of economic development in South-East Asia has been a rapid expansion of rubber plantations, in which outbreaks of dengue and malaria have occurred. Here we explored the difference in risk of exposure to potential dengue, Japanese encephalitis (JE), and malaria vectors between rubber workers and those engaged in traditional forest activities in northern Laos PDR. Methodology/Principal findings Adult mosquitoes were collected for nine months in secondary forests, mature and immature rubber plantations, and villages. Human behavior data were collected using rapid participatory rural appraisals and surveys. Exposure risk was assessed by combining vector and human behavior and calculating the basic reproduction number (R0) in different typologies. Compared to those that stayed in the village, the risk of dengue vector exposure was higher for those that visited the secondary forests during the day (odds ratio (OR) 36.0), for those living and working in rubber plantations (OR 16.2) and for those that tapped rubber (OR 3.2). Exposure to JE vectors was also higher in the forest (OR 1.4) and, similar when working (OR 1.0) and living in the plantations (OR 0.8). Exposure to malaria vectors was greater in the forest (OR 1.3), similar when working in the plantations (OR 0.9) and lower when living in the plantations (OR 0.6). R0 for dengue was >2.8 for all habitats surveyed, except villages where R0≤0.06. The main malaria vector in all habitats was Anopheles maculatus s.l. in the rainy season and An. minimus s.l. in the dry season. Conclusions/Significance The highest risk of exposure to vector mosquitoes occurred when people visit natural forests. However, since rubber workers spend long periods in the rubber plantations, their risk of exposure is increased greatly compared to those who temporarily enter natural forests or remain in the village. This study highlights the necessity of broadening mosquito control to include rubber plantations. PMID:28742854

  7. Larvicidal activity of few select indigenous plants of North East India against disease vector mosquitoes (Diptera: Culicidae).

    PubMed

    Dohutia, C; Bhattacharyya, D R; Sharma, S K; Mohapatra, P K; Bhattacharjee, K; Gogoi, K; Gogoi, P; Mahanta, J; Prakash, A

    2015-03-01

    Mosquitoes are the vectors of several life threatening diseases like dengue, malaria, Japanese encephalitis and lymphatic filariasis, which are widely present in the north-eastern states of India. Investigations on five local plants of north-east India, selected on the basis of their use by indigenous communities as fish poison, were carried out to study their mosquito larvicidal potential against Anopheles stephensi (malaria vector), Stegomyia aegypti (dengue vector) and Culex quinquefasciatus (lymphatic filariasis vector) mosquitoes. Crude Petroleum ether extracts of the roots of three plants viz. Derris elliptica, Linostoma decandrum and Croton tiglium were found to have remarkable larvicidal activity; D. elliptica extract was the most effective and with LC50 value of 0.307 μg/ml its activity was superior to propoxur, the standard synthetic larvicide. Half-life of larvicidal activity of D. elliptica and L. decandrum extracts ranged from 2-4 days.

  8. Vectors and transmission dynamics for Setaria tundra (Filarioidea; Onchocercidae), a parasite of reindeer in Finland

    PubMed Central

    Laaksonen, Sauli; Solismaa, Milla; Kortet, Raine; Kuusela, Jussi; Oksanen, Antti

    2009-01-01

    Background Recent studies have revealed expansion by an array of Filarioid nematodes' into the northern boreal region of Finland. The vector-borne nematode, Setaria tundra, caused a serious disease outbreak in the Finnish reindeer population in 2003–05. The main aim of this study was to understand the outbreak dynamics and the rapid expansion of S. tundra in the sub arctic. We describe the vectors of S. tundra, and its development in vectors, for the first time. Finally we discuss the results in the context of the host-parasite ecology of S. tundra in Finland Results Development of S. tundra to the infective stage occurs in mosquitoes, (genera Aedes and Anopheles). We consider Aedes spp. the most important vectors. The prevalence of S. tundra naturally infected mosquitoes from Finland varied from 0.5 to 2.5%. The rate of development in mosquitoes was temperature-dependent. Infective larvae were present approximately 14 days after a blood meal in mosquitoes maintained at room temperature (mean 21 C), but did not develop in mosquitoes maintained outside for 22 days at a mean temperature of 14.1 C. The third-stage (infective) larvae were elongated (mean length 1411 μm (SD 207), and width 28 μm (SD 2)). The anterior end was blunt, and bore two liplike structures, the posterior end slight tapering with a prominent terminal papilla. Infective larvae were distributed anteriorly in the insect's body, the highest abundance being 70 larvae in one mosquito. A questionnaire survey revealed that the peak activity of Culicidae in the reindeer herding areas of Finland was from the middle of June to the end of July and that warm summer weather was associated with reindeer flocking behaviour on mosquito-rich wetlands. Conclusion In the present work, S. tundra vectors and larval development were identified and described for the first time. Aedes spp. mosquitoes likely serve as the most important and competent vectors for S. tundra in Finland. Warm summers apparently promote transmission and genesis of disease outbreaks by favouring the development of S. tundra in its mosquito vectors, by improving the development and longevity of mosquitoes, and finally by forcing the reindeer to flock on mosquito rich wetlands. Thus we predict that global climate change has the potential to promote the further emergence of Filarioid nematodes and the disease caused by them in subarctic regions. PMID:19126197

  9. Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides.

    PubMed

    Kumar, Palanisamy Mahesh; Murugan, Kadarkarai; Madhiyazhagan, Pari; Kovendan, Kalimuthu; Amerasan, Duraisamy; Chandramohan, Balamurugan; Dinesh, Devakumar; Suresh, Udaiyan; Nicoletti, Marcello; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Wei, Hui; Kalimuthu, Kandasamy; Hwang, Jiang-Shiou; Lo Iacono, Annalisa; Benelli, Giovanni

    2016-02-01

    Aedes albopictus is an important arbovirus vector, including dengue. Currently, there is no specific treatment for dengue. Its prevention solely depends on effective vector control measures. In this study, silver nanoparticles (AgNPs) were biosynthesized using a cheap leaf extract of Berberis tinctoria as reducing and stabilizing agent and tested against Ae. albopictus and two mosquito natural enemies. AgNPs were characterized by using UV–vis spectrophotometry, X-ray diffraction, and scanning electron microscopy. In laboratory conditions, the toxicity of AgNPs was evaluated on larvae and pupae of Ae. albopictus. Suitability Index/Predator Safety Factor was assessed on Toxorhynchites splendens and Mesocyclops thermocyclopoides. The leaf extract of B. tinctoria was toxic against larval instars (I–IV) and pupae of Ae. albopictus; LC50 was 182.72 ppm (I instar), 230.99 ppm (II), 269.65 ppm (III), 321.75 ppm (IV), and 359.71 ppm (pupa). B. tinctoria-synthesized AgNPs were highly effective, with LC50 of 4.97 ppm (I instar), 5.97 ppm (II), 7.60 ppm (III), 9.65 ppm (IV), and 14.87 ppm (pupa). Both the leaf extract and AgNPs showed reduced toxicity against the mosquito natural enemies M. thermocyclopoides and T. splendens. Overall, this study firstly shed light on effectiveness of B. tinctoria-synthesized AgNPs as an eco-friendly nanopesticide, highlighting the concrete possibility to employ this newer and safer tool in arbovirus vector control programs.

  10. Ross, macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens.

    PubMed

    Smith, David L; Battle, Katherine E; Hay, Simon I; Barker, Christopher M; Scott, Thomas W; McKenzie, F Ellis

    2012-01-01

    Ronald Ross and George Macdonald are credited with developing a mathematical model of mosquito-borne pathogen transmission. A systematic historical review suggests that several mathematicians and scientists contributed to development of the Ross-Macdonald model over a period of 70 years. Ross developed two different mathematical models, Macdonald a third, and various "Ross-Macdonald" mathematical models exist. Ross-Macdonald models are best defined by a consensus set of assumptions. The mathematical model is just one part of a theory for the dynamics and control of mosquito-transmitted pathogens that also includes epidemiological and entomological concepts and metrics for measuring transmission. All the basic elements of the theory had fallen into place by the end of the Global Malaria Eradication Programme (GMEP, 1955-1969) with the concept of vectorial capacity, methods for measuring key components of transmission by mosquitoes, and a quantitative theory of vector control. The Ross-Macdonald theory has since played a central role in development of research on mosquito-borne pathogen transmission and the development of strategies for mosquito-borne disease prevention.

  11. Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens

    PubMed Central

    Smith, David L.; Battle, Katherine E.; Hay, Simon I.; Barker, Christopher M.; Scott, Thomas W.; McKenzie, F. Ellis

    2012-01-01

    Ronald Ross and George Macdonald are credited with developing a mathematical model of mosquito-borne pathogen transmission. A systematic historical review suggests that several mathematicians and scientists contributed to development of the Ross-Macdonald model over a period of 70 years. Ross developed two different mathematical models, Macdonald a third, and various “Ross-Macdonald” mathematical models exist. Ross-Macdonald models are best defined by a consensus set of assumptions. The mathematical model is just one part of a theory for the dynamics and control of mosquito-transmitted pathogens that also includes epidemiological and entomological concepts and metrics for measuring transmission. All the basic elements of the theory had fallen into place by the end of the Global Malaria Eradication Programme (GMEP, 1955–1969) with the concept of vectorial capacity, methods for measuring key components of transmission by mosquitoes, and a quantitative theory of vector control. The Ross-Macdonald theory has since played a central role in development of research on mosquito-borne pathogen transmission and the development of strategies for mosquito-borne disease prevention. PMID:22496640

  12. Maintenance of residual activity of Bt toxin by using natural and synthetic dyes: a novel approach for sustainable mosquito vector control.

    PubMed

    Chandrashekhar, Patil; Rahul, Suryawanshi; Hemant, Borase; Chandrakant, Narkhede; Bipinchandra, Salunke; Satish, Patil

    2015-01-01

    Mosquito control protein from Bacillus thuringiensis gets inactivated with exposure to sunlight. To address this issue, the potential of synthetic and natural dye was investigated as sunlight protectants. Bt SV2 in absence of dyes when exposed to sunlight showed reduced effectiveness against the fourth instars of mosquito larvae. Whereas acriflavin, congo red and violacein were able to maintain 86.4%, 91.6% and 82.2% mosquito larvicidal efficacy of Bt SV2 against IVth instars larvae of Anopheles stephensi Meigen after exposure to sunlight. Similarly, beetroot dye, acriflavin, congo red and violacein maintained 98.4%, 97.1%, 90.8% and 70.7% larvicidal activities against Aedes aegypti Linnaeus after sunlight exposure. Prodigiosin was found to be the best photo-protectant by simultaneously protecting and enhancing Bt activity by 6.16% and 22.16% against A. stephensi and A. aegypti, respectively. Combination of dyes with Bt formulations can be a good strategy for mosquito control programmes in tropical and sub-tropical regions.

  13. In Vivo Functional Genomic Studies of Sterol Carrier Protein-2 Gene in the Yellow Fever Mosquito

    PubMed Central

    Peng, Rong; Maklokova, Vilena I.; Chandrashekhar, Jayadevi H.; Lan, Que

    2011-01-01

    A simple and efficient DNA delivery method to introduce extrachromosomal DNA into mosquito embryos would significantly aid functional genomic studies. The conventional method for delivery of DNA into insects is to inject the DNA directly into the embryos. Taking advantage of the unique aspects of mosquito reproductive physiology during vitellogenesis and an in vivo transfection reagent that mediates DNA uptake in cells via endocytosis, we have developed a new method to introduce DNA into mosquito embryos vertically via microinjection of DNA vectors in vitellogenic females without directly manipulating the embryos. Our method was able to introduce inducible gene expression vectors transiently into F0 mosquitoes to perform functional studies in vivo without transgenic lines. The high efficiency of expression knockdown was reproducible with more than 70% of the F0 individuals showed sufficient gene expression suppression (<30% of the controls' levels). At the cohort level, AeSCP-2 expression knockdown in early instar larvae resulted in detectable phenotypes of the expression deficiency such as high mortality, lowered fertility, and distorted sex ratio after induction of AeSCP-2 siRNA expression in vivo. The results further confirmed the important role of AeSCP-2 in the development and reproduction of A. aegypti. In this study, we proved that extrachromosaomal transient expression of an inducible gene from a DNA vector vertically delivered via vitellogenic females can be used to manipulate gene expression in F0 generation. This new method will be a simple and efficient tool for in vivo functional genomic studies in mosquitoes. PMID:21437205

  14. The potential for flower nectar to allow mosquito to mosquito transmission of Francisella tularensis

    PubMed Central

    Payne, Jessica; Gaughenbaugh, Anna; Renshaw, Andrea; Wright, Jenna; Seeber, Roger; Barnes, Rebecca; Florjanczyk, Aleksandr; Horzempa, Joseph

    2017-01-01

    Francisella tularensis is disseminated in nature by biting arthropods such as mosquitoes. The relationship between mosquitoes and F. tularensis in nature is highly ambiguous, due in part to the fact that mosquitoes have caused significant tularemia outbreaks despite being classified as a mechanical vector of F. tularensis. One possible explanation for mosquitoes being a prominent, yet mechanical vector is that these insects feed on flower nectar between blood meals, allowing for transmission of F. tularensis between mosquitoes. Here, we aimed to assess whether F. tularensis could survive in flower nectar. Moreover, we examined if mosquitoes could interact with or ingest and transmit F. tularensis from one source of nectar to another. F. tularensis exhibited robust survivability in flower nectar with concentrations of viable bacteria remaining consistent with the rich growth medium. Furthermore, F. tularensis was able to survive (albeit to a lesser extent) in 30% sucrose (a nectar surrogate) over a period of time consistent with that of a typical flower bloom. Although we observed diminished bacterial survival in the nectar surrogate, mosquitoes that fed on this material became colonized with F. tularensis. Finally, colonized mosquitoes were capable of transferring F. tularensis to a sterile nectar surrogate. These data suggest that flower nectar may be capable of serving as a temporary source of F. tularensis that could contribute to the amplification of outbreaks. Mosquitoes that feed on an infected mammalian host and subsequently feed on flower nectar could deposit some F. tularensis bacteria into the nectar in the process. Mosquitoes subsequently feeding on this nectar source could potentially become colonized by F. tularensis. Thus, the possibility exists that flower nectar may allow for vector-vector transmission of F. tularensis. PMID:28486521

  15. The potential for flower nectar to allow mosquito to mosquito transmission of Francisella tularensis.

    PubMed

    Kenney, Adam; Cusick, Austin; Payne, Jessica; Gaughenbaugh, Anna; Renshaw, Andrea; Wright, Jenna; Seeber, Roger; Barnes, Rebecca; Florjanczyk, Aleksandr; Horzempa, Joseph

    2017-01-01

    Francisella tularensis is disseminated in nature by biting arthropods such as mosquitoes. The relationship between mosquitoes and F. tularensis in nature is highly ambiguous, due in part to the fact that mosquitoes have caused significant tularemia outbreaks despite being classified as a mechanical vector of F. tularensis. One possible explanation for mosquitoes being a prominent, yet mechanical vector is that these insects feed on flower nectar between blood meals, allowing for transmission of F. tularensis between mosquitoes. Here, we aimed to assess whether F. tularensis could survive in flower nectar. Moreover, we examined if mosquitoes could interact with or ingest and transmit F. tularensis from one source of nectar to another. F. tularensis exhibited robust survivability in flower nectar with concentrations of viable bacteria remaining consistent with the rich growth medium. Furthermore, F. tularensis was able to survive (albeit to a lesser extent) in 30% sucrose (a nectar surrogate) over a period of time consistent with that of a typical flower bloom. Although we observed diminished bacterial survival in the nectar surrogate, mosquitoes that fed on this material became colonized with F. tularensis. Finally, colonized mosquitoes were capable of transferring F. tularensis to a sterile nectar surrogate. These data suggest that flower nectar may be capable of serving as a temporary source of F. tularensis that could contribute to the amplification of outbreaks. Mosquitoes that feed on an infected mammalian host and subsequently feed on flower nectar could deposit some F. tularensis bacteria into the nectar in the process. Mosquitoes subsequently feeding on this nectar source could potentially become colonized by F. tularensis. Thus, the possibility exists that flower nectar may allow for vector-vector transmission of F. tularensis.

  16. Composition and Genetic Diversity of Mosquitoes (Diptera: Culicidae) on Islands and Mainland Shores of Kenya's Lakes Victoria and Baringo.

    PubMed

    Ajamma, Yvonne Ukamaka; Villinger, Jandouwe; Omondi, David; Salifu, Daisy; Onchuru, Thomas Ogao; Njoroge, Laban; Muigai, Anne W T; Masiga, Daniel K

    2016-11-01

    The Lake Baringo and Lake Victoria regions of Kenya are associated with high seroprevalence of mosquito-transmitted arboviruses. However, molecular identification of potential mosquito vector species, including morphologically identified ones, remains scarce. To estimate the diversity, abundance, and distribution of mosquito vectors on the mainland shores and adjacent inhabited islands in these regions, we collected and morphologically identified adult and immature mosquitoes and obtained the corresponding sequence variation at cytochrome c oxidase 1 (COI) and internal transcribed spacer region 2 (ITS2) gene regions. A total of 63 species (including five subspecies) were collected from both study areas, 47 of which have previously been implicated as disease vectors. Fourteen species were found only on island sites, which are rarely included in mosquito diversity surveys. We collected more mosquitoes, yet with lower species composition, at Lake Baringo (40,229 mosquitoes, 32 species) than at Lake Victoria (22,393 mosquitoes, 54 species). Phylogenetic analysis of COI gene sequences revealed Culex perexiguus and Cx tenagius that could not be distinguished morphologically. Most Culex species clustered into a heterogeneous clade with closely related sequences, while Culex pipiens clustered into two distinct COI and ITS2 clades. These data suggest limitations in current morphological identification keys. This is the first DNA barcode report of Kenyan mosquitoes. To improve mosquito species identification, morphological identifications should be supported by their molecular data, while diversity surveys should target both adults and immatures. The diversity of native mosquito disease vectors identified in this study impacts disease transmission risks to humans and livestock. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  17. Modeled response of the West Nile virus vector Culex quinquefasciatus to changing climate using the dynamic mosquito simulation model

    NASA Astrophysics Data System (ADS)

    Morin, Cory W.; Comrie, Andrew C.

    2010-09-01

    Climate can strongly influence the population dynamics of disease vectors and is consequently a key component of disease ecology. Future climate change and variability may alter the location and seasonality of many disease vectors, possibly increasing the risk of disease transmission to humans. The mosquito species Culex quinquefasciatus is a concern across the southern United States because of its role as a West Nile virus vector and its affinity for urban environments. Using established relationships between atmospheric variables (temperature and precipitation) and mosquito development, we have created the Dynamic Mosquito Simulation Model (DyMSiM) to simulate Cx. quinquefasciatus population dynamics. The model is driven with climate data and validated against mosquito count data from Pasco County, Florida and Coachella Valley, California. Using 1-week and 2-week filters, mosquito trap data are reproduced well by the model ( P < 0.0001). Dry environments in southern California produce different mosquito population trends than moist locations in Florida. Florida and California mosquito populations are generally temperature-limited in winter. In California, locations are water-limited through much of the year. Using future climate projection data generated by the National Center for Atmospheric Research CCSM3 general circulation model, we applied temperature and precipitation offsets to the climate data at each location to evaluate mosquito population sensitivity to possible future climate conditions. We found that temperature and precipitation shifts act interdependently to cause remarkable changes in modeled mosquito population dynamics. Impacts include a summer population decline from drying in California due to loss of immature mosquito habitats, and in Florida a decrease in late-season mosquito populations due to drier late summer conditions.

  18. Developmental neurogenetics of sexual dimorphism in Aedes aegypti

    PubMed Central

    Duman-Scheel, Molly; Syed, Zainulabeuddin

    2015-01-01

    Sexual dimorphism, a poorly understood but crucial aspect of vector mosquito biology, encompasses sex-specific physical, physiological, and behavioral traits related to mosquito reproduction. The study of mosquito sexual dimorphism has largely focused on analysis of the differences between adult female and male mosquitoes, particularly with respect to sex-specific behaviors related to disease transmission. However, sexually dimorphic behaviors are the products of differential gene expression that initiates during development and therefore must also be studied during development. Recent technical advancements are facilitating functional genetic studies in the dengue vector Aedes aegypti, an emerging model for mosquito development. These methodologies, many of which could be extended to other non-model insect species, are facilitating analysis of the development of sexual dimorphism in neural tissues, particularly the olfactory system. These studies are providing insight into the neurodevelopmental genetic basis for sexual dimorphism in vector mosquitoes. PMID:26949699

  19. Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Govindarajan, M; Mathivanan, T; Elumalai, K; Krishnappa, K; Anandan, A

    2011-08-01

    Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. In mosquito control programs, botanical origin may have the potential to be used successfully as eggs, larvae, and adult. The larvicidal, ovicidal, and repellent activities of crude benzene and ethyl acetate extracts of leaf of Ervatamia coronaria and Caesalpinia pulcherrima were assayed for their toxicity against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in benzene extract of E. coronaria against the larvae of Anopheles Stephensi, Aedes aegypti, and Culex quinquefasciatus with the LC(50) and LC(90) values were 79.08, 89.59, and 96.15 ppm and 150.47, 166.04, and 174.10 ppm, respectively. Mean percent hatchability of the ovicidal activity was observed 48 h posttreatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. The leaf extract of E. coronaria was found to be most effective than Caesalpinia pulcherrima against eggs/egg rafts of three vector mosquitoes. For E. coronaria, the benzene extract exerted 300, 250, and 200 ppm against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus, respectively. The results of the repellent activity of benzene and ethyl acetate extract of E. coronaria and Caesalpinia pulcherrima plants at three different concentrations of 1.0, 2.5, and 5.0 mg/cm(2) were applied on skin of fore arm in man and exposed against adult female mosquitoes. In this observation, these two plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. These results suggest that the leaf solvent plant extracts have the potential to be used as an ideal ecofriendly approach for the control of mosquitoes. This is the first report on the mosquito larvicidal, ovicidal, and repellent activities of the reported E. coronaria and Caesalpinia pulcherrima plants.

  20. Applications and limitations of Centers for Disease Control and Prevention miniature light traps for measuring biting densities of African malaria vector populations: a pooled-analysis of 13 comparisons with human landing catches.

    PubMed

    Briët, Olivier J T; Huho, Bernadette J; Gimnig, John E; Bayoh, Nabie; Seyoum, Aklilu; Sikaala, Chadwick H; Govella, Nicodem; Diallo, Diadier A; Abdullah, Salim; Smith, Thomas A; Killeen, Gerry F

    2015-06-18

    Measurement of densities of host-seeking malaria vectors is important for estimating levels of disease transmission, for appropriately allocating interventions, and for quantifying their impact. The gold standard for estimating mosquito-human contact rates is the human landing catch (HLC), where human volunteers catch mosquitoes that land on their exposed body parts. This approach necessitates exposure to potentially infectious mosquitoes, and is very labour intensive. There are several safer and less labour-intensive methods, with Centers for Disease Control light traps (LT) placed indoors near occupied bed nets being the most widely used. This paper presents analyses of 13 studies with paired mosquito collections of LT and HLC to evaluate these methods for their consistency in sampling indoor-feeding mosquitoes belonging to the two major taxa of malaria vectors across Africa, the Anopheles gambiae sensu lato complex and the Anopheles funestus s.l. group. Both overall and study-specific sampling efficiencies of LT compared with HLC were computed, and regression methods that allow for the substantial variations in mosquito counts made by either method were used to test whether the sampling efficacy varies with mosquito density. Generally, LT were able to collect similar numbers of mosquitoes to the HLC indoors, although the relative sampling efficacy, measured by the ratio of LT:HLC varied considerably between studies. The overall best estimate for An. gambiae s.l. was 1.06 (95% credible interval: 0.68-1.64) and for An. funestus s.l. was 1.37 (0.70-2.68). Local calibration exercises are not reproducible, since only in a few studies did LT sample proportionally to HLC, and there was no geographical pattern or consistent trend with average density in the tendency for LT to either under- or over-sample. LT are a crude tool at best, but are relatively easy to deploy on a large scale. Spatial and temporal variation in mosquito densities and human malaria transmission exposure span several orders of magnitude, compared to which the inconsistencies of LT are relatively small. LT, therefore, remain an invaluable and safe alternative to HLC for measuring indoor malaria transmission exposure in Africa.

  1. Impact of Education Campaign on Community-Based Vector Control in Hastening the Process of Elimination of Lymphatic Filariasis in Tamil Nadu, South India

    ERIC Educational Resources Information Center

    Nandha, B.; Krishnamoorthy, K.

    2012-01-01

    Globally mosquito-borne lymphatic filariasis (LF) is targeted for elimination by 2020. Towards this goal, the scope of community-based vector control as a supplementary strategy to mass drug administration (MDA) was assessed through an intensive education campaign and evaluated using pre- and post-educational surveys in an intervention and…

  2. Aedes Mosquitoes and Aedes-Borne Arboviruses in Africa: Current and Future Threats

    PubMed Central

    Weetman, David; Shearer, Freya M.; Coulibaly, Mamadou

    2018-01-01

    The Zika crisis drew attention to the long-overlooked problem of arboviruses transmitted by Aedes mosquitoes in Africa. Yellow fever, dengue, chikungunya and Zika are poorly controlled in Africa and often go unrecognized. However, to combat these diseases, both in Africa and worldwide, it is crucial that this situation changes. Here, we review available data on the distribution of each disease in Africa, their Aedes vectors, transmission potential, and challenges and opportunities for Aedes control. Data on disease and vector ranges are sparse, and consequently maps of risk are uncertain. Issues such as genetic and ecological diversity, and opportunities for integration with malaria control, are primarily African; others such as ever-increasing urbanization, insecticide resistance and lack of evidence for most control-interventions reflect problems throughout the tropics. We identify key knowledge gaps and future research areas, and in particular, highlight the need to improve knowledge of the distributions of disease and major vectors, insecticide resistance, and to develop specific plans and capacity for arboviral disease surveillance, prevention and outbreak responses. PMID:29382107

  3. Global climate change and its potential impact on disease transmission by salinity-tolerant mosquito vectors in coastal zones.

    PubMed

    Ramasamy, Ranjan; Surendran, Sinnathamby Noble

    2012-01-01

    Global climate change can potentially increase the transmission of mosquito vector-borne diseases such as malaria, lymphatic filariasis, and dengue in many parts of the world. These predictions are based on the effects of changing temperature, rainfall, and humidity on mosquito breeding and survival, the more rapid development of ingested pathogens in mosquitoes and the more frequent blood feeds at moderately higher ambient temperatures. An expansion of saline and brackish water bodies (water with <0.5 ppt or parts per thousand, 0.5-30 ppt and >30 ppt salt are termed fresh, brackish, and saline respectively) will also take place as a result of global warming causing a rise in sea levels in coastal zones. Its possible impact on the transmission of mosquito-borne diseases has, however, not been adequately appreciated. The relevant impacts of global climate change on the transmission of mosquito-borne diseases in coastal zones are discussed with reference to the Ross-McDonald equation and modeling studies. Evidence is presented to show that an expansion of brackish water bodies in coastal zones can increase the densities of salinity-tolerant mosquitoes like Anopheles sundaicus and Culex sitiens, and lead to the adaptation of fresh water mosquito vectors like Anopheles culicifacies, Anopheles stephensi, Aedes aegypti, and Aedes albopictus to salinity. Rising sea levels may therefore act synergistically with global climate change to increase the transmission of mosquito-borne diseases in coastal zones. Greater attention therefore needs to be devoted to monitoring disease incidence and preimaginal development of vector mosquitoes in artificial and natural coastal brackish/saline habitats. It is important that national and international health agencies are aware of the increased risk of mosquito-borne diseases in coastal zones and develop preventive and mitigating strategies. Application of appropriate counter measures can greatly reduce the potential for increased coastal transmission of mosquito-borne diseases consequent to climate change and a rise in sea levels. It is proposed that the Jaffna peninsula in Sri Lanka may be a useful case study for the impact of rising sea levels on mosquito vectors in tropical coasts.

  4. Global Climate Change and Its Potential Impact on Disease Transmission by Salinity-Tolerant Mosquito Vectors in Coastal Zones

    PubMed Central

    Ramasamy, Ranjan; Surendran, Sinnathamby Noble

    2012-01-01

    Global climate change can potentially increase the transmission of mosquito vector-borne diseases such as malaria, lymphatic filariasis, and dengue in many parts of the world. These predictions are based on the effects of changing temperature, rainfall, and humidity on mosquito breeding and survival, the more rapid development of ingested pathogens in mosquitoes and the more frequent blood feeds at moderately higher ambient temperatures. An expansion of saline and brackish water bodies (water with <0.5 ppt or parts per thousand, 0.5–30 ppt and >30 ppt salt are termed fresh, brackish, and saline respectively) will also take place as a result of global warming causing a rise in sea levels in coastal zones. Its possible impact on the transmission of mosquito-borne diseases has, however, not been adequately appreciated. The relevant impacts of global climate change on the transmission of mosquito-borne diseases in coastal zones are discussed with reference to the Ross–McDonald equation and modeling studies. Evidence is presented to show that an expansion of brackish water bodies in coastal zones can increase the densities of salinity-tolerant mosquitoes like Anopheles sundaicus and Culex sitiens, and lead to the adaptation of fresh water mosquito vectors like Anopheles culicifacies, Anopheles stephensi, Aedes aegypti, and Aedes albopictus to salinity. Rising sea levels may therefore act synergistically with global climate change to increase the transmission of mosquito-borne diseases in coastal zones. Greater attention therefore needs to be devoted to monitoring disease incidence and preimaginal development of vector mosquitoes in artificial and natural coastal brackish/saline habitats. It is important that national and international health agencies are aware of the increased risk of mosquito-borne diseases in coastal zones and develop preventive and mitigating strategies. Application of appropriate counter measures can greatly reduce the potential for increased coastal transmission of mosquito-borne diseases consequent to climate change and a rise in sea levels. It is proposed that the Jaffna peninsula in Sri Lanka may be a useful case study for the impact of rising sea levels on mosquito vectors in tropical coasts. PMID:22723781

  5. Potential benefits of combining transfluthrin-treated sisal products and long-lasting insecticidal nets for controlling indoor-biting malaria vectors.

    PubMed

    Masalu, John P; Okumu, Fredros O; Mmbando, Arnold S; Sikulu-Lord, Maggy T; Ogoma, Sheila B

    2018-04-10

    Transfluthrin vapour prevents mosquito bites by disrupting their host-seeking behaviors. We measured the additional benefits of combining transfluthrin-treated sisal decorations and long-lasting insecticidal nets (LLINs) with an aim of extending protection against early evening, indoor-biting malaria vectors when LLINs are ineffective. We investigated the indoor protective efficacy of locally made sisal decorative baskets (0.28 m 2 ) treated with 2.5 ml and 5.0 ml transfluthrin, in terms of mosquito density, exposure to bites and 24 h mortality. Experiments were conducted in experimental huts, located in Lupiro village, Ulanga District, south-eastern Tanzania. Human landing catches (HLC) were used to measure exposure to bites between 19:00-23:00 h. Each morning, at 06:00 h, mosquitoes were collected inside huts and in exit traps and monitored for 24 h mortality. Sisal decorative baskets (0.28 m 2 ) treated with 2.5 ml and 5.0 ml transfluthrin deterred three-quarters of Anopheles arabiensis mosquitoes from entering huts (relative rate, RR = 0.26, 95% confidence interval, CI: 0.20-0.34, P < 0.001 and RR= 0.29, 95% CI: 0.22-0.37, P < 0.001, respectively). Both treatments induced a 10-fold increase in 24 h mortality of An. arabiensis mosquitoes (odds ratio, OR = 12.26, 95% CI: 7.70-19.51, P < 0.001 and OR = 18.42, 95% CI: 11.36-29.90, P < 0.001, respectively). Sisal decorative items treated with spatial repellents provide additional household and personal protection against indoor biting malaria and nuisance mosquitoes in the early evening, when conventional indoor vector control tools, such as LLINs, are not in use. We recommend future studies to investigate the epidemiological relevance of combining LLINs and transfluthrin decorated baskets in terms of their effect on reduction in malaria prevalence.

  6. Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia.

    PubMed

    Syafruddin, Din; Hidayati, Anggi P N; Asih, Puji B S; Hawley, William A; Sukowati, Supratman; Lobo, Neil F

    2010-11-08

    Malaria is a serious public health problem in Indonesia, particularly in areas outside Java and Bali. The spread of resistance to the currently available anti-malarial drugs or insecticides used for mosquito control would cause an increase in malaria transmission. To better understand patterns of transmission and resistance in Indonesia, an integrated mosquito survey was conducted in three areas with different malaria endemicities, Purworejo in Central Java, South Lampung District in Sumatera and South Halmahera District in North Mollucca. Mosquitoes were collected from the three areas through indoor and outdoor human landing catches (HLC) and indoor restinging catches. Specimens were identified morphologically by species and kept individually in 1.5 ml Eppendorf microtube. A fragment of the VGSC gene from 95 mosquito samples was sequenced and kdr allelic variation determined. The molecular analysis of these anopheline mosquitoes revealed the existence of the 1014F allele in 4 major malaria vectors from South Lampung. These species include, Anopheles sundaicus, Anopheles aconitus, Anopheles subpictus and Anopheles vagus. The 1014F allele was not found in the other areas. The finding documents the presence of this mutant allele in Indonesia, and implies that selection pressure on the Anopheles population in this area has occurred. Further studies to determine the impact of the resistance allele on the efficacy of pyrethroids in control programmes are needed.

  7. Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia

    PubMed Central

    2010-01-01

    Background Malaria is a serious public health problem in Indonesia, particularly in areas outside Java and Bali. The spread of resistance to the currently available anti-malarial drugs or insecticides used for mosquito control would cause an increase in malaria transmission. To better understand patterns of transmission and resistance in Indonesia, an integrated mosquito survey was conducted in three areas with different malaria endemicities, Purworejo in Central Java, South Lampung District in Sumatera and South Halmahera District in North Mollucca. Methods Mosquitoes were collected from the three areas through indoor and outdoor human landing catches (HLC) and indoor restinging catches. Specimens were identified morphologically by species and kept individually in 1.5 ml Eppendorf microtube. A fragment of the VGSC gene from 95 mosquito samples was sequenced and kdr allelic variation determined. Results The molecular analysis of these anopheline mosquitoes revealed the existence of the 1014F allele in 4 major malaria vectors from South Lampung. These species include, Anopheles sundaicus, Anopheles aconitus, Anopheles subpictus and Anopheles vagus. The 1014F allele was not found in the other areas. Conclusion The finding documents the presence of this mutant allele in Indonesia, and implies that selection pressure on the Anopheles population in this area has occurred. Further studies to determine the impact of the resistance allele on the efficacy of pyrethroids in control programmes are needed. PMID:21054903

  8. Into the environment of mosquito-borne disease: A spatial analysis of vector distribution using traditional and remotely sensed methods

    NASA Astrophysics Data System (ADS)

    Brown, Heidi E.

    Spatially explicit information is increasingly available for infectious disease modeling. However, such information is reluctantly or inappropriately incorporated. My dissertation research uses spatially explicit data to assess relationships between landscape and mosquito species distribution and discusses challenges regarding accurate predictive risk modeling. The goal of my research is to use remotely sensed environmental information and spatial statistical methods to better understand mosquito-borne disease epidemiology for improvement of public health responses. In addition to reviewing the progress of spatial infectious disease modeling, I present four research projects. I begin by evaluating the biases in surveillance data and build up to predictive modeling of mosquito species presence. In the first study I explore how mosquito surveillance trap types influence estimations of mosquito populations. Then. I use county-based human surveillance data and landscape variables to identify risk factors for West Nile virus disease. The third study uses satellite-based vegetation indices to identify spatial variation among West Nile virus vectors in an urban area and relates the variability to virus transmission dynamics. Finally, I explore how information from three satellite sensors of differing spatial and spectral resolution can be used to identify and distinguish mosquito habitat across central Connecticut wetlands. Analyses presented here constitute improvements to the prediction of mosquito distribution and therefore identification of disease risk factors. Current methods for mosquito surveillance data collection are labor intensive and provide an extremely limited, incomplete picture of the species composition and abundance. Human surveillance data offers additional challenges with respect to reporting bias and resolution, but is nonetheless informative in identifying environmental risk factors and disease transmission dynamics. Remotely sensed imagery supports mosquito and human disease surveillance data by providing spatially explicit, line resolution information about environmental factors relevant to vector-borne disease processes. Together, surveillance and remotely sensed environmental data facilitate improved description and modeling of disease transmission. Remote sensing can be used to develop predictive maps of mosquito distribution in relation to disease risk. This has implications for increased accuracy of mosquito control efforts. The projects presented in this dissertation enhance current public health capacities by examining the applications of spatial modeling with respect to mosquito-borne disease.

  9. Outbreak of Zika virus infection in Singapore: an epidemiological, entomological, virological, and clinical analysis.

    PubMed

    2017-08-01

    An outbreak of Zika virus infection was detected in Singapore in August, 2016. We report the first comprehensive analysis of a national response to an outbreak of Zika virus infection in Asia. In the first phase of the outbreak, patients with suspected Zika virus infection were isolated in two national referral hospitals until their serum tested negative for the virus. Enhanced vector control and community engagement measures were deployed in disease clusters, including stepped-up mosquito larvicide and adulticide use, community participation in source reduction (destruction of mosquito breeding sites), and work with the local media to promote awareness of the outbreak. Clinical and epidemiological data were collected from patients with confirmed Zika virus infection during the first phase. In the second phase, admission into hospitals for isolation was stopped but vector control efforts continued. Mosquitoes were captured from areas with Zika disease clusters to assess which species were present, their breeding numbers, and to test for Zika virus. Mosquito virus strains were compared with human strains through phylogenetic analysis after full genome sequencing. Reproductive numbers and inferred dates of strain diversification were estimated through Bayesian analyses. From Aug 27 to Nov 30, 2016, 455 cases of Zika virus infection were confirmed in Singapore. Of 163 patients with confirmed Zika virus infection who presented to national referral hospitals during the first phase of the outbreak, Zika virus was detected in the blood samples of 97 (60%) patients and the urine samples of 157 (96%) patients. There were 15 disease clusters, 12 of which had high Aedes aegypti breeding percentages. Captured mosquitoes were pooled into 517 pools for Zika virus screening; nine abdomen pools (2%) were positive for Zika virus, of which seven head and thorax pools were Zika-virus positive. In the phylogenetic analysis, all mosquito sequences clustered within the outbreak lineage. The lineage showed little diversity and was distinct from other Asian lineages. The estimated most recent common ancestor of the outbreak lineage was from May, 2016. With the deployment of vector control and community engagement measures, the estimated reproductive number fell from 3·62 (95% CI 3·48-3·77) for July 31 to Sept 1, 2016, to 1·22 (95% CI 1·19-1·24) 4 weeks later (Sept 1 to Nov 24, 2016). The outbreak shows the ease with which Zika virus can be introduced and spread despite good baseline vector control. Disease surveillance, enhanced vector control, and community awareness and engagement helped to quickly curb further spread of the virus. These intensive measures might be useful for other countries facing the same threat. National Medical Research Council Singapore, Centre for Infectious Disease Epidemiology and Research, and A*STAR Biomedical Research Council. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Species Identification and Resistance Status of Anopheles gambiae s.l. (Diptera: Culicidae) Mosquitoes in Guinea.

    PubMed

    Keita, K; Camara, D; Barry, Y; Ossè, R; Wang, L; Sylla, M; Miller, D; Leite, L; Schopp, P; Lawrence, G G; Akogbéto, M; Dotson, E M; Guilavogui, T; Keita, M; Irish, S R

    2017-05-01

    Insecticide resistance is one of the primary threats to the recent gains in malaria control. This is especially true in Guinea, where long-lasting insecticidal nets are currently the primary vector control intervention. To better inform the national malaria control program on the current status of insecticide resistance in Guinea, resistance bioassays were conducted, using Anopheles gambiae s.l. Giles, in three sites. Molecular analyses were also done on An. gambiae s.l. to determine the species and find whether the target-site mutations kdr and Ace1R were present. Susceptibility tests revealed resistance to DDT and pyrethroids, although mosquitoes were susceptible to deltamethrin in two of the three sites tested. Mosquitoes were susceptible to bendiocarb, except in Kissidougou, Guinea. The kdr-west mutation was widespread and the frequency was 60% or more in all sites. However, the Ace1R mutation was present in low levels. Insecticide susceptibility should continue to be monitored in Guinea to ensure insecticide-based vector control methods remain effective. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  11. Expression Profile of Genes during Resistance Reversal in a Temephos Selected Strain of the Dengue Vector, Aedes aegypti

    PubMed Central

    Strode, Clare; de Melo-Santos, Maria; Magalhães, Tereza; Araújo, Ana; Ayres, Contancia

    2012-01-01

    Background The mosquito Aedes aegypti is one of the most important disease vectors because it transmits two major arboviruses, dengue and yellow fever, which cause significant global morbidity and mortality. Chemical insecticides form the cornerstone of vector control. The organophosphate temephos a larvicide recommended by WHO for controlling Ae. aegypti, however, resistance to this compound has been reported in many countries, including Brazil. Methodology/Principal Findings The aim of this study was to identify genes implicated in metabolic resistance in an Ae. aegypti temephos resistant strain, named RecR, through microarray analysis. We utilized a custom ‘Ae. aegypti detox chip’ and validated microarray data through RT-PCR comparing susceptible and resistant individuals. In addition, we analyzed gene expression in 4th instar larvae from a reversed susceptible strain (RecRev), exposed and unexposed to temephos. The results obtained revealed a set of 13 and 6 genes significantly over expressed in resistant adult mosquitoes and larvae, respectively. One of these genes, the cytochrome P450 CYP6N12, was up-regulated in both stages. RT-PCR confirmed the microarray results and, additionally, showed no difference in gene expression between temephos exposed and unexposed RecRev mosquitoes. This suggested that the differences in the transcript profiles among the strains are heritable due to a selection process and are not caused by immediate insecticide exposure. Reversal of temephos resistance was demonstrated and, importantly, there was a positive correlation between a decrease in the resistance ratio and an accompanying decrease in the expression levels of previously over expressed genes. Some of the genes identified here have also been implicated in metabolic resistance in other mosquito species and insecticide resistant populations of Ae. aegypti. Conclusions/Significance The identification of gene expression signatures associated to insecticide resistance and their suppression could greatly aid the development of improved strategies of vector control. PMID:22870187

  12. Challenges for malaria elimination in Zanzibar: pyrethroid resistance in malaria vectors and poor performance of long-lasting insecticide nets

    PubMed Central

    2013-01-01

    Background Long-lasting insecticide treated nets (LLINs) and indoor residual house spraying (IRS) are the main interventions for the control of malaria vectors in Zanzibar. The aim of the present study was to assess the susceptibility status of malaria vectors against the insecticides used for LLINs and IRS and to determine the durability and efficacy of LLINs on the island. Methods Mosquitoes were sampled from Pemba and Unguja islands in 2010–2011 for use in WHO susceptibility tests. One hundred and fifty LLINs were collected from households on Unguja, their physical state was recorded and then tested for efficacy as well as total insecticide content. Results Species identification revealed that over 90% of the Anopheles gambiae complex was An. arabiensis with a small number of An. gambiae s.s. and An. merus being present. Susceptibility tests showed that An. arabiensis on Pemba was resistant to the pyrethroids used for LLINs and IRS. Mosquitoes from Unguja Island, however, were fully susceptible to all pyrethroids tested. A physical examination of 150 LLINs showed that two thirds were damaged after only three years in use. All used nets had a significantly lower (p < 0.001) mean permethrin concentration of 791.6 mg/m2 compared with 944.2 mg/m2 for new ones. Their efficacy decreased significantly against both susceptible An. gambiae s.s. colony mosquitoes and wild-type mosquitoes from Pemba after just six washes (p < 0.001). Conclusion The sustainability of the gains achieved in malaria control in Zanzibar is seriously threatened by the resistance of malaria vectors to pyrethroids and the short-lived efficacy of LLINs. This study has revealed that even in relatively well-resourced and logistically manageable places like Zanzibar, malaria elimination is going to be difficult to achieve with the current control measures. PMID:23537463

  13. Predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa.

    PubMed

    Tonnang, Henri E Z; Kangalawe, Richard Y M; Yanda, Pius Z

    2010-04-23

    Malaria is rampant in Africa and causes untold mortality and morbidity. Vector-borne diseases are climate sensitive and this has raised considerable concern over the implications of climate change on future disease risk. The problem of malaria vectors (Anopheles mosquitoes) shifting from their traditional locations to invade new zones is an important concern. The vision of this study was to exploit the sets of information previously generated by entomologists, e.g. on geographical range of vectors and malaria distribution, to build models that will enable prediction and mapping the potential redistribution of Anopheles mosquitoes in Africa. The development of the modelling tool was carried out through calibration of CLIMEX parameters. The model helped estimate the potential geographical distribution and seasonal abundance of the species in relation to climatic factors. These included temperature, rainfall and relative humidity, which characterized the living environment for Anopheles mosquitoes. The same parameters were used in determining the ecoclimatic index (EI). The EI values were exported to a GIS package for special analysis and proper mapping of the potential future distribution of Anopheles gambiae and Anophles arabiensis within the African continent under three climate change scenarios. These results have shown that shifts in these species boundaries southward and eastward of Africa may occur rather than jumps into quite different climatic environments. In the absence of adequate control, these predictions are crucial in understanding the possible future geographical range of the vectors and the disease, which could facilitate planning for various adaptation options. Thus, the outputs from this study will be helpful at various levels of decision making, for example, in setting up of an early warning and sustainable strategies for climate change and climate change adaptation for malaria vectors control programmes in Africa.

  14. Knowledge and beliefs about malaria transmission and practices for vector control in southern Mexico.

    PubMed

    Rodríguez, Américo David; Penilla, Rosa Patricia; Henry-Rodríguez, Mario; Hemingway, Janet; Francisco Betanzos, Angel; Hernández-Avila, Juan Eugenio

    2003-01-01

    To investigate the knowledge and beliefs about malaria transmission and practices for vector control in eight villages on the coastal plain of Chiapas, Mexico. A cross-sectional survey was conducted during May and June 1995 in Chiapas, Mexico. A questionnaire to investigate family structure, knowledge on malaria transmission, preventive measures and attitudes towards seeking treatment was applied to both family heads of a sample of households. Associations were analyzed by estimating odds ratios with confidence intervals and p values, using bivariate and multivariate logistic regression methods. Malaria knowledge was poor and only 48% associated malaria with mosquito bites. The perceived benefit of indoor residual spraying was associated to a reduction of mosquitoes, a reduction in the numbers of cockroaches and rats, but only 3% associated it directly with the prevention of malaria transmission. Most villagers (97.6%) agreed with the indoor residual spraying of insecticides. Ninety nine percent of villagers had mosquito bednets, 75.7% used them all year round. Other measures used by villagers to prevent mosquito bites were smoke and mosquito coils. Above 40% of villagers self-medicated when any member of the family had a fever episode, but 51% attended proper health services (community dispensary, private physician, health worker). About 61% used pesticides for agricultural or livestock purposes and 55% applied themselves. Women had a greater participation as family health promoters, with 70% of the housewives being in charge of the application of self-protection preventive measures. Educational programs aimed at increasing awareness on the participation of mosquitoes on malaria transmission could promote community participation in malaria control in the region. The English version of this paper is available too at: http://www.insp.mx/salud/index.html.

  15. Characterizing the Aedes aegypti Population in a Vietnamese Village in Preparation for a Wolbachia-Based Mosquito Control Strategy to Eliminate Dengue

    PubMed Central

    Jeffery, Jason A. L.; Thi Yen, Nguyen; Nam, Vu Sinh; Nghia, Le Trung; Hoffmann, Ary A.; Kay, Brian H.; Ryan, Peter A.

    2009-01-01

    Background A life-shortening strain of the obligate intracellular bacteria Wolbachia, called wMelPop, is seen as a promising new tool for the control of Aedes aegypti. However, developing a vector control strategy based on the release of mosquitoes transinfected with wMelPop requires detailed knowledge of the demographics of the target population. Methodology/Principal Findings In Tri Nguyen village (611 households) on Hon Mieu Island in central Vietnam, we conducted nine quantitative entomologic surveys over 14 months to determine if Ae. aegypti populations were spatially and temporally homogenous, and to estimate population size. There was no obvious relationship between mosquito (larval, pupal or adult) abundance and temperature and rainfall, and no area of the village supported consistently high numbers of mosquitoes. In almost all surveys, key premises produced high numbers of Ae. aegypti. However, these premises were not consistent between surveys. For an intervention based on a single release of wMelPop-infected Ae. aegypti, release ratios of infected to uninfected adult mosquitoes of all age classes are estimated to be 1.8–6.7∶1 for gravid females (and similarly aged males) or teneral adults, respectively. We calculated that adult female mosquito abundance in Tri Nguyen village could range from 1.1 to 43.3 individuals of all age classes per house. Thus, an intervention could require the release of 2–78 wMelPop-infected gravid females and similarly aged males per house, or 7–290 infected teneral female and male mosquitoes per house. Conclusions/Significance Given the variability we encountered, this study highlights the importance of multiple entomologic surveys when evaluating the spatial structure of a vector population or estimating population size. If a single release of wMelPop-infected Ae. aegypti were to occur when wild Ae. aegypti abundance was at its maximum, a preintervention control program would be necessary to ensure that there was no net increase in mosquito numbers. However, because of the short-term temporal heterogeneity, the inconsistent spatial structure and the impact of transient key premises that we observed, the feasibility of multiple releases of smaller numbers of mosquitoes also needs to be considered. In either case, fewer wMelPop-infected mosquitoes would then need to be released, which will likely be more acceptable to householders. PMID:19956588

  16. Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control.

    PubMed

    Bliman, Pierre-Alexandre; Aronna, M Soledad; Coelho, Flávio C; da Silva, Moacyr A H B

    2018-04-01

    The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of individuals carrying the Wolbachia parasite that need to be introduced into the natural population. The introduced mosquitoes are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this study, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then use feedback control techniques to devise an introduction protocol that is proved to guarantee that the population converges to a stable equilibrium where the totality of mosquitoes carry Wolbachia.

  17. G119S ace-1 mutation conferring insecticide resistance detected in the Culex pipiens complex in Morocco.

    PubMed

    Bkhache, Meriem; Tmimi, Fatim-Zohra; Charafeddine, Omar; Benabdelkrim Filali, Oumama; Lemrani, Meryem; Labbé, Pierrick; Sarih, M'hammed

    2018-06-09

    Arboviruses are controlled through insecticide control of their mosquito vector. However, inconsiderate use of insecticides often results in the selection of resistance in treated populations, so that monitoring is required to optimize their usage. Here, Culex pipiens (West Nile and Rift Valley Fever virus vector) specimens were collected from four Moroccan cities. Levels of susceptibility to the organophosphate (OP) insecticide malathion were assessed using WHO-recommended bioassays. Individual mosquitoes were tested for the presence of the G119S mutation in the ace-1 gene, the main OP-target resistance mutation. Bioassays showed that mosquitoes from Mohammedia were significantly more resistant to malathion than those from Marrakech. Analyzing the ace-1 genotypes in dead and surviving individuals suggested that other resistance mechanisms may be present in Mohammedia. The ace-1 resistance allele frequencies were relatively moderate (<0.4). Their analyses in three Moroccan cities (Tangier, Casablanca and Marrakech) however showed disparities between two coexisting Cx. pipiens forms and revealed that the G119S mutation tends to be more frequent in urban than in rural collections sites. These findings provide a reference assessment of OP resistance in Morocco and should help the health authorities to develop informed and sustainable vector control programs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Effects of Irrigation and Rainfall on the Population Dynamics of Rift Valley Fever and Other Arbovirus Mosquito Vectors in the Epidemic-Prone Tana River County, Kenya.

    PubMed

    Sang, R; Lutomiah, J; Said, M; Makio, A; Koka, H; Koskei, E; Nyunja, A; Owaka, S; Matoke-Muhia, D; Bukachi, S; Lindahl, J; Grace, D; Bett, B

    2017-03-01

    Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that is found in most regions of sub-Saharan Africa, and it affects humans, livestock, and some wild ungulates. Outbreaks are precipitated by an abundance of mosquito vectors associated with heavy persistent rainfall with flooding. We determined the impact of flood-irrigation farming and the effect of environmental parameters on the ecology and densities of primary and secondary vectors of the RVF virus (RVFV) in an RVF-epidemic hotspot in the Tana River Basin, Kenya. Mosquito sampling was conducted in farms and villages (settlements) in an irrigated and a neighboring nonirrigated site (Murukani). Overall, a significantly higher number of mosquitoes were collected in farms in the irrigation scheme compared with villages in the same area (P < 0.001), or farms (P < 0.001), and villages (P = 0.03) in Murukani. In particular, key primary vectors of RVFV, Aedes mcintoshi Marks and Aedes ochraceous Theobald, were more prevalent in the farms compared with villages in the irrigation scheme (P = 0.001) both during the dry and the wet seasons. Similarly, there was a greater abundance of secondary vectors, particularly Culex univittatus Theobald and Culex pipiens (L.) in the irrigation scheme than in the Murukani area. Rainfall and humidity were positively correlated with mosquito densities, particularly the primary vectors. Adult floodwater mosquitoes and Mansonia spp. were collected indoors; immatures of Ae. mcintoshi and secondary vectors were collected in the irrigation drainage canals, whereas those of Ae. ochraceous and Aedes sudanensis Theobald were missing from these water bodies. In conclusion, irrigation in RVF endemic areas provides conducive resting and breeding conditions for vectors of RVFV and other endemic arboviruses. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  19. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia.

    PubMed

    Clennon, Julie A; Kamanga, Aniset; Musapa, Mulenga; Shiff, Clive; Glass, Gregory E

    2010-11-05

    Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures. A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae. Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19% were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM) digital elevation data (DEM) were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM. The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight against malaria in Zambia and other regions with seasonal transmission. This work shows that, in areas of seasonal malaria transmission, incorporating terrain-based landscape models to the planning stages of vector control allows for the exclusion of significant portions of landscape that would be unsuitable for water to accumulate and for mosquito larvae occupation. With increasing free availability of satellite imagery such as SRTM and LandSat, the development of satellite imagery-based prediction models is becoming more accessible to vector management coordinators.

  20. Aedes aegypti breeding site in an underground rainwater reservoir: a warning

    PubMed Central

    Bermudi, Patricia Marques Moralejo; Kowalski, Fernanda; Menzato, Marcela Mori; Ferreira, Millene da Cruz; dos Passos, Willian Brendo Silva; Oku, Vivian Janine Ambriola; Kumow, Aline; Lucio, Taís Vargas Freire Martins; Lima-Camara, Tamara Nunes; Urbinatti, Paulo Roberto; Chiaravalloti, Francisco

    2017-01-01

    ABSTRACT We describe the discovery of Aedes aegypti underground breeding site in the Pinheiros neighborhood of São Paulo, SP, during an entomological survey program performed in 2016. Even with intense surveillance and vector control, large numbers of mosquitoes were present in this area. A detailed investigation allowed for the detection of Ae. aegypti in an underground reservoir used for rainwater storage. After the implementation of protection screens in the accesses, the presence of the vector was no longer detected. In this study, we discuss the frequent use of this type of reservoir structure and its risk for mosquito production. PMID:29236877

  1. "Bird biting" mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology.

    PubMed

    Farajollahi, Ary; Fonseca, Dina M; Kramer, Laura D; Marm Kilpatrick, A

    2011-10-01

    The transmission of vector-borne pathogens is greatly influenced by the ecology of their vector, which is in turn shaped by genetic ancestry, the environment, and the hosts that are fed on. One group of vectors, the mosquitoes in the Culex pipiens complex, play key roles in the transmission of a range of pathogens including several viruses such as West Nile and St. Louis encephalitis viruses, avian malaria (Plasmodium spp.), and filarial worms. The Cx. pipiens complex includes Culex pipiens pipiens with two forms, pipiens and molestus, Culex pipiens pallens, Culex quinquefasciatus, Culex australicus, and Culex globocoxitus. While several members of the complex have limited geographic distributions, Cx. pipienspipiens and Cx. quinquefasciatus are found in all known urban and sub-urban temperate and tropical regions, respectively, across the world, where they are often principal disease vectors. In addition, hybrids are common in areas of overlap. Although gaps in our knowledge still remain, the advent of genetic tools has greatly enhanced our understanding of the history of speciation, domestication, dispersal, and hybridization. We review the taxonomy, genetics, evolution, behavior, and ecology of members of the Cx. pipiens complex and their role in the transmission of medically important pathogens. The adaptation of Cx. pipiens complex mosquitoes to human-altered environments led to their global distribution through dispersal via humans and, combined with their mixed feeding patterns on birds and mammals (including humans), increased the transmission of several avian pathogens to humans. We highlight several unanswered questions that will increase our ability to control diseases transmitted by these mosquitoes. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. [Potential of Bacillus thuringiensis israelensis Berliner for controlling Aedes aegypti].

    PubMed

    Polanczyk, Ricardo Antonio; Garcia, Marcelo de Oliveira; Alves, Sérgio Batista

    2003-12-01

    The importance of the entomopathogenic bacterium Bacillus thuringiensis israelensis in the control of Aedes aegypti is presented. The use and potential of B. thuringiensis israelensis against the mosquito vector of dengue fever is described. Other aspects such as insect's resistance development against chemicals and advantages and constraints of using microbial control are discussed. Emphasis is given to the importance of the use of this bacterium in Brazil, which could contribute significantly to solving the mosquito problem without affecting the environment, humans and others invertebrate organisms in critical regions.

  3. Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation.

    PubMed

    Zhang, Xianghong; Tang, Sanyi; Cheke, Robert A; Zhu, Huaiping

    2016-10-01

    Dengue fever has rapidly become the world's most common vector-borne viral disease. Use of endosymbiotic Wolbachia is an innovative technology to prevent vector mosquitoes from reproducing and so break the cycle of dengue transmission. However, strategies such as population eradication and replacement will only succeed if appropriate augmentations with Wolbachia-infected mosquitoes that take account of a variety of factors are carried out. Here, we describe the spread of Wolbachia in mosquito populations using an impulsive differential system with four state variables, incorporating the effects of cytoplasmic incompatibility and the augmentation of Wolbachia-infected mosquitoes with different sex ratios. We then evaluated (a) how each parameter value contributes to the success of population replacement; (b) how different release quantities of infected mosquitoes with different sex ratios affect the success of population suppression or replacement; and (c) how the success of these two strategies can be realized to block the transmission of dengue fever. Analysis of the system's stability, bifurcations and sensitivity reveals the existence of forward and backward bifurcations, multiple attractors and the contribution of each parameter to the success of the strategies. The results indicate that the initial density of mosquitoes, the quantities of mosquitoes released in augmentations and their sex ratios have impacts on whether or not the strategies of population suppression or replacement can be achieved. Therefore, successful strategies rely on selecting suitable strains of Wolbachia and carefully designing the mosquito augmentation program.

  4. Neem cake as a promising larvicide and adulticide against the rural malaria vector Anopheles culicifacies (Diptera: Culicidae): a HPTLC fingerprinting approach.

    PubMed

    Benelli, Giovanni; Chandramohan, Balamurugan; Murugan, Kadarkarai; Madhiyazhagan, Pari; Kovendan, Kalimuthu; Panneerselvam, Chellasamy; Dinesh, Devakumar; Govindarajan, Marimuthu; Higuchi, Akon; Toniolo, Chiara; Canale, Angelo; Nicoletti, Marcello

    2017-05-01

    Mosquitoes are insects of huge public health importance, since they act as vectors for important pathogens and parasites. Here, we focused on the possibility of using the neem cake in the fight against mosquito vectors. The neem cake chemical composition significantly changes among producers, as evidenced by our HPTLC (High performance thin layer chromatography) analyses of different marketed products. Neem cake extracts were tested to evaluate the ovicidal, larvicidal and adulticidal activity against the rural malaria vector Anopheles culicifacies. Ovicidal activity of both types of extracts was statistically significant, and 150 ppm completely inhibited egg hatching. LC 50 values were extremely low against fourth instar larvae, ranging from 1.321 (NM1) to 1.818 ppm (NA2). Adulticidal activity was also high, with LC 50 ranging from 3.015 (NM1) to 3.637 ppm (NM2). This study pointed out the utility of neem cake as a source of eco-friendly mosquitocides in Anopheline vector control programmes.

  5. Spatial Variations in Dengue Transmission in Schools in Thailand

    PubMed Central

    Ratanawong, Pitcha; Kittayapong, Pattamaporn; Olanratmanee, Phanthip; Wilder-Smith, Annelies; Byass, Peter; Tozan, Yesim; Dambach, Peter; Quiñonez, Carlos Alberto Montenegro; Louis, Valérie R.

    2016-01-01

    Background Dengue is an important neglected tropical disease, with more than half of the world’s population living in dengue endemic areas. Good understanding of dengue transmission sites is a critical factor to implement effective vector control measures. Methods A cohort of 1,811 students from 10 schools in rural, semi-rural and semi-urban Thailand participated in this study. Seroconversion data and location of participants’ residences and schools were recorded to determine spatial patterns of dengue infections. Blood samples were taken to confirm dengue infections in participants at the beginning and the end of school term. Entomological factors included a survey of adult mosquito density using a portable vacuum aspirator during the school term and a follow up survey of breeding sites of Aedes vectors in schools after the school term. Clustering analyses were performed to detect spatial aggregation of dengue infections among participants. Results A total of 57 dengue seroconversions were detected among the 1,655 participants who provided paired blood samples. Of the 57 confirmed dengue infections, 23 (40.0%) occurred in students from 6 (6.8%) of the 88 classrooms in 10 schools. Dengue infections did not show significant clustering by residential location in the study area. During the school term, a total of 66 Aedes aegypti mosquitoes were identified from the 278 mosquitoes caught in 50 classrooms of the 10 schools. In a follow-up survey of breeding sites, 484 out of 2,399 water containers surveyed (20.2%) were identified as active mosquito breeding sites. Discussion and Conclusion Our findings suggest that dengue infections were clustered among schools and among classrooms within schools. The schools studied were found to contain a large number of different types of breeding sites. Aedes vector densities in schools were correlated with dengue infections and breeding sites in those schools. Given that only a small proportion of breeding sites in the schools were subjected to vector control measures (11%), this study emphasizes the urgent need to implement vector control strategies at schools, while maintaining efforts at the household level. PMID:27669170

  6. Arboviruses and their vectors in the Pacific--status report.

    PubMed

    Guillaumot, Laurent

    2005-09-01

    Three arboviruses have already caused epidemics in various Pacific Island countries and territories, and currently represent a direct threat to public health. The diseases concerned are all mosquito-borne and should be kept under careful surveillance. Dengue fever, which is a worldwide major public health problem, is mainly transmitted in the Pacific by the Aedes aegypti vector but also by other mosquitoes of this genus with varying ranges. Epidemic polyarthritis due to the Ross River virus is endemic in Australia. At least one major epidemic has occurred in the Pacific where various vector mosquito species occur. Japanese encephalitis is a zoonosis that can be transmitted to humans by mosquitoes of the genus Culex. Its area of distribution in Asia is expanding and the possibility of fresh incursions into the region should be borne in mind. This paper reviews the situation regarding these diseases in the Pacific and provides information on the way they are transmitted as well as on the biology of the mosquito vectors.

  7. Dengue and Chikungunya Vector Control Pocket Guide

    DTIC Science & Technology

    2012-01-27

    Aedes aegypti readily bites people indoors and will rest on wall surfaces after taking a...countries are areas where dengue risk is well known. Aedes aegypti , Ae. albopictus and Ae. polynesiensis are three mosquito species that are...vectors of dengue. Aedes aegypti accounts for >95% of all cases worldwide. During deployments, all three species must be

  8. Evaluation of pyriproxyfen dissemination via Aedes albopictus from a point source larvicide application in northeast Florida

    USDA-ARS?s Scientific Manuscript database

    The Asian tiger mosquito, Aedes albopictus, ranks among the most important vectors of dengue fever, Zika virus, and chikungunya virus. With no specific medications or vaccines available, vector control is the only way to combat these diseases. Autodissemination of the insect growth regulator pyripro...

  9. Trapping of Rift Valley Fever (RVF) vectors using Light Emitting Diode (LED) CDC traps in two arboviral disease hot spots in Kenya

    USDA-ARS?s Scientific Manuscript database

    Background: Mosquitoes’ response to artificial lights including color has been exploited in trap designs for improved sampling of mosquito vectors. Earlier studies suggest that mosquitoes are attracted to specific wavelengths of light and thus the need to refine techniques to increase mosquito captu...

  10. Insecticide resistance in the dengue vector Aedes aegypti from Martinique: distribution, mechanisms and relations with environmental factors.

    PubMed

    Marcombe, Sébastien; Mathieu, Romain Blanc; Pocquet, Nicolas; Riaz, Muhammad-Asam; Poupardin, Rodolphe; Sélior, Serge; Darriet, Frédéric; Reynaud, Stéphane; Yébakima, André; Corbel, Vincent; David, Jean-Philippe; Chandre, Fabrice

    2012-01-01

    Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the "knock-down resistance" V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed.

  11. Insecticide Resistance in the Dengue Vector Aedes aegypti from Martinique: Distribution, Mechanisms and Relations with Environmental Factors

    PubMed Central

    Marcombe, Sébastien; Mathieu, Romain Blanc; Pocquet, Nicolas; Riaz, Muhammad-Asam; Poupardin, Rodolphe; Sélior, Serge; Darriet, Frédéric; Reynaud, Stéphane; Yébakima, André; Corbel, Vincent; David, Jean-Philippe; Chandre, Fabrice

    2012-01-01

    Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the “knock-down resistance” V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed. PMID:22363529

  12. Aedes aegypti (L.) in Latin American and Caribbean region: With growing evidence for vector adaptation to climate change?

    PubMed

    Chadee, Dave D; Martinez, Raymond

    2016-04-01

    Within Latin America and the Caribbean region the impact of climate change has been associated with the effects of rainfall and temperature on seasonal outbreaks of dengue but few studies have been conducted on the impacts of climate on the behaviour and ecology of Aedes aegypti mosquitoes.This study was conducted to examine the adaptive behaviours currently being employed by A. aegypti mosquitoes exposed to the force of climate change in LAC countries. The literature on the association between climate and dengue incidence is small and sometimes speculative. Few laboratory and field studies have identified research gaps. Laboratory and field experiments were designed and conducted to better understand the container preferences, climate-associated-adaptive behaviour, ecology and the effects of different temperatures and light regimens on the life history of A. aegypti mosquitoes. A. aegypti adaptive behaviours and changes in container preferences demonstrate how complex dengue transmission dynamics is, in different ecosystems. The use of underground drains and septic tanks represents a major behaviour change identified and compounds an already difficult task to control A. aegypti populations. A business as usual approach will exacerbate the problem and lead to more frequent outbreaks of dengue and chikungunya in LAC countries unless both area-wide and targeted vector control approaches are adopted. The current evidence and the results from proposed transdisciplinary research on dengue within different ecosystems will help guide the development of new vector control strategies and foster a better understanding of climate change impacts on vector-borne disease transmission. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. [Physico-chemical signals involved in host localization and in the induction of mosquito bites].

    PubMed

    Torres-Estrada, José Luis; Rodríguez, Mario H

    2003-01-01

    Disease vector female mosquitoes respond to physic-chemical signals to localize vertebrate hosts for blood meals. Zoophylic mosquitoes preferentially respond to CO2 and octenol released in the breath and bodily fluids, while anthropophylic mosquitoes respond to lactic acid and a variety of sweat compounds. These compounds are modified by saprophytic microorganisms in the skin sebaceous glands. Other factors present in human dwellings contribute to the integration of microsystems with characteristic odors that have different attraction for mosquitoes, explaining the focalization of malaria transmission in few households in endemic areas. The identification of the chemical attractants and their molecular receptors could be used to complement new methods to attract mosquitoes to traps during epidemiological surveys, to increase their contact with insecticides in control interventions, and for genetic manipulation to divert mosquito bites towards other animal populations. The English version of this paper is available at:http://www.insp.mx/salud/index.html.

  14. Geostatistical evaluation of integrated marsh management impact on mosquito vectors using before-after-control-impact (BACI) design

    PubMed Central

    Rochlin, Ilia; Iwanejko, Tom; Dempsey, Mary E; Ninivaggi, Dominick V

    2009-01-01

    Background In many parts of the world, salt marshes play a key ecological role as the interface between the marine and the terrestrial environments. Salt marshes are also exceedingly important for public health as larval habitat for mosquitoes that are vectors of disease and significant biting pests. Although grid ditching and pesticides have been effective in salt marsh mosquito control, marsh degradation and other environmental considerations compel a different approach. Targeted habitat modification and biological control methods known as Open Marsh Water Management (OMWM) had been proposed as a viable alternative to marsh-wide physical alterations and chemical control. However, traditional larval sampling techniques may not adequately assess the impacts of marsh management on mosquito larvae. To assess the effectiveness of integrated OMWM and marsh restoration techniques for mosquito control, we analyzed the results of a 5-year OMWM/marsh restoration project to determine changes in mosquito larval production using GIS and geostatistical methods. Methods The following parameters were evaluated using "Before-After-Control-Impact" (BACI) design: frequency and geographic extent of larval production, intensity of larval production, changes in larval habitat, and number of larvicide applications. The analyses were performed using Moran's I, Getis-Ord, and Spatial Scan statistics on aggregated before and after data as well as data collected over time. This allowed comparison of control and treatment areas to identify changes attributable to the OMWM/marsh restoration modifications. Results The frequency of finding mosquito larvae in the treatment areas was reduced by 70% resulting in a loss of spatial larval clusters compared to those found in the control areas. This effect was observed directly following OMWM treatment and remained significant throughout the study period. The greatly reduced frequency of finding larvae in the treatment areas led to a significant decrease (~44%) in the number of times when the larviciding threshold was reached. This reduction, in turn, resulted in a significant decrease (~74%) in the number of larvicide applications in the treatment areas post-project. The remaining larval habitat in the treatment areas had a different geographic distribution and was largely confined to the restored marsh surface (i.e. filled-in mosquito ditches); however only ~21% of the restored marsh surface supported mosquito production. Conclusion The geostatistical analysis showed that OMWM demonstrated considerable potential for effective mosquito control and compatibility with other natural resource management goals such as restoration, wildlife habitat enhancement, and invasive species abatement. GPS and GIS tools are invaluable for large scale project design, data collection, and data analysis, with geostatistical methods serving as an alternative or a supplement to the conventional inference statistics in evaluating the project outcome. PMID:19549297

  15. Mosquito vectors of West Nile virus during an epizootic outbreak in Puerto Rico.

    PubMed

    Barrera, R; MacKay, A; Amador, M; Vasquez, J; Smith, J; Díaz, A; Acevedo, V; Cabán, B; Hunsperger, E A; Muñoz-Jordán, J L

    2010-11-01

    The purpose of this investigation was to identify the mosquito (Diptera: Culicidae) vectors of West Nile virus (WNV; family Flaviviridae, genus Flavivirus) during an epizootic WNV outbreak in eastern Puerto Rico in 2007. In June 2006, 12 sentinel chicken pens with five chickens per pen were deployed in six types of habitats: herbaceous wetlands, mangrove forests, deciduous forests, evergreen forests, rural areas, and urban areas. Once WNV seroconversion in chickens was detected in June 2007, we began trapping mosquitoes using Centers for Disease Control and Prevention (CDC) miniature (light/CO2-baited) traps, CMT-20 collapsible mosquito (CO2- and ISCA SkinLure-baited) traps, and CDC gravid (hay infusion-baited) traps. We placed the CDC miniature traps both 2-4 m and >30 m from the chicken pens, the collapsible traps 2-4 m from the pens, and the gravid traps in backyards of houses with sentinel chicken pens and in a wetland adjacent to an urban area. We found numerous blood-engorged mosquitoes in the traps nearest to the sentinel chickens and reasoned that any such mosquitoes with a disseminated WNV infection likely served as vectors for the transmission of WNV to the sentinels. We used reverse transcriptase-polymerase chain reaction and isolation (C636) on pools of heads, thoraxes/ abdomens, and legs of collected blood-engorged mosquitoes to determine whether the mosquitoes carried WNV. We detected WNV-disseminated infections in and obtained WNV isolates from Culex nigripalpus Theo (minimum infection rate [MIR] 1.1-9.7/1,000), Culex bahamensis Dyar and Knab (MIR 1.8-6.0/1,000), and Aedes taeniorhynchus (Wied.) (MIR 0.34-0.36/1,000). WNV was also identified in and isolated from the pool of thoraxes and abdomens of Culex quinquefasciatus Say (4.17/1,000) and identified in one pool of thoraxes and abdomens of Culex habilitator Dyar and Knab (13.39/1,000). Accumulated evidence since 2002 suggests that WNV has not become endemic in Puerto Rico.

  16. Pupal productivity & nutrient reserves of Aedes mosquitoes breeding in sewage drains & other habitats of Kolkata, India: Implications for habitat expansion & vector management.

    PubMed

    Banerjee, Soumyajit; Mohan, Sushree; Saha, Nabaneeta; Mohanty, Siba Prasad; Saha, Goutam K; Aditya, Gautam

    2015-12-01

    The quality of breeding sites is reflected through the pupal productivity and the life history traits of Aedes mosquitoes. Using nutrient reserves and pupal productivity of Aedes as indicators, the larval habitats including sewage drains were characterized to highlight the habitat expansion and vector management. The pupae and adults collected from the containers and sewage drains were characterized in terms of biomass and nutrient reserves and the data were subjected to three way factorial ANOVA. Discriminant function analyses were performed to highlight the differences among the habitats for sustenance of Aedes mosquitoes. Survey of larval habitats from the study area revealed significant differences (P<0.05) in the pupal productivity of Aedes among the habitats and months. Despite sewage drains being comparatively less utilized for breeding, the pupae were of higher biomass with corresponding adults having longer wings in contrast to other habitats. The nutrient reserve of the adults emerging from pupae of sewage drains was significantly higher (P<0.05), compared to other habitats, as reflected through the discriminant function analysis. The present results showed that for both Ae. aegypti and Ae. albopictus, sewage drains were equally congenial habitat as were plastic, porcelain and earthen habitats. Availability of Aedes immature in sewage drains poses increased risk of dengue, and thus vector control programme should consider inclusion of sewage drains as breeding habitat of dengue vector mosquitoes.

  17. Ecological niche modeling and land cover risk areas for rift valley fever vector, culex tritaeniorhynchus giles in Jazan, Saudi Arabia.

    PubMed

    Sallam, Mohamed F; Al Ahmed, Azzam M; Abdel-Dayem, Mahmoud S; Abdullah, Mohamed A R

    2013-01-01

    The mosquito, Culex tritaeniorhynchus Giles is a prevalent and confirmed Rift Valley Fever virus (RVFV) vector. This vector, in association with Aedimorphus arabiensis (Patton), was responsible for causing the outbreak of 2000 in Jazan Province, Saudi Arabia. Larval occurrence records and a total of 19 bioclimatic and three topographic layers imported from Worldclim Database were used to predict the larval suitable breeding habitats for this vector in Jazan Province using ArcGIS ver.10 and MaxEnt modeling program. Also, a supervised land cover classification from SPOT5 imagery was developed to assess the land cover distribution within the suitable predicted habitats. Eleven bioclimatic and slope attributes were found to be the significant predictors for this larval suitable breeding habitat. Precipitation and temperature were strong predictors of mosquito distribution. Among six land cover classes, the linear regression model (LM) indicated wet muddy substrate is significantly associated with high-very high suitable predicted habitats (R(2) = 73.7%, P<0.05). Also, LM indicated that total dissolved salts (TDS) was a significant contributor (R(2) = 23.9%, P<0.01) in determining mosquito larval abundance. This model is a first step in understanding the spatial distribution of Cx. tritaeniorhynchus and consequently the risk of RVFV in Saudi Arabia and to assist in planning effective mosquito surveillance and control programs by public health personnel and researchers.

  18. How does the dengue vector mosquito Aedes albopictus respond to global warming?

    PubMed

    Jia, Pengfei; Chen, Xiang; Chen, Jin; Lu, Liang; Liu, Qiyong; Tan, Xiaoyue

    2017-03-11

    Global warming has a marked influence on the life cycle of epidemic vectors as well as their interactions with human beings. The Aedes albopictus mosquito as the vector of dengue fever surged exponentially in the last decade, raising ecological and epistemological concerns of how climate change altered its growth rate and population dynamics. As the global warming pattern is considerably uneven across four seasons, with a confirmed stronger effect in winter, an emerging need arises as to exploring how the seasonal warming effects influence the annual development of Ae. albopictus. The model consolidates a 35-year climate dataset and designs fifteen warming patterns that increase the temperature of selected seasons. Based on a recently developed mechanistic population model of Ae. albopictus, the model simulates the thermal reaction of blood-fed adults by systematically increasing the temperature from 0.5 to 5 °C at an interval of 0.5 °C in each warming pattern. The results show the warming effects are different across seasons. The warming effects in spring and winter facilitate the development of the species by shortening the diapause period. The warming effect in summer is primarily negative by inhibiting mosquito development. The warming effect in autumn is considerably mixed. However, these warming effects cannot carry over to the following year, possibly due to the fact that under the extreme weather in winter the mosquito fully ceases from development and survives in terms of diapause eggs. As the historical pattern of global warming manifests seasonal fluctuations, this study provides corroborating and previously ignored evidence of how such seasonality affects the mosquito development. Understanding this short-term temperature-driven mechanism as one chain of the transmission events is critical to refining the thermal reaction norms of the epidemic vector under global warming as well as developing effective mosquito prevention and control strategies.

  19. Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection.

    PubMed

    Etebari, Kayvan; Hegde, Shivanand; Saldaña, Miguel A; Widen, Steven G; Wood, Thomas G; Asgari, Sassan; Hughes, Grant L

    2017-01-01

    Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti , which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including dengue virus, which is transmitted by the same mosquito vector. The outcomes provide a global picture of changes in the mosquito vector in response to Zika virus infection.

  20. Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection

    PubMed Central

    Etebari, Kayvan; Hegde, Shivanand; Saldaña, Miguel A.; Widen, Steven G.; Wood, Thomas G.

    2017-01-01

    ABSTRACT Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti, which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including dengue virus, which is transmitted by the same mosquito vector. The outcomes provide a global picture of changes in the mosquito vector in response to Zika virus infection. PMID:29202041

Top