Sample records for vector network analyzer

  1. Trypanosoma cruzi reservoir—triatomine vector co-occurrence networks reveal meta-community effects by synanthropic mammals on geographic dispersal

    PubMed Central

    Valiente-Banuet, Leopoldo; Sánchez-Cordero, Víctor; Stephens, Christopher R.

    2017-01-01

    Contemporary patterns of land use and global climate change are modifying regional pools of parasite host species. The impact of host community changes on human disease risk, however, is difficult to assess due to a lack of information about zoonotic parasite host assemblages. We have used a recently developed method to infer parasite-host interactions for Chagas Disease (CD) from vector-host co-occurrence networks. Vector-host networks were constructed to analyze topological characteristics of the network and ecological traits of species’ nodes, which could provide information regarding parasite regional dispersal in Mexico. Twenty-eight triatomine species (vectors) and 396 mammal species (potential hosts) were included using a data-mining approach to develop models to infer most-likely interactions. The final network contained 1,576 links which were analyzed to calculate centrality, connectivity, and modularity. The model predicted links of independently registered Trypanosoma cruzi hosts, which correlated with the degree of parasite-vector co-occurrence. Wiring patterns differed according to node location, while edge density was greater in Neotropical as compared to Nearctic regions. Vectors with greatest public health importance (i.e., Triatoma dimidiata, T. barberi, T. pallidipennis, T. longipennis, etc), did not have stronger links with particular host species, although they had a greater frequency of significant links. In contrast, hosts classified as important based on network properties were synanthropic mammals. The latter were the most common parasite hosts and are likely bridge species between these communities, thereby integrating meta-community scenarios beneficial for long-range parasite dispersal. This was particularly true for rodents, >50% of species are synanthropic and more than 20% have been identified as T. cruzi hosts. In addition to predicting potential host species using the co-occurrence networks, they reveal regions with greater expected parasite mobility. The Neotropical region, which includes the Mexican south and southeast, and the Transvolcanic belt, had greatest potential active T. cruzi dispersal, as well as greatest edge density. This information could be directly applied for stratification of transmission risk and to design and analyze human-infected vector contact intervention efficacy. PMID:28413725

  2. Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling.

    PubMed

    Li, Wei; Liu, Jian Guo; Zhu, Ning Hua

    2015-04-15

    We report a novel optical vector network analyzer (OVNA) with improved accuracy based on polarization modulation and stimulated Brillouin scattering (SBS) assisted polarization pulling. The beating between adjacent higher-order optical sidebands which are generated because of the nonlinearity of an electro-optic modulator (EOM) introduces considerable error to the OVNA. In our scheme, the measurement error is significantly reduced by removing the even-order optical sidebands using polarization discrimination. The proposed approach is theoretically analyzed and experimentally verified. The experimental results show that the accuracy of the OVNA is greatly improved compared to a conventional OVNA.

  3. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  4. The application of artificial neural networks and support vector regression for simultaneous spectrophotometric determination of commercial eye drop contents

    NASA Astrophysics Data System (ADS)

    Valizadeh, Maryam; Sohrabi, Mahmoud Reza

    2018-03-01

    In the present study, artificial neural networks (ANNs) and support vector regression (SVR) as intelligent methods coupled with UV spectroscopy for simultaneous quantitative determination of Dorzolamide (DOR) and Timolol (TIM) in eye drop. Several synthetic mixtures were analyzed for validating the proposed methods. At first, neural network time series, which one type of network from the artificial neural network was employed and its efficiency was evaluated. Afterwards, the radial basis network was applied as another neural network. Results showed that the performance of this method is suitable for predicting. Finally, support vector regression was proposed to construct the Zilomole prediction model. Also, root mean square error (RMSE) and mean recovery (%) were calculated for SVR method. Moreover, the proposed methods were compared to the high-performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them. Also, the effect of interferences was investigated in spike solutions.

  5. Optical vector network analyzer based on double-sideband modulation.

    PubMed

    Jun, Wen; Wang, Ling; Yang, Chengwu; Li, Ming; Zhu, Ning Hua; Guo, Jinjin; Xiong, Liangming; Li, Wei

    2017-11-01

    We report an optical vector network analyzer (OVNA) based on double-sideband (DSB) modulation using a dual-parallel Mach-Zehnder modulator. The device under test (DUT) is measured twice with different modulation schemes. By post-processing the measurement results, the response of the DUT can be obtained accurately. Since DSB modulation is used in our approach, the measurement range is doubled compared with conventional single-sideband (SSB) modulation-based OVNA. Moreover, the measurement accuracy is improved by eliminating the even-order sidebands. The key advantage of the proposed scheme is that the measurement of a DUT with bandpass response can also be simply realized, which is a big challenge for the SSB-based OVNA. The proposed method is theoretically and experimentally demonstrated.

  6. Measuring Low-PRF Pulsed Signals with a Standard HP 8510B Vector Network Analyzer Within Milliseconds (Het Meten van Lage-PRF Gepulste Signalen met een Standaard HP 8510B Vector Network Analyzer Binnen Enkele Milliseconden)

    DTIC Science & Technology

    1990-08-01

    reference signal 25 5 A METHOD FOR MEASURING LOW-PRF PULSED SIGNALS 28 5.1 Using a NWA with a smaller BPF 28 5.2 Using the HP 8510B external trigger...2nd LO 11Q 3MHz BPF lOkHz BPF Fig. 4: Receiver block diagram The receiver is a double conversion superheterodyne with a 10 kHz wide BandPass Filter... BPF ) in the second IF. This 10 kHz filter is the component that dictates how the HP 8510B responds to pulsed signals. For the pulsed-RF test signal

  7. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  8. An Energy Scaled and Expanded Vector-Based Forwarding Scheme for Industrial Underwater Acoustic Sensor Networks with Sink Mobility.

    PubMed

    Wadud, Zahid; Hussain, Sajjad; Javaid, Nadeem; Bouk, Safdar Hussain; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra

    2017-09-30

    Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay.

  9. Optical vector network analysis of ultranarrow transitions in 166Er3+ : 7LiYF4 crystal.

    PubMed

    Kukharchyk, N; Sholokhov, D; Morozov, O; Korableva, S L; Cole, J H; Kalachev, A A; Bushev, P A

    2018-02-15

    We present optical vector network analysis (OVNA) of an isotopically purified Er166 3+ :LiYF 4 7 crystal. The OVNA method is based on generation and detection of a modulated optical sideband by using a radio-frequency vector network analyzer. This technique is widely used in the field of microwave photonics for the characterization of optical responses of optical devices such as filters and high-Q resonators. However, dense solid-state atomic ensembles induce a large phase shift on one of the optical sidebands that results in the appearance of extra features on the measured transmission response. We present a simple theoretical model that accurately describes the observed spectra and helps to reconstruct the absorption profile of a solid-state atomic ensemble as well as corresponding change of the refractive index in the vicinity of atomic resonances.

  10. Android malware detection based on evolutionary super-network

    NASA Astrophysics Data System (ADS)

    Yan, Haisheng; Peng, Lingling

    2018-04-01

    In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.

  11. Epidemic dynamics of a vector-borne disease on a villages-and-city star network with commuters.

    PubMed

    Mpolya, Emmanuel A; Yashima, Kenta; Ohtsuki, Hisashi; Sasaki, Akira

    2014-02-21

    We develop a star-network of connections between a central city and peripheral villages and analyze the epidemic dynamics of a vector-borne disease as influenced by daily commuters. We obtain an analytical solution for the global basic reproductive number R0 and investigate its dependence on key parameters for disease control. We find that in a star-network topology the central hub is not always the best place to focus disease intervention strategies. Disease control decisions are sensitive to the number of commuters from villages to the city as well as the relative densities of mosquitoes between villages and city. With more commuters it becomes important to focus on the surrounding villages. Commuting to the city paradoxically reduces the disease burden even when the bulk of infections are in the city because of the resulting diluting effects of transmissions with more commuters. This effect decreases with heterogeneity in host and vector population sizes in the villages due to the formation of peripheral epicenters of infection. We suggest that to ensure effective control of vector-borne diseases in star networks of villages and cities it is also important to focus on the commuters and where they come from. © 2013 Published by Elsevier Ltd.

  12. Polarization-analyzing circuit on InP for integrated Stokes vector receiver.

    PubMed

    Ghosh, Samir; Kawabata, Yuto; Tanemura, Takuo; Nakano, Yoshiaki

    2017-05-29

    Stokes vector modulation and direct detection (SVM/DD) has immense potentiality to reduce the cost burden for the next-generation short-reach optical communication networks. In this paper, we propose and demonstrate an InGaAsP/InP waveguide-based polarization-analyzing circuit for an integrated Stokes vector (SV) receiver. By transforming the input state-of-polarization (SOP) and projecting its SV onto three different vectors on the Poincare sphere, we show that the actual SOP can be retrieved by simple calculation. We also reveal that this projection matrix has a flexibility and its deviation due to device imperfectness can be calibrated to a certain degree, so that the proposed device would be fundamentally robust against fabrication errors. A proof-of-concept photonic integrated circuit (PIC) is fabricated on InP by using half-ridge waveguides to successfully demonstrate detection of different SOPs scattered on the Poincare sphere.

  13. Spectral properties of Google matrix of Wikipedia and other networks

    NASA Astrophysics Data System (ADS)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2013-05-01

    We study the properties of eigenvalues and eigenvectors of the Google matrix of the Wikipedia articles hyperlink network and other real networks. With the help of the Arnoldi method, we analyze the distribution of eigenvalues in the complex plane and show that eigenstates with significant eigenvalue modulus are located on well defined network communities. We also show that the correlator between PageRank and CheiRank vectors distinguishes different organizations of information flow on BBC and Le Monde web sites.

  14. Development of the disable software reporting system on the basis of the neural network

    NASA Astrophysics Data System (ADS)

    Gavrylenko, S.; Babenko, O.; Ignatova, E.

    2018-04-01

    The PE structure of malicious and secure software is analyzed, features are highlighted, binary sign vectors are obtained and used as inputs for training the neural network. A software model for detecting malware based on the ART-1 neural network was developed, optimal similarity coefficients were found, and testing was performed. The obtained research results showed the possibility of using the developed system of identifying malicious software in computer systems protection systems

  15. A 40 GHz fully integrated circuit with a vector network analyzer and a coplanar-line-based detection area for circulating tumor cell analysis using 65 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Nakanishi, Taiki; Matsunaga, Maya; Kobayashi, Atsuki; Nakazato, Kazuo; Niitsu, Kiichi

    2018-03-01

    A 40-GHz fully integrated CMOS-based circuit for circulating tumor cells (CTC) analysis, consisting of an on-chip vector network analyzer (VNA) and a highly sensitive coplanar-line-based detection area is presented in this paper. In this work, we introduce a fully integrated architecture that eliminates unwanted parasitic effects. The proposed analyzer was designed using 65 nm CMOS technology, and SPICE and MWS simulations were used to validate its operation. The simulation confirmed that the proposed circuit can measure S-parameter shifts resulting from the addition of various types of tumor cells to the detection area, the data of which are provided in a previous study: the |S 21| values for HepG2, A549, and HEC-1-A cells are -0.683, -0.580, and -0.623 dB, respectively. Additionally, the measurement demonstrated an S-parameters reduction of -25.7% when a silicone resin was put on the circuit. Hence, the proposed system is expected to contribute to cancer diagnosis.

  16. Google matrix of Twitter

    NASA Astrophysics Data System (ADS)

    Frahm, K. M.; Shepelyansky, D. L.

    2012-10-01

    We construct the Google matrix of the entire Twitter network, dated by July 2009, and analyze its spectrum and eigenstate properties including the PageRank and CheiRank vectors and 2DRanking of all nodes. Our studies show much stronger inter-connectivity between top PageRank nodes for the Twitter network compared to the networks of Wikipedia and British Universities studied previously. Our analysis allows to locate the top Twitter users which control the information flow on the network. We argue that this small fraction of the whole number of users, which can be viewed as the social network elite, plays the dominant role in the process of opinion formation on the network.

  17. Toward two-dimensional search engines

    NASA Astrophysics Data System (ADS)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  18. Few-mode fiber, splice and SDM component characterization by spatially-diverse optical vector network analysis.

    PubMed

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner; Sakaguchi, Jun; Olmos, Juan José Vegas; Awaji, Yoshinari; Monroy, Idelfonso Tafur; Wada, Naoya

    2017-09-18

    This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.

  19. Note: Vector network analyzer-ferromagnetic resonance spectrometer using high Q-factor cavity.

    PubMed

    Lo, C K; Lai, W C; Cheng, J C

    2011-08-01

    A ferromagnetic resonance (FMR) spectrometer whose main components consist of an X-band resonator and a vector network analyzer (VNA) was developed. This spectrometer takes advantage of a high Q-factor (9600) cavity and state-of-the-art VNA. Accordingly, field modulation lock-in technique for signal to noise ratio (SNR) enhancement is no longer necessary, and FMR absorption can therefore be extracted directly. Its derivative for the ascertainment of full width at half maximum height of FMR peak can be found by taking the differentiation of original data. This system was characterized with different thicknesses of permalloy (Py) films and its multilayer, and found that the SNR of 5 nm Py on glass was better than 50, and did not have significant reduction even at low microwave excitation power (-20 dBm), and at low Q-factor (3000). The FMR other than X-band can also be examined in the same manner by using a suitable band cavity within the frequency range of VNA.

  20. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb.

    PubMed

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu

    2013-11-15

    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  1. Vector network analyzer ferromagnetic resonance spectrometer with field differential detection

    NASA Astrophysics Data System (ADS)

    Tamaru, S.; Tsunegi, S.; Kubota, H.; Yuasa, S.

    2018-05-01

    This work presents a vector network analyzer ferromagnetic resonance (VNA-FMR) spectrometer with field differential detection. This technique differentiates the S-parameter by applying a small binary modulation field in addition to the DC bias field to the sample. By setting the modulation frequency sufficiently high, slow sensitivity fluctuations of the VNA, i.e., low-frequency components of the trace noise, which limit the signal-to-noise ratio of the conventional VNA-FMR spectrometer, can be effectively removed, resulting in a very clean FMR signal. This paper presents the details of the hardware implementation and measurement sequence as well as the data processing and analysis algorithms tailored for the FMR spectrum obtained with this technique. Because the VNA measures a complex S-parameter, it is possible to estimate the Gilbert damping parameter from the slope of the phase variation of the S-parameter with respect to the bias field. We show that this algorithm is more robust against noise than the conventional algorithm based on the linewidth.

  2. Fast temporal neural learning using teacher forcing

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad (Inventor); Bahren, Jacob (Inventor)

    1992-01-01

    A neural network is trained to output a time dependent target vector defined over a predetermined time interval in response to a time dependent input vector defined over the same time interval by applying corresponding elements of the error vector, or difference between the target vector and the actual neuron output vector, to the inputs of corresponding output neurons of the network as corrective feedback. This feedback decreases the error and quickens the learning process, so that a much smaller number of training cycles are required to complete the learning process. A conventional gradient descent algorithm is employed to update the neural network parameters at the end of the predetermined time interval. The foregoing process is repeated in repetitive cycles until the actual output vector corresponds to the target vector. In the preferred embodiment, as the overall error of the neural network output decreasing during successive training cycles, the portion of the error fed back to the output neurons is decreased accordingly, allowing the network to learn with greater freedom from teacher forcing as the network parameters converge to their optimum values. The invention may also be used to train a neural network with stationary training and target vectors.

  3. Fast temporal neural learning using teacher forcing

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad (Inventor); Bahren, Jacob (Inventor)

    1995-01-01

    A neural network is trained to output a time dependent target vector defined over a predetermined time interval in response to a time dependent input vector defined over the same time interval by applying corresponding elements of the error vector, or difference between the target vector and the actual neuron output vector, to the inputs of corresponding output neurons of the network as corrective feedback. This feedback decreases the error and quickens the learning process, so that a much smaller number of training cycles are required to complete the learning process. A conventional gradient descent algorithm is employed to update the neural network parameters at the end of the predetermined time interval. The foregoing process is repeated in repetitive cycles until the actual output vector corresponds to the target vector. In the preferred embodiment, as the overall error of the neural network output decreasing during successive training cycles, the portion of the error fed back to the output neurons is decreased accordingly, allowing the network to learn with greater freedom from teacher forcing as the network parameters converge to their optimum values. The invention may also be used to train a neural network with stationary training and target vectors.

  4. Real-time individualized training vectors for experiential learning.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Matt; Tucker, Eilish Marie; Raybourn, Elaine Marie

    2011-01-01

    Military training utilizing serious games or virtual worlds potentially generate data that can be mined to better understand how trainees learn in experiential exercises. Few data mining approaches for deployed military training games exist. Opportunities exist to collect and analyze these data, as well as to construct a full-history learner model. Outcomes discussed in the present document include results from a quasi-experimental research study on military game-based experiential learning, the deployment of an online game for training evidence collection, and results from a proof-of-concept pilot study on the development of individualized training vectors. This Lab Directed Research & Development (LDRD)more » project leveraged products within projects, such as Titan (Network Grand Challenge), Real-Time Feedback and Evaluation System, (America's Army Adaptive Thinking and Leadership, DARWARS Ambush! NK), and Dynamic Bayesian Networks to investigate whether machine learning capabilities could perform real-time, in-game similarity vectors of learner performance, toward adaptation of content delivery, and quantitative measurement of experiential learning.« less

  5. Measuring changes of radio-frequency dielectric properties of chicken meat during storage

    USDA-ARS?s Scientific Manuscript database

    Changes in dielectric properties of stored chicken meat were tracked by using a radio-frequency dielectric spectroscopy method. For this purpose, the dielectric properties were measured with an open-ended coaxial-line probe and vector network analyzer over a broad frequency range from 200 MHz to 20...

  6. Electromagnetic Characterization of Materials Using a Dual Chambered High Temperature Waveguide

    DTIC Science & Technology

    to just one day through simultaneous measurement of the sample and the empty second chamber. A vector network analyzer (VNA) will be used to run X-band...calculated from the Nicolson-Ross-Weir inversion algorithm for computing permittivity and permeability using VNA measured S-parameters at increasing temperatures.

  7. Optimal source coding, removable noise elimination, and natural coordinate system construction for general vector sources using replicator neural networks

    NASA Astrophysics Data System (ADS)

    Hecht-Nielsen, Robert

    1997-04-01

    A new universal one-chart smooth manifold model for vector information sources is introduced. Natural coordinates (a particular type of chart) for such data manifolds are then defined. Uniformly quantized natural coordinates form an optimal vector quantization code for a general vector source. Replicator neural networks (a specialized type of multilayer perceptron with three hidden layers) are the introduced. As properly configured examples of replicator networks approach minimum mean squared error (e.g., via training and architecture adjustment using randomly chosen vectors from the source), these networks automatically develop a mapping which, in the limit, produces natural coordinates for arbitrary source vectors. The new concept of removable noise (a noise model applicable to a wide variety of real-world noise processes) is then discussed. Replicator neural networks, when configured to approach minimum mean squared reconstruction error (e.g., via training and architecture adjustment on randomly chosen examples from a vector source, each with randomly chosen additive removable noise contamination), in the limit eliminate removable noise and produce natural coordinates for the data vector portions of the noise-corrupted source vectors. Consideration regarding selection of the dimension of a data manifold source model and the training/configuration of replicator neural networks are discussed.

  8. Dielectric characterization of Bentonite clay at various moisture contents and with mixtures of biomass in the microwave spectrum

    USDA-ARS?s Scientific Manuscript database

    This study assesses the potential for using bentonite as a microwave absorber for microwave-assisted biomass pyrolysis based on the dielectric properties. Dielectric properties of bentonite at different moisture contents were measured using a coaxial line dielectric probe and vector network analyzer...

  9. Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection.

    PubMed

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2015-02-15

    A novel optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation and balanced photodetection is proposed and experimentally demonstrated, which can eliminate the measurement error induced by the high-order sidebands in the OSSB signal. According to the analytical model of the conventional OSSB-based OVNA, if the optical carrier in the OSSB signal is fully suppressed, the measurement result is exactly the high-order-sideband-induced measurement error. By splitting the OSSB signal after the optical device-under-test (ODUT) into two paths, removing the optical carrier in one path, and then detecting the two signals in the two paths using a balanced photodetector (BPD), high-order-sideband-induced measurement error can be ideally eliminated. As a result, accurate responses of the ODUT can be achieved without complex post-signal processing. A proof-of-concept experiment is carried out. The magnitude and phase responses of a fiber Bragg grating (FBG) measured by the proposed OVNA with different modulation indices are superimposed, showing that the high-order-sideband-induced measurement error is effectively removed.

  10. Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain

    PubMed Central

    Bockhorst, Tobias

    2015-01-01

    The polarization pattern of skylight provides a compass cue that various insect species use for allocentric orientation. In the desert locust, Schistocerca gregaria, a network of neurons tuned to the electric field vector (E-vector) angle of polarized light is present in the central complex of the brain. Preferred E-vector angles vary along slices of neuropils in a compasslike fashion (polarotopy). We studied how the activity in this polarotopic population is modulated in ways suited to control compass-guided locomotion. To this end, we analyzed tuning profiles using measures of correlation between spike rate and E-vector angle and, furthermore, tested for adaptation to stationary angles. The results suggest that the polarotopy is stabilized by antagonistic integration across neurons with opponent tuning. Downstream to the input stage of the network, responses to stationary E-vector angles adapted quickly, which may correlate with a tendency to steer a steady course previously observed in tethered flying locusts. By contrast, rotating E-vectors corresponding to changes in heading direction under a natural sky elicited nonadapting responses. However, response amplitudes were particularly variable at the output stage, covarying with the level of ongoing activity. Moreover, the responses to rotating E-vector angles depended on the direction of rotation in an anticipatory manner. Our observations support a view of the central complex as a substrate of higher-stage processing that could assign contextual meaning to sensory input for motor control in goal-driven behaviors. Parallels to higher-stage processing of sensory information in vertebrates are discussed. PMID:25609107

  11. Assessing Chicken Meat Freshness through Measurement of Radio-Frequency Dielectric Properties

    USDA-ARS?s Scientific Manuscript database

    Change in freshness of chicken meat was assessed through measurement of the dielectric properties with a vector network analyzer and an open-ended coaxial-line probe between 200 MHz and 20 GHz at 23 oC. Chicken meat samples were stored in a refrigerator for 8 days at 4 oC. Changes in dielectric cons...

  12. Efficiently modeling neural networks on massively parallel computers

    NASA Technical Reports Server (NTRS)

    Farber, Robert M.

    1993-01-01

    Neural networks are a very useful tool for analyzing and modeling complex real world systems. Applying neural network simulations to real world problems generally involves large amounts of data and massive amounts of computation. To efficiently handle the computational requirements of large problems, we have implemented at Los Alamos a highly efficient neural network compiler for serial computers, vector computers, vector parallel computers, and fine grain SIMD computers such as the CM-2 connection machine. This paper describes the mapping used by the compiler to implement feed-forward backpropagation neural networks for a SIMD (Single Instruction Multiple Data) architecture parallel computer. Thinking Machines Corporation has benchmarked our code at 1.3 billion interconnects per second (approximately 3 gigaflops) on a 64,000 processor CM-2 connection machine (Singer 1990). This mapping is applicable to other SIMD computers and can be implemented on MIMD computers such as the CM-5 connection machine. Our mapping has virtually no communications overhead with the exception of the communications required for a global summation across the processors (which has a sub-linear runtime growth on the order of O(log(number of processors)). We can efficiently model very large neural networks which have many neurons and interconnects and our mapping can extend to arbitrarily large networks (within memory limitations) by merging the memory space of separate processors with fast adjacent processor interprocessor communications. This paper will consider the simulation of only feed forward neural network although this method is extendable to recurrent networks.

  13. Research on intrusion detection based on Kohonen network and support vector machine

    NASA Astrophysics Data System (ADS)

    Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi

    2018-05-01

    In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.

  14. Method for network analyzation and apparatus

    DOEpatents

    Bracht, Roger B.; Pasquale, Regina V.

    2001-01-01

    A portable network analyzer and method having multiple channel transmit and receive capability for real-time monitoring of processes which maintains phase integrity, requires low power, is adapted to provide full vector analysis, provides output frequencies of up to 62.5 MHz and provides fine sensitivity frequency resolution. The present invention includes a multi-channel means for transmitting and a multi-channel means for receiving, both in electrical communication with a software means for controlling. The means for controlling is programmed to provide a signal to a system under investigation which steps consecutively over a range of predetermined frequencies. The resulting received signal from the system provides complete time domain response information by executing a frequency transform of the magnitude and phase information acquired at each frequency step.

  15. CD-Based Indices for Link Prediction in Complex Network.

    PubMed

    Wang, Tao; Wang, Hongjue; Wang, Xiaoxia

    2016-01-01

    Lots of similarity-based algorithms have been designed to deal with the problem of link prediction in the past decade. In order to improve prediction accuracy, a novel cosine similarity index CD based on distance between nodes and cosine value between vectors is proposed in this paper. Firstly, node coordinate matrix can be obtained by node distances which are different from distance matrix and row vectors of the matrix are regarded as coordinates of nodes. Then, cosine value between node coordinates is used as their similarity index. A local community density index LD is also proposed. Then, a series of CD-based indices include CD-LD-k, CD*LD-k, CD-k and CDI are presented and applied in ten real networks. Experimental results demonstrate the effectiveness of CD-based indices. The effects of network clustering coefficient and assortative coefficient on prediction accuracy of indices are analyzed. CD-LD-k and CD*LD-k can improve prediction accuracy without considering the assortative coefficient of network is negative or positive. According to analysis of relative precision of each method on each network, CD-LD-k and CD*LD-k indices have excellent average performance and robustness. CD and CD-k indices perform better on positive assortative networks than on negative assortative networks. For negative assortative networks, we improve and refine CD index, referred as CDI index, combining the advantages of CD index and evolutionary mechanism of the network model BA. Experimental results reveal that CDI index can increase prediction accuracy of CD on negative assortative networks.

  16. CD-Based Indices for Link Prediction in Complex Network

    PubMed Central

    Wang, Tao; Wang, Hongjue; Wang, Xiaoxia

    2016-01-01

    Lots of similarity-based algorithms have been designed to deal with the problem of link prediction in the past decade. In order to improve prediction accuracy, a novel cosine similarity index CD based on distance between nodes and cosine value between vectors is proposed in this paper. Firstly, node coordinate matrix can be obtained by node distances which are different from distance matrix and row vectors of the matrix are regarded as coordinates of nodes. Then, cosine value between node coordinates is used as their similarity index. A local community density index LD is also proposed. Then, a series of CD-based indices include CD-LD-k, CD*LD-k, CD-k and CDI are presented and applied in ten real networks. Experimental results demonstrate the effectiveness of CD-based indices. The effects of network clustering coefficient and assortative coefficient on prediction accuracy of indices are analyzed. CD-LD-k and CD*LD-k can improve prediction accuracy without considering the assortative coefficient of network is negative or positive. According to analysis of relative precision of each method on each network, CD-LD-k and CD*LD-k indices have excellent average performance and robustness. CD and CD-k indices perform better on positive assortative networks than on negative assortative networks. For negative assortative networks, we improve and refine CD index, referred as CDI index, combining the advantages of CD index and evolutionary mechanism of the network model BA. Experimental results reveal that CDI index can increase prediction accuracy of CD on negative assortative networks. PMID:26752405

  17. Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor.

    PubMed

    Wang, Li; Wang, Xiaoyi; Jin, Xuebo; Xu, Jiping; Zhang, Huiyan; Yu, Jiabin; Sun, Qian; Gao, Chong; Wang, Lingbin

    2017-03-01

    The formation process of algae is described inaccurately and water blooms are predicted with a low precision by current methods. In this paper, chemical mechanism of algae growth is analyzed, and a correlation analysis of chlorophyll-a and algal density is conducted by chemical measurement. Taking into account the influence of multi-factors on algae growth and water blooms, the comprehensive prediction method combined with multivariate time series and intelligent model is put forward in this paper. Firstly, through the process of photosynthesis, the main factors that affect the reproduction of the algae are analyzed. A compensation prediction method of multivariate time series analysis based on neural network and Support Vector Machine has been put forward which is combined with Kernel Principal Component Analysis to deal with dimension reduction of the influence factors of blooms. Then, Genetic Algorithm is applied to improve the generalization ability of the BP network and Least Squares Support Vector Machine. Experimental results show that this method could better compensate the prediction model of multivariate time series analysis which is an effective way to improve the description accuracy of algae growth and prediction precision of water blooms.

  18. Measurements by a Vector Network Analyzer at 325 to 508 GHz

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Samoska, Lorene; Chattopadhyay, Goutam; Gaier, Todd; Kangaslahti, Pekka; Pukala, David; Lau, Yuenie; Oleson, Charles; Denning, Anthony

    2008-01-01

    Recent experiments were performed in which return loss and insertion loss of waveguide test assemblies in the frequency range from 325 to 508 GHz were measured by use of a swept-frequency two-port vector network analyzer (VNA) test set. The experiments were part of a continuing effort to develop means of characterizing passive and active electronic components and systems operating at ever increasing frequencies. The waveguide test assemblies comprised WR-2.2 end sections collinear with WR-3.3 middle sections. The test set, assembled from commercially available components, included a 50-GHz VNA scattering- parameter test set and external signal synthesizers, augmented with recently developed frequency extenders, and further augmented with attenuators and amplifiers as needed to adjust radiofrequency and intermediate-frequency power levels between the aforementioned components. The tests included line-reflect-line calibration procedures, using WR-2.2 waveguide shims as the "line" standards and waveguide flange short circuits as the "reflect" standards. Calibrated dynamic ranges somewhat greater than about 20 dB for return loss and 35 dB for insertion loss were achieved. The measurement data of the test assemblies were found to substantially agree with results of computational simulations.

  19. Nonparametric methods for drought severity estimation at ungauged sites

    NASA Astrophysics Data System (ADS)

    Sadri, S.; Burn, D. H.

    2012-12-01

    The objective in frequency analysis is, given extreme events such as drought severity or duration, to estimate the relationship between that event and the associated return periods at a catchment. Neural networks and other artificial intelligence approaches in function estimation and regression analysis are relatively new techniques in engineering, providing an attractive alternative to traditional statistical models. There are, however, few applications of neural networks and support vector machines in the area of severity quantile estimation for drought frequency analysis. In this paper, we compare three methods for this task: multiple linear regression, radial basis function neural networks, and least squares support vector regression (LS-SVR). The area selected for this study includes 32 catchments in the Canadian Prairies. From each catchment drought severities are extracted and fitted to a Pearson type III distribution, which act as observed values. For each method-duration pair, we use a jackknife algorithm to produce estimated values at each site. The results from these three approaches are compared and analyzed, and it is found that LS-SVR provides the best quantile estimates and extrapolating capacity.

  20. Statistical Mechanical Analysis of Online Learning with Weight Normalization in Single Layer Perceptron

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuki; Karakida, Ryo; Okada, Masato; Amari, Shun-ichi

    2017-04-01

    Weight normalization, a newly proposed optimization method for neural networks by Salimans and Kingma (2016), decomposes the weight vector of a neural network into a radial length and a direction vector, and the decomposed parameters follow their steepest descent update. They reported that learning with the weight normalization achieves better converging speed in several tasks including image recognition and reinforcement learning than learning with the conventional parameterization. However, it remains theoretically uncovered how the weight normalization improves the converging speed. In this study, we applied a statistical mechanical technique to analyze on-line learning in single layer linear and nonlinear perceptrons with weight normalization. By deriving order parameters of the learning dynamics, we confirmed quantitatively that weight normalization realizes fast converging speed by automatically tuning the effective learning rate, regardless of the nonlinearity of the neural network. This property is realized when the initial value of the radial length is near the global minimum; therefore, our theory suggests that it is important to choose the initial value of the radial length appropriately when using weight normalization.

  1. Global Transport Networks and Infectious Disease Spread

    PubMed Central

    Tatem, A.J.; Rogers, D.J.; Hay, S.I.

    2011-01-01

    Air, sea and land transport networks continue to expand in reach, speed of travel and volume of passengers and goods carried. Pathogens and their vectors can now move further, faster and in greater numbers than ever before. Three important consequences of global transport network expansion are infectious disease pandemics, vector invasion events and vector-borne pathogen importation. This review briefly examines some of the important historical examples of these disease and vector movements, such as the global influenza pandemics, the devastating Anopheles gambiae invasion of Brazil and the recent increases in imported Plasmodium falciparum malaria cases. We then outline potential approaches for future studies of disease movement, focussing on vector invasion and vector-borne disease importation. Such approaches allow us to explore the potential implications of international air travel, shipping routes and other methods of transport on global pathogen and vector traffic. PMID:16647974

  2. The underlying pathway structure of biochemical reaction networks

    PubMed Central

    Schilling, Christophe H.; Palsson, Bernhard O.

    1998-01-01

    Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function. PMID:9539712

  3. Vectorized algorithms for spiking neural network simulation.

    PubMed

    Brette, Romain; Goodman, Dan F M

    2011-06-01

    High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.

  4. On the study of the transmission networks of blood parasites from SW Spain: diversity of avian haemosporidians in the biting midge Culicoides circumscriptus and wild birds.

    PubMed

    Ferraguti, Martina; Martínez-de la Puente, Josué; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2013-07-15

    Blood-sucking flying insects play a key role in the transmission of pathogens of vector-borne diseases. However, at least for the case of avian malaria parasites, the vast majority of studies focus on the interaction between parasites and vertebrate hosts, but there is a lack of information regarding the interaction between the parasites and the insect vectors. Here, we identified the presence of malaria and malaria-like parasite lineages harbored by the potential vector Culicoides circumscriptus (Kieffer). Also, we identified some nodes of the transmission network connecting parasite lineages, potential insect vectors and avian hosts by comparing Haemoproteus and Plasmodium lineages isolated from insects with those infecting wild birds in this and previous studies. Using a molecular approach, we analysed the presence of blood parasites in a total of 97 biting midges trapped in the Doñana National Park (SW Spain) and surrounding areas. Also, 123 blood samples from 11 bird species were analyzed for the presence of blood parasite infections. Blood parasites Haemoproteus and Plasmodium were identified by amplification of a 478 bp fragment of the mitochondrial cytochrome b gen. Thirteen biting midges harboured blood parasites including six Haemoproteus and two Plasmodium lineages, supporting the potential role of these insects on parasite transmission. Moreover, ten (8.1%) birds carried blood parasites. Seven Plasmodium and one Haemoproteus lineages were isolated from birds. Overall, six new Haemoproteus lineages were described in this study. Also, we identified the transmission networks of some blood parasites. Two Haemoproteus lineages, hCIRCUM03 and GAGLA03, were identical to those isolated from Corvus monedula in southern Spain and Garrulus glandarius in Bulgaria, respectively. Furthermore, the new Haemoproteus lineage hCIRCUM05 showed a 99% similarity with a lineage found infecting captive penguins in Japan. The comparison of the parasite lineages isolated in this study with those previously found infecting birds allowed us to identify some potential nodes in the transmission network of avian blood parasite lineages. These results highlight the complexity of the transmission networks of blood parasites in the wild that may involve a high diversity of susceptible birds and insect vectors.

  5. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions

    PubMed Central

    Kobayashi, Kenta; Inoue, Ken-ichi; Tanabe, Soshi; Kato, Shigeki; Takada, Masahiko; Kobayashi, Kazuto

    2017-01-01

    Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1) with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G) and vesicular stomatitis virus glycoprotein (VSV-G) enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E), which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease. PMID:28824385

  6. A multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors for functional gene analysis.

    PubMed

    Weber, Kristoffer; Bartsch, Udo; Stocking, Carol; Fehse, Boris

    2008-04-01

    Functional gene analysis requires the possibility of overexpression, as well as downregulation of one, or ideally several, potentially interacting genes. Lentiviral vectors are well suited for this purpose as they ensure stable expression of complementary DNAs (cDNAs), as well as short-hairpin RNAs (shRNAs), and can efficiently transduce a wide spectrum of cell targets when packaged within the coat proteins of other viruses. Here we introduce a multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors designed according to the "building blocks" principle. Using a wide spectrum of different fluorescent markers, including drug-selectable enhanced green fluorescent protein (eGFP)- and dTomato-blasticidin-S resistance fusion proteins, LeGO vectors allow simultaneous analysis of multiple genes and shRNAs of interest within single, easily identifiable cells. Furthermore, each functional module is flanked by unique cloning sites, ensuring flexibility and individual optimization. The efficacy of these vectors for analyzing multiple genes in a single cell was demonstrated in several different cell types, including hematopoietic, endothelial, and neural stem and progenitor cells, as well as hepatocytes. LeGO vectors thus represent a valuable tool for investigating gene networks using conditional ectopic expression and knock-down approaches simultaneously.

  7. Music Signal Processing Using Vector Product Neural Networks

    NASA Astrophysics Data System (ADS)

    Fan, Z. C.; Chan, T. S.; Yang, Y. H.; Jang, J. S. R.

    2017-05-01

    We propose a novel neural network model for music signal processing using vector product neurons and dimensionality transformations. Here, the inputs are first mapped from real values into three-dimensional vectors then fed into a three-dimensional vector product neural network where the inputs, outputs, and weights are all three-dimensional values. Next, the final outputs are mapped back to the reals. Two methods for dimensionality transformation are proposed, one via context windows and the other via spectral coloring. Experimental results on the iKala dataset for blind singing voice separation confirm the efficacy of our model.

  8. Self-configuration and self-optimization process in heterogeneous wireless networks.

    PubMed

    Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo

    2011-01-01

    Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network's scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed.

  9. Bridging Computational Genetics and Vectorcardiography: A Robust Platform for the Early Detection of Heart Disease

    NASA Astrophysics Data System (ADS)

    Sridhar, S.

    2017-12-01

    By 2030, it is predicted that over 14 million people will die of heart disease annually, many of whom will discover their risk when it is too late to seek effective treatment or pursue lifestyle changes. In this research study, I sought to design a robust computational platform to gauge a patient's risk for cardiac diseases (CDs) based on demographics, genotype, and cardiac action potentials through machine learning, statistical analysis, and vectorcardiography. By analyzing previously published data, I discovered that certain polymorphisms in the ACE and MTHFR genes contribute significantly to CD risk. The deletion allele of the ACE insertion/deletion polymorphism increases ACE serum levels, promoting CD phenotypes. A point mutation in the MTHFR gene curbs the metabolism of folic acid, giving rise to CD phenotypes. I analyzed over 9000 British Medical Journal and American Heart Association patients to determine the CD risk associated with each ACE and MTHFR genotype. In the vectorcardiography phase of my study, I investigated trends in the maximal vectors of the QRS loop of the cardiac wave. Using a database with both normal and diseased vectorcardiographic action potentials, I plotted the maximal vectors on a 3D RAS coordinate plane to analyze their magnitude and direction. From the ACE datasets, I discovered that female patients over 45 and of Indian descent with two ACE deletion alleles exhibited the highest CD risk. Using this spectrum, I successfully constructed a neural network with an accuracy score of 0.867 that predicts CD risk based on ACE genotype, gender, region, and age. Investigation of the MTHFR genome showed that those with a homozygous mutated gene had a significantly higher CD risk. In my vectorcardiography study, I found that healthy QRS vectors pointed predominantly to the right-anterior region of the coordinate plane and exhibited short, consistent magnitudes. On the other hand, diseased vectors pointed to the left-posterior region and exhibited large, varying magnitudes. Since these vectors exhibited a stark dichotomy in orientation, I designed an SVM classifier that was able to distinguish between normal and diseased vectorcardiographs with an F1 score of 0.965. Overall, my neural network and SVM classifiers have the potential to enhance clinical CD diagnosis in developing nations.

  10. A Perron-Frobenius theory for block matrices associated to a multiplex network

    NASA Astrophysics Data System (ADS)

    Romance, Miguel; Solá, Luis; Flores, Julio; García, Esther; García del Amo, Alejandro; Criado, Regino

    2015-03-01

    The uniqueness of the Perron vector of a nonnegative block matrix associated to a multiplex network is discussed. The conclusions come from the relationships between the irreducibility of some nonnegative block matrix associated to a multiplex network and the irreducibility of the corresponding matrices to each layer as well as the irreducibility of the adjacency matrix of the projection network. In addition the computation of that Perron vector in terms of the Perron vectors of the blocks is also addressed. Finally we present the precise relations that allow to express the Perron eigenvector of the multiplex network in terms of the Perron eigenvectors of its layers.

  11. Algebraic connectivity of brain networks shows patterns of segregation leading to reduced network robustness in Alzheimer's disease

    PubMed Central

    Daianu, Madelaine; Jahanshad, Neda; Nir, Talia M.; Leonardo, Cassandra D.; Jack, Clifford R.; Weiner, Michael W.; Bernstein, Matthew A.; Thompson, Paul M.

    2015-01-01

    Measures of network topology and connectivity aid the understanding of network breakdown as the brain degenerates in Alzheimer's disease (AD). We analyzed 3-Tesla diffusion-weighted images from 202 patients scanned by the Alzheimer's Disease Neuroimaging Initiative – 50 healthy controls, 72 with early- and 38 with late-stage mild cognitive impairment (eMCI/lMCI) and 42 with AD. Using whole-brain tractography, we reconstructed structural connectivity networks representing connections between pairs of cortical regions. We examined, for the first time in this context, the network's Laplacian matrix and its Fiedler value, describing the network's algebraic connectivity, and the Fiedler vector, used to partition a graph. We assessed algebraic connectivity and four additional supporting metrics, revealing a decrease in network robustness and increasing disarray among nodes as dementia progressed. Network components became more disconnected and segregated, and their modularity increased. These measures are sensitive to diagnostic group differences, and may help understand the complex changes in AD. PMID:26640830

  12. New perspectives in tracing vector-borne interaction networks.

    PubMed

    Gómez-Díaz, Elena; Figuerola, Jordi

    2010-10-01

    Disentangling trophic interaction networks in vector-borne systems has important implications in epidemiological and evolutionary studies. Molecular methods based on bloodmeal typing in vectors have been increasingly used to identify hosts. Although most molecular approaches benefit from good specificity and sensitivity, their temporal resolution is limited by the often rapid digestion of blood, and mixed bloodmeals still remain a challenge for bloodmeal identification in multi-host vector systems. Stable isotope analyses represent a novel complementary tool that can overcome some of these problems. The utility of these methods using examples from different vector-borne systems are discussed and the extents to which they are complementary and versatile are highlighted. There are excellent opportunities for progress in the study of vector-borne transmission networks resulting from the integration of both molecular and stable isotope approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Calibration Procedure for Measuring S-Parameters in Balun Applications on 150-ohm High-Speed Cables

    NASA Technical Reports Server (NTRS)

    Theofylaktos, Onoufrios; Warner, Joseph D.

    2012-01-01

    In the radiofrequency (RF) world, in order to characterize cables that do not conform to the typical 50-omega impedance, a time domain reflectometer (TDR) would probably be the simplest and quickest tool to attain this goal. In the real world, not every engineer has a TDR at their disposal; however, they most likely have a network analyzer available. Given a generic 50-omega vector network analyzer (VNA), we would like to make S-parameter measurements for non-50-omega devices (DUTs). For that, we utilize RF balanced/unbalanced transformers (called baluns for short), which are primarily used to match the impedance between the two VNA ports and the DUT's input and output ports, for the two-port S-parameter measurements.

  14. A comparison of graph- and kernel-based -omics data integration algorithms for classifying complex traits.

    PubMed

    Yan, Kang K; Zhao, Hongyu; Pang, Herbert

    2017-12-06

    High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.

  15. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  16. Geographical traceability of Marsdenia tenacissima by Fourier transform infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Li, Chao; Yang, Sheng-Chao; Guo, Qiao-Sheng; Zheng, Kai-Yan; Wang, Ping-Li; Meng, Zhen-Gui

    2016-01-01

    A combination of Fourier transform infrared spectroscopy with chemometrics tools provided an approach for studying Marsdenia tenacissima according to its geographical origin. A total of 128 M. tenacissima samples from four provinces in China were analyzed with FTIR spectroscopy. Six pattern recognition methods were used to construct the discrimination models: support vector machine-genetic algorithms, support vector machine-particle swarm optimization, K-nearest neighbors, radial basis function neural network, random forest and support vector machine-grid search. Experimental results showed that K-nearest neighbors was superior to other mathematical algorithms after data were preprocessed with wavelet de-noising, with a discrimination rate of 100% in both the training and prediction sets. This study demonstrated that FTIR spectroscopy coupled with K-nearest neighbors could be successfully applied to determine the geographical origins of M. tenacissima samples, thereby providing reliable authentication in a rapid, cheap and noninvasive way.

  17. a Method for the Seamlines Network Automatic Selection Based on Building Vector

    NASA Astrophysics Data System (ADS)

    Li, P.; Dong, Y.; Hu, Y.; Li, X.; Tan, P.

    2018-04-01

    In order to improve the efficiency of large scale orthophoto production of city, this paper presents a method for automatic selection of seamlines network in large scale orthophoto based on the buildings' vector. Firstly, a simple model of the building is built by combining building's vector, height and DEM, and the imaging area of the building on single DOM is obtained. Then, the initial Voronoi network of the measurement area is automatically generated based on the positions of the bottom of all images. Finally, the final seamlines network is obtained by optimizing all nodes and seamlines in the network automatically based on the imaging areas of the buildings. The experimental results show that the proposed method can not only get around the building seamlines network quickly, but also remain the Voronoi network' characteristics of projection distortion minimum theory, which can solve the problem of automatic selection of orthophoto seamlines network in image mosaicking effectively.

  18. Beamforming design with proactive interference cancelation in MISO interference channels

    NASA Astrophysics Data System (ADS)

    Li, Yang; Tian, Yafei; Yang, Chenyang

    2015-12-01

    In this paper, we design coordinated beamforming at base stations (BSs) to facilitate interference cancelation at users in interference networks, where each BS is equipped with multiple antennas and each user is with a single antenna. By assuming that each user can select the best decoding strategy to mitigate the interference, either canceling the interference after decoding when it is strong or treating it as noise when it is weak, we optimize the beamforming vectors that maximize the sum rate for the networks under different interference scenarios and find the solutions of beamforming with closed-form expressions. The inherent design principles are then analyzed, and the performance gain over passive interference cancelation is demonstrated through simulations in heterogeneous cellular networks.

  19. Video data compression using artificial neural network differential vector quantization

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.

    1991-01-01

    An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.

  20. Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks.

    PubMed

    Zazo, Ruben; Lozano-Diez, Alicia; Gonzalez-Dominguez, Javier; Toledano, Doroteo T; Gonzalez-Rodriguez, Joaquin

    2016-01-01

    Long Short Term Memory (LSTM) Recurrent Neural Networks (RNNs) have recently outperformed other state-of-the-art approaches, such as i-vector and Deep Neural Networks (DNNs), in automatic Language Identification (LID), particularly when dealing with very short utterances (∼3s). In this contribution we present an open-source, end-to-end, LSTM RNN system running on limited computational resources (a single GPU) that outperforms a reference i-vector system on a subset of the NIST Language Recognition Evaluation (8 target languages, 3s task) by up to a 26%. This result is in line with previously published research using proprietary LSTM implementations and huge computational resources, which made these former results hardly reproducible. Further, we extend those previous experiments modeling unseen languages (out of set, OOS, modeling), which is crucial in real applications. Results show that a LSTM RNN with OOS modeling is able to detect these languages and generalizes robustly to unseen OOS languages. Finally, we also analyze the effect of even more limited test data (from 2.25s to 0.1s) proving that with as little as 0.5s an accuracy of over 50% can be achieved.

  1. Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks

    PubMed Central

    Zazo, Ruben; Lozano-Diez, Alicia; Gonzalez-Dominguez, Javier; T. Toledano, Doroteo; Gonzalez-Rodriguez, Joaquin

    2016-01-01

    Long Short Term Memory (LSTM) Recurrent Neural Networks (RNNs) have recently outperformed other state-of-the-art approaches, such as i-vector and Deep Neural Networks (DNNs), in automatic Language Identification (LID), particularly when dealing with very short utterances (∼3s). In this contribution we present an open-source, end-to-end, LSTM RNN system running on limited computational resources (a single GPU) that outperforms a reference i-vector system on a subset of the NIST Language Recognition Evaluation (8 target languages, 3s task) by up to a 26%. This result is in line with previously published research using proprietary LSTM implementations and huge computational resources, which made these former results hardly reproducible. Further, we extend those previous experiments modeling unseen languages (out of set, OOS, modeling), which is crucial in real applications. Results show that a LSTM RNN with OOS modeling is able to detect these languages and generalizes robustly to unseen OOS languages. Finally, we also analyze the effect of even more limited test data (from 2.25s to 0.1s) proving that with as little as 0.5s an accuracy of over 50% can be achieved. PMID:26824467

  2. Evaluation Study of a Wireless Multimedia Traffic-Oriented Network Model

    NASA Astrophysics Data System (ADS)

    Vasiliadis, D. C.; Rizos, G. E.; Vassilakis, C.

    2008-11-01

    In this paper, a wireless multimedia traffic-oriented network scheme over a fourth generation system (4-G) is presented and analyzed. We conducted an extensive evaluation study for various mobility configurations in order to incorporate the behavior of the IEEE 802.11b standard over a test-bed wireless multimedia network model. In this context, the Quality of Services (QoS) over this network is vital for providing a reliable high-bandwidth platform for data-intensive sources like video streaming. Therefore, the main issues concerned in terms of QoS were the metrics for bandwidth of both dropped and lost packets and their mean packet delay under various traffic conditions. Finally, we used a generic distance-vector routing protocol which was based on an implementation of Distributed Bellman-Ford algorithm. The performance of the test-bed network model has been evaluated by using the simulation environment of NS-2.

  3. Self-Configuration and Self-Optimization Process in Heterogeneous Wireless Networks

    PubMed Central

    Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo

    2011-01-01

    Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network’s scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed. PMID:22346584

  4. A cross-sectional evaluation of meditation experience on electroencephalography data by artificial neural network and support vector machine classifiers

    PubMed Central

    Lee, Yu-Hao; Hsieh, Ya-Ju; Shiah, Yung-Jong; Lin, Yu-Huei; Chen, Chiao-Yun; Tyan, Yu-Chang; GengQiu, JiaCheng; Hsu, Chung-Yao; Chen, Sharon Chia-Ju

    2017-01-01

    Abstract To quantitate the meditation experience is a subjective and complex issue because it is confounded by many factors such as emotional state, method of meditation, and personal physical condition. In this study, we propose a strategy with a cross-sectional analysis to evaluate the meditation experience with 2 artificial intelligence techniques: artificial neural network and support vector machine. Within this analysis system, 3 features of the electroencephalography alpha spectrum and variant normalizing scaling are manipulated as the evaluating variables for the detection of accuracy. Thereafter, by modulating the sliding window (the period of the analyzed data) and shifting interval of the window (the time interval to shift the analyzed data), the effect of immediate analysis for the 2 methods is compared. This analysis system is performed on 3 meditation groups, categorizing their meditation experiences in 10-year intervals from novice to junior and to senior. After an exhausted calculation and cross-validation across all variables, the high accuracy rate >98% is achievable under the criterion of 0.5-minute sliding window and 2 seconds shifting interval for both methods. In a word, the minimum analyzable data length is 0.5 minute and the minimum recognizable temporal resolution is 2 seconds in the decision of meditative classification. Our proposed classifier of the meditation experience promotes a rapid evaluation system to distinguish meditation experience and a beneficial utilization of artificial techniques for the big-data analysis. PMID:28422856

  5. A cross-sectional evaluation of meditation experience on electroencephalography data by artificial neural network and support vector machine classifiers.

    PubMed

    Lee, Yu-Hao; Hsieh, Ya-Ju; Shiah, Yung-Jong; Lin, Yu-Huei; Chen, Chiao-Yun; Tyan, Yu-Chang; GengQiu, JiaCheng; Hsu, Chung-Yao; Chen, Sharon Chia-Ju

    2017-04-01

    To quantitate the meditation experience is a subjective and complex issue because it is confounded by many factors such as emotional state, method of meditation, and personal physical condition. In this study, we propose a strategy with a cross-sectional analysis to evaluate the meditation experience with 2 artificial intelligence techniques: artificial neural network and support vector machine. Within this analysis system, 3 features of the electroencephalography alpha spectrum and variant normalizing scaling are manipulated as the evaluating variables for the detection of accuracy. Thereafter, by modulating the sliding window (the period of the analyzed data) and shifting interval of the window (the time interval to shift the analyzed data), the effect of immediate analysis for the 2 methods is compared. This analysis system is performed on 3 meditation groups, categorizing their meditation experiences in 10-year intervals from novice to junior and to senior. After an exhausted calculation and cross-validation across all variables, the high accuracy rate >98% is achievable under the criterion of 0.5-minute sliding window and 2 seconds shifting interval for both methods. In a word, the minimum analyzable data length is 0.5 minute and the minimum recognizable temporal resolution is 2 seconds in the decision of meditative classification. Our proposed classifier of the meditation experience promotes a rapid evaluation system to distinguish meditation experience and a beneficial utilization of artificial techniques for the big-data analysis.

  6. Distributed Coordinated Control of Large-Scale Nonlinear Networks

    DOE PAGES

    Kundu, Soumya; Anghel, Marian

    2015-11-08

    We provide a distributed coordinated approach to the stability analysis and control design of largescale nonlinear dynamical systems by using a vector Lyapunov functions approach. In this formulation the large-scale system is decomposed into a network of interacting subsystems and the stability of the system is analyzed through a comparison system. However finding such comparison system is not trivial. In this work, we propose a sum-of-squares based completely decentralized approach for computing the comparison systems for networks of nonlinear systems. Moreover, based on the comparison systems, we introduce a distributed optimal control strategy in which the individual subsystems (agents) coordinatemore » with their immediate neighbors to design local control policies that can exponentially stabilize the full system under initial disturbances.We illustrate the control algorithm on a network of interacting Van der Pol systems.« less

  7. Accuracy comparison among different machine learning techniques for detecting malicious codes

    NASA Astrophysics Data System (ADS)

    Narang, Komal

    2016-03-01

    In this paper, a machine learning based model for malware detection is proposed. It can detect newly released malware i.e. zero day attack by analyzing operation codes on Android operating system. The accuracy of Naïve Bayes, Support Vector Machine (SVM) and Neural Network for detecting malicious code has been compared for the proposed model. In the experiment 400 benign files, 100 system files and 500 malicious files have been used to construct the model. The model yields the best accuracy 88.9% when neural network is used as classifier and achieved 95% and 82.8% accuracy for sensitivity and specificity respectively.

  8. Practical Performance Analysis for Multiple Information Fusion Based Scalable Localization System Using Wireless Sensor Networks.

    PubMed

    Zhao, Yubin; Li, Xiaofan; Zhang, Sha; Meng, Tianhui; Zhang, Yiwen

    2016-08-23

    In practical localization system design, researchers need to consider several aspects to make the positioning efficiently and effectively, e.g., the available auxiliary information, sensing devices, equipment deployment and the environment. Then, these practical concerns turn out to be the technical problems, e.g., the sequential position state propagation, the target-anchor geometry effect, the Non-line-of-sight (NLOS) identification and the related prior information. It is necessary to construct an efficient framework that can exploit multiple available information and guide the system design. In this paper, we propose a scalable method to analyze system performance based on the Cramér-Rao lower bound (CRLB), which can fuse all of the information adaptively. Firstly, we use an abstract function to represent all of the wireless localization system model. Then, the unknown vector of the CRLB consists of two parts: the first part is the estimated vector, and the second part is the auxiliary vector, which helps improve the estimation accuracy. Accordingly, the Fisher information matrix is divided into two parts: the state matrix and the auxiliary matrix. Unlike the theoretical analysis, our CRLB can be a practical fundamental limit to denote the system that fuses multiple information in the complicated environment, e.g., recursive Bayesian estimation based on the hidden Markov model, the map matching method and the NLOS identification and mitigation methods. Thus, the theoretical results are approaching the real case more. In addition, our method is more adaptable than other CRLBs when considering more unknown important factors. We use the proposed method to analyze the wireless sensor network-based indoor localization system. The influence of the hybrid LOS/NLOS channels, the building layout information and the relative height differences between the target and anchors are analyzed. It is demonstrated that our method exploits all of the available information for the indoor localization systems and serves as an indicator for practical system evaluation.

  9. Community detection in complex networks using proximate support vector clustering

    NASA Astrophysics Data System (ADS)

    Wang, Feifan; Zhang, Baihai; Chai, Senchun; Xia, Yuanqing

    2018-03-01

    Community structure, one of the most attention attracting properties in complex networks, has been a cornerstone in advances of various scientific branches. A number of tools have been involved in recent studies concentrating on the community detection algorithms. In this paper, we propose a support vector clustering method based on a proximity graph, owing to which the introduced algorithm surpasses the traditional support vector approach both in accuracy and complexity. Results of extensive experiments undertaken on computer generated networks and real world data sets illustrate competent performances in comparison with the other counterparts.

  10. High speed data transmission coaxial-cable in the space communication system

    NASA Astrophysics Data System (ADS)

    Su, Haohang; Huang, Jing

    2018-01-01

    An effective method is proved based on the scattering parameter of high speed 8-core coaxial-cable measured by vector network analyzer, and the semi-physical simulation is made to receive the eye diagram at different data transmission rate. The result can be apply to analysis decay and distortion of the signal through the coaxial-cable at high frequency, and can extensively design for electromagnetic compatibility of high-speed data transmission system.

  11. Quasi-one-dimensional modes in strip plates: Theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arreola, A.; Báez, G.; Méndez-Sánchez, R. A.

    2014-01-14

    Using acoustic resonance spectroscopy we measure the elastic resonances of a strip rectangular plate with all its ends free. The experimental setup consist of a vector network analyzer, a high-fidelity audio amplifier, and electromagnetic-acoustic transducers. The one-dimensional modes are identified from the measured spectra by comparing them with theoretical predictions of compressional and bending modes of the plate modeled as a beam. The agreement between theory and experiment is excellent.

  12. Application of Support Vector Machine to Forex Monitoring

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, Joarder; Sarker, Ruhul A.

    Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.

  13. System for Automated Calibration of Vector Modulators

    NASA Technical Reports Server (NTRS)

    Lux, James; Boas, Amy; Li, Samuel

    2009-01-01

    Vector modulators are used to impose baseband modulation on RF signals, but non-ideal behavior limits the overall performance. The non-ideal behavior of the vector modulator is compensated using data collected with the use of an automated test system driven by a LabVIEW program that systematically applies thousands of control-signal values to the device under test and collects RF measurement data. The technology innovation automates several steps in the process. First, an automated test system, using computer controlled digital-to-analog converters (DACs) and a computer-controlled vector network analyzer (VNA) systematically can apply different I and Q signals (which represent the complex number by which the RF signal is multiplied) to the vector modulator under test (VMUT), while measuring the RF performance specifically, gain and phase. The automated test system uses the LabVIEW software to control the test equipment, collect the data, and write it to a file. The input to the Lab - VIEW program is either user-input for systematic variation, or is provided in a file containing specific test values that should be fed to the VMUT. The output file contains both the control signals and the measured data. The second step is to post-process the file to determine the correction functions as needed. The result of the entire process is a tabular representation, which allows translation of a desired I/Q value to the required analog control signals to produce a particular RF behavior. In some applications, corrected performance is needed only for a limited range. If the vector modulator is being used as a phase shifter, there is only a need to correct I and Q values that represent points on a circle, not the entire plane. This innovation has been used to calibrate 2-GHz MMIC (monolithic microwave integrated circuit) vector modulators in the High EIRP Cluster Array project (EIRP is high effective isotropic radiated power). These calibrations were then used to create correction tables to allow the commanding of the phase shift in each of four channels used as a phased array for beam steering of a Ka-band (32-GHz) signal. The system also was the basis of a breadboard electronic beam steering system. In this breadboard, the goal was not to make systematic measurements of the properties of a vector modulator, but to drive the breadboard with a series of test patterns varying in phase and amplitude. This is essentially the same calibration process, but with the difference that the data collection process is oriented toward collecting breadboard performance, rather than the measurement of output from a network analyzer.

  14. Structural diversity effects of multilayer networks on the threshold of interacting epidemics

    NASA Astrophysics Data System (ADS)

    Wang, Weihong; Chen, MingMing; Min, Yong; Jin, Xiaogang

    2016-02-01

    Foodborne diseases always spread through multiple vectors (e.g. fresh vegetables and fruits) and reveal that multilayer network could spread fatal pathogen with complex interactions. In this paper, first, we use a "top-down analysis framework that depends on only two distributions to describe a random multilayer network with any number of layers. These two distributions are the overlaid degree distribution and the edge-type distribution of the multilayer network. Second, based on the two distributions, we adopt three indicators of multilayer network diversity to measure the correlation between network layers, including network richness, likeness, and evenness. The network richness is the number of layers forming the multilayer network. The network likeness is the degree of different layers sharing the same edge. The network evenness is the variance of the number of edges in every layer. Third, based on a simple epidemic model, we analyze the influence of network diversity on the threshold of interacting epidemics with the coexistence of collaboration and competition. Our work extends the "top-down" analysis framework to deal with the more complex epidemic situation and more diversity indicators and quantifies the trade-off between thresholds of inter-layer collaboration and intra-layer transmission.

  15. Prediction of interface residue based on the features of residue interaction network.

    PubMed

    Jiao, Xiong; Ranganathan, Shoba

    2017-11-07

    Protein-protein interaction plays a crucial role in the cellular biological processes. Interface prediction can improve our understanding of the molecular mechanisms of the related processes and functions. In this work, we propose a classification method to recognize the interface residue based on the features of a weighted residue interaction network. The random forest algorithm is used for the prediction and 16 network parameters and the B-factor are acting as the element of the input feature vector. Compared with other similar work, the method is feasible and effective. The relative importance of these features also be analyzed to identify the key feature for the prediction. Some biological meaning of the important feature is explained. The results of this work can be used for the related work about the structure-function relationship analysis via a residue interaction network model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less

  17. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    PubMed Central

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  18. Communication networks, soap films and vectors

    NASA Astrophysics Data System (ADS)

    Clark, R. C.

    1981-01-01

    The problem of constructing the least-cost network of connections between arbitrarily placed points is one that is common and which can be very important financially. The network may consist of motorways between towns, a grid of electric power lines, buried gas or oil pipe lines or telephone cables. Soap films trapped between parallel planes with vertical pins between them provide a 'shortest path' network and Isenberg (1975) has suggested that soap films of this sort be used to model communication networks. However soap films are unable to simulate the different costs of laying, say, a three-lane motorway instead of a two-lane one or of using a larger pipeline to take the flow from two smaller ones. Soap films, however, have considerable intrinsic interest. In the article the emphasis is on the use of soap films and communication networks as a practical means of illustrating the importance of vector and matrix methods in geometry. The power of vector methods is illustrated by the fact that given any soap film network the total length of the film can be written down by inspection if the vector positions of the pins are known. It is also possible to predict the boundaries at which 'catastrophes' occur and to decide which network has the least total length. In the field of communication networks a method is given of designing the minimum cost network linking, say, a number of oilwells, which produce at different rates to an outlet terminal.

  19. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    DOE PAGES

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-11-21

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less

  20. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks.

    PubMed

    Haraldsdóttir, Hulda S; Fleming, Ronan M T

    2016-11-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.

  1. The neural network classification of false killer whale (Pseudorca crassidens) vocalizations.

    PubMed

    Murray, S O; Mercado, E; Roitblat, H L

    1998-12-01

    This study reports the use of unsupervised, self-organizing neural network to categorize the repertoire of false killer whale vocalizations. Self-organizing networks are capable of detecting patterns in their input and partitioning those patterns into categories without requiring that the number or types of categories be predefined. The inputs for the neural networks were two-dimensional characterization of false killer whale vocalization, where each vocalization was characterized by a sequence of short-time measurements of duty cycle and peak frequency. The first neural network used competitive learning, where units in a competitive layer distributed themselves to recognize frequently presented input vectors. This network resulted in classes representing typical patterns in the vocalizations. The second network was a Kohonen feature map which organized the outputs topologically, providing a graphical organization of pattern relationships. The networks performed well as measured by (1) the average correlation between the input vectors and the weight vectors for each category, and (2) the ability of the networks to classify novel vocalizations. The techniques used in this study could easily be applied to other species and facilitate the development of objective, comprehensive repertoire models.

  2. Integrating Entropy and Closed Frequent Pattern Mining for Social Network Modelling and Analysis

    NASA Astrophysics Data System (ADS)

    Adnan, Muhaimenul; Alhajj, Reda; Rokne, Jon

    The recent increase in the explicitly available social networks has attracted the attention of the research community to investigate how it would be possible to benefit from such a powerful model in producing effective solutions for problems in other domains where the social network is implicit; we argue that social networks do exist around us but the key issue is how to realize and analyze them. This chapter presents a novel approach for constructing a social network model by an integrated framework that first preparing the data to be analyzed and then applies entropy and frequent closed patterns mining for network construction. For a given problem, we first prepare the data by identifying items and transactions, which arc the basic ingredients for frequent closed patterns mining. Items arc main objects in the problem and a transaction is a set of items that could exist together at one time (e.g., items purchased in one visit to the supermarket). Transactions could be analyzed to discover frequent closed patterns using any of the well-known techniques. Frequent closed patterns have the advantage that they successfully grab the inherent information content of the dataset and is applicable to a broader set of domains. Entropies of the frequent closed patterns arc used to keep the dimensionality of the feature vectors to a reasonable size; it is a kind of feature reduction process. Finally, we analyze the dynamic behavior of the constructed social network. Experiments were conducted on a synthetic dataset and on the Enron corpus email dataset. The results presented in the chapter show that social networks extracted from a feature set as frequent closed patterns successfully carry the community structure information. Moreover, for the Enron email dataset, we present an analysis to dynamically indicate the deviations from each user's individual and community profile. These indications of deviations can be very useful to identify unusual events.

  3. Design of thrust vectoring exhaust nozzles for real-time applications using neural networks

    NASA Technical Reports Server (NTRS)

    Prasanth, Ravi K.; Markin, Robert E.; Whitaker, Kevin W.

    1991-01-01

    Thrust vectoring continues to be an important issue in military aircraft system designs. A recently developed concept of vectoring aircraft thrust makes use of flexible exhaust nozzles. Subtle modifications in the nozzle wall contours produce a non-uniform flow field containing a complex pattern of shock and expansion waves. The end result, due to the asymmetric velocity and pressure distributions, is vectored thrust. Specification of the nozzle contours required for a desired thrust vector angle (an inverse design problem) has been achieved with genetic algorithms. This approach is computationally intensive and prevents the nozzles from being designed in real-time, which is necessary for an operational aircraft system. An investigation was conducted into using genetic algorithms to train a neural network in an attempt to obtain, in real-time, two-dimensional nozzle contours. Results show that genetic algorithm trained neural networks provide a viable, real-time alternative for designing thrust vectoring nozzles contours. Thrust vector angles up to 20 deg were obtained within an average error of 0.0914 deg. The error surfaces encountered were highly degenerate and thus the robustness of genetic algorithms was well suited for minimizing global errors.

  4. Scanning microwave microscopy applied to semiconducting GaAs structures

    NASA Astrophysics Data System (ADS)

    Buchter, Arne; Hoffmann, Johannes; Delvallée, Alexandra; Brinciotti, Enrico; Hapiuk, Dimitri; Licitra, Christophe; Louarn, Kevin; Arnoult, Alexandre; Almuneau, Guilhem; Piquemal, François; Zeier, Markus; Kienberger, Ferry

    2018-02-01

    A calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz. To benchmark the SMM results, comparison with secondary ion mass spectrometry is undertaken. Furthermore, we show SMM data on a GaAs p-n junction distinguishing p- and n-doped layers.

  5. Impact of indoor environment on path loss in body area networks.

    PubMed

    Hausman, Sławomir; Januszkiewicz, Łukasz

    2014-10-20

    In this paper the influence of an example indoor environment on narrowband radio channel path loss for body area networks operating around 2.4 GHz is investigated using computer simulations and on-site measurements. In contrast to other similar studies, the simulation model included both a numerical human body phantom and its environment-room walls, floor and ceiling. As an example, radio signal attenuation between two different configurations of transceivers with dipole antennas placed in a direct vicinity of a human body (on-body scenario) is analyzed by computer simulations for several types of reflecting environments. In the analyzed case the propagation environments comprised a human body and office room walls. As a reference environment for comparison, free space with only a conducting ground plane, modelling a steel mesh reinforced concrete floor, was chosen. The transmitting and receiving antennas were placed in two on-body configurations chest-back and chest-arm. Path loss vs. frequency simulation results obtained using Finite Difference Time Domain (FDTD) method and a multi-tissue anthropomorphic phantom were compared to results of measurements taken with a vector network analyzer with a human subject located in an average-size empty cuboidal office room. A comparison of path loss values in different environments variants gives some qualitative and quantitative insight into the adequacy of simplified indoor environment model for the indoor body area network channel representation.

  6. Impact of Indoor Environment on Path Loss in Body Area Networks

    PubMed Central

    Hausman, Sławomir; Januszkiewicz, Łukasz

    2014-01-01

    In this paper the influence of an example indoor environment on narrowband radio channel path loss for body area networks operating around 2.4 GHz is investigated using computer simulations and on-site measurements. In contrast to other similar studies, the simulation model included both a numerical human body phantom and its environment—room walls, floor and ceiling. As an example, radio signal attenuation between two different configurations of transceivers with dipole antennas placed in a direct vicinity of a human body (on-body scenario) is analyzed by computer simulations for several types of reflecting environments. In the analyzed case the propagation environments comprised a human body and office room walls. As a reference environment for comparison, free space with only a conducting ground plane, modelling a steel mesh reinforced concrete floor, was chosen. The transmitting and receiving antennas were placed in two on-body configurations chest–back and chest–arm. Path loss vs. frequency simulation results obtained using Finite Difference Time Domain (FDTD) method and a multi-tissue anthropomorphic phantom were compared to results of measurements taken with a vector network analyzer with a human subject located in an average-size empty cuboidal office room. A comparison of path loss values in different environments variants gives some qualitative and quantitative insight into the adequacy of simplified indoor environment model for the indoor body area network channel representation. PMID:25333289

  7. IntNetDB v1.0: an integrated protein-protein interaction network database generated by a probabilistic model

    PubMed Central

    Xia, Kai; Dong, Dong; Han, Jing-Dong J

    2006-01-01

    Background Although protein-protein interaction (PPI) networks have been explored by various experimental methods, the maps so built are still limited in coverage and accuracy. To further expand the PPI network and to extract more accurate information from existing maps, studies have been carried out to integrate various types of functional relationship data. A frequently updated database of computationally analyzed potential PPIs to provide biological researchers with rapid and easy access to analyze original data as a biological network is still lacking. Results By applying a probabilistic model, we integrated 27 heterogeneous genomic, proteomic and functional annotation datasets to predict PPI networks in human. In addition to previously studied data types, we show that phenotypic distances and genetic interactions can also be integrated to predict PPIs. We further built an easy-to-use, updatable integrated PPI database, the Integrated Network Database (IntNetDB) online, to provide automatic prediction and visualization of PPI network among genes of interest. The networks can be visualized in SVG (Scalable Vector Graphics) format for zooming in or out. IntNetDB also provides a tool to extract topologically highly connected network neighborhoods from a specific network for further exploration and research. Using the MCODE (Molecular Complex Detections) algorithm, 190 such neighborhoods were detected among all the predicted interactions. The predicted PPIs can also be mapped to worm, fly and mouse interologs. Conclusion IntNetDB includes 180,010 predicted protein-protein interactions among 9,901 human proteins and represents a useful resource for the research community. Our study has increased prediction coverage by five-fold. IntNetDB also provides easy-to-use network visualization and analysis tools that allow biological researchers unfamiliar with computational biology to access and analyze data over the internet. The web interface of IntNetDB is freely accessible at . Visualization requires Mozilla version 1.8 (or higher) or Internet Explorer with installation of SVGviewer. PMID:17112386

  8. Fuzzy Relational Compression Applied on Feature Vectors for Infant Cry Recognition

    NASA Astrophysics Data System (ADS)

    Reyes-Galaviz, Orion Fausto; Reyes-García, Carlos Alberto

    Data compression is always advisable when it comes to handling and processing information quickly and efficiently. There are two main problems that need to be solved when it comes to handling data; store information in smaller spaces and processes it in the shortest possible time. When it comes to infant cry analysis (ICA), there is always the need to construct large sound repositories from crying babies. Samples that have to be analyzed and be used to train and test pattern recognition algorithms; making this a time consuming task when working with uncompressed feature vectors. In this work, we show a simple, but efficient, method that uses Fuzzy Relational Product (FRP) to compresses the information inside a feature vector, building with this a compressed matrix that will help us recognize two kinds of pathologies in infants; Asphyxia and Deafness. We describe the sound analysis, which consists on the extraction of Mel Frequency Cepstral Coefficients that generate vectors which will later be compressed by using FRP. There is also a description of the infant cry database used in this work, along with the training and testing of a Time Delay Neural Network with the compressed features, which shows a performance of 96.44% with our proposed feature vector compression.

  9. Models for discrete-time self-similar vector processes with application to network traffic

    NASA Astrophysics Data System (ADS)

    Lee, Seungsin; Rao, Raghuveer M.; Narasimha, Rajesh

    2003-07-01

    The paper defines self-similarity for vector processes by employing the discrete-time continuous-dilation operation which has successfully been used previously by the authors to define 1-D discrete-time stochastic self-similar processes. To define self-similarity of vector processes, it is required to consider the cross-correlation functions between different 1-D processes as well as the autocorrelation function of each constituent 1-D process in it. System models to synthesize self-similar vector processes are constructed based on the definition. With these systems, it is possible to generate self-similar vector processes from white noise inputs. An important aspect of the proposed models is that they can be used to synthesize various types of self-similar vector processes by choosing proper parameters. Additionally, the paper presents evidence of vector self-similarity in two-channel wireless LAN data and applies the aforementioned systems to simulate the corresponding network traffic traces.

  10. Multi-Objective Community Detection Based on Memetic Algorithm

    PubMed Central

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646

  11. Multi-objective community detection based on memetic algorithm.

    PubMed

    Wu, Peng; Pan, Li

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels.

  12. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool

    PubMed Central

    2012-01-01

    Background Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR), to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Methods Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. Results The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya) and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. Conclusions VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements on the air travel network. The framework built provides a flexible and robust informatics infrastructure by separating the modules of functionality through an ontological model for vector-borne disease. The VBD‒AIR tool is designed as an evidence base for visualizing the risks of vector-borne disease by air travel for a wide range of users, including planners and decisions makers based in state and local government, and in particular, those at international and domestic airports tasked with planning for health risks and allocating limited resources. PMID:22892045

  13. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool.

    PubMed

    Huang, Zhuojie; Das, Anirrudha; Qiu, Youliang; Tatem, Andrew J

    2012-08-14

    Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR), to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya) and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements on the air travel network. The framework built provides a flexible and robust informatics infrastructure by separating the modules of functionality through an ontological model for vector-borne disease. The VBD‒AIR tool is designed as an evidence base for visualizing the risks of vector-borne disease by air travel for a wide range of users, including planners and decisions makers based in state and local government, and in particular, those at international and domestic airports tasked with planning for health risks and allocating limited resources.

  14. A PC-controlled microwave tomographic scanner for breast imaging

    NASA Astrophysics Data System (ADS)

    Padhi, Shantanu; Howard, John; Fhager, A.; Bengtsson, Sebastian

    2011-01-01

    This article presents the design and development of a personal computer based controller for a microwave tomographic system for breast cancer detection. The system uses motorized, dual-polarized antennas and a custom-made GUI interface to control stepper motors, a wideband vector network analyzer (VNA) and to coordinate data acquisition and archival in a local MDSPlus database. Both copolar and cross-polar scattered field components can be measured directly. Experimental results are presented to validate the various functionalities of the scanner.

  15. Improved Autoassociative Neural Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2003-01-01

    Improved autoassociative neural networks, denoted nexi, have been proposed for use in controlling autonomous robots, including mobile exploratory robots of the biomorphic type. In comparison with conventional autoassociative neural networks, nexi would be more complex but more capable in that they could be trained to do more complex tasks. A nexus would use bit weights and simple arithmetic in a manner that would enable training and operation without a central processing unit, programs, weight registers, or large amounts of memory. Only a relatively small amount of memory (to hold the bit weights) and a simple logic application- specific integrated circuit would be needed. A description of autoassociative neural networks is prerequisite to a meaningful description of a nexus. An autoassociative network is a set of neurons that are completely connected in the sense that each neuron receives input from, and sends output to, all the other neurons. (In some instantiations, a neuron could also send output back to its own input terminal.) The state of a neuron is completely determined by the inner product of its inputs with weights associated with its input channel. Setting the weights sets the behavior of the network. The neurons of an autoassociative network are usually regarded as comprising a row or vector. Time is a quantized phenomenon for most autoassociative networks in the sense that time proceeds in discrete steps. At each time step, the row of neurons forms a pattern: some neurons are firing, some are not. Hence, the current state of an autoassociative network can be described with a single binary vector. As time goes by, the network changes the vector. Autoassociative networks move vectors over hyperspace landscapes of possibilities.

  16. Event Recognition Based on Deep Learning in Chinese Texts

    PubMed Central

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%. PMID:27501231

  17. Event Recognition Based on Deep Learning in Chinese Texts.

    PubMed

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.

  18. Decentralized Dimensionality Reduction for Distributed Tensor Data Across Sensor Networks.

    PubMed

    Liang, Junli; Yu, Guoyang; Chen, Badong; Zhao, Minghua

    2016-11-01

    This paper develops a novel decentralized dimensionality reduction algorithm for the distributed tensor data across sensor networks. The main contributions of this paper are as follows. First, conventional centralized methods, which utilize entire data to simultaneously determine all the vectors of the projection matrix along each tensor mode, are not suitable for the network environment. Here, we relax the simultaneous processing manner into the one-vector-by-one-vector (OVBOV) manner, i.e., determining the projection vectors (PVs) related to each tensor mode one by one. Second, we prove that in the OVBOV manner each PV can be determined without modifying any tensor data, which simplifies corresponding computations. Third, we cast the decentralized PV determination problem as a set of subproblems with consensus constraints, so that it can be solved in the network environment only by local computations and information communications among neighboring nodes. Fourth, we introduce the null space and transform the PV determination problem with complex orthogonality constraints into an equivalent hidden convex one without any orthogonality constraint, which can be solved by the Lagrange multiplier method. Finally, experimental results are given to show that the proposed algorithm is an effective dimensionality reduction scheme for the distributed tensor data across the sensor networks.

  19. A study of EMR-based medical knowledge network and its applications.

    PubMed

    Zhao, Chao; Jiang, Jingchi; Xu, Zhiming; Guan, Yi

    2017-05-01

    Electronic medical records (EMRs) contain an amount of medical knowledge which can be used for clinical decision support. We attempt to integrate this medical knowledge into a complex network, and then implement a diagnosis model based on this network. The dataset of our study contains 992 records which are uniformly sampled from different departments of the hospital. In order to integrate the knowledge of these records, an EMR-based medical knowledge network (EMKN) is constructed. This network takes medical entities as nodes, and co-occurrence relationships between the two entities as edges. Selected properties of this network are analyzed. To make use of this network, a basic diagnosis model is implemented. Seven hundred records are randomly selected to re-construct the network, and the remaining 292 records are used as test records. The vector space model is applied to illustrate the relationships between diseases and symptoms. Because there may exist more than one actual disease in a record, the recall rate of the first ten results, and the average precision are adopted as evaluation measures. Compared with a random network of the same size, this network has a similar average length but a much higher clustering coefficient. Additionally, it can be observed that there are direct correlations between the community structure and the real department classes in the hospital. For the diagnosis model, the vector space model using disease as a base obtains the best result. At least one accurate disease can be obtained in 73.27% of the records in the first ten results. We constructed an EMR-based medical knowledge network by extracting the medical entities. This network has the small-world and scale-free properties. Moreover, the community structure showed that entities in the same department have a tendency to be self-aggregated. Based on this network, a diagnosis model was proposed. This model uses only the symptoms as inputs and is not restricted to a specific disease. The experiments conducted demonstrated that EMKN is a simple and universal technique to integrate different medical knowledge from EMRs, and can be used for clinical decision support. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Autonomous Environment-Monitoring Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2004-01-01

    Autonomous environment-monitoring networks (AEMNs) are artificial neural networks that are specialized for recognizing familiarity and, conversely, novelty. Like a biological neural network, an AEMN receives a constant stream of inputs. For purposes of computational implementation, the inputs are vector representations of the information of interest. As long as the most recent input vector is similar to the previous input vectors, no action is taken. Action is taken only when a novel vector is encountered. Whether a given input vector is regarded as novel depends on the previous vectors; hence, the same input vector could be regarded as familiar or novel, depending on the context of previous input vectors. AEMNs have been proposed as means to enable exploratory robots on remote planets to recognize novel features that could merit closer scientific attention. AEMNs could also be useful for processing data from medical instrumentation for automated monitoring or diagnosis. The primary substructure of an AEMN is called a spindle. In its simplest form, a spindle consists of a central vector (C), a scalar (r), and algorithms for changing C and r. The vector C is constructed from all the vectors in a given continuous stream of inputs, such that it is minimally distant from those vectors. The scalar r is the distance between C and the most remote vector in the same set. The construction of a spindle involves four vital parameters: setup size, spindle-population size, and the radii of two novelty boundaries. The setup size is the number of vectors that are taken into account before computing C. The spindle-population size is the total number of input vectors used in constructing the spindle counting both those that arrive before and those that arrive after the computation of C. The novelty-boundary radii are distances from C that partition the neighborhood around C into three concentric regions (see Figure 1). During construction of the spindle, the changing spindle radius is denoted by h. It is the final value of h, reached before beginning construction on the next spindle, that is denoted by r. During construction of a spindle, if a new vector falls between C and the inner boundary, the vector is regarded as completely familiar and no action is taken. If the new vector falls into the region between the inner and outer boundaries, it is considered unusual enough to warrant the adjustment of C and r by use of the aforementioned algorithms, but not unusual enough to be considered novel. If a vector falls outside the outer boundary, it is considered novel, in which case one of several appropriate responses could be initiation of construction of a new spindle.

  1. Sign: large-scale gene network estimation environment for high performance computing.

    PubMed

    Tamada, Yoshinori; Shimamura, Teppei; Yamaguchi, Rui; Imoto, Seiya; Nagasaki, Masao; Miyano, Satoru

    2011-01-01

    Our research group is currently developing software for estimating large-scale gene networks from gene expression data. The software, called SiGN, is specifically designed for the Japanese flagship supercomputer "K computer" which is planned to achieve 10 petaflops in 2012, and other high performance computing environments including Human Genome Center (HGC) supercomputer system. SiGN is a collection of gene network estimation software with three different sub-programs: SiGN-BN, SiGN-SSM and SiGN-L1. In these three programs, five different models are available: static and dynamic nonparametric Bayesian networks, state space models, graphical Gaussian models, and vector autoregressive models. All these models require a huge amount of computational resources for estimating large-scale gene networks and therefore are designed to be able to exploit the speed of 10 petaflops. The software will be available freely for "K computer" and HGC supercomputer system users. The estimated networks can be viewed and analyzed by Cell Illustrator Online and SBiP (Systems Biology integrative Pipeline). The software project web site is available at http://sign.hgc.jp/ .

  2. Analyzing comprehensive QoS with security constraints for services composition applications in wireless sensor networks.

    PubMed

    Xiong, Naixue; Wu, Zhao; Huang, Yannong; Xu, Degang

    2014-12-01

    Services composition is fundamental to software development in multi-service wireless sensor networks (WSNs). The quality of service (QoS) of services composition applications (SCAs) are confronted with severe challenges due to the open, dynamic, and complex natures of WSNs. Most previous research separated various QoS indices into different fields and studied them individually due to the computational complexity. This approach ignores the mutual influence between these QoS indices, and leads to a non-comprehensive and inaccurate analysis result. The universal generating function (UGF) shows the speediness and precision in QoS analysis. However, only one QoS index at a time can be analyzed by the classic UGF. In order to efficiently analyze the comprehensive QoS of SCAs, this paper proposes an improved UGF technique-vector universal generating function (VUGF)-which considers the relationship between multiple QoS indices, including security, and can simultaneously analyze multiple QoS indices. The numerical examples demonstrate that it can be used for the evaluation of the comprehensive QoS of SCAs subjected to the security constraint in WSNs. Therefore, it can be effectively applied to the optimal design of multi-service WSNs.

  3. Analyzing Comprehensive QoS with Security Constraints for Services Composition Applications in Wireless Sensor Networks

    PubMed Central

    Xiong, Naixue; Wu, Zhao; Huang, Yannong; Xu, Degang

    2014-01-01

    Services composition is fundamental to software development in multi-service wireless sensor networks (WSNs). The quality of service (QoS) of services composition applications (SCAs) are confronted with severe challenges due to the open, dynamic, and complex natures of WSNs. Most previous research separated various QoS indices into different fields and studied them individually due to the computational complexity. This approach ignores the mutual influence between these QoS indices, and leads to a non-comprehensive and inaccurate analysis result. The universal generating function (UGF) shows the speediness and precision in QoS analysis. However, only one QoS index at a time can be analyzed by the classic UGF. In order to efficiently analyze the comprehensive QoS of SCAs, this paper proposes an improved UGF technique—vector universal generating function (VUGF)—which considers the relationship between multiple QoS indices, including security, and can simultaneously analyze multiple QoS indices. The numerical examples demonstrate that it can be used for the evaluation of the comprehensive QoS of SCAs subjected to the security constraint in WSNs. Therefore, it can be effectively applied to the optimal design of multi-service WSNs. PMID:25470488

  4. Feature detection in satellite images using neural network technology

    NASA Technical Reports Server (NTRS)

    Augusteijn, Marijke F.; Dimalanta, Arturo S.

    1992-01-01

    A feasibility study of automated classification of satellite images is described. Satellite images were characterized by the textures they contain. In particular, the detection of cloud textures was investigated. The method of second-order gray level statistics, using co-occurrence matrices, was applied to extract feature vectors from image segments. Neural network technology was employed to classify these feature vectors. The cascade-correlation architecture was successfully used as a classifier. The use of a Kohonen network was also investigated but this architecture could not reliably classify the feature vectors due to the complicated structure of the classification problem. The best results were obtained when data from different spectral bands were fused.

  5. Demonstration of Cost-Effective, High-Performance Computing at Performance and Reliability Levels Equivalent to a 1994 Vector Supercomputer

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa

    2000-01-01

    The Affordable High Performance Computing (AHPC) project demonstrated that high-performance computing based on a distributed network of computer workstations is a cost-effective alternative to vector supercomputers for running CPU and memory intensive design and analysis tools. The AHPC project created an integrated system called a Network Supercomputer. By connecting computer work-stations through a network and utilizing the workstations when they are idle, the resulting distributed-workstation environment has the same performance and reliability levels as the Cray C90 vector Supercomputer at less than 25 percent of the C90 cost. In fact, the cost comparison between a Cray C90 Supercomputer and Sun workstations showed that the number of distributed networked workstations equivalent to a C90 costs approximately 8 percent of the C90.

  6. Vector Addition: Effect of the Context and Position of the Vectors

    NASA Astrophysics Data System (ADS)

    Barniol, Pablo; Zavala, Genaro

    2010-10-01

    In this article we investigate the effect of: 1) the context, and 2) the position of the vectors, on 2D vector addition tasks. We administered a test to 512 students completing introductory physics courses at a private Mexican university. In the first part, we analyze students' responses in three isomorphic problems: displacements, forces, and no physical context. Students were asked to draw two vectors and the vector sum. We analyzed students' procedures detecting the difficulties when drawing the vector addition and proved that the context matters, not only compared to the context-free case but also between the contexts. In the second part, we analyze students' responses with three different arrangements of the sum of two vectors: tail-to-tail, head-to-tail and separated vectors. We compared the frequencies of the errors in the three different positions to deduce students' conceptions in the addition of vectors.

  7. Balanced Centrality of Networks.

    PubMed

    Debono, Mark; Lauri, Josef; Sciriha, Irene

    2014-01-01

    There is an age-old question in all branches of network analysis. What makes an actor in a network important, courted, or sought? Both Crossley and Bonacich contend that rather than its intrinsic wealth or value, an actor's status lies in the structures of its interactions with other actors. Since pairwise relation data in a network can be stored in a two-dimensional array or matrix, graph theory and linear algebra lend themselves as great tools to gauge the centrality (interpreted as importance, power, or popularity, depending on the purpose of the network) of each actor. We express known and new centralities in terms of only two matrices associated with the network. We show that derivations of these expressions can be handled exclusively through the main eigenvectors (not orthogonal to the all-one vector) associated with the adjacency matrix. We also propose a centrality vector (SWIPD) which is a linear combination of the square, walk, power, and degree centrality vectors with weightings of the various centralities depending on the purpose of the network. By comparing actors' scores for various weightings, a clear understanding of which actors are most central is obtained. Moreover, for threshold networks, the (SWIPD) measure turns out to be independent of the weightings.

  8. Snack food as a modulator of human resting-state functional connectivity.

    PubMed

    Mendez-Torrijos, Andrea; Kreitz, Silke; Ivan, Claudiu; Konerth, Laura; Rösch, Julie; Pischetsrieder, Monika; Moll, Gunther; Kratz, Oliver; Dörfler, Arnd; Horndasch, Stefanie; Hess, Andreas

    2018-04-04

    To elucidate the mechanisms of how snack foods may induce non-homeostatic food intake, we used resting state functional magnetic resonance imaging (fMRI), as resting state networks can individually adapt to experience after short time exposures. In addition, we used graph theoretical analysis together with machine learning techniques (support vector machine) to identifying biomarkers that can categorize between high-caloric (potato chips) vs. low-caloric (zucchini) food stimulation. Seventeen healthy human subjects with body mass index (BMI) 19 to 27 underwent 2 different fMRI sessions where an initial resting state scan was acquired, followed by visual presentation of different images of potato chips and zucchini. There was then a 5-minute pause to ingest food (day 1=potato chips, day 3=zucchini), followed by a second resting state scan. fMRI data were further analyzed using graph theory analysis and support vector machine techniques. Potato chips vs. zucchini stimulation led to significant connectivity changes. The support vector machine was able to accurately categorize the 2 types of food stimuli with 100% accuracy. Visual, auditory, and somatosensory structures, as well as thalamus, insula, and basal ganglia were found to be important for food classification. After potato chips consumption, the BMI was associated with the path length and degree in nucleus accumbens, middle temporal gyrus, and thalamus. The results suggest that high vs. low caloric food stimulation in healthy individuals can induce significant changes in resting state networks. These changes can be detected using graph theory measures in conjunction with support vector machine. Additionally, we found that the BMI affects the response of the nucleus accumbens when high caloric food is consumed.

  9. Spin wave propagation in perpendicularly magnetized nm-thick yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Chen, Jilei; Heimbach, Florian; Liu, Tao; Yu, Haiming; Liu, Chuanpu; Chang, Houchen; Stückler, Tobias; Hu, Junfeng; Zeng, Lang; Zhang, Youguang; Liao, Zhimin; Yu, Dapeng; Zhao, Weisheng; Wu, Mingzhong

    2018-03-01

    Magnonics offers a new way for information transport that uses spin waves (SWs) and is free of charge currents. Unlike Damon-Eshbach SWs, the magneto-static forward volume SWs offer the reciprocity configuration suitable for SW logic devices with low power consumption. Here, we study forward volume SW propagation in yttrium iron garnet (YIG) thin films with an ultra-low damping constant α = 8 ×10-5 . We design different integrated microwave antenna with different k-vector excitation distributions on YIG thin films. Using a vector network analyzer, we measured SW transmission with the films magnetized in perpendicular orientation. Based on the experimental results, we extract the group velocity as well as the dispersion relation of SWs and directly compare the power efficiency of SW propagation in YIG using coplanar waveguide and micro stripline for SW excitation and detection.

  10. Knowledge discovery in cardiology: A systematic literature review.

    PubMed

    Kadi, I; Idri, A; Fernandez-Aleman, J L

    2017-01-01

    Data mining (DM) provides the methodology and technology needed to transform huge amounts of data into useful information for decision making. It is a powerful process employed to extract knowledge and discover new patterns embedded in large data sets. Data mining has been increasingly used in medicine, particularly in cardiology. In fact, DM applications can greatly benefit all those involved in cardiology, such as patients, cardiologists and nurses. The purpose of this paper is to review papers concerning the application of DM techniques in cardiology so as to summarize and analyze evidence regarding: (1) the DM techniques most frequently used in cardiology; (2) the performance of DM models in cardiology; (3) comparisons of the performance of different DM models in cardiology. We performed a systematic literature review of empirical studies on the application of DM techniques in cardiology published in the period between 1 January 2000 and 31 December 2015. A total of 149 articles published between 2000 and 2015 were selected, studied and analyzed according to the following criteria: DM techniques and performance of the approaches developed. The results obtained showed that a significant number of the studies selected used classification and prediction techniques when developing DM models. Neural networks, decision trees and support vector machines were identified as being the techniques most frequently employed when developing DM models in cardiology. Moreover, neural networks and support vector machines achieved the highest accuracy rates and were proved to be more efficient than other techniques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Social significance of community structure: Statistical view

    NASA Astrophysics Data System (ADS)

    Li, Hui-Jia; Daniels, Jasmine J.

    2015-01-01

    Community structure analysis is a powerful tool for social networks that can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the significance of a partitioned community structure is an urgent and important question. In this paper, integrating the specific characteristics of real society, we present a framework to analyze the significance of a social community. The dynamics of social interactions are modeled by identifying social leaders and corresponding hierarchical structures. Instead of a direct comparison with the average outcome of a random model, we compute the similarity of a given node with the leader by the number of common neighbors. To determine the membership vector, an efficient community detection algorithm is proposed based on the position of the nodes and their corresponding leaders. Then, using a log-likelihood score, the tightness of the community can be derived. Based on the distribution of community tightness, we establish a connection between p -value theory and network analysis, and then we obtain a significance measure of statistical form . Finally, the framework is applied to both benchmark networks and real social networks. Experimental results show that our work can be used in many fields, such as determining the optimal number of communities, analyzing the social significance of a given community, comparing the performance among various algorithms, etc.

  12. Automated image segmentation using support vector machines

    NASA Astrophysics Data System (ADS)

    Powell, Stephanie; Magnotta, Vincent A.; Andreasen, Nancy C.

    2007-03-01

    Neurodegenerative and neurodevelopmental diseases demonstrate problems associated with brain maturation and aging. Automated methods to delineate brain structures of interest are required to analyze large amounts of imaging data like that being collected in several on going multi-center studies. We have previously reported on using artificial neural networks (ANN) to define subcortical brain structures including the thalamus (0.88), caudate (0.85) and the putamen (0.81). In this work, apriori probability information was generated using Thirion's demons registration algorithm. The input vector consisted of apriori probability, spherical coordinates, and an iris of surrounding signal intensity values. We have applied the support vector machine (SVM) machine learning algorithm to automatically segment subcortical and cerebellar regions using the same input vector information. SVM architecture was derived from the ANN framework. Training was completed using a radial-basis function kernel with gamma equal to 5.5. Training was performed using 15,000 vectors collected from 15 training images in approximately 10 minutes. The resulting support vectors were applied to delineate 10 images not part of the training set. Relative overlap calculated for the subcortical structures was 0.87 for the thalamus, 0.84 for the caudate, 0.84 for the putamen, and 0.72 for the hippocampus. Relative overlap for the cerebellar lobes ranged from 0.76 to 0.86. The reliability of the SVM based algorithm was similar to the inter-rater reliability between manual raters and can be achieved without rater intervention.

  13. Mapping higher-order relations between brain structure and function with embedded vector representations of connectomes.

    PubMed

    Rosenthal, Gideon; Váša, František; Griffa, Alessandra; Hagmann, Patric; Amico, Enrico; Goñi, Joaquín; Avidan, Galia; Sporns, Olaf

    2018-06-05

    Connectomics generates comprehensive maps of brain networks, represented as nodes and their pairwise connections. The functional roles of nodes are defined by their direct and indirect connectivity with the rest of the network. However, the network context is not directly accessible at the level of individual nodes. Similar problems in language processing have been addressed with algorithms such as word2vec that create embeddings of words and their relations in a meaningful low-dimensional vector space. Here we apply this approach to create embedded vector representations of brain networks or connectome embeddings (CE). CE can characterize correspondence relations among brain regions, and can be used to infer links that are lacking from the original structural diffusion imaging, e.g., inter-hemispheric homotopic connections. Moreover, we construct predictive deep models of functional and structural connectivity, and simulate network-wide lesion effects using the face processing system as our application domain. We suggest that CE offers a novel approach to revealing relations between connectome structure and function.

  14. Probing the Topological Properties of Complex Networks Modeling Short Written Texts

    PubMed Central

    Amancio, Diego R.

    2015-01-01

    In recent years, graph theory has been widely employed to probe several language properties. More specifically, the so-called word adjacency model has been proven useful for tackling several practical problems, especially those relying on textual stylistic analysis. The most common approach to treat texts as networks has simply considered either large pieces of texts or entire books. This approach has certainly worked well—many informative discoveries have been made this way—but it raises an uncomfortable question: could there be important topological patterns in small pieces of texts? To address this problem, the topological properties of subtexts sampled from entire books was probed. Statistical analyses performed on a dataset comprising 50 novels revealed that most of the traditional topological measurements are stable for short subtexts. When the performance of the authorship recognition task was analyzed, it was found that a proper sampling yields a discriminability similar to the one found with full texts. Surprisingly, the support vector machine classification based on the characterization of short texts outperformed the one performed with entire books. These findings suggest that a local topological analysis of large documents might improve its global characterization. Most importantly, it was verified, as a proof of principle, that short texts can be analyzed with the methods and concepts of complex networks. As a consequence, the techniques described here can be extended in a straightforward fashion to analyze texts as time-varying complex networks. PMID:25719799

  15. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.

    PubMed

    Tabe-Bordbar, Shayan; Marashi, Sayed-Amir

    2013-12-01

    Elementary modes (EMs) are steady-state metabolic flux vectors with minimal set of active reactions. Each EM corresponds to a metabolic pathway. Therefore, studying EMs is helpful for analyzing the production of biotechnologically important metabolites. However, memory requirements for computing EMs may hamper their applicability as, in most genome-scale metabolic models, no EM can be computed due to running out of memory. In this study, we present a method for computing randomly sampled EMs. In this approach, a network reduction algorithm is used for EM computation, which is based on flux balance-based methods. We show that this approach can be used to recover the EMs in the medium- and genome-scale metabolic network models, while the EMs are sampled in an unbiased way. The applicability of such results is shown by computing “estimated” control-effective flux values in Escherichia coli metabolic network.

  16. Efficient Power Network Analysis with Modeling of Inductive Effects

    NASA Astrophysics Data System (ADS)

    Zeng, Shan; Yu, Wenjian; Hong, Xianlong; Cheng, Chung-Kuan

    In this paper, an efficient method is proposed to accurately analyze large-scale power/ground (P/G) networks, where inductive parasitics are modeled with the partial reluctance. The method is based on frequency-domain circuit analysis and the technique of vector fitting [14], and obtains the time-domain voltage response at given P/G nodes. The frequency-domain circuit equation including partial reluctances is derived, and then solved with the GMRES algorithm with rescaling, preconditioning and recycling techniques. With the merit of sparsified reluctance matrix and iterative solving techniques for the frequency-domain circuit equations, the proposed method is able to handle large-scale P/G networks with complete inductive modeling. Numerical results show that the proposed method is orders of magnitude faster than HSPICE, several times faster than INDUCTWISE [4], and capable of handling the inductive P/G structures with more than 100, 000 wire segments.

  17. Automated network analysis to measure brain effective connectivity estimated from EEG data of patients with alcoholism.

    PubMed

    Bae, Youngoh; Yoo, Byeong Wook; Lee, Jung Chan; Kim, Hee Chan

    2017-05-01

    Detection and diagnosis based on extracting features and classification using electroencephalography (EEG) signals are being studied vigorously. A network analysis of time series EEG signal data is one of many techniques that could help study brain functions. In this study, we analyze EEG to diagnose alcoholism. We propose a novel methodology to estimate the differences in the status of the brain based on EEG data of normal subjects and data from alcoholics by computing many parameters stemming from effective network using Granger causality. Among many parameters, only ten parameters were chosen as final candidates. By the combination of ten graph-based parameters, our results demonstrate predictable differences between alcoholics and normal subjects. A support vector machine classifier with best performance had 90% accuracy with sensitivity of 95.3%, and specificity of 82.4% for differentiating between the two groups.

  18. Unsupervised Discovery of Nonlinear Structure Using Contrastive Backpropagation

    ERIC Educational Resources Information Center

    Hinton, Geoffrey; Osindero, Simon; Welling, Max; Teh, Yee-Whye

    2006-01-01

    We describe a way of modeling high-dimensional data vectors by using an unsupervised, nonlinear, multilayer neural network in which the activity of each neuron-like unit makes an additive contribution to a global energy score that indicates how surprised the network is by the data vector. The connection weights that determine how the activity of…

  19. A new simple /spl infin/OH neuron model as a biologically plausible principal component analyzer.

    PubMed

    Jankovic, M V

    2003-01-01

    A new approach to unsupervised learning in a single-layer neural network is discussed. An algorithm for unsupervised learning based upon the Hebbian learning rule is presented. A simple neuron model is analyzed. A dynamic neural model, which contains both feed-forward and feedback connections between the input and the output, has been adopted. The, proposed learning algorithm could be more correctly named self-supervised rather than unsupervised. The solution proposed here is a modified Hebbian rule, in which the modification of the synaptic strength is proportional not to pre- and postsynaptic activity, but instead to the presynaptic and averaged value of postsynaptic activity. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence. Usually accepted additional decaying terms for the stabilization of the original Hebbian rule are avoided. Implementation of the basic Hebbian scheme would not lead to unrealistic growth of the synaptic strengths, thanks to the adopted network structure.

  20. Some new classification methods for hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Du, Pei-jun; Chen, Yun-hao; Jones, Simon; Ferwerda, Jelle G.; Chen, Zhi-jun; Zhang, Hua-peng; Tan, Kun; Yin, Zuo-xia

    2006-10-01

    Hyperspectral Remote Sensing (HRS) is one of the most significant recent achievements of Earth Observation Technology. Classification is the most commonly employed processing methodology. In this paper three new hyperspectral RS image classification methods are analyzed. These methods are: Object-oriented FIRS image classification, HRS image classification based on information fusion and HSRS image classification by Back Propagation Neural Network (BPNN). OMIS FIRS image is used as the example data. Object-oriented techniques have gained popularity for RS image classification in recent years. In such method, image segmentation is used to extract the regions from the pixel information based on homogeneity criteria at first, and spectral parameters like mean vector, texture, NDVI and spatial/shape parameters like aspect ratio, convexity, solidity, roundness and orientation for each region are calculated, finally classification of the image using the region feature vectors and also using suitable classifiers such as artificial neural network (ANN). It proves that object-oriented methods can improve classification accuracy since they utilize information and features both from the point and the neighborhood, and the processing unit is a polygon (in which all pixels are homogeneous and belong to the class). HRS image classification based on information fusion, divides all bands of the image into different groups initially, and extracts features from every group according to the properties of each group. Three levels of information fusion: data level fusion, feature level fusion and decision level fusion are used to HRS image classification. Artificial Neural Network (ANN) can perform well in RS image classification. In order to promote the advances of ANN used for HIRS image classification, Back Propagation Neural Network (BPNN), the most commonly used neural network, is used to HRS image classification.

  1. Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks.

    PubMed

    Demirhan, Ayşe; Toru, Mustafa; Guler, Inan

    2015-07-01

    Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema.

  2. Novel method of finding extreme edges in a convex set of N-dimension vectors

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Lun J.

    2001-11-01

    As we published in the last few years, for a binary neural network pattern recognition system to learn a given mapping {Um mapped to Vm, m=1 to M} where um is an N- dimension analog (pattern) vector, Vm is a P-bit binary (classification) vector, the if-and-only-if (IFF) condition that this network can learn this mapping is that each i-set in {Ymi, m=1 to M} (where Ymithere existsVmiUm and Vmi=+1 or -1, is the i-th bit of VR-m).)(i=1 to P and there are P sets included here.) Is POSITIVELY, LINEARLY, INDEPENDENT or PLI. We have shown that this PLI condition is MORE GENERAL than the convexity condition applied to a set of N-vectors. In the design of old learning machines, we know that if a set of N-dimension analog vectors form a convex set, and if the machine can learn the boundary vectors (or extreme edges) of this set, then it can definitely learn the inside vectors contained in this POLYHEDRON CONE. This paper reports a new method and new algorithm to find the boundary vectors of a convex set of ND analog vectors.

  3. Design of a universal two-layered neural network derived from the PLI theory

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Lun J.

    2004-05-01

    The if-and-only-if (IFF) condition that a set of M analog-to-digital vector-mapping relations can be learned by a one-layered-feed-forward neural network (OLNN) is that all the input analog vectors dichotomized by the i-th output bit must be positively, linearly independent, or PLI. If they are not PLI, then the OLNN just cannot learn no matter what learning rules is employed because the solution of the connection matrix does not exist mathematically. However, in this case, one can still design a parallel-cascaded, two-layered, perceptron (PCTLP) to acheive this general mapping goal. The design principle of this "universal" neural network is derived from the major mathematical properties of the PLI theory - changing the output bits of the dependent relations existing among the dichotomized input vectors to make the PLD relations PLI. Then with a vector concatenation technique, the required mapping can still be learned by this PCTLP system with very high efficiency. This paper will report in detail the mathematical derivation of the general design principle and the design procedures of the PCTLP neural network system. It then will be verified in general by a practical numerical example.

  4. Robust support vector regression networks for function approximation with outliers.

    PubMed

    Chuang, Chen-Chia; Su, Shun-Feng; Jeng, Jin-Tsong; Hsiao, Chih-Ching

    2002-01-01

    Support vector regression (SVR) employs the support vector machine (SVM) to tackle problems of function approximation and regression estimation. SVR has been shown to have good robust properties against noise. When the parameters used in SVR are improperly selected, overfitting phenomena may still occur. However, the selection of various parameters is not straightforward. Besides, in SVR, outliers may also possibly be taken as support vectors. Such an inclusion of outliers in support vectors may lead to seriously overfitting phenomena. In this paper, a novel regression approach, termed as the robust support vector regression (RSVR) network, is proposed to enhance the robust capability of SVR. In the approach, traditional robust learning approaches are employed to improve the learning performance for any selected parameters. From the simulation results, our RSVR can always improve the performance of the learned systems for all cases. Besides, it can be found that even the training lasted for a long period, the testing errors would not go up. In other words, the overfitting phenomenon is indeed suppressed.

  5. Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong; Zhang, Shan-Shan

    2016-10-01

    Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to demonstrate the effectiveness of our method. Combining MLPHVG and support vector machine, we detect epileptic seizures from the EEG signals recorded from healthy subjects and epilepsy patients and the classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water two-phase flow signals and find that the average clustering coefficient at different scales allows faithfully identifying and characterizing three typical oil-water flow patterns. These findings render our MLPHVG method particularly useful for analyzing nonlinear time series from the perspective of multiscale network analysis.

  6. A novel dynamical community detection algorithm based on weighting scheme

    NASA Astrophysics Data System (ADS)

    Li, Ju; Yu, Kai; Hu, Ke

    2015-12-01

    Network dynamics plays an important role in analyzing the correlation between the function properties and the topological structure. In this paper, we propose a novel dynamical iteration (DI) algorithm, which incorporates the iterative process of membership vector with weighting scheme, i.e. weighting W and tightness T. These new elements can be used to adjust the link strength and the node compactness for improving the speed and accuracy of community structure detection. To estimate the optimal stop time of iteration, we utilize a new stability measure which is defined as the Markov random walk auto-covariance. We do not need to specify the number of communities in advance. It naturally supports the overlapping communities by associating each node with a membership vector describing the node's involvement in each community. Theoretical analysis and experiments show that the algorithm can uncover communities effectively and efficiently.

  7. Spin wave propagation in perpendicular magnetized 20 nm Yttrium Iron Garnet with different antenna design

    NASA Astrophysics Data System (ADS)

    Chen, Jilei; Stueckler, Tobias; Zhang, Youguang; Zhao, Weisheng; Yu, Haiming; Chang, Houchen; Liu, Tao; Wu, Mingzhong; Liu, Chuanpu; Liao, Zhimin; Yu, Dapeng; Fert Beijing research institute Team; Colorado State University Team; Peking University Collaboration

    Magnonics offers a new way to transport information using spin waves free of charge current and could lead to a new paradigm in the area of computing. Forward volume (FV) mode spin wave with perpendicular magnetized configuration is suitable for spin wave logic device because it is free of non-reciprocity effect. Here, we study FV mode spin wave propagation in YIG thin film with an ultra-low damping. We integrated differently designed antenna i.e., coplanar waveguide and micro stripline with different dimensions. The k vectors of the spin waves defined by the design of the antenna are calculated using Fourier transform. We show FV mode spin wave propagation results by measuring S12 parameter from vector network analyzer and we extract the group velocity of the FV mode spin wave as well as its dispersion relations.

  8. Distributed estimation for adaptive sensor selection in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Hassan Hamid, Matasm M.

    2014-05-01

    Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.

  9. Possible relation of water structural relaxation to water anomalies

    PubMed Central

    Mallamace, Francesco; Corsaro, Carmelo; Stanley, H. Eugene

    2013-01-01

    The anomalous behavior of thermodynamic response functions is an unsolved problem in the physics of water. The mechanism that gives rise to the dramatic indefinite increase at low temperature in the heat capacity, the compressibility, and the coefficient of thermal expansion, is unknown. We explore this problem by analyzing both new and existing experimental data on the power spectrum S(Q, ω) of bulk and confined water at ambient pressure. When decreasing the temperature, we find that the liquid undergoes a structural transformation coinciding with the onset of an extended hydrogen bond network. This network onset seems to give rise to the marked viscoelastic behavior, consistent with the interesting possibility that the sound velocity and response functions of water depend upon both the frequency and wave vector. PMID:23483053

  10. The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.

    PubMed

    Epskamp, Sacha; Waldorp, Lourens J; Mõttus, René; Borsboom, Denny

    2018-04-16

    We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.

  11. Optoelectronic Inner-Product Neural Associative Memory

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1993-01-01

    Optoelectronic apparatus acts as artificial neural network performing associative recall of binary images. Recall process is iterative one involving optical computation of inner products between binary input vector and one or more reference binary vectors in memory. Inner-product method requires far less memory space than matrix-vector method.

  12. Vector Symbolic Spiking Neural Network Model of Hippocampal Subarea CA1 Novelty Detection Functionality.

    PubMed

    Agerskov, Claus

    2016-04-01

    A neural network model is presented of novelty detection in the CA1 subdomain of the hippocampal formation from the perspective of information flow. This computational model is restricted on several levels by both anatomical information about hippocampal circuitry and behavioral data from studies done in rats. Several studies report that the CA1 area broadcasts a generalized novelty signal in response to changes in the environment. Using the neural engineering framework developed by Eliasmith et al., a spiking neural network architecture is created that is able to compare high-dimensional vectors, symbolizing semantic information, according to the semantic pointer hypothesis. This model then computes the similarity between the vectors, as both direct inputs and a recalled memory from a long-term memory network by performing the dot-product operation in a novelty neural network architecture. The developed CA1 model agrees with available neuroanatomical data, as well as the presented behavioral data, and so it is a biologically realistic model of novelty detection in the hippocampus, which can provide a feasible explanation for experimentally observed dynamics.

  13. Matching algorithm of missile tail flame based on back-propagation neural network

    NASA Astrophysics Data System (ADS)

    Huang, Da; Huang, Shucai; Tang, Yidong; Zhao, Wei; Cao, Wenhuan

    2018-02-01

    This work presents a spectral matching algorithm of missile plume detection that based on neural network. The radiation value of the characteristic spectrum of the missile tail flame is taken as the input of the network. The network's structure including the number of nodes and layers is determined according to the number of characteristic spectral bands and missile types. We can get the network weight matrixes and threshold vectors through training the network using training samples, and we can determine the performance of the network through testing the network using the test samples. A small amount of data cause the network has the advantages of simple structure and practicality. Network structure composed of weight matrix and threshold vector can complete task of spectrum matching without large database support. Network can achieve real-time requirements with a small quantity of data. Experiment results show that the algorithm has the ability to match the precise spectrum and strong robustness.

  14. Dynamic defense and network randomization for computer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Adrian R.; Stout, William M. S.; Hamlet, Jason R.

    The various technologies presented herein relate to determining a network attack is taking place, and further to adjust one or more network parameters such that the network becomes dynamically configured. A plurality of machine learning algorithms are configured to recognize an active attack pattern. Notification of the attack can be generated, and knowledge gained from the detected attack pattern can be utilized to improve the knowledge of the algorithms to detect a subsequent attack vector(s). Further, network settings and application communications can be dynamically randomized, wherein artificial diversity converts control systems into moving targets that help mitigate the early reconnaissancemore » stages of an attack. An attack(s) based upon a known static address(es) of a critical infrastructure network device(s) can be mitigated by the dynamic randomization. Network parameters that can be randomized include IP addresses, application port numbers, paths data packets navigate through the network, application randomization, etc.« less

  15. Curriculum Assessment Using Artificial Neural Network and Support Vector Machine Modeling Approaches: A Case Study. IR Applications. Volume 29

    ERIC Educational Resources Information Center

    Chen, Chau-Kuang

    2010-01-01

    Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…

  16. LVQ and backpropagation neural networks applied to NASA SSME data

    NASA Technical Reports Server (NTRS)

    Doniere, Timothy F.; Dhawan, Atam P.

    1993-01-01

    Feedfoward neural networks with backpropagation learning have been used as function approximators for modeling the space shuttle main engine (SSME) sensor signals. The modeling of these sensor signals is aimed at the development of a sensor fault detection system that can be used during ground test firings. The generalization capability of a neural network based function approximator depends on the training vectors which in this application may be derived from a number of SSME ground test-firings. This yields a large number of training vectors. Large training sets can cause the time required to train the network to be very large. Also, the network may not be able to generalize for large training sets. To reduce the size of the training sets, the SSME test-firing data is reduced using the learning vector quantization (LVQ) based technique. Different compression ratios were used to obtain compressed data in training the neural network model. The performance of the neural model trained using reduced sets of training patterns is presented and compared with the performance of the model trained using complete data. The LVQ can also be used as a function approximator. The performance of the LVQ as a function approximator using reduced training sets is presented and compared with the performance of the backpropagation network.

  17. Phase separation in living micellar networks

    NASA Astrophysics Data System (ADS)

    Cristobal, G.; Rouch, J.; Curély, J.; Panizza, P.

    We present a lattice model based on two n→0 spin vectors, capable of treating the thermodynamics of living networks in micellar solutions at any surfactant concentration. We establish an isomorphism between the coupling constants in the two spin vector Hamiltonian and the surfactant energies involved in the micellar situation. Solving this Hamiltonian in the mean-field approximation allows one to calculate osmotic pressure, aggregation number, free end and cross-link densities at any surfactant concentration. We derive a phase diagram, including changes in topology such as the transition between spheres and rods and between saturated and unsaturated networks. A phase separation can be found between a saturated network and a dilute solution composed of long flexible micelles or a saturated network and a solution of spherical micelles.

  18. An artificial neural network model for periodic trajectory generation

    NASA Astrophysics Data System (ADS)

    Shankar, S.; Gander, R. E.; Wood, H. C.

    A neural network model based on biological systems was developed for potential robotic application. The model consists of three interconnected layers of artificial neurons or units: an input layer subdivided into state and plan units, an output layer, and a hidden layer between the two outer layers which serves to implement nonlinear mappings between the input and output activation vectors. Weighted connections are created between the three layers, and learning is effected by modifying these weights. Feedback connections between the output and the input state serve to make the network operate as a finite state machine. The activation vector of the plan units of the input layer emulates the supraspinal commands in biological central pattern generators in that different plan activation vectors correspond to different sequences or trajectories being recalled, even with different frequencies. Three trajectories were chosen for implementation, and learning was accomplished in 10,000 trials. The fault tolerant behavior, adaptiveness, and phase maintenance of the implemented network are discussed.

  19. A Hierarchical Network Approach for Modeling Rift Valley Fever Epidemics with Applications in North America

    PubMed Central

    Xue, Ling; Cohnstaedt, Lee W.; Scott, H. Morgan; Scoglio, Caterina

    2013-01-01

    Rift Valley fever is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease vectors and hosts will be vital for developing mitigation strategies. Presented here is a general network-based mathematical model of Rift Valley fever. Given a lack of empirical data on disease vector species and their vector competence, this discrete time epidemic model uses stochastic parameters following several PERT distributions to model the dynamic interactions between hosts and likely North American mosquito vectors in dispersed geographic areas. Spatial effects and climate factors are also addressed in the model. The model is applied to a large directed asymmetric network of 3,621 nodes based on actual farms to examine a hypothetical introduction to some counties of Texas, an important ranching area in the United States of America. The nodes of the networks represent livestock farms, livestock markets, and feedlots, and the links represent cattle movements and mosquito diffusion between different nodes. Cattle and mosquito (Aedes and Culex) populations are treated with different contact networks to assess virus propagation. Rift Valley fever virus spread is assessed under various initial infection conditions (infected mosquito eggs, adults or cattle). A surprising trend is fewer initial infectious organisms result in a longer delay before a larger and more prolonged outbreak. The delay is likely caused by a lack of herd immunity while the infection expands geographically before becoming an epidemic involving many dispersed farms and animals almost simultaneously. Cattle movement between farms is a large driver of virus expansion, thus quarantines can be efficient mitigation strategy to prevent further geographic spread. PMID:23667453

  20. A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America.

    PubMed

    Xue, Ling; Cohnstaedt, Lee W; Scott, H Morgan; Scoglio, Caterina

    2013-01-01

    Rift Valley fever is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease vectors and hosts will be vital for developing mitigation strategies. Presented here is a general network-based mathematical model of Rift Valley fever. Given a lack of empirical data on disease vector species and their vector competence, this discrete time epidemic model uses stochastic parameters following several PERT distributions to model the dynamic interactions between hosts and likely North American mosquito vectors in dispersed geographic areas. Spatial effects and climate factors are also addressed in the model. The model is applied to a large directed asymmetric network of 3,621 nodes based on actual farms to examine a hypothetical introduction to some counties of Texas, an important ranching area in the United States of America. The nodes of the networks represent livestock farms, livestock markets, and feedlots, and the links represent cattle movements and mosquito diffusion between different nodes. Cattle and mosquito (Aedes and Culex) populations are treated with different contact networks to assess virus propagation. Rift Valley fever virus spread is assessed under various initial infection conditions (infected mosquito eggs, adults or cattle). A surprising trend is fewer initial infectious organisms result in a longer delay before a larger and more prolonged outbreak. The delay is likely caused by a lack of herd immunity while the infection expands geographically before becoming an epidemic involving many dispersed farms and animals almost simultaneously. Cattle movement between farms is a large driver of virus expansion, thus quarantines can be efficient mitigation strategy to prevent further geographic spread.

  1. Theoretical and Numerical Approaches for Determining the Reflection and Transmission Coefficients of OPEFB-PCL Composites at X-Band Frequencies

    PubMed Central

    Ahmad, Ahmad F.; Abbas, Zulkifly; Obaiys, Suzan J.; Ibrahim, Norazowa; Hashim, Mansor; Khaleel, Haider

    2015-01-01

    Bio-composites of oil palm empty fruit bunch (OPEFB) fibres and polycaprolactones (PCL) with a thickness of 1 mm were prepared and characterized. The composites produced from these materials are low in density, inexpensive, environmentally friendly, and possess good dielectric characteristics. The magnitudes of the reflection and transmission coefficients of OPEFB fibre-reinforced PCL composites with different percentages of filler were measured using a rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in the X-band frequency range. In contrast to the effective medium theory, which states that polymer-based composites with a high dielectric constant can be obtained by doping a filler with a high dielectric constant into a host material with a low dielectric constant, this paper demonstrates that the use of a low filler percentage (12.2%OPEFB) and a high matrix percentage (87.8%PCL) provides excellent results for the dielectric constant and loss factor, whereas 63.8% filler material with 36.2% host material results in lower values for both the dielectric constant and loss factor. The open-ended probe technique (OEC), connected with the Agilent vector network analyzer (VNA), is used to determine the dielectric properties of the materials under investigation. The comparative approach indicates that the mean relative error of FEM is smaller than that of NRW in terms of the corresponding S21 magnitude. The present calculation of the matrix/filler percentages endorses the exact amounts of substrate utilized in various physics applications. PMID:26474301

  2. A New Strategy for Analyzing Time-Series Data Using Dynamic Networks: Identifying Prospective Biomarkers of Hepatocellular Carcinoma.

    PubMed

    Huang, Xin; Zeng, Jun; Zhou, Lina; Hu, Chunxiu; Yin, Peiyuan; Lin, Xiaohui

    2016-08-31

    Time-series metabolomics studies can provide insight into the dynamics of disease development and facilitate the discovery of prospective biomarkers. To improve the performance of early risk identification, a new strategy for analyzing time-series data based on dynamic networks (ATSD-DN) in a systematic time dimension is proposed. In ATSD-DN, the non-overlapping ratio was applied to measure the changes in feature ratios during the process of disease development and to construct dynamic networks. Dynamic concentration analysis and network topological structure analysis were performed to extract early warning information. This strategy was applied to the study of time-series lipidomics data from a stepwise hepatocarcinogenesis rat model. A ratio of lyso-phosphatidylcholine (LPC) 18:1/free fatty acid (FFA) 20:5 was identified as the potential biomarker for hepatocellular carcinoma (HCC). It can be used to classify HCC and non-HCC rats, and the area under the curve values in the discovery and external validation sets were 0.980 and 0.972, respectively. This strategy was also compared with a weighted relative difference accumulation algorithm (wRDA), multivariate empirical Bayes statistics (MEBA) and support vector machine-recursive feature elimination (SVM-RFE). The better performance of ATSD-DN suggests its potential for a more complete presentation of time-series changes and effective extraction of early warning information.

  3. A New Strategy for Analyzing Time-Series Data Using Dynamic Networks: Identifying Prospective Biomarkers of Hepatocellular Carcinoma

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Zeng, Jun; Zhou, Lina; Hu, Chunxiu; Yin, Peiyuan; Lin, Xiaohui

    2016-08-01

    Time-series metabolomics studies can provide insight into the dynamics of disease development and facilitate the discovery of prospective biomarkers. To improve the performance of early risk identification, a new strategy for analyzing time-series data based on dynamic networks (ATSD-DN) in a systematic time dimension is proposed. In ATSD-DN, the non-overlapping ratio was applied to measure the changes in feature ratios during the process of disease development and to construct dynamic networks. Dynamic concentration analysis and network topological structure analysis were performed to extract early warning information. This strategy was applied to the study of time-series lipidomics data from a stepwise hepatocarcinogenesis rat model. A ratio of lyso-phosphatidylcholine (LPC) 18:1/free fatty acid (FFA) 20:5 was identified as the potential biomarker for hepatocellular carcinoma (HCC). It can be used to classify HCC and non-HCC rats, and the area under the curve values in the discovery and external validation sets were 0.980 and 0.972, respectively. This strategy was also compared with a weighted relative difference accumulation algorithm (wRDA), multivariate empirical Bayes statistics (MEBA) and support vector machine-recursive feature elimination (SVM-RFE). The better performance of ATSD-DN suggests its potential for a more complete presentation of time-series changes and effective extraction of early warning information.

  4. Time-oriented hierarchical method for computation of principal components using subspace learning algorithm.

    PubMed

    Jankovic, Marko; Ogawa, Hidemitsu

    2004-10-01

    Principal Component Analysis (PCA) and Principal Subspace Analysis (PSA) are classic techniques in statistical data analysis, feature extraction and data compression. Given a set of multivariate measurements, PCA and PSA provide a smaller set of "basis vectors" with less redundancy, and a subspace spanned by them, respectively. Artificial neurons and neural networks have been shown to perform PSA and PCA when gradient ascent (descent) learning rules are used, which is related to the constrained maximization (minimization) of statistical objective functions. Due to their low complexity, such algorithms and their implementation in neural networks are potentially useful in cases of tracking slow changes of correlations in the input data or in updating eigenvectors with new samples. In this paper we propose PCA learning algorithm that is fully homogeneous with respect to neurons. The algorithm is obtained by modification of one of the most famous PSA learning algorithms--Subspace Learning Algorithm (SLA). Modification of the algorithm is based on Time-Oriented Hierarchical Method (TOHM). The method uses two distinct time scales. On a faster time scale PSA algorithm is responsible for the "behavior" of all output neurons. On a slower scale, output neurons will compete for fulfillment of their "own interests". On this scale, basis vectors in the principal subspace are rotated toward the principal eigenvectors. At the end of the paper it will be briefly analyzed how (or why) time-oriented hierarchical method can be used for transformation of any of the existing neural network PSA method, into PCA method.

  5. The combined geodetic network adjusted on the reference ellipsoid - a comparison of three functional models for GNSS observations

    NASA Astrophysics Data System (ADS)

    Kadaj, Roman

    2016-12-01

    The adjustment problem of the so-called combined (hybrid, integrated) network created with GNSS vectors and terrestrial observations has been the subject of many theoretical and applied works. The network adjustment in various mathematical spaces was considered: in the Cartesian geocentric system on a reference ellipsoid and on a mapping plane. For practical reasons, it often takes a geodetic coordinate system associated with the reference ellipsoid. In this case, the Cartesian GNSS vectors are converted, for example, into geodesic parameters (azimuth and length) on the ellipsoid, but the simple form of converted pseudo-observations are the direct differences of the geodetic coordinates. Unfortunately, such an approach may be essentially distorted by a systematic error resulting from the position error of the GNSS vector, before its projection on the ellipsoid surface. In this paper, an analysis of the impact of this error on the determined measures of geometric ellipsoid elements, including the differences of geodetic coordinates or geodesic parameters is presented. Assuming that the adjustment of a combined network on the ellipsoid shows that the optimal functional approach in relation to the satellite observation, is to create the observational equations directly for the original GNSS Cartesian vector components, writing them directly as a function of the geodetic coordinates (in numerical applications, we use the linearized forms of observational equations with explicitly specified coefficients). While retaining the original character of the Cartesian vector, one avoids any systematic errors that may occur in the conversion of the original GNSS vectors to ellipsoid elements, for example the vector of the geodesic parameters. The problem is theoretically developed and numerically tested. An example of the adjustment of a subnet loaded from the database of reference stations of the ASG-EUPOS system was considered for the preferred functional model of the GNSS observations.

  6. Real-time object-to-features vectorisation via Siamese neural networks

    NASA Astrophysics Data System (ADS)

    Fedorenko, Fedor; Usilin, Sergey

    2017-03-01

    Object-to-features vectorisation is a hard problem to solve for objects that can be hard to distinguish. Siamese and Triplet neural networks are one of the more recent tools used for such task. However, most networks used are very deep networks that prove to be hard to compute in the Internet of Things setting. In this paper, a computationally efficient neural network is proposed for real-time object-to-features vectorisation into a Euclidean metric space. We use L2 distance to reflect feature vector similarity during both training and testing. In this way, feature vectors we develop can be easily classified using K-Nearest Neighbours classifier. Such approach can be used to train networks to vectorise such "problematic" objects like images of human faces, keypoint image patches, like keypoints on Arctic maps and surrounding marine areas.

  7. Epidemic spreading and global stability of an SIS model with an infective vector on complex networks

    NASA Astrophysics Data System (ADS)

    Kang, Huiyan; Fu, Xinchu

    2015-10-01

    In this paper, we present a new SIS model with delay on scale-free networks. The model is suitable to describe some epidemics which are not only transmitted by a vector but also spread between individuals by direct contacts. In view of the biological relevance and real spreading process, we introduce a delay to denote average incubation period of disease in a vector. By mathematical analysis, we obtain the epidemic threshold and prove the global stability of equilibria. The simulation shows the delay will effect the epidemic spreading. Finally, we investigate and compare two major immunization strategies, uniform immunization and targeted immunization.

  8. Cross-coherent vector sensor processing for spatially distributed glider networks.

    PubMed

    Nichols, Brendan; Sabra, Karim G

    2015-09-01

    Autonomous underwater gliders fitted with vector sensors can be used as a spatially distributed sensor array to passively locate underwater sources. However, to date, the positional accuracy required for robust array processing (especially coherent processing) is not achievable using dead-reckoning while the gliders remain submerged. To obtain such accuracy, the gliders can be temporarily surfaced to allow for global positioning system contact, but the acoustically active sea surface introduces locally additional sensor noise. This letter demonstrates that cross-coherent array processing, which inherently mitigates the effects of local noise, outperforms traditional incoherent processing source localization methods for this spatially distributed vector sensor network.

  9. An accelerated training method for back propagation networks

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O. (Inventor)

    1993-01-01

    The principal objective is to provide a training procedure for a feed forward, back propagation neural network which greatly accelerates the training process. A set of orthogonal singular vectors are determined from the input matrix such that the standard deviations of the projections of the input vectors along these singular vectors, as a set, are substantially maximized, thus providing an optimal means of presenting the input data. Novelty exists in the method of extracting from the set of input data, a set of features which can serve to represent the input data in a simplified manner, thus greatly reducing the time/expense to training the system.

  10. Discriminant analysis of resting-state functional connectivity patterns on the Grassmann manifold

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Liu, Yong; Jiang, Tianzi; Liu, Zhening; Hao, Yihui; Liu, Haihong

    2010-03-01

    The functional networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive functions and neurological diseases. In this paper, we propose a novel algorithm for discriminant analysis of functional networks encoded by spatial independent components. The functional networks of each individual are used as bases for a linear subspace, referred to as a functional connectivity pattern, which facilitates a comprehensive characterization of temporal signals of fMRI data. The functional connectivity patterns of different individuals are analyzed on the Grassmann manifold by adopting a principal angle based subspace distance. In conjunction with a support vector machine classifier, a forward component selection technique is proposed to select independent components for constructing the most discriminative functional connectivity pattern. The discriminant analysis method has been applied to an fMRI based schizophrenia study with 31 schizophrenia patients and 31 healthy individuals. The experimental results demonstrate that the proposed method not only achieves a promising classification performance for distinguishing schizophrenia patients from healthy controls, but also identifies discriminative functional networks that are informative for schizophrenia diagnosis.

  11. Protein interaction networks at the host-microbe interface in Diaphorina citri, the insect vector of the citrus greening pathogen

    USDA-ARS?s Scientific Manuscript database

    The Asian citrus psyllid (Diaphorina citri) is the insect vector responsible for the worldwide spread of Candidatus Liberibacter asiaticus, the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that D. citri tra...

  12. Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks.

    PubMed

    Hsieh, Chung-Ho; Lu, Ruey-Hwa; Lee, Nai-Hsin; Chiu, Wen-Ta; Hsu, Min-Huei; Li, Yu-Chuan Jack

    2011-01-01

    Diagnosing acute appendicitis clinically is still difficult. We developed random forests, support vector machines, and artificial neural network models to diagnose acute appendicitis. Between January 2006 and December 2008, patients who had a consultation session with surgeons for suspected acute appendicitis were enrolled. Seventy-five percent of the data set was used to construct models including random forest, support vector machines, artificial neural networks, and logistic regression. Twenty-five percent of the data set was withheld to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate performance, which was compared with that of the Alvarado score. Data from a total of 180 patients were collected, 135 used for training and 45 for testing. The mean age of patients was 39.4 years (range, 16-85). Final diagnosis revealed 115 patients with and 65 without appendicitis. The AUC of random forest, support vector machines, artificial neural networks, logistic regression, and Alvarado was 0.98, 0.96, 0.91, 0.87, and 0.77, respectively. The sensitivity, specificity, positive, and negative predictive values of random forest were 94%, 100%, 100%, and 87%, respectively. Random forest performed better than artificial neural networks, logistic regression, and Alvarado. We demonstrated that random forest can predict acute appendicitis with good accuracy and, deployed appropriately, can be an effective tool in clinical decision making. Copyright © 2011 Mosby, Inc. All rights reserved.

  13. Evaluating the statistical performance of less applied algorithms in classification of worldview-3 imagery data in an urbanized landscape

    NASA Astrophysics Data System (ADS)

    Ranaie, Mehrdad; Soffianian, Alireza; Pourmanafi, Saeid; Mirghaffari, Noorollah; Tarkesh, Mostafa

    2018-03-01

    In recent decade, analyzing the remotely sensed imagery is considered as one of the most common and widely used procedures in the environmental studies. In this case, supervised image classification techniques play a central role. Hence, taking a high resolution Worldview-3 over a mixed urbanized landscape in Iran, three less applied image classification methods including Bagged CART, Stochastic gradient boosting model and Neural network with feature extraction were tested and compared with two prevalent methods: random forest and support vector machine with linear kernel. To do so, each method was run ten time and three validation techniques was used to estimate the accuracy statistics consist of cross validation, independent validation and validation with total of train data. Moreover, using ANOVA and Tukey test, statistical difference significance between the classification methods was significantly surveyed. In general, the results showed that random forest with marginal difference compared to Bagged CART and stochastic gradient boosting model is the best performing method whilst based on independent validation there was no significant difference between the performances of classification methods. It should be finally noted that neural network with feature extraction and linear support vector machine had better processing speed than other.

  14. Neural Network-Based Sensor Validation for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei

    1998-01-01

    Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.

  15. Nonlinear calibration for petroleum water content measurement using PSO

    NASA Astrophysics Data System (ADS)

    Li, Mingbao; Zhang, Jiawei

    2008-10-01

    A new algorithmic for strapdown inertial navigation system (SINS) state estimation based on neural networks is introduced. In training strategy, the error vector and its delay are introduced. This error vector is made of the position and velocity difference between the estimations of system and the outputs of GPS. After state prediction and state update, the states of the system are estimated. After off-line training, the network can approach the status switching of SINS and after on-line training, the state estimate precision can be improved further by reducing network output errors. Then the network convergence is discussed. In the end, several simulations with different noise are given. The results show that the neural network state estimator has lower noise sensitivity and better noise immunity than Kalman filter.

  16. Structure, crystallization and dielectric resonances in 2-13 GHz of waste-derived glass-ceramic

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Liao, SongYi; Chen, XiaoYu; Wang, GuangRong; Zheng, Feng

    2016-12-01

    Structure, kinetics of crystallization, and dielectric resonances of waste-derived glass-ceramic prepared via quench-heating route were studied as a function of dosage of iron ore tailing (IOT) within 20-40 wt% using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vector network analyzer (VNA) measurements. The glass-ceramic mainly consisted of ferrite crystals embedded in borosilicate glass matrix. Crystallization kinetics and morphologies of ferrite crystals as well as coordination transformation of boron between [BO4] and [BO3] in glass network were adjustable by changing the amount of IOT. Dielectric resonances in 6-13 GHz were found to be dominated by oscillations of Ca2+ cations in glass network with [SiO4] units on their neighboring sites. Ni2+ ions made a small contribution to those resonances. Diopside formed when IOT exceeded 35 wt%, which led to weakening of the resonances.

  17. Global synchronization of complex dynamical networks through digital communication with limited data rate.

    PubMed

    Wang, Yan-Wu; Bian, Tao; Xiao, Jiang-Wen; Wen, Changyun

    2015-10-01

    This paper studies the global synchronization of complex dynamical network (CDN) under digital communication with limited bandwidth. To realize the digital communication, the so-called uniform-quantizer-sets are introduced to quantize the states of nodes, which are then encoded and decoded by newly designed encoders and decoders. To meet the requirement of the bandwidth constraint, a scaling function is utilized to guarantee the quantizers having bounded inputs and thus achieving bounded real-time quantization levels. Moreover, a new type of vector norm is introduced to simplify the expression of the bandwidth limit. Through mathematical induction, a sufficient condition is derived to ensure global synchronization of the CDNs. The lower bound on the sum of the real-time quantization levels is analyzed for different cases. Optimization method is employed to relax the requirements on the network topology and to determine the minimum of such lower bound for each case, respectively. Simulation examples are also presented to illustrate the established results.

  18. Communications and control for electric power systems: Power flow classification for static security assessment

    NASA Technical Reports Server (NTRS)

    Niebur, D.; Germond, A.

    1993-01-01

    This report investigates the classification of power system states using an artificial neural network model, Kohonen's self-organizing feature map. The ultimate goal of this classification is to assess power system static security in real-time. Kohonen's self-organizing feature map is an unsupervised neural network which maps N-dimensional input vectors to an array of M neurons. After learning, the synaptic weight vectors exhibit a topological organization which represents the relationship between the vectors of the training set. This learning is unsupervised, which means that the number and size of the classes are not specified beforehand. In the application developed in this report, the input vectors used as the training set are generated by off-line load-flow simulations. The learning algorithm and the results of the organization are discussed.

  19. The Vector-Ballot Approach for Online Voting Procedures

    NASA Astrophysics Data System (ADS)

    Kiayias, Aggelos; Yung, Moti

    Looking at current cryptographic-based e-voting protocols, one can distinguish three basic design paradigms (or approaches): (a) Mix-Networks based, (b) Homomorphic Encryption based, and (c) Blind Signatures based. Each of the three possesses different advantages and disadvantages w.r.t. the basic properties of (i) efficient tallying, (ii) universal verifiability, and (iii) allowing write-in ballot capability (in addition to predetermined candidates). In fact, none of the approaches results in a scheme that simultaneously achieves all three. This is unfortunate, since the three basic properties are crucial for efficiency, integrity and versatility (flexibility), respectively. Further, one can argue that a serious business offering of voting technology should offer a flexible technology that achieves various election goals with a single user interface. This motivates our goal, which is to suggest a new "vector-ballot" based approach for secret-ballot e-voting that is based on three new notions: Provably Consistent Vector Ballot Encodings, Shrink-and-Mix Networks and Punch-Hole-Vector-Ballots. At the heart of our approach is the combination of mix networks and homomorphic encryption under a single user interface; given this, it is rather surprising that it achieves much more than any of the previous approaches for e-voting achieved in terms of the basic properties. Our approach is presented in two generic designs called "homomorphic vector-ballots with write-in votes" and "multi-candidate punch-hole vector-ballots"; both of our designs can be instantiated over any homomorphic encryption function.

  20. Beyond G-band : a 235 GHz InP MMIC amplifier

    NASA Technical Reports Server (NTRS)

    Dawson, Douglas; Samoska, Lorene; Fung, A. K.; Lee, Karen; Lai, Richard; Grundbacher, Ronald; Liu, Po-Hsin; Raja, Rohit

    2005-01-01

    We present results on an InP monolithic millimeter- wave integrated circuit (MMIC) amplifier having 10-dB gain at 235 GHz. We designed this circuit and fabricated the chip in Northrop Grumman Space Technology's (NGST) 0.07- m InP high electron mobility transistor (HEMT) process. Using a WR3 (220-325 GHz) waveguide vector network analyzer system interfaced to waveguide wafer probes, we measured this chip on-wafer for -parameters. To our knowledge, this is the first time a WR3 waveguide on-wafer measurement system has been used to measure gain in a MMIC amplifier above 230 GHz.

  1. An ultra-wideband microwave tomography system: preliminary results.

    PubMed

    Gilmore, Colin; Mojabi, Puyan; Zakaria, Amer; Ostadrahimi, Majid; Kaye, Cam; Noghanian, Sima; Shafai, Lotfollah; Pistorius, Stephen; LoVetri, Joe

    2009-01-01

    We describe a 2D wide-band multi-frequency microwave imaging system intended for biomedical imaging. The system is capable of collecting data from 2-10 GHz, with 24 antenna elements connected to a vector network analyzer via a 2 x 24 port matrix switch. Through the use of two different nonlinear reconstruction schemes: the Multiplicative-Regularized Contrast Source Inversion method and an enhanced version of the Distorted Born Iterative Method, we show preliminary imaging results from dielectric phantoms where data were collected from 3-6 GHz. The early inversion results show that the system is capable of quantitatively reconstructing dielectric objects.

  2. A fault injection experiment using the AIRLAB Diagnostic Emulation Facility

    NASA Technical Reports Server (NTRS)

    Baker, Robert; Mangum, Scott; Scheper, Charlotte

    1988-01-01

    The preparation for, conduct of, and results of a simulation based fault injection experiment conducted using the AIRLAB Diagnostic Emulation facilities is described. An objective of this experiment was to determine the effectiveness of the diagnostic self-test sequences used to uncover latent faults in a logic network providing the key fault tolerance features for a flight control computer. Another objective was to develop methods, tools, and techniques for conducting the experiment. More than 1600 faults were injected into a logic gate level model of the Data Communicator/Interstage (C/I). For each fault injected, diagnostic self-test sequences consisting of over 300 test vectors were supplied to the C/I model as inputs. For each test vector within a test sequence, the outputs from the C/I model were compared to the outputs of a fault free C/I. If the outputs differed, the fault was considered detectable for the given test vector. These results were then analyzed to determine the effectiveness of some test sequences. The results established coverage of selt-test diagnostics, identified areas in the C/I logic where the tests did not locate faults, and suggest fault latency reduction opportunities.

  3. A Software Package for Neural Network Applications Development

    NASA Technical Reports Server (NTRS)

    Baran, Robert H.

    1993-01-01

    Original Backprop (Version 1.2) is an MS-DOS package of four stand-alone C-language programs that enable users to develop neural network solutions to a variety of practical problems. Original Backprop generates three-layer, feed-forward (series-coupled) networks which map fixed-length input vectors into fixed length output vectors through an intermediate (hidden) layer of binary threshold units. Version 1.2 can handle up to 200 input vectors at a time, each having up to 128 real-valued components. The first subprogram, TSET, appends a number (up to 16) of classification bits to each input, thus creating a training set of input output pairs. The second subprogram, BACKPROP, creates a trilayer network to do the prescribed mapping and modifies the weights of its connections incrementally until the training set is leaned. The learning algorithm is the 'back-propagating error correction procedures first described by F. Rosenblatt in 1961. The third subprogram, VIEWNET, lets the trained network be examined, tested, and 'pruned' (by the deletion of unnecessary hidden units). The fourth subprogram, DONET, makes a TSR routine by which the finished product of the neural net design-and-training exercise can be consulted under other MS-DOS applications.

  4. Comparing success levels of different neural network structures in extracting discriminative information from the response patterns of a temperature-modulated resistive gas sensor

    NASA Astrophysics Data System (ADS)

    Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A.

    2015-06-01

    Performances of three neural networks, consisting of a multi-layer perceptron, a radial basis function, and a neuro-fuzzy network with local linear model tree training algorithm, in modeling and extracting discriminative features from the response patterns of a temperature-modulated resistive gas sensor are quantitatively compared. For response pattern recording, a voltage staircase containing five steps each with a 20 s plateau is applied to the micro-heater of the sensor, when 12 different target gases, each at 11 concentration levels, are present. In each test, the hidden layer neuron weights are taken as the discriminatory feature vector of the target gas. These vectors are then mapped to a 3D feature space using linear discriminant analysis. The discriminative information content of the feature vectors are determined by the calculation of the Fisher’s discriminant ratio, affording quantitative comparison among the success rates achieved by the different neural network structures. The results demonstrate a superior discrimination ratio for features extracted from local linear neuro-fuzzy and radial-basis-function networks with recognition rates of 96.27% and 90.74%, respectively.

  5. A spatially explicit metapopulation model and cattle trade analysis suggests key determinants for the recurrent circulation of rift valley Fever virus in a pilot area of madagascar highlands.

    PubMed

    Nicolas, Gaëlle; Chevalier, Véronique; Tantely, Luciano Michaël; Fontenille, Didier; Durand, Benoît

    2014-12-01

    Rift Valley fever (RVF) is a vector-borne zoonotic disease that causes high morbidity and mortality in ruminants. In 2008-2009, a RVF outbreak affected the whole Madagascar island, including the Anjozorobe district located in Madagascar highlands. An entomological survey showed the absence of Aedes among the potential RVF virus (RVFV) vector species identified in this area, and an overall low abundance of mosquitoes due to unfavorable climatic conditions during winter. No serological nor virological sign of infection was observed in wild terrestrial mammals of the area, suggesting an absence of wild RVF virus (RVFV) reservoir. However, a three years serological and virological follow-up in cattle showed a recurrent RVFV circulation. The objective of this study was to understand the key determinants of this unexpected recurrent transmission. To achieve this goal, a spatial deterministic discrete-time metapopulation model combined with cattle trade network was designed and parameterized to reproduce the local conditions using observational data collected in the area. Three scenarios that could explain the RVFV recurrent circulation in the area were analyzed: (i) RVFV overwintering thanks to a direct transmission between cattle when viraemic cows calve, vectors being absent during the winter, (ii) a low level vector-based circulation during winter thanks to a residual vector population, without direct transmission between cattle, (iii) combination of both above mentioned mechanisms. Multi-model inference methods resulted in a model incorporating both a low level RVFV winter vector-borne transmission and a direct transmission between animals when viraemic cows calve. Predictions satisfactorily reproduced field observations, 84% of cattle infections being attributed to vector-borne transmission, and 16% to direct transmission. These results appeared robust according to the sensitivity analysis. Interweaving between agricultural works in rice fields, seasonality of vector proliferation, and cattle exchange practices could be a key element for understanding RVFV circulation in this area of Madagascar highlands.

  6. Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk

    PubMed Central

    Ramirez-Villegas, Juan F.; Lam-Espinosa, Eric; Ramirez-Moreno, David F.; Calvo-Echeverry, Paulo C.; Agredo-Rodriguez, Wilfredo

    2011-01-01

    Statistical, spectral, multi-resolution and non-linear methods were applied to heart rate variability (HRV) series linked with classification schemes for the prognosis of cardiovascular risk. A total of 90 HRV records were analyzed: 45 from healthy subjects and 45 from cardiovascular risk patients. A total of 52 features from all the analysis methods were evaluated using standard two-sample Kolmogorov-Smirnov test (KS-test). The results of the statistical procedure provided input to multi-layer perceptron (MLP) neural networks, radial basis function (RBF) neural networks and support vector machines (SVM) for data classification. These schemes showed high performances with both training and test sets and many combinations of features (with a maximum accuracy of 96.67%). Additionally, there was a strong consideration for breathing frequency as a relevant feature in the HRV analysis. PMID:21386966

  7. NET: a new framework for the vectorization and examination of network data.

    PubMed

    Lasser, Jana; Katifori, Eleni

    2017-01-01

    The analysis of complex networks both in general and in particular as pertaining to real biological systems has been the focus of intense scientific attention in the past and present. In this paper we introduce two tools that provide fast and efficient means for the processing and quantification of biological networks like Drosophila tracheoles or leaf venation patterns: the Network Extraction Tool ( NET ) to extract data and the Graph-edit-GUI ( GeGUI ) to visualize and modify networks. NET is especially designed for high-throughput semi-automated analysis of biological datasets containing digital images of networks. The framework starts with the segmentation of the image and then proceeds to vectorization using methodologies from optical character recognition. After a series of steps to clean and improve the quality of the extracted data the framework produces a graph in which the network is represented only by its nodes and neighborhood-relations. The final output contains information about the adjacency matrix of the graph, the width of the edges and the positions of the nodes in space. NET also provides tools for statistical analysis of the network properties, such as the number of nodes or total network length. Other, more complex metrics can be calculated by importing the vectorized network to specialized network analysis packages. GeGUI is designed to facilitate manual correction of non-planar networks as these may contain artifacts or spurious junctions due to branches crossing each other. It is tailored for but not limited to the processing of networks from microscopy images of Drosophila tracheoles. The networks extracted by NET closely approximate the network depicted in the original image. NET is fast, yields reproducible results and is able to capture the full geometry of the network, including curved branches. Additionally GeGUI allows easy handling and visualization of the networks.

  8. Three learning phases for radial-basis-function networks.

    PubMed

    Schwenker, F; Kestler, H A; Palm, G

    2001-05-01

    In this paper, learning algorithms for radial basis function (RBF) networks are discussed. Whereas multilayer perceptrons (MLP) are typically trained with backpropagation algorithms, starting the training procedure with a random initialization of the MLP's parameters, an RBF network may be trained in many different ways. We categorize these RBF training methods into one-, two-, and three-phase learning schemes. Two-phase RBF learning is a very common learning scheme. The two layers of an RBF network are learnt separately; first the RBF layer is trained, including the adaptation of centers and scaling parameters, and then the weights of the output layer are adapted. RBF centers may be trained by clustering, vector quantization and classification tree algorithms, and the output layer by supervised learning (through gradient descent or pseudo inverse solution). Results from numerical experiments of RBF classifiers trained by two-phase learning are presented in three completely different pattern recognition applications: (a) the classification of 3D visual objects; (b) the recognition hand-written digits (2D objects); and (c) the categorization of high-resolution electrocardiograms given as a time series (ID objects) and as a set of features extracted from these time series. In these applications, it can be observed that the performance of RBF classifiers trained with two-phase learning can be improved through a third backpropagation-like training phase of the RBF network, adapting the whole set of parameters (RBF centers, scaling parameters, and output layer weights) simultaneously. This, we call three-phase learning in RBF networks. A practical advantage of two- and three-phase learning in RBF networks is the possibility to use unlabeled training data for the first training phase. Support vector (SV) learning in RBF networks is a different learning approach. SV learning can be considered, in this context of learning, as a special type of one-phase learning, where only the output layer weights of the RBF network are calculated, and the RBF centers are restricted to be a subset of the training data. Numerical experiments with several classifier schemes including k-nearest-neighbor, learning vector quantization and RBF classifiers trained through two-phase, three-phase and support vector learning are given. The performance of the RBF classifiers trained through SV learning and three-phase learning are superior to the results of two-phase learning, but SV learning often leads to complex network structures, since the number of support vectors is not a small fraction of the total number of data points.

  9. Statistical analysis and machine learning algorithms for optical biopsy

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Liu, Cheng-hui; Boydston-White, Susie; Beckman, Hugh; Sriramoju, Vidyasagar; Sordillo, Laura; Zhang, Chunyuan; Zhang, Lin; Shi, Lingyan; Smith, Jason; Bailin, Jacob; Alfano, Robert R.

    2018-02-01

    Analyzing spectral or imaging data collected with various optical biopsy methods is often times difficult due to the complexity of the biological basis. Robust methods that can utilize the spectral or imaging data and detect the characteristic spectral or spatial signatures for different types of tissue is challenging but highly desired. In this study, we used various machine learning algorithms to analyze a spectral dataset acquired from human skin normal and cancerous tissue samples using resonance Raman spectroscopy with 532nm excitation. The algorithms including principal component analysis, nonnegative matrix factorization, and autoencoder artificial neural network are used to reduce dimension of the dataset and detect features. A support vector machine with a linear kernel is used to classify the normal tissue and cancerous tissue samples. The efficacies of the methods are compared.

  10. PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Lee, Yong; Yang, Hua; Yin, Zhouping

    2017-12-01

    Velocity estimation (extracting the displacement vector information) from the particle image pairs is of critical importance for particle image velocimetry. This problem is mostly transformed into finding the sub-pixel peak in a correlation map. To address the original displacement extraction problem, we propose a different evaluation scheme (PIV-DCNN) with four-level regression deep convolutional neural networks. At each level, the networks are trained to predict a vector from two input image patches. The low-level network is skilled at large displacement estimation and the high- level networks are devoted to improving the accuracy. Outlier replacement and symmetric window offset operation glue the well- functioning networks in a cascaded manner. Through comparison with the standard PIV methods (one-pass cross-correlation method, three-pass window deformation), the practicability of the proposed PIV-DCNN is verified by the application to a diversity of synthetic and experimental PIV images.

  11. Diversity of multilayer networks and its impact on collaborating epidemics

    NASA Astrophysics Data System (ADS)

    Min, Yong; Hu, Jiaren; Wang, Weihong; Ge, Ying; Chang, Jie; Jin, Xiaogang

    2014-12-01

    Interacting epidemics on diverse multilayer networks are increasingly important in modeling and analyzing the diffusion processes of real complex systems. A viral agent spreading on one layer of a multilayer network can interact with its counterparts by promoting (cooperative interaction), suppressing (competitive interaction), or inducing (collaborating interaction) its diffusion on other layers. Collaborating interaction displays different patterns: (i) random collaboration, where intralayer or interlayer induction has the same probability; (ii) concentrating collaboration, where consecutive intralayer induction is guaranteed with a probability of 1; and (iii) cascading collaboration, where consecutive intralayer induction is banned with a probability of 0. In this paper, we develop a top-bottom framework that uses only two distributions, the overlaid degree distribution and edge-type distribution, to model collaborating epidemics on multilayer networks. We then state the response of three collaborating patterns to structural diversity (evenness and difference of network layers). For viral agents with small transmissibility, we find that random collaboration is more effective in networks with higher diversity (high evenness and difference), while the concentrating pattern is more suitable in uneven networks. Interestingly, the cascading pattern requires a network with moderate difference and high evenness, and the moderately uneven coupling of multiple network layers can effectively increase robustness to resist cascading failure. With large transmissibility, however, we find that all collaborating patterns are more effective in high-diversity networks. Our work provides a systemic analysis of collaborating epidemics on multilayer networks. The results enhance our understanding of biotic and informative diffusion through multiple vectors.

  12. Folksonomical P2P File Sharing Networks Using Vectorized KANSEI Information as Search Tags

    NASA Astrophysics Data System (ADS)

    Ohnishi, Kei; Yoshida, Kaori; Oie, Yuji

    We present the concept of folksonomical peer-to-peer (P2P) file sharing networks that allow participants (peers) to freely assign structured search tags to files. These networks are similar to folksonomies in the present Web from the point of view that users assign search tags to information distributed over a network. As a concrete example, we consider an unstructured P2P network using vectorized Kansei (human sensitivity) information as structured search tags for file search. Vectorized Kansei information as search tags indicates what participants feel about their files and is assigned by the participant to each of their files. A search query also has the same form of search tags and indicates what participants want to feel about files that they will eventually obtain. A method that enables file search using vectorized Kansei information is the Kansei query-forwarding method, which probabilistically propagates a search query to peers that are likely to hold more files having search tags that are similar to the query. The similarity between the search query and the search tags is measured in terms of their dot product. The simulation experiments examine if the Kansei query-forwarding method can provide equal search performance for all peers in a network in which only the Kansei information and the tendency with respect to file collection are different among all of the peers. The simulation results show that the Kansei query forwarding method and a random-walk-based query forwarding method, for comparison, work effectively in different situations and are complementary. Furthermore, the Kansei query forwarding method is shown, through simulations, to be superior to or equal to the random-walk based one in terms of search speed.

  13. A sparse matrix algorithm on the Boolean vector machine

    NASA Technical Reports Server (NTRS)

    Wagner, Robert A.; Patrick, Merrell L.

    1988-01-01

    VLSI technology is being used to implement a prototype Boolean Vector Machine (BVM), which is a large network of very small processors with equally small memories that operate in SIMD mode; these use bit-serial arithmetic, and communicate via cube-connected cycles network. The BVM's bit-serial arithmetic and the small memories of individual processors are noted to compromise the system's effectiveness in large numerical problem applications. Attention is presently given to the implementation of a basic matrix-vector iteration algorithm for space matrices of the BVM, in order to generate over 1 billion useful floating-point operations/sec for this iteration algorithm. The algorithm is expressed in a novel language designated 'BVM'.

  14. Locally connected neural network with improved feature vector

    NASA Technical Reports Server (NTRS)

    Thomas, Tyson (Inventor)

    2004-01-01

    A pattern recognizer which uses neuromorphs with a fixed amount of energy that is distributed among the elements. The distribution of the energy is used to form a histogram which is used as a feature vector.

  15. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  16. Vector Quantization Algorithm Based on Associative Memories

    NASA Astrophysics Data System (ADS)

    Guzmán, Enrique; Pogrebnyak, Oleksiy; Yáñez, Cornelio; Manrique, Pablo

    This paper presents a vector quantization algorithm for image compression based on extended associative memories. The proposed algorithm is divided in two stages. First, an associative network is generated applying the learning phase of the extended associative memories between a codebook generated by the LBG algorithm and a training set. This associative network is named EAM-codebook and represents a new codebook which is used in the next stage. The EAM-codebook establishes a relation between training set and the LBG codebook. Second, the vector quantization process is performed by means of the recalling stage of EAM using as associative memory the EAM-codebook. This process generates a set of the class indices to which each input vector belongs. With respect to the LBG algorithm, the main advantages offered by the proposed algorithm is high processing speed and low demand of resources (system memory); results of image compression and quality are presented.

  17. Efficient modeling of vector hysteresis using a novel Hopfield neural network implementation of Stoner–Wohlfarth-like operators

    PubMed Central

    Adly, Amr A.; Abd-El-Hafiz, Salwa K.

    2012-01-01

    Incorporation of hysteresis models in electromagnetic analysis approaches is indispensable to accurate field computation in complex magnetic media. Throughout those computations, vector nature and computational efficiency of such models become especially crucial when sophisticated geometries requiring massive sub-region discretization are involved. Recently, an efficient vector Preisach-type hysteresis model constructed from only two scalar models having orthogonally coupled elementary operators has been proposed. This paper presents a novel Hopfield neural network approach for the implementation of Stoner–Wohlfarth-like operators that could lead to a significant enhancement in the computational efficiency of the aforementioned model. Advantages of this approach stem from the non-rectangular nature of these operators that substantially minimizes the number of operators needed to achieve an accurate vector hysteresis model. Details of the proposed approach, its identification and experimental testing are presented in the paper. PMID:25685446

  18. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets.

    PubMed

    Demartines, P; Herault, J

    1997-01-01

    We present a new strategy called "curvilinear component analysis" (CCA) for dimensionality reduction and representation of multidimensional data sets. The principle of CCA is a self-organized neural network performing two tasks: vector quantization (VQ) of the submanifold in the data set (input space); and nonlinear projection (P) of these quantizing vectors toward an output space, providing a revealing unfolding of the submanifold. After learning, the network has the ability to continuously map any new point from one space into another: forward mapping of new points in the input space, or backward mapping of an arbitrary position in the output space.

  19. A feedforward artificial neural network based on quantum effect vector-matrix multipliers.

    PubMed

    Levy, H J; McGill, T C

    1993-01-01

    The vector-matrix multiplier is the engine of many artificial neural network implementations because it can simulate the way in which neurons collect weighted input signals from a dendritic arbor. A new technology for building analog weighting elements that is theoretically capable of densities and speeds far beyond anything that conventional VLSI in silicon could ever offer is presented. To illustrate the feasibility of such a technology, a small three-layer feedforward prototype network with five binary neurons and six tri-state synapses was built and used to perform all of the fundamental logic functions: XOR, AND, OR, and NOT.

  20. Design and implementation of a cartographic client application for mobile devices using SVG Tiny and J2ME

    NASA Astrophysics Data System (ADS)

    Hui, L.; Behr, F.-J.; Schröder, D.

    2006-10-01

    The dissemination of digital geospatial data is available now on mobile devices such as PDAs (personal digital assistants) and smart-phones etc. The mobile devices which support J2ME (Java 2 Micro Edition) offer users and developers one open interface, which they can use to develop or download the software according their own demands. Currently WMS (Web Map Service) can afford not only traditional raster image, but also the vector image. SVGT (Scalable Vector Graphics Tiny) is one subset of SVG (Scalable Vector Graphics) and because of its precise vector information, original styling and small file size, SVGT format is fitting well for the geographic mapping purpose, especially for the mobile devices which has bandwidth net connection limitation. This paper describes the development of a cartographic client for the mobile devices, using SVGT and J2ME technology. Mobile device will be simulated on the desktop computer for a series of testing with WMS, for example, send request and get the responding data from WMS and then display both vector and raster format image. Analyzing and designing of System structure such as user interface and code structure are discussed, the limitation of mobile device should be taken into consideration for this applications. The parsing of XML document which is received from WMS after the GetCapabilities request and the visual realization of SVGT and PNG (Portable Network Graphics) image are important issues in codes' writing. At last the client was tested on Nokia S40/60 mobile phone successfully.

  1. VISA--Vector Integration Site Analysis server: a web-based server to rapidly identify retroviral integration sites from next-generation sequencing.

    PubMed

    Hocum, Jonah D; Battrell, Logan R; Maynard, Ryan; Adair, Jennifer E; Beard, Brian C; Rawlings, David J; Kiem, Hans-Peter; Miller, Daniel G; Trobridge, Grant D

    2015-07-07

    Analyzing the integration profile of retroviral vectors is a vital step in determining their potential genotoxic effects and developing safer vectors for therapeutic use. Identifying retroviral vector integration sites is also important for retroviral mutagenesis screens. We developed VISA, a vector integration site analysis server, to analyze next-generation sequencing data for retroviral vector integration sites. Sequence reads that contain a provirus are mapped to the human genome, sequence reads that cannot be localized to a unique location in the genome are filtered out, and then unique retroviral vector integration sites are determined based on the alignment scores of the remaining sequence reads. VISA offers a simple web interface to upload sequence files and results are returned in a concise tabular format to allow rapid analysis of retroviral vector integration sites.

  2. Regularized estimation of Euler pole parameters

    NASA Astrophysics Data System (ADS)

    Aktuğ, Bahadir; Yildirim, Ömer

    2013-07-01

    Euler vectors provide a unified framework to quantify the relative or absolute motions of tectonic plates through various geodetic and geophysical observations. With the advent of space geodesy, Euler parameters of several relatively small plates have been determined through the velocities derived from the space geodesy observations. However, the available data are usually insufficient in number and quality to estimate both the Euler vector components and the Euler pole parameters reliably. Since Euler vectors are defined globally in an Earth-centered Cartesian frame, estimation with the limited geographic coverage of the local/regional geodetic networks usually results in highly correlated vector components. In the case of estimating the Euler pole parameters directly, the situation is even worse, and the position of the Euler pole is nearly collinear with the magnitude of the rotation rate. In this study, a new method, which consists of an analytical derivation of the covariance matrix of the Euler vector in an ideal network configuration, is introduced and a regularized estimation method specifically tailored for estimating the Euler vector is presented. The results show that the proposed method outperforms the least squares estimation in terms of the mean squared error.

  3. Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs

    PubMed Central

    Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor

    2017-01-01

    Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network. PMID:28763014

  4. Community detection in sequence similarity networks based on attribute clustering

    DOE PAGES

    Chowdhary, Janamejaya; Loeffler, Frank E.; Smith, Jeremy C.

    2017-07-24

    Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here in this paper, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs,more » for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the "ground truth" community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments« less

  5. Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs.

    PubMed

    Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor

    2017-08-01

    Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network.

  6. Community detection in sequence similarity networks based on attribute clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhary, Janamejaya; Loeffler, Frank E.; Smith, Jeremy C.

    Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here in this paper, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs,more » for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the "ground truth" community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments« less

  7. New model for prediction binary mixture of antihistamine decongestant using artificial neural networks and least squares support vector machine by spectrophotometry method

    NASA Astrophysics Data System (ADS)

    Mofavvaz, Shirin; Sohrabi, Mahmoud Reza; Nezamzadeh-Ejhieh, Alireza

    2017-07-01

    In the present study, artificial neural networks (ANNs) and least squares support vector machines (LS-SVM) as intelligent methods based on absorption spectra in the range of 230-300 nm have been used for determination of antihistamine decongestant contents. In the first step, one type of network (feed-forward back-propagation) from the artificial neural network with two different training algorithms, Levenberg-Marquardt (LM) and gradient descent with momentum and adaptive learning rate back-propagation (GDX) algorithm, were employed and their performance was evaluated. The performance of the LM algorithm was better than the GDX algorithm. In the second one, the radial basis network was utilized and results compared with the previous network. In the last one, the other intelligent method named least squares support vector machine was proposed to construct the antihistamine decongestant prediction model and the results were compared with two of the aforementioned networks. The values of the statistical parameters mean square error (MSE), Regression coefficient (R2), correlation coefficient (r) and also mean recovery (%), relative standard deviation (RSD) used for selecting the best model between these methods. Moreover, the proposed methods were compared to the high- performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them.

  8. Vector-based navigation using grid-like representations in artificial agents.

    PubMed

    Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan

    2018-05-01

    Deep neural networks have achieved impressive successes in fields ranging from object recognition to complex games such as Go 1,2 . Navigation, however, remains a substantial challenge for artificial agents, with deep neural networks trained by reinforcement learning 3-5 failing to rival the proficiency of mammalian spatial behaviour, which is underpinned by grid cells in the entorhinal cortex 6 . Grid cells are thought to provide a multi-scale periodic representation that functions as a metric for coding space 7,8 and is critical for integrating self-motion (path integration) 6,7,9 and planning direct trajectories to goals (vector-based navigation) 7,10,11 . Here we set out to leverage the computational functions of grid cells to develop a deep reinforcement learning agent with mammal-like navigational abilities. We first trained a recurrent network to perform path integration, leading to the emergence of representations resembling grid cells, as well as other entorhinal cell types 12 . We then showed that this representation provided an effective basis for an agent to locate goals in challenging, unfamiliar, and changeable environments-optimizing the primary objective of navigation through deep reinforcement learning. The performance of agents endowed with grid-like representations surpassed that of an expert human and comparison agents, with the metric quantities necessary for vector-based navigation derived from grid-like units within the network. Furthermore, grid-like representations enabled agents to conduct shortcut behaviours reminiscent of those performed by mammals. Our findings show that emergent grid-like representations furnish agents with a Euclidean spatial metric and associated vector operations, providing a foundation for proficient navigation. As such, our results support neuroscientific theories that see grid cells as critical for vector-based navigation 7,10,11 , demonstrating that the latter can be combined with path-based strategies to support navigation in challenging environments.

  9. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints.

    PubMed

    Klamt, Steffen; Regensburger, Georg; Gerstl, Matthias P; Jungreuthmayer, Christian; Schuster, Stefan; Mahadevan, Radhakrishnan; Zanghellini, Jürgen; Müller, Stefan

    2017-04-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks.

  10. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

    PubMed Central

    Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan

    2017-01-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903

  11. Nonlinear temperature compensation of fluxgate magnetometers with a least-squares support vector machine

    NASA Astrophysics Data System (ADS)

    Pang, Hongfeng; Chen, Dixiang; Pan, Mengchun; Luo, Shitu; Zhang, Qi; Luo, Feilu

    2012-02-01

    Fluxgate magnetometers are widely used for magnetic field measurement. However, their accuracy is influenced by temperature. In this paper, a new method was proposed to compensate the temperature drift of fluxgate magnetometers, in which a least-squares support vector machine (LSSVM) is utilized. The compensation performance was analyzed by simulation, which shows that the LSSVM has better performance and less training time than backpropagation and radical basis function neural networks. The temperature characteristics of a DM fluxgate magnetometer were measured with a temperature experiment box. Forty-five measured data under different magnetic fields and temperatures were obtained and divided into 36 training data and nine test data. The training data were used to obtain the parameters of the LSSVM model, and the compensation performance of the LSSVM model was verified by the test data. Experimental results show that the temperature drift of magnetometer is reduced from 109.3 to 3.3 nT after compensation, which suggests that this compensation method is effective for the accuracy improvement of fluxgate magnetometers.

  12. Vector neural network signal integration for radar application

    NASA Astrophysics Data System (ADS)

    Bierman, Gregory S.

    1994-07-01

    The Litton Data Systems Vector Neural Network (VNN) is a unique multi-scan integration algorithm currently in development. The target of interest is a low-flying cruise missile. Current tactical radar cannot detect and track the missile in ground clutter at tactically useful ranges. The VNN solves this problem by integrating the energy from multiple frames to effectively increase the target's signal-to-noise ratio. The implementation plan is addressing the APG-63 radar. Real-time results will be available by March 1994.

  13. Experimental fault characterization of a neural network

    NASA Technical Reports Server (NTRS)

    Tan, Chang-Huong

    1990-01-01

    The effects of a variety of faults on a neural network is quantified via simulation. The neural network consists of a single-layered clustering network and a three-layered classification network. The percentage of vectors mistagged by the clustering network, the percentage of vectors misclassified by the classification network, the time taken for the network to stabilize, and the output values are all measured. The results show that both transient and permanent faults have a significant impact on the performance of the measured network. The corresponding mistag and misclassification percentages are typically within 5 to 10 percent of each other. The average mistag percentage and the average misclassification percentage are both about 25 percent. After relearning, the percentage of misclassifications is reduced to 9 percent. In addition, transient faults are found to cause the network to be increasingly unstable as the duration of a transient is increased. The impact of link faults is relatively insignificant in comparison with node faults (1 versus 19 percent misclassified after relearning). There is a linear increase in the mistag and misclassification percentages with decreasing hardware redundancy. In addition, the mistag and misclassification percentages linearly decrease with increasing network size.

  14. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    NASA Astrophysics Data System (ADS)

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-11-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80-250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials.

  15. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    PubMed Central

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-01-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80–250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials. PMID:27897209

  16. Visualization and Analysis of Geology Word Vectors for Efficient Information Extraction

    NASA Astrophysics Data System (ADS)

    Floyd, J. S.

    2016-12-01

    When a scientist begins studying a new geographic region of the Earth, they frequently begin by gathering relevant scientific literature in order to understand what is known, for example, about the region's geologic setting, structure, stratigraphy, and tectonic and environmental history. Experienced scientists typically know what keywords to seek and understand that if a document contains one important keyword, then other words in the document may be important as well. Word relationships in a document give rise to what is known in linguistics as the context-dependent nature of meaning. For example, the meaning of the word `strike' in geology, as in the strike of a fault, is quite different from its popular meaning in baseball. In addition, word order, such as in the phrase `Cretaceous-Tertiary boundary,' often corresponds to the order of sequences in time or space. The context of words and the relevance of words to each other can be derived quantitatively by machine learning vector representations of words. Here we show the results of training a neural network to create word vectors from scientific research papers from selected rift basins and mid-ocean ridges: the Woodlark Basin of Papua New Guinea, the Hess Deep rift, and the Gulf of Mexico basin. The word vectors are statistically defined by surrounding words within a given window, limited by the length of each sentence. The word vectors are analyzed by their cosine distance to related words (e.g., `axial' and `magma'), classified by high dimensional clustering, and visualized by reducing the vector dimensions and plotting the vectors on a two- or three-dimensional graph. Similarity analysis of `Triassic' and `Cretaceous' returns `Jurassic' as the nearest word vector, suggesting that the model is capable of learning the geologic time scale. Similarity analysis of `basalt' and `minerals' automatically returns mineral names such as `chlorite', `plagioclase,' and `olivine.' Word vector analysis and visualization allow one to extract information from hundreds of papers or more and find relationships in less time than it would take to read all of the papers. As machine learning tools become more commonly available, more and more scientists will be able to use and refine these tools for their individual needs.

  17. Effects of phase vector and history extension on prediction power of adaptive-network based fuzzy inference system (ANFIS) model for a real scale anaerobic wastewater treatment plant operating under unsteady state.

    PubMed

    Perendeci, Altinay; Arslan, Sever; Tanyolaç, Abdurrahman; Celebi, Serdar S

    2009-10-01

    A conceptual neural fuzzy model based on adaptive-network based fuzzy inference system, ANFIS, was proposed using available input on-line and off-line operational variables for a sugar factory anaerobic wastewater treatment plant operating under unsteady state to estimate the effluent chemical oxygen demand, COD. The predictive power of the developed model was improved as a new approach by adding the phase vector and the recent values of COD up to 5-10 days, longer than overall retention time of wastewater in the system. History of last 10 days for COD effluent with two-valued phase vector in the input variable matrix including all parameters had more predictive power. History of 7 days with two-valued phase vector in the matrix comprised of only on-line variables yielded fairly well estimations. The developed ANFIS model with phase vector and history extension has been able to adequately represent the behavior of the treatment system.

  18. Hydrogen bonding in protic ionic liquids: structural correlations, vibrational spectroscopy, and rotational dynamics of liquid ethylammonium nitrate

    NASA Astrophysics Data System (ADS)

    Zentel, Tobias; Overbeck, Viviane; Michalik, Dirk; Kühn, Oliver; Ludwig, Ralf

    2018-02-01

    The properties of the hydrogen bonds in ethylammonium nitrate (EAN) are analyzed by using molecular dynamics simulations and infrared as well as nuclear magnetic resonance experiments. EAN features a flexible three-dimensional network of hydrogen bonds with moderate strengths, which makes it distinct from related triethylammonium-based ionic liquids. First, the network’s flexibility is manifested in a not very pronounced correlation of the hydrogen bond geometries, which is caused by rapid interchanges of bonding partners. The large flexibility of the network also leads to a substantial broadening of the mid-IR absorption band, with the contributions due to N-H stretching motions ranging from 2800 to 3250 cm-1. Finally, the different dynamics are also seen in the rotational correlation of the N-H bond vector, where a correlation time as short as 16.1 ps is observed.

  19. Differences in hemispherical thalamo-cortical causality analysis during resting-state fMRI.

    PubMed

    Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Wolff, Stephan; Deuschl, Guunther; Heute, Ulrich; Muthuraman, Muthuraman

    2014-01-01

    Thalamus is a very important part of the human brain. It has been reported to act as a relay for the messaging taking place between the cortical and sub-cortical regions of the brain. In the present study, we analyze the functional network between both hemispheres of the brain with the focus on thalamus. We used conditional Granger causality (CGC) and time-resolved partial directed coherence (tPDC) to investigate the functional connectivity. Results of CGC analysis revealed the asymmetry between connection strengths of the bilateral thalamus. Upon testing the functional connectivity of the default-mode network (DMN) at low-frequency fluctuations (LFF) and comparing coherence vectors using Spearman's rank correlation, we found that thalamus is a better source for the signals directed towards the contralateral regions of the brain, however, when thalamus acts as sink, it is a better sink for signals generated from ipsilateral regions of the brain.

  20. Biomorphic networks: approach to invariant feature extraction and segmentation for ATR

    NASA Astrophysics Data System (ADS)

    Baek, Andrew; Farhat, Nabil H.

    1998-10-01

    Invariant features in two dimensional binary images are extracted in a single layer network of locally coupled spiking (pulsating) model neurons with prescribed synapto-dendritic response. The feature vector for an image is represented as invariant structure in the aggregate histogram of interspike intervals obtained by computing time intervals between successive spikes produced from each neuron over a given period of time and combining such intervals from all neurons in the network into a histogram. Simulation results show that the feature vectors are more pattern-specific and invariant under translation, rotation, and change in scale or intensity than achieved in earlier work. We also describe an application of such networks to segmentation of line (edge-enhanced or silhouette) images. The biomorphic spiking network's capabilities in segmentation and invariant feature extraction may prove to be, when they are combined, valuable in Automated Target Recognition (ATR) and other automated object recognition systems.

  1. Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.

    PubMed

    Karayiannis, N B; Pai, P I

    1999-02-01

    This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.

  2. CNN universal machine as classificaton platform: an art-like clustering algorithm.

    PubMed

    Bálya, David

    2003-12-01

    Fast and robust classification of feature vectors is a crucial task in a number of real-time systems. A cellular neural/nonlinear network universal machine (CNN-UM) can be very efficient as a feature detector. The next step is to post-process the results for object recognition. This paper shows how a robust classification scheme based on adaptive resonance theory (ART) can be mapped to the CNN-UM. Moreover, this mapping is general enough to include different types of feed-forward neural networks. The designed analogic CNN algorithm is capable of classifying the extracted feature vectors keeping the advantages of the ART networks, such as robust, plastic and fault-tolerant behaviors. An analogic algorithm is presented for unsupervised classification with tunable sensitivity and automatic new class creation. The algorithm is extended for supervised classification. The presented binary feature vector classification is implemented on the existing standard CNN-UM chips for fast classification. The experimental evaluation shows promising performance after 100% accuracy on the training set.

  3. Network-level reproduction number and extinction threshold for vector-borne diseases.

    PubMed

    Xue, Ling; Scoglio, Caterina

    2015-06-01

    The basic reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or not. Thresholds for disease extinction contribute crucial knowledge of disease control, elimination, and mitigation of infectious diseases. Relationships between basic reproduction numbers of two deterministic network-based ordinary differential equation vector-host models, and extinction thresholds of corresponding stochastic continuous-time Markov chain models are derived under some assumptions. Numerical simulation results for malaria and Rift Valley fever transmission on heterogeneous networks are in agreement with analytical results without any assumptions, reinforcing that the relationships may always exist and proposing a mathematical problem for proving existence of the relationships in general. Moreover, numerical simulations show that the basic reproduction number does not monotonically increase or decrease with the extinction threshold. Consistent trends of extinction probability observed through numerical simulations provide novel insights into mitigation strategies to increase the disease extinction probability. Research findings may improve understandings of thresholds for disease persistence in order to control vector-borne diseases.

  4. Sentence alignment using feed forward neural network.

    PubMed

    Fattah, Mohamed Abdel; Ren, Fuji; Kuroiwa, Shingo

    2006-12-01

    Parallel corpora have become an essential resource for work in multi lingual natural language processing. However, sentence aligned parallel corpora are more efficient than non-aligned parallel corpora for cross language information retrieval and machine translation applications. In this paper, we present a new approach to align sentences in bilingual parallel corpora based on feed forward neural network classifier. A feature parameter vector is extracted from the text pair under consideration. This vector contains text features such as length, punctuate score, and cognate score values. A set of manually prepared training data has been assigned to train the feed forward neural network. Another set of data was used for testing. Using this new approach, we could achieve an error reduction of 60% over length based approach when applied on English-Arabic parallel documents. Moreover this new approach is valid for any language pair and it is quite flexible approach since the feature parameter vector may contain more/less or different features than that we used in our system such as lexical match feature.

  5. Study of spin dynamics and damping on the magnetic nanowire arrays with various nanowire widths

    NASA Astrophysics Data System (ADS)

    Cho, Jaehun; Fujii, Yuya; Konioshi, Katsunori; Yoon, Jungbum; Kim, Nam-Hui; Jung, Jinyong; Miwa, Shinji; Jung, Myung-Hwa; Suzuki, Yoshishige; You, Chun-Yeol

    2016-07-01

    We investigate the spin dynamics including Gilbert damping in the ferromagnetic nanowire arrays. We have measured the ferromagnetic resonance of ferromagnetic nanowire arrays using vector-network analyzer ferromagnetic resonance (VNA-FMR) and analyzed the results with the micromagnetic simulations. We find excellent agreement between the experimental VNA-FMR spectra and micromagnetic simulations result for various applied magnetic fields. We find that the same tendency of the demagnetization factor for longitudinal and transverse conditions, Nz (Ny) increases (decreases) as increasing the nanowire width in the micromagnetic simulations while Nx is almost zero value in transverse case. We also find that the Gilbert damping constant increases from 0.018 to 0.051 as the increasing nanowire width for the transverse case, while it is almost constant as 0.021 for the longitudinal case.

  6. Comparison of ANN and SVM for classification of eye movements in EOG signals

    NASA Astrophysics Data System (ADS)

    Qi, Lim Jia; Alias, Norma

    2018-03-01

    Nowadays, electrooculogram is regarded as one of the most important biomedical signal in measuring and analyzing eye movement patterns. Thus, it is helpful in designing EOG-based Human Computer Interface (HCI). In this research, electrooculography (EOG) data was obtained from five volunteers. The (EOG) data was then preprocessed before feature extraction methods were employed to further reduce the dimensionality of data. Three feature extraction approaches were put forward, namely statistical parameters, autoregressive (AR) coefficients using Burg method, and power spectral density (PSD) using Yule-Walker method. These features would then become input to both artificial neural network (ANN) and support vector machine (SVM). The performance of the combination of different feature extraction methods and classifiers was presented and analyzed. It was found that statistical parameters + SVM achieved the highest classification accuracy of 69.75%.

  7. Skin-electrode circuit model for use in optimizing energy transfer in volume conduction systems.

    PubMed

    Hackworth, Steven A; Sun, Mingui; Sclabassi, Robert J

    2009-01-01

    The X-Delta model for through-skin volume conduction systems is introduced and analyzed. This new model has advantages over our previous X model in that it explicitly represents current pathways in the skin. A vector network analyzer is used to take measurements on pig skin to obtain data for use in finding the model's impedance parameters. An optimization method for obtaining this more complex model's parameters is described. Results show the model to accurately represent the impedance behavior of the skin system with error of generally less than one percent. Uses for the model include optimizing energy transfer across the skin in a volume conduction system with appropriate current exposure constraints, and exploring non-linear behavior of the electrode-skin system at moderate voltages (below ten) and frequencies (kilohertz to megahertz).

  8. Accurate Measurement of Absolute Terahertz Power Using Broadband Calorimeter

    NASA Astrophysics Data System (ADS)

    Iida, Hitoshi; Kinoshita, Moto; Amemiya, Kuniaki

    2018-03-01

    This paper presents a highly sensitive terahertz (THz) calorimeter developed using a magnetically loaded epoxy as a broadband absorber. The reflection loss of the absorber, which has a pyramidally textured surface, is less than 0.04, as determined using a THz time-domain spectrometer and a vector network analyzer. The THz calorimeter successfully enabled the measurement of the absolute THz power from a photomixer at microwatt levels at room temperature. The measurement uncertainties at a 95% confidence level were 6.2% for 13 μW at 300 GHz and 5.6% for 1.5 μW at 1 THz, respectively. Details of the evaluation and uncertainty analyses are also presented.

  9. Broadband microwave spectroscopy in Corbino geometry at 3He temperatures

    NASA Astrophysics Data System (ADS)

    Steinberg, Katrin; Scheffler, Marc; Dressel, Martin

    2012-02-01

    A broadband microwave spectrometer has been constructed to determine the complex conductivity of thin metal films at frequencies from 45 MHz to 20 GHz working in the temperature range from 0.45 K to 2 K (in a 3He cryostat). The setup follows the Corbino approach: a vector network analyzer measures the complex reflection coefficient of a microwave signal hitting the sample as termination of a coaxial transmission line. As the calibration of the setup limits the achievable resolution, we discuss the sources of error hampering different types of calibration. Test measurements of the complex conductivity of a heavy-fermion material demonstrate the applicability of the calibration procedures.

  10. Modification of the magnetization dynamics of a NiFe nanodot due to thermal spin injection

    NASA Astrophysics Data System (ADS)

    Asam, Nagarjuna; Yamanoi, Kazuto; Kimura, Takashi

    2018-06-01

    An array of NiFe nanodots has been prepared on a Cu/CoFeAl film. Since a thermal spin current is expected to be excited owing to a large spin-dependent Seebeck coefficient for the CoFeAl, we investigate the magnetization dynamics of the NiFe dots under the temperature gradient along the vertical direction. By using vector network analyzer measurements, we have demonstrated that the temperature gradient produces modulations of the frequency of ferromagnetic resonance and the linewidth of the resonance spectra. The observed parabolic dependences are well explained by the damping-like and field-like components of spin transfer torque.

  11. Measurement of Automobile UWB Radar Cross Sections at Ka Band

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takehiko; Takahashi, Naoto; Yoshikawa, Makoto; Tsunoda, Kikuo; Tenno, Nobuyuki

    Ultra-wideband (UWB) radar cross sections (RCS) of an automobile were measured in the frequency range from 22 to 29 GHz, with a view to obtaining information on the design of vehicular cruise control short-range radars. The measurements were made in a radio anechoic chamber using three transmitting and receiving polarization combinations (V-V, H-H, and +45° to -45°). A vector network analyzer was used in making the wideband measurements. The UWB RCSs were derived by integrating the receiving power from 22 to 29 GHz. It was found that the UWB RCS of the automobile varied as follows:

  12. Remote sensing of suspended sediment water research: principles, methods, and progress

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Zhang, Jing

    2011-12-01

    In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.

  13. The prediction of the building precision in the Laser Engineered Net Shaping process using advanced networks

    NASA Astrophysics Data System (ADS)

    Lu, Z. L.; Li, D. C.; Lu, B. H.; Zhang, A. F.; Zhu, G. X.; Pi, G.

    2010-05-01

    Laser Engineered Net Shaping (LENS) is an advanced manufacturing technology, but it is difficult to control the depositing height (DH) of the prototype because there are many technology parameters influencing the forming process. The effect of main parameters (laser power, scanning speed and powder feeding rate) on the DH of single track is firstly analyzed, and then it shows that there is the complex nonlinear intrinsic relationship between them. In order to predict the DH, the back propagation (BP) based network improved with Adaptive learning rate and Momentum coefficient (AM) algorithm, and the least square support vector machine (LS-SVM) network are both adopted. The mapping relationship between above parameters and the DH is constructed according to training samples collected by LENS experiments, and then their generalization ability, function-approximating ability and real-time are contrastively investigated. The results show that although the predicted result by the BP-AM approximates the experimental result, above performance index of the LS-SVM are better than those of the BP-AM. Finally, high-definition thin-walled parts of AISI316L are successfully fabricated. Hence, the LS-SVM network is more suitable for the prediction of the DH.

  14. Comparison of Computational-Model and Experimental-Example Trained Neural Networks for Processing Speckled Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.

    1998-01-01

    The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model-generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.

  15. Comparison of Computational, Model and Experimental, Example Trained Neural Networks for Processing Speckled Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.

    1998-01-01

    The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model- generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.

  16. Linear Vector Quantisation and Uniform Circular Arrays based decoupled two-dimensional angle of arrival estimation

    NASA Astrophysics Data System (ADS)

    Ndaw, Joseph D.; Faye, Andre; Maïga, Amadou S.

    2017-05-01

    Artificial neural networks (ANN)-based models are efficient ways of source localisation. However very large training sets are needed to precisely estimate two-dimensional Direction of arrival (2D-DOA) with ANN models. In this paper we present a fast artificial neural network approach for 2D-DOA estimation with reduced training sets sizes. We exploit the symmetry properties of Uniform Circular Arrays (UCA) to build two different datasets for elevation and azimuth angles. Linear Vector Quantisation (LVQ) neural networks are then sequentially trained on each dataset to separately estimate elevation and azimuth angles. A multilevel training process is applied to further reduce the training sets sizes.

  17. Using a binaural biomimetic array to identify bottom objects ensonified by echolocating dolphins

    USGS Publications Warehouse

    Heiweg, D.A.; Moore, P.W.; Martin, S.W.; Dankiewicz, L.A.

    2006-01-01

    The development of a unique dolphin biomimetic sonar produced data that were used to study signal processing methods for object identification. Echoes from four metallic objects proud on the bottom, and a substrate-only condition, were generated by bottlenose dolphins trained to ensonify the targets in very shallow water. Using the two-element ('binaural') receive array, object echo spectra were collected and submitted for identification to four neural network architectures. Identification accuracy was evaluated over two receive array configurations, and five signal processing schemes. The four neural networks included backpropagation, learning vector quantization, genetic learning and probabilistic network architectures. The processing schemes included four methods that capitalized on the binaural data, plus a monaural benchmark process. All the schemes resulted in above-chance identification accuracy when applied to learning vector quantization and backpropagation. Beam-forming or concatenation of spectra from both receive elements outperformed the monaural benchmark, with higher sensitivity and lower bias. Ultimately, best object identification performance was achieved by the learning vector quantization network supplied with beam-formed data. The advantages of multi-element signal processing for object identification are clearly demonstrated in this development of a first-ever dolphin biomimetic sonar. ?? 2006 IOP Publishing Ltd.

  18. T-wave end detection using neural networks and Support Vector Machines.

    PubMed

    Suárez-León, Alexander Alexeis; Varon, Carolina; Willems, Rik; Van Huffel, Sabine; Vázquez-Seisdedos, Carlos Román

    2018-05-01

    In this paper we propose a new approach for detecting the end of the T-wave in the electrocardiogram (ECG) using Neural Networks and Support Vector Machines. Both, Multilayer Perceptron (MLP) neural networks and Fixed-Size Least-Squares Support Vector Machines (FS-LSSVM) were used as regression algorithms to determine the end of the T-wave. Different strategies for selecting the training set such as random selection, k-means, robust clustering and maximum quadratic (Rényi) entropy were evaluated. Individual parameters were tuned for each method during training and the results are given for the evaluation set. A comparison between MLP and FS-LSSVM approaches was performed. Finally, a fair comparison of the FS-LSSVM method with other state-of-the-art algorithms for detecting the end of the T-wave was included. The experimental results show that FS-LSSVM approaches are more suitable as regression algorithms than MLP neural networks. Despite the small training sets used, the FS-LSSVM methods outperformed the state-of-the-art techniques. FS-LSSVM can be successfully used as a T-wave end detection algorithm in ECG even with small training set sizes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Agent Collaborative Target Localization and Classification in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.

  20. [Mapping environmental vulnerability from ETM + data in the Yellow River Mouth Area].

    PubMed

    Wang, Rui-Yan; Yu, Zhen-Wen; Xia, Yan-Ling; Wang, Xiang-Feng; Zhao, Geng-Xing; Jiang, Shu-Qian

    2013-10-01

    The environmental vulnerability retrieval is important to support continuing data. The spatial distribution of regional environmental vulnerability was got through remote sensing retrieval. In view of soil and vegetation, the environmental vulnerability evaluation index system was built, and the environmental vulnerability of sampling points was calculated by the AHP-fuzzy method, then the correlation between the sampling points environmental vulnerability and ETM + spectral reflectance ratio including some kinds of conversion data was analyzed to determine the sensitive spectral parameters. Based on that, models of correlation analysis, traditional regression, BP neural network and support vector regression were taken to explain the quantitative relationship between the spectral reflectance and the environmental vulnerability. With this model, the environmental vulnerability distribution was retrieved in the Yellow River Mouth Area. The results showed that the correlation between the environmental vulnerability and the spring NDVI, the September NDVI and the spring brightness was better than others, so they were selected as the sensitive spectral parameters. The model precision result showed that in addition to the support vector model, the other model reached the significant level. While all the multi-variable regression was better than all one-variable regression, and the model accuracy of BP neural network was the best. This study will serve as a reliable theoretical reference for the large spatial scale environmental vulnerability estimation based on remote sensing data.

  1. Sleep versus wake classification from heart rate variability using computational intelligence: consideration of rejection in classification models.

    PubMed

    Lewicke, Aaron; Sazonov, Edward; Corwin, Michael J; Neuman, Michael; Schuckers, Stephanie

    2008-01-01

    Reliability of classification performance is important for many biomedical applications. A classification model which considers reliability in the development of the model such that unreliable segments are rejected would be useful, particularly, in large biomedical data sets. This approach is demonstrated in the development of a technique to reliably determine sleep and wake using only the electrocardiogram (ECG) of infants. Typically, sleep state scoring is a time consuming task in which sleep states are manually derived from many physiological signals. The method was tested with simultaneous 8-h ECG and polysomnogram (PSG) determined sleep scores from 190 infants enrolled in the collaborative home infant monitoring evaluation (CHIME) study. Learning vector quantization (LVQ) neural network, multilayer perceptron (MLP) neural network, and support vector machines (SVMs) are tested as the classifiers. After systematic rejection of difficult to classify segments, the models can achieve 85%-87% correct classification while rejecting only 30% of the data. This corresponds to a Kappa statistic of 0.65-0.68. With rejection, accuracy improves by about 8% over a model without rejection. Additionally, the impact of the PSG scored indeterminate state epochs is analyzed. The advantages of a reliable sleep/wake classifier based only on ECG include high accuracy, simplicity of use, and low intrusiveness. Reliability of the classification can be built directly in the model, such that unreliable segments are rejected.

  2. Genetic structure and divergence in populations of Lutzomyia cruciata, a phlebotomine sand fly (Diptera: Psychodidae) vector of Leishmania mexicana in southeastern Mexico.

    PubMed

    Pech-May, Angélica; Marina, Carlos F; Vázquez-Domínguez, Ella; Berzunza-Cruz, Miriam; Rebollar-Téllez, Eduardo A; Narváez-Zapata, José A; Moo-Llanes, David; Ibáñez-Bernal, Sergio; Ramsey, Janine M; Becker, Ingeborg

    2013-06-01

    The low dispersal capacity of sand flies could lead to population isolation due to geographic barriers, climate variation, or to population fragmentation associated with specific local habitats due to landscape modification. The phlebotomine sand fly Lutzomyia cruciata has a wide distribution throughout Mexico and is a vector of Leishmania mexicana in the southeast. The aim of this study was to evaluate the genetic diversity, structure, and divergence within and among populations of Lu. cruciata in the state of Chiapas, and to infer the intra-specific phylogeny using the 3' end of the mitochondrial cytochrome b gene. We analyzed 62 sequences from four Lu. cruciata populations and found 26 haplotypes, high genetic differentiation and restricted gene flow among populations (Fst=0.416, Nm=0.701, p<0.001). The highest diversity values were recorded in populations from Loma Bonita and Guadalupe Miramar. Three lineages (100% bootstrap and 7% overall divergence) were identified using a maximum likelihood phylogenetic analysis which showed high genetic divergence (17.2-22.7%). A minimum spanning haplotype network also supported separation into three lineages. Genetic structure and divergence within and among Lu. cruciata populations are hence affected by geographic heterogeneity and evolutionary background. Data obtained in the present study suggest that Lu. cruciata in the state of Chiapas consists of at least three lineages. Such findings may have implications for vector capacity and hence for vector control strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Optical Vector Near-Field Imaging for the Design of Impedance Matched Optical Antennas and Devices

    NASA Astrophysics Data System (ADS)

    Olmon, Robert L.

    Antennas control and confine electromagnetic energy, transforming free-space propagating modes to localized regions. This is not only true for the traditional classical radio antenna, but also for structures that interact resonantly at frequencies throughout the visible regime, that are on the micro- and nanometer size scales. The investigation of these optical antennas has increased dramatically in recent years. They promise to bring the transformative capabilities of radio antennas to the nanoscale in fields such as plasmonics, photonics, spectroscopy, and microscopy. However, designing optical antennas with desired properties is not straightforward due to different material properties and geometric considerations in the optical regime compared to the RF. New antenna characterization tools and techniques must be developed for the optical frequency range. Here, the optical analogue of the vector network analyzer, based on a scattering-type scanning near-field optical microscope, is described and demonstrated for the investigation of the electric and magnetic properties of optical antennas through their electromagnetic vector near-field. Specifically, bringing this microwave frequency tool to the optical regime enables the study of antenna resonant length scaling, optical frequency electromagnetic parameters including current density and impedance, optical antenna coupling to waveguides and nanoloads, local electric field enhancement, and electromagnetic duality of complementary optical antenna geometries.

  4. Research on bearing fault diagnosis of large machinery based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Wang, Yu

    2018-04-01

    To study the automatic diagnosis of large machinery fault based on support vector machine, combining the four common faults of the large machinery, the support vector machine is used to classify and identify the fault. The extracted feature vectors are entered. The feature vector is trained and identified by multi - classification method. The optimal parameters of the support vector machine are searched by trial and error method and cross validation method. Then, the support vector machine is compared with BP neural network. The results show that the support vector machines are short in time and high in classification accuracy. It is more suitable for the research of fault diagnosis in large machinery. Therefore, it can be concluded that the training speed of support vector machines (SVM) is fast and the performance is good.

  5. Application of structured support vector machine backpropagation to a convolutional neural network for human pose estimation.

    PubMed

    Witoonchart, Peerajak; Chongstitvatana, Prabhas

    2017-08-01

    In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Neural-network-based online HJB solution for optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems.

    PubMed

    Liu, Derong; Wang, Ding; Wang, Fei-Yue; Li, Hongliang; Yang, Xiong

    2014-12-01

    In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach.

  7. Design and Validation of a Ten-Port Waveguide Reflectometer Sensor: Application to Efficiency Measurement and Optimization of Microwave-Heating Ovens

    PubMed Central

    Pedreño-Molina, Juan L.; Monzó-Cabrera, Juan; Lozano-Guerrero, Antonio; Toledo-Moreo, Ana

    2008-01-01

    This work presents the design, manufacturing process, calibration and validation of a new microwave ten-port waveguide reflectometer based on the use of neural networks. This low-cost novel device solves some of the shortcomings of previous reflectometers such as non-linear behavior of power sensors, noise presence and the complexity of the calibration procedure, which is often based on complex mathematical equations. These problems, which imply the reduction of the reflection coefficient measurement accuracy, have been overcome by using a higher number of probes than usual six-port configurations and by means of the use of Radial Basis Function (RBF) neural networks in order to reduce the influence of noise and non-linear processes over the measurements. Additionally, this sensor can be reconfigured whenever some of the eight coaxial power detectors fail, still providing accurate values in real time. The ten-port performance has been compared against a high-cost measurement instrument such as a vector network analyzer and applied to the measurement and optimization of energy efficiency of microwave ovens, with good results. PMID:27873961

  8. Determination of the geophysical model function of the ERS-1 scatterometer by the use of neural networks

    NASA Astrophysics Data System (ADS)

    Mejia, Carlos; Thiria, Sylvie; Tran, Ngan; CréPon, Michel; Badran, Fouad

    1998-06-01

    We present a geophysical model function (GMF) for the ERS-1 scatterometer computed by the use of neural networks. The neural networks GMF (NN GMF) is calibrated with ERS-1 scatterometer sigma 0 collocated with European Center for Medium-Range Weather Forecasts (ECMWF) analyzed wind vectors. Four different NN GMFs have been computed: one for each antenna and an average NN GMF. These NN GMFs do not present any significant differences which means that the three antenna are quasi-identical. The NN GMFs exhibit a biharmonic dependence on the wind azimuth with a small upwind-downwind modulation as found on previous GMFs. In order to check the validity of the NN GMF systematic comparisons with the European Space Agency (ESA) C band model (CMOD4) GMF (version 2 of March 25, 1993) and the Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) CMOD213 GMF are done. It is found that the NN GMFs are highly accurate and relevant functions to model the ERS-1 scatterometer sigma 0.

  9. Kernel spectral clustering with memory effect

    NASA Astrophysics Data System (ADS)

    Langone, Rocco; Alzate, Carlos; Suykens, Johan A. K.

    2013-05-01

    Evolving graphs describe many natural phenomena changing over time, such as social relationships, trade markets, metabolic networks etc. In this framework, performing community detection and analyzing the cluster evolution represents a critical task. Here we propose a new model for this purpose, where the smoothness of the clustering results over time can be considered as a valid prior knowledge. It is based on a constrained optimization formulation typical of Least Squares Support Vector Machines (LS-SVM), where the objective function is designed to explicitly incorporate temporal smoothness. The latter allows the model to cluster the current data well and to be consistent with the recent history. We also propose new model selection criteria in order to carefully choose the hyper-parameters of our model, which is a crucial issue to achieve good performances. We successfully test the model on four toy problems and on a real world network. We also compare our model with Evolutionary Spectral Clustering, which is a state-of-the-art algorithm for community detection of evolving networks, illustrating that the kernel spectral clustering with memory effect can achieve better or equal performances.

  10. Determination of the geophysical model function of NSCAT and its corresponding variance by the use of neural networks

    NASA Astrophysics Data System (ADS)

    Mejia, C.; Badran, F.; Bentamy, A.; Crepon, M.; Thiria, S.; Tran, N.

    1999-05-01

    We have computed two geophysical model functions (one for the vertical and one for the horizontal polarization) for the NASA scatterometer (NSCAT) by using neural networks. These neural network geophysical model functions (NNGMFs) were estimated with NSCAT scatterometer σO measurements collocated with European Centre for Medium-Range Weather Forecasts analyzed wind vectors during the period January 15 to April 15, 1997. We performed a student t test showing that the NNGMFs estimate the NSCAT σO with a confidence level of 95%. Analysis of the results shows that the mean NSCAT signal depends on the incidence angle and the wind speed and presents the classical biharmonic modulation with respect to the wind azimuth. NSCAT σO increases with respect to the wind speed and presents a well-marked change at around 7 m s-1. The upwind-downwind amplitude is higher for the horizontal polarization signal than for vertical polarization, indicating that the use of horizontal polarization can give additional information for wind retrieval. Comparison of the σO computed by the NNGMFs against the NSCAT-measured σO show a quite low rms, except at low wind speeds. We also computed two specific neural networks for estimating the variance associated to these GMFs. The variances are analyzed with respect to geophysical parameters. This led us to compute the geophysical signal-to-noise ratio, i.e., Kp. The Kp values are quite high at low wind speed and decrease at high wind speed. At constant wind speed the highest Kp are at crosswind directions, showing that the crosswind values are the most difficult to estimate. These neural networks can be expressed as analytical functions, and FORTRAN subroutines can be provided.

  11. Simultaneous generation of 40, 80 and 120 GHz optical millimeter-wave from one Mach-Zehnder modulator and demonstration of millimeter-wave transmission and down-conversion

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Qin, Chaoyi

    2017-09-01

    We demonstrate multi-frequency QPSK millimeter-wave (mm-wave) vector signal generation enabled by MZM-based optical carrier suppression (OCS) modulation and in-phase/quadrature (I/Q) modulation. We numerically simulate the generation of 40-, 80- and 120-GHz vector signal. Here, the three different signals carry the same QPSK modulation information. We also experimentally realize 11Gbaud/s QPSK vector signal transmission over 20 km fiber, and the generation of the vector signals at 40-GHz, 80-GHz and 120-GHz. The experimental results show that the bit-error-rate (BER) for all the three different signals can reach the forward-error-correction (FEC) threshold of 3.8×10-3. The advantage of the proposed system is that provide high-speed, high-bandwidth and high-capacity seamless access of TDM and wireless network. These features indicate the important application prospect in wireless access networks for WiMax, Wi-Fi and 5G/LTE.

  12. Object recognition of real targets using modelled SAR images

    NASA Astrophysics Data System (ADS)

    Zherdev, D. A.

    2017-12-01

    In this work the problem of recognition is studied using SAR images. The algorithm of recognition is based on the computation of conjugation indices with vectors of class. The support subspaces for each class are constructed by exception of the most and the less correlated vectors in a class. In the study we examine the ability of a significant feature vector size reduce that leads to recognition time decrease. The images of targets form the feature vectors that are transformed using pre-trained convolutional neural network (CNN).

  13. NUDTSNA at TREC 2015 Microblog Track: A Live Retrieval System Framework for Social Network based on Semantic Expansion and Quality Model

    DTIC Science & Technology

    2015-11-20

    between tweets and profiles as follow, • TFIDF Score, which calculates the cosine similarity between a tweet and a profile in vector space model with...TFIDF weight of terms. Vector space model is a model which represents a document as a vector. Tweets and profiles can be expressed as vectors, ~ T = (t...gain(Tr i ) (13) where Tr is the returned tweet sets, gain() is the score func- tion for a tweet. Not interesting, spam/ junk tweets receive a gain of 0

  14. Image segmentation using fuzzy LVQ clustering networks

    NASA Technical Reports Server (NTRS)

    Tsao, Eric Chen-Kuo; Bezdek, James C.; Pal, Nikhil R.

    1992-01-01

    In this note we formulate image segmentation as a clustering problem. Feature vectors extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of a Kohonen learning vector quantization (LVQ) which integrates the Fuzzy c-Means (FCM) model with the learning rate and updating strategies of the LVQ is used for this task. This network, which segments images in an unsupervised manner, is thus related to the FCM optimization problem. Numerical examples on photographic and magnetic resonance images are given to illustrate this approach to image segmentation.

  15. Iterative free-energy optimization for recurrent neural networks (INFERNO).

    PubMed

    Pitti, Alexandre; Gaussier, Philippe; Quoy, Mathias

    2017-01-01

    The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due to spontaneous activity. As a novel framework based on the free-energy principle, we propose to see the problem of spikes' synchrony as an optimization problem of the neurons sub-threshold activity for the generation of long neuronal chains. Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic) evaluates the quality of one input vector to move the recurrent neural network to a desired activity; depending on the error made, this input vector is strengthened to hill-climb the gradient or elicited to search for another solution. This vector can be learned then by one associative memory as a model of the basal-ganglia to control the recurrent neural network. Experiments on habit learning and on sequence retrieving demonstrate the capabilities of the dual system to generate very long and precise spatio-temporal sequences, above two hundred iterations. Its features are applied then to the sequential planning of arm movements. In line with neurobiological theories, we discuss its relevance for modeling the cortico-basal working memory to initiate flexible goal-directed neuronal chains of causation and its relation to novel architectures such as Deep Networks, Neural Turing Machines and the Free-Energy Principle.

  16. A constrained joint source/channel coder design and vector quantization of nonstationary sources

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.

    1993-01-01

    The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.

  17. Singular Vectors' Subtle Secrets

    ERIC Educational Resources Information Center

    James, David; Lachance, Michael; Remski, Joan

    2011-01-01

    Social scientists use adjacency tables to discover influence networks within and among groups. Building on work by Moler and Morrison, we use ordered pairs from the components of the first and second singular vectors of adjacency matrices as tools to distinguish these groups and to identify particularly strong or weak individuals.

  18. TRAC Searchable Research Library

    DTIC Science & Technology

    2016-05-01

    network accessible document repository for technical documents and similar document artifacts. We used a model-based approach using the Vector...demonstration and model refinement. 14. SUBJECT TERMS Knowledge Management, Document Repository , Digital Library, Vector Directional Data Model...27 Figure D1. Administrator Repository Upload Page. ................................................................... D-2 Figure D2

  19. Application of Classification Models to Pharyngeal High-Resolution Manometry

    ERIC Educational Resources Information Center

    Mielens, Jason D.; Hoffman, Matthew R.; Ciucci, Michelle R.; McCulloch, Timothy M.; Jiang, Jack J.

    2012-01-01

    Purpose: The authors present 3 methods of performing pattern recognition on spatiotemporal plots produced by pharyngeal high-resolution manometry (HRM). Method: Classification models, including the artificial neural networks (ANNs) multilayer perceptron (MLP) and learning vector quantization (LVQ), as well as support vector machines (SVM), were…

  20. Optical computing and image processing using photorefractive gallium arsenide

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Liu, Duncan T. H.

    1990-01-01

    Recent experimental results on matrix-vector multiplication and multiple four-wave mixing using GaAs are presented. Attention is given to a simple concept of using two overlapping holograms in GaAs to do two matrix-vector multiplication processes operating in parallel with a common input vector. This concept can be used to construct high-speed, high-capacity, reconfigurable interconnection and multiplexing modules, important for optical computing and neural-network applications.

  1. A Hybrid Neuro-Fuzzy Model For Integrating Large Earth-Science Datasets

    NASA Astrophysics Data System (ADS)

    Porwal, A.; Carranza, J.; Hale, M.

    2004-12-01

    A GIS-based hybrid neuro-fuzzy approach to integration of large earth-science datasets for mineral prospectivity mapping is described. It implements a Takagi-Sugeno type fuzzy inference system in the framework of a four-layered feed-forward adaptive neural network. Each unique combination of the datasets is considered a feature vector whose components are derived by knowledge-based ordinal encoding of the constituent datasets. A subset of feature vectors with a known output target vector (i.e., unique conditions known to be associated with either a mineralized or a barren location) is used for the training of an adaptive neuro-fuzzy inference system. Training involves iterative adjustment of parameters of the adaptive neuro-fuzzy inference system using a hybrid learning procedure for mapping each training vector to its output target vector with minimum sum of squared error. The trained adaptive neuro-fuzzy inference system is used to process all feature vectors. The output for each feature vector is a value that indicates the extent to which a feature vector belongs to the mineralized class or the barren class. These values are used to generate a prospectivity map. The procedure is demonstrated by an application to regional-scale base metal prospectivity mapping in a study area located in the Aravalli metallogenic province (western India). A comparison of the hybrid neuro-fuzzy approach with pure knowledge-driven fuzzy and pure data-driven neural network approaches indicates that the former offers a superior method for integrating large earth-science datasets for predictive spatial mathematical modelling.

  2. Learning vector quantization neural networks improve accuracy of transcranial color-coded duplex sonography in detection of middle cerebral artery spasm--preliminary report.

    PubMed

    Swiercz, Miroslaw; Kochanowicz, Jan; Weigele, John; Hurst, Robert; Liebeskind, David S; Mariak, Zenon; Melhem, Elias R; Krejza, Jaroslaw

    2008-01-01

    To determine the performance of an artificial neural network in transcranial color-coded duplex sonography (TCCS) diagnosis of middle cerebral artery (MCA) spasm. TCCS was prospectively acquired within 2 h prior to routine cerebral angiography in 100 consecutive patients (54M:46F, median age 50 years). Angiographic MCA vasospasm was classified as mild (<25% of vessel caliber reduction), moderate (25-50%), or severe (>50%). A Learning Vector Quantization neural network classified MCA spasm based on TCCS peak-systolic, mean, and end-diastolic velocity data. During a four-class discrimination task, accurate classification by the network ranged from 64.9% to 72.3%, depending on the number of neurons in the Kohonen layer. Accurate classification of vasospasm ranged from 79.6% to 87.6%, with an accuracy of 84.7% to 92.1% for the detection of moderate-to-severe vasospasm. An artificial neural network may increase the accuracy of TCCS in diagnosis of MCA spasm.

  3. Complex network construction based on user group attention sequence

    NASA Astrophysics Data System (ADS)

    Zhang, Gaowei; Xu, Lingyu; Wang, Lei

    2018-04-01

    In the traditional complex network construction, it is often to use the similarity between nodes, build the weight of the network, and finally build the network. However, this approach tends to focus only on the coupling between nodes, while ignoring the information transfer between nodes and the transfer of directionality. In the network public opinion space, based on the set of stock series that the network groups pay attention to within a certain period of time, we vectorize the different stocks and build a complex network.

  4. Comparison of Support Vector Machine, Neural Network, and CART Algorithms for the Land-Cover Classification Using Limited Training Data Points

    EPA Science Inventory

    Support vector machine (SVM) was applied for land-cover characterization using MODIS time-series data. Classification performance was examined with respect to training sample size, sample variability, and landscape homogeneity (purity). The results were compared to two convention...

  5. Malaria and other vector-borne infection surveillance in the U.S. Department of Defense Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance program: review of 2009 accomplishments.

    PubMed

    Fukuda, Mark M; Klein, Terry A; Kochel, Tadeusz; Quandelacy, Talia M; Smith, Bryan L; Villinski, Jeff; Bethell, Delia; Tyner, Stuart; Se, Youry; Lon, Chanthap; Saunders, David; Johnson, Jacob; Wagar, Eric; Walsh, Douglas; Kasper, Matthew; Sanchez, Jose L; Witt, Clara J; Cheng, Qin; Waters, Norman; Shrestha, Sanjaya K; Pavlin, Julie A; Lescano, Andres G; Graf, Paul C F; Richardson, Jason H; Durand, Salomon; Rogers, William O; Blazes, David L; Russell, Kevin L; Akala, Hoseah; Gaydos, Joel C; DeFraites, Robert F; Gosi, Panita; Timmermans, Ans; Yasuda, Chad; Brice, Gary; Eyase, Fred; Kronmann, Karl; Sebeny, Peter; Gibbons, Robert; Jarman, Richard; Waitumbi, John; Schnabel, David; Richards, Allen; Shanks, Dennis

    2011-03-04

    Vector-borne infections (VBI) are defined as infectious diseases transmitted by the bite or mechanical transfer of arthropod vectors. They constitute a significant proportion of the global infectious disease burden. United States (U.S.) Department of Defense (DoD) personnel are especially vulnerable to VBIs due to occupational contact with arthropod vectors, immunological naiveté to previously unencountered pathogens, and limited diagnostic and treatment options available in the austere and unstable environments sometimes associated with military operations. In addition to the risk uniquely encountered by military populations, other factors have driven the worldwide emergence of VBIs. Unprecedented levels of global travel, tourism and trade, and blurred lines of demarcation between zoonotic VBI reservoirs and human populations increase vector exposure. Urban growth in previously undeveloped regions and perturbations in global weather patterns also contribute to the rise of VBIs. The Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) and its partners at DoD overseas laboratories form a network to better characterize the nature, emergence and growth of VBIs globally. In 2009 the network tested 19,730 specimens from 25 sites for Plasmodium species and malaria drug resistance phenotypes and nearly another 10,000 samples to determine the etiologies of non-Plasmodium species VBIs from regions spanning from Oceania to Africa, South America, and northeast, south and Southeast Asia. This review describes recent VBI-related epidemiological studies conducted by AFHSC-GEIS partner laboratories within the OCONUS DoD laboratory network emphasizing their impact on human populations.

  6. Characterization of the spatial and temporal dynamics of the dengue vector population established in urban areas of Fernando de Noronha, a Brazilian oceanic island.

    PubMed

    Regis, Lêda N; Acioli, Ridelane Veiga; Silveira, José Constantino; de Melo-Santos, Maria Alice Varjal; da Cunha, Mércia Cristiane Santana; Souza, Fátima; Batista, Carlos Alberto Vieira; Barbosa, Rosângela Maria Rodrigues; de Oliveira, Cláudia Maria Fontes; Ayres, Constância Flávia Junqueira; Monteiro, Antonio Miguel Vieira; Souza, Wayner Vieira

    2014-09-01

    Aedes aegypti has played a major role in the dramatic expansion of dengue worldwide. The failure of control programs in reducing the rhythm of global dengue expansion through vector control suggests the need for studies to support more appropriated control strategies. We report here the results of a longitudinal study on Ae. aegypti population dynamics through continuous egg sampling aiming to characterize the infestation of urban areas of a Brazilian oceanic island, Fernando de Noronha. The spatial and temporal distribution of the dengue vector population in urban areas of the island was described using a monitoring system (SMCP-Aedes) based on a 103-trap network for Aedes egg sampling, using GIS and spatial statistics analysis tools. Mean egg densities were estimated over a 29-month period starting in 2011 and producing monthly maps of mosquito abundance. The system detected continuous Ae. aegypti oviposition in most traps. The high global positive ovitrap index (POI=83.7% of 2815 events) indicated the frequent presence of blood-fed-egg laying females at every sampling station. Egg density (eggs/ovitrap/month) reached peak values of 297.3 (0 - 2020) in May and 295 (0 - 2140) in August 2012. The presence of a stable Ae. aegypti population established throughout the inhabited areas of the island was demonstrated. A strong association between egg abundance and rainfall with a 2-month lag was observed, which combined with a first-order autocorrelation observed in the series of egg counts can provide an important forecasting tool. This first description of the characteristics of the island infestation by the dengue vector provides baseline information to analyze relationships between the spatial distribution of the vector and dengue cases, and to the development of integrated vector control strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-01-01

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Did BICEP2 see vector modes? First B-mode constraints on cosmic defects.

    PubMed

    Moss, Adam; Pogosian, Levon

    2014-05-02

    Scaling networks of cosmic defects, such as strings and textures, actively generate scalar, vector, and tensor metric perturbations throughout the history of the Universe. In particular, vector modes sourced by defects are an efficient source of the cosmic microwave background B-mode polarization. We use the recently released BICEP2 and POLARBEAR B-mode polarization spectra to constrain properties of a wide range of different types of cosmic strings networks. We find that in order for strings to provide a satisfactory fit on their own, the effective interstring distance needs to be extremely large--spectra that fit the data best are more representative of global strings and textures. When a local string contribution is considered together with the inflationary B-mode spectrum, the fit is improved. We discuss implications of these results for theories that predict cosmic defects.

  9. Can invertebrates see the e-vector of polarization as a separate modality of light?

    PubMed

    Labhart, Thomas

    2016-12-15

    The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, 'color-blind' humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert 'water below!' to water-seeking bugs. © 2016. Published by The Company of Biologists Ltd.

  10. Can invertebrates see the e-vector of polarization as a separate modality of light?

    PubMed Central

    2016-01-01

    ABSTRACT The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, ‘color-blind’ humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert ‘water below!’ to water-seeking bugs. PMID:27974532

  11. Multiway spectral community detection in networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Newman, M. E. J.

    2015-11-01

    One of the most widely used methods for community detection in networks is the maximization of the quality function known as modularity. Of the many maximization techniques that have been used in this context, some of the most conceptually attractive are the spectral methods, which are based on the eigenvectors of the modularity matrix. Spectral algorithms have, however, been limited, by and large, to the division of networks into only two or three communities, with divisions into more than three being achieved by repeated two-way division. Here we present a spectral algorithm that can directly divide a network into any number of communities. The algorithm makes use of a mapping from modularity maximization to a vector partitioning problem, combined with a fast heuristic for vector partitioning. We compare the performance of this spectral algorithm with previous approaches and find it to give superior results, particularly in cases where community sizes are unbalanced. We also give demonstrative applications of the algorithm to two real-world networks and find that it produces results in good agreement with expectations for the networks studied.

  12. Riemannian multi-manifold modeling and clustering in brain networks

    NASA Astrophysics Data System (ADS)

    Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.

    2017-08-01

    This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.

  13. Resilient Distributed Estimation Through Adversary Detection

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Kar, Soummya; Moura, Jose M. F.

    2018-05-01

    This paper studies resilient multi-agent distributed estimation of an unknown vector parameter when a subset of the agents is adversarial. We present and analyze a Flag Raising Distributed Estimator ($\\mathcal{FRDE}$) that allows the agents under attack to perform accurate parameter estimation and detect the adversarial agents. The $\\mathcal{FRDE}$ algorithm is a consensus+innovations estimator in which agents combine estimates of neighboring agents (consensus) with local sensing information (innovations). We establish that, under $\\mathcal{FRDE}$, either the uncompromised agents' estimates are almost surely consistent or the uncompromised agents detect compromised agents if and only if the network of uncompromised agents is connected and globally observable. Numerical examples illustrate the performance of $\\mathcal{FRDE}$.

  14. Note: Characterization and test of a high input impedance RF amplifier for series nanowire detector

    NASA Astrophysics Data System (ADS)

    Wan, Chao; Pei, Yufeng; Jiang, Zhou; Kang, Lin; Wu, Peiheng

    2016-09-01

    We designed a high input impedance RF amplifier based on Tower Jazz's 0.18 μm SiGe BiCMOS process for series nanowire detector. The characterization of its gain and input impedance with a vector network analyzer is described in detail for its specificity. The actual 15 dB gain should be the measured value subtracts 6 dB, which is easy to be ignored. Its input impedance can be equivalent to 6.7 kΩ ∥ 3.4 pF though fitting the measurement, whose accuracy is verified. The process of measurement provides a good reference to characterize the similar special amplifier with unmatched impedance.

  15. Micromachined silicon cantilevers with integrated high-frequency magnetoimpedance sensors for simultaneous strain and magnetic field detection

    NASA Astrophysics Data System (ADS)

    Buettel, G.; Joppich, J.; Hartmann, U.

    2017-12-01

    Giant magnetoimpedance (GMI) measurements in the high-frequency regime utilizing a coplanar waveguide with an integrated Permalloy multilayer and micromachined on a silicon cantilever are reported. The fabrication process is described in detail. The aspect ratio of the magnetic multilayer in the magnetoresistive and magnetostrictive device was varied. Tensile strain and compressive strain were applied. Vector network analyzer measurements in the range from the skin effect to ferromagnetic resonance confirm the technological potential of GMI-based micro-electro-mechanical devices for strain and magnetic field sensing applications. The strain-impedance gauge factor was quantified by finite element strain calculations and reaches a maximum value of almost 200.

  16. Estimation of perceptible water vapor of atmosphere using artificial neural network, support vector machine and multiple linear regression algorithm and their comparative study

    NASA Astrophysics Data System (ADS)

    Shastri, Niket; Pathak, Kamlesh

    2018-05-01

    The water vapor content in atmosphere plays very important role in climate. In this paper the application of GPS signal in meteorology is discussed, which is useful technique that is used to estimate the perceptible water vapor of atmosphere. In this paper various algorithms like artificial neural network, support vector machine and multiple linear regression are use to predict perceptible water vapor. The comparative studies in terms of root mean square error and mean absolute errors are also carried out for all the algorithms.

  17. Segmentation of retinal blood vessels using artificial neural networks for early detection of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Mann, Kulwinder S.; Kaur, Sukhpreet

    2017-06-01

    There are various eye diseases in the patients suffering from the diabetes which includes Diabetic Retinopathy, Glaucoma, Hypertension etc. These all are the most common sight threatening eye diseases due to the changes in the blood vessel structure. The proposed method using supervised methods concluded that the segmentation of the retinal blood vessels can be performed accurately using neural networks training. It uses features which include Gray level features; Moment Invariant based features, Gabor filtering, Intensity feature, Vesselness feature for feature vector computation. Then the feature vector is calculated using only the prominent features.

  18. Performance analysis of distributed symmetric sparse matrix vector multiplication algorithm for multi-core architectures

    DOE PAGES

    Oryspayev, Dossay; Aktulga, Hasan Metin; Sosonkina, Masha; ...

    2015-07-14

    In this article, sparse matrix vector multiply (SpMVM) is an important kernel that frequently arises in high performance computing applications. Due to its low arithmetic intensity, several approaches have been proposed in literature to improve its scalability and efficiency in large scale computations. In this paper, our target systems are high end multi-core architectures and we use messaging passing interface + open multiprocessing hybrid programming model for parallelism. We analyze the performance of recently proposed implementation of the distributed symmetric SpMVM, originally developed for large sparse symmetric matrices arising in ab initio nuclear structure calculations. We also study important featuresmore » of this implementation and compare with previously reported implementations that do not exploit underlying symmetry. Our SpMVM implementations leverage the hybrid paradigm to efficiently overlap expensive communications with computations. Our main comparison criterion is the "CPU core hours" metric, which is the main measure of resource usage on supercomputers. We analyze the effects of topology-aware mapping heuristic using simplified network load model. Furthermore, we have tested the different SpMVM implementations on two large clusters with 3D Torus and Dragonfly topology. Our results show that the distributed SpMVM implementation that exploits matrix symmetry and hides communication yields the best value for the "CPU core hours" metric and significantly reduces data movement overheads.« less

  19. CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks.

    PubMed

    Gillani, Zeeshan; Akash, Muhammad Sajid Hamid; Rahaman, M D Matiur; Chen, Ming

    2014-11-30

    Predication of gene regularity network (GRN) from expression data is a challenging task. There are many methods that have been developed to address this challenge ranging from supervised to unsupervised methods. Most promising methods are based on support vector machine (SVM). There is a need for comprehensive analysis on prediction accuracy of supervised method SVM using different kernels on different biological experimental conditions and network size. We developed a tool (CompareSVM) based on SVM to compare different kernel methods for inference of GRN. Using CompareSVM, we investigated and evaluated different SVM kernel methods on simulated datasets of microarray of different sizes in detail. The results obtained from CompareSVM showed that accuracy of inference method depends upon the nature of experimental condition and size of the network. For network with nodes (<200) and average (over all sizes of networks), SVM Gaussian kernel outperform on knockout, knockdown, and multifactorial datasets compared to all the other inference methods. For network with large number of nodes (~500), choice of inference method depend upon nature of experimental condition. CompareSVM is available at http://bis.zju.edu.cn/CompareSVM/ .

  20. Support Vector Machine Classification of Major Depressive Disorder Using Diffusion-Weighted Neuroimaging and Graph Theory

    PubMed Central

    Sacchet, Matthew D.; Prasad, Gautam; Foland-Ross, Lara C.; Thompson, Paul M.; Gotlib, Ian H.

    2015-01-01

    Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on “support vector machines” to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities. PMID:25762941

  1. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory.

    PubMed

    Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H

    2015-01-01

    Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on "support vector machines" to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities.

  2. Analysis of the stress field and strain rate in Zagros-Makran transition zone

    NASA Astrophysics Data System (ADS)

    Ghorbani Rostam, Ghasem; Pakzad, Mehrdad; Mirzaei, Noorbakhsh; Sakhaei, Seyed Reza

    2018-01-01

    Transition boundary between Zagros continental collision and Makran oceanic-continental subduction can be specified by two wide limits: (a) Oman Line is the seismicity boundary with a sizeable reduction in seismicity rate from Zagros in the west to Makran in the east; and (b) the Zendan-Minab-Palami (ZMP) fault system is believed to be a prominent tectonic boundary. The purpose of this paper is to analyze the stress field in the Zagros-Makran transition zone by the iterative joint inversion method developed by Vavrycuk (Geophysical Journal International 199:69-77, 2014). The results suggest a rather uniform pattern of the stress field around these two boundaries. We compare the results with the strain rates obtained from the Global Positioning System (GPS) network stations. In most cases, the velocity vectors show a relatively good agreement with the stress field except for the Bandar Abbas (BABS) station which displays a relatively large deviation between the stress field and the strain vector. This deviation probably reflects a specific location of the BABS station being in the transition zone between Zagros continental collision and Makran subduction zones.

  3. Statistical-learning strategies generate only modestly performing predictive models for urinary symptoms following external beam radiotherapy of the prostate: A comparison of conventional and machine-learning methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yahya, Noorazrul, E-mail: noorazrul.yahya@research.uwa.edu.au; Ebert, Martin A.; Bulsara, Max

    Purpose: Given the paucity of available data concerning radiotherapy-induced urinary toxicity, it is important to ensure derivation of the most robust models with superior predictive performance. This work explores multiple statistical-learning strategies for prediction of urinary symptoms following external beam radiotherapy of the prostate. Methods: The performance of logistic regression, elastic-net, support-vector machine, random forest, neural network, and multivariate adaptive regression splines (MARS) to predict urinary symptoms was analyzed using data from 754 participants accrued by TROG03.04-RADAR. Predictive features included dose-surface data, comorbidities, and medication-intake. Four symptoms were analyzed: dysuria, haematuria, incontinence, and frequency, each with three definitions (grade ≥more » 1, grade ≥ 2 and longitudinal) with event rate between 2.3% and 76.1%. Repeated cross-validations producing matched models were implemented. A synthetic minority oversampling technique was utilized in endpoints with rare events. Parameter optimization was performed on the training data. Area under the receiver operating characteristic curve (AUROC) was used to compare performance using sample size to detect differences of ≥0.05 at the 95% confidence level. Results: Logistic regression, elastic-net, random forest, MARS, and support-vector machine were the highest-performing statistical-learning strategies in 3, 3, 3, 2, and 1 endpoints, respectively. Logistic regression, MARS, elastic-net, random forest, neural network, and support-vector machine were the best, or were not significantly worse than the best, in 7, 7, 5, 5, 3, and 1 endpoints. The best-performing statistical model was for dysuria grade ≥ 1 with AUROC ± standard deviation of 0.649 ± 0.074 using MARS. For longitudinal frequency and dysuria grade ≥ 1, all strategies produced AUROC>0.6 while all haematuria endpoints and longitudinal incontinence models produced AUROC<0.6. Conclusions: Logistic regression and MARS were most likely to be the best-performing strategy for the prediction of urinary symptoms with elastic-net and random forest producing competitive results. The predictive power of the models was modest and endpoint-dependent. New features, including spatial dose maps, may be necessary to achieve better models.« less

  4. VISMapper: ultra-fast exhaustive cartography of viral insertion sites for gene therapy.

    PubMed

    Juanes, José M; Gallego, Asunción; Tárraga, Joaquín; Chaves, Felipe J; Marín-Garcia, Pablo; Medina, Ignacio; Arnau, Vicente; Dopazo, Joaquín

    2017-09-20

    The possibility of integrating viral vectors to become a persistent part of the host genome makes them a crucial element of clinical gene therapy. However, viral integration has associated risks, such as the unintentional activation of oncogenes that can result in cancer. Therefore, the analysis of integration sites of retroviral vectors is a crucial step in developing safer vectors for therapeutic use. Here we present VISMapper, a vector integration site analysis web server, to analyze next-generation sequencing data for retroviral vector integration sites. VISMapper can be found at: http://vismapper.babelomics.org . Because it uses novel mapping algorithms VISMapper is remarkably faster than previous available programs. It also provides a useful graphical interface to analyze the integration sites found in the genomic context.

  5. The role of research in molecular entomology in the fight against malaria vectors.

    PubMed

    della Torre, A; Arca, B; Favia, G; Petrarca, V; Coluzzi, M

    2008-06-01

    The text summarizes the principal current fields of investigation and the recent achievements of the research groups presently contributing to the Molecular Entomology Cluster of the Italian Malaria Network. Particular emphasis is given to the researches with a more direct impact on the fight against malaria vectors.

  6. A Mathematical Motivation for Complex-Valued Convolutional Networks.

    PubMed

    Tygert, Mark; Bruna, Joan; Chintala, Soumith; LeCun, Yann; Piantino, Serkan; Szlam, Arthur

    2016-05-01

    A complex-valued convolutional network (convnet) implements the repeated application of the following composition of three operations, recursively applying the composition to an input vector of nonnegative real numbers: (1) convolution with complex-valued vectors, followed by (2) taking the absolute value of every entry of the resulting vectors, followed by (3) local averaging. For processing real-valued random vectors, complex-valued convnets can be viewed as data-driven multiscale windowed power spectra, data-driven multiscale windowed absolute spectra, data-driven multiwavelet absolute values, or (in their most general configuration) data-driven nonlinear multiwavelet packets. Indeed, complex-valued convnets can calculate multiscale windowed spectra when the convnet filters are windowed complex-valued exponentials. Standard real-valued convnets, using rectified linear units (ReLUs), sigmoidal (e.g., logistic or tanh) nonlinearities, or max pooling, for example, do not obviously exhibit the same exact correspondence with data-driven wavelets (whereas for complex-valued convnets, the correspondence is much more than just a vague analogy). Courtesy of the exact correspondence, the remarkably rich and rigorous body of mathematical analysis for wavelets applies directly to (complex-valued) convnets.

  7. On the classification techniques in data mining for microarray data classification

    NASA Astrophysics Data System (ADS)

    Aydadenta, Husna; Adiwijaya

    2018-03-01

    Cancer is one of the deadly diseases, according to data from WHO by 2015 there are 8.8 million more deaths caused by cancer, and this will increase every year if not resolved earlier. Microarray data has become one of the most popular cancer-identification studies in the field of health, since microarray data can be used to look at levels of gene expression in certain cell samples that serve to analyze thousands of genes simultaneously. By using data mining technique, we can classify the sample of microarray data thus it can be identified with cancer or not. In this paper we will discuss some research using some data mining techniques using microarray data, such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5, and simulation of Random Forest algorithm with technique of reduction dimension using Relief. The result of this paper show performance measure (accuracy) from classification algorithm (SVM, ANN, Naive Bayes, kNN, C4.5, and Random Forets).The results in this paper show the accuracy of Random Forest algorithm higher than other classification algorithms (Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5). It is hoped that this paper can provide some information about the speed, accuracy, performance and computational cost generated from each Data Mining Classification Technique based on microarray data.

  8. Effective Data-Driven Calibration for a Galvanometric Laser Scanning System Using Binocular Stereo Vision.

    PubMed

    Tu, Junchao; Zhang, Liyan

    2018-01-12

    A new solution to the problem of galvanometric laser scanning (GLS) system calibration is presented. Under the machine learning framework, we build a single-hidden layer feedforward neural network (SLFN)to represent the GLS system, which takes the digital control signal at the drives of the GLS system as input and the space vector of the corresponding outgoing laser beam as output. The training data set is obtained with the aid of a moving mechanism and a binocular stereo system. The parameters of the SLFN are efficiently solved in a closed form by using extreme learning machine (ELM). By quantitatively analyzing the regression precision with respective to the number of hidden neurons in the SLFN, we demonstrate that the proper number of hidden neurons can be safely chosen from a broad interval to guarantee good generalization performance. Compared to the traditional model-driven calibration, the proposed calibration method does not need a complex modeling process and is more accurate and stable. As the output of the network is the space vectors of the outgoing laser beams, it costs much less training time and can provide a uniform solution to both laser projection and 3D-reconstruction, in contrast with the existing data-driven calibration method which only works for the laser triangulation problem. Calibration experiment, projection experiment and 3D reconstruction experiment are respectively conducted to test the proposed method, and good results are obtained.

  9. Prediction of subcellular localization of eukaryotic proteins using position-specific profiles and neural network with weighted inputs.

    PubMed

    Zou, Lingyun; Wang, Zhengzhi; Huang, Jiaomin

    2007-12-01

    Subcellular location is one of the key biological characteristics of proteins. Position-specific profiles (PSP) have been introduced as important characteristics of proteins in this article. In this study, to obtain position-specific profiles, the Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST) has been used to search for protein sequences in a database. Position-specific scoring matrices are extracted from the profiles as one class of characteristics. Four-part amino acid compositions and 1st-7th order dipeptide compositions have also been calculated as the other two classes of characteristics. Therefore, twelve characteristic vectors are extracted from each of the protein sequences. Next, the characteristic vectors are weighed by a simple weighing function and inputted into a BP neural network predictor named PSP-Weighted Neural Network (PSP-WNN). The Levenberg-Marquardt algorithm is employed to adjust the weight matrices and thresholds during the network training instead of the error back propagation algorithm. With a jackknife test on the RH2427 dataset, PSP-WNN has achieved a higher overall prediction accuracy of 88.4% rather than the prediction results by the general BP neural network, Markov model, and fuzzy k-nearest neighbors algorithm on this dataset. In addition, the prediction performance of PSP-WNN has been evaluated with a five-fold cross validation test on the PK7579 dataset and the prediction results have been consistently better than those of the previous method on the basis of several support vector machines, using compositions of both amino acids and amino acid pairs. These results indicate that PSP-WNN is a powerful tool for subcellular localization prediction. At the end of the article, influences on prediction accuracy using different weighting proportions among three characteristic vector categories have been discussed. An appropriate proportion is considered by increasing the prediction accuracy.

  10. Efficacy and safety of a clinically relevant foamy vector design in human hematopoietic repopulating cells.

    PubMed

    Everson, Elizabeth M; Hocum, Jonah D; Trobridge, Grant D

    2018-06-23

    Previous studies have shown that foamy viral (FV) vectors are a promising alternative to gammaretroviral and lentiviral vectors and insulators can improve FV vector safety. However, in a previous analysis of insulator effects on FV vector safety, strong viral promoters were used to elicit genotoxic events. Here we developed and analyzed the efficacy and safety of a high-titer, clinically relevant FV vector driven by the housekeeping promoter elongation factor-1α and insulated with an enhancer blocking A1 insulator (FV-EGW-A1). Human CD34 + cord blood cells were exposed to an enhanced green fluorescent protein expressing vector, FV-EGW-A1, at a multiplicity of infection of 10 and then maintained in vitro or transplanted into immunodeficient mice. Flow cytometry was used to measure engraftment and marking in vivo. FV vector integration sites were analyzed to assess safety. FV-EGW-A1 resulted in high-marking, multi-lineage engraftment of human repopulating cells with no evidence of silencing. Engraftment was highly polyclonal with no clonal dominance and a promising safety profile based on integration site analysis. An FV vector with an elongation factor-1α promoter and an A1 insulator is a promising vector design for use in the clinic. This article is protected by copyright. All rights reserved.

  11. Masked Proportional Routing

    NASA Technical Reports Server (NTRS)

    Wolpert, David H. (Inventor)

    2003-01-01

    Distributed approach for determining a path connecting adjacent network nodes, for probabilistically or deterministically transporting an entity, with entity characteristic mu from a source node to a destination node. Each node i is directly connected to an arbitrary number J(mu) of nodes, labeled or numbered j=jl, j2, .... jJ(mu). In a deterministic version, a J(mu)-component baseline proportion vector p(i;mu) is associated with node i. A J(mu)-component applied proportion vector p*(i;mu) is determined from p(i;mu) to preclude an entity visiting a node more than once. Third and fourth J(mu)-component vectors, with components iteratively determined by Target(i;n(mu);mu),=alpha(mu).Target(i;n(mu)-1;mu)j+beta(mu).p* (i;mu)j and Actual(i;n(mu);+a(mu)j. Actual(i;n(mu)-l;mu)j+beta(mu).Sent(i;j'(mu);n(mu)-1;mu)j, are computed, where n(mu) is an entity sequence index and alpha(mu) and beta(mu) are selected numbers. In one embodiment, at each node i, the node j=j'(mu) with the largest vector component difference, Target(i;n(mu);mu)j'- Actual (i;n(mu);mu)j'. is chosen for the next link for entity transport, except in special gap circumstances, where the same link is optionally used for transporting consecutively arriving entities. The network nodes may be computer-controlled routers that switch collections of packets, frames, cells or other information units. Alternatively, the nodes may be waypoints for movement of physical items in a network or for transformation of a physical item. The nodes may be states of an entity undergoing state transitions, where allowed transitions are specified by the network and/or the destination node.

  12. Impacts of Climate Change on Vector Borne Diseases in the Mediterranean Basin - Implications for Preparedness and Adaptation Policy.

    PubMed

    Negev, Maya; Paz, Shlomit; Clermont, Alexandra; Pri-Or, Noemie Groag; Shalom, Uri; Yeger, Tamar; Green, Manfred S

    2015-06-15

    The Mediterranean region is vulnerable to climatic changes. A warming trend exists in the basin with changes in rainfall patterns. It is expected that vector-borne diseases (VBD) in the region will be influenced by climate change since weather conditions influence their emergence. For some diseases (i.e., West Nile virus) the linkage between emergence andclimate change was recently proved; for others (such as dengue) the risk for local transmission is real. Consequently, adaptation and preparation for changing patterns of VBD distribution is crucial in the Mediterranean basin. We analyzed six representative Mediterranean countries and found that they have started to prepare for this threat, but the preparation levels among them differ, and policy mechanisms are limited and basic. Furthermore, cross-border cooperation is not stable and depends on international frameworks. The Mediterranean countries should improve their adaptation plans, and develop more cross-sectoral, multidisciplinary and participatory approaches. In addition, based on experience from existing local networks in advancing national legislation and trans-border cooperation, we outline recommendations for a regional cooperation framework. We suggest that a stable and neutral framework is required, and that it should address the characteristics and needs of African, Asian and European countries around the Mediterranean in order to ensure participation. Such a regional framework is essential to reduce the risk of VBD transmission, since the vectors of infectious diseases know no political borders.

  13. Phylogeny and niche conservatism in North and Central American triatomine bugs (Hemiptera: Reduviidae: Triatominae), vectors of Chagas' disease.

    PubMed

    Ibarra-Cerdeña, Carlos N; Zaldívar-Riverón, Alejandro; Peterson, A Townsend; Sánchez-Cordero, Víctor; Ramsey, Janine M

    2014-10-01

    The niche conservatism hypothesis states that related species diverge in niche characteristics at lower rates than expected, given their lineage divergence. Here we analyze whether niche conservatism is a common pattern among vector species (Hemiptera: Reduviidae: Triatominae) of Trypanosoma cruzi that inhabit North and Central America, a highly heterogeneous landmass in terms of environmental gradients. Mitochondrial and nuclear loci were used in a multi-locus phylogenetic framework to reconstruct phylogenetic relationships among species and estimate time of divergence of selected clades to draw biogeographic inferences. Then, we estimated similarity between the ecological niche of sister species and tested the niche conservatism hypothesis using our best estimate of phylogeny. Triatoma is not monophyletic. A primary clade with all North and Central American (NCA) triatomine species from the genera Triatoma, Dipetalogaster, and Panstrongylus, was consistently recovered. Nearctic species within the NCA clade (T. p. protracta, T. r. rubida) diverged during the Pliocene, whereas the Neotropical species (T. phyllosoma, T. longipennis, T. dimidiata complex) are estimated to have diverged more recently, during the Pleistocene. The hypothesis of niche conservatism could not be rejected for any of six sister species pairs. Niche similarity between sister species best fits a retention model. While this framework is used here to infer niche evolution, it has a direct impact on spatial vector dynamics driven by human population movements, expansion of transportation networks and climate change scenarios.

  14. Neurotropism and behavioral changes associated with Zika infection in the vector Aedes aegypti.

    PubMed

    Gaburro, Julie; Bhatti, Asim; Harper, Jenni; Jeanne, Isabelle; Dearnley, Megan; Green, Diane; Nahavandi, Saeid; Paradkar, Prasad N; Duchemin, Jean-Bernard

    2018-04-25

    Understanding Zika virus infection dynamics is essential, as its recent emergence revealed possible devastating neuropathologies in humans, thus causing a major threat to public health worldwide. Recent research allowed breakthrough in our understanding of the virus and host pathogenesis; however, little is known on its impact on its main vector, Aedes aegypti. Here we show how Zika virus targets Aedes aegypti's neurons and induces changes in its behavior. Results are compared to dengue virus, another flavivirus, which triggers a different pattern of behavioral changes. We used microelectrode array technology to record electrical spiking activity of mosquito primary neurons post infections and discovered that only Zika virus causes an increase in spiking activity of the neuronal network. Confocal microscopy also revealed an increase in synapse connections for Zika virus-infected neuronal networks. Interestingly, the results also showed that mosquito responds to infection by overexpressing glutamate regulatory genes while maintaining virus levels. This neuro-excitation, possibly via glutamate, could contribute to the observed behavioral changes in Zika virus-infected Aedes aegypti females. This study reveals the importance of virus-vector interaction in arbovirus neurotropism, in humans and vector. However, it appears that the consequences differ in the two hosts, with neuropathology in human host, while behavioral changes in the mosquito vector that may be advantageous to the virus.

  15. Sparse matrix-vector multiplication on network-on-chip

    NASA Astrophysics Data System (ADS)

    Sun, C.-C.; Götze, J.; Jheng, H.-Y.; Ruan, S.-J.

    2010-12-01

    In this paper, we present an idea for performing matrix-vector multiplication by using Network-on-Chip (NoC) architecture. In traditional IC design on-chip communications have been designed with dedicated point-to-point interconnections. Therefore, regular local data transfer is the major concept of many parallel implementations. However, when dealing with the parallel implementation of sparse matrix-vector multiplication (SMVM), which is the main step of all iterative algorithms for solving systems of linear equation, the required data transfers depend on the sparsity structure of the matrix and can be extremely irregular. Using the NoC architecture makes it possible to deal with arbitrary structure of the data transfers; i.e. with the irregular structure of the sparse matrices. So far, we have already implemented the proposed SMVM-NoC architecture with the size 4×4 and 5×5 in IEEE 754 single float point precision using FPGA.

  16. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.

    PubMed

    Godino-Llorente, J I; Gómez-Vilda, P

    2004-02-01

    It is well known that vocal and voice diseases do not necessarily cause perceptible changes in the acoustic voice signal. Acoustic analysis is a useful tool to diagnose voice diseases being a complementary technique to other methods based on direct observation of the vocal folds by laryngoscopy. Through the present paper two neural-network based classification approaches applied to the automatic detection of voice disorders will be studied. Structures studied are multilayer perceptron and learning vector quantization fed using short-term vectors calculated accordingly to the well-known Mel Frequency Coefficient cepstral parameterization. The paper shows that these architectures allow the detection of voice disorders--including glottic cancer--under highly reliable conditions. Within this context, the Learning Vector quantization methodology demonstrated to be more reliable than the multilayer perceptron architecture yielding 96% frame accuracy under similar working conditions.

  17. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  18. Systematic Assessment of the Impact of User Roles on Network Flow Patterns

    DTIC Science & Technology

    2017-09-01

    Protocol SNMP Simple Network Management Protocol SQL Structured Query Language SSH Secure Shell SYN TCP Sync Flag SVDD Support Vector Data Description SVM...and evaluating users based on roles provide the best approach for defining normal digital behaviors? People are individuals, with different interests...activities on the network. We evaluate the assumption that users sharing similar roles exhibit similar network behaviors, and contrast the level of similarity

  19. An emergence of coordinated communication in populations of agents.

    PubMed

    Kvasnicka, V; Pospichal, J

    1999-01-01

    The purpose of this article is to demonstrate that coordinated communication spontaneously emerges in a population composed of agents that are capable of specific cognitive activities. Internal states of agents are characterized by meaning vectors. Simple neural networks composed of one layer of hidden neurons perform cognitive activities of agents. An elementary communication act consists of the following: (a) two agents are selected, where one of them is declared the speaker and the other the listener; (b) the speaker codes a selected meaning vector onto a sequence of symbols and sends it to the listener as a message; and finally, (c) the listener decodes this message into a meaning vector and adapts his or her neural network such that the differences between speaker and listener meaning vectors are decreased. A Darwinian evolution enlarged by ideas from the Baldwin effect and Dawkins' memes is simulated by a simple version of an evolutionary algorithm without crossover. The agent fitness is determined by success of the mutual pairwise communications. It is demonstrated that agents in the course of evolution gradually do a better job of decoding received messages (they are closer to meaning vectors of speakers) and all agents gradually start to use the same vocabulary for the common communication. Moreover, if agent meaning vectors contain regularities, then these regularities are manifested also in messages created by agent speakers, that is, similar parts of meaning vectors are coded by similar symbol substrings. This observation is considered a manifestation of the emergence of a grammar system in the common coordinated communication.

  20. Protein interaction networks at the host-microbe interface in Diaphorina citri, the insect vector of the citrus greening pathogen.

    PubMed

    Ramsey, J S; Chavez, J D; Johnson, R; Hosseinzadeh, S; Mahoney, J E; Mohr, J P; Robison, F; Zhong, X; Hall, D G; MacCoss, M; Bruce, J; Cilia, M

    2017-02-01

    The Asian citrus psyllid ( Diaphorina citri) is the insect vector responsible for the worldwide spread of ' Candidatus Liberibacter asiaticus' (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that D. citri transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the D. citri immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host-microbe relationships. Using protein interaction reporter technology, a D. citri haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a D. citri myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with D. citri proteins. These co-evolved protein interaction networks at the host-microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening.

  1. Malaria and other vector-borne infection surveillance in the U.S. Department of Defense Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance program: review of 2009 accomplishments

    PubMed Central

    2011-01-01

    Vector-borne infections (VBI) are defined as infectious diseases transmitted by the bite or mechanical transfer of arthropod vectors. They constitute a significant proportion of the global infectious disease burden. United States (U.S.) Department of Defense (DoD) personnel are especially vulnerable to VBIs due to occupational contact with arthropod vectors, immunological naiveté to previously unencountered pathogens, and limited diagnostic and treatment options available in the austere and unstable environments sometimes associated with military operations. In addition to the risk uniquely encountered by military populations, other factors have driven the worldwide emergence of VBIs. Unprecedented levels of global travel, tourism and trade, and blurred lines of demarcation between zoonotic VBI reservoirs and human populations increase vector exposure. Urban growth in previously undeveloped regions and perturbations in global weather patterns also contribute to the rise of VBIs. The Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) and its partners at DoD overseas laboratories form a network to better characterize the nature, emergence and growth of VBIs globally. In 2009 the network tested 19,730 specimens from 25 sites for Plasmodium species and malaria drug resistance phenotypes and nearly another 10,000 samples to determine the etiologies of non-Plasmodium species VBIs from regions spanning from Oceania to Africa, South America, and northeast, south and Southeast Asia. This review describes recent VBI-related epidemiological studies conducted by AFHSC-GEIS partner laboratories within the OCONUS DoD laboratory network emphasizing their impact on human populations. PMID:21388569

  2. Protein interaction networks at the host–microbe interface in Diaphorina citri, the insect vector of the citrus greening pathogen

    PubMed Central

    Chavez, J. D.; Johnson, R.; Hosseinzadeh, S.; Mahoney, J. E.; Mohr, J. P.; Robison, F.; Zhong, X.; Hall, D. G.; MacCoss, M.; Bruce, J.; Cilia, M.

    2017-01-01

    The Asian citrus psyllid (Diaphorina citri) is the insect vector responsible for the worldwide spread of ‘Candidatus Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that D. citri transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the D. citri immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host–microbe relationships. Using protein interaction reporter technology, a D. citri haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a D. citri myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with D. citri proteins. These co-evolved protein interaction networks at the host–microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening. PMID:28386418

  3. Energy deposition into heavy gas plasma via pulsed inductive theta-pinch

    NASA Astrophysics Data System (ADS)

    Pahl, Ryan Alan

    The objective of this research is to study the formation processes of a pulsed inductive plasma using heavy gases, specifically the coupling of stored capacitive energy into plasma via formation in a theta pinch coil. To aid in this research, the Missouri Plasmoid Experiment Mk. I (and later Mk. II) was created. In the first paper, the construction of differential magnetic field probes are discussed. The effects of calibration setup on B-dot probes is studied using a Helmholtz coil driven by a vector network analyzer and a pulsed-power system. Calibration in a pulsed-power environment yielded calibration factors at least 9.7% less than the vector network analyzer. In the second paper, energy deposition into various gases using a pulsed inductive test article is investigated. Experimental data are combined with a series RLC model to quantify the energy loss associated with plasma formation in Argon, Hydrogen, and Xenon at pressures from 10-100 mTorr. Plasma resistance is found to vary from 25.8-51.6 mΩ and plasma inductance varies from 41.3--47.0 nH. The greatest amount of initial capacitively stored energy that could be transferred to the plasma was 6.4 J (8.1%) of the initial 79.2 +/- 0.1 J. In the third paper, the effects of a DC preionization source on plasma formation energy is studied. The preionization source radial location is found to have negligible impact on plasma formation repeatability while voltage is found to be critical at low pressures. Without preionization, plasma formation was not possible. At 20 mTorr, 0.20 W of power was sufficient to stabilize plasma formation about the first zero-crossing of the discharge current. Increasing power to 1.49 W increased inductively coupled energy by 39%. At 200 mTorr, 4.3 mW was sufficient to produce repeatable plasma properties.

  4. Application of Artificial Neural Network and Support Vector Machines in Predicting Metabolizable Energy in Compound Feeds for Pigs.

    PubMed

    Ahmadi, Hamed; Rodehutscord, Markus

    2017-01-01

    In the nutrition literature, there are several reports on the use of artificial neural network (ANN) and multiple linear regression (MLR) approaches for predicting feed composition and nutritive value, while the use of support vector machines (SVM) method as a new alternative approach to MLR and ANN models is still not fully investigated. The MLR, ANN, and SVM models were developed to predict metabolizable energy (ME) content of compound feeds for pigs based on the German energy evaluation system from analyzed contents of crude protein (CP), ether extract (EE), crude fiber (CF), and starch. A total of 290 datasets from standardized digestibility studies with compound feeds was provided from several institutions and published papers, and ME was calculated thereon. Accuracy and precision of developed models were evaluated, given their produced prediction values. The results revealed that the developed ANN [ R 2  = 0.95; root mean square error (RMSE) = 0.19 MJ/kg of dry matter] and SVM ( R 2  = 0.95; RMSE = 0.21 MJ/kg of dry matter) models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR ( R 2  = 0.89; RMSE = 0.27 MJ/kg of dry matter). The developed ANN and SVM models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR; however, there were not obvious differences between performance of ANN and SVM models. Thus, SVM model may also be considered as a promising tool for modeling the relationship between chemical composition and ME of compound feeds for pigs. To provide the readers and nutritionist with the easy and rapid tool, an Excel ® calculator, namely, SVM_ME_pig, was created to predict the metabolizable energy values in compound feeds for pigs using developed support vector machine model.

  5. Demographic history and population structure of Anopheles pseudopunctipennis in Argentina based on the mitochondrial COI gene.

    PubMed

    Dantur Juri, María J; Moreno, Marta; Prado Izaguirre, Mónica J; Navarro, Juan C; Zaidenberg, Mario O; Almirón, Walter R; Claps, Guillermo L; Conn, Jan E

    2014-09-04

    Anopheles pseudopunctipennis is an important malaria vector in the Neotropical region and the only species involved in Plasmodium transmission in the Andean foothills. Its wide geographical distribution in America, high preference for biting humans and capacity to rest inside dwellings after feeding, are attributes contributing to its vector status. Previous reports have tried to elucidate its taxonomic status, distinguishing populations from North, Central and South America. In the present study we used a mitochondrial marker to examine the demographic history of An. pseudopunctipennis in northwestern Argentina. Twelve localities were selected across 550 km of the distribution of this species in Argentina, including two near the Bolivian border and several in South Tucumán, for sampling. A fragment of the cytochrome oxidase I (COI) gene was sequenced and haplotype relationships were analyzed by a statistical parsimony network and a Neighbor-Joining (NJ) tree. Genetic differentiation was estimated with FST. Historical demographic processes were evaluated using diversity measures, neutrality tests and mismatch distribution. Forty-one haplotypes were identified, of which haplotype A was the most common and widely distributed. Neither the network nor the NJ tree showed any geographic differentiation between northern and southern populations. Haplotype diversities, Tajima's DT and Fu & Li's F and D neutrality tests and mismatch distribution supported a scenario of Holocene demographic expansion. The demographic pattern suggests that An. pseudopunctipennis has undergone a single colonization process, and the ancestral haplotype is shared by specimens from all localities, indicating mitochondrial gene flow. Genetic differentiation was minimal, observed only between one northern and one southern locality. The estimated time of the population expansion of this species was during the Holocene. These data suggest that regional vector control measures would be equally effective in both northern and southern localities sampled, but also that insecticide resistant genes may spread rapidly within this region.

  6. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    NASA Astrophysics Data System (ADS)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  7. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  8. Least-cost transportation networks predict spatial interaction of invasion vectors.

    PubMed

    Drake, D Andrew R; Mandrak, Nicholas E

    2010-12-01

    Human-mediated dispersal among aquatic ecosystems often results in biotic transfer between drainage basins. Such activities may circumvent biogeographic factors, with considerable ecological, evolutionary, and economic implications. However, the efficacy of predictions concerning community changes following inter-basin movements are limited, often because the dispersal mechanism is poorly understood (e.g., quantified only partially). To date, spatial-interaction models that predict the movement of humans as vectors of biotic transfer have not incorporated patterns of human movement through transportation networks. As a necessary first step to determine the role of anglers as invasion vectors across a land-lake ecosystem, we investigate their movement potential within Ontario, Canada. To determine possible model improvements resulting from inclusion of network travel, spatial-interaction models were constructed using standard Euclidean (e.g., straight-line) distance measures and also with distances derived from least-cost routing of human transportation networks. Model comparisons determined that least-cost routing both provided the most parsimonious model and also excelled at forecasting spatial interactions, with a proportion of 0.477 total movement deviance explained. The distribution of movements was characterized by many relatively short to medium travel distances (median = 292.6 km) with fewer lengthier distances (75th percentile = 484.6 km, 95th percentile = 775.2 km); however, even the shortest movements were sufficient to overcome drainage-basin boundaries. Ranking of variables in order of their contribution within the most parsimonious model determined that distance traveled, origin outflow, lake attractiveness, and sportfish richness significantly influence movement patterns. Model improvements associated with least-cost routing of human transportation networks imply that patterns of human-mediated invasion are fundamentally linked to the spatial configuration and relative impedance of human transportation networks, placing increased importance on understanding their contribution to the invasion process.

  9. Automated analysis of food-borne pathogens using a novel microbial cell culture, sensing and classification system.

    PubMed

    Xiang, Kun; Li, Yinglei; Ford, William; Land, Walker; Schaffer, J David; Congdon, Robert; Zhang, Jing; Sadik, Omowunmi

    2016-02-21

    We hereby report the design and implementation of an Autonomous Microbial Cell Culture and Classification (AMC(3)) system for rapid detection of food pathogens. Traditional food testing methods require multistep procedures and long incubation period, and are thus prone to human error. AMC(3) introduces a "one click approach" to the detection and classification of pathogenic bacteria. Once the cultured materials are prepared, all operations are automatic. AMC(3) is an integrated sensor array platform in a microbial fuel cell system composed of a multi-potentiostat, an automated data collection system (Python program, Yocto Maxi-coupler electromechanical relay module) and a powerful classification program. The classification scheme consists of Probabilistic Neural Network (PNN), Support Vector Machines (SVM) and General Regression Neural Network (GRNN) oracle-based system. Differential Pulse Voltammetry (DPV) is performed on standard samples or unknown samples. Then, using preset feature extractions and quality control, accepted data are analyzed by the intelligent classification system. In a typical use, thirty-two extracted features were analyzed to correctly classify the following pathogens: Escherichia coli ATCC#25922, Escherichia coli ATCC#11775, and Staphylococcus epidermidis ATCC#12228. 85.4% accuracy range was recorded for unknown samples, and within a shorter time period than the industry standard of 24 hours.

  10. Analyzing brain networks with PCA and conditional Granger causality.

    PubMed

    Zhou, Zhenyu; Chen, Yonghong; Ding, Mingzhou; Wright, Paul; Lu, Zuhong; Liu, Yijun

    2009-07-01

    Identifying directional influences in anatomical and functional circuits presents one of the greatest challenges for understanding neural computations in the brain. Granger causality mapping (GCM) derived from vector autoregressive models of data has been employed for this purpose, revealing complex temporal and spatial dynamics underlying cognitive processes. However, the traditional GCM methods are computationally expensive, as signals from thousands of voxels within selected regions of interest (ROIs) are individually processed, and being based on pairwise Granger causality, they lack the ability to distinguish direct from indirect connectivity among brain regions. In this work a new algorithm called PCA based conditional GCM is proposed to overcome these problems. The algorithm implements the following two procedures: (i) dimensionality reduction in ROIs of interest with principle component analysis (PCA), and (ii) estimation of the direct causal influences in local brain networks, using conditional Granger causality. Our results show that the proposed method achieves greater accuracy in detecting network connectivity than the commonly used pairwise Granger causality method. Furthermore, the use of PCA components in conjunction with conditional GCM greatly reduces the computational cost relative to the use of individual voxel time series. Copyright 2009 Wiley-Liss, Inc

  11. Emotion-independent face recognition

    NASA Astrophysics Data System (ADS)

    De Silva, Liyanage C.; Esther, Kho G. P.

    2000-12-01

    Current face recognition techniques tend to work well when recognizing faces under small variations in lighting, facial expression and pose, but deteriorate under more extreme conditions. In this paper, a face recognition system to recognize faces of known individuals, despite variations in facial expression due to different emotions, is developed. The eigenface approach is used for feature extraction. Classification methods include Euclidean distance, back propagation neural network and generalized regression neural network. These methods yield 100% recognition accuracy when the training database is representative, containing one image representing the peak expression for each emotion of each person apart from the neutral expression. The feature vectors used for comparison in the Euclidean distance method and for training the neural network must be all the feature vectors of the training set. These results are obtained for a face database consisting of only four persons.

  12. Custodial vector model

    NASA Astrophysics Data System (ADS)

    Becciolini, Diego; Franzosi, Diogo Buarque; Foadi, Roshan; Frandsen, Mads T.; Hapola, Tuomas; Sannino, Francesco

    2015-07-01

    We analyze the Large Hadron Collider (LHC) phenomenology of heavy vector resonances with a S U (2 )L×S U (2 )R spectral global symmetry. This symmetry partially protects the electroweak S parameter from large contributions of the vector resonances. The resulting custodial vector model spectrum and interactions with the standard model fields lead to distinct signatures at the LHC in the diboson, dilepton, and associated Higgs channels.

  13. An investigation of emotion dynamics in major depressive disorder patients and healthy persons using sparse longitudinal networks.

    PubMed

    de Vos, Stijn; Wardenaar, Klaas J; Bos, Elisabeth H; Wit, Ernst C; Bouwmans, Mara E J; de Jonge, Peter

    2017-01-01

    Differences in within-person emotion dynamics may be an important source of heterogeneity in depression. To investigate these dynamics, researchers have previously combined multilevel regression analyses with network representations. However, sparse network methods, specifically developed for longitudinal network analyses, have not been applied. Therefore, this study used this approach to investigate population-level and individual-level emotion dynamics in healthy and depressed persons and compared this method with the multilevel approach. Time-series data were collected in pair-matched healthy persons and major depressive disorder (MDD) patients (n = 54). Seven positive affect (PA) and seven negative affect (NA) items were administered electronically at 90 times (30 days; thrice per day). The population-level (healthy vs. MDD) and individual-level time series were analyzed using a sparse longitudinal network model based on vector autoregression. The population-level model was also estimated with a multilevel approach. Effects of different preprocessing steps were evaluated as well. The characteristics of the longitudinal networks were investigated to gain insight into the emotion dynamics. In the population-level networks, longitudinal network connectivity was strongest in the healthy group, with nodes showing more and stronger longitudinal associations with each other. Individually estimated networks varied strongly across individuals. Individual variations in network connectivity were unrelated to baseline characteristics (depression status, neuroticism, severity). A multilevel approach applied to the same data showed higher connectivity in the MDD group, which seemed partly related to the preprocessing approach. The sparse network approach can be useful for the estimation of networks with multiple nodes, where overparameterization is an issue, and for individual-level networks. However, its current inability to model random effects makes it less useful as a population-level approach in case of large heterogeneity. Different preprocessing strategies appeared to strongly influence the results, complicating inferences about network density.

  14. Simple algorithm for improved security in the FDDI protocol

    NASA Astrophysics Data System (ADS)

    Lundy, G. M.; Jones, Benjamin

    1993-02-01

    We propose a modification to the Fiber Distributed Data Interface (FDDI) protocol based on a simple algorithm which will improve confidential communication capability. This proposed modification provides a simple and reliable system which exploits some of the inherent security properties in a fiber optic ring network. This method differs from conventional methods in that end to end encryption can be facilitated at the media access control sublayer of the data link layer in the OSI network model. Our method is based on a variation of the bit stream cipher method. The transmitting station takes the intended confidential message and uses a simple modulo two addition operation against an initialization vector. The encrypted message is virtually unbreakable without the initialization vector. None of the stations on the ring will have access to both the encrypted message and the initialization vector except the transmitting and receiving stations. The generation of the initialization vector is unique for each confidential transmission and thus provides a unique approach to the key distribution problem. The FDDI protocol is of particular interest to the military in terms of LAN/MAN implementations. Both the Army and the Navy are considering the standard as the basis for future network systems. A simple and reliable security mechanism with the potential to support realtime communications is a necessary consideration in the implementation of these systems. The proposed method offers several advantages over traditional methods in terms of speed, reliability, and standardization.

  15. Hybrid function projective synchronization in complex dynamical networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng

    2014-02-15

    This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.

  16. Spectral characterization of dielectric materials using terahertz measurement systems

    NASA Astrophysics Data System (ADS)

    Seligman, Jeffrey M.

    The performance of modern high frequency components and electronic systems are often limited by the properties of the materials from which they are made. Over the past decade, there has been an increased emphasis on the development of new, high performance dielectrics for use in high frequency systems. The development of these materials requires novel broadband characterization, instrumentation, and extraction techniques, from which models can be formulated. For this project several types of dielectric sheets were characterized at terahertz (THz) frequencies using quasi-optical (free-space) techniques. These measurement systems included a Fourier Transform Spectrometer (FTS, scalar), a Time Domain Spectrometer (TDS, vector), a Scalar Network Analyzer (SNA), and a THz Vector Network Analyzer (VNA). Using these instruments the THz spectral characteristics of dielectric samples were obtained. Polarization based anisotropy was observed in many of the materials measured using vector systems. The TDS was the most informative and flexible instrument for dielectric characterization at THz frequencies. To our knowledge, this is the first such comprehensive study to be performed. Anisotropy effects within materials that do not come into play at microwave frequencies (e.g. ~10 GHz) were found, in many cases, to increase measured losses at THz frequencies by up to an order of magnitude. The frequency dependent properties obtained during the course of this study included loss tangent, permittivity (index of refraction), and dielectric constant. The results were largely consistent between all the different systems and correlated closely to manufacturer specifications over a wide frequency range (325 GHz-1.5 THz). Anisotropic behavior was observed for some of the materials. Non-destructive evaluation and testing (NDE/NDT) techniques were used throughout. A precision test fixture was developed to accomplish these measurements. Time delay, insertion loss, and S-parameters were measured directly, from which loss tangent, index of refraction, and permittivity was extracted. The test materials were low-loss dielectric slabs ranging in thickness from 1-60 mils. The substrate sheets were PTFE, fiberglass, and epoxy-ceramic composite substrates. The other group was polyethylene plastic sheets (LDPE/HDPE/UMHW) and 3D printer Photopolymers. The results were verified by using several online THz spectral databases and compared to manufacturer data sheets. Permittivity and loss of some of the test samples varied as a function of polarization angle. 0 - 90 degrees of rotation were tested (i.e., H-V, and 45 degrees polarization). Inter-molecular scattering in the composite materials raised the loss considerably. This effect was verified. Standard, well documented, material types were selected for the project for best comparison. These techniques can also be applied to analyze newer substances such as nanodielectrics.

  17. Reliable Wireless Broadcast with Linear Network Coding for Multipoint-to-Multipoint Real-Time Communications

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshihisa; Yomo, Hiroyuki; Yamaguchi, Shinji; Davis, Peter; Miura, Ryu; Obana, Sadao; Sampei, Seiichi

    This paper proposes multipoint-to-multipoint (MPtoMP) real-time broadcast transmission using network coding for ad-hoc networks like video game networks. We aim to achieve highly reliable MPtoMP broadcasting using IEEE 802.11 media access control (MAC) that does not include a retransmission mechanism. When each node detects packets from the other nodes in a sequence, the correctly detected packets are network-encoded, and the encoded packet is broadcasted in the next sequence as a piggy-back for its native packet. To prevent increase of overhead in each packet due to piggy-back packet transmission, network coding vector for each node is exchanged between all nodes in the negotiation phase. Each user keeps using the same coding vector generated in the negotiation phase, and only coding information that represents which user signal is included in the network coding process is transmitted along with the piggy-back packet. Our simulation results show that the proposed method can provide higher reliability than other schemes using multi point relay (MPR) or redundant transmissions such as forward error correction (FEC). We also implement the proposed method in a wireless testbed, and show that the proposed method achieves high reliability in a real-world environment with a practical degree of complexity when installed on current wireless devices.

  18. Classification of subsurface objects using singular values derived from signal frames

    DOEpatents

    Chambers, David H; Paglieroni, David W

    2014-05-06

    The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.

  19. Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xin-Fang; Zhang, Zheng-Wei; He, Yan-Lan; Liu, Yi-Xing; Li, Shuang; Fang, Jing-Yue; Zhang, Xue-Ao; Peng, Gang

    2016-04-01

    Decane is one of the volatile organic compounds (VOCs) in human breath. Successful detection of decane in human breath has vast prospects for early lung cancer diagnosis. In this paper, a novel detecting device based on a filter surface acoustic wave (SAW) gas sensor is presented. SAW sensors coated with a thin oxidized graphene film were used to detect decane in parts per million (ppm) concentrations. Control and signal detection circuits were designed using a vector network analyzer with a detection resolution of insertion loss down to 0.0001 dB. The results showed that the SAW sensor could respond quickly with great sensitivity when exposed to 0.2 ppm decane. This device shows tremendous potential in medical diagnosis and environmental assessment.

  20. Cooperativity in Molecular Dynamics Structural Models and the Dielectric Spectra of 1,2-Ethanediol

    NASA Astrophysics Data System (ADS)

    Usacheva, T. M.

    2018-05-01

    Linear relationships are established between the experimental equilibrium correlation factor and the molecular dynamics (MD) mean value of the O-H···O bond angle and the longitudinal component of the unit vector of the mean statistical dipole moment of the cluster in liquid 1,2-ethanediol (12ED). The achievements of modern MD models in describing the experimental dispersion of the permittivity of 12ED by both continuous and discrete relaxation time spectra are analyzed. The advantage computer MD experiments have over dielectric spectroscopy for calculating relaxation time and determining the molecular diffusion mechanisms of the rearrangement of the network 12ED structure, which is more complex than water, is demonstrated.

  1. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    PubMed

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with <8% of EVM in a turbulent channel. Based on the results, we show that transmitting the LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  2. Radar targets reveal all to automated tester

    NASA Astrophysics Data System (ADS)

    Hartman, R. E.

    1985-09-01

    Technological developments in the field of automated test equipment for low radar-cross-section (RCS) systems are reviewed. Emphasis is given to an Automated Digital Analysis and Measurement (ADAM) system for measuring, scattering, and evaluating RCS using a minicomputer in combination with a vector network analyzer and a positioner programmer. ADAM incorporates a stepped CW measurement technique to obtain RCS as a function of both range and frequency at a fixed aspect angle. The operating characteristics and calibration procedures of the ADAM system are described and estimates of RCS sensitivity are obtained. The response resolution of the ADAM system is estimated to be 36 cm per measurement bandwidth (in GHz) for a minimum window. A block diagram of the error checking routine of the ADAM system is provided.

  3. High temperature electromagnetic characterization of thermal protection system tile materials

    NASA Technical Reports Server (NTRS)

    Heil, Garrett G.

    1993-01-01

    This study investigated the impact of elevated temperatures on the electromagnetic performance of the LI-2200 thermal protection system. A 15-kilowatt CO2 laser was used to heat an LI-2200 specimen to 3000 F while electromagnetic measurements were performed over the frequency range of l9 to 21 GHz. The electromagnetic measurement system consisted of two Dual-Lens Spot-Focusing (DLSF) antennas, a sample support structure, and an HP-8510B vector network analyzer. Calibration of the electromagnetic system was accomplished with a Transmission-Reflection-Line (TRL) procedure and was verified with measurements on a two-layer specimen of known properties. The results of testing indicated that the LI-2200 system's electromagnetic performance is slightly temperature dependent at temperatures up to 3000 F.

  4. Data-driven identification of potential Zika virus vectors

    PubMed Central

    Evans, Michelle V; Dallas, Tad A; Han, Barbara A; Murdock, Courtney C; Drake, John M

    2017-01-01

    Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. DOI: http://dx.doi.org/10.7554/eLife.22053.001 PMID:28244371

  5. Artificial Potential Field Controllers for Robust Communications in a Network of Swarm Robots

    DTIC Science & Technology

    2005-05-18

    vectors are less than 90◦ apart. Algorithm 1 The Algorithm for generating a feasible set of vectors P ← set of high priority vectors Csum ← [( LOS1 +R1...the 46 C program was finished reading and writing the values to the serial line it would delete the timing file. Only after the timing file had been... deleted would the base station write new values for the wheel velocities. The timing file kept both the Linux PC and the base station synchronized so

  6. Vector splines on the sphere with application to the estimation of vorticity and divergence from discrete, noisy data

    NASA Technical Reports Server (NTRS)

    Wahba, G.

    1982-01-01

    Vector smoothing splines on the sphere are defined. Theoretical properties are briefly alluded to. The appropriate Hilbert space norms used in a specific meteorological application are described and justified via a duality theorem. Numerical procedures for computing the splines as well as the cross validation estimate of two smoothing parameters are given. A Monte Carlo study is described which suggests the accuracy with which upper air vorticity and divergence can be estimated using measured wind vectors from the North American radiosonde network.

  7. Spatial Variance in Resting fMRI Networks of Schizophrenia Patients: An Independent Vector Analysis

    PubMed Central

    Gopal, Shruti; Miller, Robyn L.; Michael, Andrew; Adali, Tulay; Cetin, Mustafa; Rachakonda, Srinivas; Bustillo, Juan R.; Cahill, Nathan; Baum, Stefi A.; Calhoun, Vince D.

    2016-01-01

    Spatial variability in resting functional MRI (fMRI) brain networks has not been well studied in schizophrenia, a disease known for both neurodevelopmental and widespread anatomic changes. Motivated by abundant evidence of neuroanatomical variability from previous studies of schizophrenia, we draw upon a relatively new approach called independent vector analysis (IVA) to assess this variability in resting fMRI networks. IVA is a blind-source separation algorithm, which segregates fMRI data into temporally coherent but spatially independent networks and has been shown to be especially good at capturing spatial variability among subjects in the extracted networks. We introduce several new ways to quantify differences in variability of IVA-derived networks between schizophrenia patients (SZs = 82) and healthy controls (HCs = 89). Voxelwise amplitude analyses showed significant group differences in the spatial maps of auditory cortex, the basal ganglia, the sensorimotor network, and visual cortex. Tests for differences (HC-SZ) in the spatial variability maps suggest, that at rest, SZs exhibit more activity within externally focused sensory and integrative network and less activity in the default mode network thought to be related to internal reflection. Additionally, tests for difference of variance between groups further emphasize that SZs exhibit greater network variability. These results, consistent with our prediction of increased spatial variability within SZs, enhance our understanding of the disease and suggest that it is not just the amplitude of connectivity that is different in schizophrenia, but also the consistency in spatial connectivity patterns across subjects. PMID:26106217

  8. Signal processing and neural network toolbox and its application to failure diagnosis and prognosis

    NASA Astrophysics Data System (ADS)

    Tu, Fang; Wen, Fang; Willett, Peter K.; Pattipati, Krishna R.; Jordan, Eric H.

    2001-07-01

    Many systems are comprised of components equipped with self-testing capability; however, if the system is complex involving feedback and the self-testing itself may occasionally be faulty, tracing faults to a single or multiple causes is difficult. Moreover, many sensors are incapable of reliable decision-making on their own. In such cases, a signal processing front-end that can match inference needs will be very helpful. The work is concerned with providing an object-oriented simulation environment for signal processing and neural network-based fault diagnosis and prognosis. In the toolbox, we implemented a wide range of spectral and statistical manipulation methods such as filters, harmonic analyzers, transient detectors, and multi-resolution decomposition to extract features for failure events from data collected by data sensors. Then we evaluated multiple learning paradigms for general classification, diagnosis and prognosis. The network models evaluated include Restricted Coulomb Energy (RCE) Neural Network, Learning Vector Quantization (LVQ), Decision Trees (C4.5), Fuzzy Adaptive Resonance Theory (FuzzyArtmap), Linear Discriminant Rule (LDR), Quadratic Discriminant Rule (QDR), Radial Basis Functions (RBF), Multiple Layer Perceptrons (MLP) and Single Layer Perceptrons (SLP). Validation techniques, such as N-fold cross-validation and bootstrap techniques, are employed for evaluating the robustness of network models. The trained networks are evaluated for their performance using test data on the basis of percent error rates obtained via cross-validation, time efficiency, generalization ability to unseen faults. Finally, the usage of neural networks for the prediction of residual life of turbine blades with thermal barrier coatings is described and the results are shown. The neural network toolbox has also been applied to fault diagnosis in mixed-signal circuits.

  9. System and method for generating a relationship network

    DOEpatents

    Franks, Kasian; Myers, Cornelia A; Podowski, Raf M

    2015-05-05

    A computer-implemented system and process for generating a relationship network is disclosed. The system provides a set of data items to be related and generates variable length data vectors to represent the relationships between the terms within each data item. The system can be used to generate a relationship network for documents, images, or any other type of file. This relationship network can then be queried to discover the relationships between terms within the set of data items.

  10. System and method for generating a relationship network

    DOEpatents

    Franks, Kasian [Kensington, CA; Myers, Cornelia A [St. Louis, MO; Podowski, Raf M [Pleasant Hill, CA

    2011-07-26

    A computer-implemented system and process for generating a relationship network is disclosed. The system provides a set of data items to be related and generates variable length data vectors to represent the relationships between the terms within each data item. The system can be used to generate a relationship network for documents, images, or any other type of file. This relationship network can then be queried to discover the relationships between terms within the set of data items.

  11. Climate Predictors of the Spatial Distribution of Human Plague Cases in the West Nile Region of Uganda

    PubMed Central

    MacMillan, Katherine; Monaghan, Andrew J.; Apangu, Titus; Griffith, Kevin S.; Mead, Paul S.; Acayo, Sarah; Acidri, Rogers; Moore, Sean M.; Mpanga, Joseph Tendo; Enscore, Russel E.; Gage, Kenneth L.; Eisen, Rebecca J.

    2012-01-01

    East Africa has been identified as a region where vector-borne and zoonotic diseases are most likely to emerge or re-emerge and where morbidity and mortality from these diseases is significant. Understanding when and where humans are most likely to be exposed to vector-borne and zoonotic disease agents in this region can aid in targeting limited prevention and control resources. Often, spatial and temporal distributions of vectors and vector-borne disease agents are predictable based on climatic variables. However, because of coarse meteorological observation networks, appropriately scaled and accurate climate data are often lacking for Africa. Here, we use a recently developed 10-year gridded meteorological dataset from the Advanced Weather Research and Forecasting Model to identify climatic variables predictive of the spatial distribution of human plague cases in the West Nile region of Uganda. Our logistic regression model revealed that within high elevation sites (above 1,300 m), plague risk was positively associated with rainfall during the months of February, October, and November and negatively associated with rainfall during the month of June. These findings suggest that areas that receive increased but not continuous rainfall provide ecologically conducive conditions for Yersinia pestis transmission in this region. This study serves as a foundation for similar modeling efforts of other vector-borne and zoonotic disease in regions with sparse observational meteorologic networks. PMID:22403328

  12. Vector Beam Polarization State Spectrum Analyzer.

    PubMed

    Moreno, Ignacio; Davis, Jeffrey A; Badham, Katherine; Sánchez-López, María M; Holland, Joseph E; Cottrell, Don M

    2017-05-22

    We present a proof of concept for a vector beam polarization state spectrum analyzer based on the combination of a polarization diffraction grating (PDG) and an encoded harmonic q-plate grating (QPG). As a result, a two-dimensional polarization diffraction grating is formed that generates six different q-plate channels with topological charges from -3 to +3 in the horizontal direction, and each is split in the vertical direction into the six polarization channels at the cardinal points of the corresponding higher-order Poincaré sphere. Consequently, 36 different channels are generated in parallel. This special polarization diffractive element is experimentally demonstrated using a single phase-only spatial light modulator in a reflective optical architecture. Finally, we show that this system can be used as a vector beam polarization state spectrum analyzer, where both the topological charge and the state of polarization of an input vector beam can be simultaneously determined in a single experiment. We expect that these results would be useful for applications in optical communications.

  13. Vector and Tensor Analyzing Powers in Deuteron-Proton Breakup

    NASA Astrophysics Data System (ADS)

    Stephan, E.; Kistryn, St.; Kalantar-Nayestanaki, N.; Biegun, A.; Bodek, K.; Ciepał, I.; Deltuva, A.; Eslami-Kalantari, M.; Fonseca, A. C.; Gasparić, I.; Golak, J.; Jamróz, B.; Joulaeizadeh, L.; Kamada, H.; Kiš, M.; Kłos, B.; Kozela, A.; Mahjour-Shafiei, M.; Mardanpour, H.; Messchendorp, J.; Micherdzińska, A.; Moeini, H.; Nogga, A.; Ramazani-Moghaddam-Arani, A.; Skibiński, R.; Sworst, R.; Witała, H.; Zejma, J.

    2011-05-01

    High precision data for vector and tensor analyzing powers of the {^1{H}({d},{{pp}}){n}} breakup reaction at 130 and 100 MeV deuteron beam energies have been measured in a large fraction of the phase space. They are compared to the theoretical predictions based on various approaches to describe the three nucleon (3N) system dynamics. Theoretical predictions describe very well the vector analyzing power data, with no need to include any three-nucleon force effects for these observables. Tensor analyzing powers can be also very well reproduced by calculations in most of the studied region, but locally certain discrepancies are observed. At 130 MeV for A xy such discrepancies usually appear, or are enhanced, when model 3N forces are included. Predicted effects of 3NFs are much lower at 100 MeV and at this energy equally good consistency between the data and the calculations is obtained with or without 3NFs.

  14. Correlated Topic Vector for Scene Classification.

    PubMed

    Wei, Pengxu; Qin, Fei; Wan, Fang; Zhu, Yi; Jiao, Jianbin; Ye, Qixiang

    2017-07-01

    Scene images usually involve semantic correlations, particularly when considering large-scale image data sets. This paper proposes a novel generative image representation, correlated topic vector, to model such semantic correlations. Oriented from the correlated topic model, correlated topic vector intends to naturally utilize the correlations among topics, which are seldom considered in the conventional feature encoding, e.g., Fisher vector, but do exist in scene images. It is expected that the involvement of correlations can increase the discriminative capability of the learned generative model and consequently improve the recognition accuracy. Incorporated with the Fisher kernel method, correlated topic vector inherits the advantages of Fisher vector. The contributions to the topics of visual words have been further employed by incorporating the Fisher kernel framework to indicate the differences among scenes. Combined with the deep convolutional neural network (CNN) features and Gibbs sampling solution, correlated topic vector shows great potential when processing large-scale and complex scene image data sets. Experiments on two scene image data sets demonstrate that correlated topic vector improves significantly the deep CNN features, and outperforms existing Fisher kernel-based features.

  15. On the MAC/network/energy performance evaluation of Wireless Sensor Networks: Contrasting MPH, AODV, DSR and ZTR routing protocols.

    PubMed

    Del-Valle-Soto, Carolina; Mex-Perera, Carlos; Orozco-Lugo, Aldo; Lara, Mauricio; Galván-Tejada, Giselle M; Olmedo, Oscar

    2014-12-02

    Wireless Sensor Networks deliver valuable information for long periods, then it is desirable to have optimum performance, reduced delays, low overhead, and reliable delivery of information. In this work, proposed metrics that influence energy consumption are used for a performance comparison among our proposed routing protocol, called Multi-Parent Hierarchical (MPH), the well-known protocols for sensor networks, Ad hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Zigbee Tree Routing (ZTR), all of them working with the IEEE 802.15.4 MAC layer. Results show how some communication metrics affect performance, throughput, reliability and energy consumption. It can be concluded that MPH is an efficient protocol since it reaches the best performance against the other three protocols under evaluation, such as 19.3% reduction of packet retransmissions, 26.9% decrease of overhead, and 41.2% improvement on the capacity of the protocol for recovering the topology from failures with respect to AODV protocol. We implemented and tested MPH in a real network of 99 nodes during ten days and analyzed parameters as number of hops, connectivity and delay, in order to validate our Sensors 2014, 14 22812 simulator and obtain reliable results. Moreover, an energy model of CC2530 chip is proposed and used for simulations of the four aforementioned protocols, showing that MPH has 15.9% reduction of energy consumption with respect to AODV, 13.7% versus DSR, and 5% against ZTR.

  16. GNSS Network time series analysis

    NASA Astrophysics Data System (ADS)

    Normand, M.; Balodis, J.; Janpaule, I.; Haritonova, D.

    2012-12-01

    Time series of GNSS station results of both the EUPOS®-Riga and LatPos networks have been developed at the Institute of Geodesy and Geoinformation (University of Latvia) using Bernese v.5.0 software. The base stations were selected among the EPN and IGS stations in surroundings of Latvia at the distances up to 700 km. The results of time series are analysed and coordinate velocity vectors have been determined. The background of the map of tectonic faults helps to interpret the GNSS station coordinate velocity vector behaviour in proper environment. The outlying situations recognized. The question still aroused on the nature of the some of outlying situations. The dependence from various influences has been tested.

  17. A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems

    NASA Astrophysics Data System (ADS)

    Pawlicki, Ted

    1988-03-01

    Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions of hierarchical indexing. (i.e. the specificity, adjunct, and parent indices) It supports the notion that multiple canonical views of an object may have to be stored in memory to enable its efficient identification. The use of variable fields in the state space vectors appears to keep the number of required nodes in the network down to a tractable number while imposing a semantic value on different areas of the state space. This semantic imposition supports an interface between the analogical aspects of neural networks and the propositional paradigms of symbolic processing.

  18. Stokes vector based interpolation method to improve the efficiency of bio-inspired polarization-difference imaging in turbid media

    NASA Astrophysics Data System (ADS)

    Guan, Jinge; Ren, Wei; Cheng, Yaoyu

    2018-04-01

    We demonstrate an efficient polarization-difference imaging system in turbid conditions by using the Stokes vector of light. The interaction of scattered light with the polarizer is analyzed by the Stokes-Mueller formalism. An interpolation method is proposed to replace the mechanical rotation of the polarization axis of the analyzer theoretically, and its performance is verified by the experiment at different turbidity levels. We show that compared with direct imaging, the Stokes vector based imaging method can effectively reduce the effect of light scattering and enhance the image contrast.

  19. A Novel Adaptive Modulation Based on Nondata-Aided Error Vector Magnitude in Non-Line-Of-Sight Condition of Wireless Sensor Network.

    PubMed

    Yang, Fan; Zeng, Xiaoping; Mao, Haiwei; Jian, Xin; Tan, Xiaoheng; Du, Derong

    2018-01-15

    The high demand for multimedia applications in environmental monitoring, invasion detection, and disaster aid has led to the rise of wireless sensor network (WSN). With the increase of reliability and diversity of information streams, the higher requirements on throughput and quality of service (QoS) have been put forward in data transmission between two sensor nodes. However, lower spectral efficiency becomes a bottleneck in non-line-of-sight (NLOS) transmission of WSN. This paper proposes a novel nondata-aided error vector magnitude based adaptive modulation (NDA-EVM-AM) to solve the problem. NDA-EVM is considered as a new metric to evaluate the quality of NLOS link for adaptive modulation in WSN. By modeling the NLOS scenario as the η - μ fading channel, a closed-form expression for the NDA-EVM of multilevel quadrature amplitude modulation (MQAM) signals over the η - μ fading channel is derived, and the relationship between SER and NDA-EVM is also formulated. Based on these results, NDA-EVM state machine is designed for adaptation strategy. The algorithmic complexity of NDA-EVM-AM is analyzed and the outage capacity of NDA-EVM-AM in an NLOS scenario is also given. The performances of NDA-EVM-AM are compared by simulation, and the results show that NDA-EVM-AM is an effective technique to be used in the NLOS scenarios of WSN. This technique can accurately reflect the channel variations and efficiently adjust modulation order to better match the channel conditions, hence, obtaining better performance in average spectral efficiency.

  20. The research of "blind" spot in the LVQ network

    NASA Astrophysics Data System (ADS)

    Guo, Zhanjie; Nan, Shupo; Wang, Xiaoli

    2017-04-01

    Nowadays competitive neural network has been widely used in the pattern recognition, classification and other aspects, and show the great advantages compared with the traditional clustering methods. But the competitive neural networks still has inadequate in many aspects, and it needs to be further improved. Based on the learning Vector Quantization Network proposed by Learning Kohonen [1], this paper resolve the issue of the large training error, when there are "blind" spots in a network through the introduction of threshold value learning rules and finally programs the realization with Matlab.

  1. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks

    PubMed Central

    Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-01-01

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid “particle degeneracy” problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network. PMID:29267252

  2. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks.

    PubMed

    Li, Xinbin; Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-12-21

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid "particle degeneracy" problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.

  3. Hierarchical sequencing of online social graphs

    NASA Astrophysics Data System (ADS)

    Andjelković, Miroslav; Tadić, Bosiljka; Maletić, Slobodan; Rajković, Milan

    2015-10-01

    In online communications, patterns of conduct of individual actors and use of emotions in the process can lead to a complex social graph exhibiting multilayered structure and mesoscopic communities. Using simplicial complexes representation of graphs, we investigate in-depth topology of the online social network constructed from MySpace dialogs which exhibits original community structure. A simulation of emotion spreading in this network leads to the identification of two emotion-propagating layers. Three topological measures are introduced, referred to as the structure vectors, which quantify graph's architecture at different dimension levels. Notably, structures emerging through shared links, triangles and tetrahedral faces, frequently occur and range from tree-like to maximal 5-cliques and their respective complexes. On the other hand, the structures which spread only negative or only positive emotion messages appear to have much simpler topology consisting of links and triangles. The node's structure vector represents the number of simplices at each topology level in which the node resides and the total number of such simplices determines what we define as the node's topological dimension. The presented results suggest that the node's topological dimension provides a suitable measure of the social capital which measures the actor's ability to act as a broker in compact communities, the so called Simmelian brokerage. We also generalize the results to a wider class of computer-generated networks. Investigating components of the node's vector over network layers reveals that same nodes develop different socio-emotional relations and that the influential nodes build social capital by combining their connections in different layers.

  4. Hybrid Decompositional Verification for Discovering Failures in Adaptive Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Thompson, Sarah; Davies, Misty D.; Gundy-Burlet, Karen

    2010-01-01

    Adaptive flight control systems hold tremendous promise for maintaining the safety of a damaged aircraft and its passengers. However, most currently proposed adaptive control methodologies rely on online learning neural networks (OLNNs), which necessarily have the property that the controller is changing during the flight. These changes tend to be highly nonlinear, and difficult or impossible to analyze using standard techniques. In this paper, we approach the problem with a variant of compositional verification. The overall system is broken into components. Undesirable behavior is fed backwards through the system. Components which can be solved using formal methods techniques explicitly for the ranges of safe and unsafe input bounds are treated as white box components. The remaining black box components are analyzed with heuristic techniques that try to predict a range of component inputs that may lead to unsafe behavior. The composition of these component inputs throughout the system leads to overall system test vectors that may elucidate the undesirable behavior

  5. Detection of masses in mammogram images using CNN, geostatistic functions and SVM.

    PubMed

    Sampaio, Wener Borges; Diniz, Edgar Moraes; Silva, Aristófanes Corrêa; de Paiva, Anselmo Cardoso; Gattass, Marcelo

    2011-08-01

    Breast cancer occurs with high frequency among the world's population and its effects impact the patients' perception of their own sexuality and their very personal image. This work presents a computational methodology that helps specialists detect breast masses in mammogram images. The first stage of the methodology aims to improve the mammogram image. This stage consists in removing objects outside the breast, reducing noise and highlighting the internal structures of the breast. Next, cellular neural networks are used to segment the regions that might contain masses. These regions have their shapes analyzed through shape descriptors (eccentricity, circularity, density, circular disproportion and circular density) and their textures analyzed through geostatistic functions (Ripley's K function and Moran's and Geary's indexes). Support vector machines are used to classify the candidate regions as masses or non-masses, with sensitivity of 80%, rates of 0.84 false positives per image and 0.2 false negatives per image, and an area under the ROC curve of 0.87. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Identification of individual coherent sets associated with flow trajectories using coherent structure coloring

    NASA Astrophysics Data System (ADS)

    Schlueter-Kuck, Kristy L.; Dabiri, John O.

    2017-09-01

    We present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the associated structure in comparison to the surrounding flow. Although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene expression, or social networks.

  7. Polarization in the social sciences: Assortative mixing in social science collaboration networks is resilient to interventions

    NASA Astrophysics Data System (ADS)

    Leifeld, Philip

    2018-10-01

    Academic collaboration in the social sciences is characterized by a polarization between hermeneutic and nomological researchers. This polarization is expressed in different publication strategies. The present article analyzes the complete co-authorship networks in a social science discipline in two separate countries over five years using an exponential random graph model. It examines whether and how assortative mixing in publication strategies is present and leads to a polarization in scientific collaboration. In the empirical analysis, assortative mixing is found to play a role in shaping the topology of the network and significantly explains collaboration. Co-authorship edges are more prevalent within each of the groups, but this mixing pattern does not fully account for the extent of polarization. Instead, a thought experiment reveals that other components of the complex system dampen or amplify polarization in the data-generating process and that microscopic interventions targeting behavior change with regard to assortativity would be hindered by the resilience of the system. The resilience to interventions is quantified in a series of simulations on the effect of microscopic behavior on macroscopic polarization. The empirical study controls for geographic proximity, supervision, and topical similarity (using a vector space model), and the interplay of these factors is likely responsible for this resilience. The paper also predicts the co-authorship network in one country based on the model of collaborations in the other country.

  8. Neural-Network Simulator

    NASA Technical Reports Server (NTRS)

    Mitchell, Paul H.

    1991-01-01

    F77NNS (FORTRAN 77 Neural Network Simulator) computer program simulates popular back-error-propagation neural network. Designed to take advantage of vectorization when used on computers having this capability, also used on any computer equipped with ANSI-77 FORTRAN Compiler. Problems involving matching of patterns or mathematical modeling of systems fit class of problems F77NNS designed to solve. Program has restart capability so neural network solved in stages suitable to user's resources and desires. Enables user to customize patterns of connections between layers of network. Size of neural network F77NNS applied to limited only by amount of random-access memory available to user.

  9. Condition Assessment of Foundation Piles and Utility Poles Based on Guided Wave Propagation Using a Network of Tactile Transducers and Support Vector Machines

    PubMed Central

    Yu, Yang; Niederleithinger, Ernst; Li, Jianchun; Wiggenhauser, Herbert

    2017-01-01

    This paper presents a novel non-destructive testing and health monitoring system using a network of tactile transducers and accelerometers for the condition assessment and damage classification of foundation piles and utility poles. While in traditional pile integrity testing an impact hammer with broadband frequency excitation is typically used, the proposed testing system utilizes an innovative excitation system based on a network of tactile transducers to induce controlled narrow-band frequency stress waves. Thereby, the simultaneous excitation of multiple stress wave types and modes is avoided (or at least reduced), and targeted wave forms can be generated. The new testing system enables the testing and monitoring of foundation piles and utility poles where the top is inaccessible, making the new testing system suitable, for example, for the condition assessment of pile structures with obstructed heads and of poles with live wires. For system validation, the new system was experimentally tested on nine timber and concrete poles that were inflicted with several types of damage. The tactile transducers were excited with continuous sine wave signals of 1 kHz frequency. Support vector machines were employed together with advanced signal processing algorithms to distinguish recorded stress wave signals from pole structures with different types of damage. The results show that using fast Fourier transform signals, combined with principal component analysis as the input feature vector for support vector machine (SVM) classifiers with different kernel functions, can achieve damage classification with accuracies of 92.5% ± 7.5%. PMID:29258274

  10. Achieving sink node anonymity in tactical wireless sensor networks using a reactive routing protocol

    DTIC Science & Technology

    2017-06-01

    transmit their information through the network based on the specific protocols that are implemented. Nodes may be designed to perform any combination of...band, and one channel in the 868-MHz band. The IEEE 802.15.4 standard is designed to provide Low-Rate Wireless Personal Area Network (LR-WPAN...MANETs and is currently a draft at the IETF Network Working Group [9]. It was derived from the Ad hoc On -Demand Distance Vector (AODV) routing

  11. Phylogeny and Niche Conservatism in North and Central American Triatomine Bugs (Hemiptera: Reduviidae: Triatominae), Vectors of Chagas' Disease

    PubMed Central

    Ibarra-Cerdeña, Carlos N.; Zaldívar-Riverón, Alejandro; Peterson, A. Townsend; Sánchez-Cordero, Víctor; Ramsey, Janine M.

    2014-01-01

    The niche conservatism hypothesis states that related species diverge in niche characteristics at lower rates than expected, given their lineage divergence. Here we analyze whether niche conservatism is a common pattern among vector species (Hemiptera: Reduviidae: Triatominae) of Trypanosoma cruzi that inhabit North and Central America, a highly heterogeneous landmass in terms of environmental gradients. Mitochondrial and nuclear loci were used in a multi-locus phylogenetic framework to reconstruct phylogenetic relationships among species and estimate time of divergence of selected clades to draw biogeographic inferences. Then, we estimated similarity between the ecological niche of sister species and tested the niche conservatism hypothesis using our best estimate of phylogeny. Triatoma is not monophyletic. A primary clade with all North and Central American (NCA) triatomine species from the genera Triatoma, Dipetalogaster, and Panstrongylus, was consistently recovered. Nearctic species within the NCA clade (T. p. protracta, T. r. rubida) diverged during the Pliocene, whereas the Neotropical species (T. phyllosoma, T. longipennis, T. dimidiata complex) are estimated to have diverged more recently, during the Pleistocene. The hypothesis of niche conservatism could not be rejected for any of six sister species pairs. Niche similarity between sister species best fits a retention model. While this framework is used here to infer niche evolution, it has a direct impact on spatial vector dynamics driven by human population movements, expansion of transportation networks and climate change scenarios. PMID:25356550

  12. A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks

    PubMed Central

    Goudarzi, Shidrokh; Haslina Hassan, Wan; Abdalla Hashim, Aisha-Hassan; Soleymani, Seyed Ahmad; Anisi, Mohammad Hossein; Zakaria, Omar M.

    2016-01-01

    This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF–FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model’s performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF–FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF–FFA model can be applied as an efficient technique for the accurate prediction of vertical handover. PMID:27438600

  13. A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks.

    PubMed

    Goudarzi, Shidrokh; Haslina Hassan, Wan; Abdalla Hashim, Aisha-Hassan; Soleymani, Seyed Ahmad; Anisi, Mohammad Hossein; Zakaria, Omar M

    2016-01-01

    This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF-FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model's performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF-FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF-FFA model can be applied as an efficient technique for the accurate prediction of vertical handover.

  14. Higher-order vector beams produced by photonic-crystal lasers.

    PubMed

    Iwahashi, Seita; Kurosaka, Yoshitaka; Sakai, Kyosuke; Kitamura, Kyoko; Takayama, Naoki; Noda, Susumu

    2011-06-20

    We have successfully generated vector beams with higher-order polarization states using photonic-crystal lasers. We have analyzed and designed lattice structures that provide cavity modes with different symmetries. Fabricated devices based on these lattice structures produced doughnut-shaped vector beams, with symmetries corresponding to the cavity modes. Our study enables the systematic analysis of vector beams, which we expect will lead to applications such as high-resolution microscopy, laser processing, and optical trapping.

  15. Path planning on cellular nonlinear network using active wave computing technique

    NASA Astrophysics Data System (ADS)

    Yeniçeri, Ramazan; Yalçın, Müstak E.

    2009-05-01

    This paper introduces a simple algorithm to solve robot path finding problem using active wave computing techniques. A two-dimensional Cellular Neural/Nonlinear Network (CNN), consist of relaxation oscillators, has been used to generate active waves and to process the visual information. The network, which has been implemented on a Field Programmable Gate Array (FPGA) chip, has the feature of being programmed, controlled and observed by a host computer. The arena of the robot is modelled as the medium of the active waves on the network. Active waves are employed to cover the whole medium with their own dynamics, by starting from an initial point. The proposed algorithm is achieved by observing the motion of the wave-front of the active waves. Host program first loads the arena model onto the active wave generator network and command to start the generation. Then periodically pulls the network image from the generator hardware to analyze evolution of the active waves. When the algorithm is completed, vectorial data image is generated. The path from any of the pixel on this image to the active wave generating pixel is drawn by the vectors on this image. The robot arena may be a complicated labyrinth or may have a simple geometry. But, the arena surface always must be flat. Our Autowave Generator CNN implementation which is settled on the Xilinx University Program Virtex-II Pro Development System is operated by a MATLAB program running on the host computer. As the active wave generator hardware has 16, 384 neurons, an arena with 128 × 128 pixels can be modeled and solved by the algorithm. The system also has a monitor and network image is depicted on the monitor simultaneously.

  16. Hypercluster - Parallel processing for computational mechanics

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.

    1988-01-01

    An account is given of the development status, performance capabilities and implications for further development of NASA-Lewis' testbed 'hypercluster' parallel computer network, in which multiple processors communicate through a shared memory. Processors have local as well as shared memory; the hypercluster is expanded in the same manner as the hypercube, with processor clusters replacing the normal single processor node. The NASA-Lewis machine has three nodes with a vector personality and one node with a scalar personality. Each of the vector nodes uses four board-level vector processors, while the scalar node uses four general-purpose microcomputer boards.

  17. Construction of multi-agent mobile robots control system in the problem of persecution with using a modified reinforcement learning method based on neural networks

    NASA Astrophysics Data System (ADS)

    Patkin, M. L.; Rogachev, G. N.

    2018-02-01

    A method for constructing a multi-agent control system for mobile robots based on training with reinforcement using deep neural networks is considered. Synthesis of the management system is proposed to be carried out with reinforcement training and the modified Actor-Critic method, in which the Actor module is divided into Action Actor and Communication Actor in order to simultaneously manage mobile robots and communicate with partners. Communication is carried out by sending partners at each step a vector of real numbers that are added to the observation vector and affect the behaviour. Functions of Actors and Critic are approximated by deep neural networks. The Critics value function is trained by using the TD-error method and the Actor’s function by using DDPG. The Communication Actor’s neural network is trained through gradients received from partner agents. An environment in which a cooperative multi-agent interaction is present was developed, computer simulation of the application of this method in the control problem of two robots pursuing two goals was carried out.

  18. First measurement of the vector analyzing power in muon capture by polarized muonic {sup 3}He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, W.J.; Behr, J.; Bogorad, P.

    1995-09-01

    This paper describes the first measurement of spin observables in nuclear muon capture by {sup 3}He. The sensitivity of spin observables to the pseudoscalar coupling is described. The triton asymmetry presented has to be corrected for small systematic effects in order to extract the vector analyzing power. The analysis of these effects is currently underway.

  19. Minimal Increase Network Coding for Dynamic Networks.

    PubMed

    Zhang, Guoyin; Fan, Xu; Wu, Yanxia

    2016-01-01

    Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery.

  20. Minimal Increase Network Coding for Dynamic Networks

    PubMed Central

    Wu, Yanxia

    2016-01-01

    Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery. PMID:26867211

  1. Automatic River Network Extraction from LIDAR Data

    NASA Astrophysics Data System (ADS)

    Maderal, E. N.; Valcarcel, N.; Delgado, J.; Sevilla, C.; Ojeda, J. C.

    2016-06-01

    National Geographic Institute of Spain (IGN-ES) has launched a new production system for automatic river network extraction for the Geospatial Reference Information (GRI) within hydrography theme. The goal is to get an accurate and updated river network, automatically extracted as possible. For this, IGN-ES has full LiDAR coverage for the whole Spanish territory with a density of 0.5 points per square meter. To implement this work, it has been validated the technical feasibility, developed a methodology to automate each production phase: hydrological terrain models generation with 2 meter grid size and river network extraction combining hydrographic criteria (topographic network) and hydrological criteria (flow accumulation river network), and finally the production was launched. The key points of this work has been managing a big data environment, more than 160,000 Lidar data files, the infrastructure to store (up to 40 Tb between results and intermediate files), and process; using local virtualization and the Amazon Web Service (AWS), which allowed to obtain this automatic production within 6 months, it also has been important the software stability (TerraScan-TerraSolid, GlobalMapper-Blue Marble , FME-Safe, ArcGIS-Esri) and finally, the human resources managing. The results of this production has been an accurate automatic river network extraction for the whole country with a significant improvement for the altimetric component of the 3D linear vector. This article presents the technical feasibility, the production methodology, the automatic river network extraction production and its advantages over traditional vector extraction systems.

  2. Analyzing the evolutionary mechanisms of the Air Transportation System-of-Systems using network theory and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Kotegawa, Tatsuya

    Complexity in the Air Transportation System (ATS) arises from the intermingling of many independent physical resources, operational paradigms, and stakeholder interests, as well as the dynamic variation of these interactions over time. Currently, trade-offs and cost benefit analyses of new ATS concepts are carried out on system-wide evaluation simulations driven by air traffic forecasts that assume fixed airline routes. However, this does not well reflect reality as airlines regularly add and remove routes. A airline service route network evolution model that projects route addition and removal was created and combined with state-of-the-art air traffic forecast methods to better reflect the dynamic properties of the ATS in system-wide simulations. Guided by a system-of-systems framework, network theory metrics and machine learning algorithms were applied to develop the route network evolution models based on patterns extracted from historical data. Constructing the route addition section of the model posed the greatest challenge due to the large pool of new link candidates compared to the actual number of routes historically added to the network. Of the models explored, algorithms based on logistic regression, random forests, and support vector machines showed best route addition and removal forecast accuracies at approximately 20% and 40%, respectively, when validated with historical data. The combination of network evolution models and a system-wide evaluation tool quantified the impact of airline route network evolution on air traffic delay. The expected delay minutes when considering network evolution increased approximately 5% for a forecasted schedule on 3/19/2020. Performance trade-off studies between several airline route network topologies from the perspectives of passenger travel efficiency, fuel burn, and robustness were also conducted to provide bounds that could serve as targets for ATS transformation efforts. The series of analysis revealed that high robustness is achievable only in exchange of lower passenger travel and fuel burn efficiency. However, increase in the network density can mitigate this trade-off.

  3. Anthropogenic disturbance and the risk of flea-borne disease transmission

    Treesearch

    Megan M. Friggens; Paul Beier

    2010-01-01

    Anthropogenic disturbance may lead to the spread of vector-borne diseases through effects on pathogens, vectors, and hosts. Identifying the type and extent of vector response to habitat change will enable better and more accurate management strategies for anthropogenic disease spread. We compiled and analyzed data from published empirical studies to test for patterns...

  4. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.

    PubMed

    Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi

    2013-01-01

    The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.

  5. Characterization of a 300-GHz Transmission System for Digital Communications

    NASA Astrophysics Data System (ADS)

    Hudlička, Martin; Salhi, Mohammed; Kleine-Ostmann, Thomas; Schrader, Thorsten

    2017-08-01

    The paper presents the characterization of a 300-GHz transmission system for modern digital communications. The quality of the modulated signal at the output of the system (error vector magnitude, EVM) is measured using a vector signal analyzer. A method using a digital real-time oscilloscope and consecutive mathematical processing in a computer is shown for analysis of signals with bandwidths exceeding that of state-of-the-art vector signal analyzers. The uncertainty of EVM measured using the real-time oscilloscope is open to analysis. Behaviour of the 300-GHz transmission system is studied with respect to various modulation schemes and different signal symbol rates.

  6. Capability of applying morphometric parameters of relief in river basins for geomorphological zoning of a territory

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Yermolaev, O. P.

    2018-01-01

    Information about morphometric characteristics of relief is necessary for researches devoted to geographic characteristics of territory, its zoning, assessment of erosion processes, geoecological condition and others. For the Volga Federal District for the first time a spatial database of geomorphometric parameters 1: 200 000 scale was created, based on a river basin approach. Watersheds are used as a spatial units created by semi-automated method using the terrain and hydrological modeling techniques implemented in the TAS GIS and WhiteBox GIS. As input data DEMs SRTM and Aster GDEM and hydrographic network vectorized from topographic maps were used. Using DEM highlighted above for each river basin, basic morphometric relief characteristics such as mean height, slope steepness, slope length, height range, river network density and factor LS were calculated. Basins belonging to the geomorphological regions and landscape zones was determined, according to the map of geomorphological zoning and landscape map. Analysis of variance revealed a statistically significant relationship between these characteristics and geomorphological regions and landscape zones. Consequently, spatial trends of changes of analyzed morphometric characteristics were revealed.

  7. Orbit Determination of KOMPSAT-1 and Cryosat-2 Satellites Using Optical Wide-field Patrol Network (OWL-Net) Data with Batch Least Squares Filter

    NASA Astrophysics Data System (ADS)

    Lee, Eunji; Park, Sang-Young; Shin, Bumjoon; Cho, Sungki; Choi, Eun-Jung; Jo, Junghyun; Park, Jang-Hyun

    2017-03-01

    The optical wide-field patrol network (OWL-Net) is a Korean optical surveillance system that tracks and monitors domestic satellites. In this study, a batch least squares algorithm was developed for optical measurements and verified by Monte Carlo simulation and covariance analysis. Potential error sources of OWL-Net, such as noise, bias, and clock errors, were analyzed. There is a linear relation between the estimation accuracy and the noise level, and the accuracy significantly depends on the declination bias. In addition, the time-tagging error significantly degrades the observation accuracy, while the time-synchronization offset corresponds to the orbital motion. The Cartesian state vector and measurement bias were determined using the OWL-Net tracking data of the KOMPSAT-1 and Cryosat-2 satellites. The comparison with known orbital information based on two-line elements (TLE) and the consolidated prediction format (CPF) shows that the orbit determination accuracy is similar to that of TLE. Furthermore, the precision and accuracy of OWL-Net observation data were determined to be tens of arcsec and sub-degree level, respectively.

  8. Using algebra for massively parallel processor design and utilization

    NASA Technical Reports Server (NTRS)

    Campbell, Lowell; Fellows, Michael R.

    1990-01-01

    This paper summarizes the author's advances in the design of dense processor networks. Within is reported a collection of recent constructions of dense symmetric networks that provide the largest know values for the number of nodes that can be placed in a network of a given degree and diameter. The constructions are in the range of current potential engineering significance and are based on groups of automorphisms of finite-dimensional vector spaces.

  9. Broadband notch filter design for millimeter-wave plasma diagnostics.

    PubMed

    Furtula, V; Michelsen, P K; Leipold, F; Salewski, M; Korsholm, S B; Meo, F; Nielsen, S K; Stejner, M; Moseev, D; Johansen, T

    2010-10-01

    Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼900 MHz, and a typical insertion loss below 2 dB in the passband of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode in the cylindrical cavities is the fundamental TE(11). The performance of the constructed filter is measured using a vector network analyzer monitoring a total bandwidth of 30 GHz. We compare the measurements with numerical simulations.

  10. Incorporation of Tin on copper clad laminate to increase the interface adhesion for signal loss reduction of high-frequency PCB lamination

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wen, Na; Zhou, Guoyun; Wang, Shouxu; He, Wei; Su, Xinhong; Hu, Yongsuan

    2017-11-01

    A novel method of improving the adhesion between copper and prepreg in high frequency PCB was proposed and studied in this work. This process which aimed to decrease the IEP (isoelectric point) of the copper to obtain higher adhesion, was achieved by depositing a thin tin layer with lower IEP on copper. It was characterized by scanning electron microscopy (SEM), 3D microscope, peel strength test, X-Ray thickness test, grazing incidence X-ray diffraction (GXRD), X-ray photoelectron spectroscopy (XPS), Agilent vector network analyzer (VNA), which confirmed its excellent adhesion performance and outstanding electrical properties in high-frequency signal transmission compared with traditional brown oxide method. Moreover, the mechanism of achieving high adhesion for this method was also investigated.

  11. High precision slotted cavity measurement of a novel ceramic state polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Quan, Wei; NurulAfsar, Mohammed

    2018-01-01

    Thin film materials are already used in a variety of microwave and higher frequency applications such as electrically tunable microwave devices, integrated circuits like MMICs, radomes, and radar absorbing coating. The determination of the dielectric properties of these films is thus of significant importance. The measurement of complex dielectric permittivity of thin films is very difficult at microwave, millimeter, and THz frequencies because both the amplitude change and phase shift are not large enough to evaluate the real part of the dielectric permittivity. A specially designed transverse slotted cavity for X-band microwave measurement has been designed and constructed to employ with a vector network analyzer to evaluate the real part of dielectric permittivity of thin films accurately and conveniently. Commercially available polymer thin films are measured to validate the methods.

  12. Low-rate image coding using vector quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makur, A.

    1990-01-01

    This thesis deals with the development and analysis of a computationally simple vector quantization image compression system for coding monochrome images at low bit rate. Vector quantization has been known to be an effective compression scheme when a low bit rate is desirable, but the intensive computation required in a vector quantization encoder has been a handicap in using it for low rate image coding. The present work shows that, without substantially increasing the coder complexity, it is indeed possible to achieve acceptable picture quality while attaining a high compression ratio. Several modifications to the conventional vector quantization coder aremore » proposed in the thesis. These modifications are shown to offer better subjective quality when compared to the basic coder. Distributed blocks are used instead of spatial blocks to construct the input vectors. A class of input-dependent weighted distortion functions is used to incorporate psychovisual characteristics in the distortion measure. Computationally simple filtering techniques are applied to further improve the decoded image quality. Finally, unique designs of the vector quantization coder using electronic neural networks are described, so that the coding delay is reduced considerably.« less

  13. Measuring magnetic field vector by stimulated Raman transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenli; Wei, Rong, E-mail: weirong@siom.ac.cn; Lin, Jinda

    2016-03-21

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields,more » beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.« less

  14. [Application of chemometrics in composition-activity relationship research of traditional Chinese medicine].

    PubMed

    Han, Sheng-Nan

    2014-07-01

    Chemometrics is a new branch of chemistry which is widely applied to various fields of analytical chemistry. Chemometrics can use theories and methods of mathematics, statistics, computer science and other related disciplines to optimize the chemical measurement process and maximize access to acquire chemical information and other information on material systems by analyzing chemical measurement data. In recent years, traditional Chinese medicine has attracted widespread attention. In the research of traditional Chinese medicine, it has been a key problem that how to interpret the relationship between various chemical components and its efficacy, which seriously restricts the modernization of Chinese medicine. As chemometrics brings the multivariate analysis methods into the chemical research, it has been applied as an effective research tool in the composition-activity relationship research of Chinese medicine. This article reviews the applications of chemometrics methods in the composition-activity relationship research in recent years. The applications of multivariate statistical analysis methods (such as regression analysis, correlation analysis, principal component analysis, etc. ) and artificial neural network (such as back propagation artificial neural network, radical basis function neural network, support vector machine, etc. ) are summarized, including the brief fundamental principles, the research contents and the advantages and disadvantages. Finally, the existing main problems and prospects of its future researches are proposed.

  15. Knowledge represented using RDF semantic network in the concept of semantic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukasova, A., E-mail: alena.lukasova@osu.cz; Vajgl, M., E-mail: marek.vajgl@osu.cz; Zacek, M., E-mail: martin.zacek@osu.cz

    The RDF(S) model has been declared as the basic model to capture knowledge of the semantic web. It provides a common and flexible way to decompose composed knowledge to elementary statements, which can be represented by RDF triples or by RDF graph vectors. From the logical point of view, elements of knowledge can be expressed using at most binary predicates, which can be converted to RDF-triples or graph vectors. However, it is not able to capture implicit knowledge representable by logical formulas. This contribution shows how existing approaches (semantic networks and clausal form logic) can be combined together with RDFmore » to obtain RDF-compatible system with ability to represent implicit knowledge and inference over knowledge base.« less

  16. On-line determination of transient stability status using multilayer perceptron neural network

    NASA Astrophysics Data System (ADS)

    Frimpong, Emmanuel Asuming; Okyere, Philip Yaw; Asumadu, Johnson

    2018-01-01

    A scheme to predict transient stability status following a disturbance is presented. The scheme is activated upon the tripping of a line or bus and operates as follows: Two samples of frequency deviation values at all generator buses are obtained. At each generator bus, the maximum frequency deviation within the two samples is extracted. A vector is then constructed from the extracted maximum frequency deviations. The Euclidean norm of the constructed vector is calculated and then fed as input to a trained multilayer perceptron neural network which predicts the stability status of the system. The scheme was tested using data generated from the New England test system. The scheme successfully predicted the stability status of all two hundred and five disturbance test cases.

  17. Effective-medium theory of elastic waves in random networks of rods.

    PubMed

    Katz, J I; Hoffman, J J; Conradi, M S; Miller, J G

    2012-06-01

    We formulate an effective medium (mean field) theory of a material consisting of randomly distributed nodes connected by straight slender rods, hinged at the nodes. Defining wavelength-dependent effective elastic moduli, we calculate both the static moduli and the dispersion relations of ultrasonic longitudinal and transverse elastic waves. At finite wave vector k the waves are dispersive, with phase and group velocities decreasing with increasing wave vector. These results are directly applicable to networks with empty pore space. They also describe the solid matrix in two-component (Biot) theories of fluid-filled porous media. We suggest the possibility of low density materials with higher ratios of stiffness and strength to density than those of foams, aerogels, or trabecular bone.

  18. Multilayer perceptron, fuzzy sets, and classification

    NASA Technical Reports Server (NTRS)

    Pal, Sankar K.; Mitra, Sushmita

    1992-01-01

    A fuzzy neural network model based on the multilayer perceptron, using the back-propagation algorithm, and capable of fuzzy classification of patterns is described. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of fuzzy class membership values. This allows efficient modeling of fuzzy or uncertain patterns with appropriate weights being assigned to the backpropagated errors depending upon the membership values at the corresponding outputs. During training, the learning rate is gradually decreased in discrete steps until the network converges to a minimum error solution. The effectiveness of the algorithm is demonstrated on a speech recognition problem. The results are compared with those of the conventional MLP, the Bayes classifier, and the other related models.

  19. Gateway Vectors for Efficient Artificial Gene Assembly In Vitro and Expression in Yeast Saccharomyces cerevisiae

    PubMed Central

    Giuraniuc, Claudiu V.; MacPherson, Murray; Saka, Yasushi

    2013-01-01

    Construction of synthetic genetic networks requires the assembly of DNA fragments encoding functional biological parts in a defined order. Yet this may become a time-consuming procedure. To address this technical bottleneck, we have created a series of Gateway shuttle vectors and an integration vector, which facilitate the assembly of artificial genes and their expression in the budding yeast Saccharomyces cerevisiae. Our method enables the rapid construction of an artificial gene from a promoter and an open reading frame (ORF) cassette by one-step recombination reaction in vitro. Furthermore, the plasmid thus created can readily be introduced into yeast cells to test the assembled gene’s functionality. As flexible regulatory components of a synthetic genetic network, we also created new versions of the tetracycline-regulated transactivators tTA and rtTA by fusing them to the auxin-inducible degron (AID). Using our gene assembly approach, we made yeast expression vectors of these engineered transactivators, AIDtTA and AIDrtTA and then tested their functions in yeast. We showed that these factors can be regulated by doxycycline and degraded rapidly after addition of auxin to the medium. Taken together, the method for combinatorial gene assembly described here is versatile and would be a valuable tool for yeast synthetic biology. PMID:23675537

  20. Intelligent classifier for dynamic fault patterns based on hidden Markov model

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Feng, Yuguang; Yu, Jinsong

    2006-11-01

    It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.

  1. A vectorization of the Jameson-Caughey NYU transonic swept-wing computer program FLO-22-V1 for the STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Pitts, J. I.; Lambiotte, J. J., Jr.

    1978-01-01

    The computer program FLO-22 for analyzing inviscid transonic flow past 3-D swept-wing configurations was modified to use vector operations and run on the STAR-100 computer. The vectorized version described herein was called FLO-22-V1. Vector operations were incorporated into Successive Line Over-Relaxation in the transformed horizontal direction. Vector relational operations and control vectors were used to implement upwind differencing at supersonic points. A high speed of computation and extended grid domain were characteristics of FLO-22-V1. The new program was not the optimal vectorization of Successive Line Over-Relaxation applied to transonic flow; however, it proved that vector operations can readily be implemented to increase the computation rate of the algorithm.

  2. Genetically modified pigs produced with a nonviral episomal vector

    PubMed Central

    Manzini, Stefano; Vargiolu, Alessia; Stehle, Isa M; Bacci, Maria Laura; Cerrito, Maria Grazia; Giovannoni, Roberto; Zannoni, Augusta; Bianco, Maria Rosaria; Forni, Monica; Donini, Pierluigi; Papa, Michele; Lipps, Hans J; Lavitrano, Marialuisa

    2006-01-01

    Genetic modification of cells and animals is an invaluable tool for biotechnology and biomedicine. Currently, integrating vectors are used for this purpose. These vectors, however, may lead to insertional mutagenesis and variable transgene expression and can undergo silencing. Scaffold/matrix attachment region-based vectors are nonviral expression systems that replicate autonomously in mammalian cells, thereby making possible safe and reliable genetic modification of higher eukaryotic cells and organisms. In this study, genetically modified pig fetuses were produced with the scaffold/matrix attachment region-based vector pEPI, delivered to embryos by the sperm-mediated gene transfer method. The pEPI vector was detected in 12 of 18 fetuses in the different tissues analyzed and was shown to be retained as an episome. The reporter gene encoded by the pEPI vector was expressed in 9 of 12 genetically modified fetuses. In positive animals, all tissues analyzed expressed the reporter gene; moreover in these tissues, the positive cells were on the average 79%. The high percentage of EGFP-expressing cells and the absence of mosaicism have important implications for biotechnological and biomedical applications. These results are an important step forward in animal transgenesis and can provide the basis for the future development of germ-line gene therapy. PMID:17101993

  3. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.

    PubMed

    Sizemore, Rachel J; Seeger-Armbruster, Sonja; Hughes, Stephanie M; Parr-Brownlie, Louise C

    2016-04-01

    Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. Copyright © 2016 the American Physiological Society.

  4. Air travel and vector-borne disease movement.

    PubMed

    Tatem, A J; Huang, Z; Das, A; Qi, Q; Roth, J; Qiu, Y

    2012-12-01

    Recent decades have seen substantial expansions in the global air travel network and rapid increases in traffic volumes. The effects of this are well studied in terms of the spread of directly transmitted infections, but the role of air travel in the movement of vector-borne diseases is less well understood. Increasingly however, wider reaching surveillance for vector-borne diseases and our improving abilities to map the distributions of vectors and the diseases they carry, are providing opportunities to better our understanding of the impact of increasing air travel. Here we examine global trends in the continued expansion of air transport and its impact upon epidemiology. Novel malaria and chikungunya examples are presented, detailing how geospatial data in combination with information on air traffic can be used to predict the risks of vector-borne disease importation and establishment. Finally, we describe the development of an online tool, the Vector-Borne Disease Airline Importation Risk (VBD-Air) tool, which brings together spatial data on air traffic and vector-borne disease distributions to quantify the seasonally changing risks for importation to non-endemic regions. Such a framework provides the first steps towards an ultimate goal of adaptive management based on near real time flight data and vector-borne disease surveillance.

  5. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology

    PubMed Central

    Sizemore, Rachel J.; Seeger-Armbruster, Sonja; Hughes, Stephanie M.

    2016-01-01

    Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. PMID:26888111

  6. The Accounting Network: How Financial Institutions React to Systemic Crisis

    PubMed Central

    Puliga, Michelangelo; Flori, Andrea; Pappalardo, Giuseppe; Chessa, Alessandro; Pammolli, Fabio

    2016-01-01

    The role of Network Theory in the study of the financial crisis has been widely spotted in the latest years. It has been shown how the network topology and the dynamics running on top of it can trigger the outbreak of large systemic crisis. Following this methodological perspective we introduce here the Accounting Network, i.e. the network we can extract through vector similarities techniques from companies’ financial statements. We build the Accounting Network on a large database of worldwide banks in the period 2001–2013, covering the onset of the global financial crisis of mid-2007. After a careful data cleaning, we apply a quality check in the construction of the network, introducing a parameter (the Quality Ratio) capable of trading off the size of the sample (coverage) and the representativeness of the financial statements (accuracy). We compute several basic network statistics and check, with the Louvain community detection algorithm, for emerging communities of banks. Remarkably enough sensible regional aggregations show up with the Japanese and the US clusters dominating the community structure, although the presence of a geographically mixed community points to a gradual convergence of banks into similar supranational practices. Finally, a Principal Component Analysis procedure reveals the main economic components that influence communities’ heterogeneity. Even using the most basic vector similarity hypotheses on the composition of the financial statements, the signature of the financial crisis clearly arises across the years around 2008. We finally discuss how the Accounting Networks can be improved to reflect the best practices in the financial statement analysis. PMID:27736865

  7. The Accounting Network: How Financial Institutions React to Systemic Crisis.

    PubMed

    Puliga, Michelangelo; Flori, Andrea; Pappalardo, Giuseppe; Chessa, Alessandro; Pammolli, Fabio

    2016-01-01

    The role of Network Theory in the study of the financial crisis has been widely spotted in the latest years. It has been shown how the network topology and the dynamics running on top of it can trigger the outbreak of large systemic crisis. Following this methodological perspective we introduce here the Accounting Network, i.e. the network we can extract through vector similarities techniques from companies' financial statements. We build the Accounting Network on a large database of worldwide banks in the period 2001-2013, covering the onset of the global financial crisis of mid-2007. After a careful data cleaning, we apply a quality check in the construction of the network, introducing a parameter (the Quality Ratio) capable of trading off the size of the sample (coverage) and the representativeness of the financial statements (accuracy). We compute several basic network statistics and check, with the Louvain community detection algorithm, for emerging communities of banks. Remarkably enough sensible regional aggregations show up with the Japanese and the US clusters dominating the community structure, although the presence of a geographically mixed community points to a gradual convergence of banks into similar supranational practices. Finally, a Principal Component Analysis procedure reveals the main economic components that influence communities' heterogeneity. Even using the most basic vector similarity hypotheses on the composition of the financial statements, the signature of the financial crisis clearly arises across the years around 2008. We finally discuss how the Accounting Networks can be improved to reflect the best practices in the financial statement analysis.

  8. Research in computer science

    NASA Technical Reports Server (NTRS)

    Ortega, J. M.

    1984-01-01

    The research efforts of University of Virginia students under a NASA sponsored program are summarized and the status of the program is reported. The research includes: testing method evaluations for N version programming; a representation scheme for modeling three dimensional objects; fault tolerant protocols for real time local area networks; performance investigation of Cyber network; XFEM implementation; and vectorizing incomplete Cholesky conjugate gradients.

  9. Method Accelerates Training Of Some Neural Networks

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.

    1992-01-01

    Three-layer networks trained faster provided two conditions are satisfied: numbers of neurons in layers are such that majority of work done in synaptic connections between input and hidden layers, and number of neurons in input layer at least as great as number of training pairs of input and output vectors. Based on modified version of back-propagation method.

  10. Chromosomal integration of adenoviral vector DNA in vivo.

    PubMed

    Stephen, Sam Laurel; Montini, Eugenio; Sivanandam, Vijayshankar Ganesh; Al-Dhalimy, Muhseen; Kestler, Hans A; Finegold, Milton; Grompe, Markus; Kochanek, Stefan

    2010-10-01

    So far there has been no report of any clinical or preclinical evidence for chromosomal vector integration following adenovirus (Ad) vector-mediated gene transfer in vivo. We used liver gene transfer with high-capacity Ad vectors in the FAH(Deltaexon5) mouse model to analyze homologous and heterologous recombination events between vector and chromosomal DNA. Intravenous injection of Ad vectors either expressing a fumarylacetoacetate hydrolase (FAH) cDNA or carrying part of the FAH genomic locus resulted in liver nodules of FAH-expressing hepatocytes, demonstrating chromosomal vector integration. Analysis of junctions between vector and chromosomal DNA following heterologous recombination indicated integration of the vector genome through its termini. Heterologous recombination occurred with a median frequency of 6.72 x 10(-5) per transduced hepatocyte, while homologous recombination occurred more rarely with a median frequency of 3.88 x 10(-7). This study has established quantitative and qualitative data on recombination of adenoviral vector DNA with genomic DNA in vivo, contributing to a risk-benefit assessment of the biosafety of Ad vector-mediated gene transfer.

  11. Reverse engineering highlights potential principles of large gene regulatory network design and learning.

    PubMed

    Carré, Clément; Mas, André; Krouk, Gabriel

    2017-01-01

    Inferring transcriptional gene regulatory networks from transcriptomic datasets is a key challenge of systems biology, with potential impacts ranging from medicine to agronomy. There are several techniques used presently to experimentally assay transcription factors to target relationships, defining important information about real gene regulatory networks connections. These techniques include classical ChIP-seq, yeast one-hybrid, or more recently, DAP-seq or target technologies. These techniques are usually used to validate algorithm predictions. Here, we developed a reverse engineering approach based on mathematical and computer simulation to evaluate the impact that this prior knowledge on gene regulatory networks may have on training machine learning algorithms. First, we developed a gene regulatory networks-simulating engine called FRANK (Fast Randomizing Algorithm for Network Knowledge) that is able to simulate large gene regulatory networks (containing 10 4 genes) with characteristics of gene regulatory networks observed in vivo. FRANK also generates stable or oscillatory gene expression directly produced by the simulated gene regulatory networks. The development of FRANK leads to important general conclusions concerning the design of large and stable gene regulatory networks harboring scale free properties (built ex nihilo). In combination with supervised (accepting prior knowledge) support vector machine algorithm we (i) address biologically oriented questions concerning our capacity to accurately reconstruct gene regulatory networks and in particular we demonstrate that prior-knowledge structure is crucial for accurate learning, and (ii) draw conclusions to inform experimental design to performed learning able to solve gene regulatory networks in the future. By demonstrating that our predictions concerning the influence of the prior-knowledge structure on support vector machine learning capacity holds true on real data ( Escherichia coli K14 network reconstruction using network and transcriptomic data), we show that the formalism used to build FRANK can to some extent be a reasonable model for gene regulatory networks in real cells.

  12. Proteomic analysis of interaction between P7-1 of Southern rice black-streaked dwarf virus and the insect vector reveals diverse insect proteins involved in successful transmission.

    PubMed

    Mar, ThiThi; Liu, Wenwen; Wang, Xifeng

    2014-05-06

    Southern rice black-streaked dwarf virus (SRBSDV), transmitted by the white-backed planthopper (Sogatella furcifera) in a persistent-propagative manner, has caused serious yield losses in Asia. Here in a yeast two-hybrid system, protein interactions between SRBSDV P7-1 as a bait protein and a cDNA library of S. furcifera as prey protein were assessed. Of 153 proteins identified as putative interactors, 24 were selected for further analysis. Of the 24 proteins, 18 were further confirmed in a chemiluminescent coimmunoprecipitation (Co-IP) assay as true positive interactors with different strengths of interactions. Six potential candidate proteins (neuroglian, myosin light chain 2 [MLC2], polyubiquitin, E3 ubiquitin ligase, ribophorin ii, and profilin) were analyzed for gene expression in five organs by qRT-PCR; mRNA levels were highest in the gut for neuroglian, MLC2, polyubiquitin and profilin, in the salivary glands for ribophorin ii, and in the haemolymph for E3 ubiquitin ligase. A virus-host protein interaction network was constructed using SRBSDV P7-1 and 18 prey positive protein homologs of Drosophila melanogaster. Our findings suggest that these proteins are involved in the complex host reaction to infection by SRBSDV and provide new insights into the molecular basis of transmission. Southern rice black-streaked dwarf virus (SRBSDV), transmitted by S. furcifera in a persistent-propagative manner, is a new found virus and a tentative member of the genus Fijivirus in the family Reoviridae. It was widely noted by plant virologist, government officials and the farmers in Asia in recent years because of its epidemic outbreak and causing serious yield losses after 2009. However, the molecular mechanism by which SRBSDV successfully infects and replicates in both plant and insect hosts remains unclear, and much less is known about how the virus spreads from initially infected cells to adjacent cells in the insect vector. In the present study, we examined protein interactions between SRBSDV P7-1 as the bait and cDNA library of WBPH as the prey by using yeast two-hybrid system, 153 proteins were identified as putative interactors and 24 putative proteins were selected for chemiluminescent coimmunoprecipitation (Co-IP) assay, and then constructed a viral protein-host protein interaction network with homologs of D. melanogaster. Six WBPH proteins were confirmed as potential P7-1 partners that take part in a pivotal role for viral movement in insect vector. These findings will greatly facilitate the understanding of the transmission mechanisms of SRBSDV by its insect vector. This is the first to study the molecular interaction between SRBSDV and its insect vector. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems.

    PubMed

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2015-01-01

    Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.

  14. Condition monitoring of 3G cellular networks through competitive neural models.

    PubMed

    Barreto, Guilherme A; Mota, João C M; Souza, Luis G M; Frota, Rewbenio A; Aguayo, Leonardo

    2005-09-01

    We develop an unsupervised approach to condition monitoring of cellular networks using competitive neural algorithms. Training is carried out with state vectors representing the normal functioning of a simulated CDMA2000 network. Once training is completed, global and local normality profiles (NPs) are built from the distribution of quantization errors of the training state vectors and their components, respectively. The global NP is used to evaluate the overall condition of the cellular system. If abnormal behavior is detected, local NPs are used in a component-wise fashion to find abnormal state variables. Anomaly detection tests are performed via percentile-based confidence intervals computed over the global and local NPs. We compared the performance of four competitive algorithms [winner-take-all (WTA), frequency-sensitive competitive learning (FSCL), self-organizing map (SOM), and neural-gas algorithm (NGA)] and the results suggest that the joint use of global and local NPs is more efficient and more robust than current single-threshold methods.

  15. Neural Network Target Identification System for False Alarm Reduction

    NASA Technical Reports Server (NTRS)

    Ye, David; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin

    2009-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feed forward back propagation neural network (NN) is then trained to classify each feature vector and remove false positives. This paper discusses the test of the system performance and parameter optimizations process which adapts the system to various targets and datasets. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar image dataset.

  16. Thermodynamics of relation-based systems with applications in econophysics, sociophysics, and music

    NASA Astrophysics Data System (ADS)

    Gündüz, Güngör

    2012-10-01

    A methodology was developed to analyze relation-based systems evolving in time by using the fundamental concepts of thermodynamics. The behavior of such systems can be tracked from the scattering matrix which is actually a network of directed vectors (or pathways) connecting subsequent values, which characterize an event, such as the index values in stock markets. A system behaves in a rigid (elastic) way to an external effect and resists permanent deformation, or it behaves in a viscous (or soft) way and deforms in an irreversible way. It was shown in the past that a formula derived using the slope of paths gives a measure about the extent of viscoelastic behavior of relation-based systems Gündüz (2009) [5] Gündüz and Gündüz (2010) [6]. In this research the ‘work’ associated with ‘elastic’ component, and ‘heat’ associated with ‘viscous’ component were discussed and elaborated. In a simple two subsequent pathway system in a scattering diagram the first vector represents ‘the cause’ and the second ‘the effect’. By using work and heat energy relations that involve force and also storage and loss modulus terms, respectively, one can calculate the energy involved in relation-based systems. The modulus values can be found from the parallel and vertical components of the second vector with respect to the first vector. Once work-like and heat-like terms were determined the internal energy is also easily found from their summation. The parallel and vertical components can also be used to calculate the magnitude of torque and torque energy in the system. Three cases, (i) the behavior of the NASDAQ-100 index, (ii) a social revolt, and (iii) the structure of a melody were analyzed for their ‘work-like’, ‘heat-like’, and ‘torque-like’ energies in the course of their evolution. NASDAQ-100 exhibits highly dissipative behavior, and its work terms are very small but heat terms are of large magnitude. Its internal energy highly fluctuates in time. In the social revolt studied work and heat terms are of comparable magnitude. The melody depicts highly organized structure, and usually has larger work terms than heat terms, but at some intervals heat terms burst out and attain very large magnitudes. Torque terms reach high values when the system is recovering from a minimum value.

  17. Covariantized vector Galileons

    NASA Astrophysics Data System (ADS)

    Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo

    2016-03-01

    Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.

  18. Network-Based Detection and Classification of Seismovolcanic Tremors: Example From the Klyuchevskoy Volcanic Group in Kamchatka

    NASA Astrophysics Data System (ADS)

    Soubestre, Jean; Shapiro, Nikolai M.; Seydoux, Léonard; de Rosny, Julien; Droznin, Dmitry V.; Droznina, Svetlana Ya.; Senyukov, Sergey L.; Gordeev, Evgeniy I.

    2018-01-01

    We develop a network-based method for detecting and classifying seismovolcanic tremors. The proposed approach exploits the coherence of tremor signals across the network that is estimated from the array covariance matrix. The method is applied to four and a half years of continuous seismic data recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. We compute and analyze daily covariance matrices together with their eigenvalues and eigenvectors. As a first step, most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. Thus, volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the daily array covariance matrix's first eigenvector. Our main hypothesis is that these eigenvectors represent the principal components of the daily seismic wavefield and, for days with tremor activity, characterize dominant tremor sources. Those daily first eigenvectors, which can be used as network-based fingerprints of tremor sources, are then grouped into clusters using correlation coefficient as a measure of the vector similarity. As a result, we identify seven clusters associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge and is fully automatic; and the database of the network-based tremor fingerprints can be continuously enriched with newly available data.

  19. Classification of bifurcations regions in IVOCT images using support vector machine and artificial neural network models

    NASA Astrophysics Data System (ADS)

    Porto, C. D. N.; Costa Filho, C. F. F.; Macedo, M. M. G.; Gutierrez, M. A.; Costa, M. G. F.

    2017-03-01

    Studies in intravascular optical coherence tomography (IV-OCT) have demonstrated the importance of coronary bifurcation regions in intravascular medical imaging analysis, as plaques are more likely to accumulate in this region leading to coronary disease. A typical IV-OCT pullback acquires hundreds of frames, thus developing an automated tool to classify the OCT frames as bifurcation or non-bifurcation can be an important step to speed up OCT pullbacks analysis and assist automated methods for atherosclerotic plaque quantification. In this work, we evaluate the performance of two state-of-the-art classifiers, SVM and Neural Networks in the bifurcation classification task. The study included IV-OCT frames from 9 patients. In order to improve classification performance, we trained and tested the SVM with different parameters by means of a grid search and different stop criteria were applied to the Neural Network classifier: mean square error, early stop and regularization. Different sets of features were tested, using feature selection techniques: PCA, LDA and scalar feature selection with correlation. Training and test were performed in sets with a maximum of 1460 OCT frames. We quantified our results in terms of false positive rate, true positive rate, accuracy, specificity, precision, false alarm, f-measure and area under ROC curve. Neural networks obtained the best classification accuracy, 98.83%, overcoming the results found in literature. Our methods appear to offer a robust and reliable automated classification of OCT frames that might assist physicians indicating potential frames to analyze. Methods for improving neural networks generalization have increased the classification performance.

  20. Support Vector Machine Model for Automatic Detection and Classification of Seismic Events

    NASA Astrophysics Data System (ADS)

    Barros, Vesna; Barros, Lucas

    2016-04-01

    The automated processing of multiple seismic signals to detect, localize and classify seismic events is a central tool in both natural hazards monitoring and nuclear treaty verification. However, false detections and missed detections caused by station noise and incorrect classification of arrivals are still an issue and the events are often unclassified or poorly classified. Thus, machine learning techniques can be used in automatic processing for classifying the huge database of seismic recordings and provide more confidence in the final output. Applied in the context of the International Monitoring System (IMS) - a global sensor network developed for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) - we propose a fully automatic method for seismic event detection and classification based on a supervised pattern recognition technique called the Support Vector Machine (SVM). According to Kortström et al., 2015, the advantages of using SVM are handleability of large number of features and effectiveness in high dimensional spaces. Our objective is to detect seismic events from one IMS seismic station located in an area of high seismicity and mining activity and classify them as earthquakes or quarry blasts. It is expected to create a flexible and easily adjustable SVM method that can be applied in different regions and datasets. Taken a step further, accurate results for seismic stations could lead to a modification of the model and its parameters to make it applicable to other waveform technologies used to monitor nuclear explosions such as infrasound and hydroacoustic waveforms. As an authorized user, we have direct access to all IMS data and bulletins through a secure signatory account. A set of significant seismic waveforms containing different types of events (e.g. earthquake, quarry blasts) and noise is being analysed to train the model and learn the typical pattern of the signal from these events. Moreover, comparing the performance of the support-vector network to various classical learning algorithms used before in seismic detection and classification is an essential final step to analyze the advantages and disadvantages of the model.

  1. A Distributed Sensor Network Architecture for Defense Against the Ship as a Weapon in the Maritime Domain

    DTIC Science & Technology

    2011-06-01

    time delays, and even insurance premiums [3]. Piracy has plagued the straits of Malacca and Singapore for many years. Though the number of...Island while traversing west to east, it will attract considerable attention when it cuts across the TSS before heading towards Jurong Island (see the...delimited vectors), ’cutvector’ % (NaN-clipped vectors with cuts connecting holes to the % exterior of the polygon

  2. Analysis of a general SIS model with infective vectors on the complex networks

    NASA Astrophysics Data System (ADS)

    Juang, Jonq; Liang, Yu-Hao

    2015-11-01

    A general SIS model with infective vectors on complex networks is studied in this paper. In particular, the model considers the linear combination of three possible routes of disease propagation between infected and susceptible individuals as well as two possible transmission types which describe how the susceptible vectors attack the infected individuals. A new technique based on the basic reproduction matrix is introduced to obtain the following results. First, necessary and sufficient conditions are obtained for the global stability of the model through a unified approach. As a result, we are able to produce the exact basic reproduction number and the precise epidemic thresholds with respect to three spreading strengths, the curing strength or the immunization strength all at once. Second, the monotonicity of the basic reproduction number and the above mentioned epidemic thresholds with respect to all other parameters can be rigorously characterized. Finally, we are able to compare the effectiveness of various immunization strategies under the assumption that the number of persons getting vaccinated is the same for all strategies. In particular, we prove that in the scale-free networks, both targeted and acquaintance immunizations are more effective than uniform and active immunizations and that active immunization is the least effective strategy among those four. We are also able to determine how the vaccine should be used at minimum to control the outbreak of the disease.

  3. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    NASA Astrophysics Data System (ADS)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  4. Diagnostic methodology for incipient system disturbance based on a neural wavelet approach

    NASA Astrophysics Data System (ADS)

    Won, In-Ho

    Since incipient system disturbances are easily mixed up with other events or noise sources, the signal from the system disturbance can be neglected or identified as noise. Thus, as available knowledge and information is obtained incompletely or inexactly from the measurements; an exploration into the use of artificial intelligence (AI) tools to overcome these uncertainties and limitations was done. A methodology integrating the feature extraction efficiency of the wavelet transform with the classification capabilities of neural networks is developed for signal classification in the context of detecting incipient system disturbances. The synergistic effects of wavelets and neural networks present more strength and less weakness than either technique taken alone. A wavelet feature extractor is developed to form concise feature vectors for neural network inputs. The feature vectors are calculated from wavelet coefficients to reduce redundancy and computational expense. During this procedure, the statistical features based on the fractal concept to the wavelet coefficients play a role as crucial key in the wavelet feature extractor. To verify the proposed methodology, two applications are investigated and successfully tested. The first involves pump cavitation detection using dynamic pressure sensor. The second pertains to incipient pump cavitation detection using signals obtained from a current sensor. Also, through comparisons between three proposed feature vectors and with statistical techniques, it is shown that the variance feature extractor provides a better approach in the performed applications.

  5. Automatic classification of schizophrenia using resting-state functional language network via an adaptive learning algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi

    2014-03-01

    A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.

  6. LANDMARK-BASED SPEECH RECOGNITION: REPORT OF THE 2004 JOHNS HOPKINS SUMMER WORKSHOP.

    PubMed

    Hasegawa-Johnson, Mark; Baker, James; Borys, Sarah; Chen, Ken; Coogan, Emily; Greenberg, Steven; Juneja, Amit; Kirchhoff, Katrin; Livescu, Karen; Mohan, Srividya; Muller, Jennifer; Sonmez, Kemal; Wang, Tianyu

    2005-01-01

    Three research prototype speech recognition systems are described, all of which use recently developed methods from artificial intelligence (specifically support vector machines, dynamic Bayesian networks, and maximum entropy classification) in order to implement, in the form of an automatic speech recognizer, current theories of human speech perception and phonology (specifically landmark-based speech perception, nonlinear phonology, and articulatory phonology). All three systems begin with a high-dimensional multiframe acoustic-to-distinctive feature transformation, implemented using support vector machines trained to detect and classify acoustic phonetic landmarks. Distinctive feature probabilities estimated by the support vector machines are then integrated using one of three pronunciation models: a dynamic programming algorithm that assumes canonical pronunciation of each word, a dynamic Bayesian network implementation of articulatory phonology, or a discriminative pronunciation model trained using the methods of maximum entropy classification. Log probability scores computed by these models are then combined, using log-linear combination, with other word scores available in the lattice output of a first-pass recognizer, and the resulting combination score is used to compute a second-pass speech recognition output.

  7. The network organisation of consumer complaints

    NASA Astrophysics Data System (ADS)

    Rocha, L. E. C.; Holme, P.

    2010-07-01

    Interaction between consumers and companies can create conflict. When a consensus is unreachable there are legal authorities to resolve the case. This letter is a study of data from the Brazilian Department of Justice from which we build a bipartite network of categories of complaints linked to the companies receiving those complaints. We find the complaint categories organised in an hierarchical way where companies only get complaints of lower degree if they already got complaints of higher degree. The fraction of resolved complaints for a company appears to be nearly independent of the equity of the company but is positively correlated with the total number of complaints received. We construct feature vectors based on the edge-weight —the weight of an edge represents the times complaints of a category have been filed against that company— and use these vectors to study the similarity between the categories of complaints. From this analysis, we obtain trees mapping the hierarchical organisation of the complaints. We also apply principal component analysis to the set of feature vectors concluding that a reduction of the dimensionality of these from 8827 to 27 gives an optimal hierarchical representation.

  8. SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles

    NASA Astrophysics Data System (ADS)

    Pérez-Peña, J. V.; Al-Awabdeh, M.; Azañón, J. M.; Galve, J. P.; Booth-Rea, G.; Notti, D.

    2017-07-01

    The present-day great availability of high-resolution Digital Elevation Models has improved tectonic geomorphology analyses in their methodological aspects and geological meaning. Analyses based on topographic profiles are valuable to explore the short and long-term landscape response to tectonic activity and climate changes. Swath and river longitudinal profiles are two of the most used analysis to explore the long and short-term landscape responses. Most of these morphometric analyses are conducted in GIS software, which have become standard tools for analyzing drainage network metrics. In this work we present two ArcGIS Add-Ins to automatically delineate swath and normalized river profiles. Both tools are programmed in Visual Basic . NET and use ArcObjects library-architecture to access directly to vector and raster data. The SwathProfiler Add-In allows analyzing the topography within a swath or band by representing maximum-minimum-mean elevations, first and third quartile, local relief and hypsometry. We have defined a new transverse hypsometric integral index (THi) that analyzes hypsometry along the swath and offer valuable information in these kind of graphics. The NProfiler Add-In allows representing longitudinal normalized river profiles and their related morphometric indexes as normalized concavity (CT), maximum concavity (Cmax) and length of maximum concavity (Lmax). Both tools facilitate the spatial analysis of topography and drainage networks directly in a GIS environment as ArcMap and provide graphical outputs. To illustrate how these tools work, we analyzed two study areas, the Sierra Alhamilla mountain range (Betic Cordillera, SE Spain) and the Eastern margin of the Dead Sea (Jordan). The first study area has been recently studied from a morphotectonic perspective and these new tools can show an added value to the previous studies. The second study area has not been analyzed by quantitative tectonic geomorphology and the results suggest a landscape in transient state due to a continuous base-level fall produced by the formation of the Dead Sea basin.

  9. Nucleolar Persistence: Peculiar Characteristic of Spermatogenesis of the Vectors of Chagas Disease (Hemiptera, Triatominae)

    PubMed Central

    Madeira, Fernanda Fernandez; Borsatto, Kelly Cristine; Lima, Anna Claudia Campaner; Ravazi, Amanda; de Oliveira, Jader; da Rosa, João Aristeu; de Azeredo-Oliveira, Maria Tercília Vilela; Alevi, Kaio Cesar Chaboli

    2016-01-01

    All species of triatomines are considered potential vectors of Chagas disease and the reproductive biology of these bugs has been studied by different approaches. In 1999, nucleolar persistence during meiosis was observed in the subfamily for the first time. Recently, it has been observed that all species within the genus Rhodnius exhibit the same phenomenon, suggesting that it may be a synapomorphy of the triatomines. Thus, this article aims to analyze the nucleolar behavior during spermatogenesis of 59 triatomine species. All analyzed species exhibited nucleolar persistence during meiosis. Recently, it has been suggested that nucleolar persistence may be fundamental for the spermatogenesis of these vectors, since it is related to the formation of the chromatoid body. Therefore, we emphasize that this phenomenon is a peculiarity of the Triatominae subfamily and that further studies are required to analyze whether the nucleolar material that persists is active. PMID:27645782

  10. Analyzing Small Signal Stability of Power System based on Online Data by Use of SMES

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiroyuki; Shirai, Yasuyuki; Nitta, Tanzo; Shibata, Katsuhiko

    The purpose of this study is to estimate eigen-values and eigen-vectors of a power system from on-line data to evaluate the power system stability. Power system responses due to the small power modulation of known pattern from SMES (Superconducting Magnetic Energy Storage) were analyzed, and the transfer functions between the power modulation and power oscillations of generators were obtained. Eigen-values and eigen-vectors were estimated from the transfer functions. Experiments were carried out by use of a model SMES and Advanced Power System Analyzer (APSA), which is an analogue type power system simulator of Kansai Electric Power Company Inc., Japan. Changes in system condition were observed by the estimated eigen-values and eigen-vectors. Result agreed well with the resent report and digital simulation. This method gives a new application for SMES, which will be installed for improving electric power quality.

  11. Abnormal neural activity as a potential biomarker for drug-naive first-episode adolescent-onset schizophrenia with coherence regional homogeneity and support vector machine analyses.

    PubMed

    Liu, Yi; Zhang, Yan; Lv, Luxian; Wu, Renrong; Zhao, Jingping; Guo, Wenbin

    2018-02-01

    Patients with adolescent-onset schizophrenia (AOS) hold the same but severe form of symptoms with adult-onset schizophrenia, and with worse outcome and poor treatment response to antipsychotics. Several dominant brain regions of schizophrenia patients show significantly abnormal structural and functional connectivity during resting-state scans. However, coherence regional homogeneity (Cohe-ReHo) in drug-naive first-episode patients with AOS remains unclear. A total of 48 drug-naive first-episode AOS outpatients and 31 healthy controls underwent resting-state functional magnetic resonance scans. Cohe-ReHo and support vector machine analyses were used to analyze the data. Compared with the healthy controls, the AOS group showed significantly decreased Cohe-ReHo values distributed over brain regions, including the left postcentral gyrus, left superior temporal gyrus, left paracentral lobule, right precentral gyrus, right inferior parietal lobule (IPL), right middle frontal gyrus, and bilateral precuneus. No region with increased Cohe-ReHo values was observed in the AOS group compared with healthy controls. In addition, the right IPL was correlated with fluency (r=-0.324, p=0.030). However, the correlation was not significant after the Bonferroni correction at p<0.0083 (0.05/6). A combination of the Cohe-ReHo values in the bilateral precuneus and right IPL discriminated the patients from controls with the sensitivity, specificity, and accuracy of 91.67%, 87.10%, and 89.87%, respectively. Our findings suggested that the AOS patients exhibited diminished Cohe-ReHo values in some regions within the DMN network and sensorimotor network. The abnormalities in particular brain regions (bilateral precuneus and right IPL) may serve as potential biomarkers for AOS. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evaluation Method for Service Branding Using Word-of-Mouth Data

    NASA Astrophysics Data System (ADS)

    Shirahada, Kunio; Kosaka, Michitaka

    Development and spread of internet technology contributes service firms to obtaining the high capability of brand information transmission as well as relative customer feedback data collection. In this paper, we propose a new evaluation method for service branding using firms and consumers data on the internet. Based on service marketing 7Ps (Product, Price, Place, Promotion, People, Physical evidence, Process) which are the key viewpoints for branding, we develop a brand evaluation system including coding methods for Word-of-Mouth (WoM) and corporate introductory information on the internet to identify both customer's service value recognition vector and firm's service value proposition vector. Our system quantitatively clarify both customer's service value recognition of the firm and firm's strength in service value proposition, thereby analyzing service brand communication gaps between firm and consumers. We applied this system to Japanese Ryokan hotel industry. Using six ryokan-hotels' data on Jyaran-net and Rakuten travel, we made totally 983 codes from WoM information and analyzed their service brand value according to three price based categories. As a result, we found that the characteristics of customers' service value recognition vector differ according to the price categories. In addition, the system clarified that there is a firm that has a different service value proposition vector from customers' recognition vector. This helps to analyze corporate service brand strategy and has a significance as a system technology supporting service management.

  13. Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network

    PubMed Central

    He, Jun; Yang, Shixi; Gan, Chunbiao

    2017-01-01

    Artificial intelligence (AI) techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN) is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN) and support vector machine (SVM). The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods. PMID:28677638

  14. Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network.

    PubMed

    He, Jun; Yang, Shixi; Gan, Chunbiao

    2017-07-04

    Artificial intelligence (AI) techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN) is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN) and support vector machine (SVM). The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods.

  15. Neural network classification of sweet potato embryos

    NASA Astrophysics Data System (ADS)

    Molto, Enrique; Harrell, Roy C.

    1993-05-01

    Somatic embryogenesis is a process that allows for the in vitro propagation of thousands of plants in sub-liter size vessels and has been successfully applied to many significant species. The heterogeneity of maturity and quality of embryos produced with this technique requires sorting to obtain a uniform product. An automated harvester is being developed at the University of Florida to sort embryos in vitro at different stages of maturation in a suspension culture. The system utilizes machine vision to characterize embryo morphology and a fluidic based separation device to isolate embryos associated with a pre-defined, targeted morphology. Two different backpropagation neural networks (BNN) were used to classify embryos based on information extracted from the vision system. One network utilized geometric features such as embryo area, length, and symmetry as inputs. The alternative network utilized polar coordinates of an embryo's perimeter with respect to its centroid as inputs. The performances of both techniques were compared with each other and with an embryo classification method based on linear discriminant analysis (LDA). Similar results were obtained with all three techniques. Classification efficiency was improved by reducing the dimension of the feature vector trough a forward stepwise analysis by LDA. In order to enhance the purity of the sample selected as harvestable, a reject to classify option was introduced in the model and analyzed. The best classifier performances (76% overall correct classifications, 75% harvestable objects properly classified, homogeneity improvement ratio 1.5) were obtained using 8 features in a BNN.

  16. Establishment of the Ivermectin Research for Malaria Elimination Network: updating the research agenda.

    PubMed

    Chaccour, Carlos J; Rabinovich, N Regina; Slater, Hannah; Canavati, Sara E; Bousema, Teun; Lacerda, Marcus; Ter Kuile, Feiko; Drakeley, Chris; Bassat, Quique; Foy, Brian D; Kobylinski, Kevin

    2015-06-11

    The potential use of ivermectin as an additional vector control tool is receiving increased attention from the malaria elimination community, driven by the increased importance of outdoor/residual malaria transmission and the threat of insecticide resistance where vector tools have been scaled-up. This report summarizes the emerging evidence presented at a side meeting on "Ivermectin for malaria elimination: current status and future directions" at the annual meeting of the American Society of Tropical Medicine and Hygiene in New Orleans on November 4, 2014. One outcome was the creation of the "Ivermectin Research for Malaria Elimination Network" whose main goal is to establish a common research agenda to generate the evidence base on whether ivermectin-based strategies should be added to the emerging arsenal to interrupt malaria transmission.

  17. Software tool for data mining and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Ye, Chenzhou; Chen, Nianyi

    2002-03-01

    A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.

  18. First results on the energy scan of the vector Ay and tensor Ayy and Axx analyzing powers in deuteron-proton elastic scattering at Nuclotron1

    NASA Astrophysics Data System (ADS)

    Ladygin, V. P.; Averyanov, A. V.; Chernykh, E. V.; Enache, D.; Gurchin, Yu V.; Isupov, A. Yu; Janek, M.; Karachuk, J.-T.; Khrenov, A. N.; Krivenkov, D. O.; Kurilkin, P. K.; Ladygina, N. B.; Livanov, A. N.; Piyadin, S. M.; Reznikov, S. G.; Skhomenko, Ya T.; Terekhin, A. A.; Tishevsky, A. V.; Uesaka, T.

    2017-12-01

    New results on the vector Ay and tensor Ayy and Axx analyzing powers in deuteron-proton elastic scattering obtained at Nuclotron in the energy range 400-1800 MeV are presented. These data have been obtained in 2016-2017 at DSS setup at internal target station using polarized deuteron beam from new source of polarized ions. The preliminary data on the deuteron analyzing powers in in the wide energy range demonstrate the sensitivity to the short-range spin structure of the nucleon-nucleon correlations.

  19. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    PubMed Central

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  20. Going Deeper With Contextual CNN for Hyperspectral Image Classification.

    PubMed

    Lee, Hyungtae; Kwon, Heesung

    2017-10-01

    In this paper, we describe a novel deep convolutional neural network (CNN) that is deeper and wider than other existing deep networks for hyperspectral image classification. Unlike current state-of-the-art approaches in CNN-based hyperspectral image classification, the proposed network, called contextual deep CNN, can optimally explore local contextual interactions by jointly exploiting local spatio-spectral relationships of neighboring individual pixel vectors. The joint exploitation of the spatio-spectral information is achieved by a multi-scale convolutional filter bank used as an initial component of the proposed CNN pipeline. The initial spatial and spectral feature maps obtained from the multi-scale filter bank are then combined together to form a joint spatio-spectral feature map. The joint feature map representing rich spectral and spatial properties of the hyperspectral image is then fed through a fully convolutional network that eventually predicts the corresponding label of each pixel vector. The proposed approach is tested on three benchmark data sets: the Indian Pines data set, the Salinas data set, and the University of Pavia data set. Performance comparison shows enhanced classification performance of the proposed approach over the current state-of-the-art on the three data sets.

  1. Image and Video Compression with VLSI Neural Networks

    NASA Technical Reports Server (NTRS)

    Fang, W.; Sheu, B.

    1993-01-01

    An advanced motion-compensated predictive video compression system based on artificial neural networks has been developed to effectively eliminate the temporal and spatial redundancy of video image sequences and thus reduce the bandwidth and storage required for the transmission and recording of the video signal. The VLSI neuroprocessor for high-speed high-ratio image compression based upon a self-organization network and the conventional algorithm for vector quantization are compared. The proposed method is quite efficient and can achieve near-optimal results.

  2. Entomological Monitoring and Evaluation: Diverse Transmission Settings of ICEMR Projects Will Require Local and Regional Malaria Elimination Strategies

    PubMed Central

    Conn, Jan E.; Norris, Douglas E.; Donnelly, Martin J.; Beebe, Nigel W.; Burkot, Thomas R.; Coulibaly, Mamadou B.; Chery, Laura; Eapen, Alex; Keven, John B.; Kilama, Maxwell; Kumar, Ashwani; Lindsay, Steve W.; Moreno, Marta; Quinones, Martha; Reimer, Lisa J.; Russell, Tanya L.; Smith, David L.; Thomas, Matthew B.; Walker, Edward D.; Wilson, Mark L.; Yan, Guiyun

    2015-01-01

    The unprecedented global efforts for malaria elimination in the past decade have resulted in altered vectorial systems, vector behaviors, and bionomics. These changes combined with increasingly evident heterogeneities in malaria transmission require innovative vector control strategies in addition to the established practices of long-lasting insecticidal nets and indoor residual spraying. Integrated vector management will require focal and tailored vector control to achieve malaria elimination. This switch of emphasis from universal coverage to universal coverage plus additional interventions will be reliant on improved entomological monitoring and evaluation. In 2010, the National Institutes for Allergies and Infectious Diseases (NIAID) established a network of malaria research centers termed ICEMRs (International Centers for Excellence in Malaria Research) expressly to develop this evidence base in diverse malaria endemic settings. In this article, we contrast the differing ecology and transmission settings across the ICEMR study locations. In South America, Africa, and Asia, vector biologists are already dealing with many of the issues of pushing to elimination such as highly focal transmission, proportionate increase in the importance of outdoor and crepuscular biting, vector species complexity, and “sub patent” vector transmission. PMID:26259942

  3. Entomological Monitoring and Evaluation: Diverse Transmission Settings of ICEMR Projects Will Require Local and Regional Malaria Elimination Strategies.

    PubMed

    Conn, Jan E; Norris, Douglas E; Donnelly, Martin J; Beebe, Nigel W; Burkot, Thomas R; Coulibaly, Mamadou B; Chery, Laura; Eapen, Alex; Keven, John B; Kilama, Maxwell; Kumar, Ashwani; Lindsay, Steve W; Moreno, Marta; Quinones, Martha; Reimer, Lisa J; Russell, Tanya L; Smith, David L; Thomas, Matthew B; Walker, Edward D; Wilson, Mark L; Yan, Guiyun

    2015-09-01

    The unprecedented global efforts for malaria elimination in the past decade have resulted in altered vectorial systems, vector behaviors, and bionomics. These changes combined with increasingly evident heterogeneities in malaria transmission require innovative vector control strategies in addition to the established practices of long-lasting insecticidal nets and indoor residual spraying. Integrated vector management will require focal and tailored vector control to achieve malaria elimination. This switch of emphasis from universal coverage to universal coverage plus additional interventions will be reliant on improved entomological monitoring and evaluation. In 2010, the National Institutes for Allergies and Infectious Diseases (NIAID) established a network of malaria research centers termed ICEMRs (International Centers for Excellence in Malaria Research) expressly to develop this evidence base in diverse malaria endemic settings. In this article, we contrast the differing ecology and transmission settings across the ICEMR study locations. In South America, Africa, and Asia, vector biologists are already dealing with many of the issues of pushing to elimination such as highly focal transmission, proportionate increase in the importance of outdoor and crepuscular biting, vector species complexity, and "sub patent" vector transmission. © The American Society of Tropical Medicine and Hygiene.

  4. A multistage motion vector processing method for motion-compensated frame interpolation.

    PubMed

    Huang, Ai- Mei; Nguyen, Truong Q

    2008-05-01

    In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.

  5. Amino acid "little Big Bang": representing amino acid substitution matrices as dot products of Euclidian vectors.

    PubMed

    Zimmermann, Karel; Gibrat, Jean-François

    2010-01-04

    Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  6. A hierarchical pyramid method for managing large-scale high-resolution drainage networks extracted from DEM

    NASA Astrophysics Data System (ADS)

    Bai, Rui; Tiejian, Li; Huang, Yuefei; Jiaye, Li; Wang, Guangqian; Yin, Dongqin

    2015-12-01

    The increasing resolution of Digital Elevation Models (DEMs) and the development of drainage network extraction algorithms make it possible to develop high-resolution drainage networks for large river basins. These vector networks contain massive numbers of river reaches with associated geographical features, including topological connections and topographical parameters. These features create challenges for efficient map display and data management. Of particular interest are the requirements of data management for multi-scale hydrological simulations using multi-resolution river networks. In this paper, a hierarchical pyramid method is proposed, which generates coarsened vector drainage networks from the originals iteratively. The method is based on the Horton-Strahler's (H-S) order schema. At each coarsening step, the river reaches with the lowest H-S order are pruned, and their related sub-basins are merged. At the same time, the topological connections and topographical parameters of each coarsened drainage network are inherited from the former level using formulas that are presented in this study. The method was applied to the original drainage networks of a watershed in the Huangfuchuan River basin extracted from a 1-m-resolution airborne LiDAR DEM and applied to the full Yangtze River basin in China, which was extracted from a 30-m-resolution ASTER GDEM. In addition, a map-display and parameter-query web service was published for the Mississippi River basin, and its data were extracted from the 30-m-resolution ASTER GDEM. The results presented in this study indicate that the developed method can effectively manage and display massive amounts of drainage network data and can facilitate multi-scale hydrological simulations.

  7. mizuRoute version 1: A river network routing tool for a continental domain water resources applications

    USGS Publications Warehouse

    Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.

  8. Crosstalk in solar polarization measurements

    NASA Technical Reports Server (NTRS)

    West, E. A.; Balasubramaniam, K. S.

    1992-01-01

    The instrumental crosstalk associated with the Marshall Space Flight Center Vector Magnetograph and the solar crosstalk created by the magnetic field are described and their impact on the reconstruction of the solar vector magnetic field is analyzed. It is pointed out that identifying and correcting the crosstalk is important in the development of realistic models describing the solar atmosphere. Solar crosstalk is spatially dependent on the structure of the magnetic field while instrumental crosstalk is dependent on the position of the analyzer.

  9. Invariant object recognition based on the generalized discrete radon transform

    NASA Astrophysics Data System (ADS)

    Easley, Glenn R.; Colonna, Flavia

    2004-04-01

    We introduce a method for classifying objects based on special cases of the generalized discrete Radon transform. We adjust the transform and the corresponding ridgelet transform by means of circular shifting and a singular value decomposition (SVD) to obtain a translation, rotation and scaling invariant set of feature vectors. We then use a back-propagation neural network to classify the input feature vectors. We conclude with experimental results and compare these with other invariant recognition methods.

  10. A Connectionist Simulation of Attention and Vector Comparison: The Need for Serial Processing in Parallel Hardware

    DTIC Science & Technology

    1991-01-01

    visual and three-layer connectionist network, in that the input layer of memory processing is serial, and is likely to represent each module is... Selective attention gates visual University Press. processing in the extrastnate cortex. Science, 229:782-784. Treasman, A.M. (1985). Preartentive...AD-A242 225 A CONNECTIONIST SIMULATION OF ATTENTION AND VECTOR COMPARISON: THE NEED FOR SERIAL PROCESSING IN PARALLEL HARDWARE Technical Report AlP

  11. Exploiting Hidden Layer Responses of Deep Neural Networks for Language Recognition

    DTIC Science & Technology

    2016-09-08

    trained DNNs. We evaluated this ap- proach in NIST 2015 language recognition evaluation. The per- formances achieved by the proposed approach are very...activations, used in direct DNN-LID. Results from the LID experiments support our hypothesis. The LID experiments are performed on NIST Language Recognition...of-the-art I- vector system [3, 10, 11] in evaluation (eval) set of NIST LRE 2015. Combination of proposed technique and state-of-the-art I-vector

  12. Poynting vector measurements of electromagnetic ion cyclotron waves in the plasmasphere

    NASA Technical Reports Server (NTRS)

    Labelle, J.; Treumann, R. A.

    1992-01-01

    Results are presented from an analysis of the June 6, 1985 Pc 2 measurements for which E, B, and delta-N were all analyzed. The event occurred in the duskside overlap region between the plasmaspheric bulge and the ion ring current. Results of the Poynting vector analysis of the R and L mode components show both of them to be characterized by northward Poynting vector, indicating energy flux away from the equator. The value of the Poynting vector was found to be about 3 microW/sq m.

  13. Optimization of the imaging response of scanning microwave microscopy measurements

    NASA Astrophysics Data System (ADS)

    Sardi, G. M.; Lucibello, A.; Kasper, M.; Gramse, G.; Proietti, E.; Kienberger, F.; Marcelli, R.

    2015-07-01

    In this work, we present the analytical modeling and preliminary experimental results for the choice of the optimal frequencies when performing amplitude and phase measurements with a scanning microwave microscope. In particular, the analysis is related to the reflection mode operation of the instrument, i.e., the acquisition of the complex reflection coefficient data, usually referred as S11. The studied configuration is composed of an atomic force microscope with a microwave matched nanometric cantilever probe tip, connected by a λ/2 coaxial cable resonator to a vector network analyzer. The set-up is provided by Keysight Technologies. As a peculiar result, the optimal frequencies, where the maximum sensitivity is achieved, are different for the amplitude and for the phase signals. The analysis is focused on measurements of dielectric samples, like semiconductor devices, textile pieces, and biological specimens.

  14. Optical Properties of Iron Silicates in the Infrared to Millimeter as a Function of Wavelength and Temperature

    NASA Technical Reports Server (NTRS)

    Richey, C. R.; Kinzer, R. E.; Cataldo, G.; Wollack, E. J.; Nuth, J. A.; Benford, D. J.; Silverberg, R. F.; Rinhart, S. A.

    2013-01-01

    The Optical Properties of Astronomical Silicates with Infrared Techniques program utilizes multiple instruments to provide spectral data over a wide range of temperatures and wavelengths. Experimental methods include Vector Network Analyzer and Fourier transform spectroscopy transmission, and reflection/scattering measurements. From this data, we can determine the optical parameters for the index of refraction, n, and the absorption coefficient, k. The analysis of the laboratory transmittance data for each sample type is based upon different mathematical models, which are applied to each data set according to their degree of coherence. Presented here are results from iron silicate dust grain analogs, in several sample preparations and at temperatures ranging from 5 to 300 K, across the infrared and millimeter portion of the spectrum (from 2.5 to 10,000/micron or 4000 to 1/cm).

  15. Analysis of the Westland Data Set

    NASA Technical Reports Server (NTRS)

    Wen, Fang; Willett, Peter; Deb, Somnath

    2001-01-01

    The "Westland" set of empirical accelerometer helicopter data with seeded and labeled faults is analyzed with the aim of condition monitoring. The autoregressive (AR) coefficients from a simple linear model encapsulate a great deal of information in a relatively few measurements; and it has also been found that augmentation of these by harmonic and other parameters call improve classification significantly. Several techniques have been explored, among these restricted Coulomb energy (RCE) networks, learning vector quantization (LVQ), Gaussian mixture classifiers and decision trees. A problem with these approaches, and in common with many classification paradigms, is that augmentation of the feature dimension can degrade classification ability. Thus, we also introduce the Bayesian data reduction algorithm (BDRA), which imposes a Dirichlet prior oil training data and is thus able to quantify probability of error in all exact manner, such that features may be discarded or coarsened appropriately.

  16. Spin wave propagation detected over 100 μm in half-metallic Heusler alloy Co2MnSi

    NASA Astrophysics Data System (ADS)

    Stückler, Tobias; Liu, Chuanpu; Yu, Haiming; Heimbach, Florian; Chen, Jilei; Hu, Junfeng; Tu, Sa; Alam, Md. Shah; Zhang, Jianyu; Zhang, Youguang; Farrell, Ian L.; Emeny, Chrissy; Granville, Simon; Liao, Zhi-Min; Yu, Dapeng; Zhao, Weisheng

    2018-03-01

    The field of magnon spintronics offers a charge current free way of information transportation by using spin waves (SWs). Compared to forward volume spin waves for example, Damon-Eshbach (DE) SWs need a relatively weak external magnetic field which is suitable for small spintronic devices. In this work we study DE SWs in Co2MnSi, a half-metallic Heusler alloy with significant potential for magnonics. Thin films have been produced by pulsed laser deposition. Integrated coplanar waveguide (CPW) antennas with different distances between emitter and detection antenna have been prepared on a Co2MnSi film. We used a vector network analyzer to measure spin wave reflection and transmission. We observe spin wave propagation up to 100 μm, a new record for half-metallic Heusler thin films.

  17. Expected energy-based restricted Boltzmann machine for classification.

    PubMed

    Elfwing, S; Uchibe, E; Doya, K

    2015-04-01

    In classification tasks, restricted Boltzmann machines (RBMs) have predominantly been used in the first stage, either as feature extractors or to provide initialization of neural networks. In this study, we propose a discriminative learning approach to provide a self-contained RBM method for classification, inspired by free-energy based function approximation (FE-RBM), originally proposed for reinforcement learning. For classification, the FE-RBM method computes the output for an input vector and a class vector by the negative free energy of an RBM. Learning is achieved by stochastic gradient-descent using a mean-squared error training objective. In an earlier study, we demonstrated that the performance and the robustness of FE-RBM function approximation can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that the learning performance of RBM function approximation can be further improved by computing the output by the negative expected energy (EE-RBM), instead of the negative free energy. To create a deep learning architecture, we stack several RBMs on top of each other. We also connect the class nodes to all hidden layers to try to improve the performance even further. We validate the classification performance of EE-RBM using the MNIST data set and the NORB data set, achieving competitive performance compared with other classifiers such as standard neural networks, deep belief networks, classification RBMs, and support vector machines. The purpose of using the NORB data set is to demonstrate that EE-RBM with binary input nodes can achieve high performance in the continuous input domain. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Influence of the Atmospheric Model on Hanle Diagnostics

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryohko; Uitenbroek, Han; Goto, Motoshi; Iida, Yusuke; Tsuneta, Saku

    2018-05-01

    We clarify the uncertainty in the inferred magnetic field vector via the Hanle diagnostics of the hydrogen Lyman-α line when the stratification of the underlying atmosphere is unknown. We calculate the anisotropy of the radiation field with plane-parallel semi-empirical models under the nonlocal thermal equilibrium condition and derive linear polarization signals for all possible parameters of magnetic field vectors based on an analytical solution of the atomic polarization and Hanle effect. We find that the semi-empirical models of the inter-network region (FAL-A) and network region (FAL-F) show similar degrees of anisotropy in the radiation field, and this similarity results in an acceptable inversion error ( e.g., {˜} 40 G instead of 50 G in field strength and {˜} 100° instead of 90° in inclination) when FAL-A and FAL-F are swapped. However, the semi-empirical models of FAL-C (averaged quiet-Sun model including both inter-network and network regions) and FAL-P (plage regions) yield an atomic polarization that deviates from all other models, which makes it difficult to precisely determine the magnetic field vector if the correct atmospheric model is not known ( e.g., the inversion error is much larger than 40% of the field strength; {>} 70 G instead of 50 G). These results clearly demonstrate that the choice of model atmosphere is important for Hanle diagnostics. As is well known, one way to constrain the average atmospheric stratification is to measure the center-to-limb variation of the linear polarization signals. The dependence of the center-to-limb variations on the atmospheric model is also presented in this paper.

  19. Monthly evaporation forecasting using artificial neural networks and support vector machines

    NASA Astrophysics Data System (ADS)

    Tezel, Gulay; Buyukyildiz, Meral

    2016-04-01

    Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ɛ-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ɛ-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R 2). According to the performance criteria, the ANN algorithms and ɛ-SVR had similar results. The ANNs and ɛ-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R 2 = 0.905.

  20. Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.

    PubMed

    Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan

    2016-01-01

    Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.

  1. Intelligent Fault Diagnosis of Delta 3D Printers Using Attitude Sensors Based on Support Vector Machines

    PubMed Central

    He, Kun; Yang, Zhijun; Bai, Yun; Long, Jianyu; Li, Chuan

    2018-01-01

    Health condition is a vital factor affecting printing quality for a 3D printer. In this work, an attitude monitoring approach is proposed to diagnose the fault of the delta 3D printer using support vector machines (SVM). An attitude sensor was mounted on the moving platform of the printer to monitor its 3-axial attitude angle, angular velocity, vibratory acceleration and magnetic field intensity. The attitude data of the working printer were collected under different conditions involving 12 fault types and a normal condition. The collected data were analyzed for diagnosing the health condition. To this end, the combination of binary classification, one-against-one with least-square SVM, was adopted for fault diagnosis modelling by using all channels of attitude monitoring data in the experiment. For comparison, each one channel of the attitude monitoring data was employed for model training and testing. On the other hand, a back propagation neural network (BPNN) was also applied to diagnose fault using the same data. The best fault diagnosis accuracy (94.44%) was obtained when all channels of the attitude monitoring data were used with SVM modelling. The results indicate that the attitude monitoring with SVM is an effective method for the fault diagnosis of delta 3D printers. PMID:29690641

  2. Intelligent Fault Diagnosis of Delta 3D Printers Using Attitude Sensors Based on Support Vector Machines.

    PubMed

    He, Kun; Yang, Zhijun; Bai, Yun; Long, Jianyu; Li, Chuan

    2018-04-23

    Health condition is a vital factor affecting printing quality for a 3D printer. In this work, an attitude monitoring approach is proposed to diagnose the fault of the delta 3D printer using support vector machines (SVM). An attitude sensor was mounted on the moving platform of the printer to monitor its 3-axial attitude angle, angular velocity, vibratory acceleration and magnetic field intensity. The attitude data of the working printer were collected under different conditions involving 12 fault types and a normal condition. The collected data were analyzed for diagnosing the health condition. To this end, the combination of binary classification, one-against-one with least-square SVM, was adopted for fault diagnosis modelling by using all channels of attitude monitoring data in the experiment. For comparison, each one channel of the attitude monitoring data was employed for model training and testing. On the other hand, a back propagation neural network (BPNN) was also applied to diagnose fault using the same data. The best fault diagnosis accuracy (94.44%) was obtained when all channels of the attitude monitoring data were used with SVM modelling. The results indicate that the attitude monitoring with SVM is an effective method for the fault diagnosis of delta 3D printers.

  3. New signals for vector-like down-type quark in U(1) of E_6

    NASA Astrophysics Data System (ADS)

    Das, Kasinath; Li, Tianjun; Nandi, S.; Rai, Santosh Kumar

    2018-01-01

    We consider the pair production of vector-like down-type quarks in an E_6 motivated model, where each of the produced down-type vector-like quark decays into an ordinary Standard Model light quark and a singlet scalar. Both the vector-like quark and the singlet scalar appear naturally in the E_6 model with masses at the TeV scale with a favorable choice of symmetry breaking pattern. We focus on the non-standard decay of the vector-like quark and the new scalar which decays to two photons or two gluons. We analyze the signal for the vector-like quark production in the 2γ +≥ 2j channel and show how the scalar and vector-like quark masses can be determined at the Large Hadron Collider.

  4. Deep neural mapping support vector machines.

    PubMed

    Li, Yujian; Zhang, Ting

    2017-09-01

    The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics

    PubMed Central

    Lee, Byoungkoo; Konen, Jessica; Wilkinson, Scott; Marcus, Adam I.; Jiang, Yi

    2017-01-01

    Invasive cancer cells interact with the surrounding extracellular matrix (ECM), remodeling ECM fiber network structure by condensing, degrading, and aligning these fibers. We developed a novel local alignment vector analysis method to quantitatively measure collagen fiber alignment as a vector field using Circular Statistics. This method was applied to human non-small cell lung carcinoma (NSCLC) cell lines, embedded as spheroids in a collagen gel. Collagen remodeling was monitored using second harmonic generation imaging under normal conditions and when the LKB1-MARK1 pathway was disrupted through RNAi-based approaches. The results showed that inhibiting LKB1 or MARK1 in NSCLC increases the collagen fiber alignment and captures outward alignment vectors from the tumor spheroid, corresponding to high invasiveness of LKB1 mutant cancer cells. With time-lapse imaging of ECM micro-fiber morphology, the local alignment vector can measure the dynamic signature of invasive cancer cell activity and cell-migration-induced ECM and collagen remodeling and realigning dynamics. PMID:28045069

  6. Microwave dielectric measurements of erythrocyte suspensions.

    PubMed Central

    Bao, J Z; Davis, C C; Swicord, M L

    1994-01-01

    Complex dielectric constants of human erythrocyte suspensions over a frequency range from 45 MHz to 26.5 GHz and a temperature range from 5 to 40 degrees C have been determined with the open-ended coaxial probe technique using an automated vector network analyzer (HP 8510). The spectra show two separate major dispersions (beta and gamma) and a much smaller dispersion between them. The two major dispersions are analyzed with a dispersion equation containing two Cole-Cole functions by means of a complex nonlinear least squares technique. The parameters of the equation at different temperatures have been determined. The low frequency behavior of the spectra suggests that the dielectric constant of the cell membrane increases when the temperature is above 35 degrees C. The real part of the dielectric constant at approximately 3.4 GHz remains almost constant when the temperature changes. The dispersion shifts with temperature in the manner of a thermally activated process, and the thermal activation enthalpies for the beta- and gamma-dispersions are 9.87 +/- 0.42 kcal/mol and 4.80 +/- 0.06 kcal/mol, respectively. PMID:8075351

  7. Comparison of Classifier Architectures for Online Neural Spike Sorting.

    PubMed

    Saeed, Maryam; Khan, Amir Ali; Kamboh, Awais Mehmood

    2017-04-01

    High-density, intracranial recordings from micro-electrode arrays need to undergo Spike Sorting in order to associate the recorded neuronal spikes to particular neurons. This involves spike detection, feature extraction, and classification. To reduce the data transmission and power requirements, on-chip real-time processing is becoming very popular. However, high computational resources are required for classifiers in on-chip spike-sorters, making scalability a great challenge. In this review paper, we analyze several popular classifiers to propose five new hardware architectures using the off-chip training with on-chip classification approach. These include support vector classification, fuzzy C-means classification, self-organizing maps classification, moving-centroid K-means classification, and Cosine distance classification. The performance of these architectures is analyzed in terms of accuracy and resource requirement. We establish that the neural networks based Self-Organizing Maps classifier offers the most viable solution. A spike sorter based on the Self-Organizing Maps classifier, requires only 7.83% of computational resources of the best-reported spike sorter, hierarchical adaptive means, while offering a 3% better accuracy at 7 dB SNR.

  8. Real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentration by electromagnetic sensing.

    PubMed

    Harnsoongnoen, Supakorn; Wanthong, Anuwat

    2017-10-01

    Magnetic sensing at microwave frequencies for real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations is reported. The sensing element was designed based on a coplanar waveguide (CPW) loaded with a split ring resonator (SRR), which was fabricated on a DiClad 880 substrate with a thickness of 1.6mm and relative permittivity (ε r ) of 2.2. The magnetic sensor was connected to a Vector Network Analyzer (VNA) and the electromagnetic interaction between the samples and sensor was analyzed. The magnitude of the transmission coefficient (S 21 ) was used as an indicator to detect the solution sample concentrations ranging from 0.04 to 0.20g/ml. The experimental results confirmed that the developed system using microwaves for the real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations gave unique results for each solution type and concentration. Moreover, the proposed sensor has a wide dynamic range, high linearity, fast operation and low-cost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Vectors into the Future of Mass and Interpersonal Communication Research: Big Data, Social Media, and Computational Social Science.

    PubMed

    Cappella, Joseph N

    2017-10-01

    Simultaneous developments in big data, social media, and computational social science have set the stage for how we think about and understand interpersonal and mass communication. This article explores some of the ways that these developments generate 4 hypothetical "vectors" - directions - into the next generation of communication research. These vectors include developments in network analysis, modeling interpersonal and social influence, recommendation systems, and the blurring of distinctions between interpersonal and mass audiences through narrowcasting and broadcasting. The methods and research in these arenas are occurring in areas outside the typical boundaries of the communication discipline but engage classic, substantive questions in mass and interpersonal communication.

  10. Vector Autoregression, Structural Equation Modeling, and Their Synthesis in Neuroimaging Data Analysis

    PubMed Central

    Chen, Gang; Glen, Daniel R.; Saad, Ziad S.; Hamilton, J. Paul; Thomason, Moriah E.; Gotlib, Ian H.; Cox, Robert W.

    2011-01-01

    Vector autoregression (VAR) and structural equation modeling (SEM) are two popular brain-network modeling tools. VAR, which is a data-driven approach, assumes that connected regions exert time-lagged influences on one another. In contrast, the hypothesis-driven SEM is used to validate an existing connectivity model where connected regions have contemporaneous interactions among them. We present the two models in detail and discuss their applicability to FMRI data, and interpretational limits. We also propose a unified approach that models both lagged and contemporaneous effects. The unifying model, structural vector autoregression (SVAR), may improve statistical and explanatory power, and avoids some prevalent pitfalls that can occur when VAR and SEM are utilized separately. PMID:21975109

  11. Emerging Vector-Borne Diseases – Incidence through Vectors

    PubMed Central

    Savić, Sara; Vidić, Branka; Grgić, Zivoslav; Potkonjak, Aleksandar; Spasojevic, Ljubica

    2014-01-01

    Vector-borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowadays, in intercontinental countries, there is a struggle with emerging diseases, which have found their way to appear through vectors. Vector-borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens, and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector-borne infectious diseases and disease outbreaks. It could affect the range and population of pathogens, host and vectors, transmission season, etc. Reliable surveillance for diseases that are most likely to emerge is required. Canine vector-borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, and leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fundamental role at primarily prevention and then treatment of vector-borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases. During a 4-year period, from 2009 to 2013, a total number of 551 dog samples were analyzed for vector-borne diseases (borreliosis, babesiosis, ehrlichiosis, anaplasmosis, dirofilariosis, and leishmaniasis) in routine laboratory work. The analysis was done by serological tests – ELISA for borreliosis, dirofilariosis, and leishmaniasis, modified Knott test for dirofilariosis, and blood smear for babesiosis, ehrlichiosis, and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on average more then half of the samples brought to the laboratory to analysis for different infectious diseases are analyzed for vector-borne diseases. In the region of Vojvodina (northern part of Serbia), the following vector-borne infectious diseases have been found in dogs so far borreliosis, babesiosis, dirofilariosis, leishmaniasis, and anaplasmosis. PMID:25520951

  12. Emerging Vector-Borne Diseases - Incidence through Vectors.

    PubMed

    Savić, Sara; Vidić, Branka; Grgić, Zivoslav; Potkonjak, Aleksandar; Spasojevic, Ljubica

    2014-01-01

    Vector-borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowadays, in intercontinental countries, there is a struggle with emerging diseases, which have found their way to appear through vectors. Vector-borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens, and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector-borne infectious diseases and disease outbreaks. It could affect the range and population of pathogens, host and vectors, transmission season, etc. Reliable surveillance for diseases that are most likely to emerge is required. Canine vector-borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, and leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fundamental role at primarily prevention and then treatment of vector-borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases. During a 4-year period, from 2009 to 2013, a total number of 551 dog samples were analyzed for vector-borne diseases (borreliosis, babesiosis, ehrlichiosis, anaplasmosis, dirofilariosis, and leishmaniasis) in routine laboratory work. The analysis was done by serological tests - ELISA for borreliosis, dirofilariosis, and leishmaniasis, modified Knott test for dirofilariosis, and blood smear for babesiosis, ehrlichiosis, and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on average more then half of the samples brought to the laboratory to analysis for different infectious diseases are analyzed for vector-borne diseases. In the region of Vojvodina (northern part of Serbia), the following vector-borne infectious diseases have been found in dogs so far borreliosis, babesiosis, dirofilariosis, leishmaniasis, and anaplasmosis.

  13. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    PubMed

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Predicting network modules of cell cycle regulators using relative protein abundance statistics.

    PubMed

    Oguz, Cihan; Watson, Layne T; Baumann, William T; Tyson, John J

    2017-02-28

    Parameter estimation in systems biology is typically done by enforcing experimental observations through an objective function as the parameter space of a model is explored by numerical simulations. Past studies have shown that one usually finds a set of "feasible" parameter vectors that fit the available experimental data equally well, and that these alternative vectors can make different predictions under novel experimental conditions. In this study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of discrete experimental constraints in order to test whether the statistical features of relative protein abundance predictions are influenced by the topology of the cell cycle regulatory network. Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of relative protein abundance predictions. Proteins involved in "regulation of cell size" and "regulation of G1/S transition" contribute most to predictive variability, whereas proteins involved in "positive regulation of transcription involved in exit from mitosis," "mitotic spindle assembly checkpoint" and "negative regulation of cyclin-dependent protein kinase by cyclin degradation" contribute the least. These results suggest that the statistics of these predictions may be generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we develop random forest models for predicting the network modules of cell cycle regulators using relative abundance statistics as model inputs. Predictive performance is assessed by the areas under receiver operating characteristics curves (AUC). Our models generate an AUC range of 0.83-0.87 as opposed to randomized models with AUC values around 0.50. By using differential evolution and random forest modeling, we show that the model prediction statistics generate distinct network module-specific patterns within the cell cycle network.

  15. Salient Feature Identification and Analysis using Kernel-Based Classification Techniques for Synthetic Aperture Radar Automatic Target Recognition

    DTIC Science & Technology

    2014-03-27

    and machine learning for a range of research including such topics as medical imaging [10] and handwriting recognition [11]. The type of feature...1989. [11] C. Bahlmann, B. Haasdonk, and H. Burkhardt, “Online handwriting recognition with support vector machines-a kernel approach,” in Eighth...International Workshop on Frontiers in Handwriting Recognition, pp. 49–54, IEEE, 2002. [12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine

  16. Histopathological Breast Cancer Image Classification by Deep Neural Network Techniques Guided by Local Clustering.

    PubMed

    Nahid, Abdullah-Al; Mehrabi, Mohamad Ali; Kong, Yinan

    2018-01-01

    Breast Cancer is a serious threat and one of the largest causes of death of women throughout the world. The identification of cancer largely depends on digital biomedical photography analysis such as histopathological images by doctors and physicians. Analyzing histopathological images is a nontrivial task, and decisions from investigation of these kinds of images always require specialised knowledge. However, Computer Aided Diagnosis (CAD) techniques can help the doctor make more reliable decisions. The state-of-the-art Deep Neural Network (DNN) has been recently introduced for biomedical image analysis. Normally each image contains structural and statistical information. This paper classifies a set of biomedical breast cancer images (BreakHis dataset) using novel DNN techniques guided by structural and statistical information derived from the images. Specifically a Convolutional Neural Network (CNN), a Long-Short-Term-Memory (LSTM), and a combination of CNN and LSTM are proposed for breast cancer image classification. Softmax and Support Vector Machine (SVM) layers have been used for the decision-making stage after extracting features utilising the proposed novel DNN models. In this experiment the best Accuracy value of 91.00% is achieved on the 200x dataset, the best Precision value 96.00% is achieved on the 40x dataset, and the best F -Measure value is achieved on both the 40x and 100x datasets.

  17. Comparison between sparsely distributed memory and Hopfield-type neural network models

    NASA Technical Reports Server (NTRS)

    Keeler, James D.

    1986-01-01

    The Sparsely Distributed Memory (SDM) model (Kanerva, 1984) is compared to Hopfield-type neural-network models. A mathematical framework for comparing the two is developed, and the capacity of each model is investigated. The capacity of the SDM can be increased independently of the dimension of the stored vectors, whereas the Hopfield capacity is limited to a fraction of this dimension. However, the total number of stored bits per matrix element is the same in the two models, as well as for extended models with higher order interactions. The models are also compared in their ability to store sequences of patterns. The SDM is extended to include time delays so that contextual information can be used to cover sequences. Finally, it is shown how a generalization of the SDM allows storage of correlated input pattern vectors.

  18. A fast and high performance multiple data integration algorithm for identifying human disease genes

    PubMed Central

    2015-01-01

    Background Integrating multiple data sources is indispensable in improving disease gene identification. It is not only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in various biological networks, but also due to the fact that gene-disease associations are complex. Although various algorithms have been proposed to identify disease genes, their prediction performances and the computational time still should be further improved. Results In this study, we propose a fast and high performance multiple data integration algorithm for identifying human disease genes. A posterior probability of each candidate gene associated with individual diseases is calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability estimation strategies and two feature vector construction methods are developed to test the performance of the proposed algorithm. Conclusions The proposed algorithm is not only generated predictions with high AUC scores, but also runs very fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms. PMID:26399620

  19. Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection.

    PubMed

    Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K; Sunil, Sujatha

    2014-01-01

    Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway.

  20. A transversal approach to predict gene product networks from ontology-based similarity

    PubMed Central

    Chabalier, Julie; Mosser, Jean; Burgun, Anita

    2007-01-01

    Background Interpretation of transcriptomic data is usually made through a "standard" approach which consists in clustering the genes according to their expression patterns and exploiting Gene Ontology (GO) annotations within each expression cluster. This approach makes it difficult to underline functional relationships between gene products that belong to different expression clusters. To address this issue, we propose a transversal analysis that aims to predict functional networks based on a combination of GO processes and data expression. Results The transversal approach presented in this paper consists in computing the semantic similarity between gene products in a Vector Space Model. Through a weighting scheme over the annotations, we take into account the representativity of the terms that annotate a gene product. Comparing annotation vectors results in a matrix of gene product similarities. Combined with expression data, the matrix is displayed as a set of functional gene networks. The transversal approach was applied to 186 genes related to the enterocyte differentiation stages. This approach resulted in 18 functional networks proved to be biologically relevant. These results were compared with those obtained through a standard approach and with an approach based on information content similarity. Conclusion Complementary to the standard approach, the transversal approach offers new insight into the cellular mechanisms and reveals new research hypotheses by combining gene product networks based on semantic similarity, and data expression. PMID:17605807

  1. A source-controlled data center network model.

    PubMed

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS.

  2. A source-controlled data center network model

    PubMed Central

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS. PMID:28328925

  3. A hypercube compact neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostykus, P.L.; Somani, A.K.

    1988-09-01

    A major problem facing implementation of neural networks is the connection problem. One popular tradeoff is to remove connections. Random disconnection severely degrades the capabilities. The hypercube based Compact Neural Network (CNN) has structured architecture combined with a rearrangement of the memory vectors gives a larger input space and better degradation than a cost equivalent network with more connections. The CNNs are based on a Hopfield network. The changes from the Hopfield net include states of -1 and +1 and when a node was evaluated to 0, it was not biased either positive or negative, instead it resumed its previousmore » state. L = PEs, N = memories and t/sub ij/s is the weights between i and j.« less

  4. Dragon pulse information management system (DPIMS): A unique model-based approach to implementing domain agnostic system of systems and behaviors

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas S.

    2016-05-01

    The Global Information Network Architecture is an information technology based on Vector Relational Data Modeling, a unique computational paradigm, DoD network certified by USARMY as the Dragon Pulse Informa- tion Management System. This network available modeling environment for modeling models, where models are configured using domain relevant semantics and use network available systems, sensors, databases and services as loosely coupled component objects and are executable applications. Solutions are based on mission tactics, techniques, and procedures and subject matter input. Three recent ARMY use cases are discussed a) ISR SoS. b) Modeling and simulation behavior validation. c) Networked digital library with behaviors.

  5. [Transposition errors during learning to reproduce a sequence by the right- and the left-hand movements: simulation of positional and movement coding].

    PubMed

    Liakhovetskiĭ, V A; Bobrova, E V; Skopin, G N

    2012-01-01

    Transposition errors during the reproduction of a hand movement sequence make it possible to receive important information on the internal representation of this sequence in the motor working memory. Analysis of such errors showed that learning to reproduce sequences of the left-hand movements improves the system of positional coding (coding ofpositions), while learning of the right-hand movements improves the system of vector coding (coding of movements). Learning of the right-hand movements after the left-hand performance involved the system of positional coding "imposed" by the left hand. Learning of the left-hand movements after the right-hand performance activated the system of vector coding. Transposition errors during learning to reproduce movement sequences can be explained by neural network using either vector coding or both vector and positional coding.

  6. Adaptive proxy map server for efficient vector spatial data rendering

    NASA Astrophysics Data System (ADS)

    Sayar, Ahmet

    2013-01-01

    The rapid transmission of vector map data over the Internet is becoming a bottleneck of spatial data delivery and visualization in web-based environment because of increasing data amount and limited network bandwidth. In order to improve both the transmission and rendering performances of vector spatial data over the Internet, we propose a proxy map server enabling parallel vector data fetching as well as caching to improve the performance of web-based map servers in a dynamic environment. Proxy map server is placed seamlessly anywhere between the client and the final services, intercepting users' requests. It employs an efficient parallelization technique based on spatial proximity and data density in case distributed replica exists for the same spatial data. The effectiveness of the proposed technique is proved at the end of the article by the application of creating map images enriched with earthquake seismic data records.

  7. Method for enhanced accuracy in predicting peptides using liquid separations or chromatography

    DOEpatents

    Kangas, Lars J.; Auberry, Kenneth J.; Anderson, Gordon A.; Smith, Richard D.

    2006-11-14

    A method for predicting the elution time of a peptide in chromatographic and electrophoretic separations by first providing a data set of known elution times of known peptides, then creating a plurality of vectors, each vector having a plurality of dimensions, and each dimension representing the elution time of amino acids present in each of these known peptides from the data set. The elution time of any protein is then be predicted by first creating a vector by assigning dimensional values for the elution time of amino acids of at least one hypothetical peptide and then calculating a predicted elution time for the vector by performing a multivariate regression of the dimensional values of the hypothetical peptide using the dimensional values of the known peptides. Preferably, the multivariate regression is accomplished by the use of an artificial neural network and the elution times are first normalized using a transfer function.

  8. An Improved Cloud Classification Algorithm for China’s FY-2C Multi-Channel Images Using Artificial Neural Network

    PubMed Central

    Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang

    2009-01-01

    The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3–11.3 μm; IR2, 11.5–12.5 μm and WV 6.3–7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products. PMID:22346714

  9. An Improved Cloud Classification Algorithm for China's FY-2C Multi-Channel Images Using Artificial Neural Network.

    PubMed

    Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang

    2009-01-01

    The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.

  10. A Hamiltonian approach to the planar optimization of mid-course corrections

    NASA Astrophysics Data System (ADS)

    Iorfida, E.; Palmer, P. L.; Roberts, M.

    2016-04-01

    Lawden's primer vector theory gives a set of necessary conditions that characterize the optimality of a transfer orbit, defined accordingly to the possibility of adding mid-course corrections. In this paper a novel approach is proposed where, through a polar coordinates transformation, the primer vector components decouple. Furthermore, the case when transfer, departure and arrival orbits are coplanar is analyzed using a Hamiltonian approach. This procedure leads to approximate analytic solutions for the in-plane components of the primer vector. Moreover, the solution for the circular transfer case is proven to be the Hill's solution. The novel procedure reduces the mathematical and computational complexity of the original case study. It is shown that the primer vector is independent of the semi-major axis of the transfer orbit. The case with a fixed transfer trajectory and variable initial and final thrust impulses is studied. The acquired related optimality maps are presented and analyzed and they express the likelihood of a set of trajectories to be optimal. Furthermore, it is presented which kind of requirements have to be fulfilled by a set of departure and arrival orbits to have the same profile of primer vector.

  11. Cutting Pattern Identification for Coal Mining Shearer through a Swarm Intelligence–Based Variable Translation Wavelet Neural Network

    PubMed Central

    Xu, Jing; Wang, Zhongbin; Tan, Chao; Liu, Xinhua

    2018-01-01

    As a sound signal has the advantages of non-contacted measurement, compact structure, and low power consumption, it has resulted in much attention in many fields. In this paper, the sound signal of the coal mining shearer is analyzed to realize the accurate online cutting pattern identification and guarantee the safety quality of the working face. The original acoustic signal is first collected through an industrial microphone and decomposed by adaptive ensemble empirical mode decomposition (EEMD). A 13-dimensional set composed by the normalized energy of each level is extracted as the feature vector in the next step. Then, a swarm intelligence optimization algorithm inspired by bat foraging behavior is applied to determine key parameters of the traditional variable translation wavelet neural network (VTWNN). Moreover, a disturbance coefficient is introduced into the basic bat algorithm (BA) to overcome the disadvantage of easily falling into local extremum and limited exploration ability. The VTWNN optimized by the modified BA (VTWNN-MBA) is used as the cutting pattern recognizer. Finally, a simulation example, with an accuracy of 95.25%, and a series of comparisons are conducted to prove the effectiveness and superiority of the proposed method. PMID:29382120

  12. Nonlinear Deep Kernel Learning for Image Annotation.

    PubMed

    Jiu, Mingyuan; Sahbi, Hichem

    2017-02-08

    Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.

  13. Prediction of Drug-Plasma Protein Binding Using Artificial Intelligence Based Algorithms.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2018-01-01

    Plasma protein binding (PPB) has vital importance in the characterization of drug distribution in the systemic circulation. Unfavorable PPB can pose a negative effect on clinical development of promising drug candidates. The drug distribution properties should be considered at the initial phases of the drug design and development. Therefore, PPB prediction models are receiving an increased attention. In the current study, we present a systematic approach using Support vector machine, Artificial neural network, k- nearest neighbor, Probabilistic neural network, Partial least square and Linear discriminant analysis to relate various in vitro and in silico molecular descriptors to a diverse dataset of 736 drugs/drug-like compounds. The overall accuracy of Support vector machine with Radial basis function kernel came out to be comparatively better than the rest of the applied algorithms. The training set accuracy, validation set accuracy, precision, sensitivity, specificity and F1 score for the Suprort vector machine was found to be 89.73%, 89.97%, 92.56%, 87.26%, 91.97% and 0.898, respectively. This model can potentially be useful in screening of relevant drug candidates at the preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Graph-theoretic quantum system modelling for neuronal microtubules as hierarchical clustered quantum Hopfield networks

    NASA Astrophysics Data System (ADS)

    Srivastava, D. P.; Sahni, V.; Satsangi, P. S.

    2014-08-01

    Graph-theoretic quantum system modelling (GTQSM) is facilitated by considering the fundamental unit of quantum computation and information, viz. a quantum bit or qubit as a basic building block. Unit directional vectors "ket 0" and "ket 1" constitute two distinct fundamental quantum across variable orthonormal basis vectors, for the Hilbert space, specifying the direction of propagation of information, or computation data, while complementary fundamental quantum through, or flow rate, variables specify probability parameters, or amplitudes, as surrogates for scalar quantum information measure (von Neumann entropy). This paper applies GTQSM in continuum of protein heterodimer tubulin molecules of self-assembling polymers, viz. microtubules in the brain as a holistic system of interacting components representing hierarchical clustered quantum Hopfield network, hQHN, of networks. The quantum input/output ports of the constituent elemental interaction components, or processes, of tunnelling interactions and Coulombic bidirectional interactions are in cascade and parallel interconnections with each other, while the classical output ports of all elemental components are interconnected in parallel to accumulate micro-energy functions generated in the system as Hamiltonian, or Lyapunov, energy function. The paper presents an insight, otherwise difficult to gain, for the complex system of systems represented by clustered quantum Hopfield network, hQHN, through the application of GTQSM construct.

  15. Robust Group Sparse Beamforming for Multicast Green Cloud-RAN With Imperfect CSI

    NASA Astrophysics Data System (ADS)

    Shi, Yuanming; Zhang, Jun; Letaief, Khaled B.

    2015-09-01

    In this paper, we investigate the network power minimization problem for the multicast cloud radio access network (Cloud-RAN) with imperfect channel state information (CSI). The key observation is that network power minimization can be achieved by adaptively selecting active remote radio heads (RRHs) via controlling the group-sparsity structure of the beamforming vector. However, this yields a non-convex combinatorial optimization problem, for which we propose a three-stage robust group sparse beamforming algorithm. In the first stage, a quadratic variational formulation of the weighted mixed l1/l2-norm is proposed to induce the group-sparsity structure in the aggregated beamforming vector, which indicates those RRHs that can be switched off. A perturbed alternating optimization algorithm is then proposed to solve the resultant non-convex group-sparsity inducing optimization problem by exploiting its convex substructures. In the second stage, we propose a PhaseLift technique based algorithm to solve the feasibility problem with a given active RRH set, which helps determine the active RRHs. Finally, the semidefinite relaxation (SDR) technique is adopted to determine the robust multicast beamformers. Simulation results will demonstrate the convergence of the perturbed alternating optimization algorithm, as well as, the effectiveness of the proposed algorithm to minimize the network power consumption for multicast Cloud-RAN.

  16. Use seismic colored inversion and power law committee machine based on imperial competitive algorithm for improving porosity prediction in a heterogeneous reservoir

    NASA Astrophysics Data System (ADS)

    Ansari, Hamid Reza

    2014-09-01

    In this paper we propose a new method for predicting rock porosity based on a combination of several artificial intelligence systems. The method focuses on one of the Iranian carbonate fields in the Persian Gulf. Because there is strong heterogeneity in carbonate formations, estimation of rock properties experiences more challenge than sandstone. For this purpose, seismic colored inversion (SCI) and a new approach of committee machine are used in order to improve porosity estimation. The study comprises three major steps. First, a series of sample-based attributes is calculated from 3D seismic volume. Acoustic impedance is an important attribute that is obtained by the SCI method in this study. Second, porosity log is predicted from seismic attributes using common intelligent computation systems including: probabilistic neural network (PNN), radial basis function network (RBFN), multi-layer feed forward network (MLFN), ε-support vector regression (ε-SVR) and adaptive neuro-fuzzy inference system (ANFIS). Finally, a power law committee machine (PLCM) is constructed based on imperial competitive algorithm (ICA) to combine the results of all previous predictions in a single solution. This technique is called PLCM-ICA in this paper. The results show that PLCM-ICA model improved the results of neural networks, support vector machine and neuro-fuzzy system.

  17. Equivalent Skin Analysis of Wing Structures Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.

    2000-01-01

    An efficient method of modeling trapezoidal built-up wing structures is developed by coupling. in an indirect way, an Equivalent Plate Analysis (EPA) with Neural Networks (NN). Being assumed to behave like a Mindlin-plate, the wing is solved using the Ritz method with Legendre polynomials employed as the trial functions. This analysis method can be made more efficient by avoiding most of the computational effort spent on calculating contributions to the stiffness and mass matrices from each spar and rib. This is accomplished by replacing the wing inner-structure with an "equivalent" material that combines to the skin and whose properties are simulated by neural networks. The constitutive matrix, which relates the stress vector to the strain vector, and the density of the equivalent material are obtained by enforcing mass and stiffness matrix equities with rec,ard to the EPA in a least-square sense. Neural networks for the material properties are trained in terms of the design variables of the wing structure. Examples show that the present method, which can be called an Equivalent Skin Analysis (ESA) of the wing structure, is more efficient than the EPA and still fairly good results can be obtained. The present ESA is very promising to be used at the early stages of wing structure design.

  18. Development of a NEW Vector Magnetograph at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    West, Edward; Hagyard, Mona; Gary, Allen; Smith, James; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This paper will describe the Experimental Vector Magnetograph that has been developed at the Marshall Space Flight Center (MSFC). This instrument was designed to improve linear polarization measurements by replacing electro-optic and rotating waveplate modulators with a rotating linear analyzer. Our paper will describe the motivation for developing this magnetograph, compare this instrument with traditional magnetograph designs, and present a comparison of the data acquired by this instrument and original MSFC vector magnetograph.

  19. Optical design of transmitter lens for asymmetric distributed free space optical networks

    NASA Astrophysics Data System (ADS)

    Wojtanowski, Jacek; Traczyk, Maciej

    2018-05-01

    We present a method of transmitter lens design dedicated for light distribution shaping on a curved and asymmetric target. In this context, target is understood as a surface determined by hypothetical optical detectors locations. In the proposed method, ribbon-like surfaces of arbitrary shape are considered. The designed lens has the task to transform collimated and generally non-uniform input beam into desired irradiance distribution on such irregular targets. Desired irradiance is associated with space-dependant efficiency of power flow between the source and receivers distributed on the target surface. This unconventional nonimaging task is different from most illumination or beam shaping objectives, where constant or prescribed irradiance has to be produced on a flat target screen. The discussed optical challenge comes from the applications where single transmitter cooperates with multitude of receivers located in various positions in space and oriented in various directions. The proposed approach is not limited to optical networks, but can be applied in a variety of other applications where nonconventional irradiance distribution has to be engineered. The described method of lens design is based on geometrical optics, radiometry and ray mapping philosophy. Rays are processed as a vector field, each of them carrying a certain amount of power. Having the target surface shape and orientation of receivers distribution, the rays-surface crossings map is calculated. It corresponds to the output rays vector field, which is referred to the calculated input rays spatial distribution on the designed optical surface. The application of Snell's law in a vector form allows one to obtain surface local normal vector and calculate lens profile. In the paper, we also present the case study dealing with exemplary optical network. The designed freeform lens is implemented in commercially available optical design software and irradiance three-dimensional spatial distribution is examined, showing perfect agreement with expectations.

  20. Crustal block structure by GPS data using neural network in the Northern Tien Shan

    NASA Astrophysics Data System (ADS)

    Kostuk, A.; Carmenate, D.

    2010-05-01

    For over ten years regular GPS measurements have been carried out by Research Station RAS in the Central Asia. The results of these measurements have not only proved the conclusion that the Earth's crust meridional compression equals in total about 17 mm/year from the Tarim massif to the Kazakh shield, but have also allowed estimating deformation behavior in the region. As is known, deformation behavior of continental crust is an actively discussed issue. On the one hand, the Earth's crust is presented as a set of microplates (blocks) and deformation here is a result of shifting along the blocks boundaries, on the other hand, lithospheric deformation is distributed by volume and meets the rheological model of nonlinear viscous fluid. This work represents an attempt to detect the block structure of the surface of the Northern Tien Shan using GPS velocity fields. As a significant difference from analogous works, appears the vector field clustering with the help of neural network used as a classifier by many criteria that allows dividing input space into areas and using of all three components of GPS velocity. In this case, we use such a feature of neural networks as self-organization. Among the mechanisms of self-organization there are two main classes: self-organization based on the Hebb associative rule and the mechanism of neuronal competition based on the generalized Kohonen rule. In this case, we use an approach of self-organizing networks in which we take neuronal competition as an algorithm for their training. As a rule, these are single-layer networks where each neuron is connected to all components of m-dimensional input vector. GPS vectors of the Central Asian velocity field located within the territory of the Northern Tien Shan were used as input patterns. Measurements at GPS sites were fulfilled in 36 hour-long sessions by double-frequency receivers Trimble and Topcon. In so doing, measurement discreteness equaled 30 seconds; the data were processed by GAMITGLOBK programs. An overall period of measurements lasted from 1995 to 2005. Those GPS vectors were admitted to processing that had an estimated error no more than 1 mm per year for each of the three components. In general, an obtained cluster structure reflecting the block structure of the Earth's crust of the Northern Tien Shan is proved by the location of active faults. Certainly, the structure analysis of GPS velocity field is a rather complicated task that yet does not have a definite solution; however, obtained results indicate the possibility of using of neural networks for solving such a problem.

  1. Optimized scalable network switch

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2007-12-04

    In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.

  2. Object recognition of ladar with support vector machine

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Feng; Li, Qi; Wang, Qi

    2005-01-01

    Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.

  3. Optimized scalable network switch

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.

    2010-02-23

    In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.

  4. Support vector machine for automatic pain recognition

    NASA Astrophysics Data System (ADS)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  5. Using Pathfinder networks to discover alignment between expert and consumer conceptual knowledge from online vaccine content.

    PubMed

    Amith, Muhammad; Cunningham, Rachel; Savas, Lara S; Boom, Julie; Schvaneveldt, Roger; Tao, Cui; Cohen, Trevor

    2017-10-01

    This study demonstrates the use of distributed vector representations and Pathfinder Network Scaling (PFNETS) to represent online vaccine content created by health experts and by laypeople. By analyzing a target audience's conceptualization of a topic, domain experts can develop targeted interventions to improve the basic health knowledge of consumers. The underlying assumption is that the content created by different groups reflects the mental organization of their knowledge. Applying automated text analysis to this content may elucidate differences between the knowledge structures of laypeople (heath consumers) and professionals (health experts). This paper utilizes vaccine information generated by laypeople and health experts to investigate the utility of this approach. We used an established technique from cognitive psychology, Pathfinder Network Scaling to infer the structure of the associational networks between concepts learned from online content using methods of distributional semantics. In doing so, we extend the original application of PFNETS to infer knowledge structures from individual participants, to infer the prevailing knowledge structures within communities of content authors. The resulting graphs reveal opportunities for public health and vaccination education experts to improve communication and intervention efforts directed towards health consumers. Our efforts demonstrate the feasibility of using an automated procedure to examine the manifestation of conceptual models within large bodies of free text, revealing evidence of conflicting understanding of vaccine concepts among health consumers as compared with health experts. Additionally, this study provides insight into the differences between consumer and expert abstraction of domain knowledge, revealing vaccine-related knowledge gaps that suggest opportunities to improve provider-patient communication. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A two-stage flow-based intrusion detection model for next-generation networks.

    PubMed

    Umer, Muhammad Fahad; Sher, Muhammad; Bi, Yaxin

    2018-01-01

    The next-generation network provides state-of-the-art access-independent services over converged mobile and fixed networks. Security in the converged network environment is a major challenge. Traditional packet and protocol-based intrusion detection techniques cannot be used in next-generation networks due to slow throughput, low accuracy and their inability to inspect encrypted payload. An alternative solution for protection of next-generation networks is to use network flow records for detection of malicious activity in the network traffic. The network flow records are independent of access networks and user applications. In this paper, we propose a two-stage flow-based intrusion detection system for next-generation networks. The first stage uses an enhanced unsupervised one-class support vector machine which separates malicious flows from normal network traffic. The second stage uses a self-organizing map which automatically groups malicious flows into different alert clusters. We validated the proposed approach on two flow-based datasets and obtained promising results.

  7. A two-stage flow-based intrusion detection model for next-generation networks

    PubMed Central

    2018-01-01

    The next-generation network provides state-of-the-art access-independent services over converged mobile and fixed networks. Security in the converged network environment is a major challenge. Traditional packet and protocol-based intrusion detection techniques cannot be used in next-generation networks due to slow throughput, low accuracy and their inability to inspect encrypted payload. An alternative solution for protection of next-generation networks is to use network flow records for detection of malicious activity in the network traffic. The network flow records are independent of access networks and user applications. In this paper, we propose a two-stage flow-based intrusion detection system for next-generation networks. The first stage uses an enhanced unsupervised one-class support vector machine which separates malicious flows from normal network traffic. The second stage uses a self-organizing map which automatically groups malicious flows into different alert clusters. We validated the proposed approach on two flow-based datasets and obtained promising results. PMID:29329294

  8. Reflection and Transmission Coefficient of Yttrium Iron Garnet Filled Polyvinylidene Fluoride Composite Using Rectangular Waveguide at Microwave Frequencies

    PubMed Central

    Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh

    2012-01-01

    The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718

  9. Design and VNA-measurement of coplanar waveguide (CPW) on benzocyclobutene (BCB) at THz frequencies

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Grimault-Jacquin, Anne-Sophie; Zerounian, Nicolas; Aniel, Frédéric

    2014-03-01

    The low permittivity and the low loss tangent of the benzocyclobutene polymer (BCB) offers to coplanar waveguides (CPW) a low dispersive propagation properties at THz frequency. These transmission lines have been designed, modeled with a three dimensional (3D) solver of Maxwell equations based on finite element method (FEM) from 20 to 1000 GHz at various characteristic impedances (Zc). Their dispersion and losses (radiation, conduction and dielectric) have been investigated separately versus the waveguide size, the nature of the substrate (dielectric or semiconductor) to optimize the THz signal propagation. Monomode CPW on BCB numerically designed for various Zc were realized and measured with vector network analyzer (VNA). S-parameters of CPW are de-embedded by optimization of the accesses' model. A good agreement is found between experimental and numerical results with low attenuation constants of 2.7 dB/mm and 3.5 dB/mm at 400 GHz and 500 GHz, respectively.

  10. Tuning of optical mode magnetic resonance in CoZr/Ru/CoZr synthetic antiferromagnetic trilayers by oblique sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Wenqiang; Wang, Fenglong; Cao, Cuimei; Li, Pingping; Yao, Jinli; Jiang, Changjun

    2018-04-01

    CoZr/Ru/CoZr synthetic antiferromagnetic trilayers with strong antiferromagnetic interlayer coupling were fabricated by an oblique sputtering method that induced in-plane uniaxial magnetic anisotropy. A microstrip method using a vector network analyzer was applied to investigate the magnetic resonance modes of the trilayers, including the acoustic modes (AMs) and the optical modes (OMs). At zero magnetic field, the CoZr/Ru/CoZr trilayers showed OMs with resonance frequencies of up to 7.1 GHz. By increasing the applied external magnetic field, the magnetic resonance mode can be tuned to various OMs, mixed modes, and AMs. Additionally, the magnetic resonance mode showed an angular dependence between the magnetization and the microwave field, which showed similar switching of the magnetic modes with variation of the angle. Our results provide important information that will be helpful in the design of multifunctional microwave devices.

  11. Electromagnetic wave absorbing properties of amorphous carbon nanotubes.

    PubMed

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-07-10

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.

  12. A Small and Slim Coaxial Probe for Single Rice Grain Moisture Sensing

    PubMed Central

    You, Kok Yeow; Mun, Hou Kit; You, Li Ling; Salleh, Jamaliah; Abbas, Zulkifly

    2013-01-01

    A moisture detection of single rice grains using a slim and small open-ended coaxial probe is presented. The coaxial probe is suitable for the nondestructive measurement of moisture values in the rice grains ranging from from 9.5% to 26%. Empirical polynomial models are developed to predict the gravimetric moisture content of rice based on measured reflection coefficients using a vector network analyzer. The relationship between the reflection coefficient and relative permittivity were also created using a regression method and expressed in a polynomial model, whose model coefficients were obtained by fitting the data from Finite Element-based simulation. Besides, the designed single rice grain sample holder and experimental set-up were shown. The measurement of single rice grains in this study is more precise compared to the measurement in conventional bulk rice grains, as the random air gap present in the bulk rice grains is excluded. PMID:23493127

  13. First On-Wafer Power Characterization of MMIC Amplifiers at Sub-Millimeter Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Gaier, T.; Samoska, L.; Deal, W. R.; Radisic, V.; Mei, X. B.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; hide

    2008-01-01

    Recent developments in semiconductor technology have enabled advanced submillimeter wave (300 GHz) transistors and circuits. These new high speed components have required new test methods to be developed for characterizing performance, and to provide data for device modeling to improve designs. Current efforts in progressing high frequency testing have resulted in on-wafer-parameter measurements up to approximately 340 GHz and swept frequency vector network analyzer waveguide measurements to 508 GHz. On-wafer noise figure measurements in the 270-340 GHz band have been demonstrated. In this letter we report on on-wafer power measurements at 330 GHz of a three stage amplifier that resulted in a maximum measured output power of 1.78mW and maximum gain of 7.1 dB. The method utilized demonstrates the extension of traditional power measurement techniques to submillimeter wave frequencies, and is suitable for automated testing without packaging for production screening of submillimeter wave circuits.

  14. Optical Properties of Iron Silicates in the Infrared to Millimeter as a Function of Wavelength and Temperature

    NASA Technical Reports Server (NTRS)

    Richey, C. R.; Kinzer, R. E.; Cataldo, G.; Wollack, E. J.; Nuth, J. A.; Benford, D. J.; Silverberg, R. F.; Rinehart, S. A.

    2013-01-01

    The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program utilizes multiple instruments to provide spectral data over a wide range of temperature and wavelengths. Experimental methods include Vector Network Analyzer (VNA) and Fourier Transform Spectroscopy (FTS) transmission, and reflection/scattering measurements. From this data, we can determine the optical parameters for the index of refraction, n, and the absorption coefficient, k. The analysis of the laboratory transmittance data for each sample type is based upon different mathematical models, which are applied to each data set according to their degree of coherence. Presented here are results from iron silicate dust grain analogs, in several sample preparations and at temperatures ranging from 5-300 K, across the infrared and millimeter portion of the spectrum (from 2.5-10,000 m or 4,000-1 cm(exp-1).

  15. Optical Properties of Iron Silicates in the Infrared to Millimeter as a Function of Wavelength and Temperature

    NASA Technical Reports Server (NTRS)

    Richey, Christina Rae; Kinzer, R. E.; Cataldo, R. E. G.; Wollack, E. J.; Nuth, J. A.; Benford, D. J.; Silverberg, R. F.; Rinehart, S. A.

    2013-01-01

    The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program utilizes multiple instruments to provide spectral data over a wide range of temperature and wavelengths. Experimental methods include Vector Network Analyzer (VNA) and Fourier Transform Spectroscopy (FTS) transmission, and reflection/scattering measurements. From this data, we can determine the optical parameters for the index of refraction, n, and the absorption coefficient, k. The analysis of the laboratory transmittance data for each sample type is based upon different mathematical models, which are applied to each data set according to their degree of coherence. Presented here are results from iron silicate dust grain analogs, in several sample preparations and at temperatures ranging from 5-300 K, across the infrared and millimeter portion of the spectrum (from 2.5-10,000 µm or 4,000-1 cm(exp -1).

  16. High-field/high-pressure ESR

    NASA Astrophysics Data System (ADS)

    Sakurai, T.; Okubo, S.; Ohta, H.

    2017-07-01

    We present a historical review of high-pressure ESR systems with emphasis on our recent development of a high-pressure, high-field, multi-frequency ESR system. Until 2000, the X-band system was almost established using a resonator filled with dielectric materials or a combination of the anvil cell and dielectric resonators. Recent developments have shifted from that in the low-frequency region, such as X-band, to that in multi-frequency region. High-pressure, high-field, multi-frequency ESR systems are classified into two types. First are the systems that use a vector network analyzer or a quasi-optical bridge, which have high sensitivity but a limited frequency region; the second are like our system, which has a very broad frequency region covering the THz region, but lower sensitivity. We will demonstrate the usefulness of our high-pressure ESR system, in addition to its experimental limitations. We also discuss the recent progress of our system and future plans.

  17. Hydrodynamic Influence Dabanhu River Bridge Holes Widening Based on Two-Dimensional Finite Element Numerical Model

    NASA Astrophysics Data System (ADS)

    Li, Dong Feng; Bai, Fu Qing; Nie, Hui

    2018-06-01

    In order to analyze the influence of bridge holes widening on hydrodynamic such as water level, a two-dimensional mathematical model was used to calculate the hydrodynamic factors, river network flow velocity vector distribution is given, water level and difference of bridge widening before and after is calculated and charted, water surface gradient in seven different river sections near the upper reaches of bridges is counted and revealed. The results of hydrodynamic calculation indicate that The Maximum and the minimum deducing numerical value of the water level after bridge widening is 0.028m, and 0.018m respective. the seven sections water surface gradient becomes smaller until it becomes negative, the influence of bridge widening on the upstream is basically over, the range of influence is about 450m from the bridge to the upstream. reach

  18. Population rate dynamics and multineuron firing patterns in sensory cortex

    PubMed Central

    Okun, Michael; Yger, Pierre; Marguet, Stephan; Gerard-Mercier, Florian; Benucci, Andrea; Katzner, Steffen; Busse, Laura; Carandini, Matteo; Harris, Kenneth D.

    2012-01-01

    Cortical circuits encode sensory stimuli through the firing of neuronal ensembles, and also produce spontaneous population patterns in the absence of sensory drive. This population activity is often characterized experimentally by the distribution of multineuron “words” (binary firing vectors), and a match between spontaneous and evoked word distributions has been suggested to reflect learning of a probabilistic model of the sensory world. We analyzed multineuron word distributions in sensory cortex of anesthetized rats and cats, and found that they are dominated by fluctuations in population firing rate rather than precise interactions between individual units. Furthermore, cortical word distributions change when brain state shifts, and similar behavior is seen in simulated networks with fixed, random connectivity. Our results suggest that similarity or dissimilarity in multineuron word distributions could primarily reflect similarity or dissimilarity in population firing rate dynamics, and not necessarily the precise interactions between neurons that would indicate learning of sensory features. PMID:23197704

  19. A survey on evolutionary algorithm based hybrid intelligence in bioinformatics.

    PubMed

    Li, Shan; Kang, Liying; Zhao, Xing-Ming

    2014-01-01

    With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  20. Synthesis of recurrent neural networks for dynamical system simulation.

    PubMed

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Ranking online quality and reputation via the user activity

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Lu; Guo, Qiang; Hou, Lei; Cheng, Can; Liu, Jian-Guo

    2015-10-01

    How to design an accurate algorithm for ranking the object quality and user reputation is of importance for online rating systems. In this paper we present an improved iterative algorithm for online ranking object quality and user reputation in terms of the user degree (IRUA), where the user's reputation is measured by his/her rating vector, the corresponding objects' quality vector and the user degree. The experimental results for the empirical networks show that the AUC values of the IRUA algorithm can reach 0.9065 and 0.8705 in Movielens and Netflix data sets, respectively, which is better than the results generated by the traditional iterative ranking methods. Meanwhile, the results for the synthetic networks indicate that user degree should be considered in real rating systems due to users' rating behaviors. Moreover, we find that enhancing or reducing the influences of the large-degree users could produce more accurate reputation ranking lists.

  2. Application of inertial instruments for DSN antenna pointing and tracking

    NASA Technical Reports Server (NTRS)

    Eldred, D. B.; Nerheim, N. M.; Holmes, K. G.

    1990-01-01

    The feasibility of using inertial instruments to determine the pointing attitude of the NASA Deep Space Network antennas is examined. The objective is to obtain 1 mdeg pointing knowledge in both blind pointing and tracking modes to facilitate operation of the Deep Space Network 70 m antennas at 32 GHz. A measurement system employing accelerometers, an inclinometer, and optical gyroscopes is proposed. The initial pointing attitude is established by determining the direction of the local gravity vector using the accelerometers and the inclinometer, and the Earth's spin axis using the gyroscopes. Pointing during long-term tracking is maintained by integrating the gyroscope rates and augmenting these measurements with knowledge of the local gravity vector. A minimum-variance estimator is used to combine measurements to obtain the antenna pointing attitude. A key feature of the algorithm is its ability to recalibrate accelerometer parameters during operation. A survey of available inertial instrument technologies is also given.

  3. Deep learning of support vector machines with class probability output networks.

    PubMed

    Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho

    2015-04-01

    Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Feed-Forward Neural Network Soft-Sensor Modeling of Flotation Process Based on Particle Swarm Optimization and Gravitational Search Algorithm

    PubMed Central

    Wang, Jie-Sheng; Han, Shuang

    2015-01-01

    For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, a feed-forward neural network (FNN) based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO) algorithm and gravitational search algorithm (GSA) is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:26583034

  5. A new feature constituting approach to detection of vocal fold pathology

    NASA Astrophysics Data System (ADS)

    Hariharan, M.; Polat, Kemal; Yaacob, Sazali

    2014-08-01

    In the last two decades, non-invasive methods through acoustic analysis of voice signal have been proved to be excellent and reliable tool to diagnose vocal fold pathologies. This paper proposes a new feature vector based on the wavelet packet transform and singular value decomposition for the detection of vocal fold pathology. k-means clustering based feature weighting is proposed to increase the distinguishing performance of the proposed features. In this work, two databases Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database and MAPACI speech pathology database are used. Four different supervised classifiers such as k-nearest neighbour (k-NN), least-square support vector machine, probabilistic neural network and general regression neural network are employed for testing the proposed features. The experimental results uncover that the proposed features give very promising classification accuracy of 100% for both MEEI database and MAPACI speech pathology database.

  6. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  7. Individual Morphological Brain Network Construction Based on Multivariate Euclidean Distances Between Brain Regions.

    PubMed

    Yu, Kaixin; Wang, Xuetong; Li, Qiongling; Zhang, Xiaohui; Li, Xinwei; Li, Shuyu

    2018-01-01

    Morphological brain network plays a key role in investigating abnormalities in neurological diseases such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, most of the morphological brain network construction methods only considered a single morphological feature. Each type of morphological feature has specific neurological and genetic underpinnings. A combination of morphological features has been proven to have better diagnostic performance compared with a single feature, which suggests that an individual morphological brain network based on multiple morphological features would be beneficial in disease diagnosis. Here, we proposed a novel method to construct individual morphological brain networks for two datasets by calculating the exponential function of multivariate Euclidean distance as the evaluation of similarity between two regions. The first dataset included 24 healthy subjects who were scanned twice within a 3-month period. The topological properties of these brain networks were analyzed and compared with previous studies that used different methods and modalities. Small world property was observed in all of the subjects, and the high reproducibility indicated the robustness of our method. The second dataset included 170 patients with MCI (86 stable MCI and 84 progressive MCI cases) and 169 normal controls (NC). The edge features extracted from the individual morphological brain networks were used to distinguish MCI from NC and separate MCI subgroups (progressive vs. stable) through the support vector machine in order to validate our method. The results showed that our method achieved an accuracy of 79.65% (MCI vs. NC) and 70.59% (stable MCI vs. progressive MCI) in a one-dimension situation. In a multiple-dimension situation, our method improved the classification performance with an accuracy of 80.53% (MCI vs. NC) and 77.06% (stable MCI vs. progressive MCI) compared with the method using a single feature. The results indicated that our method could effectively construct an individual morphological brain network based on multiple morphological features and could accurately discriminate MCI from NC and stable MCI from progressive MCI, and may provide a valuable tool for the investigation of individual morphological brain networks.

  8. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors.

    PubMed

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V

    2013-09-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis , the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate.

  9. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors

    PubMed Central

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H.; Gambhir, Manoj; Fu, Joshua S.; Liu, Yang; Remais, Justin V.

    2014-01-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001–2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057–2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses—including altered phenology—of disease vectors to altered climate. PMID:24772388

  10. Scalable Lunar Surface Networks and Adaptive Orbit Access

    NASA Technical Reports Server (NTRS)

    Wang, Xudong

    2015-01-01

    Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.

  11. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    PubMed

    Kang, Min-Joo; Kang, Je-Won

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.

  12. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security

    PubMed Central

    Kang, Min-Joo

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus. PMID:27271802

  13. Spatial Epidemic Modelling in Social Networks

    NASA Astrophysics Data System (ADS)

    Simoes, Joana Margarida

    2005-06-01

    The spread of infectious diseases is highly influenced by the structure of the underlying social network. The target of this study is not the network of acquaintances, but the social mobility network: the daily movement of people between locations, in regions. It was already shown that this kind of network exhibits small world characteristics. The model developed is agent based (ABM) and comprehends a movement model and a infection model. In the movement model, some assumptions are made about its structure and the daily movement is decomposed into four types: neighborhood, intra region, inter region and random. The model is Geographical Information Systems (GIS) based, and uses real data to define its geometry. Because it is a vector model, some optimization techniques were used to increase its efficiency.

  14. A Cost-Effective Geodetic Strainmeter Based on Dual Coaxial Cable Bragg Gratings

    PubMed Central

    Fu, Jihua; Wang, Xu; Wei, Tao; Wei, Meng; Shen, Yang

    2017-01-01

    Observations of surface deformation are essential for understanding a wide range of geophysical problems, including earthquakes, volcanoes, landslides, and glaciers. Current geodetic technologies, such as global positioning system (GPS), interferometric synthetic aperture radar (InSAR), borehole and laser strainmeters, are costly and limited in their temporal or spatial resolutions. Here we present a new type of strainmeters based on the coaxial cable Bragg grating (CCBG) sensing technology that provides cost-effective strain measurements. Two CCBGs are introduced into the geodetic strainmeter: one serves as a sensor to measure the strain applied on it, and the other acts as a reference to detect environmental noises. By integrating the sensor and reference signals in a mixer, the environmental noises are minimized and a lower mixed frequency is obtained. The lower mixed frequency allows for measurements to be taken with a portable spectrum analyzer, rather than an expensive spectrum analyzer or a vector network analyzer (VNA). Analysis of laboratory experiments shows that the strain can be measured by the CCBG sensor, and the portable spectrum analyzer can make measurements with the accuracy similar to the expensive spectrum analyzer, whose relative error to the spectrum analyzer R3272 is less than ±0.4%. The outputs of the geodetic strainmeter show a linear relationship with the strains that the CCBG sensor experienced. The measured sensitivity of the geodetic strainmeter is about −0.082 kHz/με; it can cover a large dynamic measuring range up to 2%, and its nonlinear errors can be less than 5.3%. PMID:28417925

  15. A Cost-Effective Geodetic Strainmeter Based on Dual Coaxial Cable Bragg Gratings.

    PubMed

    Fu, Jihua; Wang, Xu; Wei, Tao; Wei, Meng; Shen, Yang

    2017-04-12

    Observations of surface deformation are essential for understanding a wide range of geophysical problems, including earthquakes, volcanoes, landslides, and glaciers. Current geodetic technologies, such as global positioning system (GPS), interferometric synthetic aperture radar (InSAR), borehole and laser strainmeters, are costly and limited in their temporal or spatial resolutions. Here we present a new type of strainmeters based on the coaxial cable Bragg grating (CCBG) sensing technology that provides cost-effective strain measurements. Two CCBGs are introduced into the geodetic strainmeter: one serves as a sensor to measure the strain applied on it, and the other acts as a reference to detect environmental noises. By integrating the sensor and reference signals in a mixer, the environmental noises are minimized and a lower mixed frequency is obtained. The lower mixed frequency allows for measurements to be taken with a portable spectrum analyzer, rather than an expensive spectrum analyzer or a vector network analyzer (VNA). Analysis of laboratory experiments shows that the strain can be measured by the CCBG sensor, and the portable spectrum analyzer can make measurements with the accuracy similar to the expensive spectrum analyzer, whose relative error to the spectrum analyzer R3272 is less than ±0.4%. The outputs of the geodetic strainmeter show a linear relationship with the strains that the CCBG sensor experienced. The measured sensitivity of the geodetic strainmeter is about -0.082 kHz/με; it can cover a large dynamic measuring range up to 2%, and its nonlinear errors can be less than 5.3%.

  16. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    PubMed Central

    Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.

    2013-01-01

    Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933

  17. Predicting healthcare associated infections using patients' experiences

    NASA Astrophysics Data System (ADS)

    Pratt, Michael A.; Chu, Henry

    2016-05-01

    Healthcare associated infections (HAI) are a major threat to patient safety and are costly to health systems. Our goal is to predict the HAI performance of a hospital using the patients' experience responses as input. We use four classifiers, viz. random forest, naive Bayes, artificial feedforward neural networks, and the support vector machine, to perform the prediction of six types of HAI. The six types include blood stream, urinary tract, surgical site, and intestinal infections. Experiments show that the random forest and support vector machine perform well across the six types of HAI.

  18. Associative memory - An optimum binary neuron representation

    NASA Technical Reports Server (NTRS)

    Awwal, A. A.; Karim, M. A.; Liu, H. K.

    1989-01-01

    Convergence mechanism of vectors in the Hopfield's neural network is studied in terms of both weights (i.e., inner products) and Hamming distance. It is shown that Hamming distance should not always be used in determining the convergence of vectors. Instead, weights (which in turn depend on the neuron representation) are found to play a more dominant role in the convergence mechanism. Consequently, a new binary neuron representation for associative memory is proposed. With the new neuron representation, the associative memory responds unambiguously to the partial input in retrieving the stored information.

  19. Bearing performance degradation assessment based on time-frequency code features and SOM network

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Han, Yan; Deng, Lei

    2017-04-01

    Bearing performance degradation assessment and prognostics are extremely important in supporting maintenance decision and guaranteeing the system’s reliability. To achieve this goal, this paper proposes a novel feature extraction method for the degradation assessment and prognostics of bearings. Features of time-frequency codes (TFCs) are extracted from the time-frequency distribution using a hybrid procedure based on short-time Fourier transform (STFT) and non-negative matrix factorization (NMF) theory. An alternative way to design the health indicator is investigated by quantifying the similarity between feature vectors using a self-organizing map (SOM) network. On the basis of this idea, a new health indicator called time-frequency code quantification error (TFCQE) is proposed to assess the performance degradation of the bearing. This indicator is constructed based on the bearing real-time behavior and the SOM model that is previously trained with only the TFC vectors under the normal condition. Vibration signals collected from the bearing run-to-failure tests are used to validate the developed method. The comparison results demonstrate the superiority of the proposed TFCQE indicator over many other traditional features in terms of feature quality metrics, incipient degradation identification and achieving accurate prediction. Highlights • Time-frequency codes are extracted to reflect the signals’ characteristics. • SOM network served as a tool to quantify the similarity between feature vectors. • A new health indicator is proposed to demonstrate the whole stage of degradation development. • The method is useful for extracting the degradation features and detecting the incipient degradation. • The superiority of the proposed method is verified using experimental data.

  20. Carbon Nanotube Growth Rate Regression using Support Vector Machines and Artificial Neural Networks

    DTIC Science & Technology

    2014-03-27

    intensity D peak. Reprinted with permission from [38]. The SVM classifier is trained using custom written Java code leveraging the Sequential Minimal...Society Encog is a machine learning framework for Java , C++ and .Net applications that supports Bayesian Networks, Hidden Markov Models, SVMs and ANNs [13...SVM classifiers are trained using Weka libraries and leveraging custom written Java code. The data set is created as an Attribute Relationship File

Top