Iso-vector form factors of the delta and nucleon in QCD sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozpineci, A.
Form factors are important non-perturbative properties of hadrons. They give information about the internal structure of the hadrons. In this work, iso-vector axial-vector and iso-vector tensor form factors of the nucleon and the iso-vector axial-vector {Delta}{yields}N transition form factor calculations in QCD Sum Rules are presented.
ω→π0γ* and ϕ→π0γ* transition form factors in dispersion theory
NASA Astrophysics Data System (ADS)
Schneider, Sebastian P.; Kubis, Bastian; Niecknig, Franz
2012-09-01
We calculate the ω→π0γ* and ϕ→π0γ* electromagnetic transition form factors based on dispersion theory, relying solely on a previous dispersive analysis of the corresponding three-pion decays and the pion vector form factor. We compare our findings to recent measurements of the ω→π0μ+μ- decay spectrum by the NA60 collaboration, and strongly encourage experimental investigation of the Okubo-Zweig-Iizuka forbidden ϕ→π0ℓ+ℓ- decays in order to understand the strong deviations from vector-meson dominance found in these transition form factors.
Walsh-Hadamard transform kernel-based feature vector for shot boundary detection.
Lakshmi, Priya G G; Domnic, S
2014-12-01
Video shot boundary detection (SBD) is the first step of video analysis, summarization, indexing, and retrieval. In SBD process, videos are segmented into basic units called shots. In this paper, a new SBD method is proposed using color, edge, texture, and motion strength as vector of features (feature vector). Features are extracted by projecting the frames on selected basis vectors of Walsh-Hadamard transform (WHT) kernel and WHT matrix. After extracting the features, based on the significance of the features, weights are calculated. The weighted features are combined to form a single continuity signal, used as input for Procedure Based shot transition Identification process (PBI). Using the procedure, shot transitions are classified into abrupt and gradual transitions. Experimental results are examined using large-scale test sets provided by the TRECVID 2007, which has evaluated hard cut and gradual transition detection. To evaluate the robustness of the proposed method, the system evaluation is performed. The proposed method yields F1-Score of 97.4% for cut, 78% for gradual, and 96.1% for overall transitions. We have also evaluated the proposed feature vector with support vector machine classifier. The results show that WHT-based features can perform well than the other existing methods. In addition to this, few more video sequences are taken from the Openvideo project and the performance of the proposed method is compared with the recent existing SBD method.
Jafarpour, Farshid; Angheluta, Luiza; Goldenfeld, Nigel
2013-10-01
The dynamics of edge dislocations with parallel Burgers vectors, moving in the same slip plane, is mapped onto Dyson's model of a two-dimensional Coulomb gas confined in one dimension. We show that the tail distribution of the velocity of dislocations is power law in form, as a consequence of the pair interaction of nearest neighbors in one dimension. In two dimensions, we show the presence of a pairing phase transition in a system of interacting dislocations with parallel Burgers vectors. The scaling exponent of the velocity distribution at effective temperatures well below this pairing transition temperature can be derived from the nearest-neighbor interaction, while near the transition temperature, the distribution deviates from the form predicted by the nearest-neighbor interaction, suggesting the presence of collective effects.
Closed-form integrator for the quaternion (euler angle) kinematics equations
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor)
2000-01-01
The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.
The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granados, Carlos; Leupold, Stefan; Perotti, Elisabetta
Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magneticmore » transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. Furthermore, one obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR).« less
The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies
Granados, Carlos; Leupold, Stefan; Perotti, Elisabetta
2017-06-09
Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magneticmore » transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. Furthermore, one obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR).« less
Δ(1232) axial charge and form factors from lattice QCD.
Alexandrou, Constantia; Gregory, Eric B; Korzec, Tomasz; Koutsou, Giannis; Negele, John W; Sato, Toru; Tsapalis, Antonios
2011-09-30
We present the first calculation on the Δ axial vector and pseudoscalar form factors using lattice QCD. Two Goldberger-Treiman relations are derived and examined. A combined chiral fit is performed to the nucleon axial charge, N to Δ axial transition coupling constant and Δ axial charge.
Elastic and transition form factors of the Δ(1232)
Segovia, Jorge; Chen, Chen; Cloet, Ian C.; ...
2013-12-10
Predictions obtained with a confining, symmetry-preserving treatment of a vector Ⓧ vector contact interaction at leading-order in a widely used truncation of QCD’s Dyson–Schwinger equations are presented for Δ and Ω baryon elastic form factors and the γN → Δ transition form factors. This simple framework produces results that are practically indistinguishable from the best otherwise available, an outcome which highlights that the key to describing many features of baryons and unifying them with the properties of mesons is a veracious expression of dynamical chiral symmetry breaking in the hadron bound-state problem. The following specific results are of particular interest.more » The Δ elastic form factors are very sensitive to m Δ. Hence, given that the parameters which define extant simulations of lattice-regularised QCD produce Δ-resonance masses that are very large, the form factors obtained therewith are a poor guide to properties of the Δ(1232). Considering the Δ-baryon’s quadrupole moment, whilst all computations produce a negative value, the conflict between theoretical predictions entails that it is currently impossible to reach a sound conclusion on the nature of the Δ-baryon’s deformation in the infinite momentum frame. Furthermore, results for analogous properties of the Ω baryon are less contentious. In connection with the N → Δ transition, the Ash-convention magnetic transition form factor falls faster than the neutron’s magnetic form factor and nonzero values for the associated quadrupole ratios reveal the impact of quark orbital angular momentum within the nucleon and Δ; and, furthermore, these quadrupole ratios do slowly approach their anticipated asymptotic limits.« less
Method and apparatus for optimized processing of sparse matrices
Taylor, Valerie E.
1993-01-01
A computer architecture for processing a sparse matrix is disclosed. The apparatus stores a value-row vector corresponding to nonzero values of a sparse matrix. Each of the nonzero values is located at a defined row and column position in the matrix. The value-row vector includes a first vector including nonzero values and delimiting characters indicating a transition from one column to another. The value-row vector also includes a second vector which defines row position values in the matrix corresponding to the nonzero values in the first vector and column position values in the matrix corresponding to the column position of the nonzero values in the first vector. The architecture also includes a circuit for detecting a special character within the value-row vector. Matrix-vector multiplication is executed on the value-row vector. This multiplication is performed by multiplying an index value of the first vector value by a column value from a second matrix to form a matrix-vector product which is added to a previous matrix-vector product.
Tensor form factor for the D → π(K) transitions with Twisted Mass fermions.
NASA Astrophysics Data System (ADS)
Lubicz, Vittorio; Riggio, Lorenzo; Salerno, Giorgio; Simula, Silvano; Tarantino, Cecilia
2018-03-01
We present a preliminary lattice calculation of the D → π and D → K tensor form factors fT (q2) as a function of the squared 4-momentum transfer q2. ETMC recently computed the vector and scalar form factors f+(q2) and f0(q2) describing D → π(K)lv semileptonic decays analyzing the vector current and the scalar density. The study of the weak tensor current, which is directly related to the tensor form factor, completes the set of hadronic matrix element regulating the transition between these two pseudoscalar mesons within and beyond the Standard Model where a non-zero tensor coupling is possible. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 + 1 flavors of dynamical quarks. We simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV and with the valence heavy quark in the mass range from ≃ 0.7 mc to ≃ 1.2mc. The matrix element of the tensor current are determined for a plethora of kinematical conditions in which parent and child mesons are either moving or at rest. As for the vector and scalar form factors, Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data. We will present preliminary results on the removal of such hypercubic lattice effects.
NASA Technical Reports Server (NTRS)
Battin, R. H.; Croopnick, S. R.; Edwards, J. A.
1977-01-01
The formulation of a recursive maximum likelihood navigation system employing reference position and velocity vectors as state variables is presented. Convenient forms of the required variational equations of motion are developed together with an explicit form of the associated state transition matrix needed to refer measurement data from the measurement time to the epoch time. Computational advantages accrue from this design in that the usual forward extrapolation of the covariance matrix of estimation errors can be avoided without incurring unacceptable system errors. Simulation data for earth orbiting satellites are provided to substantiate this assertion.
Radiative corrections to the η(') Dalitz decays
NASA Astrophysics Data System (ADS)
Husek, Tomáš; Kampf, Karol; Novotný, Jiří; Leupold, Stefan
2018-05-01
We provide the complete set of radiative corrections to the Dalitz decays η(')→ℓ+ℓ-γ beyond the soft-photon approximation, i.e., over the whole range of the Dalitz plot and with no restrictions on the energy of a radiative photon. The corrections inevitably depend on the η(')→ γ*γ(*) transition form factors. For the singly virtual transition form factor appearing, e.g., in the bremsstrahlung correction, recent dispersive calculations are used. For the one-photon-irreducible contribution at the one-loop level (for the doubly virtual form factor), we use a vector-meson-dominance-inspired model while taking into account the η -η' mixing.
NASA Astrophysics Data System (ADS)
Fatima, A.; Sajjad Athar, M.; Singh, S. K.
2018-06-01
In this work, we have studied the total scattering cross section (σ, differential scattering cross section ( dσ/d Q2) as well as the longitudinal ( P_L(Ee,Q2)), perpendicular ( PP(Ee,Q2)), and transverse ( PT(Ee,Q2)) components of the polarization of the final hadron ( n, Λ and Σ0) produced in the electron proton scattering induced by the weak charged current. We have not assumed T-invariance which allows the transverse component of the hadron polarization perpendicular to the production plane to be non-zero. The numerical results are presented for all the above observables and their dependence on the axial vector form factor and the weak electric form factor are discussed. The present study enables the determination of the axial vector nucleon-hyperon transition form factors at high Q2 in the strangeness sector which can provide a test of the symmetries of the weak hadronic currents like T-invariance and SU(3) symmetry while assuming the hypothesis of conserved vector current and partial conservation of axial vector current.
Nucleon and Elastic and Transition Form Factors
NASA Astrophysics Data System (ADS)
Segovia, Jorge; Cloët, Ian C.; Roberts, Craig D.; Schmidt, Sebastian M.
2014-12-01
We present a unified study of nucleon and elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector vector contact-interaction. The comparison emphasises that experiments are sensitive to the momentum dependence of the running couplings and masses in the strong interaction sector of the Standard Model and highlights that the key to describing hadron properties is a veracious expression of dynamical chiral symmetry breaking in the bound-state problem. Amongst the results we describe, the following are of particular interest: possesses a zero at Q 2 = 9.5 GeV2; any change in the interaction which shifts a zero in the proton ratio to larger Q 2 relocates a zero in to smaller Q 2; there is likely a value of momentum transfer above which ; and the presence of strong diquark correlations within the nucleon is sufficient to understand empirical extractions of the flavour-separated form factors. Regarding the -baryon, we find that, inter alia: the electric monopole form factor exhibits a zero; the electric quadrupole form factor is negative, large in magnitude, and sensitive to the nature and strength of correlations in the Faddeev amplitude; and the magnetic octupole form factor is negative so long as rest-frame P- and D-wave correlations are included. In connection with the transition, the momentum-dependence of the magnetic transition form factor, , matches that of once the momentum transfer is high enough to pierce the meson-cloud; and the electric quadrupole ratio is a keen measure of diquark and orbital angular momentum correlations, the zero in which is obscured by meson-cloud effects on the domain currently accessible to experiment. Importantly, within each framework, identical propagators and vertices are sufficient to describe all properties discussed herein. Our analysis and predictions should therefore serve as motivation for measurement of elastic and transition form factors involving the nucleon and its resonances at high photon virtualities using modern electron-beam facilities.
NASA Astrophysics Data System (ADS)
Pukhov, Konstantin K.
2017-12-01
Here we discuss the radiative decays of excited states of transition elements located inside and outside of the subwavelength core-shell nanoparticles embedded in dielectric medium. Based on the quantum mechanics and quantum electrodynamics, the general analytical expressions are derived for the probability of the spontaneous transitions in the luminescent centers (emitter) inside and outside the subwavelength core-shell nanoparticle. Obtained expressions holds for arbitrary orientation of the dipole moment and the principal axes of the quadrupole moment of the emitter with respect to the radius-vector r connecting the center of the emitter with the center of the nanoparticle. They have simple form and show how the spontaneous emission in core-shell NPs can be controlled and engineered due to the dependence of the emission rates on core-shell sizes, radius-vector r and permittivities of the surrounding medium, shell, and core.
ω and η (η') Mesons from NN and nd Collisions at Intermediate Energies
NASA Astrophysics Data System (ADS)
Kaptari, L. P.; Kämpfer, B.
The production of pseudo scalar, η, η‧, and vector, ω, ρ, ϕ, mesons in NN collisions at threshold-near energies is analyzed within a covariant effective meson-nucleon theory. It is shown that a good description of cross sections and angular distributions, for vector meson production, can be accomplished by considering meson and nucleon currents only, while for pseudo scalar production an inclusion of nucleon resonances is needed. The di-electron production from subsequent Dalitz decay of the produced mesons, η‧ → γγ* → γe+e- and ω → πγ* → πe+e- is also considered and numerical results are presented for intermediate energies and kinematics of possible experiments with HADES, CLAS and KEK-PS. We argue that the transition form factor ω → γ*π as well as η‧ → γ*γ can be defined in a fairly model independent way and the feasibility of an experimental access to transition form factors is discussed.
NASA Astrophysics Data System (ADS)
Sun, Wen-Rong; Wang, Lei; Xie, Xi-Yang
2018-06-01
Vector breather-to-soliton transitions for the higher-order nonlinear Schrödinger-Maxwell-Bloch (NLS-MB) system with sextic terms are investigated. The Lax pair and Darboux transformation (DT) of such system are constructed. With the DT, analytic vector breather solutions up to the second order are obtained. With appropriate choices of the spectra parameters, vector breather-to-soliton transitions happen. Interaction mechanisms of vector nonlinear waves (breather-soliton or soliton-soliton interactions) are displayed.
Biefeld, R.M.; Fritz, I.J.; Gourley, P.L.; Osbourn, G.C.
A semiconductor optical device which includes a superlattice having direct transitions between conduction band and valence band states with the same wave vector, the superlattice being formed from a plurality of alternating layers of two or more different materials, at least the material with the smallest bandgap being an indirect bandgap material.
1990-09-01
simplest form the modulators are systems. 1) The inter -band absorption edges at operated as non-resonant (single-pass) which the electro-absorption...transitions in -0111- 1,’. three different wavelength bands indicated. It is the NIR inter -band transition which is of interest in this E’l Iwork. 0...quartz crystal resonator is a vector quantity. 12 random vibration at 100 Hz away from the Therefore, the frequency during acceleration carrier. Of
Chirality and orbital order in charge density waves
NASA Astrophysics Data System (ADS)
van Wezel, Jasper
2011-12-01
Helical arrangements of spins are common among magnetic materials. The first material to harbor a corkscrew pattern of charge density, on the other hand, was discovered only very recently. The nature of the order parameter is of key relevance, since rotating a magnetic vector around any propagation vector trivially yields a helical pattern. In contrast, the purely scalar charge density cannot straightforwardly support a chiral state. Here we use a Landau order parameter analysis to resolve this paradox, and show that the chiral charge order may be understood as a form of orbital ordering. We discuss the microscopic mechanism driving the transition and show it to be of a general form, thus allowing for a broad class of materials to display this novel type of orbital-ordered chiral charge density wave.
A static investigation of several STOVL exhaust system concepts
NASA Technical Reports Server (NTRS)
Romine, B. M., Jr.; Meyer, B. E.; Re, R. J.
1989-01-01
A static cold flow scale model test was performed in order to determine the internal performance characteristics of various STOVL exhaust systems. All of the concepts considered included a vectorable cruise nozzle and a separate vectorable vertical thrust ventral nozzle mounted on the tailpipe. The two ventral nozzle configurations tested featured vectorable constant thickness cascade vanes for area control and improved performance during transition and vertical lift flight. The best transition performance was achieved using a butterfly door type ventral nozzle and a pitch vectoring 2DCD or axisymmetric cruise nozzle. The clamshell blocker type of ventral nozzle had reduced transition performance due to the choking of the tailpipe flow upstream of the cruise nozzle.
Measurement of the ϕ → π0e+e- transition form factor with the KLOE detector
NASA Astrophysics Data System (ADS)
Anastasi, A.; Babusci, D.; Bencivenni, G.; Berlowski, M.; Bloise, C.; Bossi, F.; Branchini, P.; Budano, A.; Caldeira Balkeståhl, L.; Cao, B.; Ceradini, F.; Ciambrone, P.; Curciarello, F.; Czerwiński, E.; D'Agostini, G.; Danè, E.; De Leo, V.; De Lucia, E.; De Santis, A.; De Simone, P.; Di Cicco, A.; Di Domenico, A.; Di Salvo, R.; Domenici, D.; D'Uffizi, A.; Fantini, A.; Felici, G.; Fiore, S.; Gajos, A.; Gauzzi, P.; Giardina, G.; Giovannella, S.; Graziani, E.; Happacher, F.; Heijkenskjöld, L.; Ikegami Andersson, W.; Johansson, T.; Kamińska, D.; Krzemien, W.; Kupsc, A.; Loffredo, S.; Mandaglio, G.; Martini, M.; Mascolo, M.; Messi, R.; Miscetti, S.; Morello, G.; Moricciani, D.; Moskal, P.; Papenbrock, M.; Passeri, A.; Patera, V.; Perez del Rio, E.; Ranieri, A.; Salabura, P.; Santangelo, P.; Sarra, I.; Schioppa, M.; Silarski, M.; Sirghi, F.; Tortora, L.; Venanzoni, G.; Wiślicki, W.; Wolke, M.
2016-06-01
A measurement of the vector to pseudoscalar conversion decay ϕ →π0e+e- with the KLOE experiment is presented. A sample of ˜9500 signal events was selected from a data set of 1.7 fb-1 of e+e- collisions at √{ s} ˜mϕ collected at the DAΦNE e+e- collider. These events were used to perform the first measurement of the transition form factor |Fϕπ0 (q2) | and a new measurement of the branching ratio of the decay: BR (ϕ →π0e+e-) = (1.35 ±0.05-0.10+0.05) ×10-5. The result improves significantly on previous measurements and is in agreement with theoretical predictions.
Predicting the past: a simple reverse stand table projection method
Quang V. Cao; Shanna M. McCarty
2006-01-01
A stand table gives number of trees in each diameter class. Future stand tables can be predicted from current stand tables using a stand table projection method. In the simplest form of this method, a future stand table can be expressed as the product of a matrix of transitional proportions (based on diameter growth rates) and a vector of the current stand table. There...
NASA Technical Reports Server (NTRS)
Simpkin, W. E.
1982-01-01
An approximately 0.25 scale model of the transition section of a tandem fan variable cycle engine nacelle was tested in the NASA Lewis Research Center 10-by-10 foot wind tunnel. Two 12-inch, tip-turbine driven fans were used to simulate a tandem fan engine. Three testing modes simulated a V/STOL tandem fan airplane. Parallel mode has two separate propulsion streams for maximum low speed performance. A front inlet, fan, and downward vectorable nozzle forms one stream. An auxilliary top inlet provides air to the aft fan - supplying the core engine and aft vectorable nozzle. Front nozzle and top inlet closure, and removal of a blocker door separating the two streams configures the tandem fan for series mode operations as a typical aircraft propulsion system. Transition mode operation is formed by intermediate settings of the front nozzle, blocker door, and top inlet. Emphasis was on the total pressure recovery and flow distortion at the aft fan face. A range of fan flow rates were tested at tunnel airspeeds from 0 to 240 knots, and angles-of-attack from -10 to 40 deg for all three modes. In addition to the model variables for the three modes, model variants of the top inlet were tested in the parallel mode only. These lip variables were: aft lip boundary layer bleed holes, and Three position turning vane. Also a bellmouth extension of the top inlet side lips was tested in parallel mode.
Weak crystallization theory of metallic alloys
Martin, Ivar; Gopalakrishnan, Sarang; Demler, Eugene A.
2016-06-20
Crystallization is one of the most familiar, but hardest to analyze, phase transitions. The principal reason is that crystallization typically occurs via a strongly first-order phase transition, and thus rigorous treatment would require comparing energies of an infinite number of possible crystalline states with the energy of liquid. A great simplification occurs when crystallization transition happens to be weakly first order. In this case, weak crystallization theory, based on unbiased Ginzburg-Landau expansion, can be applied. Even beyond its strict range of validity, it has been a useful qualitative tool for understanding crystallization. In its standard form, however, weak crystallization theorymore » cannot explain the existence of a majority of observed crystalline and quasicrystalline states. Here we extend the weak crystallization theory to the case of metallic alloys. In this paper, we identify a singular effect of itinerant electrons on the form of weak crystallization free energy. It is geometric in nature, generating strong dependence of free energy on the angles between ordering wave vectors of ionic density. That leads to stabilization of fcc, rhombohedral, and icosahedral quasicrystalline (iQC) phases, which are absent in the generic theory with only local interactions. Finally, as an application, we find the condition for stability of iQC that is consistent with the Hume-Rothery rules known empirically for the majority of stable iQC; namely, the length of the primary Bragg-peak wave vector is approximately equal to the diameter of the Fermi sphere.« less
Magnetic dipole transitions of Bc and Bc* mesons in the relativistic independent quark model
NASA Astrophysics Data System (ADS)
Patnaik, Sonali; Dash, P. C.; Kar, Susmita; Patra, Sweta P.; Barik, N.
2017-12-01
We study M1-transitions involving mesons: Bc(1 s ), Bc*(1 s ), Bc(2 s ), Bc*(2 s ), Bc(3 s ), and Bc*(3 s ) in the relativistic independent quark (RIQ) model based on a flavor independent average potential in the scalar-vector harmonic form. The transition form factor for Bc*→Bcγ is found to have analytical continuation from spacelike to physical timelike region. Our predicted coupling constant gBc*Bc=0.34 GeV-1 and decay width Γ (Bc*→Bcγ )=23 eV agree with other model predictions. In view of possible observation of Bc and Bc* s-wave states at LHC and Z-factory and potential use of theoretical estimate on M1-transitions, we investigate the allowed as well as hindered transitions of orbitally excited Bc-meson states and predict their decay widths in overall agreement with other model predictions. We consider the typical case of Bc*(1 s )→Bc(1 s )γ , where our predicted decay width which is found quite sensitive to the mass difference between Bc* and Bc mesons may help in determining the mass of Bc* experimentally.
π π → π γ * amplitude and the resonant ρ → π γ * transition from lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briceño, Raúl A.; Dudek, Jozef J.; Edwards, Robert G.
2016-06-01
We present a determination of themore » $P$-wave $$\\pi\\pi\\to\\pi\\gamma^\\star$$ transition amplitude from lattice quantum chromodynamics. Matrix elements of the vector current in a finite-volume are extracted from three-point correlation functions, and from these we determine the infinite-volume amplitude using a generalization of the Lellouch-L\\"uscher formalism. We determine the amplitude for a range of discrete values of the $$\\pi\\pi$$ energy and virtuality of the photon, and observe the expected dynamical enhancement due to the $$\\rho$$ resonance. Describing the energy dependence of the amplitude, we are able to analytically continue into the complex energy plane and from the residue at the $$\\rho$$ pole extract the $$\\rho\\to\\gamma^\\star\\pi$$ transition form factor. This calculation, at $$m_\\pi\\approx 400$$~MeV, is the first time a form factor of a hadron resonance has been calculated within a first-principles approach to QCD.« less
Ideal form of optical plasma lenses
NASA Astrophysics Data System (ADS)
Gordon, D. F.; Stamm, A. B.; Hafizi, B.; Johnson, L. A.; Kaganovich, D.; Hubbard, R. F.; Richardson, A. S.; Zhigunov, D.
2018-06-01
The canonical form of an optical plasma lens is a parabolic density channel. This form suffers from spherical aberrations, among others. Spherical aberration is partially corrected by adding a quartic term to the radial density profile. Ideal forms which lead to perfect focusing or imaging are obtained. The fields at the focus of a strong lens are computed with high accuracy and efficiency using a combination of eikonal and full Maxwell descriptions of the radiation propagation. The calculations are performed using a new computer propagation code, SeaRay, which is designed to transition between various solution methods as the beam propagates through different spatial regions. The calculations produce the full Maxwell vector fields in the focal region.
Flavor changing neutral current transition of B to a1 with light-cone sum rules
NASA Astrophysics Data System (ADS)
Momeni, S.; Khosravi, R.; Falahati, F.
2017-01-01
The B →a1ℓ+ℓ- decays occur by the electroweak penguin and box diagrams, which can be performed through the flavor changing neutral current (FCNC). We calculate the form factors of the FCNC B →a1 transitions in the light-cone sum rules approach, up to twist-4 distribution amplitudes of the axial vector meson a1. Forward-backward asymmetry, as well as branching ratios of B →a1ℓ+ℓ-, and B →a1γ decays are considered. A comparison is also made between our results and the predictions of other methods.
A vector matching method for analysing logic Petri nets
NASA Astrophysics Data System (ADS)
Du, YuYue; Qi, Liang; Zhou, MengChu
2011-11-01
Batch processing function and passing value indeterminacy in cooperative systems can be described and analysed by logic Petri nets (LPNs). To directly analyse the properties of LPNs, the concept of transition enabling vector sets is presented and a vector matching method used to judge the enabling transitions is proposed in this article. The incidence matrix of LPNs is defined; an equation about marking change due to a transition's firing is given; and a reachable tree is constructed. The state space explosion is mitigated to a certain extent from directly analysing LPNs. Finally, the validity and reliability of the proposed method are illustrated by an example in electronic commerce.
Weak η production off the nucleon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, M. Rafi; Athar, M. Sajjad; Alvarez-Ruso, L.
2015-05-15
The weak η-meson production off the nucleon induced by (anti)neutrinos is studied at low and intermediate energies, the range of interest for several ongoing and future neutrino experiments. We consider Born diagrams and the excitation of N{sup *} (1535)S{sub 11} and N{sup *} (1650)S{sub 11} resonances. The vector part of the N-S{sub 11} transition form factors has been obtained from the MAID helicity amplitudes while the poorly known axial part is constrained with the help of the partial conservation of the axial current (PCAC) and assuming the pion-pole dominance of the pseudoscalar form factor.
Measuring magnetic field vector by stimulated Raman transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenli; Wei, Rong, E-mail: weirong@siom.ac.cn; Lin, Jinda
2016-03-21
We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields,more » beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.« less
Three-dimensional tool radius compensation for multi-axis peripheral milling
NASA Astrophysics Data System (ADS)
Chen, Youdong; Wang, Tianmiao
2013-05-01
Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the case of tool size changing with tool wear in machining, a new NC program has to be recreated. A generic 3D tool radius compensation method for multi-axis peripheral milling in CNC systems is presented. The offset path is calculated by offsetting the tool path along the direction of the offset vector with a given distance. The offset vector is perpendicular to both the tangent vector of the tool path and the orientation vector of the tool axis relative to the workpiece. The orientation vector equations of the tool axis relative to the workpiece are obtained through homogeneous coordinate transformation matrix and forward kinematics of generalized kinematics model of multi-axis machine tools. To avoid cutting into the corner formed by the two adjacent tool paths, the coordinates of offset path at the intersection point have been calculated according to the transition type that is determined by the angle between the two tool path tangent vectors at the corner. Through the verification by the solid cutting simulation software VERICUT® with different tool radiuses on a table-tilting type five-axis machine tool, and by the real machining experiment of machining a soup spoon on a five-axis machine tool with the developed CNC system, the effectiveness of the proposed 3D tool radius compensation method is confirmed. The proposed compensation method can be suitable for all kinds of three- to five-axis machine tools as a general form.
Exotic and excited-state radiative transitions in charmonium from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.
2009-05-01
We compute, for the first time using lattice QCD methods, radiative transition rates involving excited charmonium states, states of high spin and exotics. Utilizing a large basis of interpolating fields we are able to project out various excited state contributions to three-point correlators computed on quenched anisotropic lattices. In the first lattice QCD calculation of the exoticmore » $$1^{-+}$$ $$\\eta_{c1}$$ radiative decay, we find a large partial width $$\\Gamma(\\eta_{c1} \\to J/\\psi \\gamma) \\sim 100 \\,\\mathrm{keV}$$. We find clear signals for electric dipole and magnetic quadrupole transition form factors in $$\\chi_{c2} \\to J/\\psi \\gamma$$, calculated for the first time in this framework, and study transitions involving excited $$\\psi$$ and $$\\chi_{c1,2}$$ states. We calculate hindered magnetic dipole transition widths without the sensitivity to assumptions made in model studies and find statistically significant signals, including a non-exotic vector hybrid candidate $Y_{\\mathrm{hyb?}} \\to \\et« less
Lazy orbits: An optimization problem on the sphere
NASA Astrophysics Data System (ADS)
Vincze, Csaba
2018-01-01
Non-transitive subgroups of the orthogonal group play an important role in the non-Euclidean geometry. If G is a closed subgroup in the orthogonal group such that the orbit of a single Euclidean unit vector does not cover the (Euclidean) unit sphere centered at the origin then there always exists a non-Euclidean Minkowski functional such that the elements of G preserve the Minkowskian length of vectors. In other words the Minkowski geometry is an alternative of the Euclidean geometry for the subgroup G. It is rich of isometries if G is "close enough" to the orthogonal group or at least to one of its transitive subgroups. The measure of non-transitivity is related to the Hausdorff distances of the orbits under the elements of G to the Euclidean sphere. Its maximum/minimum belongs to the so-called lazy/busy orbits, i.e. they are the solutions of an optimization problem on the Euclidean sphere. The extremal distances allow us to characterize the reducible/irreducible subgroups. We also formulate an upper and a lower bound for the ratio of the extremal distances. As another application of the analytic tools we introduce the rank of a closed non-transitive group G. We shall see that if G is of maximal rank then it is finite or reducible. Since the reducible and the finite subgroups form two natural prototypes of non-transitive subgroups, the rank seems to be a fundamental notion in their characterization. Closed, non-transitive groups of rank n - 1 will be also characterized. Using the general results we classify all their possible types in lower dimensional cases n = 2 , 3 and 4. Finally we present some applications of the results to the holonomy group of a metric linear connection on a connected Riemannian manifold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chong; Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn; Zhao, Li-Chen, E-mail: zhaolichen3@163.com
We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relativemore » background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.« less
Estimation of transition probabilities of credit ratings
NASA Astrophysics Data System (ADS)
Peng, Gan Chew; Hin, Pooi Ah
2015-12-01
The present research is based on the quarterly credit ratings of ten companies over 15 years taken from the database of the Taiwan Economic Journal. The components in the vector mi (mi1, mi2,⋯, mi10) may first be used to denote the credit ratings of the ten companies in the i-th quarter. The vector mi+1 in the next quarter is modelled to be dependent on the vector mi via a conditional distribution which is derived from a 20-dimensional power-normal mixture distribution. The transition probability Pkl (i ,j ) for getting mi+1,j = l given that mi, j = k is then computed from the conditional distribution. It is found that the variation of the transition probability Pkl (i ,j ) as i varies is able to give indication for the possible transition of the credit rating of the j-th company in the near future.
NASA Astrophysics Data System (ADS)
Lesieur, Thibault; Krzakala, Florent; Zdeborová, Lenka
2017-07-01
This article is an extended version of previous work of Lesieur et al (2015 IEEE Int. Symp. on Information Theory Proc. pp 1635-9 and 2015 53rd Annual Allerton Conf. on Communication, Control and Computing (IEEE) pp 680-7) on low-rank matrix estimation in the presence of constraints on the factors into which the matrix is factorized. Low-rank matrix factorization is one of the basic methods used in data analysis for unsupervised learning of relevant features and other types of dimensionality reduction. We present a framework to study the constrained low-rank matrix estimation for a general prior on the factors, and a general output channel through which the matrix is observed. We draw a parallel with the study of vector-spin glass models—presenting a unifying way to study a number of problems considered previously in separate statistical physics works. We present a number of applications for the problem in data analysis. We derive in detail a general form of the low-rank approximate message passing (Low-RAMP) algorithm, that is known in statistical physics as the TAP equations. We thus unify the derivation of the TAP equations for models as different as the Sherrington-Kirkpatrick model, the restricted Boltzmann machine, the Hopfield model or vector (xy, Heisenberg and other) spin glasses. The state evolution of the Low-RAMP algorithm is also derived, and is equivalent to the replica symmetric solution for the large class of vector-spin glass models. In the section devoted to result we study in detail phase diagrams and phase transitions for the Bayes-optimal inference in low-rank matrix estimation. We present a typology of phase transitions and their relation to performance of algorithms such as the Low-RAMP or commonly used spectral methods.
NASA Technical Reports Server (NTRS)
Tsiveriotis, K.; Brown, R. A.
1993-01-01
A new method is presented for the solution of free-boundary problems using Lagrangian finite element approximations defined on locally refined grids. The formulation allows for direct transition from coarse to fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh refinement is combined with recently developed mapping methods and Newton's method to form an efficient algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of cellular interfacial microstructure during directional solidification of a binary alloy.
Li, Yushuang; Yang, Jiasheng; Zhang, Yi
2016-01-01
In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector. PMID:27918587
Predicting Transition from Laminar to Turbulent Flow over a Surface
NASA Technical Reports Server (NTRS)
Rajnarayan, Dev (Inventor); Sturdza, Peter (Inventor)
2016-01-01
A prediction of whether a point on a computer-generated surface is adjacent to laminar or turbulent flow is made using a transition prediction technique. A plurality of instability modes are obtained, each defined by one or more mode parameters. A vector of regressor weights is obtained for the known instability growth rates in a training dataset. For an instability mode in the plurality of instability modes, a covariance vector is determined. A predicted local instability growth rate at the point is determined using the covariance vector and the vector of regressor weights. Based on the predicted local instability growth rate, an n-factor envelope at the point is determined.
Tensor calculus: unlearning vector calculus
NASA Astrophysics Data System (ADS)
Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita
2018-02-01
Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can serve as a bridge for vector calculus into tensor calculus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogh, Ellen; Toft-Petersen, Rasmus; Ressouche, Eric
Here, the magnetic phase diagram of magnetoelectric LiCoPO 4 is established using neutron diffraction and magnetometry in fields up to 25.9T applied along the crystallographic b axis. For fields greater than 11.9T, the magnetic unit cell triples in size with propagation vector Q = (0,1/3,0). A magnetized elliptic cycloid is formed with spins in the (b,c) plane and the major axis oriented along b. Such a structure allows for the magnetoelectric effect with an electric polarization along c induced by magnetic fields applied along b. Intriguingly, additional ordering vectors Q ≈ (0,1/4,0) and Q ≈ (0,1/2,0) appear for increasing fieldsmore » in the hysteresis region below the transition field. Traces of this behavior are also observed in the magnetization. A simple model based on a mean-field approach is proposed to explain these additional ordering vectors. In the field interval 20.5–21.0T, the propagation vector Q = (0,1/3,0) remains but the spins orient differently compared to the cycloid phase. Furthermore, above 21.0T and up until saturation, a commensurate magnetic structure exists with a ferromagnetic component along b and an antiferromagnetic component along« less
A link between torse-forming vector fields and rotational hypersurfaces
NASA Astrophysics Data System (ADS)
Chen, Bang-Yen; Verstraelen, Leopold
Torse-forming vector fields introduced by Yano [On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo 20 (1944) 340-346] are natural extension of concurrent and concircular vector fields. Such vector fields have many nice applications to geometry and mathematical physics. In this paper, we establish a link between rotational hypersurfaces and torse-forming vector fields. More precisely, our main result states that, for a hypersurface M of 𝔼n+1 with n ≥ 3, the tangential component xT of the position vector field of M is a proper torse-forming vector field on M if and only if M is contained in a rotational hypersurface whose axis of rotation contains the origin.
Mapping the magnetic field vector in a fountain clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertsvolf, Marina; Marmet, Louis
2011-12-15
We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.
Tensor Calculus: Unlearning Vector Calculus
ERIC Educational Resources Information Center
Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita
2018-01-01
Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can…
Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene
NASA Astrophysics Data System (ADS)
Li, Yuan; Li, Xin; Wan, Qi; Bai, R.; Wen, Z. C.
2018-04-01
We obtain the effective Hamiltonian of the phosphorene including the effect of Rashba spin-orbit coupling in the frame work of the low-energy theory. The spin-splitting energy bands show an anisotropy feature for the wave vectors along kx and ky directions, where kx orients to ΓX direction in the k space. We numerically study the optical absorption of the electrons for different wave vectors with Rashba spin-orbit coupling. We find that the spin-flip transition from the valence band to the conduction band induced by the circular polarized light closes to zero with increasing the x-component wave vector when ky equals to zero, while it can be significantly increased to a large value when ky gets a small value. When the wave vector varies along the ky direction, the spin-flip transition can also increase to a large value, however, which shows an anisotropy feature for the optical absorption. Especially, the spin-conserved transitions keep unchanged and have similar varying trends for different wave vectors. This phenomenon provides a novel route for the manipulation of the spin-dependent property of the fermions in the monolayer phosphorene.
Electric-field control of spin waves in multiferroic BiFeO3: Theory
NASA Astrophysics Data System (ADS)
de Sousa, Rogério; Rovillain, P.; Gallais, Y.; Sacuto, A.; Méasson, M. A.; Colson, D.; Forget, A.; Bibes, M.; Barthélémy, A.; Cazayous, M.
2011-03-01
Our recent experiment demonstrated gigantic (30%) electric-field tuning of magnon frequencies in multiferroic BiFeO3. We demonstrate that the origin of this effect is related to two linear magnetoelectric interactions that couple the component of electric field perpendicular to the ferroelectric vector to a quadratic form of the Néel vector. We calculate the magnon spectra due to each of these interactions and show that only one of them is consistent with experimental data. At high electric fields, this interaction induces a phase transition to a homogeneous state, and the multi-magnon spectra will fuse into two magnon frequencies. We discuss the possible microscopic mechanisms responsible for this novel interaction and the prospect for applications in magnonics. We acknowledge support from NSERC-Discovery (Canada) and the Agence Nationale pour la Recherche (France).
Host structural carbohydrate induces vector transmission of a bacterial plant pathogen.
Killiny, Nabil; Almeida, Rodrigo P P
2009-12-29
Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen's departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa's phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa's pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies.
Bartonella quintana Deploys Host and Vector Temperature-Specific Transcriptomes
Previte, Domenic; Yoon, Kyong S.; Clark, J. Marshall; DeRisi, Joseph L.; Koehler, Jane E.
2013-01-01
The bacterial pathogen Bartonella quintana is passed between humans by body lice. B. quintana has adapted to both the human host and body louse vector niches, producing persistent infection with high titer bacterial loads in both the host (up to 105 colony-forming units [CFU]/ml) and vector (more than 108 CFU/ml). Using a novel custom microarray platform, we analyzed bacterial transcription at temperatures corresponding to the host (37°C) and vector (28°C), to probe for temperature-specific and growth phase-specific transcriptomes. We observed that transcription of 7% (93 genes) of the B. quintana genome is modified in response to change in growth phase, and that 5% (68 genes) of the genome is temperature-responsive. Among these transcriptional changes in response to temperature shift and growth phase was the induction of known B. quintana virulence genes and several previously unannotated genes. Hemin binding proteins, secretion systems, response regulators, and genes for invasion and cell attachment were prominent among the differentially-regulated B. quintana genes. This study represents the first analysis of global transcriptional responses by B. quintana. In addition, the in vivo experiments provide novel insight into the B. quintana transcriptional program within the body louse environment. These data and approaches will facilitate study of the adaptation mechanisms employed by Bartonella during the transition between human host and arthropod vector. PMID:23554923
NASA Technical Reports Server (NTRS)
Mineck, R. E.; Margason, R. J.
1974-01-01
A wind-tunnel investigation has been conducted in the Langley V/STOL tunnel with a vectored-thrust V/STOL fighter configuration to obtain detailed pressure measurements on the body and on the wing in the transition-speed range. The vectored-thrust jet exhaust induced a region of negative pressure coefficients on the lower surface of the wing and on the bottom of the fuselage. The location of the jet exhaust relative to the wing was a major factor in determining the extent of the region of negative pressure coefficients.
Computational model of a vector-mediated epidemic
NASA Astrophysics Data System (ADS)
Dickman, Adriana Gomes; Dickman, Ronald
2015-05-01
We discuss a lattice model of vector-mediated transmission of a disease to illustrate how simulations can be applied in epidemiology. The population consists of two species, human hosts and vectors, which contract the disease from one another. Hosts are sedentary, while vectors (mosquitoes) diffuse in space. Examples of such diseases are malaria, dengue fever, and Pierce's disease in vineyards. The model exhibits a phase transition between an absorbing (infection free) phase and an active one as parameters such as infection rates and vector density are varied.
Magnetic order, hysteresis, and phase coexistence in magnetoelectric LiCoPO 4
Fogh, Ellen; Toft-Petersen, Rasmus; Ressouche, Eric; ...
2017-09-15
Here, the magnetic phase diagram of magnetoelectric LiCoPO 4 is established using neutron diffraction and magnetometry in fields up to 25.9T applied along the crystallographic b axis. For fields greater than 11.9T, the magnetic unit cell triples in size with propagation vector Q = (0,1/3,0). A magnetized elliptic cycloid is formed with spins in the (b,c) plane and the major axis oriented along b. Such a structure allows for the magnetoelectric effect with an electric polarization along c induced by magnetic fields applied along b. Intriguingly, additional ordering vectors Q ≈ (0,1/4,0) and Q ≈ (0,1/2,0) appear for increasing fieldsmore » in the hysteresis region below the transition field. Traces of this behavior are also observed in the magnetization. A simple model based on a mean-field approach is proposed to explain these additional ordering vectors. In the field interval 20.5–21.0T, the propagation vector Q = (0,1/3,0) remains but the spins orient differently compared to the cycloid phase. Furthermore, above 21.0T and up until saturation, a commensurate magnetic structure exists with a ferromagnetic component along b and an antiferromagnetic component along« less
Simulation of an epidemic model with vector transmission
NASA Astrophysics Data System (ADS)
Dickman, Adriana G.; Dickman, Ronald
2015-03-01
We study a lattice model for vector-mediated transmission of a disease in a population consisting of two species, A and B, which contract the disease from one another. Individuals of species A are sedentary, while those of species B (the vector) diffuse in space. Examples of such diseases are malaria, dengue fever, and Pierce's disease in vineyards. The model exhibits a phase transition between an absorbing (infection free) phase and an active one as parameters such as infection rates and vector density are varied. We study the static and dynamic critical behavior of the model using initial spreading, initial decay, and quasistationary simulations. Simulations are checked against mean-field analysis. Although phase transitions to an absorbing state fall generically in the directed percolation universality class, this appears not to be the case for the present model.
The branching ratio ω → π ^+π ^- revisited
NASA Astrophysics Data System (ADS)
Hanhart, C.; Holz, S.; Kubis, B.; Kupść, A.; Wirzba, A.; Xiao, C. W.
2017-02-01
We analyze the most recent data for the pion vector form factor in the timelike region, employing a model-independent approach based on dispersion theory. We confirm earlier observations about the inconsistency of different modern high-precision data sets. Excluding the BaBar data, we find an updated value for the isospin-violating branching ratio B(ω → π ^+π ^-) = (1.46± 0.08) × 10^{-2}. As a side result, we also extract an improved value for the pion vector or charge radius, √{< r_V^2rangle } = 0.6603(5)(4) {fm}, where the first uncertainty is statistical as derived from the fit, while the second estimates the possible size of nonuniversal radiative corrections. In addition, we demonstrate that modern high-quality data for the decay η '→ π ^+π ^-γ will allow for an even improved determination of the transition strength ω → π ^+π ^-.
Study of dipion transitions among Υ(3S), Υ(2S), and Υ(1S) states
NASA Astrophysics Data System (ADS)
Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Love, W.; Savinov, V.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Pappas, S. P.; Weinstein, A. J.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.
2007-10-01
We present measurements of decay matrix elements for hadronic transitions of the form Υ(nS)→Υ(mS)ππ, where (n,m)=(3,1),(2,1),(3,2). We reconstruct charged and neutral pion modes with the final state Upsilon decaying to either μ+μ- or e+e-. Dalitz plot distributions for the 12 decay modes are fit individually as well as jointly assuming isospin symmetry, thereby measuring the matrix elements of the decay amplitude. We observe and account for the anomaly previously noted in the dipion invariant mass distribution for the Υ(3S)→Υ(1S)ππ transition and obtain good descriptions of the dynamics of the decay using the most general decay amplitude allowed by partial conservation of the axial-vector current considerations. The fits further indicate that the Υ(2S)→Υ(1S)ππ and Υ(3S)→Υ(2S)ππ transitions also show the presence of terms in the decay amplitude that were previously ignored, although at a relatively suppressed level.
A transition matrix approach to the Davenport gryo calibration scheme
NASA Technical Reports Server (NTRS)
Natanson, G. A.
1998-01-01
The in-flight gyro calibration scheme commonly used by NASA Goddard Space Flight Center (GSFC) attitude ground support teams closely follows an original version of the Davenport algorithm developed in the late seventies. Its basic idea is to minimize the least-squares differences between attitudes gyro- propagated over the course of a maneuver and those determined using post- maneuver sensor measurements. The paper represents the scheme in a recursive form by combining necessary partials into a rectangular matrix, which is propagated in exactly the same way as a Kalman filters square transition matrix. The nontrivial structure of the propagation matrix arises from the fact that attitude errors are not included in the state vector, and therefore their derivatives with respect to estimated a parameters do not appear in the transition matrix gyro defined in the conventional way. In cases when the required accuracy can be achieved by a single iteration, representation of the Davenport gyro calibration scheme in a recursive form allows one to discard each gyro measurement immediately after it was used to propagate the attitude and state transition matrix. Another advantage of the new approach is that it utilizes the same expression for the error sensitivity matrix as that used by the Kalman filter. As a result the suggested modification of the Davenport algorithm made it possible to reuse software modules implemented in the Kalman filter estimator, where both attitude errors and gyro calibration parameters are included in the state vector. The new approach has been implemented in the ground calibration utilities used to support the Tropical Rainfall Measuring Mission (TRMM). The paper analyzes some preliminary results of gyro calibration performed by the TRMM ground attitude support team. It is demonstrated that an effect of the second iteration on estimated values of calibration parameters is negligibly small, and therefore there is no need to store processed gyro data. This opens a promising opportunity for onboard implementation of the suggested recursive procedure by combining, it with the Kalman filter used to obtain necessary attitude solutions at the beginning and end of each maneuver.
Method for multi-axis, non-contact mixing of magnetic particle suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, James E.; Solis, Kyle J.
Continuous, three-dimensional control of the vorticity vector is possible by progressively transitioning the field symmetry by applying or removing a dc bias along one of the principal axes of mutually orthogonal alternating fields. By exploiting this transition, the vorticity vector can be oriented in a wide range of directions that comprise all three spatial dimensions. Detuning one or more field components to create phase modulation causes the vorticity vector to trace out complex orbits of a wide variety, creating very robust multiaxial stirring. This multiaxial, non-contact stirring is particularly attractive for applications where the fluid volume has complex boundaries, ormore » is congested.« less
Mott-to-Goodenough insulator-insulator transition in LiVO2
NASA Astrophysics Data System (ADS)
Subedi, Alaska
2017-06-01
I critically examine Goodenough's explanation for the experimentally observed phase transition in LiVO2 using microscopic calculations based on density functional and dynamical mean field theories. The high-temperature rhombohedral phase exhibits both magnetic and dynamical instabilities. Allowing a magnetic solution for the rhombohedral structure does not open an insulating gap, and an explicit treatment of the on-site Coulomb U interaction is needed to stabilize an insulating rhombohedral phase. The non-spin-polarized phonon dispersions of the rhombohedral phase show two unstable phonon modes at the wave vector (1/3 ,-1/3 ,0 ) that corresponds to the experimentally observed trimer forming instability. A full relaxation of the supercell corresponding to this instability yields a nonmagnetic state containing V3 trimers. These results are consistent with Goodenough's suggestion that the high-temperature phase is in the localized-electron regime and the transition to the low-temperature phase in the itinerant-electron regime is driven by V-V covalency.
Normal mode-guided transition pathway generation in proteins
Lee, Byung Ho; Seo, Sangjae; Kim, Min Hyeok; Kim, Youngjin; Jo, Soojin; Choi, Moon-ki; Lee, Hoomin; Choi, Jae Boong
2017-01-01
The biological function of proteins is closely related to its structural motion. For instance, structurally misfolded proteins do not function properly. Although we are able to experimentally obtain structural information on proteins, it is still challenging to capture their dynamics, such as transition processes. Therefore, we need a simulation method to predict the transition pathways of a protein in order to understand and study large functional deformations. Here, we present a new simulation method called normal mode-guided elastic network interpolation (NGENI) that performs normal modes analysis iteratively to predict transition pathways of proteins. To be more specific, NGENI obtains displacement vectors that determine intermediate structures by interpolating the distance between two end-point conformations, similar to a morphing method called elastic network interpolation. However, the displacement vector is regarded as a linear combination of the normal mode vectors of each intermediate structure, in order to enhance the physical sense of the proposed pathways. As a result, we can generate more reasonable transition pathways geometrically and thermodynamically. By using not only all normal modes, but also in part using only the lowest normal modes, NGENI can still generate reasonable pathways for large deformations in proteins. This study shows that global protein transitions are dominated by collective motion, which means that a few lowest normal modes play an important role in this process. NGENI has considerable merit in terms of computational cost because it is possible to generate transition pathways by partial degrees of freedom, while conventional methods are not capable of this. PMID:29020017
A distributed Petri Net controller for a dual arm testbed
NASA Technical Reports Server (NTRS)
Bjanes, Atle
1991-01-01
This thesis describes the design and functionality of a Distributed Petri Net Controller (DPNC). The controller runs under X Windows to provide a graphical interface. The DPNC allows users to distribute a Petri Net across several host computers linked together via a TCP/IP interface. A sub-net executes on each host, interacting with the other sub-nets by passing a token vector from host to host. One host has a command window which monitors and controls the distributed controller. The input to the DPNC is a net definition file generated by Great SPN. Thus, a net may be designed, analyzed and verified using this package before implementation. The net is distributed to the hosts by tagging transitions that are host-critical with the appropriate host number. The controller will then distribute the remaining places and transitions to the hosts by generating the local nets, the local marking vectors and the global marking vector. Each transition can have one or more preconditions which must be fulfilled before the transition can fire, as well as one or more post-processes to be executed after the transition fires. These implement the actual input/output to the environment (machines, signals, etc.). The DPNC may also be used to simulate a Great SPN net since stochastic and deterministic firing rates are implemented in the controller for timed transitions.
Isoscalar-vector interaction and hybrid quark core in massive neutron stars
NASA Astrophysics Data System (ADS)
Shao, G. Y.; Colonna, M.; Di Toro, M.; Liu, Y. X.; Liu, B.
2013-05-01
The hadron-quark phase transition in the core of massive neutron stars is studied with a newly constructed two-phase model. For nuclear matter, a nonlinear Walecka type model with general nucleon-meson and meson-meson couplings, recently calibrated by Steiner, Hemper and Fischer, is taken. For quark matter, a modified Polyakov-Nambu—Jona-Lasinio model, which gives consistent results with lattice QCD data, is used. Most importantly, we introduce an isoscalar-vector interaction in the description of quark matter, and we study its influence on the hadron-quark phase transition in the interior of massive neutron stars. With the constraints of neutron star observations, our calculation shows that the isoscalar-vector interaction between quarks is indispensable if massive hybrids star exist in the universe, and its strength determines the onset density of quark matter, as well as the mass-radius relations of hybrid stars. Furthermore, as a connection with heavy-ion-collision experiments we give some discussions about the strength of isoscalar-vector interaction and its effect on the signals of hadron-quark phase transition in heavy-ion collisions, in the energy range of the NICA at JINR-Dubna and FAIR at GSI-Darmstadt facilities.
9 CFR 130.4 - User fees for processing import permit applications.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...
9 CFR 130.4 - User fees for processing import permit applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...
9 CFR 130.4 - User fees for processing import permit applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...
9 CFR 130.4 - User fees for processing import permit applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...
9 CFR 130.4 - User fees for processing import permit applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...
Predicting Transition from Laminar to Turbulent Flow over a Surface
NASA Technical Reports Server (NTRS)
Sturdza, Peter (Inventor); Rajnarayan, Dev (Inventor)
2013-01-01
A prediction of whether a point on a computer-generated surface is adjacent to laminar or turbulent flow is made using a transition prediction technique. A plurality of boundary-layer properties at the point are obtained from a steady-state solution of a fluid flow in a region adjacent to the point. A plurality of instability modes are obtained, each defined by one or more mode parameters. A vector of regressor weights is obtained for the known instability growth rates in a training dataset. For each instability mode in the plurality of instability modes, a covariance vector is determined, which is the covariance of a predicted local growth rate with the known instability growth rates. Each covariance vector is used with the vector of regressor weights to determine a predicted local growth rate at the point. Based on the predicted local growth rates, an n-factor envelope at the point is determined.
Wavelet based approach for posture transition estimation using a waist worn accelerometer.
Bidargaddi, Niranjan; Klingbeil, Lasse; Sarela, Antti; Boyle, Justin; Cheung, Vivian; Yelland, Catherine; Karunanithi, Mohanraj; Gray, Len
2007-01-01
The ability to rise from a chair is considered to be important to achieve functional independence and quality of life. This sit-to-stand task is also a good indicator to assess condition of patients with chronic diseases. We developed a wavelet based algorithm for detecting and calculating the durations of sit-to-stand and stand-to-sit transitions from the signal vector magnitude of the measured acceleration signal. The algorithm was tested on waist worn accelerometer data collected from young subjects as well as geriatric patients. The test demonstrates that both transitions can be detected by using wavelet transformation applied to signal magnitude vector. Wavelet analysis produces an estimate of the transition pattern that can be used to calculate the transition duration that further gives clinically significant information on the patients condition. The method can be applied in a real life ambulatory monitoring system for assessing the condition of a patient living at home.
Härtl, Katja; Kalinowski, Gregor; Hoffmann, Thomas; Preuss, Anja; Schwab, Wilfried
2017-05-01
RNA interference (RNAi) has been exploited as a reverse genetic tool for functional genomics in the nonmodel species strawberry (Fragaria × ananassa) since 2006. Here, we analysed for the first time different but overlapping nucleotide sections (>200 nt) of two endogenous genes, FaCHS (chalcone synthase) and FaOMT (O-methyltransferase), as inducer sequences and a transitive vector system to compare their gene silencing efficiencies. In total, ten vectors were assembled each containing the nucleotide sequence of one fragment in sense and corresponding antisense orientation separated by an intron (inverted hairpin construct, ihp). All sequence fragments along the full lengths of both target genes resulted in a significant down-regulation of the respective gene expression and related metabolite levels. Quantitative PCR data and successful application of a transitive vector system coinciding with a phenotypic change suggested propagation of the silencing signal. The spreading of the signal in strawberry fruit in the 3' direction was shown for the first time by the detection of secondary small interfering RNAs (siRNAs) outside of the primary targets by deep sequencing. Down-regulation of endogenes by the transitive method was less effective than silencing by ihp constructs probably because the numbers of primary siRNAs exceeded the quantity of secondary siRNAs by three orders of magnitude. Besides, we observed consistent hotspots of primary and secondary siRNA formation along the target sequence which fall within a distance of less than 200 nt. Thus, ihp vectors seem to be superior over the transitive vector system for functional genomics in strawberry fruit. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Vector dark matter detection using the quantum jump of atoms
NASA Astrophysics Data System (ADS)
Yang, Qiaoli; Di, Haoran
2018-05-01
The hidden sector U(1) vector bosons created from inflationary fluctuations can be a substantial fraction of dark matter if their mass is around 10-5 eV. The creation mechanism makes the vector bosons' energy spectral density ρcdm / ΔE very high. Therefore, the dark electric dipole transition rate in atoms is boosted if the energy gap between atomic states equals the mass of the vector bosons. By using the Zeeman effect, the energy gap between the 2S state and the 2P state in hydrogen atoms or hydrogen like ions can be tuned. The 2S state can be populated with electrons due to its relatively long life, which is about 1/7 s. When the energy gap between the semi-ground 2S state and the 2P state matches the mass of the cosmic vector bosons, induced transitions occur and the 2P state subsequently decays into the 1S state. The 2 P → 1 S decay emitted Lyman-α photons can then be registered. The choices of target atoms depend on the experimental facilities and the mass ranges of the vector bosons. Because the mass of the vector boson is connected to the inflation scale, the proposed experiment may provide a probe to inflation.
Finding a Hadamard matrix by simulated annealing of spin vectors
NASA Astrophysics Data System (ADS)
Bayu Suksmono, Andriyan
2017-05-01
Reformulation of a combinatorial problem into optimization of a statistical-mechanics system enables finding a better solution using heuristics derived from a physical process, such as by the simulated annealing (SA). In this paper, we present a Hadamard matrix (H-matrix) searching method based on the SA on an Ising model. By equivalence, an H-matrix can be converted into a seminormalized Hadamard (SH) matrix, whose first column is unit vector and the rest ones are vectors with equal number of -1 and +1 called SH-vectors. We define SH spin vectors as representation of the SH vectors, which play a similar role as the spins on Ising model. The topology of the lattice is generalized into a graph, whose edges represent orthogonality relationship among the SH spin vectors. Starting from a randomly generated quasi H-matrix Q, which is a matrix similar to the SH-matrix without imposing orthogonality, we perform the SA. The transitions of Q are conducted by random exchange of {+, -} spin-pair within the SH-spin vectors that follow the Metropolis update rule. Upon transition toward zeroth energy, the Q-matrix is evolved following a Markov chain toward an orthogonal matrix, at which the H-matrix is said to be found. We demonstrate the capability of the proposed method to find some low-order H-matrices, including the ones that cannot trivially be constructed by the Sylvester method.
Collective charge excitations of the two-dimensional electride Ca2N
NASA Astrophysics Data System (ADS)
Cudazzo, Pierluigi; Gatti, Matteo
2017-09-01
Ca2N is a layered material that has been recently identified as a two-dimensional (2D) electride, an unusual ionic compound in which electrons serve as anions. The electronic properties of 2D electrides attract considerable interest as the anionic electrons, which form a 2D layer sandwiched between atomic planes, are highly mobile as they are not attached to any ion. Here, on the basis of first-principles time-dependent density-functional theory calculations, we investigate the collective excitations of the electrons—i.e., the plasmons—in Ca2N as a function of wave vector q . Our calculations reveal an intrinsic negative in-plane dispersion of the anionic plasmon, in striking contrast with the homogeneous electron gas. Moreover, for wave vectors q normal to the planes, we find a long-lived plasmon that continues to exist well beyond the first Brillouin zone. This is a mark of the electronic inhomogeneities in the charge response that Ca2N shares with other layered materials like transition-metal dichalcogenides and MgB2. Finally, we compare the plasmon properties of Ca2N in its bulk and monolayer forms, which shows the effect of the different electronic structures and dimensionalities.
Metal Insulator transition in Vanadium Dioxide
NASA Astrophysics Data System (ADS)
Jovaini, Azita; Fujita, Shigeji; Suzuki, Akira; Godoy, Salvador
2012-02-01
MAR12-2011-000262 Abstract Submitted for the MAR12 Meeting of The American Physical Society Sorting Category: 03.9 (T) On the metal-insulator-transition in vanadium dioxide AZITA JOVAINI, SHIGEJI FUJITA, University at Buffalo, SALVADOR GODOY, UNAM, AKIRA SUZUKI, Tokyo University of Science --- Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 340 K with the structural change from tetragonal to monoclinic crystal. The conductivity _/ drops at MIT by four orders of magnitude. The low temperature monoclinic phase is known to have a lower ground-state energy. The existence of the k-vector k is prerequisite for the conduction since the k appears in the semiclassical equation of motion for the conduction electron (wave packet). The tetragonal (VO2)3 unit is periodic along the crystal's x-, y-, and z-axes, and hence there is a three-dimensional k-vector. There is a one-dimensional k for a monoclinic crystal. We believe this difference in the dimensionality of the k-vector is the cause of the conductivity drop. Prefer Oral Session X Prefer .
Voltage-induced switching of an antiferromagnetically ordered topological Dirac semimetal
NASA Astrophysics Data System (ADS)
Kim, Youngseok; Kang, Kisung; Schleife, André; Gilbert, Matthew J.
2018-04-01
An antiferromagnetic semimetal has been recently identified as a new member of topological semimetals that may host three-dimensional symmetry-protected Dirac fermions. A reorientation of the Néel vector may break the underlying symmetry and open a gap in the quasiparticle spectrum, inducing the (semi)metal-insulator transition. Here, we predict that such a transition may be controlled by manipulating the chemical potential location of the material. We perform both analytical and numerical analysis on the thermodynamic potential of the model Hamiltonian and find that the gapped spectrum is preferred when the chemical potential is located at the Dirac point. As the chemical potential deviates from the Dirac point, the system shows a possible transition from the gapped to the gapless phase and switches the corresponding Néel vector configuration. We perform density functional theory calculations to verify our analysis using a realistic material and discuss a two terminal transport measurement as a possible route to identify the voltage-induced switching of the Néel vector.
Study of aerodynamic technology for VSTOL fighter/attack aircraft, phase 1
NASA Technical Reports Server (NTRS)
Driggers, H. H.
1978-01-01
A conceptual design study was performed of a vertical attitude takeoff and landing (VATOL) fighter/attack aircraft. The configuration has a close-coupled canard-delta wing, side two-dimensional ramp inlets, and two augmented turbofan engines with thrust vectoring capability. Performance and sensitivities to objective requirements were calculated. Aerodynamic characteristics were estimated based on contractor and NASA wind tunnel data. Computer simulations of VATOL transitions were performed. Successful transitions can be made, even with series post-stall instabilities, if reaction controls are properly phased. Principal aerodynamic uncertainties identified were post-stall aerodynamics, transonic aerodynamics with thrust vectoring and inlet performance in VATOL transition. A wind tunnel research program was recommended to resolve the aerodynamic uncertainties.
Radiative Transitions in Charmonium from Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jozef Dudek; Robert Edwards; David Richards
2006-01-17
Radiative transitions between charmonium states offer an insight into the internal structure of heavy-quark bound states within QCD. We compute, for the first time within lattice QCD, the transition form-factors of various multipolarities between the lightest few charmonium states. In addition, we compute the experimentally unobservable, but physically interesting vector form-factors of the {eta}{sub c}, J/{psi} and {chi}{sub c0}. To this end we apply an ambitious combination of lattice techniques, computing three-point functions with heavy domain wall fermions on an anisotropic lattice within the quenched approximation. With an anisotropy {xi} = 3 at a{sub s} {approx} 0.1 fm we findmore » a reasonable gross spectrum and a hyperfine splitting {approx}90 MeV, which compares favorably with other improved actions. In general, after extrapolation of lattice data at non-zero Q{sup 2} to the photopoint, our results agree within errors with all well measured experimental values. Furthermore, results are compared with the expectations of simple quark models where we find that many features are in agreement; beyond this we propose the possibility of constraining such models using our extracted values of physically unobservable quantities such as the J/{psi} quadrupole moment. We conclude that our methods are successful and propose to apply them to the problem of radiative transitions involving hybrid mesons, with the eventual goal of predicting hybrid meson photoproduction rates at the GlueX experiment.« less
Influence of a repulsive vector coupling in magnetized quark matter
NASA Astrophysics Data System (ADS)
Denke, Robson Z.; Pinto, Marcus Benghi
2013-09-01
We consider two flavor magnetized quark matter in the presence of a repulsive vector coupling (GV) devoting special attention to the low temperature region of the phase diagram to show how this type of interaction counterbalances the effects produced by a strong magnetic field. The most important effects occur at intermediate and low temperatures affecting the location of the critical end point as well as the region of first order chiral transitions. When GV=0 the presence of high magnetic fields (eB≥10mπ2) increases the density coexistence region with respect to the case when B and GV are absent while a decrease of this region is observed at high GV values and vanishing magnetic fields. Another interesting aspect observed at the low temperature region is that the usual decrease of the coexistence chemical value (inverse magnetic catalysis) at GV=0 is highly affected by the presence of the vector interaction which acts in the opposite way. Our investigation also shows that the presence of a repulsive vector interaction enhances the de Haas-van Alphen oscillations which, for very low temperatures, take place at eB≲6mπ2. We observe that the presence of a magnetic field, together with a repulsive vector interaction, gives rise to a complex transition pattern since B favors the appearance of multiple solutions to the gap equation whereas GV turns some metastable solutions into stable ones allowing for a cascade of transitions to occur.
Selection rule engineering of forbidden transitions of a hydrogen atom near a nanogap
NASA Astrophysics Data System (ADS)
Kim, Hyunyoung Y.; Kim, Daisik S.
2018-01-01
We perform an analytical study on the allowance of forbidden transitions for a hydrogen atom placed near line dipole sources, mimicking light emanating from a one-dimensional metallic nanogap. It is shown that the rapid variation of the electric field vector, inevitable in the near zone, completely breaks the selection rule of Δl=±1. While the forbidden transitions between spherically symmetric S states, such as 2S to 1S or 3S to 1S (Δl=0), are rather robust against selection rule breakage, Δl=±2 transitions such as between 3D and 1S or 3D and 2S states are very vulnerable to the spatial variation of the perturbing electric field. Transitions between 2S and 3D states are enhanced by many orders of magnitude, aided by the quadratic nature of both the perturbing Hamiltonian and D wavefunctions. The forbidden dipole moment, which approaches one Bohr radius times the electric charge in the vicinity of the gap, can be written in a simple closed form owing to the one-dimensional nature of our gap. With large enough effective volume together with the symmetric nature of the excited state wavefunctions, our work paves way towards atomic physics application of infinitely long nanogaps.
On the metal-insulator-transition in vanadium dioxide
NASA Astrophysics Data System (ADS)
Jovaini, Azita; Fujita, Shigeji; Godoy, Salvador; Suzuki, Akira
2012-02-01
Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 340 K with the structural change from tetragonal to monoclinic crystal. The conductivity σ drops at MIT by four orders of magnitude. The low temperature monoclinic phase is known to have a lower ground-state energy. The existence of the k-vector k is prerequisite for the conduction since the k appears in the semiclassical equation of motion for the conduction electron (wave packet). The tetragonal (VO2)3 unit is periodic along the crystal's x-, y-, and z-axes, and hence there is a three-dimensional k-vector. There is a one-dimensional k for a monoclinic crystal. We believe this difference in the dimensionality of the k-vector is the cause of the conductivity drop.
NASA Technical Reports Server (NTRS)
Horton, B. E.; Bowhill, S. A.
1971-01-01
This report describes a Monte Carlo simulation of transition flow around a sphere. Conditions for the simulation correspond to neutral monatomic molecules at two altitudes (70 and 75 km) in the D region of the ionosphere. Results are presented in the form of density contours, velocity vector plots and density, velocity and temperature profiles for the two altitudes. Contours and density profiles are related to independent Monte Carlo and experimental studies, and drag coefficients are calculated and compared with available experimental data. The small computer used is a PDP-15 with 16 K of core, and a typical run for 75 km requires five iterations, each taking five hours. The results are recorded on DECTAPE to be printed when required, and the program provides error estimates for any flow field parameter.
Type-II domains in ferroelectric gadolinium molybdate (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohm, J.; Kuersten, H.D.
Etching (001)-faces of gadolinium molybdate (GMO) reveals new kinds of domains. They are created by a translation, that leaves the spontaneous polarization and the transition parameter invariant. The translation vector is a part of a lattice vector, similar to stacking faults. (auth)
NASA Astrophysics Data System (ADS)
Ferhat, Ipar
With increasing advancement in material science and computational power of current computers that allows us to analyze high dimensional systems, very light and large structures are being designed and built for aerospace applications. One example is a reflector of a space telescope that is made of membrane structures. These reflectors are light and foldable which makes the shipment easy and cheaper unlike traditional reflectors made of glass or other heavy materials. However, one of the disadvantages of membranes is that they are very sensitive to external changes, such as thermal load or maneuvering of the space telescope. These effects create vibrations that dramatically affect the performance of the reflector. To overcome vibrations in membranes, in this work, piezoelectric actuators are used to develop distributed controllers for membranes. These actuators generate bending effects to suppress the vibration. The actuators attached to a membrane are relatively thick which makes the system heterogeneous; thus, an analytical solution cannot be obtained to solve the partial differential equation of the system. Therefore, the Finite Element Model is applied to obtain an approximate solution for the membrane actuator system. Another difficulty that arises with very flexible large structures is the dimension of the discretized system. To obtain an accurate result, the system needs to be discretized using smaller segments which makes the dimension of the system very high. This issue will persist as long as the improving technology will allow increasingly complex and large systems to be designed and built. To deal with this difficulty, the analysis of the system and controller development to suppress the vibration are carried out using vector second order form as an alternative to vector first order form. In vector second order form, the number of equations that need to be solved are half of the number equations in vector first order form. Analyzing the system for control characteristics such as stability, controllability and observability is a key step that needs to be carried out before developing a controller. This analysis determines what kind of system is being modeled and the appropriate approach for controller development. Therefore, accuracy of the system analysis is very crucial. The results of the system analysis using vector second order form and vector first order form show the computational advantages of using vector second order form. Using similar concepts, LQR and LQG controllers, that are developed to suppress the vibration, are derived using vector second order form. To develop a controller using vector second order form, two different approaches are used. One is reducing the size of the Algebraic Riccati Equation to half by partitioning the solution matrix. The other approach is using the Hamiltonian method directly in vector second order form. Controllers are developed using both approaches and compared to each other. Some simple solutions for special cases are derived for vector second order form using the reduced Algebraic Riccati Equation. The advantages and drawbacks of both approaches are explained through examples. System analysis and controller applications are carried out for a square membrane system with four actuators. Two different systems with different actuator locations are analyzed. One system has the actuators at the corners of the membrane, the other has the actuators away from the corners. The structural and control effect of actuator locations are demonstrated with mode shapes and simulations. The results of the controller applications and the comparison of the vector first order form with the vector second order form demonstrate the efficacy of the controllers.
Charge density wave properties of the quasi two-dimensional purple molybdenum bronze KMo 6O 17
NASA Astrophysics Data System (ADS)
Balaska, H.; Dumas, J.; Guyot, H.; Mallet, P.; Marcus, J.; Schlenker, C.; Veuillen, J. Y.; Vignolles, D.
2005-06-01
The purple molybdenum bronze KMo 6O 17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic CDW state. Electron spectroscopy (ARUPS), Scanning Tunnelling Microscopy (STM) and spectroscopy (STS) as well as high magnetic field studies are reported. ARUPS studies corroborate the model of the hidden nesting and provide a value of the CDW vector in good agreement with other measurements. STM studies visualize the triple- q CDW in real space. This is consistent with other measurements of the CDW vector. STS studies provide a value of several 10 meV for the average CDW gap. High magnetic field measurements performed in pulsed fields up to 55 T establish that first order transitions to smaller gap states take place at low temperature. These transitions are ascribed to Pauli type coupling. A phase diagram summarizing all observed anomalies and transitions is presented.
Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung Y; Kim, Tae-Seong
2010-09-01
Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hierarchical scheme. At the lower level, the state to which an activity belongs, i.e., static, transition, or dynamic, is recognized by means of statistical signal features and artificial-neural nets (ANNs). The upper level recognition uses the autoregressive (AR) modeling of the acceleration signals, thus, incorporating the derived AR-coefficients along with the signal-magnitude area and tilt angle to form an augmented-feature vector. The resulting feature vector is further processed by the linear-discriminant analysis and ANNs to recognize a particular human activity. Our proposed activity-recognition method recognizes three states and 15 activities with an average accuracy of 97.9% using only a single triaxial accelerometer attached to the subject's chest.
Ding, Ai-Xiang; Tan, Zheng-Li; Shi, You-Di; Song, Lin; Gong, Bing; Lu, Zhong-Lin
2017-04-05
Four gemini amphiphiles decorated with triazole-[12]aneN 3 as the hydrophilic moiety and various long hydrocarbons as hydrophobic moieties, 1-4, were designed to form micelles possessing the aggregation-induced emission (AIE) property for gene delivery and tracing. All four amphiphiles give ultralow critical micelle concentrations, are pH-/photostable and biocompatible, and completely retard the migration of plasmid DNAs at low concentrations. The DNA-binding abilities of the micelles were fully assessed. The coaggregated nanoparticles of 1-4 with DNAs could convert back into AIE micelles. In vitro transfections indicated that lipids 1 and 2 and their originated liposomes bearing decent delivering abilities have great potentials as nonviral vectors. Finally, on the basis of the transfection and the transitions between condensates and micelles, lipid 2 was singled out as the first example for real-time tracing of the intracellular deliveries of nonlabeled DNA, which provides spatiotemporal messages about the processes of condensate uptake and DNA release.
NASA Astrophysics Data System (ADS)
Romano, S.
1992-01-01
The present paper considers a classical system, consisting of n-component unit vectors (n=2 or 3), associated with a one-dimensional lattice \\{uk||k∈openZ\\}, and interacting via a translationally invariant pair potential of the long-range, ferromagnetic and anisotropic form W=Wjk=-ɛ||j-k||-2(auj,nuk,n +b tsumλ
USDA-ARS?s Scientific Manuscript database
Arthropod borne pathogens have a complex life cycle that includes asexual reproduction of haploid stages in mammalian erythrocytes and development of diploid stages in the vector. Transition of Apicomplexan pathogens between the mammalian host and the arthropod vector is critical for ongoing transmi...
Peacock, Lori; Kay, Christopher; Bailey, Mick; Gibson, Wendy
2018-05-01
Trypanosomatids such as Leishmania and Trypanosoma are digenetic, single-celled, parasitic flagellates that undergo complex life cycles involving morphological and metabolic changes to fit them for survival in different environments within their mammalian and insect hosts. According to current consensus, asymmetric division enables trypanosomatids to achieve the major morphological rearrangements associated with transition between developmental stages. Contrary to this view, here we show that the African trypanosome Trypanosoma congolense, an important livestock pathogen, undergoes extensive cell remodelling, involving shortening of the cell body and flagellum, during its transition from free-swimming proventricular forms to attached epimastigotes in vitro. Shortening of the flagellum was associated with accumulation of PFR1, a major constituent of the paraflagellar rod, in the mid-region of the flagellum where it was attached to the substrate. However, the PFR1 depot was not essential for attachment, as it accumulated several hours after initial attachment of proventricular trypanosomes. Detergent and CaCl2 treatment failed to dislodge attached parasites, demonstrating the robust nature of flagellar attachment to the substrate; the PFR1 depot was also unaffected by these treatments. Division of the remodelled proventricular trypanosome was asymmetric, producing a small daughter cell. Each mother cell went on to produce at least one more daughter cell, while the daughter trypanosomes also proliferated, eventually resulting in a dense culture of epimastigotes. Here, by observing the synchronous development of the homogeneous population of trypanosomes in the tsetse proventriculus, we have been able to examine the transition from proventricular forms to attached epimastigotes in detail in T. congolense. This transition is difficult to observe in vivo as it happens inside the mouthparts of the tsetse fly. In T. brucei, this transition is achieved by asymmetric division of long trypomastigotes in the proventriculus, yielding short epimastigotes, which go on to colonise the salivary glands. Thus, despite their close evolutionary relationship and shared developmental route within the vector, T. brucei and T. congolense have evolved different ways of accomplishing the same developmental transition from proventricular form to attached epimastigote.
Calderone, G.J.; Butler, R.F.
1991-01-01
Random tilting of a single paleomagnetic vector produces a distribution of vectors which is not rotationally symmetric about the original vector and therefore not Fisherian. Monte Carlo simulations were performed on two types of vector distributions: 1) distributions of vectors formed by perturbing a single original vector with a Fisher distribution of bedding poles (each defining a tilt correction) and 2) standard Fisher distributions. These simulations demonstrate that inclinations of vectors drawn from both distributions are biased toward shallow inclinations. The Fisher mean direction of the distribution of vectors formed by perturbing a single vector with random undetected tilts is biased toward shallow inclinations, but this bias is insignificant for angular dispersions of bedding poles less than 20??. -from Authors
First-order intervalley scattering in low-dimensional systems
NASA Astrophysics Data System (ADS)
Monsef, Florian; Dollfus, Philippe; Galdin, Sylvie; Bournel, Arnaud
2002-06-01
The intervalley phonon scattering rate in one- and two-dimensional electron gases is calculated for the case in which the transition matrix element is of first order in the phonon wave vector. This type of interaction is important in silicon at low temperature. The interaction between electrons and bulk phonons is considered in the standard golden rule approach by including the contribution of the components of phonon wave vector in the confinement direction(s). This process makes possible the transition between different subbands, and the resulting total scattering rate differs significantly from the rate commonly used in Si quantum wells.
Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Zhu-Fang, E-mail: phycui@nju.edu.cn; State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190; Hou, Feng-Yao
2015-07-15
The QCD vacuum condensates and various vacuum susceptibilities are all important parameters which characterize the nonperturbative properties of the QCD vacuum. In the QCD sum rules external field formula, various QCD vacuum susceptibilities play important roles in determining the properties of hadrons. In this paper, we review the recent progress in studies of vacuum susceptibilities together with their applications to the chiral phase transition of QCD. The results of the tensor, the vector, the axial–vector, the scalar, and the pseudo-scalar vacuum susceptibilities are shown in detail in the framework of Dyson–Schwinger equations.
Integrated optic vector-matrix multiplier
Watts, Michael R [Albuquerque, NM
2011-09-27
A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.
Electromagnetic and axial-vector form factors of the quarks and nucleon
NASA Astrophysics Data System (ADS)
Dahiya, Harleen; Randhawa, Monika
2017-11-01
In light of the improved precision of the experimental measurements and enormous theoretical progress, the nucleon form factors have been evaluated with an aim to understand how the static properties and dynamical behavior of nucleons emerge from the theory of strong interactions between quarks. We have analyzed the vector and axial-vector nucleon form factors (GE,Mp,n(Q2) and GAp,n(Q2)) using the spin observables in the chiral constituent quark model (χCQM) which has made a significant contribution to the unraveling of the internal structure of the nucleon in the nonperturbative regime. We have also presented a comprehensive analysis of the flavor decomposition of the form factors (GEq(Q2), GMq(Q2) and GAq(Q2) for q = u,d,s) within the framework of χCQM with emphasis on the extraction of the strangeness form factors which are fundamental to determine the spin structure and test the chiral symmetry breaking effects in the nucleon. The Q2 dependence of the vector and axial-vector form factors of the nucleon has been studied using the conventional dipole form of parametrization. The results are in agreement with the available experimental data.
NASA Astrophysics Data System (ADS)
Jiménez Pérez, L. A.; Toledo Sánchez, G.
2017-12-01
Unstable spin-1 particles are properly described by including absorptive corrections to the electromagnetic vertex and propagator, without breaking the electromagnetic gauge invariance. We show that the modified propagator can be set in a complex mass form, provided the mass and width parameters, which are properly defined at the pole, are replaced by energy dependent functions fulfilling the same requirements at the pole. We exemplify the case for the {K}* (892) vector meson, and find that the mass function deviates around 2 MeV from the Kπ threshold to the pole, and that the width function exhibits a different behavior compared to the uncorrected energy dependent width. Considering the {τ }-\\to {K}{{S}}{π }-{ν }τ decay as dominated by the {K}* (892) and {K}{\\prime * }(1410) vectors and one scalar particle, we exhibit the role of the transversal and longitudinal corrections to the vector propagator by obtaining the modified vector and scalar form factors. The modified vector form factor is found to be the same as in the complex mass form, while the scalar form factor receives a modification from the longitudinal correction to the vector propagator. A fit to the experimental Kπ spectrum shows that the phase induced by the presence of this new contribution in the scalar sector improves the description of the experimental data in the troublesome region around 0.7 GeV. Besides that, the correction to the scalar form factor is found to be negligible.
Anisotropic Structure of Rotating Homogeneous Turbulence at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Cambon, Claude; Mansour, Nagi N.; Squires, Kyle D.; Rai, Man Mohan (Technical Monitor)
1995-01-01
Large eddy simulation is used to investigate the development of anisotropies and the evolution towards a quasi two-dimensional state in rotating homogeneous turbulence at high Reynolds number. The present study demonstrates the existence of two transitions in the development of anisotropy. The first transition marks the onset of anisotropy and occurs when a macro-Rossby number (based on a longitudinal integral lengthscale) has decreased to near unity while the second transition occurs when a micro-Rossby number (defined in this work as the ratio of the rms fluctuating vorticity to background vorticity) has decreased to unity. The anisotropy marked by the first transition corresponds to a reduction in dimensionality while the second transition corresponds to a polarization of the flow, i.e., relative dominance of the velocity components in the plane normal to the rotation axis. Polarization is reflected by emergence of anisotropy measures based on the two-dimensional component of the turbulence. Investigation of the vorticity structure shows that the second transition is also characterized by an increasing tendency for alignment between the fluctuating vorticity vector and the background angular velocity vector with a preference for corrotative vorticity.
Scale model test results of several STOVL ventral nozzle concepts
NASA Technical Reports Server (NTRS)
Meyer, B. E.; Re, R. J.; Yetter, J. A.
1991-01-01
Short take-off and vertical landing (STOVL) ventral nozzle concepts are investigated by means of a static cold flow scale model at a NASA facility. The internal aerodynamic performance characteristics of the cruise, transition, and vertical lift modes are considered for four ventral nozzle types. The nozzle configurations examined include those with: butterfly-type inner doors and vectoring exit vanes; circumferential inner doors and thrust vectoring vanes; a three-port segmented version with circumferential inner doors; and a two-port segmented version with cylindrical nozzle exit shells. During the testing, internal and external pressure is measured, and the thrust and flow coefficients and resultant vector angles are obtained. The inner door used for ventral nozzle flow control is found to affect performance negatively during the initial phase of transition. The best thrust performance is demonstrated by the two-port segmented ventral nozzle due to the elimination of the inner door.
Magnetic Phase Transitions in NdCoAsO
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, Michael A; Gout, Delphine J; Garlea, Vasile O
2010-01-01
NdCoAsO undergoes three magnetic phase transitions below room temperature. Here we report the results of our experimental investigation of this compound, including determination of the crystal and magnetic structures using powder neutron diffraction, as well as measurements of electrical resistivity, thermal conductivity, Seebeck coefficient, magnetization, and heat capacity. These results show that upon cooling a ferromagnetic state emerges near 69 K with a small saturation moment of -0.2{micro}{sub B}, likely on Co atoms. At 14 K the material enters an antiferromagnetic state with propagation vector (0 0 1/2) and small ordered moments (-0.4{micro}{sub B}) on Co and Nd. Near 3.5more » K a third transition is observed, and corresponds to the antiferromagnetic ordering of larger moments on Nd, with the same propagation vector. The ordered moment on Nd reaches 1.39(5){micro}{sub B} at 300 mK. Anomalies in the magnetization, electrical resistivity, and heat capacity are observed at all three magnetic phase transitions.« less
A host-restricted viral vector for antigen-specific immunization against Lyme disease pathogen.
Xiao, Sa; Kumar, Manish; Yang, Xiuli; Akkoyunlu, Mustafa; Collins, Peter L; Samal, Siba K; Pal, Utpal
2011-07-18
Newcastle disease virus (NDV) is an avian virus that is attenuated in primates and is a potential vaccine vector for human use. We evaluated NDV as a vector for expressing selected antigens of the Lyme disease pathogen Borrelia burgdorferi. A series of recombinant NDVs were generated that expressed intracellular or extracellular forms of two B. burgdorferi antigens: namely, the basic membrane protein A (BmpA) and the outer surface protein C (OspC). Expression of the intracellular and extracellular forms of these antigens was confirmed in cultured chicken cells. C3H or Balb/C mice that were immunized intranasally with the NDV vectors mounted vigorous serum antibody responses against the NDV vector, but failed to mount a robust response against either the intracellular or extracellular forms of BmpA or OspC. By contrast, a single immunization of hamsters with the NDV vectors via the intranasal, intramuscular, or intraperitoneal route resulted in rapid and rigorous antibody responses against the intracellular or extracellular forms of BmpA and OspC. When groups of hamsters were separately inoculated with various NDV vectors and challenged with B. burgdorferi (10(8)cells/animal), immunization with vector expressing either intracellular or extracellular BmpA was associated with a significant reduction of the pathogen load in the joints. Taken together, our studies highlighted the importance of NDV as vaccine vector that can be used for simple yet effective immunization of hosts against bacterial infections including Lyme disease. Copyright © 2011 Elsevier Ltd. All rights reserved.
2008-08-01
Direct valence to conduction band transitions (constant k vector ), (B) Indirect valence to conduction band transitions aided by photon/phonon coupling...feilddt g g dk dk dE dxdk qE dt dt v d v dt→ = = = − h h 1 (2.7) and g dx v dt = , which means that feild dk qE dt = −h . In order to find the...x B k xΨ = + where A and B are variables that are solved, kx is the wave vector and x is the distance. For a realistic solution, the wave function
Gradient-based controllers for timed continuous Petri nets
NASA Astrophysics Data System (ADS)
Lefebvre, Dimitri; Leclercq, Edouard; Druaux, Fabrice; Thomas, Philippe
2015-07-01
This paper is about control design for timed continuous Petri nets that are described as piecewise affine systems. In this context, the marking vector is considered as the state space vector, weighted marking of place subsets are defined as the model outputs and the model inputs correspond to multiplicative control actions that slow down the firing rate of some controllable transitions. Structural and functional sensitivity of the outputs with respect to the inputs are discussed in terms of Petri nets. Then, gradient-based controllers (GBC) are developed in order to adapt the control actions of the controllable transitions according to desired trajectories of the outputs.
Polarization rotation vector solitons in a graphene mode-locked fiber laser.
Song, Yu Feng; Zhang, Han; Tang, Ding Yuan; Shen, De Yuan
2012-11-19
Polarization rotation vector solitons formed in a fiber laser passively mode locked with atomic layer graphene were experimentally investigated. It was found that different from the case of the polarization locked vector soliton formed in the laser, two extra sets of spectral sidebands always appear on the soliton spectrum of the polarization rotating vector solitons. We confirm that the new sets of spectral sidebands have the same formation mechanism as that of the Kelly sidebands.
NASA Technical Reports Server (NTRS)
Beck, Louisa R.; Rodriquez, Mario H.; Dister, Sheri W.; Rodriquez, Americo D.; Rejmankova, Eliska; Ulloa, Armando; Meza, Rosa A.; Roberts, Donald R.; Paris, Jack F.; Spanner, Michael A.;
1994-01-01
A landscape approach using remote sensing and Geographic Information System (GIS) technologies was developed to discriminate between villages at high and low risk for malaria transmission, as defined by adult Anopheles albimanus abundance. Satellite data for an area in southern Chiapas, Mexico were digitally processed to generate a map of landscape elements. The GIS processes were used to determine the proportion of mapped landscape elements surrounding 40 villages where An. albimanus data had been collected. The relationships between vector abundance and landscape element proportions were investigated using stepwise discriminant analysis and stepwise linear regression. Both analyses indicated that the most important landscape elements in terms of explaining vector abundance were transitional swamp and unmanaged pasture. Discriminant functions generated for these two elements were able to correctly distinguish between villages with high ind low vector abundance, with an overall accuracy of 90%. Regression results found both transitional swamp and unmanaged pasture proportions to be predictive of vector abundance during the mid-to-late wet season. This approach, which integrates remotely sensed data and GIS capabilities to identify villages with high vector-human contact risk, provides a promising tool for malaria surveillance programs that depend on labor-intensive field techniques. This is particularly relevant in areas where the lack of accurate surveillance capabilities may result in no malaria control action when, in fact, directed action is necessary. In general, this landscape approach could be applied to other vector-borne diseases in areas where: 1. the landscape elements critical to vector survival are known and 2. these elements can be detected at remote sensing scales.
Nucleon form factors with 2+1 flavor dynamical domain-wall fermions
NASA Astrophysics Data System (ADS)
Yamazaki, Takeshi; Aoki, Yasumichi; Blum, Tom; Lin, Huey-Wen; Ohta, Shigemi; Sasaki, Shoichi; Tweedie, Robert; Zanotti, James
2009-06-01
We report our numerical lattice QCD calculations of the isovector nucleon form factors for the vector and axial-vector currents: the vector, induced tensor, axial-vector, and induced pseudoscalar form factors. The calculation is carried out with the gauge configurations generated with Nf=2+1 dynamical domain-wall fermions and Iwasaki gauge actions at β=2.13, corresponding to a cutoff a-1=1.73GeV, and a spatial volume of (2.7fm)3. The up and down-quark masses are varied so the pion mass lies between 0.33 and 0.67 GeV while the strange quark mass is about 12% heavier than the physical one. We calculate the form factors in the range of momentum transfers, 0.2
Macroscopic theory of dark sector
NASA Astrophysics Data System (ADS)
Meierovich, Boris
A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant [1]. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves [2]. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe [3]. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution corresponds to the particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to analyse the main properties of the dark sector analytically and avoid unnecessary model assumptions. It opens a possibility to trace how the additional attraction of the space-like dark matter, dominating in the galaxy scale, transforms into the elastic repulsion of the time-like dark matter, dominating in the scale of the Universe. 1. B. E. Meierovich. "Vector fields in multidimensional cosmology". Phys. Rev. D 84, 064037 (2011). 2. B. E. Meierovich. "Galaxy rotation curves driven by massive vector fields: Key to the theory of the dark sector". Phys. Rev. D 87, 103510, (2013). 3. B. E. Meierovich. "Towards the theory of the evolution of the Universe". Phys. Rev. D 85, 123544 (2012).
Navier-Stokes dynamics on a differential one-form
NASA Astrophysics Data System (ADS)
Story, Troy L.
2006-11-01
After transforming the Navier-Stokes dynamic equation into a characteristic differential one-form on an odd-dimensional differentiable manifold, exterior calculus is used to construct a pair of differential equations and tangent vector(vortex vector) characteristic of Hamiltonian geometry. A solution to the Navier-Stokes dynamic equation is then obtained by solving this pair of equations for the position x^k and the conjugate to the position bk as functions of time. The solution bk is shown to be divergence-free by contracting the differential 3-form corresponding to the divergence of the gradient of the velocity with a triple of tangent vectors, implying constraints on two of the tangent vectors for the system. Analysis of the solution bk shows it is bounded since it remains finite as | x^k | ->,, and is physically reasonable since the square of the gradient of the principal function is bounded. By contracting the characteristic differential one-form with the vortex vector, the Lagrangian is obtained.
Moradi, Christopher P.; Douberly, Gary E.
2015-06-22
The Stark effect is considered for polyatomic open shell complexes that exhibit partially quenched electronic angular momentum. Matrix elements of the Stark Hamiltonian represented in a parity conserving Hund's case (a) basis are derived for the most general case, in which the permanent dipole moment has projections on all three inertial axes of the system. Transition intensities are derived, again for the most general case, in which the laser polarization has projections onto axes parallel and perpendicular to the Stark electric field, and the transition dipole moment vector is projected onto all three inertial axes in the molecular frame. Asmore » a result, simulations derived from this model are compared to experimental rovibrational Stark spectra of OH-C 2H 2, OH-C 2H 4, and OH-H 2O complexes formed in helium nanodroplets.« less
A comparison between MS-VECM and MS-VECMX on economic time series data
NASA Astrophysics Data System (ADS)
Phoong, Seuk-Wai; Ismail, Mohd Tahir; Sek, Siok-Kun
2014-07-01
Multivariate Markov switching models able to provide useful information on the study of structural change data since the regime switching model can analyze the time varying data and capture the mean and variance in the series of dependence structure. This paper will investigates the oil price and gold price effects on Malaysia, Singapore, Thailand and Indonesia stock market returns. Two forms of Multivariate Markov switching models are used namely the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model (MSMH-VECM) and the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model with exogenous variable (MSMH-VECMX). The reason for using these two models are to capture the transition probabilities of the data since real financial time series data always exhibit nonlinear properties such as regime switching, cointegrating relations, jumps or breaks passing the time. A comparison between these two models indicates that MSMH-VECM model able to fit the time series data better than the MSMH-VECMX model. In addition, it was found that oil price and gold price affected the stock market changes in the four selected countries.
Orrù, Graziella; Pettersson-Yeo, William; Marquand, Andre F; Sartori, Giuseppe; Mechelli, Andrea
2012-04-01
Standard univariate analysis of neuroimaging data has revealed a host of neuroanatomical and functional differences between healthy individuals and patients suffering a wide range of neurological and psychiatric disorders. Significant only at group level however these findings have had limited clinical translation, and recent attention has turned toward alternative forms of analysis, including Support-Vector-Machine (SVM). A type of machine learning, SVM allows categorisation of an individual's previously unseen data into a predefined group using a classification algorithm, developed on a training data set. In recent years, SVM has been successfully applied in the context of disease diagnosis, transition prediction and treatment prognosis, using both structural and functional neuroimaging data. Here we provide a brief overview of the method and review those studies that applied it to the investigation of Alzheimer's disease, schizophrenia, major depression, bipolar disorder, presymptomatic Huntington's disease, Parkinson's disease and autistic spectrum disorder. We conclude by discussing the main theoretical and practical challenges associated with the implementation of this method into the clinic and possible future directions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nucleon form factors from quenched lattice QCD with domain wall fermions
NASA Astrophysics Data System (ADS)
Sasaki, Shoichi; Yamazaki, Takeshi
2008-07-01
We present a quenched lattice calculation of the weak nucleon form factors: vector [FV(q2)], induced tensor [FT(q2)], axial vector [FA(q2)] and induced pseudoscalar [FP(q2)] form factors. Our simulations are performed on three different lattice sizes L3×T=243×32, 163×32, and 123×32 with a lattice cutoff of a-1≈1.3GeV and light quark masses down to about 1/4 the strange quark mass (mπ≈390MeV) using a combination of the DBW2 gauge action and domain wall fermions. The physical volume of our largest lattice is about (3.6fm)3, where the finite volume effects on form factors become negligible and the lower momentum transfers (q2≈0.1GeV2) are accessible. The q2 dependences of form factors in the low q2 region are examined. It is found that the vector, induced tensor, and axial-vector form factors are well described by the dipole form, while the induced pseudoscalar form factor is consistent with pion-pole dominance. We obtain the ratio of axial to vector coupling gA/gV=FA(0)/FV(0)=1.219(38) and the pseudoscalar coupling gP=mμFP(0.88mμ2)=8.15(54), where the errors are statistical errors only. These values agree with experimental values from neutron β decay and muon capture on the proton. However, the root mean-squared radii of the vector, induced tensor, and axial vector underestimate the known experimental values by about 20%. We also calculate the pseudoscalar nucleon matrix element in order to verify the axial Ward-Takahashi identity in terms of the nucleon matrix elements, which may be called as the generalized Goldberger-Treiman relation.
Rotations with Rodrigues' Vector
ERIC Educational Resources Information Center
Pina, E.
2011-01-01
The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2016-08-01
In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser tweezers, tractor beams, optical spanners, arbitrary scattering, radiation force, angular momentum, and torque in particle manipulation, and other related topics.
Vector models and generalized SYK models
Peng, Cheng
2017-05-23
Here, we consider the relation between SYK-like models and vector models by studying a toy model where a tensor field is coupled with a vector field. By integrating out the tensor field, the toy model reduces to the Gross-Neveu model in 1 dimension. On the other hand, a certain perturbation can be turned on and the toy model flows to an SYK-like model at low energy. Furthermore, a chaotic-nonchaotic phase transition occurs as the sign of the perturbation is altered. We further study similar models that possess chaos and enhanced reparameterization symmetries.
Experimental tests of factorization in charmless nonleptonic two-body B decays
NASA Astrophysics Data System (ADS)
Ali, A.; Kramer, G.; Lü, Cai-Dian
1998-11-01
Using a theoretical framework based on the next-to-leading-order QCD-improved effective Hamiltonian and a factorization ansatz for the hadronic matrix elements of the four-quark operators, we reassess branching fractions in two-body nonleptonic decays B-->PP,PV,VV, involving the lowest-lying light pseudoscalar (P) and vector (V) mesons in the standard model. We work out the parametric dependence of the decay rates, making use of the currently available information on the weak mixing matrix elements, form factors, decay constants, and quark masses. Using the sensitivity of the decay rates on the effective number of colors, Nc, as a criterion of theoretical predictivity, we classify all the current-current (tree) and penguin transitions in five different classes. The recently measured charmless two-body B-->PP decays (B+-->K+η', B0-->K0η', B0-->K+π-, B+-->π+K0, and charge conjugates) are dominated by the Nc-stable QCD penguin transitions (class-IV transitions) and their estimates are consistent with the data. The measured charmless B-->PV (B+-->ωK+, B+-->ωh+) and B-->VV transition (B-->φK*), on the other hand, belong to the penguin (class-V) and tree (class-III) transitions. The class-V penguin transitions are Nc sensitive and/or involve large cancellations among competing amplitudes, making their decay rates in general more difficult to predict. Some of these transitions may also receive significant contributions from annihilation and/or final state interactions. We propose a number of tests of the factorization framework in terms of the ratios of branching ratios for some selected B-->h1h2 decays involving light hadrons h1 and h2, which depend only moderately on the form factors. We also propose a set of measurements to determine the effective coefficients of the current-current and QCD penguin operators. The potential impact of B-->h1h2 decays on the CKM phenomenology is emphasized by analyzing a number of decay rates in the factorization framework.
Holomorphic projections and Ramanujan’s mock theta functions
Imamoğlu, Özlem; Raum, Martin; Richter, Olav K.
2014-01-01
We use spectral methods of automorphic forms to establish a holomorphic projection operator for tensor products of vector-valued harmonic weak Maass forms and vector-valued modular forms. We apply this operator to discover simple recursions for Fourier series coefficients of Ramanujan’s mock theta functions. PMID:24591582
Abromaitis, Stephanie
2013-01-01
Bartonella quintana is a vector-borne bacterial pathogen that causes fatal disease in humans. During the infectious cycle, B. quintana transitions from the hemin-restricted human bloodstream to the hemin-rich body louse vector. Because extracytoplasmic function (ECF) sigma factors often regulate adaptation to environmental changes, we hypothesized that a previously unstudied B. quintana ECF sigma factor, RpoE, is involved in the transition from the human host to the body louse vector. The genomic context of B. quintana rpoE identified it as a member of the ECF15 family of sigma factors found only in alphaproteobacteria. ECF15 sigma factors are believed to be the master regulators of the general stress response in alphaproteobacteria. In this study, we examined the B. quintana RpoE response to two stressors that are encountered in the body louse vector environment, a decreased temperature and an increased hemin concentration. We determined that the expression of rpoE is significantly upregulated at the body louse (28°C) versus the human host (37°C) temperature. rpoE expression also was upregulated when B. quintana was exposed to high hemin concentrations. In vitro and in vivo analyses demonstrated that RpoE function is regulated by a mechanism involving the anti-sigma factor NepR and the response regulator PhyR. The ΔrpoE ΔnepR mutant strain of B. quintana established that RpoE-mediated transcription is important in mediating the tolerance of B. quintana to high hemin concentrations. We present the first analysis of an ECF15 sigma factor in a vector-borne human pathogen and conclude that RpoE has a role in the adaptation of B. quintana to the hemin-rich arthropod vector environment. PMID:23564167
Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Li, Min; Xu, Ding
2014-03-28
Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathymore » (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition.« less
A Genealogy of Convex Solids Via Local and Global Bifurcations of Gradient Vector Fields
NASA Astrophysics Data System (ADS)
Domokos, Gábor; Holmes, Philip; Lángi, Zsolt
2016-12-01
Three-dimensional convex bodies can be classified in terms of the number and stability types of critical points on which they can balance at rest on a horizontal plane. For typical bodies, these are non-degenerate maxima, minima, and saddle points, the numbers of which provide a primary classification. Secondary and tertiary classifications use graphs to describe orbits connecting these critical points in the gradient vector field associated with each body. In previous work, it was shown that these classifications are complete in that no class is empty. Here, we construct 1- and 2-parameter families of convex bodies connecting members of adjacent primary and secondary classes and show that transitions between them can be realized by codimension 1 saddle-node and saddle-saddle (heteroclinic) bifurcations in the gradient vector fields. Our results indicate that all combinatorially possible transitions can be realized in physical shape evolution processes, e.g., by abrasion of sedimentary particles.
HOPPING CONDUCTIVITY AND MAGNETIC TRANSITIONS OF THE Cu2+ SPINS IN SINGLE-CRYSTAL La2CuO4+y
NASA Astrophysics Data System (ADS)
Thio, Tineke; Birgeneau, R. J.; Chen, C. Y.; Freer, B. S.; Gabbe, D. R.; Jenssen, H. P.; Kastner, M. A.; Picone, P. J.; Preyer, N. W.
Measurements are reported of the magnetoresistance (MR) for fields up to 23T in La2CuO4+y single crystals in which the Cu2+ spins order antiferromagnetically at TN˜240K, and in which the conductivity at low temperature is characterised by hopping between localised states. Using the MR, we map out the phase diagram of the spin flop transition, observed when the magnetic field is applied parallel to the zero-field staggered magnetisation, and that of the weak-ferromagnetic transition, observed with the field perpendicular to the CuO planes. In both transitions the antiferromagnetic propagation vector changes from the ěca direction at zero field to the ěcc direction at the highest fields. This rather subtle change of the Cu spin ordering is accompanied by a large increase in the interlayer hopping conductivity: up to a factor 2. We show that the magnetoconductance is proportional to the three-dimensional staggered moment with propagation vector in the orthorhombic ěcc direction. The origin of this unusual behaviour is an important unsolved problem.
Analysis of the stress field and strain rate in Zagros-Makran transition zone
NASA Astrophysics Data System (ADS)
Ghorbani Rostam, Ghasem; Pakzad, Mehrdad; Mirzaei, Noorbakhsh; Sakhaei, Seyed Reza
2018-01-01
Transition boundary between Zagros continental collision and Makran oceanic-continental subduction can be specified by two wide limits: (a) Oman Line is the seismicity boundary with a sizeable reduction in seismicity rate from Zagros in the west to Makran in the east; and (b) the Zendan-Minab-Palami (ZMP) fault system is believed to be a prominent tectonic boundary. The purpose of this paper is to analyze the stress field in the Zagros-Makran transition zone by the iterative joint inversion method developed by Vavrycuk (Geophysical Journal International 199:69-77, 2014). The results suggest a rather uniform pattern of the stress field around these two boundaries. We compare the results with the strain rates obtained from the Global Positioning System (GPS) network stations. In most cases, the velocity vectors show a relatively good agreement with the stress field except for the Bandar Abbas (BABS) station which displays a relatively large deviation between the stress field and the strain vector. This deviation probably reflects a specific location of the BABS station being in the transition zone between Zagros continental collision and Makran subduction zones.
Heavy quark form factors at two loops
NASA Astrophysics Data System (ADS)
Ablinger, J.; Behring, A.; Blümlein, J.; Falcioni, G.; De Freitas, A.; Marquard, P.; Rana, N.; Schneider, C.
2018-05-01
We compute the two-loop QCD corrections to the heavy quark form factors in the case of the vector, axial-vector, scalar and pseudoscalar currents up to second order in the dimensional parameter ɛ =(4 -D )/2 . These terms are required in the renormalization of the higher-order corrections to these form factors.
Alhalaweh, Amjad; Alzghoul, Ahmad; Mahlin, Denny; Bergström, Christel A S
2015-11-10
Amorphous materials are inherently unstable and tend to crystallize upon storage. In this study, we investigated the extent to which the physical stability and inherent crystallization tendency of drugs are related to their glass-forming ability (GFA), the glass transition temperature (Tg) and thermodynamic factors. Differential scanning calorimetry was used to produce the amorphous state of 52 drugs [18 compounds crystallized upon heating (Class II) and 34 remained in the amorphous state (Class III)] and to perform in situ storage for the amorphous material for 12h at temperatures 20°C above or below the Tg. A computational model based on the support vector machine (SVM) algorithm was developed to predict the structure-property relationships. All drugs maintained their Class when stored at 20°C below the Tg. Fourteen of the Class II compounds crystallized when stored above the Tg whereas all except one of the Class III compounds remained amorphous. These results were only related to the glass-forming ability and no relationship to e.g. thermodynamic factors was found. The experimental data were used for computational modeling and a classification model was developed that correctly predicted the physical stability above the Tg. The use of a large dataset revealed that molecular features related to aromaticity and π-π interactions reduce the inherent physical stability of amorphous drugs. Copyright © 2015 Elsevier B.V. All rights reserved.
Electroweak phase transition in the {mu}{nu}SSM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Daniel J. H.; School of Physics, Korea Institute for Advanced Study, 207-43, Cheongnyangni2-dong, Dongdaemun-gu, Seoul 130-722; Long, Andrew J.
2010-06-15
An extension of the minimal supersymmetric standard model called the {mu}{nu}SSM does not allow a conventional thermal leptogenesis scenario because of the low scale seesaw that it utilizes. Hence, we investigate the possibility of electroweak baryogenesis. Specifically, we identify a parameter region for which the electroweak phase transition is sufficiently strongly first order to realize electroweak baryogenesis. In addition to transitions that are similar to those in the next-to-minimal supersymmetric standard model, we find a novel class of phase transitions in which there is a rotation in the singlet vector space.
Science Questions for the Post-SIRTF and Herschel Era
NASA Technical Reports Server (NTRS)
Werner, Michael
2004-01-01
The contents include the following: 1. SIRTF. Long wavelength surveys planned for SIRTF. Galaxy Discovery Rates for Future Missions. Impact of SIRTF s Improved Resolution at 160um: Resolving the Background. 2. Polarimetry. Submillimeter Polarimetry - The State of Play. Magnetic Vectors Across the Orion Molecular Cloud Core. Neutral and Ionized Molecular Spectral Lines. Variation of Polarization With Wavelength. The Polarization Spectrum. Submillimeter Polarimetry - Looking Ahead. 3.Confusion. Confusion at 500, 600 micron. 4. Extragalactic Science. Do Massive Black Holes and Galaxy Bulges form Together? 5. Galactic Science. Can We See the First Generations of Stars and Metal Formation? The Birth of Planets and the Origins of Life. Spatial Resolution at 100 microns. Far-ir/Sub-mm Transitions of Linear Carbon Clusters. Predicted Spectra of Glycine.
Electromagnetic Meson Production in the Nucleon Resonance Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volker Burkert; T.-S. H. Lee
Recent experimental and theoretical advances in investigating electromagnetic meson production reactions in the nucleon resonance region are reviewed. The article gives a description of current experimental facilities with electron and photon beams and presents a unified derivation of most of the phenomenological approaches being used to extract the resonance parameters from the data. The analyses of {pi} and {eta} production data and the resulting transition form factors for the {Delta}(1232)P{sub 33}, N(1535)S{sub 11}, N(1440)P{sub 11}, and N(1520)D{sub 13} resonances are discussed in detail. The status of our understanding of the reactions with production of two pions, kaons, and vector mesonsmore » is also reviewed.« less
Mafusire, Cosmas; Krüger, Tjaart P J
2018-06-01
The concept of orthonormal vector circle polynomials is revisited by deriving a set from the Cartesian gradient of Zernike polynomials in a unit circle using a matrix-based approach. The heart of this model is a closed-form matrix equation of the gradient of Zernike circle polynomials expressed as a linear combination of lower-order Zernike circle polynomials related through a gradient matrix. This is a sparse matrix whose elements are two-dimensional standard basis transverse Euclidean vectors. Using the outer product form of the Cholesky decomposition, the gradient matrix is used to calculate a new matrix, which we used to express the Cartesian gradient of the Zernike circle polynomials as a linear combination of orthonormal vector circle polynomials. Since this new matrix is singular, the orthonormal vector polynomials are recovered by reducing the matrix to its row echelon form using the Gauss-Jordan elimination method. We extend the model to derive orthonormal vector general polynomials, which are orthonormal in a general pupil by performing a similarity transformation on the gradient matrix to give its equivalent in the general pupil. The outer form of the Gram-Schmidt procedure and the Gauss-Jordan elimination method are then applied to the general pupil to generate the orthonormal vector general polynomials from the gradient of the orthonormal Zernike-based polynomials. The performance of the model is demonstrated with a simulated wavefront in a square pupil inscribed in a unit circle.
An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms
NASA Astrophysics Data System (ADS)
Sá, Lucas
2017-03-01
Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.
Sequential cloning of chromosomes
Lacks, Sanford A.
1995-07-18
A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism's chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.
1976-02-01
Transition from Specular Reflection to Diffuse Scattering. . . 10 Composition of the Electric-Field Vector as Seen at the Radar...r t (16) R • FIGURE P COMPOSITION OF THE ELECTRIC-FIELD VECTOR AS SEEN AT THE RADAR, R, IN FIG. 2. The electric field at the radar, E, is the sum...wavelengths in the VHP and UHF ranges even subsurface characteristics can be important. So in a field experiment one must be careful to measure
Field-induced spin density wave and spiral phases in a layered antiferromagnet
Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; ...
2015-07-28
Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba 3Mn 2O 8 using single crystal neutron diffraction. We find that for magnetic fields between μ 0H=8.80 T and 10.56 T applied along themore » $$1\\bar{1}0$$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ 0H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.« less
Photospheric electric current and transition region brightness within an active region
NASA Technical Reports Server (NTRS)
Deloach, A. C.; Hagyard, M. J.; Rabin, D.; Moore, R. L.; Smith, B. J., Jr.; West, E. A.; Tandberg-Hanssen, E.
1984-01-01
Distributions of vertical electrical current density J(z) calculated from vector measurements of the photospheric magnetic field are compared with ultraviolet spectroheliograms to investigate whether resistive heating is an important source of enhanced emission in the transition region. The photospheric magnetic fields in Active Region 2372 were measured on April 6 and 7, 1980 with the Marshall Space Flight Center vector magnetograph; ultraviolet wavelength spectroheliograms (L-alpha and N V 1239 A) were obtained with the UV Spectrometer and Polarimeter experiment aboard the Solar Maximum Mission satellite. Spatial registration of the J(z) (5 arcsec resolution) and UV (3 arcsec resolution) maps indicates that the maximum current density is cospatial with a minor but persistent UV enhancement, but there is little detected current associated with other nearby bright areas. It is concluded that, although resistive heating may be important in the transition region, the currents responsible for the heating are largely unresolved in the present measurements and have no simple correlation with the residual current measured on 5-arcsec scales.
NASA Astrophysics Data System (ADS)
Habu, K.; Kaminohara, S.; Kimoto, T.; Kawagoe, A.; Sumiyoshi, F.; Okamoto, H.
2010-11-01
We have developed a new monitoring system to detect an unusual event in the superconducting coils without direct contact on the coils, using Poynting's vector method. In this system, the potential leads and pickup coils are set around the superconducting coils to measure local electric and magnetic fields, respectively. By measuring the sets of magnetic and electric fields, the Poynting's vectors around the coil can be obtained. An unusual event in the coil can be detected as the result of the change of the Poynting's vector. This system has no risk of the voltage breakdown which may happen with the balance voltage method, because there is no need of direct contacts on the coil windings. In a previous paper, we have demonstrated that our system can detect the normal transitions in the Bi-2223 coil without direct contact on the coil windings by using a small test system. For our system to be applied to practical devices, it is necessary for the early detection of an unusual event in the coils to be able to detect local normal transitions in the coils. The signal voltages of the small sensors to measure local magnetic and electric fields are small. Although the increase in signals of the pickup coils is attained easily by an increase in the number of turns of the pickup coils, an increase in the signals of the potential lead is not easily attained. In this paper, a new method to amplify the signal of local electric fields around the coil is proposed. The validity of the method has been confirmed by measuring local electric fields around the Bi-2223 coil.
Geometry of generalized depolarizing channels
NASA Astrophysics Data System (ADS)
Burrell, Christian K.
2009-10-01
A generalized depolarizing channel acts on an N -dimensional quantum system to compress the “Bloch ball” in N2-1 directions; it has a corresponding compression vector. We investigate the geometry of these compression vectors and prove a conjecture of Dixit and Sudarshan [Phys. Rev. A 78, 032308 (2008)], namely, that when N=2d (i.e., the system consists of d qubits), and we work in the Pauli basis then the set of all compression vectors forms a simplex. We extend this result by investigating the geometry in other bases; in particular we find precisely when the set of all compression vectors forms a simplex.
Cloning strategy for producing brush-forming protein-based polymers.
Henderson, Douglas B; Davis, Richey M; Ducker, William A; Van Cott, Kevin E
2005-01-01
Brush-forming polymers are being used in a variety of applications, and by using recombinant DNA technology, there exists the potential to produce protein-based polymers that incorporate unique structures and functions in these brush layers. Despite this potential, production of protein-based brush-forming polymers is not routinely performed. For the design and production of new protein-based polymers with optimal brush-forming properties, it would be desirable to have a cloning strategy that allows an iterative approach wherein the protein based-polymer product can be produced and evaluated, and then if necessary, it can be sequentially modified in a controlled manner to obtain optimal surface density and brush extension. In this work, we report on the development of a cloning strategy intended for the production of protein-based brush-forming polymers. This strategy is based on the assembly of modules of DNA that encode for blocks of protein-based polymers into a commercially available expression vector; there is no need for custom-modified vectors and no need for intermediate cloning vectors. Additionally, because the design of new protein-based biopolymers can be an iterative process, our method enables sequential modification of a protein-based polymer product. With at least 21 bacterial expression vectors and 11 yeast expression vectors compatible with this strategy, there are a number of options available for production of protein-based polymers. It is our intent that this strategy will aid in advancing the production of protein-based brush-forming polymers.
NASA Technical Reports Server (NTRS)
Davis, David O.
1991-01-01
Steady, incompressible, turbulent, swirl-free flow through a circular-to-rectangular transition duck was studied experimentally. The cross-sectional area remains the same at the exit as at the inlet, but varies through the transition section to a maximum value approximately 15 percent above the inlet value. The cross-sectional geometry everywhere along the duct is defined by the equation of a superellipse. Mean and turbulence data were accumulated utilizing pressure and hot-wire instrumentation at five stations along the test section. Data are presented for operating bulk Reynolds numbers of 88,000 and 390,000. Measured quantities include total and static pressure, the three components of the mean velocity vector, and the six components of the Reynolds stress tensor. In addition to the transition duct measurements, a hot-wire technique which relies on the sequential use of single rotatable normal and slant-wire probes was proposed. The technique is applicable for measurement of the total mean velocity vector and the complete Reynolds stress tensor when the primary flow is arbitrarily skewed relative to a plane which lies normal to the probe axis of rotation.
What Can We Learn from Hadronic and Radiative Decays of Light Mesons?
NASA Astrophysics Data System (ADS)
Kubis, Bastian
2013-04-01
Chiral perturbation theory offers a powerful tool for the investigation of light pseudoscalar mesons. It incorporates the fundamental symmetries of QCD, interrelates various processes, and allows to link these to the light quark masses. Its shortcomings lie in a limited energy range: the radius of convergence of the chiral expansion is confined to below resonance scales. Furthermore, the strongest consequences of chiral symmetry are manifest for pseudoscalars (pions, kaons, eta) only: vector mesons, e.g., have a severe impact in particular for reactions involving photons. In this talk, I advocate dispersions relations as another model-independent tool to extend the applicability range of chiral perturbation theory. They even allow to tackle the physics of vector mesons in a rigorous way. It will be shown how dispersive methods can be used to resum large rescattering effects, and to provide model-independent links between hadronic and radiative decay modes. Examples to be discussed will include decays of the eta meson, giving access to light-quark-mass ratios or allowing to test the chiral anomaly; and meson transition form factors, which have an important impact on the hadronic light-by-light-scattering contribution to the anomalous magnetic moment of the muon.
Could a Weak Coupling Massless SU(5) Theory Underly the Standard Model S-Matrix
NASA Astrophysics Data System (ADS)
White, Alan R.
2011-04-01
The unitary Critical Pomeron connects to a unique massless left-handed SU(5) theory that, remarkably, might provide an unconventional underlying unification for the Standard Model. Multi-regge theory suggests the existence of a bound-state high-energy S-Matrix that replicates Standard Model states and interactions via massless fermion anomaly dynamics. Configurations of anomalous wee gauge boson reggeons play a vacuum-like role. All particles, including neutrinos, are bound-states with dynamical masses (there is no Higgs field) that are formed (in part) by anomaly poles. The contributing zero-momentum chirality transitions break the SU(5) symmetry to vector SU(3)⊗U(1) in the S-Matrix. The high-energy interactions are vector reggeon exchanges accompanied by wee boson sums (odd-signature for the strong interaction and even-signature for the electroweak interaction) that strongly enhance couplings. The very small SU(5) coupling, αQUD ≲ 1/120, should be reflected in small (Majorana) neutrino masses. A color sextet quark sector, still to be discovered, produces both Dark Matter and Electroweak Symmetry Breaking. Anomaly color factors imply this sector could be produced at the LHC with large cross-sections, and would be definitively identified in double pomeron processes.
Sun, Xun; Lu, You; Bish, Lawrence T; Calcedo, Roberto; Wilson, James M; Gao, Guangping
2010-06-01
Vectors based on several new adeno-associated viral (AAV) serotypes demonstrated strong hepatocyte tropism and transduction efficiency in both small- and large-animal models for liver-directed gene transfer. Efficiency of liver transduction by AAV vectors can be further improved in both murine and nonhuman primate (NHP) animals when the vector genomes are packaged in a self-complementary (sc) format. In an attempt to understand potential molecular mechanism(s) responsible for enhanced transduction efficiency of the sc vector in liver, we performed extensive molecular studies of genome structures of conventional single-stranded (ss) and sc AAV vectors from liver after AAV gene transfer in both mice and NHPs. These included treatment with exonucleases with specific substrate preferences, single-cutter restriction enzyme digestion and polarity-specific hybridization-based vector genome mapping, and bacteriophage phi29 DNA polymerase-mediated and double-stranded circular template-specific rescue of persisted circular genomes. In mouse liver, vector genomes of both genome formats seemed to persist primarily as episomal circular forms, but sc vectors converted into circular forms more rapidly and efficiently. However, the overall differences in vector genome abundance and structure in the liver between ss and sc vectors could not account for the remarkable differences in transduction. Molecular structures of persistent genomes of both ss and sc vectors were significantly more heterogeneous in macaque liver, with noticeable structural rearrangements that warrant further characterizations.
Sun, Xun; Lu, You; Bish, Lawrence T.; Calcedo, Roberto; Wilson, James M.
2010-01-01
Abstract Vectors based on several new adeno-associated viral (AAV) serotypes demonstrated strong hepatocyte tropism and transduction efficiency in both small- and large-animal models for liver-directed gene transfer. Efficiency of liver transduction by AAV vectors can be further improved in both murine and nonhuman primate (NHP) animals when the vector genomes are packaged in a self-complementary (sc) format. In an attempt to understand potential molecular mechanism(s) responsible for enhanced transduction efficiency of the sc vector in liver, we performed extensive molecular studies of genome structures of conventional single-stranded (ss) and sc AAV vectors from liver after AAV gene transfer in both mice and NHPs. These included treatment with exonucleases with specific substrate preferences, single-cutter restriction enzyme digestion and polarity-specific hybridization-based vector genome mapping, and bacteriophage ϕ29 DNA polymerase-mediated and double-stranded circular template-specific rescue of persisted circular genomes. In mouse liver, vector genomes of both genome formats seemed to persist primarily as episomal circular forms, but sc vectors converted into circular forms more rapidly and efficiently. However, the overall differences in vector genome abundance and structure in the liver between ss and sc vectors could not account for the remarkable differences in transduction. Molecular structures of persistent genomes of both ss and sc vectors were significantly more heterogeneous in macaque liver, with noticeable structural rearrangements that warrant further characterizations. PMID:20113166
Experimental and computational prediction of glass transition temperature of drugs.
Alzghoul, Ahmad; Alhalaweh, Amjad; Mahlin, Denny; Bergström, Christel A S
2014-12-22
Glass transition temperature (Tg) is an important inherent property of an amorphous solid material which is usually determined experimentally. In this study, the relation between Tg and melting temperature (Tm) was evaluated using a data set of 71 structurally diverse druglike compounds. Further, in silico models for prediction of Tg were developed based on calculated molecular descriptors and linear (multilinear regression, partial least-squares, principal component regression) and nonlinear (neural network, support vector regression) modeling techniques. The models based on Tm predicted Tg with an RMSE of 19.5 K for the test set. Among the five computational models developed herein the support vector regression gave the best result with RMSE of 18.7 K for the test set using only four chemical descriptors. Hence, two different models that predict Tg of drug-like molecules with high accuracy were developed. If Tm is available, a simple linear regression can be used to predict Tg. However, the results also suggest that support vector regression and calculated molecular descriptors can predict Tg with equal accuracy, already before compound synthesis.
Sequential cloning of chromosomes
Lacks, S.A.
1995-07-18
A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.
Lie algebra of conformal Killing-Yano forms
NASA Astrophysics Data System (ADS)
Ertem, Ümit
2016-06-01
We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing-Yano forms. A new Lie bracket for conformal Killing-Yano forms that corresponds to slightly modified Schouten-Nijenhuis bracket of differential forms is proposed. We show that conformal Killing-Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing-Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing-Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases.
Martin, James E.; Solis, Kyle Jameson
2015-11-09
It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude ofmore » the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.« less
Ribeiro, A L M; Miyazaki, R D; Silva, M; Zeilhofer, P
2012-01-01
Human biting catches of sylvatic yellow fever (SYF) vectors were conducted at eight stations in the influence area of the Manso hydroelectric power plant (Central Brazil) in sampling campaigns every 2 mo from July 2000 to November 2001. In total, 206 individuals were captured and classified as one of three species important for the transmission of SYF in Mato Grosso state: Haemagogus (Haemagogus) janthinomys (Dyar, 1921); Haemagogus (Conopostegus) leucocelaenus (Dyar & Shannon, 1924); and Sabethes (Sabethoides) chloropterus (Humboldt, 1819). The highest vector abundance was observed during the rainy season (November through March) and SYF vectors were present in all sampling points throughout the year, mainly in riparian and shadowed transitional forests at shadowed ramps.
Vector Meson Production at Hera
NASA Astrophysics Data System (ADS)
Szuba, Dorota
The diffractive production of vector mesons ep→eVMY, with VM=ρ0, ω, ϕ, J/ψ, ψ‧ or ϒ and with Y being either the scattered proton or a low mass hadronic system, has been extensively investigated at HERA. HERA offers a unique opportunity to study the dependences of diffractive processes on different scales: the mass of the vector meson, mVM, the centre-of-mass energy of the γp system, W, the photon virtuality, Q2 and the four-momentum transfer squared at the proton vertex, |t|. Strong interactions can be investigated in the transition from the hard to the soft regime, where the confinement of quarks and gluons occurs.
Electromagnetic energy flux vector for a dispersive linear medium.
Crenshaw, Michael E; Akozbek, Neset
2006-05-01
The electromagnetic energy flux vector in a dispersive linear medium is derived from energy conservation and microscopic quantum electrodynamics and is found to be of the Umov form as the product of an electromagnetic energy density and a velocity vector.
IIB supergravity and the E 6(6) covariant vector-tensor hierarchy
Ciceri, Franz; de Wit, Bernard; Varela, Oscar
2015-04-20
IIB supergravity is reformulated with a manifest local USp(8) invariance that makes the embedding of five-dimensional maximal supergravities transparent. In this formulation the ten-dimensional theory exhibits all the 27 one-form fields and 22 of the 27 two-form fields that are required by the vector-tensor hierarchy of the five-dimensional theory. The missing 5 two-form fields must transform in the same representation as a descendant of the ten-dimensional ‘dual graviton’. The invariant E 6(6) symmetric tensor that appears in the vector-tensor hierarchy is reproduced. Generalized vielbeine are derived from the supersymmetry transformations of the vector fields, as well as consistent expressions formore » the USp(8) covariant fermion fields. Implications are further discussed for the consistency of the truncation of IIB supergravity compactified on the five-sphere to maximal gauged supergravity in five space-time dimensions with an SO(6) gauge group.« less
Accurate treatment of total photoabsorption cross sections by an ab initio time-dependent method
NASA Astrophysics Data System (ADS)
Daud, Mohammad Noh
2014-09-01
A detailed discussion of parallel and perpendicular transitions required for the photoabsorption of a molecule is presented within a time-dependent view. Total photoabsorption cross sections for the first two ultraviolet absorption bands of the N2O molecule corresponding to transitions from the X1 A' state to the 21 A' and 11 A'' states are calculated to test the reliability of the method. By fully considering the property of the electric field polarization vector of the incident light, the method treats the coupling of angular momentum and the parity differently for two kinds of transitions depending on the direction of the vector whether it is: (a) situated parallel in a molecular plane for an electronic transition between states with the same symmetry; (b) situated perpendicular to a molecular plane for an electronic transition between states with different symmetry. Through this, for those transitions, we are able to offer an insightful picture of the dynamics involved and to characterize some new aspects in the photoabsorption process of N2O. Our calculations predicted that the parallel transition to the 21 A' state is the major dissociation pathway which is in qualitative agreement with the experimental observations. Most importantly, a significant improvement in the absolute value of the total cross section over previous theoretical results [R. Schinke, J. Chem. Phys. 134, 064313 (2011), M.N. Daud, G.G. Balint-Kurti, A. Brown, J. Chem. Phys. 122, 054305 (2005), S. Nanbu, M.S. Johnson, J. Phys. Chem. A 108, 8905 (2004)] was obtained.
Polarization rotation locking of vector solitons in a fiber ring laser.
Zhao, L M; Tang, D Y; Zhang, H; Wu, X
2008-07-07
Polarization rotation of vector solitons in a fiber ring laser was experimentally studied. It was observed that the period of vector soliton polarization rotation could be locked to the cavity roundtrip time or multiple of it. We further show that multiple vector solitons can be formed in a fiber laser, and all the vector solitons have the same group velocity in cavity, however, their instantaneous polarization ellipse orientations could be orthogonal.
A path-oriented matrix-based knowledge representation system
NASA Technical Reports Server (NTRS)
Feyock, Stefan; Karamouzis, Stamos T.
1993-01-01
Experience has shown that designing a good representation is often the key to turning hard problems into simple ones. Most AI (Artificial Intelligence) search/representation techniques are oriented toward an infinite domain of objects and arbitrary relations among them. In reality much of what needs to be represented in AI can be expressed using a finite domain and unary or binary predicates. Well-known vector- and matrix-based representations can efficiently represent finite domains and unary/binary predicates, and allow effective extraction of path information by generalized transitive closure/path matrix computations. In order to avoid space limitations a set of abstract sparse matrix data types was developed along with a set of operations on them. This representation forms the basis of an intelligent information system for representing and manipulating relational data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trell, Erik, E-mail: erik.trell@gmail.com
2014-12-10
Santilli’s revolutionary iso-, geno- and hypermathematics have provided the original straight line Lie groups and algebras with a span and coherence in all dimensions, and thus already at the infinitesimal level an extension in the Cartesian sense, allowing a continuous self-similar cyclical realization of matter from the elementary particle threshold level via the atomic to molecular and visible scale where it meets and marries with modern nanotechnology in the form of an isotropic vector matrix of space-filling octahedron-tetrahedron composition. This is distributed as an electron transition matrix with Bohr shell model stratified signature and is here directly outlining a new,more » centrally coordinated organic composition and chart of the periodic system as specifically exemplified by the noble gases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, S.; Jang, H.; Nojiri, H.
Charge density wave (CDW) correlations have been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. The field-induced CDW onsets around the zero-field superconductingmore » transition temperature, yet the incommensurate inplane ordering vector is field-independent. This implies that the two forms of CDW and hightemperature superconductivity are intimately linked.« less
Longitudinal vector form factors in weak decays of nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Šimkovic, F.; Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina F1 SK–842 48 Bratislava; Kovalenko, S.
2015-10-28
The longitudinal form factors of the weak vector current of particles with spin J = 1/2 and isospin I = 1/2 are determined by the mass difference and the charge radii of members of the isotopic doublets. The most promising reactions to measure these form factors are the reactions with large momentum transfers involving the spin-1/2 isotopic doublets with a maximum mass splitting. Numerical estimates of longitudinal form factors are given for nucleons and eight nuclear spin-1/2 isotopic doublets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.
Molecular dynamics simulations have been used to generate a comprehensive database of surviving defects due to displacement cascades in bulk tungsten. Twenty-one data points of primary knock-on atom (PKA) energies ranging from 100 eV (sub-threshold energy) to 100 keV (~780 × Ed, where Ed = 128 eV is the average displacement threshold energy) have been completed at 300 K, 1025 K and 2050 K. Within this range of PKA energies, two regimes of power-law energy-dependence of the defect production are observed. A distinct power-law exponent characterizes the number of Frenkel pairs produced within each regime. The two regimes intersect atmore » a transition energy which occurs at approximately 250 × Ed. The transition energy also marks the onset of the formation of large self-interstitial atom (SIA) clusters (size 14 or more). The observed defect clustering behavior is asymmetric, with SIA clustering increasing with temperature, while the vacancy clustering decreases. This asymmetry increases with temperature such that at 2050 K (~0.5 Tm) practically no large vacancy clusters are formed, meanwhile large SIA clusters appear in all simulations. The implication of such asymmetry on the long-term defect survival and damage accumulation is discussed. In addition, <100> {110} SIA loops are observed to form directly in the highest energy cascades, while vacancy <100> loops are observed to form at the lowest temperature and highest PKA energies, although the appearance of both the vacancy and SIA loops with Burgers vector of <100> type is relatively rare.« less
A Worksheet to Enhance Students’ Conceptual Understanding in Vector Components
NASA Astrophysics Data System (ADS)
Wutchana, Umporn; Emarat, Narumon
2017-09-01
With and without physical context, we explored 59 undergraduate students’conceptual and procedural understanding of vector components using both open ended problems and multiple choice items designed based on research instruments used in physics education research. The results showed that a number of students produce errors and revealed alternative conceptions especially when asked to draw graphical form of vector components. It indicated that most of them did not develop a strong foundation of understanding in vector components and could not apply those concepts to such problems with physical context. Based on the findings, we designed a worksheet to enhance the students’ conceptual understanding in vector components. The worksheet is composed of three parts which help students to construct their own understanding of definition, graphical form, and magnitude of vector components. To validate the worksheet, focus group discussions of 3 and 10 graduate students (science in-service teachers) had been conducted. The modified worksheet was then distributed to 41 grade 9 students in a science class. The students spent approximately 50 minutes to complete the worksheet. They sketched and measured vectors and its components and compared with the trigonometry ratio to condense the concepts of vector components. After completing the worksheet, their conceptual model had been verified. 83% of them constructed the correct model of vector components.
Bethe vectors for XXX-spin chain
NASA Astrophysics Data System (ADS)
Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei
2014-11-01
The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included.
Wheel speed management control system for spacecraft
NASA Technical Reports Server (NTRS)
Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)
1991-01-01
A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.
Energy-exchange collisions of dark-bright-bright vector solitons.
Radhakrishnan, R; Manikandan, N; Aravinthan, K
2015-12-01
We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.
NASA Technical Reports Server (NTRS)
Mayo, W. T., Jr.; Smart, A. E.
1979-01-01
A laser transit anemometer measured a two-dimensional vector velocity, using the transit time of scattering particles between two focused and parallel laser beams. The objectives were: (1) the determination of the concentration levels and light scattering efficiencies of naturally occurring, submicron particles in the NASA/Ames unitary wind tunnel and (2) the evaluation based on these measured data of a laser transit anemometer with digital correlation processing for nonintrusive velocity measurement in this facility. The evaluation criteria were the speeds at which point velocity measurements could be realized with this technique (as determined from computer simulations) for given accuracy requirements.
Capacity of the generalized PPM channel
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Klimesh, Matt; McEliece, Bob; Moision, Bruce
2004-01-01
We show the capacity of a generalized pulse-position-modulation (PPM) channel, where the input vectors may be any set that allows a transitive group of coordinate permutations, is achieved by a uniform input distribution.
NASA Astrophysics Data System (ADS)
Monten, Ruben; Toldo, Chiara
2018-02-01
We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.
Combinatorial vector fields and the valley structure of fitness landscapes.
Stadler, Bärbel M R; Stadler, Peter F
2010-12-01
Adaptive (downhill) walks are a computationally convenient way of analyzing the geometric structure of fitness landscapes. Their inherently stochastic nature has limited their mathematical analysis, however. Here we develop a framework that interprets adaptive walks as deterministic trajectories in combinatorial vector fields and in return associate these combinatorial vector fields with weights that measure their steepness across the landscape. We show that the combinatorial vector fields and their weights have a product structure that is governed by the neutrality of the landscape. This product structure makes practical computations feasible. The framework presented here also provides an alternative, and mathematically more convenient, way of defining notions of valleys, saddle points, and barriers in landscape. As an application, we propose a refined approximation for transition rates between macrostates that are associated with the valleys of the landscape.
Fixed points, stable manifolds, weather regimes, and their predictability
Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael
2009-10-27
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemblemore » forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.« less
Fixed points, stable manifolds, weather regimes, and their predictability.
Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael
2009-12-01
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model's fixed points in phase space. The model dynamics is characterized by the coexistence of multiple "weather regimes." To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, "bred vectors" and singular vectors. These results are then verified in the framework of ensemble forecasts issued from "clouds" (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.
The geometric approach to sets of ordinary differential equations and Hamiltonian dynamics
NASA Technical Reports Server (NTRS)
Estabrook, F. B.; Wahlquist, H. D.
1975-01-01
The calculus of differential forms is used to discuss the local integration theory of a general set of autonomous first order ordinary differential equations. Geometrically, such a set is a vector field V in the space of dependent variables. Integration consists of seeking associated geometric structures invariant along V: scalar fields, forms, vectors, and integrals over subspaces. It is shown that to any field V can be associated a Hamiltonian structure of forms if, when dealing with an odd number of dependent variables, an arbitrary equation of constraint is also added. Families of integral invariants are an immediate consequence. Poisson brackets are isomorphic to Lie products of associated CT-generating vector fields. Hamilton's variational principle follows from the fact that the maximal regular integral manifolds of a closed set of forms must include the characteristics of the set.
The optional selection of micro-motion feature based on Support Vector Machine
NASA Astrophysics Data System (ADS)
Li, Bo; Ren, Hongmei; Xiao, Zhi-he; Sheng, Jing
2017-11-01
Micro-motion form of target is multiple, different micro-motion forms are apt to be modulated, which makes it difficult for feature extraction and recognition. Aiming at feature extraction of cone-shaped objects with different micro-motion forms, this paper proposes the best selection method of micro-motion feature based on support vector machine. After the time-frequency distribution of radar echoes, comparing the time-frequency spectrum of objects with different micro-motion forms, features are extracted based on the differences between the instantaneous frequency variations of different micro-motions. According to the methods based on SVM (Support Vector Machine) features are extracted, then the best features are acquired. Finally, the result shows the method proposed in this paper is feasible under the test condition of certain signal-to-noise ratio(SNR).
Rortex—A new vortex vector definition and vorticity tensor and vector decompositions
NASA Astrophysics Data System (ADS)
Liu, Chaoqun; Gao, Yisheng; Tian, Shuling; Dong, Xiangrui
2018-03-01
A vortex is intuitively recognized as the rotational/swirling motion of the fluids. However, an unambiguous and universally accepted definition for vortex is yet to be achieved in the field of fluid mechanics, which is probably one of the major obstacles causing considerable confusions and misunderstandings in turbulence research. In our previous work, a new vector quantity that is called vortex vector was proposed to accurately describe the local fluid rotation and clearly display vortical structures. In this paper, the definition of the vortex vector, named Rortex here, is revisited from the mathematical perspective. The existence of the possible rotational axis is proved through real Schur decomposition. Based on real Schur decomposition, a fast algorithm for calculating Rortex is also presented. In addition, new vorticity tensor and vector decompositions are introduced: the vorticity tensor is decomposed to a rigidly rotational part and a non-rotationally anti-symmetric part, and the vorticity vector is decomposed to a rigidly rotational vector which is called the Rortex vector and a non-rotational vector which is called the shear vector. Several cases, including the 2D Couette flow, 2D rigid rotational flow, and 3D boundary layer transition on a flat plate, are studied to demonstrate the justification of the definition of Rortex. It can be observed that Rortex identifies both the precise swirling strength and the rotational axis, and thus it can reasonably represent the local fluid rotation and provide a new powerful tool for vortex dynamics and turbulence research.
Online Bayesian Learning with Natural Sequential Prior Distribution Used for Wind Speed Prediction
NASA Astrophysics Data System (ADS)
Cheggaga, Nawal
2017-11-01
Predicting wind speed is one of the most important and critic tasks in a wind farm. All approaches, which directly describe the stochastic dynamics of the meteorological data are facing problems related to the nature of its non-Gaussian statistics and the presence of seasonal effects .In this paper, Online Bayesian learning has been successfully applied to online learning for three-layer perceptron's used for wind speed prediction. First a conventional transition model based on the squared norm of the difference between the current parameter vector and the previous parameter vector has been used. We noticed that the transition model does not adequately consider the difference between the current and the previous wind speed measurement. To adequately consider this difference, we use a natural sequential prior. The proposed transition model uses a Fisher information matrix to consider the difference between the observation models more naturally. The obtained results showed a good agreement between both series, measured and predicted. The mean relative error over the whole data set is not exceeding 5 %.
Olano, Víctor Alberto; Matiz, María Inés; Lenhart, Audrey; Cabezas, Laura; Vargas, Sandra Lucía; Jaramillo, Juan Felipe; Sarmiento, Diana; Alexander, Neal; Stenström, Thor Axel; Overgaard, Hans J
2015-09-01
Dengue and other vector-borne diseases are of great public health importance in Colombia. Vector surveillance and control activities are often focused at the household level. Little is known about the importance of nonhousehold sites, including schools, in maintaining vector-borne disease transmission. The objectives of this paper were to determine the mosquito species composition in rural schools in 2 municipalities in Colombia and to assess the potential risk of vector-borne disease transmission in school settings. Entomological surveys were carried out in rural schools during the dry and rainy seasons of 2011. A total of 12 mosquito species were found: Aedes aegypti, Anopheles pseudopunctipennis, Culex coronator, Cx. quinquefasciatus, and Limatus durhamii in both immature and adult forms; Ae. fluviatilis, Cx. nigripalpus, Cx. corniger, and Psorophora ferox in immature forms only; and Ae. angustivittatus, Haemagogus equinus, and Trichoprosopon lampropus in adult forms only. The most common mosquito species was Cx. quinquefasciatus. Classrooms contained the greatest abundance of adult female Ae. aegypti and Cx. quinquefasciatus. The most common Ae. aegypti breeding sites were containers classified as "others" (e.g., cans), followed by containers used for water storage. A high level of Ae. aegypti infestation was found during the wet season. Our results suggest that rural schools are potentially important foci for the transmission of dengue and other mosquito-borne diseases. We propose that public health programs should be implemented in rural schools to prevent vector-borne diseases.
Vector and Axial-Vector Correlators in AN Instanton-Like Quark Model
NASA Astrophysics Data System (ADS)
Dorokhov, Alexander E.
The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instanton-like quark-quark interaction. This function describes the transition between the high energy asymptotically free region of almost massless current quarks to the low energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, aμ hvp(1), is estimated.
NASA Astrophysics Data System (ADS)
Ocko, B. M.; Pershan, P. S.; Safinya, C. R.; Chiang, L. Y.
1987-02-01
We report x-ray reflectivity measurements on the free surface of 4-n-heptylphenyl-4'-(4''-nitrobenzoyloxy)benzoate (DB7NO2) at the nematic to smectic-A phase transition, TNA=99.9 °C. The free surface in the nematic phase exhibits smecticlike ordering at two q vectors, one which is commensurate with the smectic-A monolayer q vector q2. The other q vector is incommensurate corresponding to ordering at ~0.59q2. The commensurate peak constructively interferes with the air-liquid interface while the incommensurate peak destructively interferes. These results are compared with bulk-phase x-ray scattering measurements.
Phase transitions of antibiotic clarithromycin forms I, IV and new form VII crystals.
Ito, Masataka; Shiba, Rika; Watanabe, Miteki; Iwao, Yasunori; Itai, Shigeru; Noguchi, Shuji
2018-06-01
Metastable crystal form I of the antibiotic clarithromycin has a pharmaceutically valuable characteristic that its crystalline phase transition can be applied for its sustained release from tablets. The phase transition of form I was investigated in detail by single crystal and powder X-ray analyses, dynamic vapor sorption analysis and thermal analysis. The single crystal structure of form I revealed that form I was not an anhydrate crystal but contained a partially occupied water molecule in the channel-like void space. Dynamic vapor sorption (DVS) analysis demonstrated that form I crystals reversibly sorbed water molecules in two steps when the relative humidity (RH) increased and finally transited to hydrate form IV at 95% RH. DVS analysis also showed that when the RH decreased form IV crystals lost water molecules at 40% RH and transited to the newly identified anhydrate crystal form VII. Form VII reversibly transited to form IV at lower RH than form I, suggesting that form I is more suitable for manufacturing a sustained-release tablet of CAM utilizing the crystalline phase transition. Copyright © 2018 Elsevier B.V. All rights reserved.
Stable Defects in Semiconductor Nanowires.
Sanchez, A M; Gott, J A; Fonseka, H A; Zhang, Y; Liu, H; Beanland, R
2018-05-09
Semiconductor nanowires are commonly described as being defect-free due to their ability to expel mobile defects with long-range strain fields. Here, we describe previously undiscovered topologically protected line defects with null Burgers vector that, unlike dislocations, are stable in nanoscale crystals. We analyze the defects present in semiconductor nanowires in regions of imperfect crystal growth, i.e., at the nanowire tip formed during consumption of the droplet in self-catalyzed vapor-liquid-solid growth and subsequent vapor-solid shell growth. We use a form of the Burgers circuit method that can be applied to multiply twinned material without difficulty. Our observations show that the nanowire microstructure is very different from bulk material, with line defects either (a) trapped by locks or other defects, (b) arranged as dipoles or groups with a zero total Burgers vector, or (c) have a zero Burgers vector. We find two new line defects with a null Burgers vector, formed from the combination of partial dislocations in twinned material. The most common defect is the three-monolayer high twin facet with a zero Burgers vector. Studies of individual nanowires using cathodoluminescence show that optical emission is quenched in defective regions, showing that they act as strong nonradiative recombination centers.
Flexocoupling-induced soft acoustic modes and the spatially modulated phases in ferroelectrics
NASA Astrophysics Data System (ADS)
Morozovska, Anna N.; Glinchuk, Maya D.; Eliseev, Eugene A.; Vysochanskii, Yulian M.
2017-09-01
Using the Landau-Ginzburg-Devonshire theory and one component approximation, we examined the conditions of the soft acoustic phonon mode (A-mode) appearance in a ferroelectric (FE) depending on the magnitude of the flexoelectric coefficient f and temperature T . If the flexocoefficient f is equal to the temperature-dependent critical value fcr(T ) at some temperature T =TIC , the A-mode frequency tends to zero at wave vector k =k0cr , and the spontaneous polarization becomes spatially modulated in the temperature range T
NASA Astrophysics Data System (ADS)
Li, Jing; Kou, Liying; Wang, Duo; Zhang, Wei
2017-12-01
In this paper, we mainly focus on the unique normal form for a class of three-dimensional vector fields via the method of transformation with parameters. A general explicit recursive formula is derived to compute the higher order normal form and the associated coefficients, which can be achieved easily by symbolic calculations. To illustrate the efficiency of the approach, a comparison of our result with others is also presented.
Bunch of restless vector solitons in a fiber laser with SESAM.
Zhao, L M; Tang, D Y; Zhang, H; Wu, X
2009-05-11
We report on the experimental observation of a novel form of vector soliton interaction in a fiber laser mode-locked with SESAM. Several vector solitons bunch in the cavity and move as a unit with the cavity repetition rate. However, inside the bunch the vector solitons make repeatedly contractive and repulsive motions, resembling the contraction and extension of a spring. The number of vector solitons in the bunch is controllable by changing the pump power. In addition, polarization rotation locking and period doubling bifurcation of the vector soliton bunch are also experimentally observed.
Forces Associated with Nonlinear Nonholonomic Constraint Equations
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Hodges, Dewey H.
2010-01-01
A concise method has been formulated for identifying a set of forces needed to constrain the behavior of a mechanical system, modeled as a set of particles and rigid bodies, when it is subject to motion constraints described by nonholonomic equations that are inherently nonlinear in velocity. An expression in vector form is obtained for each force; a direction is determined, together with the point of application. This result is a consequence of expressing constraint equations in terms of dot products of vectors rather than in the usual way, which is entirely in terms of scalars and matrices. The constraint forces in vector form are used together with two new analytical approaches for deriving equations governing motion of a system subject to such constraints. If constraint forces are of interest they can be brought into evidence in explicit dynamical equations by employing the well-known nonholonomic partial velocities associated with Kane's method; if they are not of interest, equations can be formed instead with the aid of vectors introduced here as nonholonomic partial accelerations. When the analyst requires only the latter, smaller set of equations, they can be formed directly; it is not necessary to expend the labor to form the former, larger set first and subsequently perform matrix multiplications.
Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M; Yue, Junming
2017-01-01
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells.
Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M.; Yue, Junming
2017-01-01
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells. PMID:28123598
Evolution of mosquito preference for humans linked to an odorant receptor
McBride, Carolyn S.; Baier, Felix; Omondi, Aman B.; Spitzer, Sarabeth A.; Lutomiah, Joel; Sang, Rosemary; Ignell, Rickard; Vosshall, Leslie B.
2014-01-01
Female mosquitoes are major vectors of human disease and the most dangerous are those that preferentially bite humans. A ‘domestic’ form of the mosquito Aedes aegypti has evolved to specialize in biting humans and is the major worldwide vector of dengue, yellow fever, and Chikungunya viruses. The domestic form coexists with an ancestral, animal-biting ‘forest’ form along the coast of Kenya. We collected the two forms, established laboratory colonies, and document striking divergence in preference for human versus animal odour. We further show that the evolution of preference for human odour in domestic mosquitoes is tightly linked to increases in the expression and ligand-sensitivity of the odorant receptor AaegOr4, which we found recognises a compound present at high levels in human odour. Our results provide a rare example of a gene contributing to behavioural evolution and provide insight into how disease-vectoring mosquitoes came to specialise on humans. PMID:25391959
Changes in orientation and shape of protoplanetary discs moving through an ambient medium
NASA Astrophysics Data System (ADS)
Wijnen, T. P. G.; Pelupessy, F. I.; Pols, O. R.; Portegies Zwart, S.
2017-08-01
Misalignments between the orbital planes of planets and the equatorial planes of their host stars have been observed in our solar system, in transiting exoplanets, and for the orbital planes of debris discs. We present a mechanism that causes such a spin-orbit misalignment for a protoplanetary disc due to its movement through an ambient medium. Our physical explanation of the mechanism is based on the theoretical solutions to the Stark problem. We test this idea by performing self-consistent hydrodynamical simulations and simplified gravitational N-body simulations. The N-body model reduces the mechanism to the relevant physical processes. The hydrodynamical simulations show the mechanism in its full extent, including gas-dynamical and viscous processes in the disc which are not included in the theoretical framework. We find that a protoplanetary disc embedded in a flow changes its orientation as its angular momentum vector tends to align parallel to the relative velocity vector. Due to the force exerted by the flow, orbits in the disc become eccentric, which produces a net torque and consequentially changes the orbital inclination. The tilting of the disc causes it to contract. Apart from becoming lopsided, the gaseous disc also forms a spiral arm even if the inclination does not change substantially. The process is most effective at high velocities and observational signatures are therefore mostly expected in massive star-forming regions and around winds or supernova ejecta. Our N-body model indicates that the interaction with supernova ejecta is a viable explanation for the observed spin-orbit misalignment in our solar system.
All ASD complex and real 4-dimensional Einstein spaces with Λ≠0 admitting a nonnull Killing vector
NASA Astrophysics Data System (ADS)
Chudecki, Adam
2016-12-01
Anti-self-dual (ASD) 4-dimensional complex Einstein spaces with nonzero cosmological constant Λ equipped with a nonnull Killing vector are considered. It is shown that any conformally nonflat metric of such spaces can be always brought to a special form and the Einstein field equations can be reduced to the Boyer-Finley-Plebański equation (Toda field equation). Some alternative forms of the metric are discussed. All possible real slices (neutral, Euclidean and Lorentzian) of ASD complex Einstein spaces with Λ≠0 admitting a nonnull Killing vector are found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyotl, A.; Rosado, A.; Tavares-Velasco, G.
The magnetic dipole moment and the electric dipole moment of leptons are calculated under the assumption of lepton flavor violation (LFV) induced by spin-1 unparticles with both vector and axial-vector couplings to leptons, including a CP-violating phase. The experimental limits on the muon magnetic dipole moment and LFV process, such as the decay l{sub i}{sup -}{yields}l{sub j}{sup -}l{sub k}{sup -}l{sub k}{sup +}, are then used to constrain the LFV couplings for particular values of the unparticle operator dimension d{sub U} and the unparticle scale {Lambda}{sub U}, assuming that LFV transitions between the tau and muon leptons are dominant. It ismore » found that the current experimental constraints favor a scenario with dominance of the vector couplings over the axial-vector couplings. We also obtain estimates for the electric dipole moments of the electron and the muon, which are well below the experimental values.« less
K π vector form factor, dispersive constraints and τ→ ν τ K π decays
NASA Astrophysics Data System (ADS)
Boito, Diogo R.; Escribano, Rafel; Jamin, Matthias
2009-02-01
Recent experimental data for the differential decay distribution of the decay τ -→ ν τ K S π - by the Belle collaboration are described by a theoretical model which is composed of the contributing vector and scalar form factors F {+/ K π }( s) and F {0/ K π }( s). Both form factors are constructed such that they fulfil constraints posed by analyticity and unitarity. A good description of the experimental measurement is achieved by incorporating two vector resonances and working with a three-times-subtracted dispersion relation in order to suppress higher-energy contributions. The resonance parameters of the charged K *(892) meson, defined as the pole of F {+/ K π }( s) in the complex s-plane, can be extracted, with the result M_{K^{*}}=892.0± 0.9 MeV and \\varGamma_{K^{*}}=46.2± 0.4 MeV . Finally, employing a three-times-subtracted dispersion relation allows one to determine the slope and curvature parameters λ'+=(24.7±0.8)×10-3 and λ″+=(12.0±0.2)×10-4 of the vector form factor F {+/ K π }( s) directly from the data.
Laurent, G; Cao, W; Li, H; Wang, Z; Ben-Itzhak, I; Cocke, C L
2012-08-24
We experimentally demonstrate that atomic orbital parity mix interferences can be temporally controlled on an attosecond time scale. Electron wave packets are formed by ionizing argon gas with a comb of odd and even high-order harmonics, in the presence of a weak infrared field. Consequently, a mix of energy-degenerate even and odd parity states is fed in the continuum by one- and two-photon transitions. These interfere, leading to an asymmetric electron emission along the polarization vector. The direction of the emission can be controlled by varying the time delay between the comb and infrared field pulses. We show that such asymmetric emission provides information on the relative phase of consecutive odd and even order harmonics in the attosecond pulse train.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, S.; Jang, H.; Nojiri, H.
In this study, charge density wave (CDW) correlations have recently been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa 2Cu 3O 6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. Themore » field-induced CDW onsets around the zero-field superconducting transition temperature, yet the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked.« less
Group velocity locked vector dissipative solitons in a high repetition rate fiber laser
NASA Astrophysics Data System (ADS)
Luo, Yiyang; Li, Lei; Liu, Deming; Sun, Qizhen; Wu, Zhichao; Xu, Zhilin; Tang, Dingyuan; Fu, Songnian; Zhao, Luming
2016-08-01
Vectorial nature of dissipative solitons (DSs) with high repetition rates is studied for the first time in a normal-dispersion fiber laser. Despite the fact that the formed DSs are strongly chirped and the repetition rate is greater than 100 MHz, polarization locked and polarization rotating group velocity locked vector DSs can be formed under 129.3 MHz fundamental mode-locking and 258.6 MHz harmonic mode-locking of the fiber laser, respectively. The two orthogonally polarized components of these vector DSs possess distinctly different central wavelengths and travel together at the same group velocity in the laser cavity, resulting in a gradual spectral edge and small steps on the optical spectra, which can be considered as an auxiliary indicator of the group velocity locked vector DSs.
Diffeomorphism invariance and black hole entropy
NASA Astrophysics Data System (ADS)
Huang, Chao-Guang; Guo, Han-Ying; Wu, Xiaoning
2003-11-01
The Noether-charge and the Hamiltonian realizations for the diff(M) algebra in diffeomorphism-invariant gravitational theories without a cosmological constant in any dimension are studied in a covariant formalism. We analyze how the Hamiltonian functionals form the diff(M) algebra under the Poisson brackets and show how the Noether charges with respect to the diffeomorphism generated by the vector fields and their variations in n-dimensional general relativity form this algebra. The asymptotic behaviors of vector fields generating diffeomorphism of the manifold with boundaries are discussed. It is shown that the “central extension” for a large class of vector fields is always zero on the Killing horizon. We also check whether choosing the vector fields near the horizon may pick up the Virasoro algebra. The conclusion is unfortunately negative in any dimension.
Dominant phonon wave vectors and strain-induced splitting of the 2D Raman mode of graphene
NASA Astrophysics Data System (ADS)
Narula, Rohit; Bonini, Nicola; Marzari, Nicola; Reich, Stephanie
2012-03-01
The dominant phonon wave vectors q* probed by the 2D Raman mode of pristine and uniaxially strained graphene are determined via a combination of ab initio calculations and a full two-dimensional integration of the transition matrix. We show that q* are highly anisotropic and rotate about K with the polarizer and analyzer condition relative to the lattice. The corresponding phonon-mediated electronic transitions show a finite component along K-Γ that sensitively determines q*. We invalidate the notion of “inner” and “outer” processes. The characteristic splitting of the 2D mode of graphene under uniaxial tensile strain and given polarizer and analyzer setting is correctly predicted only if the strain-induced distortion and red-shift of the in-plane transverse optical (iTO) phonon dispersion as well as the changes in the electronic band structure are taken into account.
Observation of {chi}{sub cJ} Radiative Decays to Light Vector Mesons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, J. V.; Mitchell, R. E.; Shepherd, M. R.
2008-10-10
Using a total of 2.74x10{sup 7} decays of the {psi}(2S) collected with the CLEO-c detector, we present a study of {chi}{sub cJ}{yields}{gamma}V, where V={rho}{sup 0}, {omega}, {phi}. The transitions {chi}{sub c1}{yields}{gamma}{rho}{sup 0} and {chi}{sub c1}{yields}{gamma}{omega} are observed with B({chi}{sub c1}{yields}{gamma}{rho}{sup 0})=(2.43{+-}0.19{+-}0.22)x10{sup -4} and B({chi}{sub c1}{yields}{gamma}{omega})=(8.3{+-}1.5{+-}1.2)x10{sup -5}. In the {chi}{sub c1}{yields}{gamma}{rho}{sup 0} transition, the final state meson is dominantly longitudinally polarized. Upper limits on the branching fractions of other {chi}{sub cJ} states to light vector mesons are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less
Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.
2016-01-01
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845
Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.
2016-11-21
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less
Haraldsdóttir, Hulda S; Fleming, Ronan M T
2016-11-01
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.
Phonon Enhancement of Electronic and Optoelectronic Devices
2006-12-01
wave vector q determines the momentum transfer in the electron transition. Inasmuch as the polar mode confinement has not yet been studied in the InAs...and the geometry is compatible with the TM polarization of intersubband transitions. Due to the shallow skin depth in the metal (several hundred A...noise temperature ofa-1400 K is among the lowest at this high frequency. Figure 6 shows the schematic and measurement results of frequency locking of a
Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys
Béland, Laurent Karim; Lu, Chenyang; Osetskiy, Yuri N.; ...
2016-02-25
Alloying of Ni with Fe or Co reduces primary damage production under ion irradiation. Similar results have been obtained from classical molecular dynamics simulations of 1, 10, 20, and 40 keV collision cascades in Ni, NiFe, and NiCo. In all cases, a mix of imperfect stacking fault tetrahedra, faulted loops with a 1/3 {111} Burgers vector, and glissile interstitial loops with a 1/2 {110} Burgers vector were formed, along with small sessile point defect complexes and clusters. Primary damage reduction occurs by three mechanisms. First, Ni-Co, Ni-Fe, Co-Co, and Fe-Fe short-distance repulsive interactions are stiffer than Ni-Ni interactions, which leadmore » to a decrease in damage formation during the transition from the supersonic ballistic regime to the sonic regime. This largely controls final defect production. Second, alloying decreases thermal conductivity, leading to a longer thermal spike lifetime. The associated annealing reduces final damage production. These two mechanisms are especially important at cascades energies less than 40 keV. Third, at the higher energies, the production of large defect clusters by subcascades is inhibited in the alloys. A number of challenges and limitations pertaining to predictive atomistic modeling of alloys under high-energy particle irradiation are discussed.« less
NASA Astrophysics Data System (ADS)
Manojlović, N.; Salom, I.
2017-10-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
Watanabe, Miteki; Mizoguchi, Midori; Aoki, Hajime; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2016-10-15
The phase transition of active pharmaceutical ingredients should be taken into account during manufacturing, processing- and storage, because different crystal forms lead to different physical properties of formulations. The phase transition of clarithromycin (CAM) metastable form I to stable form II was investigated on heating with additives such as fatty acids or fatty acid esters. Differential scanning calorimetry analyses revealed that when form I was heated with additives, the phase transition temperature of form I decreased close to the melting points of the additives. Powder X-ray diffraction analyses indicated the tentative presence of a non-crystalline component during the transition of form I to form II on heating with additives. These observations implied that CAM form I dissolved in the melted additives on heating and the dissolved CAM crystallized to form II. Reduction of transition temperatures in the presence of additives were also observed for the crystals of nifedipine form B and carbamazepine form III. These results suggested that the phenomena can be widely applicable for simultaneous crystalline phase transition and granulation using binder additives. Copyright © 2016 Elsevier B.V. All rights reserved.
Kratzer, Ramona F; Espenlaub, Sigrid; Hoffmeister, Andrea; Kron, Matthias W; Kreppel, Florian
2017-01-01
Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.
Santangelo, Kelly S; Baker, Sarah A; Nuovo, Gerard; Dyce, Jonathan; Bartlett, Jeffrey S; Bertone, Alicia L
2010-02-01
This study quantified and compared the transduction efficiencies of adenoviral (Ad), Arg-Gly-Asp (RGD)-modified Ad, adeno-associated viral serotype 2 (AAV2), and self-complementary AAV2 (scAAV2) vectors within full-thickness osteoarthritic (OA) and unaffected canine cartilage explants in vitro. Intraarticular administration of Ad and scAAV2 vectors was performed to determine the ability of these vectors to transduce unaffected guinea pig cartilage in vivo. Following explant exposure to vector treatment or control, the onset and surface distribution of reporter gene expression was monitored daily with fluorescent microscopy. At termination, explants were divided: one half was digested for analysis using flow cytometry; the remaining portion was used for histology and immunohistochemistry (IHC). Intact articular joints were collected for real-time RT-PCR and IHC to detect reporter gene expression following injection of selected vectors. Ad vector transduced focal areas along the perimeters of explants; the remaining vectors transduced chondrocytes across 100% of the surface. Greater mean transduction efficiencies were found with both AAV2 vectors as compared to the Ad vector (p < or = 0.026). Ad and Ad-RGD vectors transduced only superficial chondrocytes of OA and unaffected cartilage. Uniform reporter gene expression from AAV2 and scAAV2 was detected in the tangential and transitional zones of OA cartilage, but not deeper zones. AAV2 and scAAV2 vectors achieved partial and full-thickness transduction of unaffected cartilage. In vivo work revealed that scAAV2 vector, but not Ad vector, transduced deeper zones of cartilage and menisci. This study demonstrates that AAV2 and scAAV2 are reliable vectors for use in cartilage in vitro and in vivo. (c) 2009 Orthopaedic Research Society.
Parallel-vector unsymmetric Eigen-Solver on high performance computers
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Jiangning, Qin
1993-01-01
The popular QR algorithm for solving all eigenvalues of an unsymmetric matrix is reviewed. Among the basic components in the QR algorithm, it was concluded from this study, that the reduction of an unsymmetric matrix to a Hessenberg form (before applying the QR algorithm itself) can be done effectively by exploiting the vector speed and multiple processors offered by modern high-performance computers. Numerical examples of several test cases have indicated that the proposed parallel-vector algorithm for converting a given unsymmetric matrix to a Hessenberg form offers computational advantages over the existing algorithm. The time saving obtained by the proposed methods is increased as the problem size increased.
Fast Quaternion Attitude Estimation from Two Vector Measurements
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Bauer, Frank H. (Technical Monitor)
2001-01-01
Many spacecraft attitude determination methods use exactly two vector measurements. The two vectors are typically the unit vector to the Sun and the Earth's magnetic field vector for coarse "sun-mag" attitude determination or unit vectors to two stars tracked by two star trackers for fine attitude determination. Existing closed-form attitude estimates based on Wahba's optimality criterion for two arbitrarily weighted observations are somewhat slow to evaluate. This paper presents two new fast quaternion attitude estimation algorithms using two vector observations, one optimal and one suboptimal. The suboptimal method gives the same estimate as the TRIAD algorithm, at reduced computational cost. Simulations show that the TRIAD estimate is almost as accurate as the optimal estimate in representative test scenarios.
A substructure coupling procedure applicable to general linear time-invariant dynamic systems
NASA Technical Reports Server (NTRS)
Howsman, T. G.; Craig, R. R., Jr.
1984-01-01
A substructure synthesis procedure applicable to structural systems containing general nonconservative terms is presented. In their final form, the nonself-adjoint substructure equations of motion are cast in state vector form through the use of a variational principle. A reduced-order mode for each substructure is implemented by representing the substructure as a combination of a small number of Ritz vectors. For the method presented, the substructure Ritz vectors are identified as a truncated set of substructure eigenmodes, which are typically complex, along with a set of generalized real attachment modes. The formation of the generalized attachment modes does not require any knowledge of the substructure flexible modes; hence, only the eigenmodes used explicitly as Ritz vectors need to be extracted from the substructure eigenproblem. An example problem is presented to illustrate the method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Cheng
Here, we consider the relation between SYK-like models and vector models by studying a toy model where a tensor field is coupled with a vector field. By integrating out the tensor field, the toy model reduces to the Gross-Neveu model in 1 dimension. On the other hand, a certain perturbation can be turned on and the toy model flows to an SYK-like model at low energy. Furthermore, a chaotic-nonchaotic phase transition occurs as the sign of the perturbation is altered. We further study similar models that possess chaos and enhanced reparameterization symmetries.
NASA Astrophysics Data System (ADS)
Le Kien, Fam; Schneeweiss, Philipp; Rauschenbeutel, Arno
2013-05-01
We present a systematic derivation of the dynamical polarizability and the ac Stark shift of the ground and excited states of atoms interacting with a far-off-resonance light field of arbitrary polarization. We calculate the scalar, vector, and tensor polarizabilities of atomic cesium using resonance wavelengths and reduced matrix elements for a large number of transitions. We analyze the properties of the fictitious magnetic field produced by the vector polarizability in conjunction with the ellipticity of the polarization of the light field.
Minimum impulse three-body trajectories.
NASA Technical Reports Server (NTRS)
D'Amario, L.; Edelbaum, T. N.
1973-01-01
A rapid and accurate method of calculating optimal impulsive transfers in the restricted problem of three bodies has been developed. The technique combines a multi-conic method of trajectory integration with primer vector theory and an accelerated gradient method of trajectory optimization. A unique feature is that the state transition matrix and the primer vector are found analytical without additional integrations or differentiations. The method has been applied to the determination of optimal two and three impulse transfers between the L2 libration point and circular orbits about both the earth and the moon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasso, C.H.; Gallardo, M.
2006-01-15
The conclusions extracted from a recent study of the excitation of giant dipole resonances in nuclei at relativistic bombarding energies open the way for a further simplification of the problem. It consists in the elimination of the relativistic scalar and vector electromagnetic potentials and the familiar numerical difficulties associated with their presence in the calculation scheme. The inherent advantage of a reformulation of the problem of relativistic Coulomb excitation of giant dipole resonances along these lines is discussed.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2014-05-01
Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.
Remote sensing and environment in the study of the malaria vector Anopheles gambiae in Mali
NASA Astrophysics Data System (ADS)
Rian, Sigrid Katrine Eivindsdatter
The malaria mosquito Anopheles gambiae is the most important vector for the most devastating form of human malaria, the parasite Plasmodium falciparum. In-depth knowledge of the vector's history and environmental preferences is essential in the pursuit of new malaria mitigation strategies. Research was conducted in Mali across a range of habitats occupied by the vector, focusing on three identified chromosomal forms in the mosquito complex. The development of a 500-m landcover classification map was carried out using MODIS satellite imagery and extensive ground survey. The resulting product has the highest resolution and is the most up-to-date and most extensively ground-surveyed among land-cover maps for the study region. The new landcover classification product is a useful tool in the mapping of the varying ecological preferences of the different An. gambiae chromosomal forms. Climate and vegetation characteristics and their relationship to chromosomal forms were investigated further along a Southwest-Northeast moisture gradient in Mali. This research demonstrates particular ecological preferences of each chromosomal form, and gives a detailed examination of particular vegetation structural and climatological patterns across the study region. A key issue in current research into the population structure of An. gambiae is speciation and evolution in the complex, as an understanding of the mechanisms of change can help in the development of new mitigation strategies. A historical review of the paleoecology, archaeology, and other historical sources intended to shed light on the evolutionary history of the vector is presented. The generally held assumption that the current breed of An. gambiae emerged in the rainforest is called into question and discussed within the framework of paleoenvironment and human expansions in sub-Saharan West Africa.
Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates.
Linnanto, Juha M; Korppi-Tommola, Jouko E I
2008-06-01
Molecular mechanics calculations and exciton theory have been used to study pigment organization in chlorosomes of green bacteria. Single and double rod, multiple concentric rod, lamella, and Archimedean spiral macrostructures of bacteriochlorophyll c molecules were created and their spectral properties evaluated. The effects of length, width, diameter, and curvature of the macrostructures as well as orientations of monomeric transition dipole moment vectors on the spectral properties of the aggregates were studied. Calculated absorption, linear dichroism, and polarization dependent fluorescence-excitation spectra of the studied long macrostructures were practically identical, but circular dichroism spectra turned out to be very sensitive to geometry and monomeric transition dipole moment orientations of the aggregates. The simulations for long multiple rod and spiral-type macrostructures, observed in recent high-resolution electron microscopy images (Oostergetel et al., FEBS Lett 581:5435-5439, 2007) gave shapes of circular dichroism spectra observed experimentally for chlorosomes. It was shown that the ratio of total circular dichroism intensity to integrated absorption of the Q(y) transition is a good measure of degree of tubular structures in the chlorosomes. Calculations suggest that the broad Q(y) line width of chlorosomes of sulfur bacteria could be due to (1) different orientations of the transition moment vectors in multi-walled rod structures or (2) a variety of Bchl-aggregate structures in the chlorosomes.
Pfaller, Christian K; Mastorakos, George M; Matchett, William E; Ma, Xiao; Samuel, Charles E; Cattaneo, Roberto
2015-08-01
Defective interfering RNAs (DI-RNAs) of the viral genome can form during infections of negative-strand RNA viruses and outgrow full-length viral genomes, thereby modulating the severity and duration of infection. Here we document the frequent de novo generation of copy-back DI-RNAs from independent rescue events both for a vaccine measles virus (vac2) and for a wild-type measles virus (IC323) as early as passage 1 after virus rescue. Moreover, vaccine and wild-type C-protein-deficient (C-protein-knockout [CKO]) measles viruses generated about 10 times more DI-RNAs than parental virus, suggesting that C enhances the processivity of the viral polymerase. We obtained the nucleotide sequences of 65 individual DI-RNAs, identified breakpoints and reinitiation sites, and predicted their structural features. Several DI-RNAs possessed clusters of A-to-G or U-to-C transitions. Sequences flanking these mutation sites were characteristic of those favored by adenosine deaminase acting on RNA-1 (ADAR1), which catalyzes in double-stranded RNA the C-6 deamination of adenosine to produce inosine, which is recognized as guanosine, a process known as A-to-I RNA editing. In individual DI-RNAs the transitions were of the same type and occurred on both sides of the breakpoint. These patterns of mutations suggest that ADAR1 edits unencapsidated DI-RNAs that form double-strand RNA structures. Encapsidated DI-RNAs were incorporated into virus particles, which reduced the infectivity of virus stocks. The CKO phenotype was dominant: DI-RNAs derived from vac2 with a CKO suppressed the replication of vac2, as shown by coinfections of interferon-incompetent lymphatic cells with viruses expressing different fluorescent reporter proteins. In contrast, coinfection with a C-protein-expressing virus did not counteract the suppressive phenotype of DI-RNAs. Recombinant measles viruses (MVs) are in clinical trials as cancer therapeutics and as vectored vaccines for HIV-AIDS and other infectious diseases. The efficacy of MV-based vectors depends on their replication proficiency and immune activation capacity. Here we document that copy-back defective interfering RNAs (DI-RNAs) are generated by recombinant vaccine and wild-type MVs immediately after rescue. The MV C protein interferes with DI-RNA generation and may enhance the processivity of the viral polymerase. We frequently detected clusters of A-to-G or U-to-C transitions and noted that sequences flanking individual mutations contain motifs favoring recognition by the adenosine deaminase acting on RNA-1 (ADAR1). The consistent type of transitions on the DI-RNAs indicates that these are direct substrates for editing by ADAR1. The ADAR1-mediated biased hypermutation events are consistent with the protein kinase R (PKR)-ADAR1 balancing model of innate immunity activation. We show by coinfection that the C-defective phenotype is dominant. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Pfaller, Christian K.; Mastorakos, George M.; Matchett, William E.; Ma, Xiao; Samuel, Charles E.
2015-01-01
ABSTRACT Defective interfering RNAs (DI-RNAs) of the viral genome can form during infections of negative-strand RNA viruses and outgrow full-length viral genomes, thereby modulating the severity and duration of infection. Here we document the frequent de novo generation of copy-back DI-RNAs from independent rescue events both for a vaccine measles virus (vac2) and for a wild-type measles virus (IC323) as early as passage 1 after virus rescue. Moreover, vaccine and wild-type C-protein-deficient (C-protein-knockout [CKO]) measles viruses generated about 10 times more DI-RNAs than parental virus, suggesting that C enhances the processivity of the viral polymerase. We obtained the nucleotide sequences of 65 individual DI-RNAs, identified breakpoints and reinitiation sites, and predicted their structural features. Several DI-RNAs possessed clusters of A-to-G or U-to-C transitions. Sequences flanking these mutation sites were characteristic of those favored by adenosine deaminase acting on RNA-1 (ADAR1), which catalyzes in double-stranded RNA the C-6 deamination of adenosine to produce inosine, which is recognized as guanosine, a process known as A-to-I RNA editing. In individual DI-RNAs the transitions were of the same type and occurred on both sides of the breakpoint. These patterns of mutations suggest that ADAR1 edits unencapsidated DI-RNAs that form double-strand RNA structures. Encapsidated DI-RNAs were incorporated into virus particles, which reduced the infectivity of virus stocks. The CKO phenotype was dominant: DI-RNAs derived from vac2 with a CKO suppressed the replication of vac2, as shown by coinfections of interferon-incompetent lymphatic cells with viruses expressing different fluorescent reporter proteins. In contrast, coinfection with a C-protein-expressing virus did not counteract the suppressive phenotype of DI-RNAs. IMPORTANCE Recombinant measles viruses (MVs) are in clinical trials as cancer therapeutics and as vectored vaccines for HIV-AIDS and other infectious diseases. The efficacy of MV-based vectors depends on their replication proficiency and immune activation capacity. Here we document that copy-back defective interfering RNAs (DI-RNAs) are generated by recombinant vaccine and wild-type MVs immediately after rescue. The MV C protein interferes with DI-RNA generation and may enhance the processivity of the viral polymerase. We frequently detected clusters of A-to-G or U-to-C transitions and noted that sequences flanking individual mutations contain motifs favoring recognition by the adenosine deaminase acting on RNA-1 (ADAR1). The consistent type of transitions on the DI-RNAs indicates that these are direct substrates for editing by ADAR1. The ADAR1-mediated biased hypermutation events are consistent with the protein kinase R (PKR)-ADAR1 balancing model of innate immunity activation. We show by coinfection that the C-defective phenotype is dominant. PMID:25972541
Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates
Miao, H.; Ishikawa, D.; Heid, R.; ...
2018-01-18
While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wave vectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here, we investigate the temperature dependence of the low-energy phonons in the canonical CDW-ordered cuprate La 1.875Ba 0.125CuO 4. We discover that the phonon softening wave vector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wave vector of 0.238 reciprocal lattice units (r.l.u.) below the ordering transition temperature to 0.3 r.l.u. at 300 K. This high-temperature behavior also shows that “214”-type cupratesmore » can host CDW correlations at a similar wave vector to previously reported CDW correlations in non-214-type cuprates such as YBa 2Cu 3O 6+δ. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low-temperature ordering wave vectors.« less
Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, H.; Ishikawa, D.; Heid, R.
While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wave vectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here, we investigate the temperature dependence of the low-energy phonons in the canonical CDW-ordered cuprate La 1.875Ba 0.125CuO 4. We discover that the phonon softening wave vector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wave vector of 0.238 reciprocal lattice units (r.l.u.) below the ordering transition temperature to 0.3 r.l.u. at 300 K. This high-temperature behavior also shows that “214”-type cupratesmore » can host CDW correlations at a similar wave vector to previously reported CDW correlations in non-214-type cuprates such as YBa 2Cu 3O 6+δ. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low-temperature ordering wave vectors.« less
Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.
Karayiannis, N B; Pai, P I
1999-02-01
This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.
On the domain of the Nelson Hamiltonian
NASA Astrophysics Data System (ADS)
Griesemer, M.; Wünsch, A.
2018-04-01
The Nelson Hamiltonian is unitarily equivalent to a Hamiltonian defined through a closed, semibounded quadratic form, the unitary transformation being explicitly known and due to Gross. In this paper, we study the mapping properties of the Gross-transform in order to characterize the regularity properties of vectors in the form domain of the Nelson Hamiltonian. Since the operator domain is a subset of the form domain, our results apply to vectors in the domain of the Hamiltonian as well. This work is a continuation of our previous work on the Fröhlich Hamiltonian.
Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons
NASA Astrophysics Data System (ADS)
Chanyal, B. C.
2017-12-01
In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.
Vector fields in a tight laser focus: comparison of models.
Peatross, Justin; Berrondo, Manuel; Smith, Dallas; Ware, Michael
2017-06-26
We assess several widely used vector models of a Gaussian laser beam in the context of more accurate vector diffraction integration. For the analysis, we present a streamlined derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic mirror, both inside and outside of the resulting focus. This exact solution to Maxwell's equations, first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments since the boundary conditions at a focusing optic dictate the form of the focus in a manner analogous to a physical experiment. In contrast, many models simply assume a field profile near the focus and develop the surrounding vector fields consistent with Maxwell's equations. In comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides good agreement in the paraxial limit. Models involving a Lax expansion introduce a divergences outside of the focus while providing little if any improvement in the focal region. Extremely tight focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky model for accurate representation.
NASA Astrophysics Data System (ADS)
Carrott, Anthony; Siegel, Edward Carl-Ludwig; Hoover, John-Edgar; Ness, Elliott
2013-03-01
Terrorism/Criminalogy//Sociology : non-Linear applied-mathematician (``nose-to-the grindstone / ``gearheadism'') ''modelers'': Worden,, Short, ...criminologists/counter-terrorists/sociologists confront [SIAM Conf. on Nonlinearity, Seattle(12); Canadian Sociology Conf,. Burnaby(12)]. ``The `Sins' of the Fathers Visited Upon the Sons'': Zeno vs Ising vs Heisenberg vs Stoner vs Hubbard vs Siegel ''SODHM''(But NO Y!!!) vs ...??? Magntism and it turn are themselves confronted BY MAGNETISM,via relatively magnetism/metal-insulator conductivity / percolation-phase-transitions critical-phenomena -illiterate non-linear applied-mathematician (nose-to-the-grindstone/ ``gearheadism'')''modelers''. What Secrets Lie Buried in Magnetism?; ``Magnetism Will Conquer the Universe!!!''[Charles Middleton, aka ``His Imperial Majesty The Emperior Ming `The Merciless!!!']'' magnetism-Hamiltonian phase-transitions percolation-``models''!: Zeno(~2350 BCE) to Peter the Pilgrim(1150) to Gilbert(1600) to Faraday(1815-1820) to Tate (1870-1880) to Ewing(1882) hysteresis to Barkhausen(1885) to Curie(1895)-Weiss(1895) to Ising-Lenz(r-space/Localized-Scalar/ Discrete/1911) to Heisenberg(r-space/localized-vector/discrete/1927) to Priesich(1935) to Stoner (electron/k-space/ itinerant-vector/discrete/39) to Stoner-Wohlfarth (technical-magnetism hysteresis /r-space/ itinerant-vector/ discrete/48) to Hubbard-Longuet-Higgins (k-space versus r-space/
Silva, Flaviana G; Passos, Eliana M; Diniz, Leandro E C; Farias, Adriano P; Teodoro, Adenir V; Fernandes, Marcelo F; Dollet, Michel
2018-04-05
Coconut plantations are attacked by the lethal yellowing (LY), which is spreading rapidly with extremely destructive effects in several countries. The disease is caused by phytoplasmas that occur in the plant phloem and are transmitted by Haplaxius crudus (Van Duzee) (Auchenorrhyncha: Cixiidae). Owing to their phloem-sap feeding habit, other planthopper species possibly act as vectors. Here, we aimed at assessing the seasonal variation in the Auchenorrhyncha community in six dwarf coconut accessions. Also, we assessed the relative contribution of biotic (coconut accession) and abiotic (rainfall, temperature) in explaining Auchenorrhyncha composition and abundance. The Auchenorrhyncha community was monthly evaluated for 1 yr using yellow sticky traps. Among the most abundant species, Oecleus sp., Balclutha sp., Deltocephalinae sp.2, Deltocephalinae sp.3, Cenchreini sp., Omolicna nigripennis Caldwell (Derbidae), and Cedusa sp. are potential phytoplasma vectors. The composition of the Auchenorrhyncha community differed between dwarf coconut accessions and periods, namely, in March and April (transition from dry to rainy season) and August (transition from rainy to dry season). In these months, Oecleus sp. was predominantly found in the accessions Cameroon Red Dwarf, Malayan Red Dwarf, and Brazilian Red Dwarf Gramame, while Cenchreini sp. and Bolbonota sp. were dominant in the accessions Brazilian Yellow Dwarf Gramame, Malayan Yellow Dwarf, and Brazilian Green Dwarf Jequi. We conclude that dwarf coconut host several Auchenorrhyncha species potential phytoplasma vectors. Furthermore, coconut accessions could be exploited in breeding programs aiming at prevention of LY. However, rainfall followed by accessions mostly explained the composition and abundance of the Auchenorrhyncha community.
Critical linkages between land-use transition and human health in the Himalayan region.
Xu, Jianchu; Sharma, Rita; Fang, Jing; Xu, Yufen
2008-02-01
This article reviews critical linkages between land-use transition and human health in the Himalayan region by applying ecosystem approaches to human health (or EcoHealth). Land-use transition in the Himalayan and similar regions includes sedentarization, agricultural intensification, habitat modification, migration, change of livelihoods and lifestyles, biodiversity loss, and increasing flash floods. These transitions, which can have impacts on human health, are driven by state policies, a market economy, and climate change. Human health is dependent on access to ecosystem services for food, nutrition, medicine, fiber and shelter, fresh water, and clear air. Ecosystem management has been a key means of controlling disease vectors and creating suitable habitats for human well-being. The paper identifies the web of environmental factors that influence human health. Institutional and policy issues for land-use and health transitions are also discussed.
General magnetic transition dipole moments for electron paramagnetic resonance.
Nehrkorn, Joscha; Schnegg, Alexander; Holldack, Karsten; Stoll, Stefan
2015-01-09
We present general expressions for the magnetic transition rates in electron paramagnetic resonance (EPR) experiments of anisotropic spin systems in the solid state. The expressions apply to general spin centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They work for linear and circular polarized as well as unpolarized excitation, and for crystals and powders. The expressions are based on the concept of the (complex) magnetic transition dipole moment vector. Using the new theory, we determine the parities of ground and excited spin states of high-spin (S=5/2) Fe(III) in hemin from the polarization dependence of experimental EPR line intensities.
Locally connected neural network with improved feature vector
NASA Technical Reports Server (NTRS)
Thomas, Tyson (Inventor)
2004-01-01
A pattern recognizer which uses neuromorphs with a fixed amount of energy that is distributed among the elements. The distribution of the energy is used to form a histogram which is used as a feature vector.
Toward lattice fractional vector calculus
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
Electronic polymers and soft-matter-like broken symmetries in underdoped cuprates.
Capati, M; Caprara, S; Di Castro, C; Grilli, M; Seibold, G; Lorenzana, J
2015-07-06
Empirical evidence in heavy fermion, pnictide and other systems suggests that unconventional superconductivity appears associated to some form of real-space electronic order. For the cuprates, despite several proposals, the emergence of order in the phase diagram between the commensurate antiferromagnetic state and the superconducting state is not well understood. Here we show that in this regime doped holes assemble in 'electronic polymers'. Within a Monte Carlo study, we find that in clean systems by lowering the temperature the polymer melt condenses first in a smectic state and then in a Wigner crystal both with the addition of inversion symmetry breaking. Disorder blurs the positional order leaving a robust inversion symmetry breaking and a nematic order, accompanied by vector chiral spin order and with the persistence of a thermodynamic transition. Such electronic phases, whose properties are reminiscent of soft-matter physics, produce charge and spin responses in good accord with experiments.
Study of the Dalitz decay ϕ → ηe+e- with the KLOE detector
NASA Astrophysics Data System (ADS)
Babusci, D.; Balwierz-Pytko, I.; Bencivenni, G.; Bloise, C.; Bossi, F.; Branchini, P.; Budano, A.; Caldeira Balkeståhl, L.; Ceradini, F.; Ciambrone, P.; Curciarello, F.; Czerwiński, E.; Danè, E.; De Leo, V.; De Lucia, E.; De Robertis, G.; De Santis, A.; De Simone, P.; Di Cicco, A.; Di Domenico, A.; Di Salvo, R.; Domenici, D.; Erriquez, O.; Fanizzi, G.; Fantini, A.; Felici, G.; Fiore, S.; Franzini, P.; Gajos, A.; Gauzzi, P.; Giardina, G.; Giovannella, S.; Graziani, E.; Happacher, F.; Heijkenskjöld, L.; Höistad, B.; Johansson, T.; Kamińska, D.; Krzemien, W.; Kupsc, A.; Lee-Franzini, J.; Loddo, F.; Loffredo, S.; Mandaglio, G.; Martemianov, M.; Martini, M.; Mascolo, M.; Messi, R.; Miscetti, S.; Morello, G.; Moricciani, D.; Moskal, P.; Palladino, A.; Passeri, A.; Patera, V.; Prado Longhi, I.; Ranieri, A.; Santangelo, P.; Sarra, I.; Schioppa, M.; Sciascia, B.; Silarski, M.; Tortora, L.; Venanzoni, G.; Wiślicki, W.; Wolke, M.
2015-03-01
We have studied the vector to pseudoscalar conversion decay ϕ → ηe+e-, with η →π0π0π0, with the KLOE detector at DAΦNE. The data set of 1.7 fb-1 of e+e- collisions at √{ s} ∼Mϕ contains a clear conversion decay signal of ∼ 31 , 000 events from which we measured a value of BR (ϕ → ηe+e-) = (1.075 ± 0.007 ± 0.038) ×10-4. The same sample is used to determine the transition form factor by a fit to the e+e- invariant mass spectrum, obtaining bϕη = (1.28 ±0.10-0.08+0.09) GeV-2, that improves by a factor of five the precision of the previous measurement and is in good agreement with VMD expectations.
Boundary Concentration for Eigenvalue Problems Related to the Onset of Superconductivity
NASA Astrophysics Data System (ADS)
del Pino, Manuel; Felmer, Patricio L.; Sternberg, Peter
We examine the asymptotic behavior of the eigenvalue μ(h) and corresponding eigenfunction associated with the variational problem
Three-dimensional charge density wave order in YBa 2Cu 3O 6.67 at high magnetic fields
Gerber, S.; Jang, H.; Nojiri, H.; ...
2015-11-20
In this study, charge density wave (CDW) correlations have recently been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa 2Cu 3O 6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. Themore » field-induced CDW onsets around the zero-field superconducting transition temperature, yet the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked.« less
Implementation of Kane's Method for a Spacecraft Composed of Multiple Rigid Bodies
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.
2013-01-01
Equations of motion are derived for a general spacecraft composed of rigid bodies connected via rotary (spherical or gimballed) joints in a tree topology. Several supporting concepts are developed in depth. Basis dyads aid in the transition from basis-free vector equations to component-wise equations. Joint partials allow abstraction of 1-DOF, 2-DOF, 3-DOF gimballed and spherical rotational joints to a common notation. The basic building block consisting of an "inner" body and an "outer" body connected by a joint enables efficient organization of arbitrary tree structures. Kane's equation is recast in a form which facilitates systematic assembly of large systems of equations, and exposes a relationship of Kane's equation to Newton and Euler's equations which is obscured by the usual presentation. The resulting system of dynamic equations is of minimum dimension, and is suitable for numerical solution by computer. Implementation is ·discussed, and illustrative simulation results are presented.
Laser transit anemometer measurements of a JANNAF nozzle base velocity flow field
NASA Technical Reports Server (NTRS)
Hunter, William W., Jr.; Russ, C. E., Jr.; Clemmons, J. I., Jr.
1990-01-01
Velocity flow fields of a nozzle jet exhausting into a supersonic flow were surveyed. The measurements were obtained with a laser transit anemometer (LTA) system in the time domain with a correlation instrument. The LTA data is transformed into the velocity domain to remove the error that occurs when the data is analyzed in the time domain. The final data is shown in velocity vector plots for positions upstream, downstream, and in the exhaust plane of the jet nozzle.
Pang, Sook-Cheng; Andolina, Chiara; Malleret, Benoit; Christensen, Peter R; Lam-Phua, Sai-Gek; Razak, Muhammad Aliff Bin Abdul; Chong, Chee-Seng; Li, Daiqin; Chu, Cindy S; Russell, Bruce; Rénia, Laurent; Ng, Lee-Ching; Nosten, Francois
2017-11-16
Singapore has been certified malaria-free by the World Health Organization since November 1982. However, sporadic autochthonous malaria outbreaks do occur. In one of the most recent outbreaks of vivax malaria, an entomological investigation identified Anopheles sinensis as the most probable vector. As metaphase karyotype studies divided An. sinensis into two forms, A and B, with different vector competence: the investigation of vector competence of An. sinensis found in Singapore was thus pursued using Plasmodium vivax field isolates from the Thailand-Myanmar border. Adults and larvae An. sinensis were collected from Singapore from 14 different locations, using various trapping and collection methods between September 2013 and January 2016. Molecular identification of An. sinensis species were conducted by amplifying the ITS2 and CO1 region using PCR. Experimental infections of An. sinensis using blood from seven patients infected with P. vivax from the Thailand-Myanmar border were conducted with Anopheles cracens (An. dirus B) as control. Phylogenetic analysis showed that An. sinensis (F 22 , F 2 and collected from outbreak areas) found in Singapore was entirely Form A, and closely related to An. sinensis Form A from Thailand. Artificial infection of these Singapore strain An. sinensis Form A resulted in the development of oocysts in four experiments, with the number of sporozoites produced by one An. sinensis ranging from 4301 to 14,538. Infection experiments showed that An. sinensis Form A from Singapore was susceptible to Thai-Myanmar P. vivax strain, suggesting a potential role as a malaria vector in Singapore.
Saltzman, Erica J; Schweizer, Kenneth S
2006-12-01
Brownian trajectory simulation methods are employed to fully establish the non-Gaussian fluctuation effects predicted by our nonlinear Langevin equation theory of single particle activated dynamics in glassy hard-sphere fluids. The consequences of stochastic mobility fluctuations associated with the space-time complexities of the transient localization and barrier hopping processes have been determined. The incoherent dynamic structure factor was computed for a range of wave vectors and becomes of an increasingly non-Gaussian form for volume fractions beyond the (naive) ideal mode coupling theory (MCT) transition. The non-Gaussian parameter (NGP) amplitude increases markedly with volume fraction and is well described by a power law in the maximum restoring force of the nonequilibrium free energy profile. The time scale associated with the NGP peak becomes much smaller than the alpha relaxation time for systems characterized by significant entropic barriers. An alternate non-Gaussian parameter that probes the long time alpha relaxation process displays a different shape, peak intensity, and time scale of its maximum. However, a strong correspondence between the classic and alternate NGP amplitudes is predicted which suggests a deep connection between the early and final stages of cage escape. Strong space-time decoupling emerges at high volume fractions as indicated by a nondiffusive wave vector dependence of the relaxation time and growth of the translation-relaxation decoupling parameter. Displacement distributions exhibit non-Gaussian behavior at intermediate times, evolving into a strongly bimodal form with slow and fast subpopulations at high volume fractions. Qualitative and semiquantitative comparisons of the theoretical results with colloid experiments, ideal MCT, and multiple simulation studies are presented.
Stacked charge stripes in the quasi-2D trilayer nickelate La4Ni3O8
NASA Astrophysics Data System (ADS)
Zhang, Junjie; Chen, Yu-Sheng; Phelan, D.; Zheng, Hong; Norman, M. R.; Mitchell, J. F.
2016-08-01
The quasi-2D nickelate La4Ni3O8 (La-438), consisting of trilayer networks of square planar Ni ions, is a member of the so-called T' family, which is derived from the Ruddlesden-Popper (R-P) parent compound La4Ni3O10-x by removing two oxygen atoms and rearranging the rock salt layers to fluorite-type layers. Although previous studies on polycrystalline samples have identified a 105-K phase transition with a pronounced electronic and magnetic response but weak lattice character, no consensus on the origin of this transition has been reached. Here, we show using synchrotron X-ray diffraction on high-pO2 floating zone-grown single crystals that this transition is associated with a real space ordering of charge into a quasi-2D charge stripe ground state. The charge stripe superlattice propagation vector, q = (2/3, 0, 1), corresponds with that found in the related 1/3-hole doped single-layer R-P nickelate, La5/3Sr1/3NiO4 (LSNO-1/3; Ni2.33+), with orientation at 45° to the Ni-O bonds. The charge stripes in La-438 are weakly correlated along c to form a staggered ABAB stacking that reduces the Coulomb repulsion among the stripes. Surprisingly, however, we find that the charge stripes within each trilayer of La-438 are stacked in phase from one layer to the next, at odds with any simple Coulomb repulsion argument.
Vertical Distribution of Temperature in Transitional Season II and West Monsoon in Western Pacific
NASA Astrophysics Data System (ADS)
Pranoto, Hikari A. H.; Kunarso; Soeyanto, Endro
2018-02-01
Western Pacific is the water mass intersection from both the Northern Pacific and Southern Pacific ocean. The Western Pacific ocean is warm pool area which formed by several warm surface currents. As a warm pool area and also the water mass intersection, western Pacific ocean becomes an interesting study area. The object of this study is to describe the temperature vertical distribution by mooring buoy and temporally in transitional season II (September - November 2014) and west monsoon (December 2014 - February 2015) in Western Pacific. Vertical temperature and wind speed data that was used in this study was recorded by INA-TRITON mooring instrument and obtained from Laboratory of Marine Survey, BPPT. Supporting data of this study was wind vector data from ECMWF to observe the relation between temperature distribution and monsoon. The quantitative approach was used in this study by processing temperature and wind data from INA-TRITON and interpreted graphically. In the area of study, it was found that in transitional season II the range of sea surface temperature to 500-meter depth was about 8.29 - 29.90 °C while in west monsoon was 8.12 - 29.45 °C. According to the research result, the sea SST of western Pacific ocean was related to monsoonal change with SST and wind speed correlation coefficient was 0.78. While the deep layer temperature was affected by water mass flow which passes through the western Pacific Ocean.
Doblin, Martina A.; Popels, Linda C.; Coyne, Kathryn J.; Hutchins, David A.; Cary, S. Craig; Dobbs, Fred C.
2004-01-01
It is well established that cyst-forming phytoplankton species are transported in ships' ballast tanks. However, there is increasing evidence that other phytoplankton species which do not encyst are also capable of surviving ballast transit. These species have alternative modes of nutrition (hetero- or mixotrophy) and/or are able to survive long-term darkness. In our studies of no-ballast-on-board vessels arriving in the Great Lakes, we tested for the presence of the harmful algal bloom species Aureococcus anophagefferens (brown tide) in residual (i.e., unpumpable) ballast water using methods based on the PCR. During 2001, the brown tide organism was detected in 7 of 18 ballast water tanks in commercial ships following transit from foreign ports. Furthermore, it was detected after 10 days of ballast tank confinement during a vessel transit in the Great Lakes, a significant result given the large disparity between the salinity tolerance for active growth of Aureococcus (>22 ppt) and the low salinity of the residual ballast water (∼2 ppt). We also investigated the potential for smaller, recreational vessels to transport and distribute Aureococcus. During the summer of 2002, 11 trailered boats from the inland bays of Delaware and coastal bays of Maryland were sampled. Brown tide was detected in the bilge water in the bottoms of eight boats, as well as in one live-well sample. Commercial ships and small recreational boats are therefore implicated as potential vectors for long-distance transport and local-scale dispersal of Aureococcus. PMID:15528511
Critical behavior in a stochastic model of vector mediated epidemics
NASA Astrophysics Data System (ADS)
Alfinito, E.; Beccaria, M.; Macorini, G.
2016-06-01
The extreme vulnerability of humans to new and old pathogens is constantly highlighted by unbound outbreaks of epidemics. This vulnerability is both direct, producing illness in humans (dengue, malaria), and also indirect, affecting its supplies (bird and swine flu, Pierce disease, and olive quick decline syndrome). In most cases, the pathogens responsible for an illness spread through vectors. In general, disease evolution may be an uncontrollable propagation or a transient outbreak with limited diffusion. This depends on the physiological parameters of hosts and vectors (susceptibility to the illness, virulence, chronicity of the disease, lifetime of the vectors, etc.). In this perspective and with these motivations, we analyzed a stochastic lattice model able to capture the critical behavior of such epidemics over a limited time horizon and with a finite amount of resources. The model exhibits a critical line of transition that separates spreading and non-spreading phases. The critical line is studied with new analytical methods and direct simulations. Critical exponents are found to be the same as those of dynamical percolation.
Critical behavior in a stochastic model of vector mediated epidemics.
Alfinito, E; Beccaria, M; Macorini, G
2016-06-06
The extreme vulnerability of humans to new and old pathogens is constantly highlighted by unbound outbreaks of epidemics. This vulnerability is both direct, producing illness in humans (dengue, malaria), and also indirect, affecting its supplies (bird and swine flu, Pierce disease, and olive quick decline syndrome). In most cases, the pathogens responsible for an illness spread through vectors. In general, disease evolution may be an uncontrollable propagation or a transient outbreak with limited diffusion. This depends on the physiological parameters of hosts and vectors (susceptibility to the illness, virulence, chronicity of the disease, lifetime of the vectors, etc.). In this perspective and with these motivations, we analyzed a stochastic lattice model able to capture the critical behavior of such epidemics over a limited time horizon and with a finite amount of resources. The model exhibits a critical line of transition that separates spreading and non-spreading phases. The critical line is studied with new analytical methods and direct simulations. Critical exponents are found to be the same as those of dynamical percolation.
The standardised freight container: vector of vectors and vector-borne diseases.
Reiter, P
2010-04-01
The standardised freight container was one of the most important innovations of the 20th Century. Containerised cargoes travel from their point of origin to their destination by ship, road and rail as part of a single journey, without unpacking. This simple concept is the key element in cheap, rapid transport by land and sea, and has led to a phenomenal growth in global trade. Likewise, containerised air cargo has led to a remarkable increase in the inter-continental transportation of goods, particularly perishable items such as flowers, fresh vegetables and live animals. In both cases, containerisation offers great advantages in speed and security, but reduces the opportunity to inspect cargoes in transit. An inevitable consequence is the globalisation of undesirable species of animals, plants and pathogens. Moreover, cheap passenger flights offer worldwide travel for viral and parasitic pathogens in infected humans. The continued emergence of exotic pests, vectors and pathogens throughout the world is an unavoidable consequence of these advances in transportation technology.
NASA Astrophysics Data System (ADS)
Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie
2018-03-01
Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.
Fourier transform inequalities for phylogenetic trees.
Matsen, Frederick A
2009-01-01
Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.
Flux vector splitting of the inviscid equations with application to finite difference methods
NASA Technical Reports Server (NTRS)
Steger, J. L.; Warming, R. F.
1979-01-01
The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.
Electro-gravity via geometric chrononfield
NASA Astrophysics Data System (ADS)
Suchard, Eytan H.
2017-05-01
In De Sitter / Anti De Sitter space-time and in other geometries, reference sub-manifolds from which proper time is measured along integral curves, are described as events. We introduce here a foliation with the help of a scalar field. The scalar field need not be unique but from the gradient of the scalar field, an intrinsic Reeb vector of the foliations perpendicular to the gradient vector is calculated. The Reeb vector describes the acceleration of a physical particle that moves along the integral curves that are formed by the gradient of the scalar field. The Reeb vector appears as a component of an anti-symmetric matrix which is a part of a rank-2, 2-Form. The 2-form is extended into a non-degenerate 4-form and into rank-4 matrix of a 2-form, which when multiplied by a velocity of a particle, becomes the acceleration of the particle. The matrix has one U(1) degree of freedom and an additional SU(2) degrees of freedom in two vectors that span the plane perpendicular to the gradient of the scalar field and to the Reeb vector. In total, there are U(1) x SU(2) degrees of freedom. SU(3) degrees of freedom arise from three dimensional foliations but require an additional symmetry to exist in order to have a valid covariant meaning. Matter in the Einstein Grossmann equation is replaced by the action of the acceleration field, i.e. by a geometric action which is not anticipated by the metric alone. This idea leads to a new formalism that replaces the conventional stress-energy-momentum-tensor. The formalism will be mainly developed for classical physics but will also be discussed for quantized physics based on events instead of particles. The result is that a positive charge manifests small attracting gravity and a stronger but small repelling acceleration field that repels even uncharged particles that have a rest mass. Negative charge manifests a repelling anti-gravity but also a stronger acceleration field that attracts even uncharged particles that have rest mass. Preliminary version: http://sciencedomain.org/abstract/9858
Proper Conformal Killing Vectors in Kantowski-Sachs Metric
NASA Astrophysics Data System (ADS)
Hussain, Tahir; Farhan, Muhammad
2018-04-01
This paper deals with the existence of proper conformal Killing vectors (CKVs) in Kantowski-Sachs metric. Subject to some integrability conditions, the general form of vector filed generating CKVs and the conformal factor is presented. The integrability conditions are solved generally as well as in some particular cases to show that the non-conformally flat Kantowski-Sachs metric admits two proper CKVs, while it admits a 15-dimensional Lie algebra of CKVs in the case when it becomes conformally flat. The inheriting conformal Killing vectors (ICKVs), which map fluid lines conformally, are also investigated.
Object recognition of real targets using modelled SAR images
NASA Astrophysics Data System (ADS)
Zherdev, D. A.
2017-12-01
In this work the problem of recognition is studied using SAR images. The algorithm of recognition is based on the computation of conjugation indices with vectors of class. The support subspaces for each class are constructed by exception of the most and the less correlated vectors in a class. In the study we examine the ability of a significant feature vector size reduce that leads to recognition time decrease. The images of targets form the feature vectors that are transformed using pre-trained convolutional neural network (CNN).
Guilfoyle, Richard A.; Smith, Lloyd M.
1994-01-01
A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.
Recent Developments In Theory Of Balanced Linear Systems
NASA Technical Reports Server (NTRS)
Gawronski, Wodek
1994-01-01
Report presents theoretical study of some issues of controllability and observability of system represented by linear, time-invariant mathematical model of the form. x = Ax + Bu, y = Cx + Du, x(0) = xo where x is n-dimensional vector representing state of system; u is p-dimensional vector representing control input to system; y is q-dimensional vector representing output of system; n,p, and q are integers; x(0) is intial (zero-time) state vector; and set of matrices (A,B,C,D) said to constitute state-space representation of system.
Guilfoyle, R.A.; Smith, L.M.
1994-12-27
A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.
Thermal Transport in Nd-doped CeCoIn5
NASA Astrophysics Data System (ADS)
Kim, Duk Y.; Lin, Shi-Zeng; Weickert, Franziska; Rosa, P. F. S.; Bauer, Eric D.; Ronning, Filip; Thompson, J. D.; Movshovich, Roman
Heavy-fermion superconductor CeCoIn5 shows spin-density-wave (SDW) magnetic order in its superconducting state when a high magnetic field is applied. In this Q-phase, the antiferromagnetic order has a single ordering wave vector, and switches its orientation very sharply as magnetic field is rotated within the ab -plane around the [100] (anti-nodal) direction. This hypersensitivity induces a sharp jump of the thermal conductivity. Recently, the SDW with the same ordering wave vector was observed in Nd-doped CeCoIn5 in zero magnetic field. We have measured the thermal conductivity of 5% Nd-doped CeCoIn5 in the magnetic field rotating within the ab -plane. The anisotropy is significantly smaller in the doped material, and the switching transition is much broader. The superconducting transition near Hc 2 is first order, as for the pure CeCoIn5, which indicates the Pauli limited superconductivity. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.
Limiting similarity and niche theory for structured populations.
Szilágyi, András; Meszéna, Géza
2009-05-07
We develop the theory of limiting similarity and niche for structured populations with finite number of individual states (i-state). In line with a previously published theory for unstructured populations, the niche of a species is specified by the impact and sensitivity niche vectors. They describe the population's impact on and sensitivity towards the variables involved in the population regulation. Robust coexistence requires sufficient segregation of the impact, as well as of the sensitivity niche vectors. Connection between the population-level impact and sensitivity and the impact/sensitivity of the specific i-states is developed. Each i-state contributes to the impact of the population proportional to its frequency in the population. Sensitivity of the population is composed of the sensitivity of the rates of demographic transitions, weighted by the frequency and by the reproductive value of the initial and final i-states of the transition, respectively. Coexistence in a multi-patch environment is studied. This analysis is interpreted as spatial niche segregation.
Spin-reorientation transitions in the Cairo pentagonal magnet Bi 4 Fe 5 O 13 F
Tsirlin, Alexander A.; Rousochatzakis, Ioannis; Filimonov, Dmitry; ...
2017-09-19
Here, we show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi 4Fe 5O 13F, on one hand mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mössbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi 4Fe 5O 13F is very far from the relevant parametermore » regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe 3+ spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.« less
Spin-reorientation transitions in the Cairo pentagonal magnet Bi4Fe5O13F
NASA Astrophysics Data System (ADS)
Tsirlin, Alexander A.; Rousochatzakis, Ioannis; Filimonov, Dmitry; Batuk, Dmitry; Frontzek, Matthias; Abakumov, Artem M.
2017-09-01
We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi4Fe5O13F , on one hand mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mössbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi4Fe5O13F is very far from the relevant parameter regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe3 + spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
User's and test case manual for FEMATS
NASA Technical Reports Server (NTRS)
Chatterjee, Arindam; Volakis, John; Nurnberger, Mike; Natzke, John
1995-01-01
The FEMATS program incorporates first-order edge-based finite elements and vector absorbing boundary conditions into the scattered field formulation for computation of the scattering from three-dimensional geometries. The code has been validated extensively for a large class of geometries containing inhomogeneities and satisfying transition conditions. For geometries that are too large for the workstation environment, the FEMATS code has been optimized to run on various supercomputers. Currently, FEMATS has been configured to run on the HP 9000 workstation, vectorized for the Cray Y-MP, and parallelized to run on the Kendall Square Research (KSR) architecture and the Intel Paragon.
Z H η vertex in the simplest little Higgs model
NASA Astrophysics Data System (ADS)
He, Shi-Ping; Mao, Ying-nan; Zhang, Chen; Zhu, Shou-hua
2018-04-01
The issue of deriving Z H η vertex in the simplest little Higgs (SLH) model is revisited. Special attention is paid to the treatment of noncanonically-normalized scalar kinetic matrix and vector-scalar two-point transitions. We elucidate a general procedure to diagonalize a general vector-scalar system in gauge theories and apply it to the case of SLH. The resultant Z H η vertex is found to be different from those which have already existed in the literature for a long time. We also present an understanding of this issue from an effective field theory viewpoint.
Convergence of Transition Probability Matrix in CLVMarkov Models
NASA Astrophysics Data System (ADS)
Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.
2018-04-01
A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.
Dark-bright soliton pairs in nonlocal nonlinear media.
Lin, Yuan Yao; Lee, Ray-Kuang
2007-07-09
We study the formation of dark-bright vector soliton pairs in nonlocal Kerr-type nonlinear medium. We show, by analytical analysis and direct numerical calculation, that in addition to stabilize of vector soliton pairs nonlocal nonlinearity also helps to reduce the threshold power for forming a guided bright soliton. With help of the nonlocality, it is expected that the observation of dark-bright vector soliton pairs in experiments becomes more workable.
Wang, Wei; Takeda, Mitsuo
2006-09-01
A new concept of vector and tensor densities is introduced into the general coherence theory of vector electromagnetic fields that is based on energy and energy-flow coherence tensors. Related coherence conservation laws are presented in the form of continuity equations that provide new insights into the propagation of second-order correlation tensors associated with stationary random classical electromagnetic fields.
Vibrational properties of Ni-Mn-Ga shape memory alloy in the martensite phases
NASA Astrophysics Data System (ADS)
Ener, Semih; Mehaddene, Tarik; Pedersen, Björn; Leitner, Michael; Neuhaus, Jürgen; Petry, Winfried
2013-12-01
Studying the phonon dispersion of the ferromagnetic shape memory alloy system Ni-Mn-Ga gives insight into the mechanism of the martensite transition and the forces driving the transition. Transformation of austenite single crystals under uniaxial stress results in the coexistence of two martensitic variants with perpendicular modulation vector. Here we report on inelastic neutron scattering studies of martensite crystals with off-stoichiometric compositions, varying from non-modulated (NM) to five- (5M) and seven- (7M) layer modulated martensite phases. Both the 5M and 7M crystals show fully commensurate satellite peaks along [\\xi \\bar {\\xi } 0], corresponding to the five- and seven-layer modulation. These superstructure peaks become Γ-points of the modulated structure. Due to the coexistence of two variants within the (001) plane, both new acoustic phonons reflecting the modulation vector [\\xi \\bar {\\xi } 0] and acoustic TA2[ξξ0] phonons corresponding to the non-modulated direction are observed. The latter display a pronounced softening around ξ = 0.2-0.4 when approaching the martensite-austenite transition from above and below, i.e. this soft mode has lowest frequency at the transition temperature. Overall the phonon dispersion of the austenite and martensite phase resemble each other very much. The coexistence of two martensitic variants after uniaxial transformation explains the particular behaviour of the low-energy excitations, in contrast to previous interpretations involving charge-density waves and associated phason modes.
Tanga, M C; Ngundu, W I
2010-10-01
From October 2002 to September 2003, an entomological survey was carried out in a rural forested fringed village in the highlands of Mount Cameroon region to determine the temporal dynamics of the anopheline population and the intensity of malaria transmission. A total of 2387 Anopheles spp. were collected, with A. funestus predominating (59.9%), followed by A. hancocki (24.4%) and A. gambiae s.l. (15.7%). Considerable differences were observed in the nocturnal biting cycles of parous mosquitoes, with peak activity in the latter part of the night. PCR revealed that all specimens of the A. funestus group were A. funestus s.s. and all specimens from the A. gambiae complex were A. gambiae s.s. of the S molecular form. Plasmodium falciparum sporozoite rates of 17.3% and 8.5% were recorded for A. funestus and A. hancocki, respectively, with an anthropophilic rate of 96.3%. A strong positive correlation (r=0.996) was found between the human-biting rate and the entomological inoculation rate (EIR). Malaria transmission was very high and perennial, with an estimated annual EIR of 460.1 infective bites per person per year. These results confirm that in high agricultural activity areas, A. funestus can be by far the major malaria vector responsible for malaria transmission. Copyright © 2010 Royal Society of Tropical Medicine and Hygiene.
Integrating transit and urban form : final report, December 2008.
DOT National Transportation Integrated Search
2008-09-01
This study develops an integrated behavioral model of transit patronage and urban form. Although herein focused on transit, the framework can be easily generalized to study other forms of travel. Advanced econometric methods are used to test specific...
Medone, Paula; Ceccarelli, Soledad; Parham, Paul E.; Figuera, Andreína; Rabinovich, Jorge E.
2015-01-01
Chagas disease, caused by the parasite Trypanosoma cruzi, is the most important vector-borne disease in Latin America. The vectors are insects belonging to the Triatominae (Hemiptera, Reduviidae), and are widely distributed in the Americas. Here, we assess the implications of climatic projections for 2050 on the geographical footprint of two of the main Chagas disease vectors: Rhodnius prolixus (tropical species) and Triatoma infestans (temperate species). We estimated the epidemiological implications of current to future transitions in the climatic niche in terms of changes in the force of infection (FOI) on the rural population of two countries: Venezuela (tropical) and Argentina (temperate). The climatic projections for 2050 showed heterogeneous impact on the climatic niches of both vector species, with a decreasing trend of suitability of areas that are currently at high-to-moderate transmission risk. Consequently, climatic projections affected differently the FOI for Chagas disease in Venezuela and Argentina. Despite the heterogeneous results, our main conclusions point out a decreasing trend in the number of new cases of Tr. cruzi human infections per year between current and future conditions using a climatic niche approach. PMID:25688019
Kny Coupling Constants and Form Factors from the Chiral Bag Model
NASA Astrophysics Data System (ADS)
Jeong, M. T.; Cheon, Il-T.
2000-09-01
The form factors and coupling constants for KNΛ and KNΣ interactions have been calculated in the framework of the Chiral Bag Model with vector mesons. Taking into account vector meson (ρ, ω, K*) field effects, we find -3.88 ≤ gKNΛ ≤ -3.67 and 1.15 ≤ gKNΣ ≤ 1.24, where the quark-meson coupling constants are determined by fitting the renormalized, πNN coupling constant, [gπNN(0)]2/4π = 14.3. It is shown that vector mesons make significant contributions to the coupling constants gKNΛ and gKNΣ. Our values are existing within the experimental limits compared to the phenomenological values extracted from the kaon photo production experiments.
Speech coding, reconstruction and recognition using acoustics and electromagnetic waves
Holzrichter, J.F.; Ng, L.C.
1998-03-17
The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.
Speech coding, reconstruction and recognition using acoustics and electromagnetic waves
Holzrichter, John F.; Ng, Lawrence C.
1998-01-01
The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching.
Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field
NASA Astrophysics Data System (ADS)
Dubovskii, L. B.
2018-05-01
The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.
Analysis of identification of digital images from a map of cosmic microwaves
NASA Astrophysics Data System (ADS)
Skeivalas, J.; Turla, V.; Jurevicius, M.; Viselga, G.
2018-04-01
This paper discusses identification of digital images from the cosmic microwave background radiation map formed according to the data of the European Space Agency "Planck" telescope by applying covariance functions and wavelet theory. The estimates of covariance functions of two digital images or single images are calculated according to the random functions formed of the digital images in the form of pixel vectors. The estimates of pixel vectors are formed on expansion of the pixel arrays of the digital images by a single vector. When the scale of a digital image is varied, the frequencies of single-pixel color waves remain constant and the procedure for calculation of covariance functions is not affected. For identification of the images, the RGB format spectrum has been applied. The impact of RGB spectrum components and the color tensor on the estimates of covariance functions was analyzed. The identity of digital images is assessed according to the changes in the values of the correlation coefficients in a certain range of values by applying the developed computer program.
9 CFR 104.3 - Permit application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PERMITS FOR BIOLOGICAL PRODUCTS § 104.3 Permit application. (a) Each person desiring to import a biological product shall make written... permit to import a veterinary biologic for research and evaluation or transit shipment may be made on the...
A Two-Layer Least Squares Support Vector Machine Approach to Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Liu, Jingli; Li, Jianping; Xu, Weixuan; Shi, Yong
Least squares support vector machine (LS-SVM) is a revised version of support vector machine (SVM) and has been proved to be a useful tool for pattern recognition. LS-SVM had excellent generalization performance and low computational cost. In this paper, we propose a new method called two-layer least squares support vector machine which combines kernel principle component analysis (KPCA) and linear programming form of least square support vector machine. With this method sparseness and robustness is obtained while solving large dimensional and large scale database. A U.S. commercial credit card database is used to test the efficiency of our method and the result proved to be a satisfactory one.
Students' difficulties with vector calculus in electrodynamics
NASA Astrophysics Data System (ADS)
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-12-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.
A Non-Abelian Geometric Phase for Spin Systems
NASA Astrophysics Data System (ADS)
H M, Bharath; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael
Berry's geometric phase has been used to characterize topological phase transitions. Recent works have addressed the question of whether generalizations of Berry's phase to mixed states can be used to characterize topological phase transitions. Berry's phase is essentially the geometric information stored in the overall phase of a quantum system. Here, we show that geometric information is also stored in the higher order spin moments of a quantum spin system. In particular, we show that when the spin vector of a quantum spin system with a spin 1 or higher is transported along a closed path inside the Bloch ball, the tensor of second moments picks up a geometric phase in the form of an SO(3) operator. Geometrically interpreting this phase is tantamount to defining a steradian angle for closed paths inside the Bloch ball. Typically the steradian angle is defined by projecting the path onto the surface of the Bloch ball. However, paths that pass through the center cannot be projected onto the surface. We show that the steradian angles of all paths, including those that pass through the center can be defined by projecting them onto a real projective plane, instead of a sphere. This steradian angle is equal to the geometric phase picked up by a spin system.
Interpretation of solution scattering data from lipid nanodiscs
Graziano, Vito; Miller, Lisa; Yang, Lin
2018-02-01
The structural information contained in solution scattering data from empty lipid nanodiscs is examined in the context of a multi-component geometric model. X-ray scattering data were collected on nanodiscs of different compositions at scattering vector magnitudes up to 2.0 Å −1 . Through the calculation of the partial form factor for each of the nanodisc components before the isotropic average, structural parameters in the model were correlated to the features observed in the X-ray scattering data and to the corresponding distance distribution function. It is shown that, in general, the features at ∼0.3–0.6 Å −1 in the scattering data correlate to themore » bilayer structure. The data also support the argument that the elliptical shape of nanodiscs found in model fitting is physical, rather than an artefact due to the nanodisc size distribution. The lipid chain packing peak at ∼1.5 Å −1 is visible in the data and reflects the lipid bilayer phase transition. The shape change in the distance distribution function across the phase transition suggests that the nanodiscs are more circular in the fluid phase. The implication of these findings for model fitting of empty and protein-loaded nanodiscs is discussed.« less
Superallowed nuclear beta decay: Precision measurements for basic physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, J. C.
2012-11-20
For 60 years, superallowed 0{sup +}{yields}0{sup +} nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision ({+-}0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ({+-}0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separatemore » superallowed transitions covering a wide range of parent nuclei from {sup 10}C to {sup 74}Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, G{sub V}, has been extracted from the data and used to determine the top left element of the CKM matrix, V{sub ud}. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.« less
Johnson, Margaret E.; Hummer, Gerhard
2012-01-01
We explore the theoretical foundation of different string methods used to find dominant reaction pathways in high-dimensional configuration spaces. Pathways are assessed by the amount of reactive flux they carry and by their orientation relative to the committor function. By examining the effects of transforming between different collective coordinates that span the same underlying space, we unmask artificial coordinate dependences in strings optimized to follow the free energy gradient. In contrast, strings optimized to follow the drift vector produce reaction pathways that are significantly less sensitive to reparameterizations of the collective coordinates. The differences in these paths arise because the drift vector depends on both the free energy gradient and the diffusion tensor of the coarse collective variables. Anisotropy and position dependence of diffusion tensors arise commonly in spaces of coarse variables, whose generally slow dynamics are obtained by nonlinear projections of the strongly coupled atomic motions. We show here that transition paths constructed to account for dynamics by following the drift vector will (to a close approximation) carry the maximum reactive flux both in systems with isotropic position dependent diffusion, and in systems with constant but anisotropic diffusion. We derive a simple method for calculating the committor function along paths that follow the reactive flux. Lastly, we provide guidance for the practical implementation of the dynamic string method. PMID:22616575
Vector assembly of colloids on monolayer substrates
NASA Astrophysics Data System (ADS)
Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve
2017-06-01
The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.
Pre-existing immunity against vaccine vectors – friend or foe?
Saxena, Manvendra; Van, Thi Thu Hao; Baird, Fiona J.; Coloe, Peter J.
2013-01-01
Over the last century, the successful attenuation of multiple bacterial and viral pathogens has led to an effective, robust and safe form of vaccination. Recently, these vaccines have been evaluated as delivery vectors for heterologous antigens, as a means of simultaneous vaccination against two pathogens. The general consensus from published studies is that these vaccine vectors have the potential to be both safe and efficacious. However, some of the commonly employed vectors, for example Salmonella and adenovirus, often have pre-existing immune responses in the host and this has the potential to modify the subsequent immune response to a vectored antigen. This review examines the literature on this topic, and concludes that for bacterial vectors there can in fact, in some cases, be an enhancement in immunogenicity, typically humoral, while for viral vectors pre-existing immunity is a hindrance for subsequent induction of cell-mediated responses. PMID:23175507
Structuring Stokes correlation functions using vector-vortex beam
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Anwar, Ali; Singh, R. P.
2018-01-01
Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.
NASA Technical Reports Server (NTRS)
Wolpert, David H. (Inventor)
2003-01-01
Distributed approach for determining a path connecting adjacent network nodes, for probabilistically or deterministically transporting an entity, with entity characteristic mu from a source node to a destination node. Each node i is directly connected to an arbitrary number J(mu) of nodes, labeled or numbered j=jl, j2, .... jJ(mu). In a deterministic version, a J(mu)-component baseline proportion vector p(i;mu) is associated with node i. A J(mu)-component applied proportion vector p*(i;mu) is determined from p(i;mu) to preclude an entity visiting a node more than once. Third and fourth J(mu)-component vectors, with components iteratively determined by Target(i;n(mu);mu),=alpha(mu).Target(i;n(mu)-1;mu)j+beta(mu).p* (i;mu)j and Actual(i;n(mu);+a(mu)j. Actual(i;n(mu)-l;mu)j+beta(mu).Sent(i;j'(mu);n(mu)-1;mu)j, are computed, where n(mu) is an entity sequence index and alpha(mu) and beta(mu) are selected numbers. In one embodiment, at each node i, the node j=j'(mu) with the largest vector component difference, Target(i;n(mu);mu)j'- Actual (i;n(mu);mu)j'. is chosen for the next link for entity transport, except in special gap circumstances, where the same link is optionally used for transporting consecutively arriving entities. The network nodes may be computer-controlled routers that switch collections of packets, frames, cells or other information units. Alternatively, the nodes may be waypoints for movement of physical items in a network or for transformation of a physical item. The nodes may be states of an entity undergoing state transitions, where allowed transitions are specified by the network and/or the destination node.
Frozen orbit realization using LQR analogy
NASA Astrophysics Data System (ADS)
Nagarajan, N.; Rayan, H. Reno
In the case of remote sensing orbits, the Frozen Orbit concept minimizes altitude variations over a given region using passive means. This is achieved by establishing the mean eccentricity vector at the orbital poles i.e., by fixing the mean argument of perigee at 90 deg with an appropriate eccentricity to balance the perturbations due to zonal harmonics J2 and J3 of the Earth's potential. Eccentricity vector is a vector whose magnitude is the eccentricity and direction is the argument of perigee. The launcher dispersions result in an eccentricity vector which is away from the frozen orbit values. The objective is then to formulate an orbit maneuver strategy to optimize the fuel required to achieve the frozen orbit in the presence of visibility and impulse constraints. It is shown that the motion of the eccentricity vector around the frozen perigee can be approximated as a circle. Combining the circular motion of the eccentricity vector around the frozen point and the maneuver equation, the following discrete equation is obtained. X(k+1) = AX(k) + Bu(k), where X is the state (i.e. eccentricity vector components), A the state transition matrix, u the scalar control force (i.e. dV in this case) and B the control matrix which transforms dV into eccentricity vector change. Based on this, it is shown that the problem of optimizing the fuel can be treated as a Linear Quadratic Regulator (LQR) problem in which the maneuver can be solved by using control system design tools like MATLAB by deriving an analogy LQR design.
Soliton trapping in fiber lasers.
Zhao, L M; Tang, D Y; Zhang, H; Wu, X; Xiang, N
2008-06-23
We report on the soliton trapping in a fiber ring laser modelocked with a SESAM. It was observed that solitons along the two orthogonal polarization directions of the cavity with fairly large difference in central frequency and energy could be coupled together to form a group velocity locked vector soliton. In particular, due to that each of the coupled solitons forms its own soliton sidebands, two sets of soliton sidebands could be observed on the vector soliton spectrum. Numerical simulations have well confirmed the experimental observations.
A Data-Driven, Integrated Flare Model Based on Self-Organized Criticality
NASA Astrophysics Data System (ADS)
Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.
2013-09-01
We interpret solar flares as events originating in solar active regions having reached the self-organized critical state, by alternatively using two versions of an "integrated flare model" - one static and one dynamic. In both versions the initial conditions are derived from observations aiming to investigate whether well-known scaling laws observed in the distribution functions of characteristic flare parameters are reproduced after the self-organized critical state has been reached. In the static model, we first apply a nonlinear force-free extrapolation that reconstructs the three-dimensional magnetic fields from two-dimensional vector magnetograms. We then locate magnetic discontinuities exceeding a threshold in the Laplacian of the magnetic field. These discontinuities are relaxed in local diffusion events, implemented in the form of cellular-automaton evolution rules. Subsequent loading and relaxation steps lead the system to self-organized criticality, after which the statistical properties of the simulated events are examined. In the dynamic version we deploy an enhanced driving mechanism, which utilizes the observed evolution of active regions, making use of sequential vector magnetograms. We first apply the static cellular automaton model to consecutive solar vector magnetograms until the self-organized critical state is reached. We then evolve the magnetic field inbetween these processed snapshots through spline interpolation, acting as a natural driver in the dynamic model. The identification of magnetically unstable sites as well as their relaxation follow the same rules as in the static model after each interpolation step. Subsequent interpolation/driving and relaxation steps cover all transitions until the end of the sequence. Physical requirements, such as the divergence-free condition for the magnetic field vector, are approximately satisfied in both versions of the model. We obtain robust power laws in the distribution functions of the modelled flaring events with scaling indices in good agreement with observations. We therefore conclude that well-known statistical properties of flares are reproduced after active regions reach self-organized criticality. The significant enhancement in both the static and the dynamic integrated flare models is that they initiate the simulation from observations, thus facilitating energy calculation in physical units. Especially in the dynamic version of the model, the driving of the system is based on observed, evolving vector magnetograms, allowing for the separation between MHD and kinetic timescales through the assignment of distinct MHD timestamps to each interpolation step.
NASA Astrophysics Data System (ADS)
Wu, Hong-Yu; Jiang, Li-Hong
2018-03-01
We study a (2 + 1) -dimensional N -coupled quintic nonlinear Schrödinger equation with spatially modulated nonlinearity and transverse modulation in nonlinear optics and Bose-Einstein condensate, and obtain bright-type and dark-type vector multipole as well as vortex soliton solutions. When the modulation depth q is fixed as 0 and 1, we can construct vector multipole and vortex solitons, respectively. Based on these solutions, we investigate the form and phase characteristics of vector multipole and vortex solitons.
Weak interaction probes of light nuclei
NASA Astrophysics Data System (ADS)
Towner, I. S.
1986-03-01
Experimental evidence for pion enhancement in axial charge transitions as predicted by softpion theorems is reviewed. Corrections from non-soft-pion terms seem to be limited. For transitions involving the space part of the axial-vector current, soft-pion theorems are powerless. Meson-exchange currents then involve a complicated interplay among competing process. Explicit calculations in the hard-pion model for closed-shell-plus (or minus)-one nuclei, A=15 and A= =17, are in reasonable agreement with experiment. Quenching in the off-diagonal spin-flip matrix element is larger than in the diagonal matrix element.
Stress as an order parameter for the glass transition
NASA Astrophysics Data System (ADS)
Visscher, P. B.; Logan, W. T.
1990-09-01
The stress tensor has been considered as a possible order parameter for the liquid-glass transition, and its autocorrelation matrix (elements of which are the integrands in the Green-Kubo formulas for bulk and shear viscosity) have been measured in simulations. However, only the k=0 spatial Fourier component has apparently been previously measured. We have measured four Fourier components of all matrix elements of the stress-stress correlation function, and we find that some of those with nonzero wave vector are significantly more persistent (slower decaying) than the k=0 component.
Pressure-induced quantum phase transition in the quantum antiferromagnet CsFeCl3
NASA Astrophysics Data System (ADS)
Hayashida, Shohei; Zaharko, Oksana; Kurita, Nobuyuki; Tanaka, Hidekazu; Hagihala, Masato; Soda, Minoru; Itoh, Shinichi; Uwatoko, Yoshiya; Masuda, Takatsugu
2018-04-01
We have studied the pressure-induced quantum phase transition in the singlet-ground-state antiferromagnet CsFeCl3. Neutron diffraction experiments under pressure evidence the magnetic long-range order at low temperatures. Magnetic structure analysis reveals a 120∘ structure with a propagation vector of kmag=(1 /3 ,1 /3 ,0 ) . The estimated critical exponent of the order parameter suggests that CsFeCl3 belongs to the universality class of U (1 ) ×Z2 symmetry which is expected to realize the chiral liquid state.
NASA Astrophysics Data System (ADS)
Chai, Jun; Tian, Bo; Sun, Wen-Rong; Liu, De-Yin
2018-01-01
Under investigation in this paper is the reduced Maxwell-Bloch equations with variable coefficients, which describe the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium. Hirota method and symbolic computation are applied to solve such equations. By introducing the dependent variable transformations, we give the bilinear forms, vector one-, two- and N-soliton solutions in analytic forms. The types of the vector solitons are analyzed: Only the bright-single-hump solitons can be observed in q and r1 , the soliton in r2 is the bright-double-hump soliton, and there exist three types of solitons in r3 , including the dark-single-hump soliton, dark-double-hump soliton and dark-like-bright soliton, with q as the inhomogeneous electric field, r1 and r2 as the real and imaginary parts of the polarization of the two-level medium, and r3 as the population difference between the ground and excited states. Figures are presented to show the vector soliton solutions. Different types of the interactions between the vector two solitons are presented. In each component, only the overtaking elastic interaction can be observed.
Pixel-By Estimation of Scene Motion in Video
NASA Astrophysics Data System (ADS)
Tashlinskii, A. G.; Smirnov, P. V.; Tsaryov, M. G.
2017-05-01
The paper considers the effectiveness of motion estimation in video using pixel-by-pixel recurrent algorithms. The algorithms use stochastic gradient decent to find inter-frame shifts of all pixels of a frame. These vectors form shift vectors' field. As estimated parameters of the vectors the paper studies their projections and polar parameters. It considers two methods for estimating shift vectors' field. The first method uses stochastic gradient descent algorithm to sequentially process all nodes of the image row-by-row. It processes each row bidirectionally i.e. from the left to the right and from the right to the left. Subsequent joint processing of the results allows compensating inertia of the recursive estimation. The second method uses correlation between rows to increase processing efficiency. It processes rows one after the other with the change in direction after each row and uses obtained values to form resulting estimate. The paper studies two criteria of its formation: gradient estimation minimum and correlation coefficient maximum. The paper gives examples of experimental results of pixel-by-pixel estimation for a video with a moving object and estimation of a moving object trajectory using shift vectors' field.
Quantum Monte Carlo studies of superfluid Fermi gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S.Y.; Pandharipande, V.R.; Carlson, J.
2004-10-01
We report results of quantum Monte Carlo calculations of the ground state of dilute Fermi gases with attractive short-range two-body interactions. The strength of the interaction is varied to study different pairing regimes which are characterized by the product of the s-wave scattering length and the Fermi wave vector, ak{sub F}. We report results for the ground-state energy, the pairing gap {delta}, and the quasiparticle spectrum. In the weak-coupling regime, 1/ak{sub F}<-1, we obtain Bardeen-Cooper-Schrieffer (BCS) superfluid and the energy gap {delta} is much smaller than the Fermi gas energy E{sub FG}. When a>0, the interaction is strong enough tomore » form bound molecules with energy E{sub mol}. For 1/ak{sub F} > or approx. 0.5, we find that weakly interacting composite bosons are formed in the superfluid gas with {delta} and gas energy per particle approaching E{sub mol}/2. In this region, we seem to have Bose-Einstein condensation (BEC) of molecules. The behavior of the energy and the gap in the BCS-to-BEC transition region, -0.5<1/ak{sub F}<0.5, is discussed.« less
Tada, S; Hatano, M; Nakayama, Y; Volrath, S; Guyer, D; Ward, E; Ohta, D
1995-01-01
Imidazoleglycerolphosphate dehydratase (IGPD; EC 4.2.1.19), which is involved in the histidine biosynthetic pathway of Arabidopsis thaliana and wheat (Triticum aestivum), has been expressed in insect cells using the baculovirus expression vector system. N-terminal amino acid sequencing indicated that recombinant IGPDs (rIGPDs) were produced as mature forms via nonspecific proteolytic cleavages in the putative transit peptide region. The wheat rIGPD contained one Mn atom per subunit, and the Mn was involved in the assembly of the subunits to form active IGPDs. Protein-blotting analysis, using antibodies raised against the wheat rIGPD, indicated that IGPD was located in the chloroplasts of wheat. The rIGPDs of Arabidopsis and wheat, which were 86% identical in their primary structures deduced from the cDNAs, exhibited similar properties in terms of the molecular mass, pH optimum, and the Km for the substrate, imidazoleglycerolphosphate. However, the nonselective herbicides 3-amino-1,2,4-triazole and a newly synthesized triazole [(1R*, 3R*)-[3-hydroxy-3-(2H-[1,2,4]triazole-3-yl)-cyclohexyl]- phosphonic acid], inhibited Arabidopsis and wheat IGPDs in a mixed-type and a competitive manner, respectively. PMID:7480319
Flux-vector splitting algorithm for chain-rule conservation-law form
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Nguyen, H. L.; Willis, E. A.; Steinthorsson, E.; Li, Z.
1991-01-01
A flux-vector splitting algorithm with Newton-Raphson iteration was developed for the 'full compressible' Navier-Stokes equations cast in chain-rule conservation-law form. The algorithm is intended for problems with deforming spatial domains and for problems whose governing equations cannot be cast in strong conservation-law form. The usefulness of the algorithm for such problems was demonstrated by applying it to analyze the unsteady, two- and three-dimensional flows inside one combustion chamber of a Wankel engine under nonfiring conditions. Solutions were obtained to examine the algorithm in terms of conservation error, robustness, and ability to handle complex flows on time-dependent grid systems.
The transit of dosage forms through the small intestine.
Yuen, Kah-Hay
2010-08-16
The human small intestine, with its enormous absorptive surface area, is invariably the principal site of drug absorption. Hence, the residence time of a dosage form in this part of the gut can have a great influence on the absorption of the contained drug. Various methods have been employed to monitor the gastrointestinal transit of pharmaceutical dosage forms, but the use of gamma-scintigraphy has superceded all the other methods. However, careful consideration of the time interval for image acquisition and proper analysis of the scintigraphic data are important for obtaining reliable results. Most studies reported the mean small intestinal transit time of various dosage forms to be about 3-4h, being closely similar to that of food and water. The value does not appear to be influenced by their physical state nor the presence of food, but the timing of food intake following administration of the dosage forms can influence the small intestinal transit time. While the mean small intestinal transit time is quite consistent among dosage forms and studies, individual values can vary widely. There are differing opinions regarding the effect of density and size of dosage forms on their small intestinal transit properties. Some common excipients employed in pharmaceutical formulations can affect the small intestinal transit and drug absorption. There is currently a lack of studies regarding the effects of excipients, as well as the timing of food intake on the small intestinal transit of dosage forms and drug absorption. Copyright (c) 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor); Awwal, Abdul A. S. (Inventor); Karim, Mohammad A. (Inventor)
1993-01-01
An inner-product array processor is provided with thresholding of the inner product during each iteration to make more significant the inner product employed in estimating a vector to be used as the input vector for the next iteration. While stored vectors and estimated vectors are represented in bipolar binary (1,-1), only those elements of an initial partial input vector that are believed to be common with those of a stored vector are represented in bipolar binary; the remaining elements of a partial input vector are set to 0. This mode of representation, in which the known elements of a partial input vector are in bipolar binary form and the remaining elements are set equal to 0, is referred to as trinary representation. The initial inner products corresponding to the partial input vector will then be equal to the number of known elements. Inner-product thresholding is applied to accelerate convergence and to avoid convergence to a negative input product.
Velázquez, Karelia; Agüero, Jesús; Vives, María C; Aleza, Pablo; Pina, José A; Moreno, Pedro; Navarro, Luis; Guerri, José
2016-10-01
The long juvenile period of citrus trees (often more than 6 years) has hindered genetic improvement by traditional breeding methods and genetic studies. In this work, we have developed a biotechnology tool to promote transition from the vegetative to the reproductive phase in juvenile citrus plants by expression of the Arabidopsis thaliana or citrus FLOWERING LOCUS T (FT) genes using a Citrus leaf blotch virus-based vector (clbvINpr-AtFT and clbvINpr-CiFT, respectively). Citrus plants of different genotypes graft inoculated with either of these vectors started flowering within 4-6 months, with no alteration of the plant architecture, leaf, flower or fruit morphology in comparison with noninoculated adult plants. The vector did not integrate in or recombine with the plant genome nor was it pollen or vector transmissible, albeit seed transmission at low rate was detected. The clbvINpr-AtFT is very stable, and flowering was observed over a period of at least 5 years. Precocious flowering of juvenile citrus plants after vector infection provides a helpful and safe tool to dramatically speed up genetic studies and breeding programmes. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Students' Difficulties with Vector Calculus in Electrodynamics
ERIC Educational Resources Information Center
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-01-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven…
Liu, Xiang; Liang, Bo; Ngwuta, Joan; Liu, Xueqiao; Surman, Sonja; Lingemann, Matthias; Kwong, Peter D.; Graham, Barney S.; Collins, Peter L.
2017-01-01
ABSTRACT Human respiratory syncytial virus (RSV) is the most prevalent worldwide cause of severe respiratory tract infection in infants and young children. Human parainfluenza virus type 1 (HPIV1) also causes severe pediatric respiratory illness, especially croup. Both viruses lack vaccines. Here, we describe the preclinical development of a bivalent RSV/HPIV1 vaccine based on a recombinant HPIV1 vector, attenuated by a stabilized mutation, that expresses RSV F protein modified for increased stability in the prefusion (pre-F) conformation by previously described disulfide bond (DS) and hydrophobic cavity-filling (Cav1) mutations. RSV F was expressed from the first or second gene position as the full-length protein or as a chimeric protein with its transmembrane and cytoplasmic tail (TMCT) domains substituted with those of HPIV1 F in an effort to direct packaging in the vector particles. All constructs were recovered by reverse genetics. The TMCT versions of RSV F were packaged in the rHPIV1 particles much more efficiently than their full-length counterparts. In hamsters, the presence of the RSV F gene, and in particular the TMCT versions, was attenuating and resulted in reduced immunogenicity. However, the vector expressing full-length RSV F from the pre-N position was immunogenic for RSV and HPIV1. It conferred complement-independent high-quality RSV-neutralizing antibodies at titers similar to those of wild-type RSV and provided protection against RSV challenge. The vectors exhibited stable RSV F expression in vitro and in vivo. In conclusion, an attenuated rHPIV1 vector expressing a pre-F-stabilized form of RSV F demonstrated promising immunogenicity and should be further developed as an intranasal pediatric vaccine. IMPORTANCE RSV and HPIV1 are major viral causes of acute pediatric respiratory illness for which no vaccines or suitable antiviral drugs are available. The RSV F glycoprotein is the major RSV neutralization antigen. We used a rHPIV1 vector, bearing a stabilized attenuating mutation, to express the RSV F glycoprotein bearing amino acid substitutions that increase its stability in the pre-F form, the most immunogenic form that elicits highly functional virus-neutralizing antibodies. RSV F was expressed from the pre-N or N-P gene position of the rHPIV1 vector as a full-length protein or as a chimeric form with its TMCT domain derived from HPIV1 F. TMCT modification greatly increased packaging of RSV F into the vector particles but also increased vector attenuation in vivo, resulting in reduced immunogenicity. In contrast, full-length RSV F expressed from the pre-N position was immunogenic, eliciting complement-independent RSV-neutralizing antibodies and providing protection against RSV challenge. PMID:28835504
Biological Control of Mosquito Vectors: Past, Present, and Future
Benelli, Giovanni; Jeffries, Claire L.; Walker, Thomas
2016-01-01
Mosquitoes represent the major arthropod vectors of human disease worldwide transmitting malaria, lymphatic filariasis, and arboviruses such as dengue virus and Zika virus. Unfortunately, no treatment (in the form of vaccines or drugs) is available for most of these diseases and vector control is still the main form of prevention. The limitations of traditional insecticide-based strategies, particularly the development of insecticide resistance, have resulted in significant efforts to develop alternative eco-friendly methods. Biocontrol strategies aim to be sustainable and target a range of different mosquito species to reduce the current reliance on insecticide-based mosquito control. In this review, we outline non-insecticide based strategies that have been implemented or are currently being tested. We also highlight the use of mosquito behavioural knowledge that can be exploited for control strategies. PMID:27706105
Speech coding, reconstruction and recognition using acoustics and electromagnetic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzrichter, J.F.; Ng, L.C.
The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used formore » purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.« less
Heating Parameter Estimation Using Coaxial Thermocouple Gages in Wind Tunnel Test Articles.
1984-12-01
Attack a Emissivity G Parameter Vector Pn Measurement Vector at nth Time Point p Density 0 Stefan-Boltzmann Constant 6 Transition Matrix APc Scaling...for. The radiation is modeled using the Stefan-Boltzmann Law, q = 60(U 4 - U, 4 ) (A-9) where 8 radiative emissivity a Stefan-Bol tzmann constant U...w00 I- 000 0 0111c :0 i zZ Z-4lwr I- E . - t J K - IL HHO "W 6i 0WZWZWO&000OW *0 . 0 - .- - -4 4 1"- 1 Lii w LiiU Li LI Li Lij Liw w ~ o 0 0wm ~wW6~w d
NASA Astrophysics Data System (ADS)
Ouyang, Chunmei; Wang, Honghai; Shum, Ping; Fu, Songnian; Wong, Jia Haur; Wu, Kan; Lim, Desmond Rodney Chin Siong; Wong, Vincent Kwok Huei; Lee, Kenneth Eng Kian
2011-01-01
We experimentally demonstrate a passively mode-locked fiber laser employing a fiber-based semiconductor saturable absorber (SSA) operating in transmission. Polarization rotation locked vector solitons are observed in the laser. Due to the intrinsic dynamic feature of the laser, period-doubling of these vector solitons has also been observed. Furthermore, extra spectral sidebands are formed on the optical spectrum, caused by the energy exchange between the two orthogonal polarization components of the vector solitons. By careful reduction of the pump power together with fine adjustment to the cavity birefringence, period-one state can further be obtained. Additionally, the phase noise properties of the vector soliton fiber laser have also been characterized experimentally and analytically.
Optical vector network analysis of ultranarrow transitions in 166Er3+ : 7LiYF4 crystal.
Kukharchyk, N; Sholokhov, D; Morozov, O; Korableva, S L; Cole, J H; Kalachev, A A; Bushev, P A
2018-02-15
We present optical vector network analysis (OVNA) of an isotopically purified Er166 3+ :LiYF 4 7 crystal. The OVNA method is based on generation and detection of a modulated optical sideband by using a radio-frequency vector network analyzer. This technique is widely used in the field of microwave photonics for the characterization of optical responses of optical devices such as filters and high-Q resonators. However, dense solid-state atomic ensembles induce a large phase shift on one of the optical sidebands that results in the appearance of extra features on the measured transmission response. We present a simple theoretical model that accurately describes the observed spectra and helps to reconstruct the absorption profile of a solid-state atomic ensemble as well as corresponding change of the refractive index in the vicinity of atomic resonances.
Fully synchronous solutions and the synchronization phase transition for the finite-N Kuramoto model
NASA Astrophysics Data System (ADS)
Bronski, Jared C.; DeVille, Lee; Jip Park, Moon
2012-09-01
We present a detailed analysis of the stability of phase-locked solutions to the Kuramoto system of oscillators. We derive an analytical expression counting the dimension of the unstable manifold associated to a given stationary solution. From this we are able to derive a number of consequences, including analytic expressions for the first and last frequency vectors to phase-lock, upper and lower bounds on the probability that a randomly chosen frequency vector will phase-lock, and very sharp results on the large N limit of this model. One of the surprises in this calculation is that for frequencies that are Gaussian distributed, the correct scaling for full synchrony is not the one commonly studied in the literature; rather, there is a logarithmic correction to the scaling which is related to the extremal value statistics of the random frequency vector.
Critical behavior in a stochastic model of vector mediated epidemics
Alfinito, E.; Beccaria, M.; Macorini, G.
2016-01-01
The extreme vulnerability of humans to new and old pathogens is constantly highlighted by unbound outbreaks of epidemics. This vulnerability is both direct, producing illness in humans (dengue, malaria), and also indirect, affecting its supplies (bird and swine flu, Pierce disease, and olive quick decline syndrome). In most cases, the pathogens responsible for an illness spread through vectors. In general, disease evolution may be an uncontrollable propagation or a transient outbreak with limited diffusion. This depends on the physiological parameters of hosts and vectors (susceptibility to the illness, virulence, chronicity of the disease, lifetime of the vectors, etc.). In this perspective and with these motivations, we analyzed a stochastic lattice model able to capture the critical behavior of such epidemics over a limited time horizon and with a finite amount of resources. The model exhibits a critical line of transition that separates spreading and non-spreading phases. The critical line is studied with new analytical methods and direct simulations. Critical exponents are found to be the same as those of dynamical percolation. PMID:27264105
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, Christoph
We show that there is exact dragging of the axis directions of local inertial frames by a weighted average of the cosmological energy currents via gravitomagnetism for all linear perturbations of all Friedmann-Robertson-Walker (FRW) universes and of Einstein's static closed universe, and for all energy-momentum-stress tensors and in the presence of a cosmological constant. This includes FRW universes arbitrarily close to the Milne Universe and the de Sitter universe. Hence the postulate formulated by Ernst Mach about the physical cause for the time-evolution of inertial axes is shown to hold in general relativity for linear perturbations of FRW universes. -more » The time-evolution of local inertial axes (relative to given local fiducial axes) is given experimentally by the precession angular velocity {omega}-vector{sub gyro} of local gyroscopes, which in turn gives the operational definition of the gravitomagnetic field: B-vector{sub g}{identical_to}-2{omega}-vector{sub gyro}. The gravitomagnetic field is caused by energy currents J-vector{sub {epsilon}} via the momentum constraint, Einstein's G{sup 0-}circumflex{sub i-circumflex} equation, (-{delta}+{mu}{sup 2})A-vector{sub g}=-16{pi}G{sub N}J-vector{sub {epsilon}} with B-vector{sub g}=curl A-vector{sub g}. This equation is analogous to Ampere's law, but it holds for all time-dependent situations. {delta} is the de Rham-Hodge Laplacian, and {delta}=-curl curl for the vorticity sector in Riemannian 3-space. - In the solution for an open universe the 1/r{sup 2}-force of Ampere is replaced by a Yukawa force Y{sub {mu}}(r)=(-d/dr)[(1/R)exp(-{mu}r)], form-identical for FRW backgrounds with K=(-1,0). Here r is the measured geodesic distance from the gyroscope to the cosmological source, and 2{pi}R is the measured circumference of the sphere centered at the gyroscope and going through the source point. The scale of the exponential cutoff is the H-dot radius, where H is the Hubble rate, dot is the derivative with respect to cosmic time, and {mu}{sup 2}=-4(dH/dt). Analogous results hold in closed FRW universes and in Einstein's closed static universe.--We list six fundamental tests for the principle formulated by Mach: all of them are explicitly fulfilled by our solutions.--We show that only energy currents in the toroidal vorticity sector with l=1 can affect the precession of gyroscopes. We show that the harmonic decomposition of toroidal vorticity fields in terms of vector spherical harmonics X-vector{sub lm}{sup -} has radial functions which are form-identical for the 3-sphere, the hyperbolic 3-space, and Euclidean 3-space, and are form-identical with the spherical Bessel-, Neumann-, and Hankel functions. - The Appendix gives the de Rham-Hodge Laplacian on vorticity fields in Riemannian 3-spaces by equations connecting the calculus of differential forms with the curl notation. We also give the derivation the Weitzenboeck formula for the difference between the de Rham-Hodge Laplacian {delta} and the ''rough'' Laplacian {nabla}{sup 2} on vector fields.« less
Hidden symmetries and Lie algebra structures from geometric and supergravity Killing spinors
NASA Astrophysics Data System (ADS)
Açık, Özgür; Ertem, Ümit
2016-08-01
We consider geometric and supergravity Killing spinors and the spinor bilinears constructed out of them. The spinor bilinears of geometric Killing spinors correspond to the antisymmetric generalizations of Killing vector fields which are called Killing-Yano forms. They constitute a Lie superalgebra structure in constant curvature spacetimes. We show that the Dirac currents of geometric Killing spinors satisfy a Lie algebra structure up to a condition on 2-form spinor bilinears. We propose that the spinor bilinears of supergravity Killing spinors give way to different generalizations of Killing vector fields to higher degree forms. It is also shown that those supergravity Killing forms constitute a Lie algebra structure in six- and ten-dimensional cases. For five- and eleven-dimensional cases, the Lie algebra structure depends on an extra condition on supergravity Killing forms.
Crawford, Jacob E; Alves, Joel M; Palmer, William J; Day, Jonathan P; Sylla, Massamba; Ramasamy, Ranjan; Surendran, Sinnathamby N; Black, William C; Pain, Arnab; Jiggins, Francis M
2017-02-28
The mosquito Aedes aegypti is the main vector of dengue, Zika, chikungunya and yellow fever viruses. This major disease vector is thought to have arisen when the African subspecies Ae. aegypti formosus evolved from being zoophilic and living in forest habitats into a form that specialises on humans and resides near human population centres. The resulting domestic subspecies, Ae. aegypti aegypti, is found throughout the tropics and largely blood-feeds on humans. To understand this transition, we have sequenced the exomes of mosquitoes collected from five populations from around the world. We found that Ae. aegypti specimens from an urban population in Senegal in West Africa were more closely related to populations in Mexico and Sri Lanka than they were to a nearby forest population. We estimate that the populations in Senegal and Mexico split just a few hundred years ago, and we found no evidence of Ae. aegypti aegypti mosquitoes migrating back to Africa from elsewhere in the tropics. The out-of-Africa migration was accompanied by a dramatic reduction in effective population size, resulting in a loss of genetic diversity and rare genetic variants. We conclude that a domestic population of Ae. aegypti in Senegal and domestic populations on other continents are more closely related to each other than to other African populations. This suggests that an ancestral population of Ae. aegypti evolved to become a human specialist in Africa, giving rise to the subspecies Ae. aegypti aegypti. The descendants of this population are still found in West Africa today, and the rest of the world was colonised when mosquitoes from this population migrated out of Africa. This is the first report of an African population of Ae. aegypti aegypti mosquitoes that is closely related to Asian and American populations. As the two subspecies differ in their ability to vector disease, their existence side by side in West Africa may have important implications for disease transmission.
Stacked charge stripes in the quasi-2D trilayer nickelate La 4 Ni 3 O 8
Zhang, Junjie; Chen, Yu-Sheng; Phelan, D.; ...
2016-07-26
The quasi-2D nickelate La 4Ni 3O 8 (La-438), consisting of trilayer networks of square planar Ni ions, is a member of the so-called T' family, which is derived from the Ruddlesden-Popper (R-P) parent compound La 4Ni 3O 10-x by removing two oxygen atoms and rearranging the rock salt layers to fluorite-type layers. Although previous studies on polycrystalline samples have identified a 105-K phase transition with a pronounced electronic and magnetic response but weak lattice character, no consensus on the origin of this transition has been reached. We show using synchrotron X-ray diffraction on high-pO(2) floating zone-grown single crystals that thismore » transition is associated with a real space ordering of charge into a quasi-2D charge stripe ground state. We found that the charge stripe superlattice propagation vector, q = (2/3, 0, 1), corresponds with that those in the related 1/3-hole doped single- layer R-P nickelate, La 5/3Sr 1/3NiO 4 (LSNO-1/3; Ni 2.33+), with orientation at 45 degrees to the Ni-O bonds. Furthermore, the charge stripes in La-438 are weakly correlated along c to form a staggered ABAB stacking that reduces the Coulomb repulsion among the stripes. Surprisingly, however, we find that the charge stripes within each trilayer of La-438 are stacked in phase from one layer to the next, at odds with any simple Coulomb repulsion argument.« less
Stacked charge stripes in the quasi-2D trilayer nickelate La 4 Ni 3 O 8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junjie; Chen, Yu-Sheng; Phelan, D.
The quasi-2D nickelate La 4Ni 3O 8 (La-438), consisting of trilayer networks of square planar Ni ions, is a member of the so-called T' family, which is derived from the Ruddlesden-Popper (R-P) parent compound La 4Ni 3O 10-x by removing two oxygen atoms and rearranging the rock salt layers to fluorite-type layers. Although previous studies on polycrystalline samples have identified a 105-K phase transition with a pronounced electronic and magnetic response but weak lattice character, no consensus on the origin of this transition has been reached. We show using synchrotron X-ray diffraction on high-pO(2) floating zone-grown single crystals that thismore » transition is associated with a real space ordering of charge into a quasi-2D charge stripe ground state. We found that the charge stripe superlattice propagation vector, q = (2/3, 0, 1), corresponds with that those in the related 1/3-hole doped single- layer R-P nickelate, La 5/3Sr 1/3NiO 4 (LSNO-1/3; Ni 2.33+), with orientation at 45 degrees to the Ni-O bonds. Furthermore, the charge stripes in La-438 are weakly correlated along c to form a staggered ABAB stacking that reduces the Coulomb repulsion among the stripes. Surprisingly, however, we find that the charge stripes within each trilayer of La-438 are stacked in phase from one layer to the next, at odds with any simple Coulomb repulsion argument.« less
High resolution tempo-spatial ozone prediction with SVM and LSTM
NASA Astrophysics Data System (ADS)
Gao, D.; Zhang, Y.; Qu, Z.; Sadighi, K.; Coffey, E.; LIU, Q.; Hannigan, M.; Henze, D. K.; Dick, R.; Shang, L.; Lv, Q.
2017-12-01
To investigate and predict the exposure of ozone and other pollutants in urban areas, we utilize data from various infrastructures including EPA, NOAA and RIITS from government of Los Angeles and construct statistical models to conduct ozone concentration prediction in Los Angeles areas at finer spatial and temporal granularity. Our work involves cyber data such as traffic, roads and population data as features for prediction. Two statistical models, Support Vector Machine (SVM) and Long Short-term Memory (LSTM, deep learning method) are used for prediction. . Our experiments show that kernelized SVM gains better prediction performance when taking traffic counts, road density and population density as features, with a prediction RMSE of 7.99 ppb for all-time ozone and 6.92 ppb for peak-value ozone. With simulated NOx from Chemical Transport Model(CTM) as features, SVM generates even better prediction performance, with a prediction RMSE of 6.69ppb. We also build LSTM, which has shown great advantages at dealing with temporal sequences, to predict ozone concentration by treating ozone concentration as spatial-temporal sequences. Trained by ozone concentration measurements from the 13 EPA stations in LA area, the model achieves 4.45 ppb RMSE. Besides, we build a variant of this model which adds spatial dynamics into the model in the form of transition matrix that reveals new knowledge on pollutant transition. The forgetting gate of the trained LSTM is consistent with the delay effect of ozone concentration and the trained transition matrix shows spatial consistency with the common direction of winds in LA area.
Malaria vector composition and insecticide susceptibility status in Guinea Conakry, West Africa.
Vezenegho, S B; Brooke, B D; Hunt, R H; Coetzee, M; Koekemoer, L L
2009-12-01
This study provides data on malaria vector species composition and insecticide susceptibility status from three localities in Guinea Conakry. A total of 497 mosquitoes were collected resting indoors and morphologically identified as belonging to the Anopheles gambiae complex. The majority of these were An. gambiae s.s. (99.6%), but a small percentage (0.4%) were identified as Anopheles arabiensis. Thirty-four Anopheles funestus s.s. were also collected. The molecular S form of An. gambiae s.s. was predominant over the M form in Siguiri (95%) and Boffa (97.4%), whereas at Mt Nimba the M form was more abundant (61.4%) than the S form (38.1%). One hybrid M/S specimen was recorded from Mt Nimba. Siguiri populations showed high levels of resistance to DDT, dieldrin and bendiocarb. Anopheles gambiae from Boffa were largely susceptible to the insecticides tested. At Mt Nimba, resistance to DDT and bendicocarb was detected. Biochemical enzyme analysis showed that an altered acetylcholinesterase is operating in the field at low levels. The frequency of the 1014F kdr allele in the An. gambiae S form was 0.24 at Siguiri and 0.14 at Mt Nimba. A single RR specimen was found in the M form. The heterogeneity in species composition and resistance profiles between sites requires vector control interventions to be tailored to each site based on the data collected from ongoing monitoring and surveillance.
The Mechanism for Processing Random-Dot Motion at Various Speeds in Early Visual Cortices
An, Xu; Gong, Hongliang; McLoughlin, Niall; Yang, Yupeng; Wang, Wei
2014-01-01
All moving objects generate sequential retinotopic activations representing a series of discrete locations in space and time (motion trajectory). How direction-selective neurons in mammalian early visual cortices process motion trajectory remains to be clarified. Using single-cell recording and optical imaging of intrinsic signals along with mathematical simulation, we studied response properties of cat visual areas 17 and 18 to random dots moving at various speeds. We found that, the motion trajectory at low speed was encoded primarily as a direction signal by groups of neurons preferring that motion direction. Above certain transition speeds, the motion trajectory is perceived as a spatial orientation representing the motion axis of the moving dots. In both areas studied, above these speeds, other groups of direction-selective neurons with perpendicular direction preferences were activated to encode the motion trajectory as motion-axis information. This applied to both simple and complex neurons. The average transition speed for switching between encoding motion direction and axis was about 31°/s in area 18 and 15°/s in area 17. A spatio-temporal energy model predicted the transition speeds accurately in both areas, but not the direction-selective indexes to random-dot stimuli in area 18. In addition, above transition speeds, the change of direction preferences of population responses recorded by optical imaging can be revealed using vector maximum but not vector summation method. Together, this combined processing of motion direction and axis by neurons with orthogonal direction preferences associated with speed may serve as a common principle of early visual motion processing. PMID:24682033
Chanda, Emmanuel; Ameneshewa, Birkinesh; Mihreteab, Selam; Berhane, Araia; Zehaie, Assefash; Ghebrat, Yohannes; Usman, Abdulmumini
2015-12-02
Contemporary malaria vector control relies on the use of insecticide-based, indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). However, malaria-endemic countries, including Eritrea, have struggled to effectively deploy these tools due technical and operational challenges, including the selection of insecticide resistance in malaria vectors. This manuscript outlines the processes undertaken in consolidating strategic planning and operational frameworks for vector control to expedite malaria elimination in Eritrea. The effort to strengthen strategic frameworks for vector control in Eritrea was the 'case' for this study. The integrated vector management (IVM) strategy was developed in 2010 but was not well executed, resulting in a rise in malaria transmission, prompting a process to redefine and relaunch the IVM strategy with integration of other vector borne diseases (VBDs) as the focus. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Eritrea. Structured literature searches of published, peer-reviewed sources using online, scientific, bibliographic databases, Google Scholar, PubMed and WHO, and a combination of search terms were utilized to gather data. The literature was reviewed and adapted to the local context and translated into the consolidated strategic framework. In Eritrea, communities are grappling with the challenge of VBDs posing public health concerns, including malaria. The global fund financed the scale-up of IRS and LLIN programmes in 2014. Eritrea is transitioning towards malaria elimination and strategic frameworks for vector control have been consolidated by: developing an integrated vector management (IVM) strategy (2015-2019); updating IRS and larval source management (LSM) guidelines; developing training manuals for IRS and LSM; training of national staff in malaria entomology and vector control, including insecticide resistance monitoring techniques; initiating the global plan for insecticide resistance management; conducting needs' assessments and developing standard operating procedure for insectaries; developing a guidance document on malaria vector control based on eco-epidemiological strata, a vector surveillance plan and harmonized mapping, data collection and reporting tools. Eritrea has successfully consolidated strategic frameworks for vector control. Rational decision-making remains critical to ensure that the interventions are effective and their choice is evidence-based, and to optimize the use of resources for vector control. Implementation of effective IVM requires proper collaboration and coordination, consistent technical and financial capacity and support to offer greater benefits.
Major evolutionary transitions in individuality
West, Stuart A.; Fisher, Roberta M.; Gardner, Andy; Kiers, E. Toby
2015-01-01
The evolution of life on earth has been driven by a small number of major evolutionary transitions. These transitions have been characterized by individuals that could previously replicate independently, cooperating to form a new, more complex life form. For example, archaea and eubacteria formed eukaryotic cells, and cells formed multicellular organisms. However, not all cooperative groups are en route to major transitions. How can we explain why major evolutionary transitions have or haven’t taken place on different branches of the tree of life? We break down major transitions into two steps: the formation of a cooperative group and the transformation of that group into an integrated entity. We show how these steps require cooperation, division of labor, communication, mutual dependence, and negligible within-group conflict. We find that certain ecological conditions and the ways in which groups form have played recurrent roles in driving multiple transitions. In contrast, we find that other factors have played relatively minor roles at many key points, such as within-group kin discrimination and mechanisms to actively repress competition. More generally, by identifying the small number of factors that have driven major transitions, we provide a simpler and more unified description of how life on earth has evolved. PMID:25964342
Managing the resilience space of the German energy system - A vector analysis.
Schlör, Holger; Venghaus, Sandra; Märker, Carolin; Hake, Jürgen-Friedrich
2018-07-15
The UN Sustainable Development Goals formulated in 2016 confirmed the sustainability concept of the Earth Summit of 1992 and supported UNEP's green economy transition concept. The transformation of the energy system (Energiewende) is the keystone of Germany's sustainability strategy and of the German green economy concept. We use ten updated energy-related indicators of the German sustainability strategy to analyse the German energy system. The development of the sustainable indicators is examined in the monitoring process by a vector analysis performed in two-dimensional Euclidean space (Euclidean plane). The aim of the novel vector analysis is to measure the current status of the Energiewende in Germany and thereby provide decision makers with information about the strains for the specific remaining pathway of the single indicators and of the total system in order to meet the sustainability targets of the Energiewende. Within this vector model, three vectors (the normative sustainable development vector, the real development vector, and the green economy vector) define the resilience space of our analysis. The resilience space encloses a number of vectors representing different pathways with different technological and socio-economic strains to achieve a sustainable development of the green economy. In this space, the decision will be made as to whether the government measures will lead to a resilient energy system or whether a readjustment of indicator targets or political measures is necessary. The vector analysis enables us to analyse both the government's ambitiousness, which is expressed in the sustainability target for the indicators at the start of the sustainability strategy representing the starting preference order of the German government (SPO) and, secondly, the current preference order of German society in order to bridge the remaining distance to reach the specific sustainability goals of the strategy summarized in the current preference order (CPO). Copyright © 2018 Elsevier Ltd. All rights reserved.
Flow Through a Rectangular-to-Semiannular Diffusing Transition Duct
NASA Technical Reports Server (NTRS)
Foster, Jeff; Wendt, Bruce J.; Reichert, Bruce A.; Okiishi, Theodore H.
1997-01-01
Rectangular-to-semiannular diffusing transition ducts are critical inlet components on supersonic airplanes having bifucated engine inlets. This paper documents measured details of the flow through a rectangular-to-semiannular transition duct having an expansion area ratio of 1.53. Three-dimensional velocity vectors and total pressures at the exit plane of the diffuser are presented. Surface oil-flow visualization and surface static pressure data are shown. The tests were conducted with an inlet Mach number of 0.786 and a Reynolds number based on the inlet centerline velocity and exit diameter of 3.2 x 10(exp 6). The measured data are compared with previously published computational results. The ability of vortex generators to reduce circumferential total pressure distortion is demonstrated.
Nonlinear analogue of the May−Wigner instability transition
Fyodorov, Yan V.; Khoruzhenko, Boris A.
2016-01-01
We study a system of N≫1 degrees of freedom coupled via a smooth homogeneous Gaussian vector field with both gradient and divergence-free components. In the absence of coupling, the system is exponentially relaxing to an equilibrium with rate μ. We show that, while increasing the ratio of the coupling strength to the relaxation rate, the system experiences an abrupt transition from a topologically trivial phase portrait with a single equilibrium into a topologically nontrivial regime characterized by an exponential number of equilibria, the vast majority of which are expected to be unstable. It is suggested that this picture provides a global view on the nature of the May−Wigner instability transition originally discovered by local linear stability analysis. PMID:27274077
Dieng, Hamady; Ellias, Salbiah Binti; Satho, Tomomitsu; Ahmad, Abu Hassan; Abang, Fatimah; Ghani, Idris Abd; Noor, Sabina; Ahmad, Hamdan; Zuharah, Wan Fatma; Morales Vargas, Ronald E; Morales, Noppawan P; Hipolito, Cirilo N; Attrapadung, Siriluck; Noweg, Gabriel Tonga
2017-06-01
In dengue mosquitoes, successful embryonic development and long lifespan are key determinants for the persistence of both virus and vector. Therefore, targeting the egg stage and vector lifespan would be expected to have greater impacts than larvicides or adulticides, both strategies that have lost effectiveness due to the development of resistance. Therefore, there is now a pressing need to find novel chemical means of vector control. Coffee contains many chemicals, and its waste, which has become a growing environmental concern, is as rich in toxicants as the green coffee beans; these chemicals do not have a history of resistance in insects, but some are lost in the roasting process. We examined whether exposure to coffee during embryonic development could alter larval eclosion and lifespan of dengue vectors. A series of bioassays with different coffee forms and their residues indicated that larval eclosion responses of Aedes albopictus and Ae. aegypti were appreciably lower when embryonic maturation occurred in environments containing coffee, especially roasted coffee crude extract (RCC). In addition, the lifespan of adults derived from eggs that hatched successfully in a coffee milieu was reduced, but this effect was less pronounced with roasted and green coffee extracts (RCU and GCU, respectively). Taken together, these findings suggested that coffee and its residues have embryocidal activities with impacts that are carried over onto the adult lifespan of dengue vectors. These effects may significantly reduce the vectorial capacity of these insects. Reutilizing coffee waste in vector control may also represent a realistic solution to the issues associated with its pollution.
Choi, Soo -Min; Hochberg, Yonit; Kuflik, Eric; ...
2017-10-24
Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, allmore » while remaining consistent with experimental constraints.« less
Geometry of generalized depolarizing channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrell, Christian K.
2009-10-15
A generalized depolarizing channel acts on an N-dimensional quantum system to compress the 'Bloch ball' in N{sup 2}-1 directions; it has a corresponding compression vector. We investigate the geometry of these compression vectors and prove a conjecture of Dixit and Sudarshan [Phys. Rev. A 78, 032308 (2008)], namely, that when N=2{sup d} (i.e., the system consists of d qubits), and we work in the Pauli basis then the set of all compression vectors forms a simplex. We extend this result by investigating the geometry in other bases; in particular we find precisely when the set of all compression vectors formsmore » a simplex.« less
NASA Astrophysics Data System (ADS)
Choi, Soo-Min; Hochberg, Yonit; Kuflik, Eric; Lee, Hyun Min; Mambrini, Yann; Murayama, Hitoshi; Pierre, Mathias
2017-10-01
Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, all while remaining consistent with experimental constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Soo -Min; Hochberg, Yonit; Kuflik, Eric
Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, allmore » while remaining consistent with experimental constraints.« less
Amara Korba, Raouf; Alayat, Moufida Saoucen; Bouiba, Lazhari; Boudrissa, Abdelkarim; Bouslama, Zihad; Boukraa, Slimane; Francis, Frederic; Failloux, Anna-Bella; Boubidi, Saïd Chaouki
2016-08-17
We investigated the ecological differentiation of two members of the Culex pipiens complex, Cx. p. pipiens form pipiens and Cx. p. pipiens form molestus in three sites, El-Kala, M'Sila and Tinerkouk in Algeria. These two forms are the most widespread mosquito vectors in temperate regions exhibiting important behavioural and physiological differences. Nevertheless, this group of potential vectors has been poorly studied, particularly in North Africa. Ten larval populations of Cx. p. pipiens were sampled from various above- and underground habitats in three zones representing the three bioclimatic regions in Algeria. The reproduction characteristics were also investigated in the laboratory to define the rates of autogeny and stenogamy. Identification of Cx. p. pipiens members present in Algeria was achieved using a molecular analysis with the microsatellite CQ11 locus. We detected larvae of Cx. p. pipiens in all areas suggesting that the species is a ubiquitous mosquito well adapted to various environments. To our knowledge, this study provides the first molecular evidence of the presence of the Cx. p. pipiens form molestus and hybrids (molestus/pipiens) in Algeria with a high proportion of molestus form (48.3 %) in comparison with hybrids (36.8 %) and pipiens form (14.9 %). Some unexpected correlations between the proportion of forms pipiens, molestus and hybrids, and mosquito biological characteristics were observed suggesting some epigenetic effects controlling Cx. p. pipiens mating and reproduction. Consequences for pathogen transmission are discussed.
Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function.
Stanton, Richard J; McSharry, Brian P; Armstrong, Melanie; Tomasec, Peter; Wilkinson, Gavin W G
2008-12-01
With the enhanced capacity of bioinformatics to interrogate extensive banks of sequence data, more efficient technologies are needed to test gene function predictions. Replication-deficient recombinant adenovirus (Ad) vectors are widely used in expression analysis since they provide for extremely efficient expression of transgenes in a wide range of cell types. To facilitate rapid, high-throughput generation of recombinant viruses, we have re-engineered an adenovirus vector (designated AdZ) to allow single-step, directional gene insertion using recombineering technology. Recombineering allows for direct insertion into the Ad vector of PCR products, synthesized sequences, or oligonucleotides encoding shRNAs without requirement for a transfer vector Vectors were optimized for high-throughput applications by making them "self-excising" through incorporating the I-SceI homing endonuclease into the vector removing the need to linearize vectors prior to transfection into packaging cells. AdZ vectors allow genes to be expressed in their native form or with strep, V5, or GFP tags. Insertion of tetracycline operators downstream of the human cytomegalovirus major immediate early (HCMV MIE) promoter permits silencing of transgenes in helper cells expressing the tet repressor thus making the vector compatible with the cloning of toxic gene products. The AdZ vector system is robust, straightforward, and suited to both sporadic and high-throughput applications.
Raster and vector processing for scanned linework
Greenlee, David D.
1987-01-01
An investigation of raster editing techniques, including thinning, filling, and node detecting, was performed by using specialized software. The techniques were based on encoding the state of the 3-by-3 neighborhood surrounding each pixel into a single byte. A prototypical method for converting the edited raster linkwork into vectors was also developed. Once vector representations of the lines were formed, they were formatted as a Digital Line Graph, and further refined by deletion of nonessential vertices and by smoothing with a curve-fitting technique.
Medone, Paula; Ceccarelli, Soledad; Parham, Paul E; Figuera, Andreína; Rabinovich, Jorge E
2015-04-05
Chagas disease, caused by the parasite Trypanosoma cruzi, is the most important vector-borne disease in Latin America. The vectors are insects belonging to the Triatominae (Hemiptera, Reduviidae), and are widely distributed in the Americas. Here, we assess the implications of climatic projections for 2050 on the geographical footprint of two of the main Chagas disease vectors: Rhodnius prolixus (tropical species) and Triatoma infestans (temperate species). We estimated the epidemiological implications of current to future transitions in the climatic niche in terms of changes in the force of infection (FOI) on the rural population of two countries: Venezuela (tropical) and Argentina (temperate). The climatic projections for 2050 showed heterogeneous impact on the climatic niches of both vector species, with a decreasing trend of suitability of areas that are currently at high-to-moderate transmission risk. Consequently, climatic projections affected differently the FOI for Chagas disease in Venezuela and Argentina. Despite the heterogeneous results, our main conclusions point out a decreasing trend in the number of new cases of Tr. cruzi human infections per year between current and future conditions using a climatic niche approach. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Nonlocal optical response in topological phase transitions in the graphene family
NASA Astrophysics Data System (ADS)
Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.; Woods, Lilia M.
2018-01-01
We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family and find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. We find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. The expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.
Gibbsian Stationary Non-equilibrium States
NASA Astrophysics Data System (ADS)
De Carlo, Leonardo; Gabrielli, Davide
2017-09-01
We study the structure of stationary non-equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible transition rates corresponding to a fixed invariant measure. The first one uses the equivalence of this problem with the construction of divergence free flows on the transition graph. Since divergence free flows are characterized by cyclic decompositions we can generate families of models from elementary cycles on the configuration space. The second construction is a functional discrete Hodge decomposition for translational covariant discrete vector fields. According to this, for example, the instantaneous current of any interacting particle system on a finite torus can be canonically decomposed in a gradient part, a circulation term and an harmonic component. All the three components are associated with functions on the configuration space. This decomposition is unique and constructive. The stationary condition can be interpreted as an orthogonality condition with respect to an harmonic discrete vector field and we use this decomposition to construct models having a fixed invariant measure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winn, Joshua N.; Albrecht, Simon; Johnson, John Asher
We present new radial velocity (RV) measurements of HAT-P-13, a star with two previously known companions: a transiting giant planet 'b' with an orbital period of 3 days and a more massive object 'c' on a 1.2 yr, highly eccentric orbit. For this system, dynamical considerations would lead to constraints on planet b's interior structure, if it could be shown that the orbits are coplanar and apsidally locked. By modeling the Rossiter-McLaughlin effect, we show that planet b's orbital angular momentum vector and the stellar spin vector are well aligned on the sky ({lambda} = 1.9 {+-} 8.6 deg). Themore » refined orbital solution favors a slightly eccentric orbit for planet b (e = 0.0133 {+-} 0.0041), although it is not clear whether it is apsidally locked with c's orbit ({Delta}{omega} = 36{sup +27}{sub -36} deg). We find a long-term trend in the star's RV and interpret it as evidence for an additional body 'd', which may be another planet or a low-mass star. Predictions are given for the next few inferior conjunctions of c, when transits may happen.« less
Nonlocal optical response in topological phase transitions in the graphene family
Rodriguez-Lopez, Pablo; de Melo Kort-Kamp, Wilton Junior; Dalvit, Diego Alejandro Roberto; ...
2018-01-22
We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family andmore » find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. Here, we find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. Finally, the expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.« less
Nonlocal optical response in topological phase transitions in the graphene family
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Lopez, Pablo; de Melo Kort-Kamp, Wilton Junior; Dalvit, Diego Alejandro Roberto
We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family andmore » find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. Here, we find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. Finally, the expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.« less
NASA Astrophysics Data System (ADS)
Hara, Tatsuhiko
2004-08-01
We implement the Direct Solution Method (DSM) on a vector-parallel supercomputer and show that it is possible to significantly improve its computational efficiency through parallel computing. We apply the parallel DSM calculation to waveform inversion of long period (250-500 s) surface wave data for three-dimensional (3-D) S-wave velocity structure in the upper and uppermost lower mantle. We use a spherical harmonic expansion to represent lateral variation with the maximum angular degree 16. We find significant low velocities under south Pacific hot spots in the transition zone. This is consistent with other seismological studies conducted in the Superplume project, which suggests deep roots of these hot spots. We also perform simultaneous waveform inversion for 3-D S-wave velocity and Q structure. Since resolution for Q is not good, we develop a new technique in which power spectra are used as data for inversion. We find good correlation between long wavelength patterns of Vs and Q in the transition zone such as high Vs and high Q under the western Pacific.
A Novel Gradient Vector Flow Snake Model Based on Convex Function for Infrared Image Segmentation
Zhang, Rui; Zhu, Shiping; Zhou, Qin
2016-01-01
Infrared image segmentation is a challenging topic because infrared images are characterized by high noise, low contrast, and weak edges. Active contour models, especially gradient vector flow, have several advantages in terms of infrared image segmentation. However, the GVF (Gradient Vector Flow) model also has some drawbacks including a dilemma between noise smoothing and weak edge protection, which decrease the effect of infrared image segmentation significantly. In order to solve this problem, we propose a novel generalized gradient vector flow snakes model combining GGVF (Generic Gradient Vector Flow) and NBGVF (Normally Biased Gradient Vector Flow) models. We also adopt a new type of coefficients setting in the form of convex function to improve the ability of protecting weak edges while smoothing noises. Experimental results and comparisons against other methods indicate that our proposed snakes model owns better ability in terms of infrared image segmentation than other snakes models. PMID:27775660
Rate determination from vector observations
NASA Technical Reports Server (NTRS)
Weiss, Jerold L.
1993-01-01
Vector observations are a common class of attitude data provided by a wide variety of attitude sensors. Attitude determination from vector observations is a well-understood process and numerous algorithms such as the TRIAD algorithm exist. These algorithms require measurement of the line of site (LOS) vector to reference objects and knowledge of the LOS directions in some predetermined reference frame. Once attitude is determined, it is a simple matter to synthesize vehicle rate using some form of lead-lag filter, and then, use it for vehicle stabilization. Many situations arise, however, in which rate knowledge is required but knowledge of the nominal LOS directions are not available. This paper presents two methods for determining spacecraft angular rates from vector observations without a priori knowledge of the vector directions. The first approach uses an extended Kalman filter with a spacecraft dynamic model and a kinematic model representing the motion of the observed LOS vectors. The second approach uses a 'differential' TRIAD algorithm to compute the incremental direction cosine matrix, from which vehicle rate is then derived.
Attitude Determination Using Two Vector Measurements
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1998-01-01
Many spacecraft attitude determination methods use exactly two vector measurements. The two vectors are typically the unit vector to the Sun and the Earth's magnetic field vector for coarse "sun-mag" attitude determination or unit vectors to two stars tracked by two star trackers for fine attitude determination. TRIAD, the earliest published algorithm for determining spacecraft attitude from two vector measurements, has been widely used in both ground-based and onboard attitude determination. Later attitude determination methods have been based on Wahba's optimality criterion for n arbitrarily weighted observations. The solution of Wahba's problem is somewhat difficult in the general case, but there is a simple closed-form solution in the two-observation case. This solution reduces to the TRIAD solution for certain choices of measurement weights. This paper presents and compares these algorithms as well as sub-optimal algorithms proposed by Bar-Itzhack, Harman, and Reynolds. Some new results will be presented, but the paper is primarily a review and tutorial.
Dehydrated DNA in B-form: ionic liquids in rescue
Ghoshdastidar, Debostuti; Senapati, Sanjib
2018-01-01
Abstract The functional B-conformation of DNA succumbs to the A-form at low water activity. Methods for room temperature DNA storage that rely upon ‘anhydrobiosis’, thus, often encounter the loss of DNA activity due to the B→A-DNA transition. Here, we show that ionic liquids, an emerging class of green solvents, can induce conformational transitions in DNA and even rescue the dehydrated DNA in the functional B-form. CD spectroscopic analyses not only reveal rapid transition of A-DNA in 78% ethanol medium to B-conformation in presence of ILs, but also the high resistance of IL-bound B-form to transit to A-DNA under dehydration. Molecular dynamics simulations show the unique ability of ILs to disrupt Na+ ion condensation and form ‘IL spine’ in DNA minor groove to drive the A→B transition. Implications of these findings range from the plausible use of ILs as novel anhydrobiotic DNA storage medium to a switch for modulating DNA conformational transitions. PMID:29669113
Reviving the shear-free perfect fluid conjecture in general relativity
NASA Astrophysics Data System (ADS)
Sikhonde, Muzikayise E.; Dunsby, Peter K. S.
2017-12-01
Employing a Mathematica symbolic computer algebra package called xTensor, we present (1+3) -covariant special case proofs of the shear-free perfect fluid conjecture in general relativity. We first present the case where the pressure is constant, and where the acceleration is parallel to the vorticity vector. These cases were first presented in their covariant form by Senovilla et al. We then provide a covariant proof for the case where the acceleration and vorticity vectors are orthogonal, which leads to the existence of a Killing vector along the vorticity. This Killing vector satisfies the new constraint equations resulting from the vanishing of the shear. Furthermore, it is shown that in order for the conjecture to be true, this Killing vector must have a vanishing spatially projected directional covariant derivative along the velocity vector field. This in turn implies the existence of another basic vector field along the direction of the vorticity for the conjecture to hold. Finally, we show that in general, there exists a basic vector field parallel to the acceleration for which the conjecture is true.
Classification of subsurface objects using singular values derived from signal frames
Chambers, David H; Paglieroni, David W
2014-05-06
The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.
Rose, Karsten; Steinbüchel, Alexander
2002-06-04
A non-rubber degrading mutant of the polyisoprene rubber degrading bacterium Micromonospora aurantiaca W2b lacking the capability to form halos on latex overlay agar plates was isolated after N-methyl-N-nitro-N-nitrosoguanidine mutagenesis. A 10.3-kb shuttle cosmid vector pGM446 was constructed from the Streptomyces cloning vectors pGM160 and pOJ446. This vector was transferred by conjugation from Escherichia coli to M. aurantiaca W2b. The frequency of formation of exconjugants with pGM446 was 3.6 x 10(-3). This vector could be useful for shotgun cloning of genes into the non-rubber degrading mutant L1 from M. aurantiaca W2b.
Transition to turbulence in plane channel flows
NASA Technical Reports Server (NTRS)
Biringen, S.
1984-01-01
Results obtained from a numerical simulation of the final stages of transition to turbulence in plane channel flow are described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving periodic suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.
The Rydberg electronic transitions of the hydrogen molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babb, J.F.; Chang, E.S.
1992-01-01
Transition energies and relative line strengths, without Boltzmann weighting, for the electric dipole transitions between Rydberg states n{prime}L{prime} and nL of the hydrogen molecule (one electron in a near-hydrogenic state of high n and L, with n the principal quantum number and L the orbital angular momentum quantum number of the electron) are calculated. Since the H{sup +}{sub 2} core is loosely coupled to the Rydberg electron, numerous lines occur, depending on the vector sum of L and the core rotational angular momentum. For the core vibrational quantum numbers v = 0 to 5 the strongest lines among the P,more » Q, and R branches for the lowest 12 core rotational levels are given for the particular transition arrays 6h-5g, 8i-6h, 7i-6h, 8k-7i, and 9l-8k, for which transitions occur in the wave number range 350 to 1,400 cm {sup {minus}1}.« less
Image Coding Based on Address Vector Quantization.
NASA Astrophysics Data System (ADS)
Feng, Yushu
Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing Adaptive VQ Technique" is presented. In addition to chapters 2 through 6 which report on new work, this dissertation includes one chapter (chapter 1) and part of chapter 2 which review previous work on VQ and image coding, respectively. Finally, a short discussion of directions for further research is presented in conclusion.
Tsurushita, N; Fu, H; Warren, C
1996-06-12
New phage display vectors for in vivo recombination of immunoglobulin (Ig) heavy (VH) and light (VL) chain variable genes, to make single-chain Fv fragments (scFv), were constructed. The VH and VL genes of monoclonal antibody (mAb) EP-5C7, which binds to both human E- and P-selectin, were cloned into a pUC19-derived plasmid vector, pCW93, and a pACYC184-derived phagemid vector, pCW99, respectively. Upon induction of Cre recombinase (phage P1 recombinase), the VH and VL genes were efficiently recombined into the same plasmid via the two loxP sites (phage P1 recombination sites), one located downstream from a VH gene in pCW93 and another upstream from a VL gene in pCW99. In the resulting phagemid, the loxP sequence also encodes a polypeptide linker connecting the VH and VL domains to form a scFv of EP-5C7. Whether expressed on the phage surface or as a soluble form, the EP-5C7 scFv showed specific binding to human E- and P-selectin. This phagemid vector system provides a way to recombine VH and VL gene libraries efficiently in vivo to make extremely large Ig combinatorial libraries.
Velappan, Nileena; Fisher, Hugh E; Pesavento, Emanuele; Chasteen, Leslie; D'Angelo, Sara; Kiss, Csaba; Longmire, Michelle; Pavlik, Peter; Bradbury, Andrew R M
2010-03-01
Filamentous phage display has been extensively used to select proteins with binding properties of specific interest. Although many different display platforms using filamentous phage have been described, no comprehensive comparison of their abilities to display similar proteins has been conducted. This is particularly important for the display of cytoplasmic proteins, which are often poorly displayed with standard filamentous phage vectors. In this article, we have analyzed the ability of filamentous phage to display a stable form of green fluorescent protein and modified variants in nine different display vectors, a number of which have been previously proposed as being suitable for cytoplasmic protein display. Correct folding and display were assessed by phagemid particle fluorescence, and with anti-GFP antibodies. The poor correlation between phagemid particle fluorescence and recognition of GFP by antibodies, indicates that proteins may fold correctly without being accessible for display. The best vector used a twin arginine transporter leader to transport the displayed protein to the periplasm, and a coil-coil arrangement to link the displayed protein to g3p. This vector was able to display less robust forms of GFP, including ones with inserted epitopes, as well as fluorescent proteins of the Azami green series. It was also functional in mock selection experiments.
Magnetic structure of NiS2 -xSex
NASA Astrophysics Data System (ADS)
Yano, S.; Louca, Despina; Yang, J.; Chatterjee, U.; Bugaris, D. E.; Chung, D. Y.; Peng, L.; Grayson, M.; Kanatzidis, Mercouri G.
2016-01-01
NiS2 -2 xSex is revisited to determine the magnetic structure using neutron diffraction and magnetic representational analysis. Upon cooling, the insulating parent compound, NiS2, becomes antiferromagnetic with two successive magnetic transitions. The first transition (M 1 ) occurs at TN˜39 K with Γ1ψ1 symmetry and a magnetic propagation vector of k =(000 ) . The second transition (M 2 ) occurs at TN˜30 K with k =(0.5 ,0.5 ,0.5 ) and a Γ1ψ2 symmetry with face-centered translations, giving rise to four possible magnetic domains. With doping, the system becomes metallic. The transition to the M 2 state is suppressed prior to x =0.4 while the M 1 state persists. The M 1 magnetic structure gradually vanishes by x ˜0.8 at a lower concentration than previously reported. The details of the magnetic structures are provided.
Coloured Logic Petri Nets and analysis of their reachable trees
NASA Astrophysics Data System (ADS)
Wang, Jing; Du, YuYue; Yu, ShuXia
2015-11-01
Logic Petri nets (LPNs) can describe and analyse the batch processing function and passing value indeterminacy in cooperative systems, and alleviate the state space explosion problem. However, the indeterminate data of logical output transitions cannot be described explicitly in LPNs. Therefore, Coloured Logic Petri nets (CLPNs) are defined in this paper. It can determine the indeterminate data of logic output transitions in LPNs, i.e., the indeterminate data can be represented definitely in CLPNs. A vector matching method is proposed to judge the enabling transitions and analyse CLPNs. From the marking equation and the proposed reachable tree generation algorithm of CLPNs, a reachable tree can be built, and reachable markings are calculated. The advantage of CLPNs can be shown based on the number of leaf nodes of the reachability tree, and CLPNs can solve the indeterminate data of logical output transitions. Finally, an example shows that CLPNs can further reduce the dimensionality of reachable markings.
NASA Astrophysics Data System (ADS)
Łepkowski, Sławomir P.; Bardyszewski, Witold
2017-05-01
We study theoretically the topological phase transition and the Rashba spin-orbit interaction in electrically biased InN/GaN quantum wells. We show that that for properly chosen widths of quantum wells and barriers, one can effectively tune the system through the topological phase transition applying an external electric field perpendicular to the QW plane. We find that in InN/GaN quantum wells with the inverted band structure, when the conduction band s-type level is below the heavy hole and light hole p-type levels, the spin splitting of the subbands decreases with increasing the amplitude of the electric field in the quantum wells, which reveals the anomalous Rashba effect. Derived effective Rashba Hamiltonians can describe the subband spin splitting only for very small wave vectors due to strong coupling between the subbands. Furthermore, we demonstrate that for InN/GaN quantum wells in a Hall bar geometry, the critical voltage for the topological phase transition depends distinctly on the width of the structure and a significant spin splitting of the edge states lying in the 2D band gap can be almost switched off by increasing the electric field in quantum wells only by a few percent. We show that the dependence of the spin splitting of the upper branch of the edge state dispersion curve on the wave vector has a threshold-like behavior with the on/off spin splitting ratio reaching two orders of magnitude for narrow Hall bars. The threshold wave vector depends weakly on the Hall bar width, whereas it increases significantly with the bias voltage due to an increase of the energetic distance between the s-type and p-type quantum well energy levels and a reduction of the coupling between the subbands.
Łepkowski, Sławomir P; Bardyszewski, Witold
2017-05-17
We study theoretically the topological phase transition and the Rashba spin-orbit interaction in electrically biased InN/GaN quantum wells. We show that that for properly chosen widths of quantum wells and barriers, one can effectively tune the system through the topological phase transition applying an external electric field perpendicular to the QW plane. We find that in InN/GaN quantum wells with the inverted band structure, when the conduction band s-type level is below the heavy hole and light hole p-type levels, the spin splitting of the subbands decreases with increasing the amplitude of the electric field in the quantum wells, which reveals the anomalous Rashba effect. Derived effective Rashba Hamiltonians can describe the subband spin splitting only for very small wave vectors due to strong coupling between the subbands. Furthermore, we demonstrate that for InN/GaN quantum wells in a Hall bar geometry, the critical voltage for the topological phase transition depends distinctly on the width of the structure and a significant spin splitting of the edge states lying in the 2D band gap can be almost switched off by increasing the electric field in quantum wells only by a few percent. We show that the dependence of the spin splitting of the upper branch of the edge state dispersion curve on the wave vector has a threshold-like behavior with the on/off spin splitting ratio reaching two orders of magnitude for narrow Hall bars. The threshold wave vector depends weakly on the Hall bar width, whereas it increases significantly with the bias voltage due to an increase of the energetic distance between the s-type and p-type quantum well energy levels and a reduction of the coupling between the subbands.
Novel method of finding extreme edges in a convex set of N-dimension vectors
NASA Astrophysics Data System (ADS)
Hu, Chia-Lun J.
2001-11-01
As we published in the last few years, for a binary neural network pattern recognition system to learn a given mapping {Um mapped to Vm, m=1 to M} where um is an N- dimension analog (pattern) vector, Vm is a P-bit binary (classification) vector, the if-and-only-if (IFF) condition that this network can learn this mapping is that each i-set in {Ymi, m=1 to M} (where Ymithere existsVmiUm and Vmi=+1 or -1, is the i-th bit of VR-m).)(i=1 to P and there are P sets included here.) Is POSITIVELY, LINEARLY, INDEPENDENT or PLI. We have shown that this PLI condition is MORE GENERAL than the convexity condition applied to a set of N-vectors. In the design of old learning machines, we know that if a set of N-dimension analog vectors form a convex set, and if the machine can learn the boundary vectors (or extreme edges) of this set, then it can definitely learn the inside vectors contained in this POLYHEDRON CONE. This paper reports a new method and new algorithm to find the boundary vectors of a convex set of ND analog vectors.
A virus responds instantly to the presence of the vector on the host and forms transmission morphs
Martinière, Alexandre; Bak, Aurélie; Macia, Jean-Luc; Lautredou, Nicole; Gargani, Daniel; Doumayrou, Juliette; Garzo, Elisa; Moreno, Aranzazu; Fereres, Alberto; Blanc, Stéphane; Drucker, Martin
2013-01-01
Many plant and animal viruses are spread by insect vectors. Cauliflower mosaic virus (CaMV) is aphid-transmitted, with the virus being taken up from specialized transmission bodies (TB) formed within infected plant cells. However, the precise events during TB-mediated virus acquisition by aphids are unknown. Here, we show that TBs react instantly to the presence of the vector by ultra-rapid and reversible redistribution of their key components onto microtubules throughout the cell. Enhancing or inhibiting this TB reaction pharmacologically or by using a mutant virus enhanced or inhibited transmission, respectively, confirming its requirement for efficient virus-acquisition. Our results suggest that CaMV can perceive aphid vectors, either directly or indirectly by sharing the host perception. This novel concept in virology, where viruses respond directly or via the host to the outside world, opens new research horizons, that is, investigating the impact of ‘perceptive behaviors’ on other steps of the infection cycle. DOI: http://dx.doi.org/10.7554/eLife.00183.001 PMID:23358702
Polar decomposition for attitude determination from vector observations
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.
1993-01-01
This work treats the problem of weighted least squares fitting of a 3D Euclidean-coordinate transformation matrix to a set of unit vectors measured in the reference and transformed coordinates. A closed-form analytic solution to the problem is re-derived. The fact that the solution is the closest orthogonal matrix to some matrix defined on the measured vectors and their weights is clearly demonstrated. Several known algorithms for computing the analytic closed form solution are considered. An algorithm is discussed which is based on the polar decomposition of matrices into the closest unitary matrix to the decomposed matrix and a Hermitian matrix. A somewhat longer improved algorithm is suggested too. A comparison of several algorithms is carried out using simulated data as well as real data from the Upper Atmosphere Research Satellite. The comparison is based on accuracy and time consumption. It is concluded that the algorithms based on polar decomposition yield a simple although somewhat less accurate solution. The precision of the latter algorithms increase with the number of the measured vectors and with the accuracy of their measurement.
Solforosi, Laura; Mancini, Nicasio; Canducci, Filippo; Clementi, Nicola; Sautto, Giuseppe Andrea; Diotti, Roberta Antonia; Clementi, Massimo; Burioni, Roberto
2012-07-01
A novel phagemid vector, named pCM, was optimized for the cloning and display of antibody fragment (Fab) libraries on the surface of filamentous phage. This vector contains two long DNA "stuffer" fragments for easier differentiation of the correctly cut forms of the vector. Moreover, in pCM the fragment at the heavy-chain cloning site contains an acid phosphatase-encoding gene allowing an easy distinction of the Escherichia coli cells containing the unmodified form of the phagemid versus the heavy-chain fragment coding cDNA. In pCM transcription of heavy-chain Fd/gene III and light chain is driven by a single lacZ promoter. The light chain is directed to the periplasm by the ompA signal peptide, whereas the heavy-chain Fd/coat protein III is trafficked by the pelB signal peptide. The phagemid pCM was used to generate a human combinatorial phage display antibody library that allowed the selection of a monoclonal Fab fragment antibody directed against the nucleoprotein (NP) of Influenza A virus.
32 CFR Appendix A to Part 77 - DD Form 2580, Operation Transition Department of Defense
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 1 2011-07-01 2011-07-01 false DD Form 2580, Operation Transition Department of Defense A Appendix A to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... to Part 77—DD Form 2580, Operation Transition Department of Defense Outplacement and Referral System...
32 CFR Appendix A to Part 77 - DD Form 2580, Operation Transition Department of Defense
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 1 2010-07-01 2010-07-01 false DD Form 2580, Operation Transition Department of Defense A Appendix A to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... to Part 77—DD Form 2580, Operation Transition Department of Defense Outplacement and Referral System...
32 CFR Appendix A to Part 77 - DD Form 2580, Operation Transition Department of Defense
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 1 2012-07-01 2012-07-01 false DD Form 2580, Operation Transition Department of Defense A Appendix A to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... to Part 77—DD Form 2580, Operation Transition Department of Defense Outplacement and Referral System...
32 CFR Appendix A to Part 77 - DD Form 2580, Operation Transition Department of Defense
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 1 2013-07-01 2013-07-01 false DD Form 2580, Operation Transition Department of Defense A Appendix A to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... to Part 77—DD Form 2580, Operation Transition Department of Defense Outplacement and Referral System...
32 CFR Appendix A to Part 77 - DD Form 2580, Operation Transition Department of Defense
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 1 2014-07-01 2014-07-01 false DD Form 2580, Operation Transition Department of Defense A Appendix A to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... to Part 77—DD Form 2580, Operation Transition Department of Defense Outplacement and Referral System...
A study of real-time computer graphic display technology for aeronautical applications
NASA Technical Reports Server (NTRS)
Rajala, S. A.
1981-01-01
The development, simulation, and testing of an algorithm for anti-aliasing vector drawings is discussed. The pseudo anti-aliasing line drawing algorithm is an extension to Bresenham's algorithm for computer control of a digital plotter. The algorithm produces a series of overlapping line segments where the display intensity shifts from one segment to the other in this overlap (transition region). In this algorithm the length of the overlap and the intensity shift are essentially constants because the transition region is an aid to the eye in integrating the segments into a single smooth line.
Genotype and biotype of invasive Anopheles stephensi in Mannar Island of Sri Lanka.
Surendran, Sinnathamby N; Sivabalakrishnan, Kokila; Gajapathy, Kanapathy; Arthiyan, Sivasingham; Jayadas, Tibutius T P; Karvannan, Kalingarajah; Raveendran, Selvarajah; Parakrama Karunaratne, S H P; Ramasamy, Ranjan
2018-01-03
Anopheles stephensi, the major vector of urban malaria in India, was recently detected for the first time in Sri Lanka in Mannar Island on the northwestern coast. Since there are different biotypes of An. stephensi with different vector capacities in India, a study was undertaken to further characterise the genotype and biotype of An. stephensi in Mannar Island. Mosquito larvae were collected in Pesalai village in Mannar and maintained in the insectary until adulthood. Adult An. stephensi were identified morphologically using published keys. Identified adult An. stephensi were molecularly characterized using two mitochondrial (cox1 and cytb) and one nuclear (ITS2) markers. Their PCR-amplified target fragments were sequenced and checked against available sequences in GenBank for phylogenetic analysis. The average spiracular and thoracic lengths and the spiracular index were determined to identify biotypes based on corresponding indices for Indian An. stephensi. All DNA sequences for the Mannar samples matched reported sequences for An. stephensi from the Middle East and India. However, a single nucleotide variation in the cox1 sequence suggested an amino acid change from valine to methionine in the cox1 protein in Sri Lankan An. stephensi. Morphological data was consistent with the presence of the Indian urban vector An. stephensi type-form in Sri Lanka. The present study provides a more detailed molecular characterization of An. stephensi and suggests the presence of the type-form of the vector for the first time in Sri Lanka. The single mutation in the cox1 gene may be indicative of a founder effect causing the initial diversification of An. stephensi in Sri Lanka from the Indian form. The distribution of the potent urban vector An. stephensi type-form needs to be established by studies throughout the island as its spread adds to the challenge of maintaining the country's malaria-free status.
2014-01-01
Since cell membranes are weak sources of electrostatic fields, this ECG interpretation relies on the analogy between cells and electrets. It is here assumed that cell-bound electric fields unite, reach the body surface and the surrounding space and form the thoracic electric field that consists from two concentric structures: the thoracic wall and the heart. If ECG leads measure differences in electric potentials between skin electrodes, they give scalar values that define position of the electric field center along each lead. Repolarised heart muscle acts as a stable positive electric source, while depolarized heart muscle produces much weaker negative electric field. During T-P, P-R and S-T segments electric field is stable, only subtle changes are detectable by skin electrodes. Diastolic electric field forms after ventricular depolarization (T-P segments in the ECG recording). Telediastolic electric field forms after the atria have been depolarized (P-Q segments in the ECG recording). Systolic electric field forms after the ventricular depolarization (S-T segments in the ECG recording). The three ECG waves (P, QRS and T) can then be described as unbalanced transitions of the heart electric field from one stable configuration to the next and in that process the electric field center is temporarily displaced. In the initial phase of QRS, the rapidly diminishing septal electric field makes measured potentials dependent only on positive charges of the corresponding parts of the left and the right heart that lie within the lead axes. If more positive charges are near the "DOWN" electrode than near the "UP" electrode, a Q wave will be seen, otherwise an R wave is expected. Repolarization of the ventricular muscle is dampened by the early septal muscle repolarization that reduces deflection of T waves. Since the "UP" electrode of most leads is near the usually larger left ventricle muscle, T waves are in these leads positive, although of smaller amplitude and longer duration than the QRS wave in the same lead. The proposed interpretation is applied to bundle branch blocks, fascicular (hemi-) blocks and changes during heart muscle ischemia. PMID:24506945
Neutron diffraction study of antiferromagnetic ErNi3Ga9 in magnetic fields
NASA Astrophysics Data System (ADS)
Ninomiya, Hiroki; Sato, Takaaki; Matsumoto, Yuji; Moyoshi, Taketo; Nakao, Akiko; Ohishi, Kazuki; Kousaka, Yusuke; Akimitsu, Jun; Inoue, Katsuya; Ohara, Shigeo
2018-05-01
We report specific heat, magnetization, magnetoresistance, and neutron diffraction measurements of single crystals of ErNi3Ga9. This compound crystalizes in a chiral structure with space group R 32 . The erbium ions form a two-dimensional honeycomb structure. ErNi3Ga9 displays antiferromagnetic order below 6.4 K. We determined that the magnetic structure is slightly amplitude-modulated as well as antiferromagnetic with q = (0 , 0 , 0.5) . The magnetic properties are described by an Ising-like model in which the magnetic moment is always along the c-axis owing to the large uniaxial anisotropy caused by the crystalline electric field effect in the low temperature region. When the magnetic field is applied along the c-axis, a metamagnetic transition is observed around 12 kOe at 2 K. ErNi3Ga9 possesses crystal chirality, but the antisymmetric magnetic interaction, the so-called Dzyaloshinskii-Moriya (DM) interaction, does not contribute to the magnetic structure, because the magnetic moments are parallel to the DM-vector.
Statistical analysis on the signals monitoring multiphase flow patterns in pipeline-riser system
NASA Astrophysics Data System (ADS)
Ye, Jing; Guo, Liejin
2013-07-01
The signals monitoring petroleum transmission pipeline in offshore oil industry usually contain abundant information about the multiphase flow on flow assurance which includes the avoidance of most undesirable flow pattern. Therefore, extracting reliable features form these signals to analyze is an alternative way to examine the potential risks to oil platform. This paper is focused on characterizing multiphase flow patterns in pipeline-riser system that is often appeared in offshore oil industry and finding an objective criterion to describe the transition of flow patterns. Statistical analysis on pressure signal at the riser top is proposed, instead of normal prediction method based on inlet and outlet flow conditions which could not be easily determined during most situations. Besides, machine learning method (least square supported vector machine) is also performed to classify automatically the different flow patterns. The experiment results from a small-scale loop show that the proposed method is effective for analyzing the multiphase flow pattern.
Revealing the vectors of cellular identity with single-cell genomics
Wagner, Allon; Regev, Aviv; Yosef, Nir
2017-01-01
Single-cell genomics has now made it possible to create a comprehensive atlas of human cells. At the same time, it has reopened definitions of a cell’s identity and type and of the ways in which they are regulated by the cell’s molecular circuitry. Emerging computational analysis methods, especially in single-cell RNA sequencing (scRNA-seq), have already begun to reveal, in a data-driven way, the diverse simultaneous facets of a cell’s identity, from a taxonomy of discrete cell types to continuous dynamic transitions and spatial locations. These developments will eventually allow a cell to be represented as a superposition of ‘basis vectors’, each determining a different (but possibly dependent) aspect of cellular organization and function. However, computational methods must also overcome considerable challenges—from handling technical noise and data scale to forming new abstractions of biology. As the scale of single-cell experiments continues to increase, new computational approaches will be essential for constructing and characterizing a reference map of cell identities. PMID:27824854
Li, Jian-Hao; Zuehlsdorff, T J; Payne, M C; Hine, N D M
2015-05-14
We show that the transition origins of electronic excitations identified by quantified natural transition orbital (QNTO) analysis can be employed to connect potential energy surfaces (PESs) according to their character across a wide range of molecular geometries. This is achieved by locating the switching of transition origins of adiabatic potential surfaces as the geometry changes. The transition vectors for analysing transition origins are provided by linear response time-dependent density functional theory (TDDFT) calculations under the Tamm-Dancoff approximation. We study the photochemical CO ring opening of oxirane as an example and show that the results corroborate the traditional Gomer-Noyes mechanism derived experimentally. The knowledge of specific states for the reaction also agrees well with that given by previous theoretical work using TDDFT surface-hopping dynamics that was validated by high-quality quantum Monte Carlo calculations. We also show that QNTO can be useful for considerably larger and more complex systems: by projecting the excitations to those of a reference oxirane molecule, the approach is able to identify and analyse specific excitations of a trans-2,3-diphenyloxirane molecule.
Doping-dependent charge order correlations in electron-doped cuprates
da Silva Neto, Eduardo H.; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L.; Greven, Martin; Sawatzky, George A.; Keimer, Bernhard; Damascelli, Andrea
2016-01-01
Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2−xCexCuO4 and Nd2−xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2−xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates. PMID:27536726
Lin, Kevin; Lu, Yue; Shen, Jianjun; Johanning, Gary L.; Wang-Johanning, Feng
2016-01-01
Human endogenous retrovirus type K (HERV-K) Env protein was previously demonstrated to be overexpressed in human breast cancer (BC) cells and tissues. However, the molecular pathways driving the specific alterations are unknown. We now show that knockdown of its expression with an shRNA (shRNAenv) blocked BC cell proliferation, migration, and invasion. shRNAenv transduction also attenuated the ability of BC cells to form tumors, and notably prevented metastasis. Mechanistically, downregulation of HERV-K blocked expression of tumor-associated genes that included Ras, p-RSK, and p-ERK. The major upstream regulators influenced by HERV-K knockdown were p53, TGF- β1, and MYC. Of interest, when the HERV-K env gene was overexpressed in shRNAenv-transduced BC cells using an HERV-K env expression vector, Ras/Raf/MEK/ERK pathway signaling was restored. CDK5, which alters p53 phosphorylation in some cancers, was upregulated and p53 was downregulated when HERV-K was overexpressed. CDK5 is also a mediator of TGF-β1-induced epithelial-mesenchymal transition and migration in cancer cells, and is involved in tumor formation. Importantly, reductions in migration, invasion, and transformation of BC cells stably transduced with shRNAenv was reversed after adding back a vector with a synonymous mutation of HERV-K env. Taken together, these results indicate that HERV-K Env protein plays an important role in tumorigenesis and metastasis of BC. PMID:27557521
Doping-dependent charge order correlations in electron-doped cuprates.
da Silva Neto, Eduardo H; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L; Greven, Martin; Sawatzky, George A; Keimer, Bernhard; Damascelli, Andrea
2016-08-01
Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates.
Backus, Elaine A; Shugart, Holly J; Rogers, Elizabeth E; Morgan, J Kent; Shatters, Robert
2015-05-01
Xylella fastidiosa is unique among insect-transmitted plant pathogens because it is propagative but noncirculative, adhering to and multiplying on the cuticular lining of the anterior foregut. Any inoculation mechanism for X. fastidiosa must explain how bacterial cells exit the vector's stylets via the food canal and directly enter the plant. A combined egestion-salivation mechanism has been proposed to explain these unique features. Egestion is the putative outward flow of fluid from the foregut via hypothesized bidirectional pumping of the cibarium. The present study traced green fluorescent protein-expressing X. fastidiosa or fluorescent nanoparticles acquired from artificial diets by glassy-winged sharpshooters, Homalodisca vitripennis, as they were egested into simultaneously secreted saliva. X. fastidiosa or nanoparticles were shown to mix with gelling saliva to form fluorescent deposits and salivary sheaths on artificial diets, providing the first direct, conclusive evidence of egestion by any hemipteran insect. Therefore, the present results strongly support an egestion-salivation mechanism of X. fastidiosa inoculation. Results also support that a column of fluid is transiently held in the foregut without being swallowed. Evidence also supports (but does not definitively prove) that bacteria were suspended in the column of fluid during the vector's transit from diet to diet, and were egested with the held fluid. Thus, we hypothesize that sharpshooters could be true "flying syringes," especially when inoculation occurs very soon after uptake of bacteria, suggesting the new paradigm of a nonpersistent X. fastidiosa transmission mechanism.
Specific aspects of gastro-intestinal transit in children for drug delivery design.
Bowles, Alexandra; Keane, Joanne; Ernest, Terry; Clapham, David; Tuleu, Catherine
2010-08-16
This mini-review discusses relevant aspects of gastro-intestinal transit in different ages of paediatric patients with an attempt to highlight factors which should be considered in oral dosage form design, in particular multi-particulate dosage forms. This emphasis is due to multi-particulates possessing many of the benefits of liquid oral formulations (such as ease of swallowing and dose adaptability) without many of their drawbacks (such as stability issues and lack of enteric or modified release functionalities). It is commonly stated that children are not merely small adults with regards to medicines. However, there has been very little research regarding how different dosage forms transit through the gastro-intestinal tract in children compared to adults, due to both ethical and practical hurdles. Due to this lack of studies on dosage form transit in children, information which was available on the transit of food, milk and liquids (often dependent upon the age of the patient) has been used to look at how various aspects of transit vary with age and, where possible, when they reach adult values and how these may affect the fate of dosage forms in vivo: swallowability, oesophageal transit, gastric emptying and pH, intestinal and colonic transit are discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Liu, Xiang; Liang, Bo; Ngwuta, Joan; Liu, Xueqiao; Surman, Sonja; Lingemann, Matthias; Kwong, Peter D; Graham, Barney S; Collins, Peter L; Munir, Shirin
2017-11-15
Human respiratory syncytial virus (RSV) is the most prevalent worldwide cause of severe respiratory tract infection in infants and young children. Human parainfluenza virus type 1 (HPIV1) also causes severe pediatric respiratory illness, especially croup. Both viruses lack vaccines. Here, we describe the preclinical development of a bivalent RSV/HPIV1 vaccine based on a recombinant HPIV1 vector, attenuated by a stabilized mutation, that expresses RSV F protein modified for increased stability in the prefusion (pre-F) conformation by previously described disulfide bond (DS) and hydrophobic cavity-filling (Cav1) mutations. RSV F was expressed from the first or second gene position as the full-length protein or as a chimeric protein with its transmembrane and cytoplasmic tail (TMCT) domains substituted with those of HPIV1 F in an effort to direct packaging in the vector particles. All constructs were recovered by reverse genetics. The TMCT versions of RSV F were packaged in the rHPIV1 particles much more efficiently than their full-length counterparts. In hamsters, the presence of the RSV F gene, and in particular the TMCT versions, was attenuating and resulted in reduced immunogenicity. However, the vector expressing full-length RSV F from the pre-N position was immunogenic for RSV and HPIV1. It conferred complement-independent high-quality RSV-neutralizing antibodies at titers similar to those of wild-type RSV and provided protection against RSV challenge. The vectors exhibited stable RSV F expression in vitro and in vivo In conclusion, an attenuated rHPIV1 vector expressing a pre-F-stabilized form of RSV F demonstrated promising immunogenicity and should be further developed as an intranasal pediatric vaccine. IMPORTANCE RSV and HPIV1 are major viral causes of acute pediatric respiratory illness for which no vaccines or suitable antiviral drugs are available. The RSV F glycoprotein is the major RSV neutralization antigen. We used a rHPIV1 vector, bearing a stabilized attenuating mutation, to express the RSV F glycoprotein bearing amino acid substitutions that increase its stability in the pre-F form, the most immunogenic form that elicits highly functional virus-neutralizing antibodies. RSV F was expressed from the pre-N or N-P gene position of the rHPIV1 vector as a full-length protein or as a chimeric form with its TMCT domain derived from HPIV1 F. TMCT modification greatly increased packaging of RSV F into the vector particles but also increased vector attenuation in vivo , resulting in reduced immunogenicity. In contrast, full-length RSV F expressed from the pre-N position was immunogenic, eliciting complement-independent RSV-neutralizing antibodies and providing protection against RSV challenge. Copyright © 2017 American Society for Microbiology.
Measurement of aspheric mirror by nanoprofiler using normal vector tracing
NASA Astrophysics Data System (ADS)
Kitayama, Takao; Shiraji, Hiroki; Yamamura, Kazuya; Endo, Katsuyoshi
2016-09-01
Aspheric or free-form optics with high accuracy are necessary in many fields such as third-generation synchrotron radiation and extreme-ultraviolet lithography. Therefore the demand of measurement method for aspherical or free-form surface with nanometer accuracy increases. Purpose of our study is to develop a non-contact measurement technology for aspheric or free-form surfaces directly with high repeatability. To achieve this purpose we have developed threedimensional Nanoprofiler which detects normal vectors of sample surface. The measurement principle is based on the straightness of laser light and the accurate motion of rotational goniometers. This machine consists of four rotational stages, one translational stage and optical head which has the quadrant photodiode (QPD) and laser source. In this measurement method, we conform the incident light beam to reflect the beam by controlling five stages and determine the normal vectors and the coordinates of the surface from signal of goniometers, translational stage and QPD. We can obtain three-dimensional figure from the normal vectors and their coordinates by surface reconstruction algorithm. To evaluate performance of this machine we measure a concave aspheric mirror with diameter of 150 mm. As a result we achieve to measure large area of 150mm diameter. And we observe influence of systematic errors which the machine has. Then we simulated the influence and subtracted it from measurement result.
Amuzu, Hilaria; Wilson, Michael D; Boakye, Daniel A
2010-09-14
Two lymphatic filariasis endemic communities Mampong and Hwida in Ghana have been regularly monitored for impact on transmission after annual mass drug administration (MDA) with albendazole and ivermectin. After six MDAs even though the ABR for Mampong was 55883/person/year and that of Hwida was 2494/person/year, they both had ATPs of 15.21 infective larvae/person/year. Interestingly the human microfilaraemia levels had reduced significantly from 14% to 0% at Mampong and 12% to 3% at Hwida. In an attempt to understand this anomaly, we collected mosquitoes over a 5-month period using human landing catches to determine the species composition, the number of cibarial teeth, the lengths and widths of the cibarium and the cibarial dome of the vector populations. Out of 2553 mosquitoes caught at Mampong, 42.6% were An. gambiae s.l. All 280 identified further by PCR were An. gambiae s.s (275 M and 5 S molecular forms). At Hwida, 112 mosquitoes were obtained; 67 (59.8%) were An. gambiae s.l, comprised of 40 (59.7%) An. melas, 24 (35.8%) An. gambiae s.s (17 and 5 M and S molecular forms respectively) and 3 (4.5%) unidentified. The mean number of teeth for An. melas was 14.1 (median = 14, range = 12-15), An. gambiae s.s., 15.7 (median = 15, range = 13-19) M form 15.5 (median = 15 range = 13-19) and S form 16 (median = 16, range 15-17). The observed differences in teeth numbers were significantly different between An. melas and An. gambiae s.s (p = 0.004), and the M form (p = 0.032) and the S form (p = 0.002). In this study, An. gambiae s.s was the main vector at Mampong and was found to possess significantly more cibarial teeth than An. melas, the principal vector at Hwida. We postulate that the different impact observed after 6 MDAs may be due to An. gambiae s.s exhibiting 'facilitation' at Mampong and at Hwida An. melas the main vector exhibits 'limitation'. Thus it may be necessary to compliment MDA with vector control to achieve interruption of transmission in areas where An. melas may exhibit limitation.
Moisture induced polymorphic transition of mannitol and its morphological transformation.
Yoshinari, Tomohiro; Forbes, Robert T; York, Peter; Kawashima, Yoshiaki
2002-10-24
The effects of moisture on the polymorphic transition of crystalline mannitol were investigated. Mannitol has three polymorphic forms, and was classified as alpha, beta, and delta form, respectively, by Walter-Lévy (C.R. Acad. Sc. Paris Ser. C (1968) 267, 1779). The water uptake of delta form crystalline was greater than that of the beta form when each crystalline form was stored at 97%RH (25 degrees C). The different powder X-ray diffraction patterns obtained before and after humidification confirmed that a moisture induced polymorphic transition from the delta to beta form had occurred. Morphological changes were also observed with an increase in the specific surface area of the delta sample from 0.4 to 2.3 m(2)/g being found on exposure to humidity. Thus it was suggested that the observed higher hygroscopicity of the newly formed beta form arose from the gradual increase in the surface area with the polymorphic transition from the delta to beta form. When considering the mechanism of this polymorphic transition, the results from molecular modelling, cross-polarisation/magic angle spinning (CP/MAS) solid-state NMR spectra and scanning electron-micrographs suggest that water molecules act as a molecular loosener to facilitate conversion from delta to the beta form as a result of multi-nucleation. Copyright 2002 Elsevier Science B.V.
Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations
Müller, Niklas; Schlichting, Sören; Sharma, Sayantan
2016-09-30
Here, we present a first-principles study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian S U ( N c ) and Abelian U ( 1 ) gauge fields. By investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the chiral magnetic and chiral separation effect leads to the formation of a propagating wave. Furthermore, we analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on themore » amount of explicit chiral symmetry breaking due to finite quark masses.« less
Adenoviral vector gene delivery via the round window membrane in guinea pigs.
Suzuki, Mitsuya; Yamasoba, Tatsuya; Suzukawa, Keigo; Kaga, Kimitaka
2003-10-27
We have found that damage from a local anesthetic solution containing phenol permitted beta-galactosidase (beta-gal) gene delivery to the guinea pig inner ear via the round window membrane (RWM). RWM damage was evident as degeneration of the outer epithelium. After adenovirus lacZ vector was applied to the damaged RWM, immunohistochemistry showed strong beta-gal expression in the RWM, mesothelial cells, organ of Corti, spiral limbus, spiral ligament and spiral ganglion. In the vestibular labyrinth, expression was seen in the sensory and supporting cells, transitional cells, and the dark-cell area. Thus, adenovirus can transfect a variety of inner ear cells in the guinea pig through a damaged RWM.
Molecular dynamics simulations of DNA-polycation complexes
NASA Astrophysics Data System (ADS)
Ziebarth, Jesse; Wang, Yongmei
2008-03-01
A necessary step in the preparation of DNA for use in gene therapy is the packaging of DNA with a vector that can condense DNA and provide protection from degrading enzymes. Because of the immunoresponses caused by viral vectors, there has been interest in developing synthetic gene therapy vectors, with polycations emerging as promising candidates. Molecular dynamics simulations of the DNA duplex CGCGAATTCGCG in the presence of 20 monomer long sequences of the polycations, poly-L-lysine (PLL) and polyethyleneimine (PEI), with explicit counterions and TIP3P water, are performed to provide insight into the structure and formation of DNA polyplexes. After an initial separation of approximately 50 å, the DNA and polycation come together and form a stable complex within 10 ns. The DNA does not undergo any major structural changes upon complexation and remains in the B-form. In the formed complex, the charged amine groups of the polycation mainly interact with DNA phosphate groups, and rarely occupy electronegative sites in either the major or minor grooves. Differences between complexation with PEI and PLL will be discussed.
Dynamic analysis of suspension cable based on vector form intrinsic finite element method
NASA Astrophysics Data System (ADS)
Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun
2017-10-01
A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.
Zollanvari, Amin; Dougherty, Edward R
2016-12-01
In classification, prior knowledge is incorporated in a Bayesian framework by assuming that the feature-label distribution belongs to an uncertainty class of feature-label distributions governed by a prior distribution. A posterior distribution is then derived from the prior and the sample data. An optimal Bayesian classifier (OBC) minimizes the expected misclassification error relative to the posterior distribution. From an application perspective, prior construction is critical. The prior distribution is formed by mapping a set of mathematical relations among the features and labels, the prior knowledge, into a distribution governing the probability mass across the uncertainty class. In this paper, we consider prior knowledge in the form of stochastic differential equations (SDEs). We consider a vector SDE in integral form involving a drift vector and dispersion matrix. Having constructed the prior, we develop the optimal Bayesian classifier between two models and examine, via synthetic experiments, the effects of uncertainty in the drift vector and dispersion matrix. We apply the theory to a set of SDEs for the purpose of differentiating the evolutionary history between two species.
The optical analogy for vector fields
NASA Technical Reports Server (NTRS)
Parker, E. N. (Editor)
1991-01-01
This paper develops the optical analogy for a general vector field. The optical analogy allows the examination of certain aspects of a vector field that are not otherwise readily accessible. In particular, in the cases of a stationary Eulerian flow v of an ideal fluid and a magnetostatic field B, the vectors v and B have surface loci in common with their curls. The intrinsic discontinuities around local maxima in absolute values of v and B take the form of vortex sheets and current sheets, respectively, the former playing a fundamental role in the development of hydrodyamic turbulence and the latter playing a major role in heating the X-ray coronas of stars and galaxies.
32 CFR Appendix B to Part 77 - DD Form 2581, Operation Transition Employer Registration
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 1 2010-07-01 2010-07-01 false DD Form 2581, Operation Transition Employer Registration B Appendix B to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... to Part 77—DD Form 2581, Operation Transition Employer Registration ER10AU94.042 ER10AU94.043 ...
Improvements in Block-Krylov Ritz Vectors and the Boundary Flexibility Method of Component Synthesis
NASA Technical Reports Server (NTRS)
Carney, Kelly Scott
1997-01-01
A method of dynamic substructuring is presented which utilizes a set of static Ritz vectors as a replacement for normal eigenvectors in component mode synthesis. This set of Ritz vectors is generated in a recurrence relationship, proposed by Wilson, which has the form of a block-Krylov subspace. The initial seed to the recurrence algorithm is based upon the boundary flexibility vectors of the component. Improvements have been made in the formulation of the initial seed to the Krylov sequence, through the use of block-filtering. A method to shift the Krylov sequence to create Ritz vectors that will represent the dynamic behavior of the component at target frequencies, the target frequency being determined by the applied forcing functions, has been developed. A method to terminate the Krylov sequence has also been developed. Various orthonormalization schemes have been developed and evaluated, including the Cholesky/QR method. Several auxiliary theorems and proofs which illustrate issues in component mode synthesis and loss of orthogonality in the Krylov sequence have also been presented. The resulting methodology is applicable to both fixed and free- interface boundary components, and results in a general component model appropriate for any type of dynamic analysis. The accuracy is found to be comparable to that of component synthesis based upon normal modes, using fewer generalized coordinates. In addition, the block-Krylov recurrence algorithm is a series of static solutions and so requires significantly less computation than solving the normal eigenspace problem. The requirement for less vectors to form the component, coupled with the lower computational expense of calculating these Ritz vectors, combine to create a method more efficient than traditional component mode synthesis.
Gholizadeh, S; Firooziyan, S; Ladonni, H; Hajipirloo, H Mohammadzadeh; Djadid, N Dinparast; Hosseini, A; Raz, A
2015-06-01
Anopheles (Cellia) stephensi Liston 1901 is known as an Asian malaria vector. Three biological forms, namely "mysorensis", "intermediate", and "type" have been earlier reported in this species. Nevertheless, the present morphological and molecular information is insufficient to diagnose these forms. During this investigation, An. stephensi biological forms were morphologically identified and sequenced for odorant-binding protein 1 (Obp1) gene. Also, intron I sequences were used to construct phylogenetic trees. Despite nucleotide sequence variation in exon of AsteObp1, nearly 100% identity was observed at the amino acid level among the three biological forms. In order to overcome difficulties in using egg morphology characters, intron I sequences of An. stephensi Obp1 opens new molecular way to the identification of the main Asian malaria vector biological forms. However, multidisciplinary studies are needed to establish the taxonomic status of An. stephensi. Copyright © 2015 Elsevier B.V. All rights reserved.
Holography for Heavy Ions Collisions at LHC and NICA
NASA Astrophysics Data System (ADS)
Aref'eva, Irina
2017-12-01
This is a contribution for the Proceedings of 5th International Conference on New Frontiers in Physics (ICNFP 2016), held at Crete, 6-14 July 2016. Our goal is to obtain phenomenologically reliable insights for the physics of the quark-gluon plasma (QGP) from the holography. I briefly review how in the holographical setup one can describe the QGP formation in heavy ion collisions and how to get quantitatively the main characteristics of the QGP formation - the total multiplicity and the thermalization time. To fit the experimental form of dependence of total multiplicity on energy, obtained at LHC, we have to deal with a special anisotropic holographic model, related with the Lifshitz-type background. Our conjecture is that this Lifshitz-type background with non-zero chemical potential can be used to describe future data expected from NICA. In particular, we present the results of calculations the holographic confinement/deconfinement phase transition in the (µ, T) (chemical potential, temperature) plane in this anizotropic background and show the dependence of the transition line on the orientation of the quark pair. This dependence leads to a non-sharp character of physical confinement/deconfinement phase in the (µ, T)-plane. We use the bottom-up soft wall approach incorporating quark confinement deforming factor and vector field providing the non-zero chemical potential. In this model we also estimate the holographic photon production.
NASA Astrophysics Data System (ADS)
Mock, Alyssa; Korlacki, Rafał; Briley, Chad; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias
2017-12-01
We employ an eigenpolarization model including the description of direction dependent excitonic effects for rendering critical point structures within the dielectric function tensor of monoclinic β -Ga2O3 yielding a comprehensive analysis of generalized ellipsometry data obtained from 0.75-9 eV. The eigenpolarization model permits complete description of the dielectric response. We obtain, for single-electron and excitonic band-to-band transitions, anisotropic critical point model parameters including their polarization vectors within the monoclinic lattice. We compare our experimental analysis with results from density functional theory calculations performed using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional. We present and discuss the order of the fundamental direct band-to-band transitions and their polarization selection rules, the electron and hole effective mass parameters for the three lowest band-to-band transitions, and their excitonic contributions. We find that the effective masses for holes are highly anisotropic and correlate with the selection rules for the fundamental band-to-band transitions. The observed transitions are polarized close to the direction of the lowest hole effective mass for the valence band participating in the transition.
Where Am I? A Change of Basis Project
ERIC Educational Resources Information Center
Selby, Christina
2016-01-01
Linear algebra students are typically introduced to the problem of how to convert from one coordinate system to another in a very abstract way. Often, two bases for a given vector space are provided, and students are taught how to determine a transition matrix to be used for changing coordinates. If students are successful in memorizing this…
A Flow Visualization Study of Laminar/Turbulent Transition in a Curved Channel
1987-03-01
convected down- stream, to deform as shown in Figure 16. One possible arrangement of velocity vectors in the radial plane which could cause such a...Re 2231 KODAK RECORDING FEILD ASA 1,000 (f2.8, B) 10 ....... .... . . . . . . .. Figure C.33 IV-4 2100-2330 15 FEB 1987 8.0 % FLOW (rotameter) MEAN
Transit Duration Variations due to Secular Interactions in Systems with Tightly-packed Inner Planets
NASA Astrophysics Data System (ADS)
Boley, Aaron; Van Laerhoven, Christa; Granados Contreras, A. Paula
2018-04-01
Secular interactions among planets in multi-planet systems will lead to variations in orbital inclinations and to the precession of orbital nodes. Taking known system architectures at face value, we calculate orbital precession rates for planets in tightly-packed systems using classical second-order secular theory, in which the orientation of the orbits can be described as a vector sum of eigenmodes and the eigenstructure is determined only by the masses and semi-major axes of the planets. Using this framework, we identify systems that have fast precession frequencies, and use those systems to explore the range of transit duration variation that could occur using amplitudes that are consistent with tightly-packed planetary systems. We then further assess how transit duration variations could be used in practice.
Cairoli, Andrea; Piovani, Duccio; Jensen, Henrik Jeldtoft
2014-12-31
We propose a new procedure to monitor and forecast the onset of transitions in high-dimensional complex systems. We describe our procedure by an application to the tangled nature model of evolutionary ecology. The quasistable configurations of the full stochastic dynamics are taken as input for a stability analysis by means of the deterministic mean-field equations. Numerical analysis of the high-dimensional stability matrix allows us to identify unstable directions associated with eigenvalues with a positive real part. The overlap of the instantaneous configuration vector of the full stochastic system with the eigenvectors of the unstable directions of the deterministic mean-field approximation is found to be a good early warning of the transitions occurring intermittently.
Killing spinors are Killing vector fields in Riemannian supergeometry
NASA Astrophysics Data System (ADS)
Alekseevsky, D. V.; Cortés, V.; Devchand, C.; Semmelmann, U.
1998-06-01
A supermanifold M is canonically associated to any pseudo-Riemannian spin manifold ( M0, g0). Extending the metric g0 to a field g of bilinear forms g( p) on TpM, pɛM0, the pseudo-Riemannian supergeometry of ( M, g) is formulated as G-structure on M, where G is a supergroup with even part G 0 ≊ Spin(k, l); (k, l) the signature of ( M0, go). Killing vector fields on ( M, g) are, by definition, infinitesimal automorphisms of this G-structure. For every spinor field s there exists a corresponding odd vector field Xs on M. Our main result is that Xs is a Killing vector field on ( M, g) if and only if s is a twistor spinor. In particular, any Killing spinor s defines a Killing vector field Xs.
Viruses vector control proposal: genus Aedes emphasis.
Reis, Nelson Nogueira; Silva, Alcino Lázaro da; Reis, Elma Pereira Guedes; Silva, Flávia Chaves E; Reis, Igor Guedes Nogueira
The dengue fever is a major public health problem in the world. In Brazil, in 2015, there were 1,534,932 cases, being 20,320 cases of severe form, and 811 deaths related to this disease. The distribution of Aedes aegypti, the vector, is extensive. Recently, Zika and Chikungunya viruses had arisen, sharing the same vector as dengue and became a huge public health issue. Without specific treatment, it is urgently required as an effective vector control. This article is focused on reviewing vector control strategies, their effectiveness, viability and economical impact. Among all, the Sterile Insect Technique is highlighted as the best option to be adopted in Brazil, once it is largely effectively used in the USA and Mexico for plagues related to agribusiness. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
Parasite-mediated interactions within the insect vector: Trypanosoma rangeli strategies.
Garcia, Eloi S; Castro, Daniele P; Figueiredo, Marcela B; Azambuja, Patrícia
2012-05-30
Trypanosoma rangeli is a protozoan that is non-pathogenic for humans and other mammals but causes pathology in the genus Rhodnius. T. rangeli and R. prolixus is an excellent model for studying the parasite-vector interaction, but its cycle in invertebrates remains unclear. The vector becomes infected on ingesting blood containing parasites, which subsequently develop in the gut, hemolymph and salivary glands producing short and large epimastigotes and metacyclic trypomastigotes, which are the infective forms. The importance of the T. rangeli cycle is the flagellate penetration into the gut cells and invasion of the salivary glands. The establishment of the parasite depends on the alteration of some vector defense mechanisms. Herein, we present our understanding of T. rangeli infection on the vector physiology, including gut and salivary gland invasions, hemolymph reactions and behavior alteration.
VEST: Abstract vector calculus simplification in Mathematica
NASA Astrophysics Data System (ADS)
Squire, J.; Burby, J.; Qin, H.
2014-01-01
We present a new package, VEST (Vector Einstein Summation Tools), that performs abstract vector calculus computations in Mathematica. Through the use of index notation, VEST is able to reduce three-dimensional scalar and vector expressions of a very general type to a well defined standard form. In addition, utilizing properties of the Levi-Civita symbol, the program can derive types of multi-term vector identities that are not recognized by reduction, subsequently applying these to simplify large expressions. In a companion paper Burby et al. (2013) [12], we employ VEST in the automation of the calculation of high-order Lagrangians for the single particle guiding center system in plasma physics, a computation which illustrates its ability to handle very large expressions. VEST has been designed to be simple and intuitive to use, both for basic checking of work and more involved computations.
Piezoelectrically forced vibrations of electroded doubly rotated quartz plates by state space method
NASA Technical Reports Server (NTRS)
Chander, R.
1990-01-01
The purpose of this investigation is to develop an analytical method to study the vibration characteristics of piezoelectrically forced quartz plates. The procedure can be summarized as follows. The three dimensional governing equations of piezoelectricity, the constitutive equations and the strain-displacement relationships are used in deriving the final equations. For this purpose, a state vector consisting of stresses and displacements are chosen and the above equations are manipulated to obtain the projection of the derivative of the state vector with respect to the thickness coordinate on to the state vector itself. The solution to the state vector at any plane is then easily obtained in a closed form in terms of the state vector quantities at a reference plane. To simplify the analysis, simple thickness mode and plane strain approximations are used.
Comparison of Linear and Nonlinear Processing with Acoustic Vector Sensors
2008-09-01
can write the general form of the time invariant vector sensor planewave response as mik rm mv V e = i , (2.21) where mik rxm xmv V e = i , mik rym...ymv V e = i , and mik rzm zmv V e = i . Using the vector geometry defined, the response of each component is defined by cosxm mV V θ= , sin...velocity values relative to the other by the acoustic impedance, ρc, according to Equation (2.19) , e.g. , mik r mpm pm pm Pv V e V cρ = =i
NASA Technical Reports Server (NTRS)
Mullenmeister, Paul
1988-01-01
The quasi-geostrophic omega-equation in flux form is developed as an example of a Poisson problem over a spherical shell. Solutions of this equation are obtained by applying a two-parameter Chebyshev solver in vector layout for CDC 200 series computers. The performance of this vectorized algorithm greatly exceeds the performance of its scalar analog. The algorithm generates solutions of the omega-equation which are compared with the omega fields calculated with the aid of the mass continuity equation.
Control of Electromagnetic Scattering by Antenna Impedance Loading
1974-07-01
system and whose profile in a plane perpendicular to the z axis is the closed curve c. Let n be an outward unit vector to c and let t be a unit... vector in the tangential direction, such that t, n and z form a right-hand system. Then, on the surface, the impedance boundary con- dition is...and is given by J Mn x z)H* where n is the unit outward normal vector to the surface. Using the GTD solution for the total magnetic field, the
The Plasmodium bottleneck: malaria parasite losses in the mosquito vector
Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo
2014-01-01
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005
2014-01-01
and distance between all of the vector ambiguity pairs for the combined N−sequences. To simplify our derivation, we define the center of ambiguity (COA...modulo N . The resulting structure of the N sequences ensures that two successive RSNS vectors (paired terms from all N sequences) when considered...represented by a vector , Xh = [x1,h, x2,h, . . . , xN,h] T , of N paired integers from each se- quence at h. For example, a left-shifted, three-sequence
Vectorized image segmentation via trixel agglomeration
Prasad, Lakshman [Los Alamos, NM; Skourikhine, Alexei N [Los Alamos, NM
2006-10-24
A computer implemented method transforms an image comprised of pixels into a vectorized image specified by a plurality of polygons that can be subsequently used to aid in image processing and understanding. The pixelated image is processed to extract edge pixels that separate different colors and a constrained Delaunay triangulation of the edge pixels forms a plurality of triangles having edges that cover the pixelated image. A color for each one of the plurality of triangles is determined from the color pixels within each triangle. A filter is formed with a set of grouping rules related to features of the pixelated image and applied to the plurality of triangle edges to merge adjacent triangles consistent with the filter into polygons having a plurality of vertices. The pixelated image may be then reformed into an array of the polygons, that can be represented collectively and efficiently by standard vector image.
NASA Technical Reports Server (NTRS)
Iverson, David L. (Inventor)
2008-01-01
The present invention relates to an Inductive Monitoring System (IMS), its software implementations, hardware embodiments and applications. Training data is received, typically nominal system data acquired from sensors in normally operating systems or from detailed system simulations. The training data is formed into vectors that are used to generate a knowledge database having clusters of nominal operating regions therein. IMS monitors a system's performance or health by comparing cluster parameters in the knowledge database with incoming sensor data from a monitored-system formed into vectors. Nominal performance is concluded when a monitored-system vector is determined to lie within a nominal operating region cluster or lies sufficiently close to a such a cluster as determined by a threshold value and a distance metric. Some embodiments of IMS include cluster indexing and retrieval methods that increase the execution speed of IMS.
Shoelace Formula: Connecting the Area of a Polygon and the Vector Cross Product
ERIC Educational Resources Information Center
Lee, Younhee; Lim, Woong
2017-01-01
Understanding how one representation connects to another and how the essential ideas in that relationship are generalized can result in a mathematical theorem or a formula. In this article, the authors demonstrate this process by connecting a vector cross product in algebraic form to a geometric representation and applying a key mathematical idea…
Early Error Detection: An Action-Research Experience Teaching Vector Calculus
ERIC Educational Resources Information Center
Añino, María Magdalena; Merino, Gabriela; Miyara, Alberto; Perassi, Marisol; Ravera, Emiliano; Pita, Gustavo; Waigandt, Diana
2014-01-01
This paper describes an action-research experience carried out with second year students at the School of Engineering of the National University of Entre Ríos, Argentina. Vector calculus students played an active role in their own learning process. They were required to present weekly reports, in both oral and written forms, on the topics studied,…
Stikic, Maja; Berka, Chris; Levendowski, Daniel J.; Rubio, Roberto F.; Tan, Veasna; Korszen, Stephanie; Barba, Douglas; Wurzer, David
2014-01-01
The objective of this study was to investigate the feasibility of physiological metrics such as ECG-derived heart rate and EEG-derived cognitive workload and engagement as potential predictors of performance on different training tasks. An unsupervised approach based on self-organizing neural network (NN) was utilized to model cognitive state changes over time. The feature vector comprised EEG-engagement, EEG-workload, and heart rate metrics, all self-normalized to account for individual differences. During the competitive training process, a linear topology was developed where the feature vectors similar to each other activated the same NN nodes. The NN model was trained and auto-validated on combat marksmanship training data from 51 participants that were required to make “deadly force decisions” in challenging combat scenarios. The trained NN model was cross validated using 10-fold cross-validation. It was also validated on a golf study in which additional 22 participants were asked to complete 10 sessions of 10 putts each. Temporal sequences of the activated nodes for both studies followed the same pattern of changes, demonstrating the generalization capabilities of the approach. Most node transition changes were local, but important events typically caused significant changes in the physiological metrics, as evidenced by larger state changes. This was investigated by calculating a transition score as the sum of subsequent state transitions between the activated NN nodes. Correlation analysis demonstrated statistically significant correlations between the transition scores and subjects' performances in both studies. This paper explored the hypothesis that temporal sequences of physiological changes comprise the discriminative patterns for performance prediction. These physiological markers could be utilized in future training improvement systems (e.g., through neurofeedback), and applied across a variety of training environments. PMID:25414629
Practical auxiliary basis implementation of Rung 3.5 functionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janesko, Benjamin G., E-mail: b.janesko@tcu.edu; Scalmani, Giovanni; Frisch, Michael J.
2014-07-21
Approximate exchange-correlation functionals for Kohn-Sham density functional theory often benefit from incorporating exact exchange. Exact exchange is constructed from the noninteracting reference system's nonlocal one-particle density matrix γ(r{sup -vector},r{sup -vector}′). Rung 3.5 functionals attempt to balance the strengths and limitations of exact exchange using a new ingredient, a projection of γ(r{sup -vector},r{sup -vector} ′) onto a semilocal model density matrix γ{sub SL}(ρ(r{sup -vector}),∇ρ(r{sup -vector}),r{sup -vector}−r{sup -vector} ′). γ{sub SL} depends on the electron density ρ(r{sup -vector}) at reference point r{sup -vector}, and is closely related to semilocal model exchange holes. We present a practical implementation of Rung 3.5 functionals, expandingmore » the r{sup -vector}−r{sup -vector} ′ dependence of γ{sub SL} in an auxiliary basis set. Energies and energy derivatives are obtained from 3D numerical integration as in standard semilocal functionals. We also present numerical tests of a range of properties, including molecular thermochemistry and kinetics, geometries and vibrational frequencies, and bandgaps and excitation energies. Rung 3.5 functionals typically provide accuracy intermediate between semilocal and hybrid approximations. Nonlocal potential contributions from γ{sub SL} yield interesting successes and failures for band structures and excitation energies. The results enable and motivate continued exploration of Rung 3.5 functional forms.« less
Constraints on primordial magnetic fields from inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Daniel; Kobayashi, Takeshi, E-mail: drgreen@cita.utoronto.ca, E-mail: takeshi.kobayashi@sissa.it
2016-03-01
We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T{sub reh} ∼< 10{sup 2} MeV can magnetic fields of 10{sup −15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative timemore » kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.« less
[Distribution of Lutzomyia longipalpis in the Argentine Mesopotamia, 2010].
Salomon, Oscar D; Fernandez, Maria S; Santini, María S; Saavedra, Silvina; Montiel, Natalia; Ramos, Marina A; Rosa, Juan R; Szelag, Enrique A; Martinez, Mariela F
2011-01-01
The first case of visceral leishmaniasis (VL) in Argentina was reported in 2006 in Posadas, Misiones. During the summer 2008-2009 Lutzomyia longipalpis, the VL vector, and canine VL cases were already spread along the province of Corrientes. In order to know the distribution of VL risk, systematic captures of the vector were performed between February and March 2010, in 18 areas of the provinces of Entre Ríos and Corrientes, and the city of Puerto Iguazú, Misiones, with a total of 313 traps/night. We confirmed the presence of Lu. longipalpis, for the first time in Chajarí (Entre Ríos), Alvear, La Cruz, Curuzú Cuatiá and Bella Vista (Corrientes), and Puerto Iguazú (Misiones). In Santo Tome and Monte Caseros (Corrientes), where the vector had been previously reported, traps with more samples were obtained with 830 and 126 Lu. Longipalpis trap/site/night respectively. These results show that the vector of urban VL continues spreading in the Argentine territory. Simultaneously, the spread of the parasite and the resulting human VL cases are associated with the dispersion of reservoirs, infected dogs, with or without clinical symptoms or signs, due to human transit.
NASA Astrophysics Data System (ADS)
Kamano, Hiroyuki
2018-05-01
We give an overview of our recent efforts to extract electromagnetic transition form factors for N^* and Δ^* baryon resonances through a global analysis of the single-pion electroproductions off the proton within the ANL-Osaka dynamical coupled-channels approach. Preliminary results for the extracted form factors associated with Δ(1232)3/2^+ and the Roper resonance are presented, with emphasis on the complex-valued nature of the transition form factors defined by poles.
D → π and D → K semileptonic form factors with Nf = 2 + 1 + 1 twisted mass fermions
NASA Astrophysics Data System (ADS)
Lubicz, Vittorio; Riggio, Lorenzo; Salerno, Giorgio; Simula, Silvano; Tarantino, Cecilia
2018-03-01
We present a lattice determination of the vector and scalar form factors of the D → π(K)lv semileptonic decays, which are relevant for the extraction of the CKM matrix elements |Vcd| and |Vcs| from experimental data. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 +1 flavors of dynamical quarks. We simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV. The matrix elements of both vector and scalar currents are determined for a plenty of kinematical conditions in which parent and child mesons are either moving or at rest. Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data and included in the decomposition of the current matrix elements in terms of additional form factors. After the extrapolations to the physical pion mass and to the continuum limit the vector and scalar form factors are determined in the whole kinematical region from q2 = 0 up to qmax2 = (MD - Mπ(K))2 accessible in the experiments, obtaining a good overall agreement with experiments, except in the region at high values of q2 where some deviations are visible.
Induction of humoral responses to BHV-1 glycoprotein D expressed by HSV-1 amplicon vectors
Blanc, Andrea Maria; Berois, Mabel Beatriz; Tomé, Lorena Magalí; Epstein, Alberto L.
2012-01-01
Herpes simplex virus type-1 (HSV-1) amplicon vectors are versatile and useful tools for transferring genes into cells that are capable of stimulating a specific immune response to their expressed antigens. In this work, two HSV-1-derived amplicon vectors were generated. One of these expressed the full-length glycoprotein D (gD) of bovine herpesvirus 1 while the second expressed the truncated form of gD (gDtr) which lacked the trans-membrane region. After evaluating gD expression in the infected cells, the ability of both vectors to induce a specific gD immune response was tested in BALB/c mice that were intramuscularly immunized. Specific serum antibody responses were detected in mice inoculated with both vectors, and the response against truncated gD was higher than the response against full-length gD. These results reinforce previous findings that HSV-1 amplicon vectors can potentially deliver antigens to animals and highlight the prospective use of these vectors for treating infectious bovine rhinotracheitis disease. PMID:22437537
Battisti, James M; Lawyer, Phillip G; Minnick, Michael F
2015-01-01
Bartonella bacilliformis is a pathogenic bacterium transmitted to humans presumably by bites of phlebotomine sand flies, infection with which results in a bi-phasic syndrome termed Carrión's disease. After constructing a low-passage GFP-labeled strain of B. bacilliformis, we artificially infected Lutzomyia verrucarum and L. longipalpis populations, and subsequently monitored colonization of sand flies by fluorescence microscopy. Initially, colonization of the two fly species was indistinguishable, with bacteria exhibiting a high degree of motility, yet still confined to the abdominal midgut. After 48 h, B. bacilliformis transitioned from bacillus-shape to a non-motile, small coccoid form and appeared to be digested along with the blood meal in both fly species. Differences in colonization patterns became evident at 72 h when B. bacilliformis was observed at relatively high density outside the peritrophic membrane in the lumen of the midgut in L. verrucarum, but colonization of L. longipalpis was limited to the blood meal within the intra-peritrophic space of the abdominal midgut, and the majority of bacteria were digested along with the blood meal by day 7. The viability of B. bacilliformis in L. longipalpis was assessed by artificially infecting, homogenizing, and plating for determination of colony-forming units in individual flies over a 13-d time course. Bacteria remained viable at relatively high density for approximately seven days, suggesting that L. longipalpis could potentially serve as a vector. The capacity of L. longipalpis to transmit viable B. bacilliformis from infected to uninfected meals was analyzed via interrupted feeds. No viable bacteria were retrieved from uninfected blood meals in these experiments. This study provides significant information toward understanding colonization of sand flies by B. bacilliformis and also demonstrates the utility of L. longipalpis as a user-friendly, live-vector model system for studying this severely neglected tropical disease.
Battisti, James M.; Lawyer, Phillip G.; Minnick, Michael F.
2015-01-01
Bartonella bacilliformis is a pathogenic bacterium transmitted to humans presumably by bites of phlebotomine sand flies, infection with which results in a bi-phasic syndrome termed Carrión’s disease. After constructing a low-passage GFP-labeled strain of B. bacilliformis, we artificially infected Lutzomyia verrucarum and L. longipalpis populations, and subsequently monitored colonization of sand flies by fluorescence microscopy. Initially, colonization of the two fly species was indistinguishable, with bacteria exhibiting a high degree of motility, yet still confined to the abdominal midgut. After 48h, B. bacilliformis transitioned from bacillus-shape to a non-motile, small coccoid form and appeared to be digested along with the blood meal in both fly species. Differences in colonization patterns became evident at 72h when B. bacilliformis was observed at relatively high density outside the peritrophic membrane in the lumen of the midgut in L. verrucarum, but colonization of L. longipalpis was limited to the blood meal within the intra-peritrophic space of the abdominal midgut, and the majority of bacteria were digested along with the blood meal by day 7. The viability of B. bacilliformis in L. longipalpis was assessed by artificially infecting, homogenizing, and plating for determination of colony-forming units in individual flies over a 13-d time course. Bacteria remained viable at relatively high density for approximately seven days, suggesting that L. longipalpis could potentially serve as a vector. The capacity of L. longipalpis to transmit viable B. bacilliformis from infected to uninfected meals was analyzed via interrupted feeds. No viable bacteria were retrieved from uninfected blood meals in these experiments. This study provides significant information toward understanding colonization of sand flies by B. bacilliformis and also demonstrates the utility of L. longipalpis as a user-friendly, live-vector model system for studying this severely neglected tropical disease. PMID:26436553
Brito, Raíssa N; Gorla, David E; Diotaiuti, Liléia; Gomes, Anália C F; Souza, Rita C M; Abad-Franch, Fernando
2017-11-01
Insecticide spraying efficiently controls house infestation by triatomine bugs, the vectors of Trypanosoma cruzi. The strategy, however, is ineffective against sylvatic triatomines, which can transmit Chagas disease by invading (without colonizing) man-made structures. Despite growing awareness of the relevance of these transmission dynamics, the drivers of house invasion by sylvatic triatomines remain poorly understood. About 12,000 sylvatic triatomines were caught during routine surveillance in houses of Tocantins state, Brazil, in 2005-2013. Using negative binomial regression, information-theoretic model evaluation/averaging, and external model validation, we investigated the effects of regional (Amazon/Cerrado), landscape (preservation/disturbance), and climate covariates (temperature, rainfall) on the municipality-aggregated numbers of house-invading Rhodnius pictipes, R. robustus, R. neglectus, and Panstrongylus geniculatus. House invasion by R. pictipes and R. robustus was overall more frequent in the Amazon biome, tended to increase in municipalities with more well-preserved land, and decreased in rainier municipalities. Across species, invasion decreased with higher landscape-disturbance levels and in hotter-day municipalities. Invasion by R. neglectus and P. geniculatus increased somewhat with more land at intermediate disturbance and peaked in average-rainfall municipalities. Temperature effects were more pronounced on P. geniculatus than on Rhodnius spp. We report widespread, frequent house invasion by sylvatic triatomines in the Amazon-Cerrado transition. Our analyses indicate that readily available environmental metrics may help predict the risk of contact between sylvatic triatomines and humans at coarse geographic scales, and hint at specific hypotheses about climate and deforestation effects on those vectors-with some taxon-specific responses and some seemingly general trends. Thus, our focal species appear to be quite sensitive to higher temperatures, and might be less common in more heavily-disturbed than in better-preserved environments. This study illustrates, in sum, how entomological routine-surveillance data can be efficiently used for Chagas disease risk prediction and stratification when house-colonizing vectors are absent.
Zheng, Longyu; Crippen, Tawni L; Sheffield, Cynthia L; Poole, Toni L; Yu, Ziniu; Tomberlin, Jeffrey K
2012-04-01
The lesser mealworm, Alphitobius diaperinus is an important poultry pest prevalent during production that is capable of vectoring pathogens. This study was undertaken to determine the gut transit time of Salmonella for biosecurity risk analysis of pathogen dispersal into the environment. Adult and larval A. diaperinus were exposed to two concentrations of a fluorescently labeled Salmonella enterica for 15, 30, and 60 min time periods then externally disinfected to evaluate internal transfer of Salmonella. The insects were monitored every 30 min over 4 h and evacuated frass (feces) processed for the marker Salmonella. The minimum time monitored was 45 min (15 exposure+30 min time point), and the maximum was 5 h (60 exposure+4 h time point). Adults treated with 10(6) or 10(8) colony-forming units (cfu)/mL, which produced Salmonella positive frass within the 5 h experimental time, displayed a mean gut transit time of 144.4 min (range 90-270 min) and 186.3 min (range 120-300 min), respectively. Larvae treated with 10(6) or 10(8) cfu/mL displayed a mean gut transit time of 172.5 min (range 120-300 min) and 131.7 min (range 60-300 min), respectively. Understanding the sources and contribution of reservoir populations of pathogens in poultry production operations is important for development of biosecurity measures to mitigate their transfer. A. diaperinus are prevalent in production operations and difficult to suppress. Management standards accept the reutilization of litter in which insects survive between flock rotations. Removing litter and spreading it onto nearby fields results in the inadvertent dispersal of beetles. Few studies demonstrating the specific bacterial dispersal capacities of these insects have been performed. This study determined that Salmonella acquired internally, commonly transits the gut, allowed the insect to disperse viable pathogenic bacteria within 2-3 h.
Activation of methane by transition metal-substituted aluminophosphate molecular sieves
Iton, Lennox E.; Maroni, Victor A.
1991-01-01
Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.
NASA Astrophysics Data System (ADS)
Hecht-Nielsen, Robert
1997-04-01
A new universal one-chart smooth manifold model for vector information sources is introduced. Natural coordinates (a particular type of chart) for such data manifolds are then defined. Uniformly quantized natural coordinates form an optimal vector quantization code for a general vector source. Replicator neural networks (a specialized type of multilayer perceptron with three hidden layers) are the introduced. As properly configured examples of replicator networks approach minimum mean squared error (e.g., via training and architecture adjustment using randomly chosen vectors from the source), these networks automatically develop a mapping which, in the limit, produces natural coordinates for arbitrary source vectors. The new concept of removable noise (a noise model applicable to a wide variety of real-world noise processes) is then discussed. Replicator neural networks, when configured to approach minimum mean squared reconstruction error (e.g., via training and architecture adjustment on randomly chosen examples from a vector source, each with randomly chosen additive removable noise contamination), in the limit eliminate removable noise and produce natural coordinates for the data vector portions of the noise-corrupted source vectors. Consideration regarding selection of the dimension of a data manifold source model and the training/configuration of replicator neural networks are discussed.
Discontinuous finite element method for vector radiative transfer
NASA Astrophysics Data System (ADS)
Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping
2017-03-01
The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.
On the polymorphism of benzocaine; a low-temperature structural phase transition for form (II).
Chan, Eric J; Rae, A David; Welberry, T Richard
2009-08-01
A low-temperature structural phase transition has been observed for form (II) of benzocaine (BZC). Lowering the temperature doubles the b-axis repeat and changes the space group from P2(1)2(1)2(1) to P112(1) with gamma now 99.37 degrees. The structure is twinned, the twin rule corresponding to a 2(1) screw rotation parallel to a. The phase transition is associated with a sequential displacement parallel to a of zigzag bi-layers of ribbons perpendicular to b*. No similar phase transition was observed for form (I) and this was attributed to the different packing symmetries of the two room-temperature polymorphic forms.
Spin-dependent μ → e conversion
Cirigliano, Vincenzo; Davidson, Sacha; Kuno, Yoshitaka
2017-05-22
The experimental sensitivity to μ→e conversion on nuclei is expected to improve by four orders of magnitude in coming years. Here, we consider the impact of μ→e flavour-changing tensor and axial-vector four-fermion operators which couple to the spin of nucleons. Such operators, which have not previously been considered, contribute to μ→e conversion in three ways: in nuclei with spin they mediate a spin-dependent transition; in all nuclei they contribute to the coherent (A 2-enhanced) spin-independent conversion via finite recoil effects and via loop mixing with dipole, scalar, and vector operators. Furthermore, we estimate the spin-dependent rate in Aluminium (the targetmore » of the upcoming COMET and Mu2e experiments), show that the loop effects give the greatest sensitivity to tensor and axial-vector operators involving first-generation quarks, and discuss the complementarity of the spin-dependent and independent contributions to μ→e conversion.« less
Spin-dependent μ → e conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirigliano, Vincenzo; Davidson, Sacha; Kuno, Yoshitaka
The experimental sensitivity to μ→e conversion on nuclei is expected to improve by four orders of magnitude in coming years. Here, we consider the impact of μ→e flavour-changing tensor and axial-vector four-fermion operators which couple to the spin of nucleons. Such operators, which have not previously been considered, contribute to μ→e conversion in three ways: in nuclei with spin they mediate a spin-dependent transition; in all nuclei they contribute to the coherent (A 2-enhanced) spin-independent conversion via finite recoil effects and via loop mixing with dipole, scalar, and vector operators. Furthermore, we estimate the spin-dependent rate in Aluminium (the targetmore » of the upcoming COMET and Mu2e experiments), show that the loop effects give the greatest sensitivity to tensor and axial-vector operators involving first-generation quarks, and discuss the complementarity of the spin-dependent and independent contributions to μ→e conversion.« less
A self-contained, automated methodology for optimal flow control validated for transition delay
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Gunzburger, Max D.; Nicolaides, R. A.; Erlebacher, Gordon; Hussaini, M. Yousuff
1995-01-01
This paper describes a self-contained, automated methodology for flow control along with a validation of the methodology for the problem of boundary layer instability suppression. The objective of control is to match the stress vector along a portion of the boundary to a given vector; instability suppression is achieved by choosing the given vector to be that of a steady base flow, e.g., Blasius boundary layer. Control is effected through the injection or suction of fluid through a single orifice on the boundary. The present approach couples the time-dependent Navier-Stokes system with an adjoint Navier-Stokes system and optimality conditions from which optimal states, i.e., unsteady flow fields, and control, e.g., actuators, may be determined. The results demonstrate that instability suppression can be achieved without any a priori knowledge of the disturbance, which is significant because other control techniques have required some knowledge of the flow unsteadiness such as frequencies, instability type, etc.
Tanga, M C; Ngundu, W I; Judith, N; Mbuh, J; Tendongfor, N; Simard, Frédéric; Wanji, S
2010-07-01
An entomological survey was conducted in Cameroon between October 2004 and September 2005, in nine localities targeted for malaria vector control based on adult productivity and variability. Mosquitoes were collected by human-landing catches (HLCs) and pyrethrum spray catches. A total of 12 500 anophelines were collected and dissected: Anopheles gambiae s.l. (56.86%), An. funestus s.l. (32.57%), An. hancocki (9.38%), and An. nili (1.18%). Applying PCR revealed that specimens of the An. funestus group were An. funestus s.s. and An. gambiae complex were mostly An. melas and An. gambiae s.s. of the M and S molecular forms with the M forms being the most predominant. The natural distribution patterns of Anopheles species were largely determined by altitude with some species having unique environmental tolerance limits. A human blood index (HBI) of 99.05% was recorded. Mean probability of daily survival of the malaria vectors was 0.92, with annual mean life expectancy of 21.9 days and the expectation of infective life was long with a mean of 7.4 days. The high survival rates suggest a high vector potential for the species. This information enhances the development of a more focused and informed vector control intervention. Copyright 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Wu, Sangwook
2017-01-01
Two distinct crystal structures of prethrombin-2, the alternative and collapsed forms, are elucidated by X-ray crystallogrphy. We analyzed the conformational transition from the alternative to the collapsed form employing targeted molecular dynamics (TMD) simulation. Despite small RMSD difference in the two X-ray crystal structures, some hydrophobic residues (W60d, W148, W215, and F227) show a significant difference between the two conformations. TMD simulation shows that the four hydrophobic residues undergo concerted movement from dimer to trimer transition via tetramer state in the conformational change from the alternative to the collapsed form. We reveal that the concerted movement of the four hydrophobic residues is controlled by movement of specific loop regions behind. In this paper, we propose a sequential scenario for the conformational transition from the alternative form to the collapsed form, which is partially supported by the mutant W148A simulation.
Wave vector modification of the infinite order sudden approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachs, J.G.; Bowman, J.M.
1980-10-15
A simple method is proposed to modify the infinite order sudden approximation (IOS) in order to extend its region of quantitative validity. The method involves modifying the phase of the IOS scattering matrix to include a part calculated at the outgoing relative kinetic energy as well as a part calculated at the incoming kinetic energy. An immediate advantage of this modification is that the resulting S matrix is symmetric. We also present a closely related method in which the relative kinetic energies used in the calculation of the phase are determined from quasiclassical trajectory calculations. A set of trajectories ismore » run with the initial state being the incoming state, and another set is run with the initial state being the outgoing state, and the average final relative kinetic energy of each set is obtained. One part of the S-operator phase is then calculated at each of these kinetic energies. We apply these methods to vibrationally inelastic collinear collisions of an atom and a harmonic oscillator, and calculate transition probabilities P/sub n/1..-->..nf for three model systems. For systems which are sudden, or nearly so, the agreement with exact quantum close-coupling calculations is substantially improved over standard IOS ones when ..delta..n=such thatub f/-n/sub i/ is large, and the corresponding transition probability is small, i.e., less than 0.1. However, the modifications we propose will not improve the accuracy of the IOS transition probabilities for any collisional system unless the standard form of IOS already gives at least qualitative agreement with exact quantal calculations. We also suggest comparisons between some classical quantities and sudden predictions which should help in determining the validity of the sudden approximation. This is useful when exact quantal data is not available for comparison.« less
Vortex-liquid{endash}vortex-crystal transition in type-II superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, T.J.; Moore, M.A.
1996-09-01
We present in detail a functional renormalization group (FRG) study of a Landau-Ginzburg model of type-II superconductors (generalized to {ital N}/2 complex fields) in an external magnetic field, both for a pure system and also in the presence of quenched random impurities. If the coupling functions are restricted to the space of functions with nonzero support only at reciprocal lattice vectors corresponding to the Abrikosov lattice, we find a stable FRG fixed point in the presence of disorder for 1{lt}{ital N}{lt}4, identical to that of the disordered {ital O}({ital N}) model in {ital d}{minus}2 dimensions. This implies a continuous transitionmore » from the vortex crystal to vortex liquid in the presence of disorder, but only for {ital d}{gt}4. The nonzero-temperature transition will disappear in physical dimensions. The pure system has a stable fixed point only for {ital N}{gt}4. Therefore the physical case ({ital N}=2) is likely to have a first-order transition in the absence of quenched disorder. We give a full discussion of both the motivation of the model and the details of the FRG calculation. We also place our results in context with regard to the current experimental scene concerning the high-{ital T}{sub {ital c}} compounds. In particular, we discuss the relevance of our results to the recently discovered critical end point in the phase diagram of Bi-Sr-Ca-Cu-O. The main results of this analysis were previously reported in the form of a Letter [M.A. Moore and T.J. Newman, Phys. Rev. Lett. {bold 75}, 533 (1995)]. {copyright} {ital 1996 The American Physical Society.}« less
Wave vector modification of the infinite order sudden approximation
NASA Astrophysics Data System (ADS)
Sachs, Judith Grobe; Bowman, Joel M.
1980-10-01
A simple method is proposed to modify the infinite order sudden approximation (IOS) in order to extend its region of quantitative validity. The method involves modifying the phase of the IOS scattering matrix to include a part calculated at the outgoing relative kinetic energy as well as a part calculated at the incoming kinetic energy. An immediate advantage of this modification is that the resulting S matrix is symmetric. We also present a closely related method in which the relative kinetic energies used in the calculation of the phase are determined from quasiclassical trajectory calculations. A set of trajectories is run with the initial state being the incoming state, and another set is run with the initial state being the outgoing state, and the average final relative kinetic energy of each set is obtained. One part of the S-operator phase is then calculated at each of these kinetic energies. We apply these methods to vibrationally inelastic collinear collisions of an atom and a harmonic oscillator, and calculate transition probabilities Pn1→nf for three model systems. For systems which are sudden, or nearly so, the agreement with exact quantum close-coupling calculations is substantially improved over standard IOS ones when Δn=‖nf-ni‖ is large, and the corresponding transition probability is small, i.e., less than 0.1. However, the modifications we propose will not improve the accuracy of the IOS transition probabilities for any collisional system unless the standard form of IOS already gives at least qualitative agreement with exact quantal calculations. We also suggest comparisons between some classical quantities and sudden predictions which should help in determining the validity of the sudden approximation. This is useful when exact quantal data is not available for comparison.
Evaluating the promise of recombinant transmissible vaccines
Basinski, Andrew J.; Varrelman, Tanner J.; Smithson, Mark W.; May, Ryan H.; Remien, Christopher H.; Nuismer, Scott L.
2018-01-01
Transmissible vaccines have the potential to revolutionize infectious disease control by reducing the vaccination effort required to protect a population against a disease. Recent efforts to develop transmissible vaccines focus on recombinant transmissible vaccine designs (RTVs) because they pose reduced risk if intra-host evolution causes the vaccine to revert to its vector form. However, the shared antigenicity of the vaccine and vector may confer vaccine-immunity to hosts infected with the vector, thwarting the ability of the vaccine to spread through the population. We build a mathematical model to test whether a RTV can facilitate disease management in instances where reversion is likely to introduce the vector into the population or when the vector organism is already established in the host population, and the vector and vaccine share perfect cross-immunity. Our results show that a RTV can autonomously eradicate a pathogen, or protect a population from pathogen invasion, when cross-immunity between vaccine and vector is absent. If cross-immunity between vaccine and vector exists, however, our results show that a RTV can substantially reduce the vaccination effort necessary to control or eradicate a pathogen only when continuously augmented with direct manual vaccination. These results demonstrate that estimating the extent of cross-immunity between vector and vaccine is a critical step in RTV design, and that herpesvirus vectors showing facile reinfection and weak cross-immunity are promising. PMID:29279283
Manoharan, Vinoth K; Khattar, Sunil K; LaBranche, Celia C; Montefiori, David C; Samal, Siba K
2018-06-12
SIV infection in macaques is a relevant animal model for HIV pathogenesis and vaccine study in humans. To design a safe and effective vaccine against HIV, we evaluated the suitability of naturally-occurring avirulent Newcastle disease virus (NDV) strains and several modified versions of NDV as vectors for the expression and immunogenicity of SIV envelope protein gp160. All the NDV vectors expressed gp160 protein in infected cells. The gp160 expressed by these vectors formed oligomers and was incorporated into the NDV envelope. All the NDV vectors expressing gp160 were attenuated in chickens. Intranasal immunization of guinea pigs with modified NDV vectors such as rNDV-APMV-2CS/gp160 and rNDV-APMV-8CS/gp160 (NDV strain LaSota containing the cleavage site sequences of F protein of avian paramyxovirus (APMV) serotype 2 and 8, respectively), and rNDV-BC-F-HN/gp160 (NDV strain BC containing LaSota F cleavage site and LaSota F and HN genes) elicited improved SIV-specific humoral and mucosal immune responses compared to other NDV vectors. These modified vectors were also efficient in inducing neutralizing antibody responses to tier 1 A SIVmac251.6 and tier 1B SIVmac251/M766 strains. This study suggests that our novel modified NDV vectors are safe and immunogenic and can be used as vaccine vector to control HIV.
Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System
Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M.
2015-01-01
Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221
Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.
López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M
2015-01-01
Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.
Sreenivasa, B P; Mohapatra, J K; Pauszek, S J; Koster, M; Dhanya, V C; Tamil Selvan, R P; Hosamani, M; Saravanan, P; Basagoudanavar, Suresh H; de Los Santos, T; Venkataramanan, R; Rodriguez, L L; Grubman, M J
2017-05-01
Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O, A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutralizing antibody response in indigenous cattle (Bos indicus). Purified Ad5-FMD viruses were inoculated in cattle as monovalent (5×10 9 pfu/animal) or trivalent (5×10 9 pfu/animal per serotype) vaccines. Animals vaccinated with monovalent Ad5-FMD vaccines were boosted 63days later with the same dose. After primary immunization, virus neutralization tests (VNT) showed seroconversion in 83, 67 and 33% of animals vaccinated with Ad5-FMD O, A and Asia 1, respectively. Booster immunization elicited seroconversion in all of the animals (100%) in the monovalent groups. When used in a trivalent form, the Ad5-FMD vaccine induced neutralizing antibodies in only 33, 50 and 16% of animals against serotypes O, A and Asia 1, respectively on primo-vaccination, and titers were significantly lower than when the same vectors were used in monovalent form. Neutralizing antibody titers differed by serotype for both Ad5-FMD monovalent and trivalent vaccines, with Asia 1 serotype inducing the lowest titers. Antibody response to Ad5 vector in immunized cattle was also assessed by VNT. It appeared that the vector immunity did not impact the recall responses to expressed FMDV antigens on booster immunization. In summary, the study suggested that the recombinant Ad5-FMD vaccine has a potential use in monovalent form, while its application in multivalent form is not currently encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Martínez-García, Pedro; Comas, Menchu; Lonergan, Lidia; Watts, Anthony B.
2017-12-01
2D seismic reflection data tied to biostratigraphical and log information from wells in the central and southeastern Alboran Sea have allowed us to constrain the spatial and temporal distribution of rifting and inversion. Normal faults, tilted basement blocks, and growth wedges reveal a thinned continental crust that formed in response to NW-SE extension. To the east, a secondary SW-NE trend of extension affects the transitional crust adjacent to the oceanic Algerian Basin. The maximum thickness of syn-rift sediments is 3.5 km, and the oldest recorded deposits are Serravallian. The WNW-ESE Yusuf fault formed a buttress separating and accommodating variable extension between two different tectonic domains: the thinned continental crust of Alboran and the oceanic spreading of the Algerian Basin. Late Tortonian to present-day NW-SE Africa/Eurasia plate convergence drove shortening and reactivation of some of the earlier extensional structures as reverse and strike-slip faults, forming complex, compartmentalised subbasins. Tectonic inversion coexisted with the formation of new faults and folds. Inversion was partial along the Habibas Basin and Al-Idrisi fault, but complete along the Alboran Ridge, where some SW-NE trending faults were perpendicular to the recent NW-SE plate convergence and were reactivated as thrusts. The WNW-ESE Yusuf fault is oblique to the convergence vector, and therefore, reactivation is mainly expressed as transpressional deformation. Volcanic rocks intruded along the Alboran Ridge and Yusuf faults during the latest stages of extension formed rheological anisotropies that localised the later inversion.
NASA Technical Reports Server (NTRS)
Balasubramaniam, K. S.; West, E. A.
1991-01-01
The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.
Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement
NASA Astrophysics Data System (ADS)
Samlan, C. T.; Viswanathan, Nirmal K.
2016-07-01
Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.
Normalization in Lie algebras via mould calculus and applications
NASA Astrophysics Data System (ADS)
Paul, Thierry; Sauzin, David
2017-11-01
We establish Écalle's mould calculus in an abstract Lie-theoretic setting and use it to solve a normalization problem, which covers several formal normal form problems in the theory of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to a mould equation, the solutions of which are remarkably explicit and can be fully described by means of a gauge transformation group. The dynamical applications include the construction of Poincaré-Dulac formal normal forms for a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff normal forms both in classical and quantum situations. As a by-product we obtain, in the case of harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.
NASA Astrophysics Data System (ADS)
Kamińska, Anna
2010-01-01
The relationship between karst of chalk and tectonics in the interfluve of the middle Wieprz and Bug Rivers has been already examined by Maruszczak (1966), Harasimiuk (1980) and Dobrowolski (1998). Investigating the connection of the karst formation course and the substratum structure, the direction of the landforms and their spatial pattern were analysed and compared later to the structural pattern. The obvious completion of the collected data is a quantity analysis using statistical methods. This paper deals with the characteristics of such quantity analysis. By using the tools of the directional statistics, the following indexes have been calculated: the mean vector orientation, the length of the vector mean, strength of the vector mean, the Batschelet variance, as well as determined confidence intervals for the mean vector. In order to examine the distribution structure of these forms, the selected methods of the spatial statistics have been used-angular wavelet analysis (Rosenberg 2004) and the semivariogram analysis (Namysłowska-Wilczyńska 2006). On the basis of conducted analyses, it is possible to describe in detail the regularities in spatial distribution of the surface karst forms in the interfluve of the middle Wieprz and Bug Rivers. The orientation analysis reveals an important feature of their direction-along with a rise in the size of surface karst forms, the level of concentration around the mean vector orientation increases. Primary karst forms point out poor concentration along the longitudinal direction whereas complex forms are clearly concentrated along the WNW-ESE direction. Hence, only after clumping of the primary forms into the complex ones, the convergence of the surface karst forms direction with the direction of the main faults in the Meso-Cenozoic complex is visible (after A. Henkiel 1984). The results of the wavelet analysis modified by Rosenberg (2004) have indicated significant directions of the clumping of the surface karst forms. A clear difference in the distribution of these forms in west and east areas is noticed. Whereas the west area is dominated by the W-E, NW-SE, N-S directions, the karst forms in the east are concentrated along the NE-SW direction. The semivariogram analysis has confirmed the importance of the W-E and NE-SW directions. Moreover, this analysis has indicated which areas are characterized by the poor karst forms direction. It is a region where the Kock-Wasylów dislocation zone crosses the Święcica dislocation zone in the north-east part of the analysed area. The south-east region is the second such area. The picture of the spatial pattern one confirms the previous results (Dobrowolski 1998) and refers clearly to the structural pattern of this area. Nevertheless, the analyses mentioned above have shown the dominance of the W-E direction over the NW-SE one. The obtained results of the spatial and direction analyses expand and confirm hitherto information about the relation between the spatial pattern of the karst landforms and the tectonics in the interfluve of the middle Wieprz and Bug Rivers.
Tunneling and speedup in quantum optimization for permutation-symmetric problems
Muthukrishnan, Siddharth; Albash, Tameem; Lidar, Daniel A.
2016-07-21
Tunneling is often claimed to be the key mechanism underlying possible speedups in quantum optimization via quantum annealing (QA), especially for problems featuring a cost function with tall and thin barriers. We present and analyze several counterexamples from the class of perturbed Hamming weight optimization problems with qubit permutation symmetry. We first show that, for these problems, the adiabatic dynamics that make tunneling possible should be understood not in terms of the cost function but rather the semiclassical potential arising from the spin-coherent path-integral formalism. We then provide an example where the shape of the barrier in the final costmore » function is short and wide, which might suggest no quantum advantage for QA, yet where tunneling renders QA superior to simulated annealing in the adiabatic regime. However, the adiabatic dynamics turn out not be optimal. Instead, an evolution involving a sequence of diabatic transitions through many avoided-level crossings, involving no tunneling, is optimal and outperforms adiabatic QA. We show that this phenomenon of speedup by diabatic transitions is not unique to this example, and we provide an example where it provides an exponential speedup over adiabatic QA. In yet another twist, we show that a classical algorithm, spin-vector dynamics, is at least as efficient as diabatic QA. Lastly, in a different example with a convex cost function, the diabatic transitions result in a speedup relative to both adiabatic QA with tunneling and classical spin-vector dynamics.« less
Tunneling and speedup in quantum optimization for permutation-symmetric problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthukrishnan, Siddharth; Albash, Tameem; Lidar, Daniel A.
Tunneling is often claimed to be the key mechanism underlying possible speedups in quantum optimization via quantum annealing (QA), especially for problems featuring a cost function with tall and thin barriers. We present and analyze several counterexamples from the class of perturbed Hamming weight optimization problems with qubit permutation symmetry. We first show that, for these problems, the adiabatic dynamics that make tunneling possible should be understood not in terms of the cost function but rather the semiclassical potential arising from the spin-coherent path-integral formalism. We then provide an example where the shape of the barrier in the final costmore » function is short and wide, which might suggest no quantum advantage for QA, yet where tunneling renders QA superior to simulated annealing in the adiabatic regime. However, the adiabatic dynamics turn out not be optimal. Instead, an evolution involving a sequence of diabatic transitions through many avoided-level crossings, involving no tunneling, is optimal and outperforms adiabatic QA. We show that this phenomenon of speedup by diabatic transitions is not unique to this example, and we provide an example where it provides an exponential speedup over adiabatic QA. In yet another twist, we show that a classical algorithm, spin-vector dynamics, is at least as efficient as diabatic QA. Lastly, in a different example with a convex cost function, the diabatic transitions result in a speedup relative to both adiabatic QA with tunneling and classical spin-vector dynamics.« less
Block structure and geodynamics of the continental lithosphere on plate boundaries
NASA Astrophysics Data System (ADS)
Gatinsky, Yu. G.; Prokhorova, T. V.; Romanyuk, T. V.; Vladova, G. L.
2009-04-01
Division of the Earth lithosphere on large plates must be considered only as the first and most general approximation in its structure hierarchy. Some transit zones or difuuse boundaries after other authors take place in lithosphere plate boundaries. The tectonic tension of plate interaction is transferred and relaxed within these zones, which consist of blocks limited by seismoactive faults. Vectors of block horizontal displacements often don't coincide with vectors of main plates and change together with changing block rigidity. As a rule the intensity the seismic energy at plate and transit zone boundaries decreases linearly with distancing from these boundaries and correlates with decreasing of velocities of block horizontal displacements. But sometimes the maximum of the energy manifestation takes place in inner parts of transit zones. Some relatively tight interblock zones established in central and east Asia are the most seismically active. They limited such blocks as Pamir, Tien Shan, Bayanhar, Shan, Japanese-Korean, as well as the north boundary of the Indian Plate. A seismic energy intensity of these zones can be compared with the energy of Pacific subduction zones. It is worthy to note that the majority catastrophic earthquakes took place in Central Asia just within interblock zones. A level of block displacement is situated mainly in the bottom or inside the Earth crust, more rare in the lithosphere mantle. Blocks with the most thick lithosphere roots (SE China, Amurian) are the most rigid and weakly deformed.
Church, George M.; Kieffer-Higgins, Stephen
1992-01-01
This invention features vectors and a method for sequencing DNA. The method includes the steps of: a) ligating the DNA into a vector comprising a tag sequence, the tag sequence includes at least 15 bases, wherein the tag sequence will not hybridize to the DNA under stringent hybridization conditions and is unique in the vector, to form a hybrid vector, b) treating the hybrid vector in a plurality of vessels to produce fragments comprising the tag sequence, wherein the fragments differ in length and terminate at a fixed known base or bases, wherein the fixed known base or bases differs in each vessel, c) separating the fragments from each vessel according to their size, d) hybridizing the fragments with an oligonucleotide able to hybridize specifically with the tag sequence, and e) detecting the pattern of hybridization of the tag sequence, wherein the pattern reflects the nucleotide sequence of the DNA.
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Weissenberger, S.; Cuk, S. M.
1973-01-01
This report presents the development and description of the decomposition aggregation approach to stability investigations of high dimension mathematical models of dynamic systems. The high dimension vector differential equation describing a large dynamic system is decomposed into a number of lower dimension vector differential equations which represent interconnected subsystems. Then a method is described by which the stability properties of each subsystem are aggregated into a single vector Liapunov function, representing the aggregate system model, consisting of subsystem Liapunov functions as components. A linear vector differential inequality is then formed in terms of the vector Liapunov function. The matrix of the model, which reflects the stability properties of the subsystems and the nature of their interconnections, is analyzed to conclude over-all system stability characteristics. The technique is applied in detail to investigate the stability characteristics of a dynamic model of a hypothetical spinning Skylab.
Qualitative investigation into students' use of divergence and curl in electromagnetism
NASA Astrophysics Data System (ADS)
Bollen, Laurens; van Kampen, Paul; Baily, Charles; De Cock, Mieke
2016-12-01
Many students struggle with the use of mathematics in physics courses. Although typically well trained in rote mathematical calculation, they often lack the ability to apply their acquired skills to physical contexts. Such student difficulties are particularly apparent in undergraduate electrodynamics, which relies heavily on the use of vector calculus. To gain insight into student reasoning when solving problems involving divergence and curl, we conducted eight semistructured individual student interviews. During these interviews, students discussed the divergence and curl of electromagnetic fields using graphical representations, mathematical calculations, and the differential form of Maxwell's equations. We observed that while many students attempt to clarify the problem by making a sketch of the electromagnetic field, they struggle to interpret graphical representations of vector fields in terms of divergence and curl. In addition, some students confuse the characteristics of field line diagrams and field vector plots. By interpreting our results within the conceptual blending framework, we show how a lack of conceptual understanding of the vector operators and difficulties with graphical representations can account for an improper understanding of Maxwell's equations in differential form. Consequently, specific learning materials based on a multiple representation approach are required to clarify Maxwell's equations.
NASA Technical Reports Server (NTRS)
Garland, D. B.
1980-01-01
Modifications were made to the model to improve longitudinal acceleration capability during transition from hovering to wing borne flight. A rearward deflection of the fuselage augmentor thrust vector is shown to be beneficial in this regard. Other agmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also shows negligible influence on the performance of the wing and of the fuselage augmentor.
1979-01-01
Reshotko (1974 ,[ rL12 --o-Wazzan, Okamura & D =cq wdx + dLc (6)1 Snith 11970) F a f XJftW 10 u o-0 where g is the dynamic pressure, cfk and cft are co dx...cdx = 1.328 tr (13) xtr f L tr 106 xtr cft dx = 0.074 / )tr: 0 10 20 30 40 e R WALL OVERHEAT,.IT.° Cx FIGURE 2. Variation of transition Reynolds...change in the anqe , is varied. wavenumber vector in addition to the dispersion relation. Even though no aml itude calculations are included in this paper
Cheon, Sangheon; Lee, Hochan; Choi, Jun-Ho; Cho, Minhaeng
2007-02-07
Theoretical descriptions of doubly resonant two-dimensional (2D) sum-frequency-generation (SFG) and difference-frequency-generation (DFG) spectroscopies of coupled-chromophore systems are presented. Despite that each electronic or vibrational chromophore is achiral, the interaction-induced chirality of a coupled multichromophore system in solution can be measured by using the doubly resonant 2D three-wave-mixing (3WM) spectroscopic method. An electronically coupled dimer, where each monomer is modeled as a simple two-level system, can have nonvanishing SFG (or DFG) properties, e.g., susceptibility in frequency domain or nonlinear response function in time domain, if the induced dipole vector of the dimer is not orthogonal to the vector product of the two monomer electronic transition dipole vectors. In order to demonstrate that these 2D 3WM spectroscopic methods can be used to determine the solution structure of a polypeptide, the authors carried out quantum chemistry calculations for an alanine dipeptide and obtained first- and second-order dipole derivatives associated with the amide I vibrational transitions of the dipeptide. It is shown that the numerically simulated 2D IR-IR SFG spectrum is highly sensitive to the dipeptide secondary structure and provides rich information on the one- and two-exciton states. It is believed that the theoretically proposed doubly resonant 2D 3WM spectroscopy, which can be considered to be an optical activity spectroscopy, will be of use in studying both structural and dynamical aspects of coupled multichromophore systems, such as proteins, nucleic acids, nanoparticle aggregates etc.
An algebraic hypothesis about the primeval genetic code architecture.
Sánchez, Robersy; Grau, Ricardo
2009-09-01
A plausible architecture of an ancient genetic code is derived from an extended base triplet vector space over the Galois field of the extended base alphabet {D,A,C,G,U}, where symbol D represents one or more hypothetical bases with unspecific pairings. We hypothesized that the high degeneration of a primeval genetic code with five bases and the gradual origin and improvement of a primeval DNA repair system could make possible the transition from ancient to modern genetic codes. Our results suggest that the Watson-Crick base pairing G identical with C and A=U and the non-specific base pairing of the hypothetical ancestral base D used to define the sum and product operations are enough features to determine the coding constraints of the primeval and the modern genetic code, as well as, the transition from the former to the latter. Geometrical and algebraic properties of this vector space reveal that the present codon assignment of the standard genetic code could be induced from a primeval codon assignment. Besides, the Fourier spectrum of the extended DNA genome sequences derived from the multiple sequence alignment suggests that the called period-3 property of the present coding DNA sequences could also exist in the ancient coding DNA sequences. The phylogenetic analyses achieved with metrics defined in the N-dimensional vector space (B(3))(N) of DNA sequences and with the new evolutionary model presented here also suggest that an ancient DNA coding sequence with five or more bases does not contradict the expected evolutionary history.
Survival of ship biofouling assemblages during and after voyages to the Canadian Arctic.
Chan, Farrah T; MacIsaac, Hugh J; Bailey, Sarah A
2016-01-01
Human-mediated vectors often inadvertently translocate species assemblages to new environments. Examining the dynamics of entrained species assemblages during transport can provide insights into the introduction risk associated with these vectors. Ship biofouling is a major transport vector of nonindigenous species in coastal ecosystems globally, yet its magnitude in the Arctic is poorly understood. To determine whether biofouling organisms on ships can survive passages in Arctic waters, we examined how biofouling assemblage structure changed before, during, and after eight round-trip military voyages from temperate to Arctic ports in Canada. Species richness first decreased (~70% loss) and then recovered (~27% loss compared to the original assemblages), as ships travelled to and from the Arctic, respectively, whereas total abundance typically declined over time (~55% total loss). Biofouling community structure differed significantly before and during Arctic transits as well as between those sampled during and after voyages. Assemblage structure varied across different parts of the hull; however, temporal changes were independent of hull location, suggesting that niche areas did not provide protection for biofouling organisms against adverse conditions in the Arctic. Biofouling algae appear to be more tolerant of transport conditions during Arctic voyages than are mobile, sessile, and sedentary invertebrates. Our results suggest that biofouling assemblages on ships generally have poor survivorship during Arctic voyages. Nonetheless, some potential for transporting nonindigenous species to the Arctic via ship biofouling remains, as at least six taxa new to the Canadian Arctic, including a nonindigenous cirripede, appeared to have survived transits from temperate to Arctic ports.
Datta, Asit K; Munshi, Soumika
2002-03-10
Based on the negabinary number representation, parallel one-step arithmetic operations (that is, addition and subtraction), logical operations, and matrix-vector multiplication on data have been optically implemented, by use of a two-dimensional spatial-encoding technique. For addition and subtraction, one of the operands in decimal form is converted into the unsigned negabinary form, whereas the other decimal number is represented in the signed negabinary form. The result of operation is obtained in the mixed negabinary form and is converted back into decimal. Matrix-vector multiplication for unsigned negabinary numbers is achieved through the convolution technique. Both of the operands for logical operation are converted to their signed negabinary forms. All operations are implemented by use of a unique optical architecture. The use of a single liquid-crystal-display panel to spatially encode the input data, operational kernels, and decoding masks have simplified the architecture as well as reduced the cost and complexity.
Fault Tolerant Optimal Control.
1982-08-01
subsystem is modelled by deterministic or stochastic finite-dimensional vector differential or difference equations. The parameters of these equations...is no partial differential equation that must be solved. Thus we can sidestep the inability to solve the Bellman equation for control problems with x...transition models and cost functionals can be reduced to the search for solutions of nonlinear partial differential equations using ’verification
ERIC Educational Resources Information Center
Chernyavskaya, Yana S.; Kiselev, Sergey V.; Rassolov, Ilya M.; Kurushin, Viktor V.; Chernikova, Lyudmila I.; Faizova, Guzel R.
2016-01-01
The relevance of research: The relevance of the problem studied is caused by the acceleration of transition of the Russian economy on an innovative way of development, which depends on the vector of innovative sphere of services and, to a large extent, information and communication services, as well as it is caused by the poor drafting of…
Master equation for open two-band systems and its applications to Hall conductance
NASA Astrophysics Data System (ADS)
Shen, H. Z.; Zhang, S. S.; Dai, C. M.; Yi, X. X.
2018-02-01
Hall conductivity in the presence of a dephasing environment has recently been investigated with a dissipative term introduced phenomenologically. In this paper, we study the dissipative topological insulator (TI) and its topological transition in the presence of quantized electromagnetic environments. A Lindblad-type equation is derived to determine the dynamics of a two-band system. When the two-band model describes TIs, the environment may be the fluctuations of radiation that surround the TIs. We find the dependence of decay rates in the master equation on Bloch vectors in the two-band system, which leads to a mixing of the band occupations. Hence the environment-induced current is in general not perfectly topological in the presence of coupling to the environment, although deviations are small in the weak limit. As an illustration, we apply the Bloch-vector-dependent master equation to TIs and calculate the Hall conductance of tight-binding electrons in a two-dimensional lattice. The influence of environments on the Hall conductance is presented and discussed. The calculations show that the phase transition points of the TIs are robust against the quantized electromagnetic environment. The results might bridge the gap between quantum optics and topological photonic materials.
Phase separation in living micellar networks
NASA Astrophysics Data System (ADS)
Cristobal, G.; Rouch, J.; Curély, J.; Panizza, P.
We present a lattice model based on two n→0 spin vectors, capable of treating the thermodynamics of living networks in micellar solutions at any surfactant concentration. We establish an isomorphism between the coupling constants in the two spin vector Hamiltonian and the surfactant energies involved in the micellar situation. Solving this Hamiltonian in the mean-field approximation allows one to calculate osmotic pressure, aggregation number, free end and cross-link densities at any surfactant concentration. We derive a phase diagram, including changes in topology such as the transition between spheres and rods and between saturated and unsaturated networks. A phase separation can be found between a saturated network and a dilute solution composed of long flexible micelles or a saturated network and a solution of spherical micelles.
Coherence and dimensionality of intense spatiospectral twin beams
NASA Astrophysics Data System (ADS)
Peřina, Jan
2015-07-01
Spatiospectral properties of twin beams at their transition from low to high intensities are analyzed in parametric and paraxial approximations using decomposition into paired spatial and spectral modes. Intensity auto- and cross-correlation functions are determined and compared in the spectral and temporal domains as well as the transverse wave-vector and crystal output planes. Whereas the spectral, temporal, and transverse wave-vector coherence increases with the increasing pump intensity, coherence in the crystal output plane is almost independent of the pump intensity owing to the mode structure in this plane. The corresponding auto- and cross-correlation functions approach each other for larger pump intensities. The entanglement dimensionality of a twin beam is determined with a comparison of several approaches.
NASA Astrophysics Data System (ADS)
Conduit, G. J.; Altman, E.
2010-10-01
We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes.
Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices
Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen
2013-01-01
In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588
NASA Technical Reports Server (NTRS)
Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan
2012-01-01
The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.
NASA Astrophysics Data System (ADS)
Yao, Z.; Jenkins, M. L.; Hernández-Mayoral, M.; Kirk, M. A.
2010-12-01
A transition is reported in the dislocation microstructure of pure Fe produced by heavy-ion irradiation of thin foils, which took place between irradiation temperatures (T irr) of 300°C and 500°C. At T irr ≤ 400°C, the microstructure was dominated by round or irregular non-edge dislocation loops of interstitial nature and with Burgers vectors b = ½ ⟨111⟩, although interstitial ⟨100⟩ loops were also present; at 500°C only rectilinear pure-edge ⟨100⟩ loops occurred. At intermediate temperatures there was a gradual transition between the two types of microstructure. At temperatures just below 500°C, mobile ½⟨111⟩ loops were seen to be subsumed by sessile ⟨100⟩ loops. A possible explanation of these observations is given.
Realization of the axial next-nearest-neighbor Ising model in U 3 Al 2 Ge 3
Fobes, David M.; Lin, Shi-Zeng; Ghimire, Nirmal J.; ...
2017-11-09
Inmore » this paper, we report small-angle neutron scattering (SANS) measurements and theoretical modeling of U 3 Al 2 Ge 3 . Analysis of the SANS data reveals a phase transition to sinusoidally modulated magnetic order at T N = 63 K to be second order and a first-order phase transition to ferromagnetic order at T c = 48 K. Within the sinusoidally modulated magnetic phase (T c < T < T N), we uncover a dramatic change, by a factor of 3, in the ordering wave vector as a function of temperature. Finally, these observations all indicate that U 3 Al 2 Ge 3 is a close realization of the three-dimensional axial next-nearest-neighbor Ising model, a prototypical framework for describing commensurate to incommensurate phase transitions in frustrated magnets.« less
Realization of the axial next-nearest-neighbor Ising model in U 3 Al 2 Ge 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fobes, David M.; Lin, Shi-Zeng; Ghimire, Nirmal J.
Inmore » this paper, we report small-angle neutron scattering (SANS) measurements and theoretical modeling of U 3 Al 2 Ge 3 . Analysis of the SANS data reveals a phase transition to sinusoidally modulated magnetic order at T N = 63 K to be second order and a first-order phase transition to ferromagnetic order at T c = 48 K. Within the sinusoidally modulated magnetic phase (T c < T < T N), we uncover a dramatic change, by a factor of 3, in the ordering wave vector as a function of temperature. Finally, these observations all indicate that U 3 Al 2 Ge 3 is a close realization of the three-dimensional axial next-nearest-neighbor Ising model, a prototypical framework for describing commensurate to incommensurate phase transitions in frustrated magnets.« less
On the computer analysis of structures and mechanical systems
NASA Technical Reports Server (NTRS)
Bennett, B. E.
1984-01-01
The governing equations for the analysis of open branch-chain mechanical systems are developed in a form suitable for implementation in a general purpose finite element computer program. Lagrange's form of d'Alembert's principle is used to derive the system mass matrix and force vector. The generalized coordinates are selected as the unconstrained relative degrees of freedom giving the position and orientation of each slave link with respect to their master link. Each slave link may have from zero to six degrees of freedom relative to the reference frames of its master link. A strategy for automatic generation of the system mass matrix and force vector is described.
New Methods for B Decay Constants and Form Factors from Lattice NRQCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Christine; Hughes, Ciaran; Monahan, Christopher
We determine the normalisation of scalar and pseudo scalar current operators made from NonRelativistic QCD (NRQCD) b quarks and Highly Improved Staggered (HISQ) light quarks through O(αs∧QCD/mb). We use matrix elements of these operators to extract B meson decay constants and form factors and compare to those obtained using the standard vector and axial vector operators. We work on MILC second-generation 2+1+1 gluon field configurations, including those with physical light quarks in the sea. This provides a test of systematic uncertainties in these calculations and we find agreement between the results to the 2% level of uncertainty previously quoted.
New methods for B decay constants and form factors from Lattice NRQCD
NASA Astrophysics Data System (ADS)
Davies, Christine; Hughes, Ciaran; Monahan, Christopher
2018-03-01
We determine the normalisation of scalar and pseudo scalar current operators made from NonRelativistic QCD (NRQCD) b quarks and Highly Improved Staggered (HISQ) light quarks through O(αs∧QCD/mb). We use matrix elements of these operators to extract B meson decay constants and form factors and compare to those obtained using the standard vector and axial vector operators. We work on MILC second-generation 2+1+1 gluon field configurations, including those with physical light quarks in the sea. This provides a test of systematic uncertainties in these calculations and we find agreement between the results to the 2% level of uncertainty previously quoted.
Features of the photometry of the superposition of coherent vector electromagnetic waves
NASA Astrophysics Data System (ADS)
Sakhnovskyj, Mykhajlo Yu.; Tymochko, Bogdan M.; Rudeichuk, Volodymyr M.
2018-01-01
In the paper we propose a general approach to the calculation of the forming the intensity and polarization fields of the superposition of arbitrary coherent vector beams at points of a given reference plane. The method of measuring photometric parameters of a field, formed in the neighborhood of an arbitrary point of the plane of analysis by minimizing the values of irradiance in the vicinity of a given point (method of zero-amplitude at a given point), which is achieved by superimposing on it the reference wave with the controlled values of intensity, polarization state, phase, and angle of incidence, is proposed.
Composite turbine bucket assembly
Liotta, Gary Charles; Garcia-Crespo, Andres
2014-05-20
A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.
Zhang, Wenli; Solanki, Manish; Müther, Nadine; Ebel, Melanie; Wang, Jichang; Sun, Chuanbo; Izsvak, Zsuzsanna; Ehrhardt, Anja
2013-01-01
Recombinant adeno-associated viral (AAV) vectors have been shown to be one of the most promising vectors for therapeutic gene delivery because they can induce efficient and long-term transduction in non-dividing cells with negligible side-effects. However, as AAV vectors mostly remain episomal, vector genomes and transgene expression are lost in dividing cells. Therefore, to stably transduce cells, we developed a novel AAV/transposase hybrid-vector. To facilitate SB-mediated transposition from the rAAV genome, we established a system in which one AAV vector contains the transposon with the gene of interest and the second vector delivers the hyperactive Sleeping Beauty (SB) transposase SB100X. Human cells were infected with the AAV-transposon vector and the transposase was provided in trans either by transient and stable plasmid transfection or by AAV vector transduction. We found that groups which received the hyperactive transposase SB100X showed significantly increased colony forming numbers indicating enhanced integration efficiencies. Furthermore, we found that transgene copy numbers in transduced cells were dose-dependent and that predominantly SB transposase-mediated transposition contributed to stabilization of the transgene. Based on a plasmid rescue strategy and a linear-amplification mediated PCR (LAM-PCR) protocol we analysed the SB100X-mediated integration profile after transposition from the AAV vector. A total of 1840 integration events were identified which revealed a close to random integration profile. In summary, we show for the first time that AAV vectors can serve as template for SB transposase mediated somatic integration. We developed the first prototype of this hybrid-vector system which with further improvements may be explored for treatment of diseases which originate from rapidly dividing cells. PMID:24116154
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong, E-mail: xsli@uw.edu
2015-12-21
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strengthmore » can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.« less
Lestrange, Patrick J; Egidi, Franco; Li, Xiaosong
2015-12-21
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.
Incommensurate Chirality Density Wave Transition in a Hybrid Molecular Framework.
Hill, Joshua A; Christensen, Kirsten E; Goodwin, Andrew L
2017-09-15
Using single-crystal x-ray diffraction we characterize the 235 K incommensurate phase transition in the hybrid molecular framework tetraethylammonium silver(I) dicyanoargentate, [NEt_{4}]Ag_{3}(CN)_{4}. We demonstrate the transition to involve spontaneous resolution of chiral [NEt_{4}]^{+} conformations, giving rise to a state in which molecular chirality is incommensurately modulated throughout the crystal lattice. We refer to this state as an incommensurate chirality density wave (XDW) phase, which represents a fundamentally new type of chiral symmetry breaking in the solid state. Drawing on parallels to the incommensurate ferroelectric transition of NaNO_{2}, we suggest the XDW state arises through coupling between acoustic (shear) and molecular rotoinversion modes. Such coupling is symmetry forbidden at the Brillouin zone center but symmetry allowed for small but finite modulation vectors q=[0,0,q_{z}]^{*}. The importance of long-wavelength chirality modulations in the physics of this hybrid framework may have implications for the generation of mesoscale chiral textures, as required for advanced photonic materials.
Incommensurate Chirality Density Wave Transition in a Hybrid Molecular Framework
NASA Astrophysics Data System (ADS)
Hill, Joshua A.; Christensen, Kirsten E.; Goodwin, Andrew L.
2017-09-01
Using single-crystal x-ray diffraction we characterize the 235 K incommensurate phase transition in the hybrid molecular framework tetraethylammonium silver(I) dicyanoargentate, [NEt4]Ag3(CN )4 . We demonstrate the transition to involve spontaneous resolution of chiral [NEt4]+ conformations, giving rise to a state in which molecular chirality is incommensurately modulated throughout the crystal lattice. We refer to this state as an incommensurate chirality density wave (XDW) phase, which represents a fundamentally new type of chiral symmetry breaking in the solid state. Drawing on parallels to the incommensurate ferroelectric transition of NaNO2 , we suggest the XDW state arises through coupling between acoustic (shear) and molecular rotoinversion modes. Such coupling is symmetry forbidden at the Brillouin zone center but symmetry allowed for small but finite modulation vectors q =[0 ,0 ,qz]* . The importance of long-wavelength chirality modulations in the physics of this hybrid framework may have implications for the generation of mesoscale chiral textures, as required for advanced photonic materials.
Parshall, D.; Pintschovius, L.; Niedziela, Jennifer L.; ...
2015-04-27
Pmore » arent compounds of Fe-based superconductors undergo a structural phase transition from a tetragonal to an orthorhombic structure. We investigated the temperature dependence of the frequencies of TA phonons that extrapolate to the shear vibrational mode at the zone center, which corresponds to the orthorhombic deformation of the crystal structure at low temperatures in BaFe 2 As 2 and SrFe 2 As 2 . We found that acoustic phonons at small wave vectors soften gradually towards the transition from high temperatures, tracking the increase of the size of slowly fluctuating magnetic domains. On cooling below the transition to base temperature the phonons harden, following the square of the magnetic moment (which we find is proportional to the anisotropy gap). Finally, our results provide evidence for close correlation between magnetic and phonon properties in Fe-based superconductors.« less
NASA Astrophysics Data System (ADS)
Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong
2015-12-01
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.
An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-01-01
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-07-07
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.
Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions
Kobayashi, Kenta; Inoue, Ken-ichi; Tanabe, Soshi; Kato, Shigeki; Takada, Masahiko; Kobayashi, Kazuto
2017-01-01
Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1) with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G) and vesicular stomatitis virus glycoprotein (VSV-G) enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E), which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease. PMID:28824385
The NRL Program on Electroactive Polymers.
1980-09-15
cell of a point in an aggregate involves selecting the smallest cell formed by planes perpendicularly bisecting all the point to neighbor vectors . Such...plane perpendicular to the interatomic vector is located nearer the smaller atom by bisecting the distance between the sur- faces of spheres whose...density waves (and consequent novel excitations such as solitons (6)). The physical structure as well as the chemical bonding of such polymeric
Modeling Interferometric Structures with Birefringent Elements: A Linear Vector-Space Formalism
2013-11-12
Annapolis, Maryland ViNceNt J. Urick FraNk BUcholtz Photonics Technology Branch Optical Sciences Division i REPORT DOCUMENTATION PAGE Form...a Linear Vector-Space Formalism Nicholas J. Frigo,1 Vincent J. Urick , and Frank Bucholtz Naval Research Laboratory, Code 5650 4555 Overlook Avenue, SW...Annapolis, MD Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited 29 Vincent J. Urick (202) 767-9352 Coupled mode
Studies of phase transitions in the aripiprazole solid dosage form.
Łaszcz, Marta; Witkowska, Anna
2016-01-05
Studies of the phase transitions in an active substance contained in a solid dosage form are very complicated but essential, especially if an active substance is classified as a BCS Class IV drug. The purpose of this work was the development of sensitive methods for the detection of the phase transitions in the aripiprazole tablets containing initially its form III. Aripiprazole exhibits polymorphism and pseudopolymorphism. Powder diffraction, Raman spectroscopy and differential scanning calorimetry methods were developed for the detection of the polymorphic transition between forms III and I as well as the phase transition of form III into aripiprazole monohydrate in tablets. The study involved the initial 10 mg and 30 mg tablets, as well as those stored in Al/Al blisters, a triplex blister pack and HDPE bottles (with and without desiccant) under accelerated and long term conditions. The polymorphic transition was not observed in the initial and stored tablets but it was visible on the DSC curve of the Abilify(®) 10 mg reference tablets. The formation of the monohydrate was observed in the diffractograms and Raman spectra in the tablets stored under accelerated conditions. The monohydrate phase was not detected in the tablets stored in the Al/Al blisters under long term conditions. The results showed that the Al/Al blisters can be recommended as the packaging of the aripiprazole tablets containing form III. Copyright © 2015 Elsevier B.V. All rights reserved.
Transitiometric analysis of solid II/solid I transition in anhydrous theophylline.
Legendre, Bernard; Randzio, Stanislaw L
2007-10-01
For the first time, with the use of a high sensitivity, low heating rate, scanning transitiometry, it was possible to distinguish and characterise the polymorphic equilibrium transition between forms II and I in anhydrous theophylline. In this manner it was univocally proved, that forms II and I in theophylline are enantiotropically related. The temperature and enthalpy for that transition are as follows: T(trs)(II/I)=536.8+/-2.2K; Delta(trs)H(II/I)=1.99+/-0.09 kJ/mol. Making use of advantages of very slow heating rate and of a high energetic sensitivity of the transitiometer it was possible to observe in detail the polymorphic transition followed by melting of high temperature form I and to stop the solid I-liquid transition at a desired point of equilibrium. Such a solid I-liquid equilibrium could be stabilised and then displaced back to the crystallisation of form I with an adequate use of a precise temperature programming. In such a way a pure single phase of form I of theophylline was prepared. This fact was confirmed by X-ray powder diffraction patterns and calorimetric traces of fusion of the crystallised product. The temperature and enthalpy of the form I-liquid transition are as follows: T(fus)(I)=546.5+/-0.2K and Delta(fus)H(I)=29.37+/-0.29 kJ/mol.
Transit of pharmaceutical dosage forms through the small intestine.
Davis, S S; Hardy, J G; Fara, J W
1986-01-01
The gastrointestinal transit of pharmaceutical dosage forms has been measured in 201 studies in normal subjects using gamma scintigraphy. Solutions, small pellets, and single units (matrix tablets and osmotic pumps) were administered with different amounts of food in the stomach, ranging from fasted state to heavy breakfast. Gastric emptying was affected by the nature of the dosage form and the presence of food in the stomach. Solutions and pellets were emptied even when the stomach was in the digestive mode, while single units were retained for long periods of time, depending on the size of the meal. In contrast, measured intestinal transit times were independent of the dosage form and fed state. The small intestinal transit time of about three hours (mean +/- 1 h SEM) has implications for the design of dosage forms for the sustained release of drugs in specific positions in the gastrointestinal tract. PMID:3732895
Test functions for three-dimensional control-volume mixed finite-element methods on irregular grids
Naff, R.L.; Russell, T.F.; Wilson, J.D.; ,; ,; ,; ,; ,
2000-01-01
Numerical methods based on unstructured grids, with irregular cells, usually require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error associated with the numerical approximation scheme. For a logically cubic mesh, the lowest-order shape functions are chosen in a natural way to conserve intercell fluxes that vary linearly in logical space. Vector test functions, while somewhat restricted by the mapping into the logical reference cube, admit a wider class of possibilities. Ideally, an error minimization procedure to select the test function from an acceptable class of candidates would be the best procedure. Lacking such a procedure, we first investigate the effect of possible test functions on the pressure distribution over the control volume; specifically, we look for test functions that allow for the elimination of intermediate pressures on cell faces. From these results, we select three forms for the test function for use in a control-volume mixed method code and subject them to an error analysis for different forms of grid irregularity; errors are reported in terms of the discrete L2 norm of the velocity error. Of these three forms, one appears to produce optimal results for most forms of grid irregularity.
Extrapolation methods for vector sequences
NASA Technical Reports Server (NTRS)
Smith, David A.; Ford, William F.; Sidi, Avram
1987-01-01
This paper derives, describes, and compares five extrapolation methods for accelerating convergence of vector sequences or transforming divergent vector sequences to convergent ones. These methods are the scalar epsilon algorithm (SEA), vector epsilon algorithm (VEA), topological epsilon algorithm (TEA), minimal polynomial extrapolation (MPE), and reduced rank extrapolation (RRE). MPE and RRE are first derived and proven to give the exact solution for the right 'essential degree' k. Then, Brezinski's (1975) generalization of the Shanks-Schmidt transform is presented; the generalized form leads from systems of equations to TEA. The necessary connections are then made with SEA and VEA. The algorithms are extended to the nonlinear case by cycling, the error analysis for MPE and VEA is sketched, and the theoretical support for quadratic convergence is discussed. Strategies for practical implementation of the methods are considered.
Electromagnetic Transition Form Factor of the η meson with WASA-at-COSY
NASA Astrophysics Data System (ADS)
Goswami, A.
2016-11-01
In this work we present a study of the Dalitz decay η → γe+e-. The aim of this work is to measure the transition form factor of the η meson. The transition form factor of the η meson describes the electromagnetic structure of the meson. The study of the Dalitz decay helps to calculate the transition form factor of the η meson. When a particle is point-like it's decay rate can be calculated within QED. However, the complex structure of the meson modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. For this study data on proton-proton reaction at a beam energy of 1.4 GeV has been collected with WASA-at-COSY detector at Forschungszentrum Juelich, Germany. In the higher invariant mass region recent theoretical calculations slightly deviate from the fit to the data. We expect better results in the higher invariant mass region than previous measurements. The preliminary results of the analysis will be presented.
Changes in the electric dipole vector of human serum albumin due to complexing with fatty acids.
Scheider, W; Dintzis, H M; Oncley, J L
1976-01-01
The magnitude of the electric dipole vector of human serum albumin, as measured by the dielectric increment of the isoionic solution, is found to be a sensitive, monotonic indicator of the number of moles (up to at least 5) of long chain fatty acid complexed. The sensitivity is about three times as great as it is in bovine albumin. New methods of analysis of the frequency dispersion of the dielectric constant were developed to ascertain if molecular shape changes also accompany the complexing with fatty acid. Direct two-component rotary diffusion constant analysis is found to be too strongly affected by cross modulation between small systematic errors and physically significant data components to be a reliable measure of structural modification. Multicomponent relaxation profiles are more useful as recognition patterns for structural comparisons, but the equations involved are ill-conditioned and solutions based on standard least-squares regression contain mathematical artifacts which mask the physically significant spectrum. By constraining the solution to non-negative coefficients, the magnitude of the artifacts is reduced to well below the magnitudes of the spectral components. Profiles calculated in this way show no evidence of significant dipole direction or molecular shape change as the albumin is complexed with 1 mol of fatty acid. In these experiments albumin was defatted by incubation with adipose tissue at physiological pH, which avoids passing the protein through the pH of the N-F transition usually required in defatting. Addition of fatty acid from soluion in small amounts of ethanol appears to form a complex indistinguishable from the "native" complex. PMID:6087
Tolmachov, Oleg E
2012-05-01
The cell-specific and long-term expression of therapeutic transgenes often requires a full array of native gene control elements including distal enhancers, regulatory introns and chromatin organisation sequences. The delivery of such extended gene expression modules to human cells can be accomplished with non-viral high-molecular-weight DNA vectors, in particular with several classes of linear DNA vectors. All high-molecular-weight DNA vectors are susceptible to damage by shear stress, and while for some of the vectors the harmful impact of shear stress can be minimised through the transformation of the vectors to compact topological configurations by supercoiling and/or knotting, linear DNA vectors with terminal loops or covalently attached terminal proteins cannot be self-compacted in this way. In this case, the only available self-compacting option is self-entangling, which can be defined as the folding of single DNA molecules into a configuration with mutual restriction of molecular motion by the individual segments of bent DNA. A negatively charged phosphate backbone makes DNA self-repulsive, so it is reasonable to assume that a certain number of 'sticky points' dispersed within DNA could facilitate the entangling by bringing DNA segments into proximity and by interfering with the DNA slipping away from the entanglement. I propose that the spontaneous entanglement of vector DNA can be enhanced by the interlacing of the DNA with sites capable of mutual transient attachment through the formation of non-B-DNA forms, such as interacting cruciform structures, inter-segment triplexes, slipped-strand DNA, left-handed duplexes (Z-forms) or G-quadruplexes. It is expected that the non-B-DNA based entanglement of the linear DNA vectors would consist of the initial transient and co-operative non-B-DNA mediated binding events followed by tight self-ensnarement of the vector DNA. Once in the nucleoplasm of the target human cells, the DNA can be disentangled by type II topoisomerases. The technology for such self-entanglement can be an avenue for the improvement of gene delivery with high-molecular-weight naked DNA using therapeutically important methods associated with considerable shear stress. Priority applications include in vivo muscle electroporation and sonoporation for Duchenne muscular dystrophy patients, aerosol inhalation to reach the target lung cells of cystic fibrosis patients and bio-ballistic delivery to skin melanomas with the vector DNA adsorbed on gold or tungsten projectiles. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Bin; Duysen, Ellen G.; Poluektova, Larisa Y.
2006-07-15
Organophosphorus esters (OP) are highly toxic chemicals used as pesticides and nerve agents. Their acute toxicity is attributed to inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) in nerve synapses. Our goal was to find a new therapeutic for protection against OP toxicity. We used a gene therapy vector, adeno-associated virus serotype 2 (AAV-2), to deliver murine AChE to AChE-/- mice that have no endogenous AChE activity. The vector encoded the most abundant form of AChE: exons 2, 3, 4, and 6. Two-day old animals, with an immature immune system, were injected. AChE delivered intravenously was expressed up to 5 months inmore » plasma, liver, heart, and lung, at 5-15% of the level in untreated wild-type mice. A few mice formed antibodies, but antibodies did not block AChE activity. The plasma AChE was a mixture of dimers and tetramers. AChE delivered intramuscularly had 40-fold higher activity levels than in wild-type muscle. None of the AChE was collagen-tailed. No retrograde transport through the motor neurons to the central nervous system was detected. AChE delivered intrastriatally assembled into tetramers. In brain, the AAV-2 vector transduced neurons, but not astrocytes and microglia. Vector-treated AChE-/- mice lived longer than saline-treated controls. AChE-/- mice were protected from diisopropylfluorophosphate-induced respiratory failure when the vector was delivered intravenously, but not intrastriatally. Since vector-treated animals had no AChE activity in diaphragm muscle, protection from respiratory failure came from AChE in other tissues. We conclude that AChE scavenged OP and in this way protected the activity of butyrylcholinesterase (BChE, EC 3.1.1.8) in motor endplates.« less
Development of a novel mouse glioma model using lentiviral vectors
Marumoto, Tomotoshi; Tashiro, Ayumu; Friedmann-Morvinski, Dinorah; Scadeng, Miriam; Soda, Yasushi; Gage, Fred H; Verma, Inder M
2009-01-01
We report the development of a new method to induce glioblastoma multiforme in adult immunocompetent mice by injecting Cre-loxP–controlled lentiviral vectors expressing oncogenes. Cell type- or region-specific expression of activated forms of the oncoproteins Harvey-Ras and AKT in fewer than 60 glial fibrillary acidic protein–positive cells in the hippocampus, subventricular zone or cortex of mice heterozygous for the gene encoding the tumor suppressor Tp53 were tested. Mice developed glioblastoma multiforme when transduced either in the subventricular zone or the hippocampus. However, tumors were rarely detected when the mice were transduced in the cortex. Transplantation of brain tumor cells into naive recipient mouse brain resulted in the formation of glioblastoma multiforme–like tumors, which contained CD133+ cells, formed tumorspheres and could differentiate into neurons and astrocytes. We suggest that the use of Cre-loxP–controlled lentiviral vectors is a novel way to generate a mouse glioblastoma multiforme model in a region- and cell type-specific manner in adult mice. PMID:19122659
Vector spherical quasi-Gaussian vortex beams
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2014-02-01
Model equations for describing and efficiently computing the radiation profiles of tightly spherically focused higher-order electromagnetic beams of vortex nature are derived stemming from a vectorial analysis with the complex-source-point method. This solution, termed as a high-order quasi-Gaussian (qG) vortex beam, exactly satisfies the vector Helmholtz and Maxwell's equations. It is characterized by a nonzero integer degree and order (n,m), respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and an azimuthal phase dependency in the form of a complex exponential corresponding to a vortex beam. An attractive feature of the high-order solution is the rigorous description of strongly focused (or strongly divergent) vortex wave fields without the need of either the higher-order corrections or the numerically intensive methods. Closed-form expressions and computational results illustrate the analysis and some properties of the high-order qG vortex beams based on the axial and transverse polarization schemes of the vector potentials with emphasis on the beam waist.
NASA Technical Reports Server (NTRS)
Schmidt, R. F.
1971-01-01
Some results obtained with a digital computer program written at Goddard Space Flight Center to obtain electromagnetic fields scattered by perfectly reflecting surfaces are presented. For purposes of illustration a paraboloidal reflector was illuminated at radio frequencies in the simulation for both receiving and transmitting modes of operation. Fields were computed in the Fresnel and Fraunhofer regions. A dual-reflector system (Cassegrain) was also simulated for the transmitting case, and fields were computed in the Fraunhofer region. Appended results include derivations which show that the vector Kirchhoff-Kottler formulation has an equivalent form requiring only incident magnetic fields as a driving function. Satisfaction of the radiation conditions at infinity by the equivalent form is demonstrated by a conversion from Cartesian to spherical vector operators. A subsequent development presents the formulation by which Fresnel or Fraunhofer patterns are obtainable for dual-reflector systems. A discussion of the time-average Poynting vector is also appended.
NASA Astrophysics Data System (ADS)
Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.
2011-03-01
Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.
Structural Analysis of Biodiversity
Sirovich, Lawrence; Stoeckle, Mark Y.; Zhang, Yu
2010-01-01
Large, recently-available genomic databases cover a wide range of life forms, suggesting opportunity for insights into genetic structure of biodiversity. In this study we refine our recently-described technique using indicator vectors to analyze and visualize nucleotide sequences. The indicator vector approach generates correlation matrices, dubbed Klee diagrams, which represent a novel way of assembling and viewing large genomic datasets. To explore its potential utility, here we apply the improved algorithm to a collection of almost 17000 DNA barcode sequences covering 12 widely-separated animal taxa, demonstrating that indicator vectors for classification gave correct assignment in all 11000 test cases. Indicator vector analysis revealed discontinuities corresponding to species- and higher-level taxonomic divisions, suggesting an efficient approach to classification of organisms from poorly-studied groups. As compared to standard distance metrics, indicator vectors preserve diagnostic character probabilities, enable automated classification of test sequences, and generate high-information density single-page displays. These results support application of indicator vectors for comparative analysis of large nucleotide data sets and raise prospect of gaining insight into broad-scale patterns in the genetic structure of biodiversity. PMID:20195371
Shimizu, Yasuyuki; Giri, Sanjay; Yamaguchi, Satomi; Nelson, Jonathan M.
2009-01-01
This work presents recent advances on morphodynamic modeling of bed forms under unsteady discharge. This paper includes further development of a morphodynamic model proposed earlier by Giri and Shimizu (2006a). This model reproduces the temporal development of river dunes and accurately replicates the physical properties associated with bed form evolution. Model results appear to provide accurate predictions of bed form geometry and form drag over bed forms for arbitrary steady flows. However, accurate predictions of temporal changes of form drag are key to the prediction of stage‐discharge relation during flood events. Herein, the model capability is extended to replicate the dune–flat bed transition, and in turn, the variation of form drag produced by the temporal growth or decay of bed forms under unsteady flow conditions. Some numerical experiments are performed to analyze hysteresis of the stage‐discharge relationship caused by the transition between dune and flat bed regimes during rising and falling stages of varying flows. The numerical model successfully simulates dune–flat bed transition and the associated hysteresis of the stage‐discharge relationship; this is in good agreement with physical observations but has been treated in the past only using empirical methods. A hypothetical relationship for a sediment parameter (the mean step length) is proposed to a first level of approximation that enables reproduction of the dune–flat bed transition. The proposed numerical model demonstrates its ability to address an important practical problem associated with bed form evolution and flow resistance in varying flows.
NASA Astrophysics Data System (ADS)
Kadaj, Roman
2016-12-01
The adjustment problem of the so-called combined (hybrid, integrated) network created with GNSS vectors and terrestrial observations has been the subject of many theoretical and applied works. The network adjustment in various mathematical spaces was considered: in the Cartesian geocentric system on a reference ellipsoid and on a mapping plane. For practical reasons, it often takes a geodetic coordinate system associated with the reference ellipsoid. In this case, the Cartesian GNSS vectors are converted, for example, into geodesic parameters (azimuth and length) on the ellipsoid, but the simple form of converted pseudo-observations are the direct differences of the geodetic coordinates. Unfortunately, such an approach may be essentially distorted by a systematic error resulting from the position error of the GNSS vector, before its projection on the ellipsoid surface. In this paper, an analysis of the impact of this error on the determined measures of geometric ellipsoid elements, including the differences of geodetic coordinates or geodesic parameters is presented. Assuming that the adjustment of a combined network on the ellipsoid shows that the optimal functional approach in relation to the satellite observation, is to create the observational equations directly for the original GNSS Cartesian vector components, writing them directly as a function of the geodetic coordinates (in numerical applications, we use the linearized forms of observational equations with explicitly specified coefficients). While retaining the original character of the Cartesian vector, one avoids any systematic errors that may occur in the conversion of the original GNSS vectors to ellipsoid elements, for example the vector of the geodesic parameters. The problem is theoretically developed and numerically tested. An example of the adjustment of a subnet loaded from the database of reference stations of the ASG-EUPOS system was considered for the preferred functional model of the GNSS observations.
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Esker, Barbara S.
1993-01-01
Many conceptual designs for advanced short-takeoff, vertical landing (ASTOVL) aircraft need exhaust nozzles that can vector the jet to provide forces and moments for controlling the aircraft's movement or attitude in flight near the ground. A type of nozzle that can both vector the jet and vary the jet flow area is called a vane nozzle. Basically, the nozzle consists of parallel, spaced-apart flow passages formed by pairs of vanes (vanesets) that can be rotated on axes perpendicular to the flow. Two important features of this type of nozzle are the abilities to vector the jet rearward up to 45 degrees and to produce less harsh pressure and velocity footprints during vertical landing than does an equivalent single jet. A one-third-scale model of a generic vane nozzle was tested with unheated air at the NASA Lewis Research Center's Powered Lift Facility. The model had three parallel flow passages. Each passage was formed by a vaneset consisting of a long and a short vane. The longer vanes controlled the jet vector angle, and the shorter controlled the flow area. Nozzle performance for three nominal flow areas (basic and plus or minus 21 percent of basic area), each at nominal jet vector angles from -20 deg (forward of vertical) to +45 deg (rearward of vertical) are presented. The tests were made with the nozzle mounted on a model tailpipe with a blind flange on the end to simulate a closed cruise nozzle, at tailpipe-to-ambient pressure ratios from 1.8 to 4.0. Also included are jet wake data, single-vaneset vector performance for long/short and equal-length vane designs, and pumping capability. The pumping capability arises from the subambient pressure developed in the cavities between the vanesets, which could be used to aspirate flow from a source such as the engine compartment. Some of the performance characteristics are compared with characteristics of a single-jet nozzle previously reported.
2013-01-01
Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512
Electromagnetically induced transparency in the case of elliptic polarization of interacting fields
NASA Astrophysics Data System (ADS)
Parshkov, Oleg M.
2018-04-01
The theoretical investigation results of disintegration effect of elliptic polarized shot probe pulses of electromagnetically induced transparency in the counterintuitive superposed elliptic polarized control field and in weak probe field approximation are presented. It is shown that this disintegration occurs because the probe field in the medium is the sum of two normal modes, which correspond to elliptic polarized pulses with different speeds of propagation. The polarization ellipses of normal modes have equal eccentricities and mutually perpendicular major axes. Major axis of polarization ellipse of one normal mode is parallel to polarization ellipse major axis of control field, and electric vector of this mode rotates in the opposite direction, than electric vector of the control field. The electric vector other normal mode rotates in the same direction that the control field electric vector. The normal mode speed of the first type aforementioned is less than that of the second type. The polarization characteristics of the normal mode depend uniquely on the polarization characteristics of elliptic polarized control field and remain changeless in the propagation process. The theoretical investigation is performed for Λ-scheme of degenerated quantum transitions between 3P0, 3P10 and 3P2 energy levels of 208Pb isotope.
How the geomagnetic field vector reverses polarity
Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.
1985-01-01
A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.
2012-07-12
readily transferable to diverse real-time PCR instrumentation. These assays are used regularly for vector surveillance and are the primary...instrumentation ( FilmArray ) is under assessment. Assay oligonucleotide sequences and formulations are available for use in future joint projects...Plasmodium real-time PCR detection capability has been challenging. During 2006, the Division of Entomology, WRAIR designed and developed a
NASA Astrophysics Data System (ADS)
Yamauchi, Touru; Ueda, Hiroaki; Ohwada, Kenji; Nakao, Hironori; Ueda, Yutaka
2018-03-01
A common characteristic of quasi-one-dimensional (q1D) conductors β -A0.33V2O5 (A = Li, Na, and Ag) is that the charge ordering (CO), the ground state (GS) at ambient pressure, and the superconducting (SC) phases, the GS under high pressure, are competing with each other. We have explored high-pressure properties of divalent β -vanadium bronzes, β -A0.33V2O5 (A = Ca, Sr, and Pb), which are A -cation stoichiometry finely controlled single-crystal/powder samples, and found the absence of the SC phase. In these observations, however, we observed enormous and novel phase transitions, a kind of "devil's staircase"-type phase transitions in the charge ordering (CO) phases. The most surprising discovery in this devil's staircase, which was found mainly in β -Sr0.33V2O5 , is that all the charge modulation vectors of many kinds of CO phases can be represented as a primitive lattice translation vector along the b axis multiplied by several odd numbers. This discovery surely demonstrates interplay between the charge degree freedom and the crystallographic symmetry. We propose two possible mechanisms to explain this phenomenon: "self-charge transfer (carrier redistribution)" between the two subsystems in these compounds and "sequential symmetry reduction" that was discussed in Landau theory of phase transitions. In β -Ca0.33V2O5 we also found a P -T phase diagram similar in outlook but different in detail. The devil's staircase was also observed but it is an incomplete one. Furthermore, the charge modulation vectors in it are shorter than those in β -Sr0.33V2O5 . In β -Pb0.33V2O5 , which has no CO phase at ambient pressure, the pressure-induced antiferromagnetic ordering was observed at around 50 K above 0.5 GPa. Using these two kinds of mechanisms, we also explain the global high-pressure properties in all the stoichiometric divalent β -vanadium bronzes, which were observed as a wide variety of electromagnetic states. In addition, we also discuss a possible key for the presence/absence of the SC phase under pressure.
Dispersive analysis of the pion transition form factor
NASA Astrophysics Data System (ADS)
Hoferichter, M.; Kubis, B.; Leupold, S.; Niecknig, F.; Schneider, S. P.
2014-11-01
We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the cross section, generalizing previous studies on decays and scattering, and verify our result by comparing to data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below , and extract the slope of the form factor at vanishing momentum transfer . We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.
Towards a dispersive determination of the pion transition form factor
NASA Astrophysics Data System (ADS)
Leupold, Stefan; Hoferichter, Martin; Kubis, Bastian; Niecknig, Franz; Schneider, Sebastian P.
2018-01-01
We start with a brief motivation why the pion transition form factor is interesting and, in particular, how it is related to the high-precision standard-model calculation of the gyromagnetic ratio of the muon. Then we report on the current status of our ongoing project to calculate the pion transition form factor using dispersion theory. Finally we present and discuss a wish list of experimental data that would help to improve the input for our calculations and/or to cross-check our results.
History Curriculum and Teacher Training: Shaping a Democratic Future in Post-Apartheid South Africa?
ERIC Educational Resources Information Center
Tibbitts, Felisa L.; Weldon, Gail
2017-01-01
Issues of transitional justice are central to countries moving away from identity-based conflict. Research tends to focus on the most well-known forms of transitional justice, like truth commissions. Far less attention has been given to education as a form of transitional justice, and even less to teacher professional development, even though…
NASA Astrophysics Data System (ADS)
Moskalenko, S. A.; Podlesny, I. V.; Dumanov, E. V.; Liberman, M. A.
2015-11-01
The properties of the two-dimensional cavity polaritons subjected to the action of a strong perpendicular magnetic and electric fields, giving rise to the Landau quantization (LQ) of the 2D electrons and holes accompanied by the Rashba spin-orbit coupling, by the Zeeman splitting and by the nonparabolicity of the heavy-hole dispersion law are investigated. We use the method proposed by Rashba (1960) [1] and the obtained results are based on the exact solutions for the eigenfunctions and for the eigenvalues of the Pauli-type Hamilonians with third order chirality terms and nonparabolic dispersion law for heavy-holes and with the first order chirality terms for electrons. The selection rules of the band-to-band optical quantum transitions as well as of the quantum transitions from the ground state of the crystal to the magnetoexciton states depend essentially on the numbers ne and nh of the LQ levels of the (e-h) pair forming the magnetoexciton. It is shown that the Rabi frequency ΩR of the polariton branches and the magnetoexciton oscillator strength fosc increase with the magnetic field strength B as ΩR √{ B }, and fosc B. The optical gyrotropy effects may be revealed changing the sign of the photon circular polarization at a given sign of the wave vector longitudinal projection kz or equivalently changing the sign of kz at the same selected circular polarization.
Vector vortex beam generation with dolphin-shaped cell meta-surface.
Yang, Zhuo; Kuang, Deng-Feng; Cheng, Fang
2017-09-18
We present a dolphin-shaped cell meta-surface, which is a combination of dolphin-shaped metallic cells and dielectric substrate, for vector vortex beam generation with the illumination of linearly polarized light. Surface plasmon polaritons are excited at the boundary of the metallic cells, then guided by the metallic structures, and finally squeezed to the tips to form highly localized strong electromagnetic fields, which generate the intensity of vector vortex beams at z component. Synchronously, the abrupt phase change produced by the meta-surface is utilized to explain the vortex phase generated by elements. The new kind of structure can be utilized for communication, bioscience, and materiality.