Sample records for vector-encoding apoptotic protein

  1. Ectromelia virus encodes an anti-apoptotic protein that regulates cell death.

    PubMed

    Mehta, Ninad; Taylor, John; Quilty, Douglas; Barry, Michele

    2015-01-15

    Apoptosis serves as a powerful defense against damaged or pathogen-infected cells. Since apoptosis is an effective defense against viral infection, many viruses including poxviruses, encode proteins to prevent or delay apoptosis. Here we show that ectromelia virus, the causative agent of mousepox encodes an anti-apoptotic protein EVM025. Here we demonstrate that expression of functional EVM025 is crucial to prevent apoptosis triggered by virus infection and staurosporine. We demonstrate that the expression of EVM025 prevents the conformational activation of the pro-apoptotic proteins Bak and Bax, allowing the maintenance of mitochondrial membrane integrity upon infection with ECTV. Additionally, EVM025 interacted with intracellular Bak. We were able to demonstrate that EVM025 ability to inhibit Bax activation is a function of its ability to inhibit the activity of an upstream BH3 only protein Bim. Collectively, our data indicates that EVM025 inhibits apoptosis by sequestering Bak and inhibiting the activity of Bak and Bax. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Host Range of Gammaretroviruses and Gammaretroviral Vectors Includes Post-Mitotic Neural Cells

    PubMed Central

    Liu, Xiu-Huai; Xu, Wenqin; Russ, Jill; Eiden, Lee E.; Eiden, Maribeth V.

    2011-01-01

    Background Gammaretroviruses and gammaretroviral vectors, in contrast to lentiviruses and lentiviral vectors, are reported to be restricted in their ability to infect growth-arrested cells. The block to this restriction has never been clearly defined. The original assessment of the inability of gammaretroviruses and gammaretroviral vectors to infect growth-arrested cells was carried out using established cell lines that had been growth-arrested by chemical means, and has been generalized to neurons, which are post-mitotic. We re-examined the capability of gammaretroviruses and their derived vectors to efficiently infect terminally differentiated neuroendocrine cells and primary cortical neurons, a target of both experimental and therapeutic interest. Methodology/Principal Findings Using GFP expression as a marker for infection, we determined that both growth-arrested (NGF-differentiated) rat pheochromocytoma cells (PC12 cells) and primary rat cortical neurons could be efficiently transduced, and maintained long-term protein expression, after exposure to murine leukemia virus (MLV) and MLV-based retroviral vectors. Terminally differentiated PC12 cells transduced with a gammaretroviral vector encoding the anti-apoptotic protein Bcl-xL were protected from cell death induced by withdrawal of nerve growth factor (NGF), demonstrating gammaretroviral vector-mediated delivery and expression of genes at levels sufficient for therapeutic effect in non-dividing cells. Post-mitotic rat cortical neurons were also shown to be susceptible to transduction by murine replication-competent gammaretroviruses and gammaretroviral vectors. Conclusions/Significance These findings suggest that the host range of gammaretroviruses includes post-mitotic and other growth-arrested cells in mammals, and have implications for re-direction of gammaretroviral gene therapy to neurological disease. PMID:21464894

  3. Vaccination with an adenoviral vector that encodes and displays a retroviral antigen induces improved neutralizing antibody and CD4+ T-cell responses and confers enhanced protection.

    PubMed

    Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver

    2010-02-01

    We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.

  4. Investigations of Pro- and Anti-Apoptotic Factors Affecting African Swine Fever Virus Replication and Pathogenesis.

    PubMed

    Dixon, Linda K; Sánchez-Cordón, Pedro J; Galindo, Inmaculada; Alonso, Covadonga

    2017-08-25

    African swine fever virus (ASFV) is a large DNA virus that replicates predominantly in the cell cytoplasm and is the only member of the Asfarviridae family. The virus causes an acute haemorrhagic fever, African swine fever (ASF), in domestic pigs and wild boar resulting in the death of most infected animals. Apoptosis is induced at an early stage during virus entry or uncoating. However, ASFV encodes anti-apoptotic proteins which facilitate production of progeny virions. These anti-apoptotic proteins include A179L, a Bcl-2 family member; A224L, an inhibitor of apoptosis proteins (IAP) family member; EP153R a C-type lectin; and DP71L. The latter acts by inhibiting activation of the stress activated pro-apoptotic pathways pro-apoptotic pathways. The mechanisms by which these proteins act is summarised. ASF disease is characterised by massive apoptosis of uninfected lymphocytes which reduces the effectiveness of the immune response, contributing to virus pathogenesis. Mechanisms by which this apoptosis is induced are discussed.

  5. Investigations of Pro- and Anti-Apoptotic Factors Affecting African Swine Fever Virus Replication and Pathogenesis

    PubMed Central

    Dixon, Linda K.; Sánchez-Cordón, Pedro J.; Galindo, Inmaculada

    2017-01-01

    African swine fever virus (ASFV) is a large DNA virus that replicates predominantly in the cell cytoplasm and is the only member of the Asfarviridae family. The virus causes an acute haemorrhagic fever, African swine fever (ASF), in domestic pigs and wild boar resulting in the death of most infected animals. Apoptosis is induced at an early stage during virus entry or uncoating. However, ASFV encodes anti-apoptotic proteins which facilitate production of progeny virions. These anti-apoptotic proteins include A179L, a Bcl-2 family member; A224L, an inhibitor of apoptosis proteins (IAP) family member; EP153R a C-type lectin; and DP71L. The latter acts by inhibiting activation of the stress activated pro-apoptotic pathways pro-apoptotic pathways. The mechanisms by which these proteins act is summarised. ASF disease is characterised by massive apoptosis of uninfected lymphocytes which reduces the effectiveness of the immune response, contributing to virus pathogenesis. Mechanisms by which this apoptosis is induced are discussed. PMID:28841179

  6. Live imaging of apoptotic cells in zebrafish

    PubMed Central

    van Ham, Tjakko J.; Mapes, James; Kokel, David; Peterson, Randall T.

    2010-01-01

    Many debilitating diseases, including neurodegenerative diseases, involve apoptosis. Several methods have been developed for visualizing apoptotic cells in vitro or in fixed tissues, but few tools are available for visualizing apoptotic cells in live animals. Here we describe a genetically encoded fluorescent reporter protein that labels apoptotic cells in live zebrafish embryos. During apoptosis, the phospholipid phosphatidylserine (PS) is exposed on the outer leaflet of the plasma membrane. The calcium-dependent protein Annexin V (A5) binds PS with high affinity, and biochemically purified, fluorescently labeled A5 probes have been widely used to detect apoptosis in vitro. Here we show that secreted A5 fused to yellow fluorescent protein specifically labels apoptotic cells in living zebrafish. We use this fluorescent probe to characterize patterns of apoptosis in living zebrafish larvae and to visualize neuronal cell death at single-cell resolution in vivo.—Van Ham, T. J., Mapes, J., Kokel, D., Peterson, R. T. Live imaging of apoptotic cells in zebrafish. PMID:20601526

  7. Fusagene vectors: a novel strategy for the expression of multiple genes from a single cistron.

    PubMed

    Gäken, J; Jiang, J; Daniel, K; van Berkel, E; Hughes, C; Kuiper, M; Darling, D; Tavassoli, M; Galea-Lauri, J; Ford, K; Kemeny, M; Russell, S; Farzaneh, F

    2000-12-01

    Transduction of cells with multiple genes, allowing their stable and co-ordinated expression, is difficult with the available methodologies. A method has been developed for expression of multiple gene products, as fusion proteins, from a single cistron. The encoded proteins are post-synthetically cleaved and processed into each of their constituent proteins as individual, biologically active factors. Specifically, linkers encoding cleavage sites for the Golgi expressed endoprotease, furin, have been incorporated between in-frame cDNA sequences encoding different secreted or membrane bound proteins. With this strategy we have developed expression vectors encoding multiple proteins (IL-2 and B7.1, IL-4 and B7.1, IL-4 and IL-2, IL-12 p40 and p35, and IL-12 p40, p35 and IL-2 ). Transduction and analysis of over 100 individual clones, derived from murine and human tumour cell lines, demonstrate the efficient expression and biological activity of each of the encoded proteins. Fusagene vectors enable the co-ordinated expression of multiple gene products from a single, monocistronic, expression cassette.

  8. Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination

    PubMed Central

    Revaud, Julien; Unterfinger, Yves; Rol, Nicolas; Suleman, Muhammad; Shaw, Julia; Galea, Sandra; Gavard, Françoise; Lacour, Sandrine A.; Coulpier, Muriel; Versillé, Nicolas; Havenga, Menzo; Klonjkowski, Bernard; Zanella, Gina; Biacchesi, Stéphane; Cordonnier, Nathalie; Corthésy, Blaise; Ben Arous, Juliette; Richardson, Jennifer P.

    2018-01-01

    To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. PMID:29423380

  9. From molecular PDT damage to cellular PDT responses: attempts at bridging the gap on the role of Bcl-2

    NASA Astrophysics Data System (ADS)

    Usuda, Jitsuo; Xue, Liang-yan; Chiu, Song-mao; Azizuddin, Kashif; Morris, Rachel L.; Mulvihill, John; Oleinick, Nancy L.

    2003-06-01

    Expression of the anti-apoptotic proteins Bcl-2 and/or Bcl-xL is greatly elevated in many advanced cancers, especially those resistant to standard therapies, such as radiation or chemotherapy. It has been suggested that those two proteins would be attractive targets for the development of new cancer treatments. Photodynamic therapy (PDT) with photosensitizers that localize in or target mitochondria, such as the phthalocyanine Pc 4, specifically attack the anti-apoptotic protein Bcl-2, generating a variety of oxidized, complexed, and cleaved photoproducts. The closely related protein Bcl-xL is also a target of Pc 4-PDT. In a recent study employing transient transfection of an expression vector encoding deletion mutants of Bcl-2, we identified the membrane anchorage regions of the protein that are required to form the photosensitive target. In spite of the demonstrated photodamage to Bcl-2 (and Bcl-xL), how the photodamage translates into changes in the sensitivity of cells to PDT-induced apoptosis or other modes of cell death is not clear, and it also remains unclear how elevated amounts of anti-apoptotic proteins in tumors might make them more or less responsive to PDT. In the present study, we have studied the PDT response of MCF7 human breast cancer cells overexpressing wild-type Bcl-2 or certain deletion mutants either in a transient or stable mode. We show that cells expressing modestly elevated amounts (<10-fold increase) of Bcl-2 and in which the pro-apoptotic protein Bax is not upregulated do not differ from the parental cells with respect to PDT-induced cell killing. In contrast, cells expressing higher amounts (>50-fold increase) of Bcl-2 or certain mutants are made significantly more resistant to the induction of apoptosis and the loss of clonogenicity upon exposure to Pc 4-PDT. In the presence of high levels of Bcl-2, extensive photodamage requires higher PDT doses. We conclude that Pc 4-PDT targets Bcl-2 and Bcl-xL, eliminating one mechanism that protects the tumor cells from other types of therapy. However, it is possible that cells expressing very high levels of the anti-apoptotic proteins might still be resistant to PDT. The data suggest that PDT with a non-vascular-targeting photosensitizer might be effective in a combination treatment in which Bcl-2 and Bcl-xL are first photodamaged before delivery of a second agent.

  10. Red-shifted fluorescent proteins mPlum and mRaspberry and polynucleotides encoding the same

    DOEpatents

    Tsien, Roger Y [La Jolla, CA; Wang, Lei [San Diego, CA

    2008-07-01

    Methods using somatic hypermutation (SHM) for producing polypeptide and nucleic acid variants, and nucleic acids encoding such polypeptide variants are disclosed. Such variants may have desired properties. Also disclosed are novel polypeptides, such as improved fluorescent proteins, produced by the novel methods, and nucleic acids, vectors, and host cells comprising such vectors.

  11. A Family of LIC Vectors for High-Throughput Cloning and Purification of Proteins1

    PubMed Central

    Eschenfeldt, William H.; Stols, Lucy; Millard, Cynthia Sanville; Joachimiak, Andrzej; Donnelly, Mark I.

    2009-01-01

    Summary Fifteen related ligation-independent cloning vectors were constructed for high-throughput cloning and purification of proteins. The vectors encode a TEV protease site for removal of tags that facilitate protein purification (his-tag) or improve solubility (MBP, GST). Specialized vectors allow coexpression and copurification of interacting proteins, or in vivo removal of MBP by TVMV protease to improve screening and purification. All target genes and vectors are processed by the same protocols, which we describe here. PMID:18988021

  12. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector

    PubMed Central

    2013-01-01

    Background Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. Results We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. Conclusions We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins. PMID:23957834

  13. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector.

    PubMed

    Buj, Raquel; Iglesias, Noa; Planas, Anna M; Santalucía, Tomàs

    2013-08-20

    Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit's component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins.

  14. Using HSV-TK/GCV suicide gene therapy to inhibit lens epithelial cell proliferation for treatment of posterior capsular opacification

    PubMed Central

    Jiang, Yong-Xiang; Liu, Tian-Jing; Yang, Jin; Chen, Yan; Fang, Yan-Wen

    2011-01-01

    Purpose To establish a novel, targeted lentivirus-based HSV-tk (herpes simplex virus thymidine kinase)/GCV (ganciclovir) gene therapy system to inhibit lens epithelial cell proliferation for treatment of posterior capsular opacification (PCO) after cataract surgery. Methods An enhanced Cre recombinase (Cre/loxP) system with a lentiviral vector expressing Cre under the control of the lens-specific promoter LEP503 (Lenti-LEP503-HSVtk-Cre [LTKCRE]) was constructed, as well as another lentiviral vector containing a switching unit. The latter vector contains a stuffer sequence encoding EGFP (Lenti-hPGK-Loxp-EGFP-pA-Loxp-HSVtk [PGFPTK]) with a functional polyadenylation signal between two loxP sites, followed by the herpes simplex virus thymidine kinase (HSV-tk) gene, both under the control of the human posphoglycerate kinase (hPGK) promoter. Expression of the downstream gene (HSV-tk) is activated by co-expression of Cre. Human lens epithelial cells (HLECs) or retinal pigmental epithelial cells (RPECs) were co-infected with LTKCRE and PGFPTK. The inhibitory effects on HLECs and RPECs infected by the enhanced specific lentiviral vector combination at the concentration of 20 µg/ml GCV were assayed and compared. Results The specific gene expression of Cre and HSV-tk in HLECs is activated by the LEP503 promoter. LTKCRE and PGFPTK co-infected HLECs, but not RPECs, expressed high levels of the HSV-tk protein. After 96 h of GCV treatment, the percentage of apoptotic HLECs infected by the enhanced specific lentiviral vector combination was 87.23%, whereas that of apoptotic RPECs was only 10.12%. Electron microscopy showed that GCV induced apoptosis and necrosis of the infected HLECs. Conclusions The enhanced specific lentiviral vector combination selectively and effectively expressed HSV-tk in HLECs. A concentration of 20 µg/ml, GCV is effective against the proliferation of HLECs in vitro. This cell-type-specific gene therapy using a Cre/loxP lentivirus system may be a feasible treatment strategy to prevent PCO. PMID:21283526

  15. Characterization of the extrinsic apoptotic pathway in the basal chordate amphioxus.

    PubMed

    Yuan, Shaochun; Liu, Huiling; Gu, Ming; Xu, Liqun; Huang, Shengfeng; Ren, Zhenhua; Xu, Anlong

    2010-09-14

    The death receptor (DR)-mediated apoptosis pathway is thought to be unique to vertebrates. However, the presence of DR-encoding genes in the sea urchin and the basal chordate amphioxus prompted us to reconsider, especially given that amphioxus contains 14 DR proteins and hundreds of death domain (DD)-containing adaptor proteins. To understand how the extrinsic apoptotic pathway was originally established and what the differences in signaling are between invertebrates and vertebrates, we performed functional studies of several genes that encode DDs in the amphioxus Branchiostoma belcheri tsingtauense (Bbt). First, we observed that the increased abundance of Bbt Fas-associated death domain 1 (BbtFADD1) in HeLa cells resulted in the formation of death effector filamentous structures in the cytoplasm and the activation of the nuclear factor κB pathway, whereas BbtFADD2 protein was restricted to the nucleus, although its death effector domain induced apoptosis when in the cytoplasm. We further demonstrated that formation of a FADD-caspase-8 complex recruited amphioxus DR1 (BbtDR1), which bound to the adaptor proteins CRADD or TRAF6 (tumor necrosis factor receptor-associated factor 6) to convey distinct signals, ranging from apoptosis to gene activation. Thus, our study not only reveals the evolutionary origin of the extrinsic apoptotic pathway in a basal chordate but also adds to our understanding of the similarities and differences between invertebrate and vertebrate FADD signaling.

  16. [Construction and expression of six deletion mutants of human astrovirus C-terminal nsP1a/4 protein].

    PubMed

    Zhao, Wei; Niu, Ke; Zhao, Jian; Jin, Yi-ming; Sui, Ting-ting; Wang, Wen

    2013-09-01

    Human astrovirus (HAstV) is one of the leading causes of actue virual diarrhea in infants. HAstV-induced epithdlial cell apoptosis plays an important role in the pathogenesis of HAstV infection. Our previous study indicated that HAstV non-structural protein nsPla C-terminal protein nsPla/4 was the major apoptosis functional protein and probably contained the main apoptosis domains. In order to screen for astrovirus encoded apoptotic protien, nsPla/4 and six turncated proteins, which possessed nsPla/4 protein different function domain ,were cloned into green fluorescent protein (GFP) vector pEG-FP-N3. After 24-72 h transfection, the fusion protein expression in BHK21 cells, was analysis by fluorescence microscope and Western blot. The results indicated seven fusion proteins were observed successfully in BHK21 cell after transfected for 24 h. Western blot analysis showed that the level of fusion protein expressed in BHK21 cells was increased significantly at 72h compared to 48h in transfected cells. The successful expression of deletion mutants of nsPla/4 protein was an important foundation to gain further insights into the function of apoptosis domains of nsPla/4 protein and it would also provide research platform to further confirm the molecule pathogenic mechanism of human astrovirus.

  17. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withers, III, Sydnor T.; Dominguez, Miguel A.; DeLisa, Matthew P.

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  18. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    DOEpatents

    Withers, III, Sydnor T.; Dominguez, Miguel A; DeLisa, Matthew P.; Haitjema, Charles H.

    2016-08-09

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  19. Mitochondrial targets of photodynamic therapy and their contribution to cell death

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Usuda, Jitsuo; Xue, Liang-yan; Azizuddin, Kashif; Chiu, Song-mao; Lam, Minh C.; Morris, Rachel L.; Nieminen, Anna-Liisa

    2002-06-01

    In response to photodynamic therapy (PDT), many cells in culture or within experimental tumors are eliminated by apoptosis. PDT with photosensitizers that localize in or target mitochondria, such as the phthalocyanine Pc 4, causes prompt release of cytochrome c into the cytoplasm and activation of caspases-9 and -3, among other caspases, that are responsible for initiating cell degradation. Some cells appear resistant to apoptosis after PDT; however, if they have sustained sufficient damage, they will die by a necrotic process or through a different apoptotic pathway. In the case of PDT, the distinction between apoptosis and necrosis may be less important than the mechanism that triggers both processes, since critical lethal damage appears to occur during treatment and does not require the major steps in apoptosis to be expressed. We earlier showed, for example, that human breast cancer MCF-7 cells that lack caspase-3 are resistant to the induction of apoptosis by PDT, but are just as sensitive to the loss of clonogenicity as MCF-7 cells stably expressing transfected procaspase-3. Many photosensitizers that target mitochondria specifically attack the anti-apoptotic protein Bcl-2, generating a variety of crosslinked and cleaved photoproducts. Recent evidence suggests that the closely related protein Bcl-xL is also a target of Pc 4-PDT. Transient transfection of an expression vector encoding deletion mutants of Bcl-2 have identified the critical sensitive site in the protein that is required for photodamage. This region contains two alpha helices that form a secondary membrane anchorage site and are thought to be responsible for pore formation by Bcl-2. As specific protein targets are identified, we are becoming better able to model the critical events in PDT-induced cell death.

  20. The Rubella virus capsid is an anti-apoptotic protein that attenuates the pore-forming ability of Bax.

    PubMed

    Ilkow, Carolina S; Goping, Ing Swie; Hobman, Tom C

    2011-02-01

    Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells.

  1. Gene encoding herbicide safener binding protein

    DOEpatents

    Walton, Jonathan D.; Scott-Craig, John S.

    1999-01-01

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is set forth in FIG. 5 and SEQ ID No. 1. The deduced amino acid sequence is provided in FIG. 5 and SEQ ID No. 2. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors and seeds from said plants.

  2. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    PubMed

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Cytochrome b5 gene and protein of Candida tropicalis and methods relating thereto

    DOEpatents

    Craft, David L.; Madduri, Krishna M.; Loper, John C.

    2003-01-01

    A novel gene has been isolated which encodes cytochrome b5 (CYTb5) protein of the .omega.-hydroxylase complex of C. tropicalis 20336. Vectors including this gene, and transformed host cells are provided. Methods of increasing the production of a CYTb5 protein are also provided which involve transforming a host cell with a gene encoding this protein and culturing the cells. Methods of increasing the production of a dicarboxylic acid are also provided which involve increasing in the host cell the number of genes encoding this protein.

  4. Overexpression of SASH1 related to the decreased invasion ability of human glioma U251 cells.

    PubMed

    Yang, Liu; Liu, Mei; Gu, Zhikai; Chen, Jianguo; Yan, Yaohua; Li, Jian

    2012-12-01

    The purpose of this study was to investigate the impact of SAM- and SH3-domain containing 1 (SASH1) on the biological behavior of glioma cells, including its effects on cellular growth, proliferation, apoptosis, invasion, and metastasis, and thereby to provide an experimental basis for future therapeutic treatments. A pcDNA3.1-SASH1 eukaryotic expression vector was constructed and transfected into the U251 human glioma cell line. Using the tetrazolium-based colorimetric (MTT) assay, flow cytometry analyses, transwell invasion chamber experiments, and other methods, we examined the impact of SASH1 on the biological behaviors of U251 cells, including effects on viability, cell cycle, apoptosis, and invasion. Furthermore, the effect of SASH1 on the expression of cyclin D1, caspase-3, matrix metalloproteinase (MMP)-2, MMP-9, and other proteins was observed. Compared to the empty vector and blank control groups, the pcDNA3.1-SASH1 group of U251 cells exhibited significantly reduced cell viability, proliferation, and invasion (p < 0.05), although there was no difference between the empty vector and blank control groups. The pcDNA3.1-SASH1 group demonstrated a significantly higher apoptotic index than did the empty vector and blank control groups (p < 0.05), and the percentage of apoptotic cells was similar between the empty vector and blank control groups. In addition, the pcDNA3.1-SASH1 group expressed significantly lower protein levels of cyclin D1 and MMP-2/9 compared to the control and empty vector groups (p < 0.05) and significantly higher protein levels of caspase-3 than the other two groups (p < 0.05). Cyclin D1, caspase-3, and MMP-2/9 expression was unchanged between the empty vector and blank control groups. SASH1 gene expression might be related to the inhibition of the growth, proliferation, and invasion of U251 cells and the promotion of U251 cells apoptosis.

  5. Frame-Insensitive Expression Cloning of Fluorescent Protein from Scolionema suvaense.

    PubMed

    Horiuchi, Yuki; Laskaratou, Danai; Sliwa, Michel; Ruckebusch, Cyril; Hatori, Kuniyuki; Mizuno, Hideaki; Hotta, Jun-Ichi

    2018-01-26

    Expression cloning from cDNA is an important technique for acquiring genes encoding novel fluorescent proteins. However, the probability of in-frame cDNA insertion following the first start codon of the vector is normally only 1/3, which is a cause of low cloning efficiency. To overcome this issue, we developed a new expression plasmid vector, pRSET-TriEX, in which transcriptional slippage was induced by introducing a DNA sequence of (dT) 14 next to the first start codon of pRSET. The effectiveness of frame-insensitive cloning was validated by inserting the gene encoding eGFP with all three possible frames to the vector. After transformation with one of these plasmids, E. coli cells expressed eGFP with no significant difference in the expression level. The pRSET-TriEX vector was then used for expression cloning of a novel fluorescent protein from Scolionema suvaense . We screened 3658 E. coli colonies transformed with pRSET-TriEX containing Scolionema suvaense cDNA, and found one colony expressing a novel green fluorescent protein, ScSuFP. The highest score in protein sequence similarity was 42% with the chain c of multi-domain green fluorescent protein like protein "ember" from Anthoathecata sp. Variations in the N- and/or C-terminal sequence of ScSuFP compared to other fluorescent proteins indicate that the expression cloning, rather than the sequence similarity-based methods, was crucial for acquiring the gene encoding ScSuFP. The absorption maximum was at 498 nm, with an extinction efficiency of 1.17 × 10⁵ M -1 ·cm -1 . The emission maximum was at 511 nm and the fluorescence quantum yield was determined to be 0.6. Pseudo-native gel electrophoresis showed that the protein forms obligatory homodimers.

  6. UMG Lenti: novel lentiviral vectors for efficient transgene- and reporter gene expression in human early hematopoietic progenitors.

    PubMed

    Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B; Grillone, Teresa; Giovannone, Emilia D; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A S; Bond, Heather M; Mesuraca, Maria; Morrone, Giovanni

    2014-01-01

    Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and -LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG-LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells.

  7. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F.W.; Rosenberg, A.H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.

  8. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  9. The current status and future directions of myxoma virus, a master in immune evasion

    PubMed Central

    2011-01-01

    Myxoma virus (MYXV) gained importance throughout the twentieth century because of the use of the highly virulent Standard Laboratory Strain (SLS) by the Australian government in the attempt to control the feral Australian population of Oryctolagus cuniculus (European rabbit) and the subsequent illegal release of MYXV in Europe. In the European rabbit, MYXV causes a disease with an exceedingly high mortality rate, named myxomatosis, which is passively transmitted by biting arthropod vectors. MYXV still has a great impact on European rabbit populations around the world. In contrast, only a single cutaneous lesion, restricted to the point of inoculation, is seen in its natural long-term host, the South-American Sylvilagus brasiliensis and the North-American S. Bachmani. Apart from being detrimental for European rabbits, however, MYXV has also become of interest in human medicine in the last two decades for two reasons. Firstly, due to the strong immune suppressing effects of certain MYXV proteins, several secreted virus-encoded immunomodulators (e.g. Serp-1) are being developed to treat systemic inflammatory syndromes such as cardiovascular disease in humans. Secondly, due to the inherent ability of MYXV to infect a broad spectrum of human cancer cells, the live virus is also being developed as an oncolytic virotherapeutic to treat human cancer. In this review, an update will be given on the current status of MYXV in rabbits as well as its potential in human medicine in the twenty-first century. Table of contents Abstract 1. The virus 2. History 3. Pathogenesis and disease symptoms 4. Immunomodulatory proteins of MYXV 4.1. MYXV proteins with anti-apoptotic functions 4.1.1. Inhibition of pro-apoptotic molecules 4.1.2. Inhibition by protein-protein interactions by ankyrin repeat viral proteins 4.1.3. Inhibition of apoptosis by enhancing the degradation of cellular proteins 4.1.4. Inhibition of apoptosis by blocking host Protein Kinase R (PKR) 4.2. MYXV proteins interfering with leukocyte chemotaxis 4.3. MYXV serpins that inhibit cellular pro-inflammatory or pro-apoptotic proteases 4.4. MYXV proteins that interfere with leukocyte activation 4.5. MYXV proteins with sequence similarity to HIV proteins 4.6. MYXV proteins with unknown immune function 5. Vaccination strategies against myxomatosis 5.1. Current MYXV vaccines 5.2. Vaccination campaigns to protect European rabbits in the wild 6. Applications of myxoma virus for human medicine 6.1. MYXV proteins as therapeutics for allograft vasculopathy and atherosclerosis 6.2. Applications for MYXV as a live oncolytic virus to treat cancer 7. Discussion and Conclusions 8. List of Abbreviations References Author Details Authors' contributions Competing interests Figure Legends Acknowledgements PMID:21658227

  10. Nip the HPV encoded evil in the cancer bud: HPV reshapes TRAILs and signaling landscapes

    PubMed Central

    2013-01-01

    HPV encoded proteins can elicit ectopic protein–protein interactions that re-wire signaling pathways, in a mode that promotes malignancy. Moreover, accumulating data related to HPV is now providing compelling substantiation of a central role played by HPV in escaping immunosurveillance and impairment of apoptotic response. What emerges is an intricate network of Wnt, TGF, Notch signaling cascades that forms higher-order ligand–receptor complexes routing downstream signaling in HPV infected cells. These HPV infected cells are regulated both extracellularly by ligand receptor axis and intracellularly by HPV encoded proteins and impair TRAIL mediated apoptosis. We divide this review into different sections addressing how linear signaling pathways integrate to facilitate carcinogenesis and compounds that directly or indirectly reverse these aberrant interactions offer new possibilities for therapy in cancer. Although HPV encoded proteins mediated misrepresentation of pathways is difficult to target, improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can target dysregulated pathways in HPV infected cervical cancer cells, thus setting the stage for preclinical models and clinical trials. PMID:23773282

  11. Adenoviral modification of mouse brain derived endothelial cells, bEnd3, to induce apoptosis by vascular endothelial growth factor.

    PubMed

    Mitsuuchi, Y; Powell, D R; Gallo, J M

    2006-02-09

    A second generation genetically-engineered cell-based drug delivery system, referred to as apoptotic-induced drug delivery (AIDD), was developed using endothelial cells (ECs) that undergo apoptosis upon binding of vascular endothelial growth factor (VEGF) to a Flk-1:Fas fusion protein (FF). This new AIDD was redesigned using mouse brain derived ECs, bEnd3 cells, and an adenovirus vector in order to enhance and control the expression of FF. The FF was tagged with a HA epitope (FFHA) and designed to be coexpressed with green fluorescence protein (GFP) by the regulation of cytomegalovirus promoters in the adenovirus vector. bEnd3 cells showed favorable coexpression of FFHA and GFP consistent with the multiplicity of infection of the adenovirus. Immunofluorescence analysis demonstrated that FFHA was localized at the plasma membrane, whereas GFP was predominantly located in the cytoplasm of ECs. Cell death was induced by VEGF, but not by platelet derived growth factor or fibroblast growth factor in a dose-dependent manner (range 2-20 ng/ml), and revealed caspase-dependent apoptotic profiles. The FFHA expressing bEnd3 cells underwent apoptosis when cocultured with a glioma cell (SF188V+) line able to overexpress VEGF. The combined data indicated that the FFHA adenovirus system can induce apoptotic signaling in ECs in response to VEGF, and thus, is an instrumental modification to the development of AIDD.

  12. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals

    NASA Astrophysics Data System (ADS)

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-07-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6-24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48-72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress.

  13. Survey of Navy Funded Marine Mammal Research and Studies FY 00-01

    DTIC Science & Technology

    2001-05-10

    protein of canine distemper virus as a reporter system in order to evaluate 103 the humoral response to DNA-mediated vaccination in cetaceans. If...PCR/ RT PCR, DNA cloning and sequencing, etc. Efforts are ongoing to design and clone a vector encoding Canine Distemper Virus, a virus closely...alternative plasmid as our reporter gene delivery vector. This alternate plasmid will encode for Canine Distemper virus genes, closely related to

  14. Human and Viral Golgi Anti-apoptotic Proteins (GAAPs) Oligomerize via Different Mechanisms and Monomeric GAAP Inhibits Apoptosis and Modulates Calcium*

    PubMed Central

    Saraiva, Nuno; Prole, David L.; Carrara, Guia; de Motes, Carlos Maluquer; Johnson, Benjamin F.; Byrne, Bernadette; Taylor, Colin W.; Smith, Geoffrey L.

    2013-01-01

    Golgi anti-apoptotic proteins (GAAPs) are hydrophobic proteins resident in membranes of the Golgi complex. They protect cells from a range of apoptotic stimuli, reduce the Ca2+ content of intracellular stores, and regulate Ca2+ fluxes. GAAP was discovered in camelpox virus, but it is highly conserved throughout evolution and encoded by all eukaryote genomes examined. GAAPs are part of the transmembrane Bax inhibitor-containing motif (TMBIM) family that also includes other anti-apoptotic and Ca2+-modulating membrane proteins. Most TMBIM members show multiple bands when analyzed by SDS-PAGE, suggesting that they may be oligomeric. However, the molecular mechanisms of oligomerization, the native state of GAAPs in living cells and the functional significance of oligomerization have not been addressed. TMBIM members are thought to have evolved from an ancestral GAAP. Two different GAAPs, human (h) and viral (v)GAAP were therefore selected as models to examine oligomerization of TMBIM family members. We show that both hGAAP and vGAAP in their native states form oligomers and that oligomerization is pH-dependent. Surprisingly, hGAAP and vGAAP do not share the same oligomerization mechanism. Oligomerization of hGAAP is independent of cysteines, but oligomerization of vGAAP depends on cysteines 9 and 60. A mutant vGAAP that is unable to oligomerize revealed that monomeric vGAAP retains both its anti-apoptotic function and its effect on intracellular Ca2+ stores. In conclusion, GAAP can oligomerize in a pH-regulated manner, and monomeric GAAP is functional. PMID:23508950

  15. Myocilin Regulates Cell Proliferation and Survival*

    PubMed Central

    Joe, Myung Kuk; Kwon, Heung Sun; Cojocaru, Radu; Tomarev, Stanislav I.

    2014-01-01

    Myocilin, a causative gene for open angle glaucoma, encodes a secreted glycoprotein with poorly understood functions. To gain insight into its functions, we produced a stably transfected HEK293 cell line expressing myocilin under an inducible promoter and compared gene expression profiles between myocilin-expressing and vector control cell lines by a microarray analysis. A significant fraction of differentially expressed genes in myocilin-expressing cells was associated with cell growth and cell death, suggesting that myocilin may have a role in the regulation of cell growth and survival. Increased proliferation of myocilin-expressing cells was demonstrated by the WST-1 proliferation assay, direct cell counting, and immunostaining with antibodies against Ki-67, a cellular proliferation marker. Myocilin-containing conditioned medium also increased proliferation of unmodified HEK293 cells. Myocilin-expressing cells were more resistant to serum starvation-induced apoptosis than control cells. TUNEL-positive apoptotic cells were dramatically decreased, and two apoptotic marker proteins, cleaved caspase 7 and cleaved poly(ADP-ribose) polymerase, were significantly reduced in myocilin-expressing cells as compared with control cells under apoptotic conditions. In addition, myocilin-deficient mesenchymal stem cells exhibited reduced proliferation and enhanced susceptibility to serum starvation-induced apoptosis as compared with wild-type mesenchymal stem cells. Phosphorylation of ERK1/2 and its upstream kinases, c-Raf and MEK, was increased in myocilin-expressing cells compared with control cells. Elevated phosphorylation of ERK1/2 was also observed in the trabecular meshwork of transgenic mice expressing 6-fold higher levels of myocilin when compared with their wild-type littermates. These results suggest that myocilin promotes cell proliferation and resistance to apoptosis via the ERK1/2 MAPK signaling pathway. PMID:24563482

  16. Extracellular secretion of recombinant proteins

    DOEpatents

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  17. Prophylaxis and Treatment of Alzheimer's Disease by Delivery of an Adeno-Associated Virus Encoding a Monoclonal Antibody Targeting the Amyloid Beta Protein

    PubMed Central

    Shimada, Masaru; Abe, Shinya; Takahashi, Toru; Shiozaki, Kazumasa; Okuda, Mitsue; Mizukami, Hiroaki; Klinman, Dennis M.; Ozawa, Keiya; Okuda, Kenji

    2013-01-01

    We previously reported on a monoclonal antibody (mAb) that targeted amyloid beta (Aß) protein. Repeated injection of that mAb reduced the accumulation of Aß protein in the brain of human Aß transgenic mice (Tg2576). In the present study, cDNA encoding the heavy and light chains of this mAb were subcloned into an adeno-associated virus type 1 (AAV) vector with a 2A/furin adapter. A single intramuscular injection of 3.0×1010 viral genome of these AAV vectors into C57BL/6 mice generated serum anti-Aß Ab levels up to 0.3 mg/ml. Anti-Aß Ab levels in excess of 0.1 mg/ml were maintained for up to 64 weeks. The effect of AAV administration on Aß levels in vivo was examined. A significant decrease in Aß levels in the brain of Tg2576 mice treated at 5 months (prophylactic) or 10 months (therapeutic) of age was observed. These results support the use of AAV vector encoding anti-Aß Ab for the prevention and treatment of Alzheimer's disease. PMID:23555563

  18. Matrix metalloproteinase-9 is involved in chronic lymphocytic leukemia cell response to fludarabine and arsenic trioxide.

    PubMed

    Amigo-Jiménez, Irene; Bailón, Elvira; Ugarte-Berzal, Estefanía; Aguilera-Montilla, Noemí; García-Marco, José A; García-Pardo, Angeles

    2014-01-01

    Matrix metalloproteinase-9 (MMP-9) contributes to chronic lymphocytic leukemia (CLL) pathology by regulating cell migration and preventing spontaneous apoptosis. It is not known if MMP-9 is involved in CLL cell response to chemotherapy and we address this in the present study, using arsenic trioxide (ATO) and fludarabine as examples of cytotoxic drugs. We used primary cells from the peripheral blood of CLL patients and MEC-1 cells stably transfected with an empty vector or a vector containing MMP-9. The effect of ATO and fludarabine was determined by flow cytometry and by the MTT assay. Expression of mRNA was measured by RT-PCR and qPCR. Secreted and cell-bound MMP-9 was analyzed by gelatin zymography and flow cytometry, respectively. Protein expression was analyzed by Western blotting and immunoprecipitation. Statistical analyses were performed using the two-tailed Student's t-test. In response to ATO or fludarabine, CLL cells transcriptionally upregulated MMP-9, preceding the onset of apoptosis. Upregulated MMP-9 primarily localized to the membrane of early apoptotic cells and blocking apoptosis with Z-VAD prevented MMP-9 upregulation, thus linking MMP-9 to the apoptotic process. Culturing CLL cells on MMP-9 or stromal cells induced drug resistance, which was overcome by anti-MMP-9 antibodies. Accordingly, MMP-9-MEC-1 transfectants showed higher viability upon drug treatment than Mock-MEC-1 cells, and this effect was blocked by silencing MMP-9 with specific siRNAs. Following drug exposure, expression of anti-apoptotic proteins (Mcl-1, Bcl-xL, Bcl-2) and the Mcl-1/Bim, Mcl-1/Noxa, Bcl-2/Bax ratios were higher in MMP-9-cells than in Mock-cells. Similar results were obtained upon culturing primary CLL cells on MMP-9. Our study describes for the first time that MMP-9 induces drug resistance by modulating proteins of the Bcl-2 family and upregulating the corresponding anti-apoptotic/pro-apoptotic ratios. This is a novel role for MMP-9 contributing to CLL progression. Targeting MMP-9 in combined therapies may thus improve CLL response to treatment.

  19. Matrix Metalloproteinase-9 Is Involved in Chronic Lymphocytic Leukemia Cell Response to Fludarabine and Arsenic Trioxide

    PubMed Central

    Amigo-Jiménez, Irene; Bailón, Elvira; Ugarte-Berzal, Estefanía; Aguilera-Montilla, Noemí; García-Marco, José A.; García-Pardo, Angeles

    2014-01-01

    Background Matrix metalloproteinase-9 (MMP-9) contributes to chronic lymphocytic leukemia (CLL) pathology by regulating cell migration and preventing spontaneous apoptosis. It is not known if MMP-9 is involved in CLL cell response to chemotherapy and we address this in the present study, using arsenic trioxide (ATO) and fludarabine as examples of cytotoxic drugs. Methods We used primary cells from the peripheral blood of CLL patients and MEC-1 cells stably transfected with an empty vector or a vector containing MMP-9. The effect of ATO and fludarabine was determined by flow cytometry and by the MTT assay. Expression of mRNA was measured by RT-PCR and qPCR. Secreted and cell-bound MMP-9 was analyzed by gelatin zymography and flow cytometry, respectively. Protein expression was analyzed by Western blotting and immunoprecipitation. Statistical analyses were performed using the two-tailed Student's t-test. Results In response to ATO or fludarabine, CLL cells transcriptionally upregulated MMP-9, preceding the onset of apoptosis. Upregulated MMP-9 primarily localized to the membrane of early apoptotic cells and blocking apoptosis with Z-VAD prevented MMP-9 upregulation, thus linking MMP-9 to the apoptotic process. Culturing CLL cells on MMP-9 or stromal cells induced drug resistance, which was overcome by anti-MMP-9 antibodies. Accordingly, MMP-9-MEC-1 transfectants showed higher viability upon drug treatment than Mock-MEC-1 cells, and this effect was blocked by silencing MMP-9 with specific siRNAs. Following drug exposure, expression of anti-apoptotic proteins (Mcl-1, Bcl-xL, Bcl-2) and the Mcl-1/Bim, Mcl-1/Noxa, Bcl-2/Bax ratios were higher in MMP-9-cells than in Mock-cells. Similar results were obtained upon culturing primary CLL cells on MMP-9. Conclusions Our study describes for the first time that MMP-9 induces drug resistance by modulating proteins of the Bcl-2 family and upregulating the corresponding anti-apoptotic/pro-apoptotic ratios. This is a novel role for MMP-9 contributing to CLL progression. Targeting MMP-9 in combined therapies may thus improve CLL response to treatment. PMID:24956101

  20. Interleukin-Encoding Adenoviral Vectors as Genetic Adjuvant for Vaccination against Retroviral Infection

    PubMed Central

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4+ T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4+ T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4+ T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity. PMID:24349306

  1. Molecular characterization and expression of the M6 gene of grass carp hemorrhage virus (GCHV), an aquareovirus.

    PubMed

    Qiu, T; Lu, R H; Zhang, J; Zhu, Z Y

    2001-07-01

    The complete nucleotide sequence of M6 gene of grass carp hemorrhage virus (GCHV) was determined. It is 2039 nucleotides in length and contains a single large open reading frame that could encode a protein of 648 amino acids with predicted molecular mass of 68.7 kDa. Amino acid sequence comparison revealed that the protein encoded by GCHV M6 is closely related to the protein mu1 of mammalian reovirus. The M6 gene, encoding the major outer-capsid protein, was expressed using the pET fusion protein vector in Escherichia coli and detected by Western blotting using chicken anti-GCHV immunoglobulin (IgY). The result indicates that the protein encoded by M6 may share a putative Asn-42-Pro-43 proteolytic cleavage site with mu1.

  2. Modular protein expression by RNA trans-splicing enables flexible expression of antibody formats in mammalian cells from a dual-host phage display vector.

    PubMed

    Shang, Yonglei; Tesar, Devin; Hötzel, Isidro

    2015-10-01

    A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Structural basis for apoptosis inhibition by Epstein-Barr virus BHRF1.

    PubMed

    Kvansakul, Marc; Wei, Andrew H; Fletcher, Jamie I; Willis, Simon N; Chen, Lin; Roberts, Andrew W; Huang, David C S; Colman, Peter M

    2010-12-23

    Epstein-Barr virus (EBV) is associated with human malignancies, especially those affecting the B cell compartment such as Burkitt lymphoma. The virally encoded homolog of the mammalian pro-survival protein Bcl-2, BHRF1 contributes to viral infectivity and lymphomagenesis. In addition to the pro-apoptotic BH3-only protein Bim, its key target in lymphoid cells, BHRF1 also binds a selective sub-set of pro-apoptotic proteins (Bid, Puma, Bak) expressed by host cells. A consequence of BHRF1 expression is marked resistance to a range of cytotoxic agents and in particular, we show that its expression renders a mouse model of Burkitt lymphoma untreatable. As current small organic antagonists of Bcl-2 do not target BHRF1, the structures of it in complex with Bim or Bak shown here will be useful to guide efforts to target BHRF1 in EBV-associated malignancies, which are usually associated with poor clinical outcomes.

  4. UMG Lenti: Novel Lentiviral Vectors for Efficient Transgene- and Reporter Gene Expression in Human Early Hematopoietic Progenitors

    PubMed Central

    Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G.; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B.; Grillone, Teresa; Giovannone, Emilia D.; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A. S.; Bond, Heather M.; Mesuraca, Maria; Morrone, Giovanni

    2014-01-01

    Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and –LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG–LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells. PMID:25502183

  5. An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates.

    PubMed

    Hawley, Robert G; Chen, Yuzhong; Riz, Irene; Zeng, Chen

    2012-05-04

    In this study, we utilized an integrated bioinformatics and computational biology approach in search of new BH3-only proteins belonging to the BCL2 family of apoptotic regulators. The BH3 (BCL2 homology 3) domain mediates specific binding interactions among various BCL2 family members. It is composed of an amphipathic α-helical region of approximately 13 residues that has only a few amino acids that are highly conserved across all members. Using a generalized motif, we performed a genome-wide search for novel BH3-containing proteins in the NCBI Consensus Coding Sequence (CCDS) database. In addition to known pro-apoptotic BH3-only proteins, 197 proteins were recovered that satisfied the search criteria. These were categorized according to α-helical content and predictive binding to BCL-xL (encoded by BCL2L1) and MCL-1, two representative anti-apoptotic BCL2 family members, using position-specific scoring matrix models. Notably, the list is enriched for proteins associated with autophagy as well as a broad spectrum of cellular stress responses such as endoplasmic reticulum stress, oxidative stress, antiviral defense, and the DNA damage response. Several potential novel BH3-containing proteins are highlighted. In particular, the analysis strongly suggests that the apoptosis inhibitor and DNA damage response regulator, AVEN, which was originally isolated as a BCL-xL-interacting protein, is a functional BH3-only protein representing a distinct subclass of BCL2 family members.

  6. The tunable pReX expression vector enables optimizing the T7-based production of membrane and secretory proteins in E. coli.

    PubMed

    Kuipers, Grietje; Karyolaimos, Alexandros; Zhang, Zhe; Ismail, Nurzian; Trinco, Gianluca; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem

    2017-12-16

    To optimize the production of membrane and secretory proteins in Escherichia coli, it is critical to harmonize the expression rates of the genes encoding these proteins with the capacity of their biogenesis machineries. Therefore, we engineered the Lemo21(DE3) strain, which is derived from the T7 RNA polymerase-based BL21(DE3) protein production strain. In Lemo21(DE3), the T7 RNA polymerase activity can be modulated by the controlled co-production of its natural inhibitor T7 lysozyme. This setup enables to precisely tune target gene expression rates in Lemo21(DE3). The t7lys gene is expressed from the pLemo plasmid using the titratable rhamnose promoter. A disadvantage of the Lemo21(DE3) setup is that the system is based on two plasmids, a T7 expression vector and pLemo. The aim of this study was to simplify the Lemo21(DE3) setup by incorporating the key elements of pLemo in a standard T7-based expression vector. By incorporating the gene encoding the T7 lysozyme under control of the rhamnose promoter in a standard T7-based expression vector, pReX was created (ReX stands for Regulated gene eXpression). For two model membrane proteins and a model secretory protein we show that the optimized production yields obtained with the pReX expression vector in BL21(DE3) are similar to the ones obtained with Lemo21(DE3) using a standard T7 expression vector. For another secretory protein, a c-type cytochrome, we show that pReX, in contrast to Lemo21(DE3), enables the use of a helper plasmid that is required for the maturation and hence the production of this heme c protein. Here, we created pReX, a T7-based expression vector that contains the gene encoding the T7 lysozyme under control of the rhamnose promoter. pReX enables regulated T7-based target gene expression using only one plasmid. We show that with pReX the production of membrane and secretory proteins can be readily optimized. Importantly, pReX facilitates the use of helper plasmids. Furthermore, the use of pReX is not restricted to BL21(DE3), but it can in principle be used in any T7 RNAP-based strain. Thus, pReX is a versatile alternative to Lemo21(DE3).

  7. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2014-02-25

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  8. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-05-16

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  9. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2008-04-01

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  10. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2010-10-12

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  11. EGVIII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-05-23

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl8, and the corresponding EGVIII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVIII, recombinant EGVIII proteins and methods for producing the same.

  12. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2010-10-05

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  13. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-06-06

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  14. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2009-05-05

    The present invention provides an endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  15. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2013-07-16

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  16. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2012-02-14

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  17. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2015-04-14

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  18. Prediction of apoptosis protein locations with genetic algorithms and support vector machines through a new mode of pseudo amino acid composition.

    PubMed

    Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Möller, Steffen; Hartmann, Enno; Kalies, Kai-Uwe; Suganthan, P N; Martinetz, Thomas

    2010-12-01

    Apoptosis is an essential process for controlling tissue homeostasis by regulating a physiological balance between cell proliferation and cell death. The subcellular locations of proteins performing the cell death are determined by mostly independent cellular mechanisms. The regular bioinformatics tools to predict the subcellular locations of such apoptotic proteins do often fail. This work proposes a model for the sorting of proteins that are involved in apoptosis, allowing us to both the prediction of their subcellular locations as well as the molecular properties that contributed to it. We report a novel hybrid Genetic Algorithm (GA)/Support Vector Machine (SVM) approach to predict apoptotic protein sequences using 119 sequence derived properties like frequency of amino acid groups, secondary structure, and physicochemical properties. GA is used for selecting a near-optimal subset of informative features that is most relevant for the classification. Jackknife cross-validation is applied to test the predictive capability of the proposed method on 317 apoptosis proteins. Our method achieved 85.80% accuracy using all 119 features and 89.91% accuracy for 25 features selected by GA. Our models were examined by a test dataset of 98 apoptosis proteins and obtained an overall accuracy of 90.34%. The results show that the proposed approach is promising; it is able to select small subsets of features and still improves the classification accuracy. Our model can contribute to the understanding of programmed cell death and drug discovery. The software and dataset are available at http://www.inb.uni-luebeck.de/tools-demos/apoptosis/GASVM.

  19. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.

    PubMed

    Song, Jiangning; Yuan, Zheng; Tan, Hao; Huber, Thomas; Burrage, Kevin

    2007-12-01

    Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop computational methods capable of accurately predicting disulfide connectivity patterns in proteins that could have potentially important applications. We have developed a novel method to predict disulfide connectivity patterns from protein primary sequence, using a support vector regression (SVR) approach based on multiple sequence feature vectors and predicted secondary structure by the PSIPRED program. The results indicate that our method could achieve a prediction accuracy of 74.4% and 77.9%, respectively, when averaged on proteins with two to five disulfide bridges using 4-fold cross-validation, measured on the protein and cysteine pair on a well-defined non-homologous dataset. We assessed the effects of different sequence encoding schemes on the prediction performance of disulfide connectivity. It has been shown that the sequence encoding scheme based on multiple sequence feature vectors coupled with predicted secondary structure can significantly improve the prediction accuracy, thus enabling our method to outperform most of other currently available predictors. Our work provides a complementary approach to the current algorithms that should be useful in computationally assigning disulfide connectivity patterns and helps in the annotation of protein sequences generated by large-scale whole-genome projects. The prediction web server and Supplementary Material are accessible at http://foo.maths.uq.edu.au/~huber/disulfide

  20. Effective suppression of dengue virus using a novel group-I intron that induces apoptotic cell death upon infection through conditional expression of the Bax C-terminal domain.

    PubMed

    Carter, James R; Keith, James H; Fraser, Tresa S; Dawson, James L; Kucharski, Cheryl A; Horne, Kate M; Higgs, Stephen; Fraser, Malcolm J

    2014-06-13

    Approximately 100 million confirmed infections and 20,000 deaths are caused by Dengue virus (DENV) outbreaks annually. Global warming and rapid dispersal have resulted in DENV epidemics in formally non-endemic regions. Currently no consistently effective preventive measures for DENV exist, prompting development of transgenic and paratransgenic vector control approaches. Production of transgenic mosquitoes refractory for virus infection and/or transmission is contingent upon defining antiviral genes that have low probability for allowing escape mutations, and are equally effective against multiple serotypes. Previously we demonstrated the effectiveness of an anti-viral group I intron targeting U143 of the DENV genome in mediating trans-splicing and expression of a marker gene with the capsid coding domain. In this report we examine the effectiveness of coupling expression of ΔN Bax to trans-splicing U143 intron activity as a means of suppressing DENV infection of mosquito cells. Targeting the conserved DENV circularization sequence (CS) by U143 intron trans-splicing activity appends a 3' exon RNA encoding ΔN Bax to the capsid coding region of the genomic RNA, resulting in a chimeric protein that induces premature cell death upon infection. TCID50-IFA analyses demonstrate an enhancement of DENV suppression for all DENV serotypes tested over the identical group I intron coupled with the non-apoptotic inducing firefly luciferase as the 3' exon. These cumulative results confirm the increased effectiveness of this αDENV-U143-ΔN Bax group I intron as a sequence specific antiviral that should be useful for suppression of DENV in transgenic mosquitoes. Annexin V staining, caspase 3 assays, and DNA ladder observations confirm DCA-ΔN Bax fusion protein expression induces apoptotic cell death. This report confirms the relative effectiveness of an anti-DENV group I intron coupled to an apoptosis-inducing ΔN Bax 3' exon that trans-splices conserved sequences of the 5' CS region of all DENV serotypes and induces apoptotic cell death upon infection. Our results confirm coupling the targeted ribozyme capabilities of the group I intron with the generation of an apoptosis-inducing transcript increases the effectiveness of infection suppression, improving the prospects of this unique approach as a means of inducing transgenic refractoriness in mosquitoes for all serotypes of this important disease.

  1. Destabilized bioluminescent proteins

    DOEpatents

    Allen, Michael S [Knoxville, TN; Rakesh, Gupta [New Delhi, IN; Gary, Sayler S [Blaine, TN

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  2. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    PubMed

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  3. A potyvirus-based gene vector allows producing active human S-COMT and animal GFP, but not human sorcin, in vector-infected plants.

    PubMed

    Kelloniemi, Jani; Mäkinen, Kristiina; Valkonen, Jari P T

    2006-05-01

    Potato virus A (PVA), a potyvirus with a (+)ssRNA genome translated to a large polyprotein, was engineered and used as a gene vector for expression of heterologous proteins in plants. Foreign genes including jellyfish GFP (Aequorea victoria) encoding the green fluorescent protein (GFP, 27 kDa) and the genes of human origin (Homo sapiens) encoding a soluble resistance-related calcium-binding protein (sorcin, 22 kDa) and the catechol-O-methyltransferase (S-COMT; 25 kDa) were cloned between the cistrons for the viral replicase and coat protein (CP). The inserts caused no adverse effects on viral infectivity and virulence, and the inserted sequences remained intact in progeny viruses in the systemically infected leaves. The heterologous proteins were released from the viral polyprotein following cleavage by the main viral proteinase, NIa, at engineered proteolytic processing sites flanking the insert. Active GFP, as indicated by green fluorescence, and S-COMT with high levels of enzymatic activity were produced. In contrast, no sorcin was detected despite the expected equimolar amounts of the foreign and viral proteins being expressed as a polyprotein. These data reveal inherent differences between heterologous proteins in their suitability for production in plants.

  4. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    PubMed

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  5. Detection of hepatitis B virus X product using an open reading frame Escherichia coli expression vector.

    PubMed Central

    Elfassi, E; Haseltine, W A; Dienstag, J L

    1986-01-01

    The genome of the hepatitis B virus (HBV) contains a sequence, designated X, capable of encoding a protein of 154 amino acids. To determine whether the putative protein synthesized from this region is antigenic, we examined the sera of HBV-infected patients for the ability to react with a hybrid protein that contained 133 amino acids encoded by the X region and portions of the bacterial ompF and beta-galactosidase genes. Some HBV-positive sera tested contained antibodies that specifically recognized the hybrid protein. All sera were from patients diagnosed as suffering from chronic active hepatitis. We conclude that the X region of HBV encodes a protein and that this protein is antigenic in some patients. Images PMID:3515347

  6. Alternate Reading Frame Protein (F Protein) of Hepatitis C Virus: Paradoxical Effects of Activation and Apoptosis on Human Dendritic Cells Lead to Stimulation of T Cells

    PubMed Central

    Samrat, Subodh Kumar; Li, Wen; Singh, Shakti; Kumar, Rakesh; Agrawal, Babita

    2014-01-01

    Hepatitis C virus (HCV) leads to chronic infection in the majority of infected individuals due to lack, failure, or inefficiency of generated adaptive immune responses. In a minority of patients, acute infection is followed by viral clearance. The immune correlates of viral clearance are not clear yet but have been extensively investigated, suggesting that multispecific and multifunctional cellular immunity is involved. The generation of cellular immunity is highly dependent upon how antigen presenting cells (APCs) process and present various viral antigens. Various structural and non-structural HCV proteins derived from the open reading frame (ORF) have been implicated in modulation of dendritic cells (DCs) and APCs. Besides the major ORF proteins, the HCV core region also encodes an alternate reading frame protein (ARFP or F), whose function in viral pathogenesis is not clear. In the current studies, we sought to determine the role of HCV-derived ARFP in modulating dendritic cells and stimulation of T cell responses. Recombinant adenovirus vectors containing F or core protein derived from HCV (genotype 1a) were prepared and used to endogenously express these proteins in dendritic cells. We made an intriguing observation that endogenous expression of F protein in human DCs leads to contrasting effects on activation and apoptosis of DCs, allowing activated DCs to efficiently internalize apoptotic DCs. These in turn result in efficient ability of DCs to process and present antigen and to prime and stimulate F protein derived peptide-specific T cells from HCV-naive individuals. Taken together, our findings suggest important aspects of F protein in modulating DC function and stimulating T cell responses in humans. PMID:24475147

  7. BGL7 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Ward, Michael

    2013-01-29

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl7, and the corresponding BGL7 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL7, recombinant BGL7 proteins and methods for producing the same.

  8. BGL6 .beta.-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Ward, Michael

    2012-10-02

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  9. BGL5 .beta.-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-02-28

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl5, and the corresponding BGL5 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL5, recombinant BGL5 proteins and methods for producing the same.

  10. BGL5 .beta.-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2008-03-18

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl5, and the corresponding BGL5 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL5, recombinant BGL5 proteins and methods for producing the same.

  11. BGL6 beta-glucosidase and nucleic acids encoding the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn-Coleman, Nigel; Ward, Michael

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  12. BGL6 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Ward, Michael

    2014-03-04

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  13. BGL7 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Ward, Michael

    2015-04-14

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl7, and the corresponding BGL7 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL7, recombinant BGL7 proteins and methods for producing the same.

  14. BGL7 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Ward, Michael

    2014-03-25

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl7, and the corresponding BGL7 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL7, recombinant BGL7 proteins and methods for producing the same.

  15. BGL6 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Ward, Michael

    2015-08-11

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  16. BGL3 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2007-09-25

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  17. BGL3 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2008-04-01

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  18. BGL4 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2011-12-06

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl4, and the corresponding BGL4 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL4, recombinant BGL4 proteins and methods for producing the same.

  19. BGL4 .beta.-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-05-16

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl4, and the corresponding BGL4 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL4, recombinant BGL4 proteins and methods for producing the same.

  20. BGL3 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2011-06-14

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  1. BGL6 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Ward, Michael [San Francisco, CA

    2009-09-01

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  2. BGL3 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2012-10-30

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  3. BGL4 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2008-01-22

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl4, and the corresponding BGL4 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL4, recombinant BGL4 proteins and methods for producing the same.

  4. A transposase strategy for creating libraries of circularly permuted proteins.

    PubMed

    Mehta, Manan M; Liu, Shirley; Silberg, Jonathan J

    2012-05-01

    A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions.

  5. A transposase strategy for creating libraries of circularly permuted proteins

    PubMed Central

    Mehta, Manan M.; Liu, Shirley; Silberg, Jonathan J.

    2012-01-01

    A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions. PMID:22319214

  6. Bcl-2 and caspase-3 are major regulators in Agaricus blazei-induced human leukemic U937 cell apoptosis through dephoshorylation of Akt.

    PubMed

    Jin, Cheng-Yun; Moon, Dong-Oh; Choi, Yung Hyun; Lee, Jae-Dong; Kim, Gi-Young

    2007-08-01

    Agaricus blazei is a medicinal mushroom that possesses antimetastatic, antitumor, antimutagenic, and immunostimulating effects. However, the molecular mechanisms involved in A. blazei-mediated apoptosis remain unclear. In the present study, to elucidate the role of the Bcl-2 in A. blazei-mediated apoptosis, U937 cells were transfected with either empty vector (U937/vec) or vector containing cDNA encoding full-length Bcl-2 (U937/Bcl-2). As compared with U937/vec, U937/Bcl-2 cells exhibited a 4-fold greater expression of Bcl-2. Treatment of U937/vec with 1.0-4.0 mg/ml of A. blazei extract (ABE) for 24 h resulted in a significant induction of morphologic features indicative of apoptosis. In contrast, U937/Bcl-2 exposed to the same ABE treatment only exhibited a slight induction of apoptotic features. ABE-induced apoptosis was accompanied by downregulation of antiapoptotic proteins such as X-linked inhibitor of apoptosis protein (XIAP), inhibitor of apoptosis protein (cIAP)-2 and Bcl-2, activation of caspase-3, and cleavage of poly(ADP-ribose)polymerase (PARP). Ectopic expression of Bcl-2 was associated with significantly induced expression of antiapoptotic proteins, such as cIAP-2 and Bcl-2, but not XIAP. Ectopic expression of Bcl-2 also reduced caspase-3 activation and PARP cleavage in ABE treated U937 cells. Furthermore, treatment with the caspase-3 inhibitor z-DEVD-fmk was sufficient to restore cell viability following ABE treatment. This increase in viability was ascribed to downregulation of caspase-3 and blockage of PARP and PLC-gamma cleavage. ABE also triggered the downregulation of Akt, and combined treatment with LY294002 (an inhibitor of Akt) significantly decreased cell viability. The results indicated that major regulators of ABE-induced apoptosis in human leukemic U937 cells are Bcl-2 and caspase-3, which are associated with dephosphorylation of the Akt signal pathway.

  7. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA.

    PubMed

    Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif; Adelman, Zach N; Myles, Kevin M

    2016-11-29

    Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen's ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito's RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular "arms race" between vector and pathogen underlies the continued existence of flaviviruses in nature.

  8. Cre-lox Univector acceptor vectors for functional screening in protoplasts: analysis of Arabidopsis donor cDNAs encoding ABSCISIC ACID INSENSITIVE1-Like protein phosphatases

    PubMed Central

    Jia, Fan; Gampala, Srinivas S.L.; Mittal, Amandeep; Luo, Qingjun; Rock, Christopher D.

    2009-01-01

    The 14,200 available full length Arabidopsis thaliana cDNAs in the Universal Plasmid System (UPS) donor vector pUNI51 should be applied broadly and efficiently to leverage a “functional map-space” of homologous plant genes. We have engineered Cre-lox UPS host acceptor vectors (pCR701- 705) with N-terminal epitope tags in frame with the loxH site and downstream from the maize Ubiquitin promoter for use in transient protoplast expression assays and particle bombardment transformation of monocots. As an example of the utility of these vectors, we recombined them with several Arabidopsis cDNAs encoding Ser/Thr protein phosphatase type 2C (PP2Cs) known from genetic studies or predicted by hierarchical clustering meta-analysis to be involved in ABA and stress responses. Our functional results in Zea mays mesophyll protoplasts on ABA-inducible expression effects on the Late Embryogenesis Abundant promoter ProEm:GUS reporter were consistent with predictions and resulted in identification of novel activities of some PP2Cs. Deployment of these vectors can facilitate functional genomics and proteomics and identification of novel gene activities. PMID:19499346

  9. A novel protocol for the production of recombinant LL-37 expressed as a thioredoxin fusion protein.

    PubMed

    Li, Yifeng

    2012-02-01

    LL-37 is the only cathelicidin-derived antimicrobial peptide found in humans and it has a multifunctional role in host defense. The peptide has been shown to possess immunomodulatory functions in addition to antimicrobial activity. To provide sufficient material for biological and structural characterization of this important peptide, various systems were developed to produce recombinant LL-37 in Escherichia coli. In one previous approach, LL-37 coding sequence was cloned into vector pET-32a, allowing the peptide to be expressed as a thioredoxin fusion. The fusion protein contains two thrombin cleavage sites: a vector-encoded one that is 30-residue upstream of the insert and an engineered one that is immediately adjacent to LL-37. Cleavage at these two sites shall generate three fragments, one of which is the target peptide. However, when the fusion protein was treated with thrombin, cleavage only occurred at the remote upstream site. A plausible explanation is that the thrombin site adjacent to LL-37 is less accessible due to the peptide's aggregation tendency and cleavage at the remote site generates a fragment, which forms a large aggregate that buries the intended site. In this study, I deleted the vector-encoded thrombin site and S tag in pET-32a, and then inserted the coding sequence for LL-37 plus a thrombin site into the modified vector. Although removing the S tag did not change the oligomeric state of the fusion protein, deletion of the vector-encoded thrombin site allowed the fusion to be cleaved at the engineered site to release LL-37. The released peptide was separated from the carrier and cleavage enzyme by size-exclusion chromatography. This new approach enables a quick production of high quality active LL-37 with a decent amount. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors.

    PubMed

    Dekhtiarenko, Iryna; Ratts, Robert B; Blatnik, Renata; Lee, Lian N; Fischer, Sonja; Borkner, Lisa; Oduro, Jennifer D; Marandu, Thomas F; Hoppe, Stephanie; Ruzsics, Zsolt; Sonnemann, Julia K; Mansouri, Mandana; Meyer, Christine; Lemmermann, Niels A W; Holtappels, Rafaela; Arens, Ramon; Klenerman, Paul; Früh, Klaus; Reddehase, Matthias J; Riemer, Angelika B; Cicin-Sain, Luka

    2016-12-01

    Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy.

  11. Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors

    PubMed Central

    Blatnik, Renata; Lee, Lian N.; Fischer, Sonja; Borkner, Lisa; Oduro, Jennifer D.; Marandu, Thomas F.; Hoppe, Stephanie; Ruzsics, Zsolt; Sonnemann, Julia K.; Meyer, Christine; Holtappels, Rafaela; Arens, Ramon; Früh, Klaus; Reddehase, Matthias J.; Riemer, Angelika B.; Cicin-Sain, Luka

    2016-01-01

    Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy. PMID:27977791

  12. The Major Antigenic Membrane Protein of “Candidatus Phytoplasma asteris” Selectively Interacts with ATP Synthase and Actin of Leafhopper Vectors

    PubMed Central

    Galetto, Luciana; Bosco, Domenico; Balestrini, Raffaella; Genre, Andrea; Fletcher, Jacqueline; Marzachì, Cristina

    2011-01-01

    Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of “Candidatus Phytoplasma asteris”, the chrysanthemum yellows phytoplasmas (CYP) strain, and three others as non-vectors. Interactions between a labelled (recombinant) CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity. PMID:21799902

  13. Involvement of transcription factor encoded by the mouse mi locus (MITF) in apoptosis of cultured mast cells induced by removal of interleukin-3.

    PubMed Central

    Tsujimura, T.; Hashimoto, K.; Morii, E.; Tunio, G. M.; Tsujino, K.; Kondo, T.; Kanakura, Y.; Kitamura, Y.

    1997-01-01

    Mast cells develop when spleen cells of mice are cultured in the medium containing interleukin (IL)-3. Cultured mast cells (CMCs) show apoptosis when they are incubated in the medium without IL-3. We obtained CMCs from tg/tg mice that did not express the transcription factor encoded by the mi gene (MITF) due to the integration of a transgene at its 5' flanking region. MITF is a member of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) protein family of transcription factors. We investigated the effect of MITF on the apoptosis of CMCs after removal of IL-3. When cDNA encoding normal MITF ((+)-MITF) was introduced into tg/tg CMCs with the retroviral vector, the apoptosis of tg/tg CMCs was significantly accelerated. The mutant mi allele represents a deletion of an arginine at the basic domain of MITF. The apoptosis of tg/tg CMCs was not accelerated by the introduction of cDNA encoding mi-MITF. The overexpression of (+)-MITF was not prerequisite to the acceleration of the apoptosis, as the apoptotic process proceeded faster in +/+ CMCs than in mi/mi CMCs. The Ba/F3 lymphoid cell line is also dependent on IL-3, and Ba/F3 cells show apoptosis after removal of IL-3. The c-myc gene encodes another transcription factor of the bHLH-Zip family, and the overexpression of the c-myc gene accelerated the apoptosis of Ba/F3 cells. However, the overexpression of (+)-MITF did not accelerate the apoptosis of Ba/F3 cells. The (+)-MITF appeared to play some roles for the acceleration of the apoptosis specifically in the mast cell lineage. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9327738

  14. Generation of Recombinant Modified Vaccinia Virus Ankara Encoding VP2, NS1, and VP7 Proteins of Bluetongue Virus.

    PubMed

    Marín-López, Alejandro; Ortego, Javier

    2016-01-01

    Modified Vaccinia Virus Ankara (MVA) is employed widely as an experimental vaccine vector for its lack of replication in mammalian cells and high expression level of foreign/heterologous genes. Recombinant MVAs (rMVAs) are used as platforms for protein production as well as vectors to generate vaccines against a high number of infectious diseases and other pathologies. The portrait of the virus combines desirable elements such as high-level biological safety, the ability to activate appropriate innate immune mediators upon vaccination, and the capacity to deliver substantial amounts of heterologous antigens. Recombinant MVAs encoding proteins of bluetongue virus (BTV), an Orbivirus that infects domestic and wild ruminants transmitted by biting midges of the Culicoides species, are excellent vaccine candidates against this virus. In this chapter we describe the methods for the generation of rMVAs encoding VP2, NS1, and VP7 proteins of bluetongue virus as a model example for orbiviruses. The protocols included cover the cloning of VP2, NS1, and VP7 BTV-4 genes in a transfer plasmid, the construction of recombinant MVAs, the titration of virus working stocks and the protein expression analysis by immunofluorescence and radiolabeling of rMVA infected cells as well as virus purification.

  15. Apoptotic role of TGF-β mediated by Smad4 mitochondria translocation and cytochrome c oxidase subunit II interaction.

    PubMed

    Pang, Lijuan; Qiu, Tao; Cao, Xu; Wan, Mei

    2011-07-01

    Smad4, originally isolated from the human chromosome 18q21, is a key factor in transducing the signals of the TGF-β superfamily of growth hormones and plays a pivotal role in mediating antimitogenic and proapoptotic effects of TGF-β, but the mechanisms by which Smad4 induces apoptosis are elusive. Here we report that Smad4 directly translocates to the mitochondria of apoptotic cells. Smad4 gene silencing by siRNA inhibits TGF-β-induced apoptosis in Hep3B cells and UV-induced apoptosis in PANC-1 cells. Cell fractionation assays demonstrated that a fraction of Smad4 translocates to mitochondria after long time TGF-β treatment or UV exposure, during which the cells were under apoptosis. Smad4 mitochondria translocation during apoptosis was also confirmed by fluorescence observation of Smad4 colocalization with MitoTracker Red. We searched for mitochondria proteins that have physical interactions with Smad4 using yeast two-hybrid screening approach. DNA sequence analysis identified 34 positive clones, five of which encoded subunits in mitochondria complex IV, i.e., one clone encoded cytochrome c oxidase COXII, three clones encoded COXIII and one clone encoded COXVb. Strong interaction between Smad4 with COXII, an important apoptosis regulator, was verified in yeast by β-gal activity assays and in mammalian cells by immunoprecipitation assays. Further, mitochondrial portion of cells was isolated and the interaction between COXII and Smad4 in mitochondria upon TGF-β treatment or UV exposure was confirmed. Importantly, targeting Smad4 to mitochondria using import leader fusions enhanced TGF-β-induced apoptosis. Collectively, the results suggest that Smad4 promote apoptosis of the cells through its mitochondrial translocation and association with mitochondria protein COXII. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Cloning and expression of soluble truncated variants of Borrelia OspA, OspB and Vmp7

    DOEpatents

    Dunn, John J.; Barbour, Alan G.

    1996-11-05

    A method is provided herein for preparing soluble recombinant variations of Borrelia lipoproteins such as Borrelia burgdorferi outer surface protein A (OspA) and outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The method includes synthesizing a set of oligonucleotide primers, amplifying the template DNA utilizing the PCR, purifying the amplification products, cloning the amplification products into a suitable expression vector, transforming a suitable host utilizing the cloned expression vector, cultivating the transformed host for protein production and subsequently isolating and purifying the resulting protein. Also provided are soluble, recombinant variations of Borrelia burgdorferi outer surface protein A (OspA), outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The expression vectors harboring DNA encoding the recombinant variations, pET9-OspA, pET9-OspB and pET9-Vmp7, as well as the E. coli host BL21(DE3)/pLysS transformed with each of these vectors, are also disclosed.

  17. Cloning and expression of soluble truncated variants of Borrelia OspA, OspB and Vmp7

    DOEpatents

    Dunn, J.J.; Barbour, A.G.

    1996-11-05

    A method is provided for preparing soluble recombinant variations of Borrelia lipoproteins such as Borrelia burgdorferi outer surface protein A (OspA) and outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The method includes synthesizing a set of oligonucleotide primers, amplifying the template DNA utilizing the PCR, purifying the amplification products, cloning the amplification products into a suitable expression vector, transforming a suitable host utilizing the cloned expression vector, cultivating the transformed host for protein production and subsequently isolating and purifying the resulting protein. Also provided are soluble, recombinant variations of Borrelia burgdorferi outer surface protein A (OspA), outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The expression vectors harboring DNA encoding the recombinant variations, pET9-OspA, pET9-OspB and pET9-Vmp7, as well as the E. coli host BL21(DE3)/pLysS transformed with each of these vectors, are also disclosed. 38 figs.

  18. Methods for engineering polypeptide variants via somatic hypermutation and polypeptide made thereby

    DOEpatents

    Tsien, Roger Y; Wang, Lei

    2015-01-13

    Methods using somatic hypermutation (SHM) for producing polypeptide and nucleic acid variants, and nucleic acids encoding such polypeptide variants are disclosed. Such variants may have desired properties. Also disclosed are novel polypeptides, such as improved fluorescent proteins, produced by the novel methods, and nucleic acids, vectors, and host cells comprising such vectors.

  19. Cell culture compositions

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  20. 5'-Triphosphate siRNA targeting MDR1 reverses multi-drug resistance and activates RIG-I-induced immune-stimulatory and apoptotic effects against human myeloid leukaemia cells.

    PubMed

    Li, Dengzhe; Gale, Robert Peter; Liu, Yanfeng; Lei, Baoxia; Wang, Yuan; Diao, Dongmei; Zhang, Mei

    2017-07-01

    Multi-drug resistance (MDR), immune suppression and decreased apoptosis are important causes of therapy-failure in leukaemia. Short interfering RNAs (siRNAs) down-regulate gene transcription, have sequence-independent immune-stimulatory effects and synergize with other anti-cancer therapies in some experimental models. We designed a siRNA targeting MDR1 with 5'-triphosphate ends (3p-siRNA-MDR1). Treatment of leukaemia cells with 3p-siRNA-MDR1 down-regulated MDR1 expression, reduced-drug resistance and induced immune and pro-apoptotic effects in drug-resistant HL-60/Adr and K562/Adr human leukaemia cell lines. We show mechanisms-of-action of these effects involve alterations in the anti-viral cytosolic retinoic acid-inducible protein-I (RIG-I; encoded by RIG-I or DDX58) mediated type-I interferon signal induction, interferon-gamma-inducible protein 10 (IP-10; encoded by IP10 or CXCL10) secretion, major histocompatibility complex-I expression (MHC-I) and caspase-mediated cell apoptosis. 3p-siRNA-MDR1 transfection also enhanced the anti-leukaemia efficacy of doxorubicin. These data suggest a possible synergistic role for 3p-siRNA-MDR1 in anti-leukaemia therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bacteriophage-based vectors for site-specific insertion of DNA in the chromosome of Corynebacteria.

    PubMed

    Oram, Mark; Woolston, Joelle E; Jacobson, Andrew D; Holmes, Randall K; Oram, Diana M

    2007-04-15

    In Corynebacterium diphtheriae, diphtheria toxin is encoded by the tox gene of some temperate corynephages such as beta. beta-like corynephages are capable of inserting into the C. diphtheriae chromosome at two specific sites, attB1 and attB2. Transcription of the phage-encoded tox gene, and many chromosomally encoded genes, is regulated by the DtxR protein in response to Fe(2+) levels. Characterizing DtxR-dependent gene regulation is pivotal in understanding diphtheria pathogenesis and mechanisms of iron-dependent gene expression; although this has been hampered by a lack of molecular genetic tools in C. diphtheriae and related Coryneform species. To expand the systems for genetic manipulation of C. diphtheriae, we constructed plasmid vectors capable of integrating into the chromosome. These plasmids contain the beta-encoded attP site and the DIP0182 integrase gene of C. diphtheriae NCTC13129. When these vectors were delivered to the cytoplasm of non-lysogenic C. diphtheriae, they integrated into either the attB1 or attB2 sites with comparable frequency. Lysogens were also transformed with these vectors, by virtue of the second attB site. An integrated vector carrying an intact dtxR gene complemented the mutant phenotypes of a C. diphtheriae DeltadtxR strain. Additionally, strains of beta-susceptible C. ulcerans, and C. glutamicum, a species non-permissive for beta, were each transformed with these vectors. This work significantly extends the tools available for targeted transformation of both pathogenic and non-pathogenic Corynebacterium species.

  2. Molecular characterization of two serine proteases expressed in gut tissue of the African trypanosome vector, Glossina morsitans morsitans.

    PubMed

    Yan, J; Cheng, Q; Li, C B; Aksoy, S

    2001-02-01

    Serine proteases are major insect gut enzymes involved in digestion of dietary proteins, and in addition they have been implicated in the process of pathogen establishment in several vector insects. The medically important vector, tsetse fly (Diptera:Glossinidiae), is involved in the transmission of African trypanosomes, which cause devastating diseases in animals and humans. Both the male and female tsetse can transmit trypanosomes and both are strict bloodfeeders throughout all stages of their development. Here, we describe the characterization of two putative serine protease-encoding genes, Glossina serine protease-1 (Gsp1) and Glossina serine protease-2 (Gsp2) from gut tissue. Both putative cDNA products represent prepro peptides with hydrophobic signal peptide sequences associated with their 5'-end terminus. The Gsp1 cDNA encodes a putative mature protein of 245 amino acids with a molecular mass of 26 428 Da, while the predicted size of the 228 amino acid mature peptide encoded by Gsp2 cDNA is 24 573 Da. Both deduced peptides contain the Asp/His/Ser catalytic triad and the conserved residues surrounding it which are characteristic of serine proteases. In addition, both proteins have the six-conserved cysteine residues to form the three-cysteine bonds typically present in invertebrate serine proteases. Based on the presence of substrate specific residues, the Gsp1 gene encodes a chymotrypsin-like protease while Gsp2 gene encodes for a protein with trypsin-like activity. Both proteins are encoded by few loci in tsetse genome, being present in one or two copies only. The mRNA expression levels for the genes do not vary extensively throughout the digestive cycle, and high levels of mRNAs can be readily detected in the gut tissue of newly emerged flies. The levels of trypsin and chymotrypsin activities in the gut lumen increase following blood feeding and change significantly in the gut cells throughout the digestion cycle. Hence, the regulation of expression for trypsin and chymotrypsin occurs at the post-transcriptional level in tsetse. Both the coding sequences and patterns of expression of Gsp1 and Gsp2 genes are similar to the serine proteases that have been reported from the bloodfeeding insect Stomoxys calcitrans.

  3. Cloning and expression of soluble truncated variants of Borrelia OspA, OspB and Vmp7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, J.J.; Barbour, A.G.

    1996-11-05

    A method is provided for preparing soluble recombinant variations of Borrelia lipoproteins such as Borrelia burgdorferi outer surface protein A (OspA) and outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The method includes synthesizing a set of oligonucleotide primers, amplifying the template DNA utilizing the PCR, purifying the amplification products, cloning the amplification products into a suitable expression vector, transforming a suitable host utilizing the cloned expression vector, cultivating the transformed host for protein production and subsequently isolating and purifying the resulting protein. Also provided are soluble, recombinant variations of Borrelia burgdorferi outer surface proteinmore » A (OspA), outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The expression vectors harboring DNA encoding the recombinant variations, pET9-OspA, pET9-OspB and pET9-Vmp7, as well as the E. coli host BL21(DE3)/pLysS transformed with each of these vectors, are also disclosed. 38 figs.« less

  4. Subcellular localization and characterization of G protein-coupled receptor homolog from lymphocystis disease virus isolated in China.

    PubMed

    Huang, Youhua; Huang, Xiaohong; Zhang, Jing; Gui, Jianfang; Zhang, Qiya

    2007-01-01

    G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways, and play an important role in coordinating the activation and migration of leukocytes to sites of infection and inflammation. Viral GPCRs, on the other hand, can help the virus to escape from host immune surveillance and contribute to viral pathogenesis. Lymphocystis disease virus isolated in China (LCDV-C) contains a putative homolog of cellular GPCRs, LCDV-C GPCR. In this paper, LCDV-C GPCR was cloned, and the subcellular localization and characterization of GPCR protein were investigated in fish cells. LCDV-C GPCR encoded a 325 amino acid peptide, containing a typical seven-transmembrane domain characteristic of the chemokine receptors and a conserved DRY motif that is usually essential for receptor activation. Transient transfection of GPCR-EGFP in fathead minnow (FHM) cells and epithelioma papulosum cyprini (EPC) cells indicated that LCDV-C GPCR was expressed abundantly in both the cytoplasm and nucleoplasm. Transient overexpression of GPCR in these two cells cannot induce obvious apoptosis. FHM cells stably expressing GPCR showed enhanced cell proliferation and significant anchorage-independent growth. The effects of GPCR protein on external apoptotic stimuli were examined. Few apoptotic bodies were observed in cells expressing GPCR treated with actinomycin D (ActD). Quantitative analysis of apoptotic cells indicated that a considerable decrease in the apoptotic fraction of cells expressing GPCR, compared with the control cells, was detected after exposure to ActD and cycloheximide. These data suggest that LCDV-C GPCR may inhibit apoptosis as part of its potential mechanism in mediating cellular transformation.

  5. Methods and materials relating to IMPDH and GMP production

    DOEpatents

    Collart, Frank R.; Huberman, Eliezer

    1997-01-01

    Disclosed are purified and isolated DNA sequences encoding eukaryotic proteins possessing biological properties of inosine 5'-monophosphate dehydrogenase ("IMPDH"). Illustratively, mammalian (e.g., human) IMPDH-encoding DNA sequences are useful in transformation or transfection of host cells for the large scale recombinant production of the enzymatically active expression products and/or products (e.g., GMP) resulting from IMPDH catalyzed synthesis in cells. Vectors including IMPDH-encoding DNA sequences are useful in gene amplification procedures. Recombinant proteins and synthetic peptides provided by the invention are useful as immunological reagents and in the preparation of antibodies (including polyclonal and monoclonal antibodies) for quantitative detection of IMPDH.

  6. Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors

    PubMed Central

    Quakkelaar, Esther D.; Redeker, Anke; Haddad, Elias K.; Harari, Alexandre; McCaughey, Stella Mayo; Duhen, Thomas; Filali-Mouhim, Abdelali; Goulet, Jean-Philippe; Loof, Nikki M.; Ossendorp, Ferry; Perdiguero, Beatriz; Heinen, Paul; Gomez, Carmen E.; Kibler, Karen V.; Koelle, David M.; Sékaly, Rafick P.; Sallusto, Federica; Lanzavecchia, Antonio; Pantaleo, Giuseppe; Esteban, Mariano; Tartaglia, Jim; Jacobs, Bertram L.; Melief, Cornelis J. M.

    2011-01-01

    Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines. PMID:21347234

  7. [Construction and expression of the targeting super-antigen EGF-SEA fusion gene].

    PubMed

    Xie, Yang; Peng, Shaoping; Liao, Zhiying; Liu, Jiafeng; Liu, Xuemei; Chen, Weifeng

    2014-05-01

    To construct expression vector for the SEA-EGF fusion gene. Clone the SEA gene and the EGF gene segment with PCR and RT-PCR independently, and connect this two genes by the bridge PCR. Insert the fusion gene EGF-SEA into the expression vector PET-44. Induced the secretion of the fusion protein SEA-EGF by the antileptic. The gene fragment encoding EGF and SEA mature peptide was successfully cloned. The fusion gene EGF-SEA was successfully constructed and was inserted into expression vector. The new recombinant expression vector for fusion gene EGF-SEA is specific for head and neck cancer, laid the foundation for the further study of fusion protein SEA-EGF targeting immune therapy in head and neck tumors.

  8. p53 Involvement in the Control of Murine Hair Follicle Regression

    PubMed Central

    Botchkarev, Vladimir A.; Komarova, Elena A.; Siebenhaar, Frank; Botchkareva, Natalia V.; Sharov, Andrei A.; Komarov, Pavel G.; Maurer, Marcus; Gudkov, Andrei V.; Gilchrest, Barbara A.

    2001-01-01

    p53 is a transcription factor mediating a variety of biological responses including apoptotic cell death. p53 was recently shown to control apoptosis in the hair follicle induced by ionizing radiation and chemotherapy, but its role in the apoptosis-driven physiological hair follicle regression (catagen) remains to be elucidated. Here, we show that p53 protein is strongly expressed and co-localized with apoptotic markers in the regressing hair follicle compartments during catagen. In contrast to wild-type mice, p53 knockout mice show significant retardation of catagen accompanied by significant decrease in the number of apoptotic cells in the hair matrix. Furthermore, p53 null hair follicles are characterized by alterations in the expression of markers that are encoded by p53 target genes and are implicated in the control of catagen (Bax, Bcl-2, insulin-like growth factor binding protein-3). These data suggest that p53 is involved in the control of apoptosis in the hair follicle during physiological regression and imply that p53 antagonists may be useful for the management of hair growth disorders characterized by premature entry into catagen, such as androgenetic alopecia, alopecia areata, and telogen effluvium. PMID:11395365

  9. Joint capsule treatment with enkephalin-encoding HSV-1 recombinant vector reduces inflammatory damage and behavioural sequelae in rat CFA monoarthritis.

    PubMed

    Lu, Ying; McNearney, Terry A; Wilson, Steven P; Yeomans, David C; Westlund, Karin N

    2008-03-01

    This study assessed enkephalin expression induced by intra-articular application of recombinant, enkephalin-encoding herpes virus (HSV-1) and the impact of expression on nociceptive behaviours and synovial lining inflammation in arthritic rats. Replication-conditional HSV-1 recombinant vectors with cDNA encoding preproenkephalin (HSV-ENK), or control transgene beta-galactosidase cDNA (HSV-beta-gal; control) were injected into knee joints with complete Freund's adjuvant (CFA). Joint temperatures, circumferences and nociceptive behaviours were monitored on days 0, 7, 14 and 21 post CFA and vector treatments. Lumbar (L4-6) dorsal root ganglia (DRG) and spinal cords were immunostained for met-enkephalin (met-ENK), beta-gal, HSV-1 proteins and Fos. Joint tissues were immunostained for met-ENK, HSV-1 proteins, and inflammatory mediators Regulated on Activation, Normal T-cell Expressed and Secreted (RANTES) and cyclo-oxygenase-2, or stained with haematoxylin and eosin for histopathology. Compared to exuberant synovial hypertrophy and inflammatory cell infiltration seen in arthritic rats treated with CFA only or CFA and HSV-beta-gal, the CFA- and HSV-ENK-treated arthritic rats had: (i) striking preservation of synovial membrane cytoarchitecture with minimal inflammatory cell infiltrates; (ii) significantly improved nociceptive behavioural responses to mechanical and thermal stimuli; (iii) normalized Fos staining in lumbar dorsal horn; and (iv) significantly increased met-ENK staining in ipsilateral synovial tissue, lumbar DRG and spinal cord. The HSV-1 and transgene product expression were confined to ipsilateral lumbar DRG (HSV-1, met-ENK, beta-gal). Only transgene product (met-ENK and beta-gal) was seen in lumbar spinal cord sections. Targeted delivery of enkephalin-encoding HSV-1 vector generated safe, sustained opioid-induced analgesia with protective anti-inflammatory blunting in rat inflammatory arthritis.

  10. Functional Analysis of the p40 and p75 Proteins from Lactobacillus casei BL23

    PubMed Central

    Bäuerl, Christine; Pérez-Martínez, Gaspar; Yan, Fang; Polk, D. Brent; Monedero, Vicente

    2011-01-01

    The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria PMID:21178363

  11. An Alignment-Free Algorithm in Comparing the Similarity of Protein Sequences Based on Pseudo-Markov Transition Probabilities among Amino Acids

    PubMed Central

    Li, Yushuang; Yang, Jiasheng; Zhang, Yi

    2016-01-01

    In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector. PMID:27918587

  12. Protection of Chickens against Avian Influenza with Non-Replicating Adenovirus-Vectored Vaccine

    PubMed Central

    Toro, Haroldo; Tang, De-chu C.; Suarez, David L.; Shi, Z.

    2009-01-01

    Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose vaccination with a replication competent adenovirus (RCA) -free human adenovirus (Ad) vector encoding an H7 AI hemagglutinin (AdChNY94.H7). Chickens vaccinated in ovo with an Ad vector encoding an AI H5 (AdTW68.H5) previously described, which were subsequently vaccinated intramuscularly with AdChNY94.H7 post-hatch, responded with robust antibody titers against both the H5 and H7 AI proteins. Antibody responses to Ad vector in ovo vaccination follow a dose-response kinetic. The use of a synthetic AI H5 gene codon optimized to match the chicken cell tRNA pool was more potent than the cognate H5 gene. The use of Ad-vectored vaccines to increase resistance of chicken populations against multiple AI strains could reduce the risk of an avian-originating influenza pandemic in humans. PMID:18384919

  13. A defective retroviral vector encoding human interferon-alpha2 can transduce human leukemic cell lines.

    PubMed

    Austruy, E; Bagnis, C; Carbuccia, N; Maroc, C; Birg, F; Dubreuil, P; Mannoni, P; Chabannon, C

    1998-01-01

    Using the LXSN backbone, a defective retroviral vector (LISN) was constructed that encodes the human interferon (IFN)-alpha2 (hIFN-alpha2) gene and the neomycin resistance gene; the hIFN-alpha2 gene was cloned from human placental genomic DNA. High titers of the LISN retrovirus were produced by the amphotropic packaging cell line GP+envAM12. LISN is able to infect three human hematopoietic and leukemic cell lines: K562, LAMA-84, and TF-1. G418-resistant cells were detected in a similar proportion after infection with either the LISN retroviral vector or the LnLSN retroviral vector (encoding the nlsLacZ gene instead of hIFN-alpha2), suggesting that hIFN-alpha2 does not inhibit (or only partially inhibits) the production of retroviral particles by the packaging cell line and the infection of human cells. LISN-infected cells express and secrete hIFN-alpha2 as demonstrated by Northern blot analysis of poly(A)+ RNA, detection of the intracellular protein by fluorescence-activated cell sorter analysis, and detection of secreted hIFN-alpha in cell supernatants using an enzyme-linked immunosorbent assay. Retrovirally produced hIFN-alpha2 is biologically active, as demonstrated by the partial inhibition of the growth of K562 and TF-1, the modulation of the expression of cell surface antigens, the induction of the (2'-5') oligoadenylate synthetase, and, for LAMA-84, the down-modulation of the BCR-ABL protein. We conclude that the infection of human leukemic cell lines with a retroviral vector encoding hIFN-alpha2 is feasible and induces the expected biological effects. This experimental model will be useful in investigating the possibility of transducing normal and leukemic cells and hematopoietic progenitors and in determining the consequences of the autocrine production of hIFN-alpha2 on the behavior of these cells.

  14. In planta expression of HIV-1 p24 protein using an RNA plant virus-based expression vector.

    PubMed

    Zhang, G; Leung, C; Murdin, L; Rovinski, B; White, K A

    2000-02-01

    Plant viruses show significant potential as expression vectors for the production of foreign proteins (e.g., antigens) in plants. The HIV-1 p24 nucleocapsid protein is an important early marker of HIV infection and has been used as an antigen in the development of HIV vaccines. Toward developing a plant-based expression system for the production of p24, we have investigated the use of a (positive)-strand RNA plant virus, tomato bushy stunt virus (TBSV), as an expression vector. The HIV p24 open reading frame (ORF) was introduced into a cloned cDNA copy of the TBSV genome as an in-frame fusion with a 5'-terminal portion of the TBSV coat protein ORF. In vitro-generated RNA transcripts corresponding to the engineered virus vector were infectious when inoculated into plant protoplasts; Northern and Western blot analyses verified the accumulation of a predicted p24-encoding viral subgenomic mRNA and the production of p24 fusion product. Whole-plant infections with the viral vector led to the accumulation of p24 fusion protein in inoculated leaves, which cross-reacted with p24-specific antibodies, thus confirming the maintenance of key antigenic determinants. This study is the first to demonstrate that TBSV can be engineered to express a complete foreign protein of clinical importance. Strategies for optimizing protein yield from this viral vector are discussed.

  15. Facilitating protein solubility by use of peptide extensions

    DOEpatents

    Freimuth, Paul I; Zhang, Yian-Biao; Howitt, Jason

    2013-09-17

    Expression vectors for expression of a protein or polypeptide of interest as a fusion product composed of the protein or polypeptide of interest fused at one terminus to a solubility enhancing peptide extension are provided. Sequences encoding the peptide extensions are provided. The invention further comprises antibodies which bind specifically to one or more of the solubility enhancing peptide extensions.

  16. Bacteriophage-based Vectors for Site-specific Insertion of DNA in the Chromosome of Corynebacteria

    PubMed Central

    Oram, Mark; Woolston, Joelle E.; Jacobson, Andrew D.; Holmes, Randall K.; Oram, Diana M.

    2007-01-01

    In Corynebacterium diphtheriae, diphtheria toxin is encoded by the tox gene of some temperate corynephages such as β. β-like corynephages are capable of inserting into the C. diphtheriae chromosome at two specific sites, attB1 and attB2. Transcription of the phage-encoded tox gene, and many chromosomally-encoded genes, is regulated by the DtxR protein in response to Fe2+ levels. Characterizing DtxR-dependent gene regulation is pivotal in understanding diphtheria pathogenesis and mechanisms of iron-dependent gene expression; although this has been hampered by a lack of molecular genetic tools in C. diphtheriae and related Coryneform species. To expand the systems for genetic manipulation of C. diphtheriae, we constructed plasmid vectors capable of integrating into the chromosome. These plasmids contain the β-encoded attP site and the DIP0182 integrase gene of C. diphtheriae NCTC13129. When these vectors were delivered to the cytoplasm of non-lysogenic C. diphtheriae, they integrated into either the attB1 or attB2 sites with comparable frequency. Lysogens were also transformed with these vectors, by virtue of the second attB site. An integrated vector carrying an intact dtxR gene complemented the mutant phenotypes of a C. diphtheriae ΔdtxR strain. Additionally, strains of β-susceptible C. ulcerans, and C. glutamicum, a species non-permissive for β, were each transformed with these vectors. This work significantly extends the tools available for targeted transformation of both pathogenic and non-pathogenic Corynebacterium species. PMID:17275217

  17. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  18. Quercetin Protects Yeast Saccharomyces cerevisiae pep4 Mutant from Oxidative and Apoptotic Stress and Extends Chronological Lifespan.

    PubMed

    Alugoju, Phaniendra; Janardhanshetty, Sudharshan Setra; Subaramanian, Subasri; Periyasamy, Latha; Dyavaiah, Madhu

    2018-05-01

    The yeast Saccharomyces cerevisiae PEP4 gene encodes vacuolar endopeptidase proteinase A (Pep4p), which is a homolog of the human CTSD gene that encodes cathepsin D. Mutation of CTSD gene in human resulted in a number of neurodegenerative diseases. In this study, we have shown that yeast pep4 mutant cells are highly sensitive to oxidative and apoptotic stress induced by hydrogen peroxide and acetic acid, respectively. pep4∆ cells also showed accumulation of reactive oxygen species (ROS), apoptotic markers, and reduced chronological lifespan. In contrast, quercetin pretreatment protected the pep4 mutant from oxidative and apoptotic stress-induced sensitivity by scavenging ROS and reducing apoptotic markers. The percentage viability of quercetin-treated pep4∆ cells was more pronounced and increased stress resistance against oxidant, apoptotic, and heat stress during chronological aging. From our experimental results, we concluded that quercetin protects yeast pep4 mutant cells from oxidative stress and apoptosis, thereby increasing viability during chronological aging.

  19. Stable expression of the hepatitis B virus surface antigen containing pre-S2 protein in mouse cells using a bovine papillomavirus vector.

    PubMed

    Yoneyama, T; Akatsuka, T; Miyamura, T

    1988-08-01

    The large BglII fragment (2.8 kilobases) of hepatitis B virus DNA including the transcription unit for the hepatitis B surface antigen (HBsAg) was inserted into a bovine papillomavirus vector containing the neomycin resistance gene. The recombinant DNA was transfected into mouse C127 cells. A stable transformed cell line (MS128) secreting a large amount of 22 nm HBsAg particles containing pre-S2 protein was established. The secreted HBsAg particles had the receptor for polymerized human serum albumin. Immunoprecipitation and Western blot analyses showed that HBsAg particles consisted of two major proteins of 22K and 26K encoded by the S gene and a minor protein of 35K encoded by the pre-S2 and S genes. Southern blot analysis revealed that the transfected plasmid was integrated into the host chromosomal DNA and that most of the plasmid sequences were present. These results suggest that the stable expression of the HBsAg in MS128 cells is related to the integrated state of the recombinant DNA.

  20. Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes

    PubMed Central

    Bernerd, Francoise; Sarasin, Alain; Magnaldo, Thierry

    1999-01-01

    Galectin-7 is a β-galactoside binding protein specifically expressed in stratified epithelia and notably in epidermis, but barely detectable in epidermal tumors and absent from squamous carcinoma cell lines. Galectin-7 gene is an early transcriptional target of the tumor suppressor protein P53 [Polyak, K., Xia, Y., Zweier, J., Kinzler, K. & Vogelstein, B. (1997) Nature (London) 389, 300–305]. Because p53 transcriptional activity is increased by genotoxic stresses we have examined the possible effects of ultraviolet radiations (UVB) on galectin-7 expression in epidermal keratinocytes. The amounts of galectin-7 mRNA and protein are increased rapidly after UVB irradiation of epidermal keratinocytes. The increase of galectin-7 is parallel to P53 stabilization. UVB irradiation of skin reconstructed in vitro and of human skin ex vivo demonstrates that galectin-7 overexpression is associated with sunburn/apoptotic keratinocytes. Transfection of a galectin-7 expression vector results in a significant increase in terminal deoxynucleotidyltransferase-mediated UTP end labeling-positive keratinocytes. The present findings demonstrate a keratinocyte-specific protein involved in the UV-induced apoptosis, an essential process in the maintenance of epidermal homeostasis. PMID:10500176

  1. Phagemid vectors for phage display: properties, characteristics and construction.

    PubMed

    Qi, Huan; Lu, Haiqin; Qiu, Hua-Ji; Petrenko, Valery; Liu, Aihua

    2012-03-30

    Phagemids are filamentous-phage-derived vectors containing the replication origin of a plasmid. Phagemids usually encode no or only one kind of coat proteins. Other structural and functional proteins necessary to accomplish the life cycle of phagemid are provided by the helper phage. In addition, other elements such as molecular tags and selective markers are introduced into the phagemids to facilitate the subsequent operations, such as gene manipulation and protein purification. This review summarizes the elements of the phagemids and their corresponding functions. Finally, the possible trends and future direction to improve the characteristics of the phagemids are highlighted. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Transduction of Human Primitive Repopulating Hematopoietic Cells With Lentiviral Vectors Pseudotyped With Various Envelope Proteins

    PubMed Central

    Kim, Yoon-Sang; Wielgosz, Matthew M; Hargrove, Phillip; Kepes, Steven; Gray, John; Persons, Derek A; Nienhuis, Arthur W

    2010-01-01

    Lentiviral vectors are useful for transducing primitive hematopoietic cells. We examined four envelope proteins for their ability to mediate lentiviral transduction of mobilized human CD34+ peripheral blood cells. Lentiviral particles encoding green fluorescent protein (GFP) were pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G), the amphotropic (AMPHO) murine leukemia virus envelope protein, the endogenous feline leukemia viral envelope protein or the feline leukemia virus type C envelope protein. Because the relative amount of genome RNA per ml was similar for each pseudotype, we transduced CD34+ cells with a fixed volume of each vector preparation. Following an overnight transduction, CD34+ cells were transplanted into immunodeficient mice which were sacrificed 12 weeks later. The average percentages of engrafted human CD45+ cells in total bone marrow were comparable to that of the control, mock-transduced group (37–45%). Lenti-particles pseudotyped with the VSV-G envelope protein transduced engrafting cells two- to tenfold better than particles pseudotyped with any of the γ-retroviral envelope proteins. There was no correlation between receptor mRNA levels for the γ-retroviral vectors and transduction efficiency of primitive hematopoietic cells. These results support the use of the VSV-G envelope protein for the development of lentiviral producer cell lines for manufacture of clinical-grade vector. PMID:20372106

  3. Construction of two Lactococcus lactis expression vectors combining the Gateway and the NIsin Controlled Expression systems.

    PubMed

    Douillard, François P; Mahony, Jennifer; Campanacci, Valérie; Cambillau, Christian; van Sinderen, Douwe

    2011-09-01

    Over the last 10 years, the NIsin Controlled Expression (NICE) system has been extensively used in the food-grade bacterium Lactococcus lactis subsp. cremoris to produce homologous and heterologous proteins for academic and biotechnological purposes. Although various L. lactis molecular tools have been developed, no expression vectors harboring the popular Gateway recombination system are currently available for this widely used cloning host. In this study, we constructed two expression vectors that combine the NICE and the Gateway recombination systems and we tested their applicability by recombining and over-expressing genes encoding structural proteins of lactococcal phages Tuc2009 and TP901-1. Over-expressed phage proteins were analyzed by immunoblotting and purified by His-tag affinity chromatography with protein productions yielding 2.8-3.7 mg/l of culture. This therefore is the first description of L. lactis NICE expression vectors which integrate the Gateway cloning technology and which are suitable for the production of sufficient amounts of proteins to facilitate subsequent structural and functional analyses. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2008-06-24

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  5. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S; Cabantous, Stephanie

    2013-02-12

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  6. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2011-06-14

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  7. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2013-04-16

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  8. Antagonism between apoptotic (Bax/Bcl-2) and anti-apoptotic (IAP) signals in human osteoblastic cells under vector-averaged gravity condition.

    PubMed

    Nakamura, Hiroshi; Kumei, Yasuhiro; Morita, Sadao; Shimokawa, Hitoyata; Ohya, Keiichi; Shinomiya, Kenichi

    2003-12-01

    A functional disorder associated with weightlessness is well documented in osteoblasts. The apototic features of this disorder are poorly understood. Harmful stress induces apoptosis in cells via mitochondria and/or Fas. The Bax triggers cytochrome c release from mitochondria, which can be blocked by the Bcl-2. Released cytochrome c then activates the initiator caspase, caspase-9, which can be blocked by the anti-apototic (IAP) family of molecules. The effector caspase, caspase-3, finally exerts DNA fragmentation. We conducted this study to examine the apoptotic effects of vector-averaged gravity on normal human osteoblastic cells. Cell culture flasks were incubated on the clinostat, which generated vector-averaged gravity condition (simulated microgravity) for 12, 24, 48, and 96 hours. Upon termination of clinostat cultures, the cell number and cell viability were assessed. DNA fragmentation was analyzed on the agarose-gel electrophoresis. The mRNA levels for Bax, Bcl-2, XIAP, and caspase-3 genes were analyzed by semi-quantitative RT-PCR. Twenty-four hours after starting clinostat rotation, the ratios of Bax/Bcl-2 mRNA levels (indicator of apoptosis) were significantly increased to 136% of the 1G static controls. However, the XIAP mRNA levels (anti-apoptotic molecule) were increased concomitantly to 138% of the 1G static controls. Thus, cell proliferation or cell viability was not affected by vector-averaged gravity. DNA fragmentation was not observed in clinostat group as well as in control group. Finally, the caspase-3 mRNA levels were not affected by vector-averaged gravity. Simulated microgravity might modulate some apoptotic signals upstream the mitochondrial pathway.

  9. Effects of protein tyrosine phosphatase-PEST are reversed by Akt in T cells.

    PubMed

    Arimura, Yutaka; Shimizu, Kazuhiko; Koyanagi, Madoka; Yagi, Junji

    2014-12-01

    T cell activation is regulated by a balance between phosphorylation and dephosphorylation that is under the control of kinases and phosphatases. Here, we examined the role of a non-receptor-type protein tyrosine phosphatase, PTP-PEST, using retrovirus-mediated gene transduction into murine T cells. Based on observations of vector markers (GFP or Thy1.1), exogenous PTP-PEST-positive CD4(+) T cells appeared within 2 days after gene transduction; the percentage of PTP-PEST-positive cells tended to decrease during a resting period in the presence of IL-2 over the next 2 days. These vector markers also showed much lower expression intensities, compared with control cells, suggesting a correlation between the percent reduction and the low marker expression intensity. A catalytically inactive PTP-PEST mutant also showed the same tendency, and stepwise deletion mutants gradually lost their ability to induce the above phenomenon. On the other hand, these PTP-PEST-transduced cells did not have an apoptotic phenotype. No difference in the total cell numbers was found in the wells of a culture plate containing VEC- and PTP-PEST-transduced T cells. Moreover, serine/threonine kinase Akt, but not the anti-apoptotic molecules Bcl-2 and Bcl-XL, reversed the phenotype induced by PTP-PEST. We discuss the novel mechanism by which Akt interferes with PTP-PEST. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.

    PubMed Central

    Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R

    1992-01-01

    Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the Asd+ vector pYA292, and the construct was introduced into the avirulent delta cya delta crp delta asd S. typhimurium chi 3987 for oral immunization of birds. The gene encoding the 21-kDa protein was expressed equivalently in B. avium 197, delta asd E. coli chi 6097, and S. typhimurium chi 3987 and was localized primarily in the cytoplasmic membrane and outer membrane. In preliminary studies on oral inoculation of turkey poults with S. typhimurium chi 3987 expressing the gene encoding the B. avium 21-kDa protein, it was determined that a single dose of the recombinant Salmonella vaccine failed to elicit serum antibodies against the 21-kDa protein and challenge with wild-type B. avium 197 resulted in colonization of the trachea and thymus with B. avium 197. Images PMID:1447140

  11. Yeast Genetics for Delineating Bax/Bcl Pathway of Cell Death Regulation.

    DTIC Science & Technology

    1998-07-01

    differences in tosol. The cytosol also became electron dense ("cyto- the copy number of the episomal plasmid from which solic condensation"), similar to...Cell Death & Differ . 3, 229-236. (1993). The C. eheans cell death gene ccd-3 encodes a protein similar ¶Xhitc. K., Tahaoglu, E., and Steller, H. (1996...components may be used in different functional contexts. Similar modules might exist in metazoan apoptotic pathways. Even though yeast does not contain

  12. Haemocytes collected from experimentally infected Pacific oysters, Crassostrea gigas: Detection of ostreid herpesvirus 1 DNA, RNA, and proteins in relation with inhibition of apoptosis.

    PubMed

    Martenot, Claire; Gervais, Ophélie; Chollet, Bruno; Houssin, Maryline; Renault, Tristan

    2017-01-01

    Recent transcriptomic approaches focused on anti-viral immunity in molluscs lead to the assumption that the innate immune system, such as apoptosis, plays a crucial role against ostreid herpesvirus type 1 (OsHV-1), infecting Pacific cupped oyster, Crassostrea gigas. Apoptosis constitutes a major mechanism of anti-viral response by limiting viral spread and eliminating infected cells. In this way, an OsHV-1 challenge was performed and oysters were monitored at three times post injection to investigate viral infection and host response: 2h (early after viral injection in the adductor muscle), 24h (intermediate time), and 48h (just before first oyster mortality record). Virus infection, associated with high cumulative mortality rates (74% and 100%), was demonstrated in haemocytes by combining several detection techniques such as real-time PCR, real-time RT PCR, immunofluorescence assay, and transmission electron microscopy examination. High viral DNA amounts ranged from 5.46×104 to 3.68×105 DNA copies ng-1 of total DNA, were detected in dead oysters and an increase of viral transcripts was observed from 2, 24, and 48hpi for the five targeted OsHV-1 genes encoding three putative membrane proteins (ORFs 25, 41, and 72), a putative dUTPase (ORF 75), and a putative apoptosis inhibitor (ORF 87). Apoptosis was studied at molecular and cellular levels with an early marker (phosphatidyl-serine externalisation measured by flow cytometry and epifluorescence microscopy) and a later parameter (DNA fragmentation by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay (TUNEL)). The down-regulation of genes encoding proteins involved in the activation of the apoptotic pathway (TNF and caspase 3) and the up-regulation of genes encoding anti-apoptotic proteins (IAP-2, and Bcl-2) suggested an important anti-apoptosis phenomenon in haemocytes from OsHV-1 infected oysters at 24 and 48hpi. Additionally, more phosphatidyl-serines were externalized and more cells with DNA fragmentation were observed in haemocytes collected from artificial seawater injected oysters than in haemocytes collected from OsHV-1 infected oysters at 24 and 48hpi, suggesting an inhibition of the apoptotic process in presence of the virus. In conclusion, this study is the first to focus on C. gigas haemocytes, cells involved in the host immune defense, during an OsHV-1 challenge in controlled conditions by combining various and original approaches to investigate apoptosis at molecular and cellular levels.

  13. Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites.

    PubMed

    Lempereur, Laetitia; Larcombe, Stephen D; Durrani, Zeeshan; Karagenc, Tulin; Bilgic, Huseyin Bilgin; Bakirci, Serkan; Hacilarlioglu, Selin; Kinnaird, Jane; Thompson, Joanne; Weir, William; Shiels, Brian

    2017-06-05

    Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a 'One Health' approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans.

  14. Exo-endo cellulase fusion protein

    DOEpatents

    Bower, Benjamin S [Palo Alto, CA; Larenas, Edmund A [Palo Alto, CA; Mitchinson, Colin [Palo Alto, CA

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  15. [Construction and expression of recombinant human serum albumin-EPO fusion protein].

    PubMed

    Huang, Ying-Chun; Gou, Xing-Hua; Han, Lei; Li, De-Hua; Zhao, Lan-Ying; Wu, Qia-Qing

    2011-05-01

    OBJECTIVE To construct the recombinant plasmid pCI-HLE encoding human serum album-EPO (HSA-EPO) fusion protein and to express it in CHO cell. The cDNA encoding human serum album and EPO were amplified by PCR, and then spliced with the synsitic DNA fragment encoding GS (GGGGS), by overlap PCR extension to form LEPO. After BamH I digestion, the HSA and LEPO was ligated to generate the fusion HSA-EPO gene and was then cloned into the expression vector pCI-neo to generate the recombinant plasmid pCI-HLE. The plasmid pCI-HLE was transfected into CHO cell by liposome protocol. Then, the recombinant cells were screened by G418 and identified by PCR and Western blot. Expression of fusion protein was evaluated by Enzyme Linked Immunosorbent Assay (ELISA). Restrictive enzymes digestion and DNA sequencing revealed that HSA-EPO fusion gene was cloned into expression vector pCI-neo successfully. PCR and Western blot analysis confirmed that the fusion gene was integrated in the genome of CHO cells and expressed successfully. The HSA-EPO production varied from 86 Iu/(mL x 10(6) x 72 h) to 637 IU/(mLx 10(6) x 72 h). The results confirmed that HSA-EPO fusion gene can be expressed in the CHO cells, with EPO immunogenicity, which could serve as foundation for the development of long-lasting recombinant HSA-EPO protein.

  16. Cloning strategy for producing brush-forming protein-based polymers.

    PubMed

    Henderson, Douglas B; Davis, Richey M; Ducker, William A; Van Cott, Kevin E

    2005-01-01

    Brush-forming polymers are being used in a variety of applications, and by using recombinant DNA technology, there exists the potential to produce protein-based polymers that incorporate unique structures and functions in these brush layers. Despite this potential, production of protein-based brush-forming polymers is not routinely performed. For the design and production of new protein-based polymers with optimal brush-forming properties, it would be desirable to have a cloning strategy that allows an iterative approach wherein the protein based-polymer product can be produced and evaluated, and then if necessary, it can be sequentially modified in a controlled manner to obtain optimal surface density and brush extension. In this work, we report on the development of a cloning strategy intended for the production of protein-based brush-forming polymers. This strategy is based on the assembly of modules of DNA that encode for blocks of protein-based polymers into a commercially available expression vector; there is no need for custom-modified vectors and no need for intermediate cloning vectors. Additionally, because the design of new protein-based biopolymers can be an iterative process, our method enables sequential modification of a protein-based polymer product. With at least 21 bacterial expression vectors and 11 yeast expression vectors compatible with this strategy, there are a number of options available for production of protein-based polymers. It is our intent that this strategy will aid in advancing the production of protein-based brush-forming polymers.

  17. Transient Expression of an LEDGF/p75 Chimera Retargets Lentivector Integration and Functionally Rescues in a Model for X-CGD

    PubMed Central

    Vets, Sofie; De Rijck, Jan; Brendel, Christian; Grez, Manuel; Bushman, Frederic; Debyser, Zeger; Gijsbers, Rik

    2013-01-01

    Retrovirus-based vectors are commonly used as delivery vehicles to correct genetic diseases because of their ability to integrate new sequences stably. However, adverse events in which vector integration activates proto-oncogenes, leading to clonal expansion and leukemogenesis hamper their application. The host cell-encoded lens epithelium-derived growth factor (LEDGF/p75) binds lentiviral integrase and targets integration to active transcription units. We demonstrated earlier that replacing the LEDGF/p75 chromatin interaction domain with an alternative DNA-binding protein could retarget integration. Here, we show that transient expression of the chimeric protein using mRNA electroporation efficiently redirects lentiviral vector (LV) integration in wild-type (WT) cells. We then employed this technology in a model for X-linked chronic granulomatous disease (X-CGD) using myelomonocytic PLB-985 gp91−/− cells. Following electroporation with mRNA encoding the LEDGF-chimera, the cells were treated with a therapeutic lentivector encoding gp91phox. Integration site analysis revealed retargeted integration away from genes and towards heterochromatin-binding protein 1β (CBX1)-binding sites, in regions enriched in marks associated with gene silencing. Nevertheless, gp91phox expression was stable for at least 6 months after electroporation and NADPH-oxidase activity was restored to normal levels as determined by superoxide production. Together, these data provide proof-of-principle that transient expression of engineered LEDGF-chimera can retarget lentivector integration and rescues the disease phenotype in a cell model, opening perspectives for safer gene therapy. PMID:23462964

  18. DIRProt: a computational approach for discriminating insecticide resistant proteins from non-resistant proteins.

    PubMed

    Meher, Prabina Kumar; Sahu, Tanmaya Kumar; Banchariya, Anjali; Rao, Atmakuri Ramakrishna

    2017-03-24

    Insecticide resistance is a major challenge for the control program of insect pests in the fields of crop protection, human and animal health etc. Resistance to different insecticides is conferred by the proteins encoded from certain class of genes of the insects. To distinguish the insecticide resistant proteins from non-resistant proteins, no computational tool is available till date. Thus, development of such a computational tool will be helpful in predicting the insecticide resistant proteins, which can be targeted for developing appropriate insecticides. Five different sets of feature viz., amino acid composition (AAC), di-peptide composition (DPC), pseudo amino acid composition (PAAC), composition-transition-distribution (CTD) and auto-correlation function (ACF) were used to map the protein sequences into numeric feature vectors. The encoded numeric vectors were then used as input in support vector machine (SVM) for classification of insecticide resistant and non-resistant proteins. Higher accuracies were obtained under RBF kernel than that of other kernels. Further, accuracies were observed to be higher for DPC feature set as compared to others. The proposed approach achieved an overall accuracy of >90% in discriminating resistant from non-resistant proteins. Further, the two classes of resistant proteins i.e., detoxification-based and target-based were discriminated from non-resistant proteins with >95% accuracy. Besides, >95% accuracy was also observed for discrimination of proteins involved in detoxification- and target-based resistance mechanisms. The proposed approach not only outperformed Blastp, PSI-Blast and Delta-Blast algorithms, but also achieved >92% accuracy while assessed using an independent dataset of 75 insecticide resistant proteins. This paper presents the first computational approach for discriminating the insecticide resistant proteins from non-resistant proteins. Based on the proposed approach, an online prediction server DIRProt has also been developed for computational prediction of insecticide resistant proteins, which is accessible at http://cabgrid.res.in:8080/dirprot/ . The proposed approach is believed to supplement the efforts needed to develop dynamic insecticides in wet-lab by targeting the insecticide resistant proteins.

  19. Toxicogenomic analysis identifies the apoptotic pathway as the main cause of hepatotoxicity induced by tributyltin.

    PubMed

    Zhou, Mi; Feng, Mei; Fu, Ling-Ling; Ji, Lin-Dan; Zhao, Jin-Shun; Xu, Jin

    2016-11-01

    Tributyltin (TBT) is one of the most widely used organotin biocides, which has severe endocrine-disrupting effects on marine species and mammals. Given that TBT accumulates at higher levels in the liver than in any other organ, and it acts mainly as a hepatotoxic agent, it is important to clearly delineate the hepatotoxicity of TBT. However, most of the available studies on TBT have focused on observations at the cellular level, while studies at the level of genes and proteins are limited; therefore, the molecular mechanisms of TBT-induced hepatotoxicity remains largely unclear. In the present study, we applied a toxicogenomic approach to investigate the effects of TBT on gene expression in the human normal liver cell line HL7702. Gene expression profiling identified the apoptotic pathway as the major cause of hepatotoxicity induced by TBT. Flow cytometry assays confirmed that medium- and high-dose TBT treatments significantly increased the number of apoptotic cells, and more cells underwent late apoptosis in the high-dose TBT group. The genes encoding heat shock proteins (HSPs), kinases and tumor necrosis factor receptors mediated TBT-induced apoptosis. These findings revealed novel molecular mechanisms of TBT-induced hepatotoxicity, and the current microarray data may also provide clues for future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. LAMP-1-chimeric DNA vaccines enhance the antibody response in Japanese flounder, Paralichthys olivaceus.

    PubMed

    Rondón-Barragán, Iang; Nozaki, Reiko; Hirono, Ikuo; Kondo, Hidehiro

    2017-08-01

    DNA vaccination is one method to protect farmed fish from viral and bacterial diseases. Chimeric antigens encoded by DNA vaccines have been shown to increase the resistance to viral diseases. Here, we sequenced the gene encoding lysosome-associated membrane protein-1 from Japanese flounder, Paralichthys olivaceus, (JfLAMP-1) and assessed its use in a chimeric DNA vaccine fused with the major capsule protein (MCP) from red seabream iridovirus (RSIV). JfLAMP-1 cDNA has a length of 1248 bp encoding 415 aa, which contains transmembrane and cytoplasmic domains. JfLAMP-1 is constitutively expressed in several tissues and its expression in spleen was upregulated following injection of formalin-killed cells (FKC) of Edwardsiella tarda. Immunofluorescence analysis showed that JfLAMP-1 is distributed in the small and large granules in the cytoplasm and groups close to the nucleus. The DNA encoding the luminal domain of JfLAMP-1 was replaced with the gene for the RSIV MCP, and the construct was cloned in an expression vector (pCIneo). Fish vaccinated with pCLAMP-MCP had significantly higher antibody levels than fish vaccinated with pCIneo vector harboring the MCP gene (p < 0.05) at day 30 post-vaccination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Heterologous Protein Secretion in Lactobacilli with Modified pSIP Vectors

    PubMed Central

    Karlskås, Ingrid Lea; Maudal, Kristina; Axelsson, Lars; Rud, Ida; Eijsink, Vincent G. H.; Mathiesen, Geir

    2014-01-01

    We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species. PMID:24614815

  2. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginkel, Paul R. van; Yan, Michael B.; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cellsmore » to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. - Highlights: • Natural products having low toxicity increase cytoplasmic calcium in cancer cells. • A G-protein/IP{sub 3} pathway mediates the release of calcium from the ER. • The elevation of intracellular calcium modulates p53 activity. • p53 and other Ca{sup 2+}-dependent pro-apoptotic pathways inhibit cancer cell growth.« less

  3. Adenovirus E1B 19-Kilodalton Protein Modulates Innate Immunity through Apoptotic Mimicry

    PubMed Central

    Grigera, Fernando; Ucker, David S.; Cook, James L.

    2014-01-01

    ABSTRACT Cells that undergo apoptosis in response to chemical or physical stimuli repress inflammatory reactions, but cells that undergo nonapoptotic death in response to such stimuli lack this activity. Whether cells dying from viral infection exhibit a cell death-type modulatory effect on inflammatory reactions is unknown. We compared the effects on macrophage inflammatory responses of cells dying an apoptotic or a nonapoptotic death as a result of adenoviral infection. The results were exactly opposite to the predictions from the conventional paradigm. Cells dying by apoptosis induced by infection with an adenovirus type 5 (Ad5) E1B 19-kilodalton (E1B 19K) gene deletion mutant did not repress macrophage NF-κB activation or cytokine responses to proinflammatory stimuli, whereas cells dying a nonapoptotic death from infection with E1B 19K-competent, wild-type Ad5 repressed these macrophage inflammatory responses as well as cells undergoing classical apoptosis in response to chemical injury. The immunorepressive, E1B 19K-related cell death activity depended upon direct contact of the virally infected corpses with responder macrophages. Replacement of the viral E1B 19K gene with the mammalian Bcl-2 gene in cis restored the nonapoptotic, immunorepressive cell death activity of virally infected cells. These results define a novel function of the antiapoptotic, adenoviral E1B 19K protein that may limit local host innate immune inflammation during accumulation of virally infected cells at sites of infection and suggest that E1B 19K-deleted, replicating adenoviral vectors might induce greater inflammatory responses to virally infected cells than E1B 19K-positive vectors, because of the net effect of their loss-of-function mutation. IMPORTANCE We observed that cells dying a nonapoptotic cell death induced by adenovirus infection repressed macrophage proinflammatory responses while cells dying by apoptosis induced by infection with an E1B 19K deletion mutant virus did not repress macrophage proinflammatory responses and enhanced some cytokine responses. Our results define a new function of the antiapoptotic, adenoviral protein E1B 19K, which we have termed “apoptotic mimicry.” Our studies suggest the possibility that the presence or absence of this E1B 19K function could alter the immunological outcome of both natural and therapeutic adenoviral infections. For example, emerging, highly immunopathogenic adenovirus serotypes might induce increased host inflammatory responses as a result of altered E1B 19K function or expression. It is also possible that engineered variations in E1B 19K expression/function could be created during adenovirus vector design that would increase the therapeutic efficacy of replicating adenovirus vectors for vaccines or oncolytic viral targeting of neoplastic cells. PMID:24352454

  4. [Escherichia coli heat-labile enterotoxin B subunit enhances the immune response against canine parvovirus VP2 in mice immunized by VP2 DNA vaccine].

    PubMed

    Han, Dongmei; Zhong, Fei; Li, Xiujin; Wang, Wei; Wang, Xingxing; Pan, Sumin

    2011-01-01

    To investigate the effect of Escherichia coli heat-labile enterotoxin (LT) B subunit (LTB) gene on canine parvovirus (CPV) VP2 gene vaccine. The LTB gene was amplified by PCR from genomic DNA of E. coli 44815 strain. The VP2-70 fragment (210 bp) encoding major epitope of VP2 (70 amino acids) was amplified by PCR from a plasmid encoding VP2 gene. VP2-70 and LTB genes were inserted into the eukaryotic vector to construct VP2-70 gene,LTB gene and VP2-70-LTB fused gene vectors. The mice were immunized with VP2-70 vector, VP2-70-LTB fused vector, or VP2-70 vector plus LTB vector, respectively. The antibody titers at the different time were measured by using ELISA method. The spleen lymphocyte proliferation activity was analyzed by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The sequence of VP2-70 and LTB genes was identified. The recombinant VP2-70 and LTB proteins could be expressed in HEK293T cells in a secretory manner. The mice immunized with VP2-70 vector, VP2-70-LTB vector or VP2-70 vector plus LTB vector could generate the specific antibody against VP2 protein. The antibody titer immunized with VP2-70-LTB vector reached 1:5120 at 35 d post immunization, significantly higher than that of other two groups (P < 0.01). For antibody isotype analysis, the IgG1 isotype antibody titers in all test groups were significantly higher than of IgG2a (P < 0.01). The high-level spleen lymphocyte stimulation index was observed in the three test groups under the stimulation with Con A, higher than that in control groups (P < 0.01). LTB gene could enhance the humoral immune response of CPV VP2 gene vaccine in mice.

  5. Inhibition of Expression of the S100A8 Gene Encoding the S100 Calcium-Binding Protein A8 Promotes Apoptosis by Suppressing the Phosphorylation of Protein Kinase B (Akt) in Endometrial Carcinoma and HEC-1A Cells.

    PubMed

    Liu, Chang; Xing, Guangyang; Wu, Cailiang; Zhu, Jun; Wei, Min; Liu, Dajiang; Ge, Yan; Chen, Yao; Lei, Ting; Yang, Yongxiu

    2018-03-29

    BACKGROUND The aim of this study was to investigate the expression and silencing of the S100A8 gene, which encodes the S100 calcium-binding protein A8 (S100A8), and apoptosis and phosphorylation of protein kinase B (Akt) in tissue samples of endometrial carcinoma and HEC-1A endometrial adenocarcinoma cells in vitro. MATERIAL AND METHODS Immunohistochemistry (IHC) was used to detect expression of the S100A8 protein in 74 tissue samples of endometrial cancer and 22 normal endometrial tissue samples. A stable S100A8 gene knockdown cell line was constructed using lentiviral packing short hairpin RNA (shRNA) transfected into HEC-1A cells. S100A8 mRNA and S100A8 protein levels were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. The effects of expression of the S100A8 gene by endometrial cancer cells was investigated by the MTT assay, cell cycle and apoptotic assays, qRT-PCR, and Western blotting. RESULTS IHC showed high levels of expression of S100A8 protein in endometrial carcinoma tissues, and HEC-1A adenocarcinoma cells (in G1 and G2). Increased expression of S100A8 protein was found endometrial cancer tissues compared with normal endometrial tissues (79.7% vs. 4.5%). S100A8 gene knockdown reduced cell proliferation in the HEC-1A cells compared with control cells, induced cell apoptosis, inhibited the phosphorylation of protein kinase B (Akt), and induced the expression of pro-apoptotic genes, including the cytochrome C gene, CYCS, BAD, BAX, FOXO1, FOXO3, CASP9, and CASP3. CONCLUSIONS In endometrial carcinoma cells, down-regulation of the S100A8 gene induced cell apoptosis via inhibition of the phosphorylated or active form of protein kinase B (Akt).

  6. Inhibition of Expression of the S100A8 Gene Encoding the S100 Calcium-Binding Protein A8 Promotes Apoptosis by Suppressing the Phosphorylation of Protein Kinase B (Akt) in Endometrial Carcinoma and HEC-1A Cells

    PubMed Central

    Liu, Chang; Xing, Guangyang; Wu, Cailiang; Zhu, Jun; Wei, Min; Liu, Dajiang; Ge, Yan; Chen, Yao; Lei, Ting

    2018-01-01

    Background The aim of this study was to investigate the expression and silencing of the S100A8 gene, which encodes the S100 calcium-binding protein A8 (S100A8), and apoptosis and phosphorylation of protein kinase B (Akt) in tissue samples of endometrial carcinoma and HEC-1A endometrial adenocarcinoma cells in vitro. Material/Methods Immunohistochemistry (IHC) was used to detect expression of the S100A8 protein in 74 tissue samples of endometrial cancer and 22 normal endometrial tissue samples. A stable S100A8 gene knockdown cell line was constructed using lentiviral packing short hairpin RNA (shRNA) transfected into HEC-1A cells. S100A8 mRNA and S100A8 protein levels were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. The effects of expression of the S100A8 gene by endometrial cancer cells was investigated by the MTT assay, cell cycle and apoptotic assays, qRT-PCR, and Western blotting. Results IHC showed high levels of expression of S100A8 protein in endometrial carcinoma tissues, and HEC-1A adenocarcinoma cells (in G1 and G2). Increased expression of S100A8 protein was found endometrial cancer tissues compared with normal endometrial tissues (79.7% vs. 4.5%). S100A8 gene knockdown reduced cell proliferation in the HEC-1A cells compared with control cells, induced cell apoptosis, inhibited the phosphorylation of protein kinase B (Akt), and induced the expression of pro-apoptotic genes, including the cytochrome C gene, CYCS, BAD, BAX, FOXO1, FOXO3, CASP9, and CASP3. Conclusions In endometrial carcinoma cells, down-regulation of the S100A8 gene induced cell apoptosis via inhibition of the phosphorylated or active form of protein kinase B (Akt). PMID:29595187

  7. Leishmania sand fly interaction: progress and challenges.

    PubMed

    Bates, Paul A

    2008-08-01

    Complex interactions occurs between Leishmania parasites and their sand fly vectors. Promastigotes of Leishmania live exclusively within the gut, possess flagella and are motile, and kinesins, kinases and G proteins have been described that play a role in regulating flagellar assembly. Movement within the gut is not random: promastigotes can detect gradients of solutes via chemotaxis and osmotaxis. Further they use their flagella to attach to the fly midgut using surface glyconconjugates, a key step in establishment of the infection. Differentiation of mammal-infective stages is characterised by significant biochemical and cellular remodelling. Further, the parasites can manipulate the behaviour of the vector to maximise their transmission, and flies may even deliver altruistic apoptotic forms to aid transmission of infective stages.

  8. CYTOMEGALOVIRUS VECTORS VIOLATE CD8+ T CELL EPITOPE RECOGNITION PARADIGMS

    PubMed Central

    Hansen, Scott G.; Sacha, Jonah B.; Hughes, Colette M.; Ford, Julia C.; Burwitz, Benjamin J.; Scholz, Isabel; Gilbride, Roxanne M.; Lewis, Matthew S.; Gilliam, Awbrey N.; Ventura, Abigail B.; Malouli, Daniel; Xu, Guangwu; Richards, Rebecca; Whizin, Nathan; Reed, Jason S.; Hammond, Katherine B.; Fischer, Miranda; Turner, John M.; Legasse, Alfred W.; Axthelm, Michael K.; Edlefsen, Paul T.; Nelson, Jay A.; Lifson, Jeffrey D.; Früh, Klaus; Picker, Louis J.

    2013-01-01

    CD8+ T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of anti-pathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing Rhesus Cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8+ T cells that recognize unusual, diverse and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8+ T cell responses is suppressed by the RhCMV-encoded Rh189 (US11) gene, and the promiscuous MHC class I- and class II-restricted CD8+ T cell responses only occur in the absence of the Rh157.4-.6 (UL128-131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8+ T cell epitope recognition. PMID:23704576

  9. Solid lipid nanoparticle-based vectors intended for the treatment of X-linked juvenile retinoschisis by gene therapy: In vivo approaches in Rs1h-deficient mouse model.

    PubMed

    Apaolaza, P S; Del Pozo-Rodríguez, A; Torrecilla, J; Rodríguez-Gascón, A; Rodríguez, J M; Friedrich, U; Weber, B H F; Solinís, M A

    2015-11-10

    X-linked juvenile retinoschisis (XLRS), which results from mutations in the gene RS1 that encodes the protein retinoschisin, is a retinal degenerative disease affecting between 1/5000 and 1/25,000 people worldwide. Currently, there is no cure for this disease and the treatment is based on the application of low-vision aids. The aim of the present work was the in vitro and in vivo evaluation of two different non-viral vectors based on solid lipid nanoparticles (SLNs), protamine and two anionic polysaccharides, hyaluronic acid (HA) or dextran (DX), for the treatment of XLRS. First, the vectors containing a plasmid which encodes both the reporter green fluorescent protein (GFP) and the therapeutic protein retinoschisin, under the control of CMV promoters, were characterized in vitro. Then, the vectors were subretinally or intravitreally administrated to C57BL/6 wild type mice. One week later, GFP was detected in all treated mice and in all retinal layers except in the Outer Nuclear Layer (ONL) and the Inner Nuclear Layer (INL), regardless of the administration route and the vector employed. Finally, two weeks after subretinal or intravitreal injection to Rs1h-deficient mice, GFP and retinoschisin expression was detected in all retinal layers, except in the ONL, which was maintained for at least two months after subretinal administration. The structural analysis of the treated Rs1h-deficient eyes showed a partial recovery of the retina related to the production of retinoschisin. This work shows for the first time a successful RS1 gene transfer to Rs1h-deficient animals using non-viral nanocarriers, with promising results that point to non-viral gene therapy as a feasible future therapeutic tool for retinal disorders.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koener, J.F.; Leong, J.A.C.

    A cDNA fragment containing the gene encoding the glycoprotein of infectious hematopoietic necrosis virus was inserted into Autographa californica baculovirus vectors under the control of the polyhedrin promoter. A 66-kilodalton protein, identical in size to the glycosylated glycoprotein of infectious hematopoietic necrosis virus, was expressed at high levels in Spodoptera frugiperda cells infected with the recombinant viruses. The expressed protein reacted with antiserum to the glycoprotein on Western blots.

  11. Bombyx mori nucleopolyhedrovirus orf25 encodes a 30kDa late protein in the infection cycle.

    PubMed

    Wang, Haiyan; Chen, Keping; Guo, Zhongjian; Yao, Qin

    2008-02-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf25 gene was characterized for the first time. The coding sequence of Bm25 was amplified and subcloned into the prokaryotic expression vector pGEX-4T-2 to produce glutathione S-transferase-tagged fusion protein in the BL21 (DE3) cells. The GST-Bm25 fusion protein was expressed efficiently after induction with IPTG. The purified fusion protein was used to immunize New Zealand white rabbits to prepare polyclonal antibody. Temporal expression analysis revealed a 30-kDa protein, which was detected beginning 24 hours post-infection using a polyclonal antibody against GST-Bm25 fusion protein. The transcript of Bm25 was detected by RT-PCR at 18-72 h p.i. In conclusion, the available data suggest that Bm25 encodes a 30kDa protein expressed in the late stage of infection cycle.

  12. Hypoxia-response plasmid vector producing bcl-2 shRNA enhances the apoptotic cell death of mouse rectum carcinoma.

    PubMed

    Fujioka, Takashi; Matsunaga, Naoya; Okazaki, Hiroyuki; Koyanagi, Satoru; Ohdo, Shigehiro

    2010-01-01

    Hypoxia-induced gene expression frequently occurs in malignant solid tumors because they often have hypoxic areas in which circulation is compromised due to structurally disorganized blood vessels. Hypoxia-response elements (HREs) are responsible for activating gene transcription in response to hypoxia. In this study, we constructed a hypoxia-response plasmid vector producing short hairpin RNA (shRNA) against B-cell leukemia/lymphoma-2 (bcl-2), an anti-apoptotic factor. The hypoxia-response promoter was made by inserting tandem repeats of HREs upstream of cytomegalovirus (CMV) promoter (HRE-CMV). HRE-CMV shbcl-2 vector consisted of bcl-2 shRNA under the control of HRE-CMV promoter. In hypoxic mouse rectum carcinoma cells (colon-26), the production of bcl-2 shRNA driven by HRE-CMV promoter was approximately 2-fold greater than that driven by CMV promoter. A single intratumoral (i.t.) injection of 40 microg HRE-CMV shbcl-2 to colon-26 tumor-bearing mice caused apoptotic cell death, and repetitive treatment with HRE-CMV shbcl-2 (40 microg/mouse, i.t.) also significantly suppressed the growth of colon-26 tumor cells implanted in mice. Apoptotic and anti-tumor effects were not observed in tumor-bearing mice treated with CMV shbcl-2. These results reveal the ability of HRE-CMV shbcl-2 vector to suppress the expression of bcl-2 in hypoxic tumor cells and suggest the usefulness of our constructed hypoxia-response plasmid vector to treat malignant tumors. [Supplementary Figures: available only at http://dx.doi.org/10.1254/jphs.10054FP].

  13. Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a herpesvirus saimiri vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassmann, R.; Dengler, C.; Mueller-Fleckenstein, I.

    1989-05-01

    The role of the X region of the genome of the human T-cell leukemia virus type I (HTLV-I) in the immortalization of lymphocytes has been difficult to distinguish from its role in viral replication as this region encodes at least two genes, tax and rex, required for replication and the expression of viral proteins. To determine whether the X region does encode immortalizing functions, a fragment of the HTLV-I provirus capable of expressing known X-region proteins was inserted into the genome of a transformation-defective, replication-competent Herpesvirus saimiri. Infection of fresh mitogen-activated human cord blood and thymocytes yielded immortal T-cell linesmore » that had the same phenotype (CD4{sup +}, Cd5{sup +}, HLA class II{sup +}, interleukin 2 receptor {alpha}-chain +) as lymphocytes transformed by cocultivation with HTLV-I. These experiments demonstrate that the X region encodes the functions of HTLV-I that immortalize a distinct subpopulation of human T cells. The experiments also demonstrate the utility of the H. saimiri vector for the transduction of heterologous genes into human T cells.« less

  14. Efficient production of antibody Fab fragment by transient gene expression in insect cells.

    PubMed

    Mori, Keita; Hamada, Hirotsugu; Ogawa, Takafumi; Ohmuro-Matsuyama, Yuki; Katsuda, Tomohisa; Yamaji, Hideki

    2017-08-01

    Transient gene expression allows a rapid production of diverse recombinant proteins in early-stage preclinical and clinical developments of biologics. Insect cells have proven to be an excellent platform for the production of functional recombinant proteins. In the present study, the production of an antibody Fab fragment by transient gene expression in lepidopteran insect cells was investigated. The DNA fragments encoding heavy-chain (Hc; Fd fragment) and light-chain (Lc) genes of an Fab fragment were individually cloned into the plasmid vector pIHAneo, which contained the Bombyx mori actin promoter downstream of the B. mori nucleopolyhedrovirus (BmNPV) IE-1 transactivator and the BmNPV HR3 enhancer for high-level expression. Trichoplusia ni BTI-TN-5B1-4 (High Five) cells were co-transfected with the resultant plasmid vectors using linear polyethyleneimine. When the transfection efficiency was evaluated, a plasmid vector encoding an enhanced green fluorescent protein (EGFP) gene was also co-transfected. Transfection and culture conditions were optimized based on both the flow cytometry of the EGFP expression in transfected cells and the yield of the secreted Fab fragments determined by enzyme-linked immunosorbent assay (ELISA). Under optimal conditions, a yield of approximately 120 mg/L of Fab fragments was achieved in 5 days in a shake-flask culture. Transient gene expression in insect cells may offer a promising approach to the high-throughput production of recombinant proteins. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. The gene therapy of collagen-induced arthritis in rats by intramuscular administration of the plasmid encoding TNF-binding domain of variola virus CrmB protein.

    PubMed

    Shchelkunov, S N; Taranov, O S; Tregubchak, T V; Maksyutov, R A; Silkov, A N; Nesterov, A E; Sennikov, S V

    2016-07-01

    Wistar rats with collagen-induced arthritis were intramuscularly injected with the recombinant plasmid pcDNA/sTNF-BD encoding the sequence of the TNF-binding protein domain of variola virus CrmB protein (VARV sTNF-BD) or the pcDNA3.1 vector. Quantitative analysis showed that the histopathological changes in the hind-limb joints of rats were most severe in the animals injected with pcDNA3.1 and much less severe in the group of rats injected with pcDNA/sTNF-BD, which indicates that gene therapy of rheumatoid arthritis is promising in the case of local administration of plasmids governing the synthesis of VARV immunomodulatory proteins.

  16. Transient Expression of an LEDGF/p75 Chimera Retargets Lentivector Integration and Functionally Rescues in a Model for X-CGD.

    PubMed

    Vets, Sofie; De Rijck, Jan; Brendel, Christian; Grez, Manuel; Bushman, Frederic; Debyser, Zeger; Gijsbers, Rik

    2013-03-05

    Retrovirus-based vectors are commonly used as delivery vehicles to correct genetic diseases because of their ability to integrate new sequences stably. However, adverse events in which vector integration activates proto-oncogenes, leading to clonal expansion and leukemogenesis hamper their application. The host cell-encoded lens epithelium-derived growth factor (LEDGF/p75) binds lentiviral integrase and targets integration to active transcription units. We demonstrated earlier that replacing the LEDGF/p75 chromatin interaction domain with an alternative DNA-binding protein could retarget integration. Here, we show that transient expression of the chimeric protein using mRNA electroporation efficiently redirects lentiviral vector (LV) integration in wild-type (WT) cells. We then employed this technology in a model for X-linked chronic granulomatous disease (X-CGD) using myelomonocytic PLB-985 gp91(-/-) cells. Following electroporation with mRNA encoding the LEDGF-chimera, the cells were treated with a therapeutic lentivector encoding gp91(phox). Integration site analysis revealed retargeted integration away from genes and towards heterochromatin-binding protein 1β (CBX1)-binding sites, in regions enriched in marks associated with gene silencing. Nevertheless, gp91(phox) expression was stable for at least 6 months after electroporation and NADPH-oxidase activity was restored to normal levels as determined by superoxide production. Together, these data provide proof-of-principle that transient expression of engineered LEDGF-chimera can retarget lentivector integration and rescues the disease phenotype in a cell model, opening perspectives for safer gene therapy.Molecular Therapy - Nucleic Acids (2013) 2, e77; doi:10.1038/mtna.2013.4; published online 5 March 2013.

  17. Genetically Encoded Calcium Indicators For Studying Long-Term Calcium Dynamics During Apoptosis

    PubMed Central

    Garcia, M. Iveth; Chen, Jessica J.; Boehning, Darren

    2017-01-01

    Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis. PMID:28073595

  18. Constitutively expressing cell lines that secrete a truncated bovine herpes virus-1 glycoprotein (gpI) stimulate T-lymphocyte responsiveness.

    PubMed

    Leary, T P; Gao, Y; Splitter, G A

    1992-07-01

    The desire to obtain authentically glycosylated viral protein products in sufficient quantity for immunological study has led to the use of eucaryotic expression vectors for protein production. An additional advantage is that these protein products can be studied individually in the absence of their native viral environment. We have cloned a complementary DNA (cDNA) encoding bovine herpes virus-1 (BHV-1) glycoprotein 1 (gpI) into the eucaryotic expression vector, pZipNeo SVX1. Since this protein is normally embedded within the membrane of BHV-1 infected cells, we removed sequences encoding the transmembrane domain of the native protein. After transfection of the plasmid construct into the canine osteosarcoma cell line, D17, or Madin-Darby bovine kidney (MDBK) cells, a truncated BHV-1 (gpI) was secreted into the culture medium as demonstrated by radioimmunoprecipitation and SDS-PAGE. Both a CD4+ T-lymphocyte line specific for BHV-1 and freshly isolated T lymphocytes could recognize and respond to the secreted recombinant gpI. Further, recombinant gpI could elicit both antibody and cellular responses in cattle when used as an immunogen. Having established constitutively glycoprotein producing cell lines, future studies in vaccine evaluation of gpI will be facilitated.

  19. High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing.

    PubMed

    Marsic, Damien; Méndez-Gómez, Héctor R; Zolotukhin, Sergei

    2015-01-01

    Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

  20. SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda

    PubMed Central

    Huang, Ning; Civciristov, Srgjan; Hawkins, Christine J.; Clem, Rollie J.

    2013-01-01

    Initiator caspases are the first caspases that are activated following an apoptotic stimulus, and are responsible for cleaving and activating downstream effector caspases, which directly cause apoptosis. We have cloned a cDNA encoding an ortholog of the initiator caspase Dronc in the lepidopteran insect Spodoptera frugiperda. The SfDronc cDNA encodes a predicted protein of 447 amino acids with a molecular weight of 51 kDa. Overexpression of SfDronc induced apoptosis in Sf9 cells, while partial silencing of SfDronc expression in Sf9 cells reduced apoptosis induced by baculovirus infection or by treatment with UV or actinomycin D. Recombinant SfDronc exhibited several expected biochemical characteristics of an apoptotic initiator caspase: 1) SfDronc efficiently cleaved synthetic initiator caspase substrates, but had very little activity against effector caspase substrates; 2) mutation of a predicted cleavage site at position D340 blocked autoprocessing of recombinant SfDronc and reduced enzyme activity by approximately 10-fold; 3) SfDronc cleaved the effector caspase Sf-caspase-1 at the expected cleavage site, resulting in Sf-caspase-1 activation; and 4) SfDronc was strongly inhibited by the baculovirus caspase inhibitor SpliP49, but not by the related protein AcP35. These results indicate that SfDronc is an initiator caspase involved in caspase-dependent apoptosis in S. frugiperda, and as such is likely to be responsible for the initiator caspase activity in S. frugiperda cells known as Sf-caspase-X. PMID:23474489

  1. Integrative proteomics to understand the transmission mechanism of Barley yellow dwarf virus-GPV by its insect vector Rhopalosiphum padi

    PubMed Central

    Wang, Hui; Wu, Keke; Liu, Yan; Wu, Yunfeng; Wang, Xifeng

    2015-01-01

    Barley yellow dwarf virus-GPV (BYDV-GPV) is transmitted by Rhopalosiphum padi and Schizaphis graminum in a persistent nonpropagative manner. To improve our understanding of its transmission mechanism by aphid vectors, we used two approaches, isobaric tags for relative and absolute quantitation (iTRAQ) and yeast two-hybrid (YTH) system, to identify proteins in R. padi that may interact with or direct the spread of BYDV-GPV along the circulative transmission pathway. Thirty-three differential aphid proteins in viruliferous and nonviruliferous insects were identified using iTRAQ coupled to 2DLC-MS/MS. With the yeast two-hybrid system, 25 prey proteins were identified as interacting with the readthrough protein (RTP) and eight with the coat protein (CP), which are encoded by BYDV-GPV. Among the aphid proteins identified, most were involved in primary energy metabolism, synaptic vesicle cycle, the proteasome pathway and the cell cytoskeleton organization pathway. In a systematic comparison of the two methods, we found that the information generated by the two methods was complementary. Taken together, our findings provide useful information on the interactions between BYDV-GPV and its vector R. padi to further our understanding of the mechanisms regulating circulative transmission in aphid vectors. PMID:26161807

  2. BimS-induced apoptosis requires mitochondrial localization but not interaction with anti-apoptotic Bcl-2 proteins.

    PubMed

    Weber, Arnim; Paschen, Stefan A; Heger, Klaus; Wilfling, Florian; Frankenberg, Tobias; Bauerschmitt, Heike; Seiffert, Barbara M; Kirschnek, Susanne; Wagner, Hermann; Häcker, Georg

    2007-05-21

    Release of apoptogenic proteins such as cytochrome c from mitochondria is regulated by pro- and anti-apoptotic Bcl-2 family proteins, with pro-apoptotic BH3-only proteins activating Bax and Bak. Current models assume that apoptosis induction occurs via the binding and inactivation of anti-apoptotic Bcl-2 proteins by BH3-only proteins or by direct binding to Bax. Here, we analyze apoptosis induction by the BH3-only protein Bim(S). Regulated expression of Bim(S) in epithelial cells was followed by its rapid mitochondrial translocation and mitochondrial membrane insertion in the absence of detectable binding to anti-apoptotic Bcl-2 proteins. This caused mitochondrial recruitment and activation of Bax and apoptosis. Mutational analysis of Bim(S) showed that mitochondrial targeting, but not binding to Bcl-2 or Mcl-1, was required for apoptosis induction. In yeast, Bim(S) enhanced the killing activity of Bax in the absence of anti-apoptotic Bcl-2 proteins. Thus, cell death induction by a BH3-only protein can occur through a process that is independent of anti-apoptotic Bcl-2 proteins but requires mitochondrial targeting.

  3. A Partial E3 Deletion in Replication-Defective Adenoviral Vectors Allows for Stable Expression of Potentially Toxic Transgene Products.

    PubMed

    Haut, Larissa H; Gill, Amanda L; Kurupati, Raj K; Bian, Ang; Li, Yan; Giles-Davis, Wynetta; Xiang, Zhiquan; Zhou, Xiang Yang; Ertl, Hildegund C J

    2016-10-01

    Adenovirus (Ad) is used extensively for construction of viral vectors, most commonly with deletion in its E1 and/or E3 genomic regions. Previously, our attempts to insert envelope proteins (Env) of HIV-1 into such vectors based on chimpanzee-derived Ad (AdC) viruses were thwarted. Here, we describe that genetic instability of an E1- and E3-deleted AdC vector of serotype C6 expressing Env of HIV-1 can be overcome by reinsertion of E3 sequences with anti-apoptotic activities. This partial E3 deletion presumably delays premature death of HEK-293 packaging cell lines due to Env-induced cell apoptosis. The same partial E3 deletion also allows for the generation of stable glycoprotein 140 (gp140)- and gp160-expressing Ad vectors based on AdC7, a distinct AdC serotype. Env-expressing AdC vectors containing the partial E3 deletion are genetically stable upon serial cell culture passaging, produce yields comparable to those of other AdC vectors, and induce transgene product-specific antibody responses in mice. A partial E3 deletion thereby allows expansion of the repertoire of transgenes that can be expressed by Ad vectors.

  4. AAV-mediated targeting of gene expression to the peri-infarct region in rat cortical stroke model.

    PubMed

    Mätlik, Kert; Abo-Ramadan, Usama; Harvey, Brandon K; Arumäe, Urmas; Airavaara, Mikko

    2014-10-30

    For stroke patients the recovery of cognitive and behavioral functions is often incomplete. Functional recovery is thought to be mediated largely by connectivity rearrangements in the peri-infarct region. A method for manipulating gene expression in this region would be useful for identifying new recovery-enhancing treatments. We have characterized a way of targeting adeno-associated virus (AAV) vectors to the peri-infarct region of cortical ischemic lesion in rats 2days after middle cerebral artery occlusion (MCAo). We used magnetic resonance imaging (MRI) to show that the altered properties of post-ischemic brain tissue facilitate the spreading of intrastriatally injected nanoparticles toward the infarct. We show that subcortical injection of green fluorescent protein-encoding dsAAV7-GFP resulted in transduction of cells in and around the white matter tract underlying the lesion, and in the cortex proximal to the lesion. A similar result was achieved with dsAAV7 vector encoding the cerebral dopamine neurotrophic factor (CDNF), a protein with therapeutic potential. Viral vector-mediated intracerebral gene delivery has been used before in rodent models of ischemic injury. However, the method of targeting gene expression to the peri-infarct region, after the initial phase of ischemic cell death, has not been described before. We demonstrate a straightforward and robust way to target AAV vector-mediated over-expression of genes to the peri-infarct region in a rat stroke model. This method will be useful for studying the action of specific proteins in peri-infarct region during the recovery process. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Bacterial inosine 5'-monophosphate dehydrogenase ("IMPDH") DNA as a dominant selectable marker in mammals and other eukaryotes

    DOEpatents

    Huberman, Eliezer [Chicago, IL; Baccam, Mekhine J [Woodridge, IL

    2007-02-27

    The present invention relates to a nucleic acid sequence and its corresponding protein sequence useful as a dominant selectable marker in eukaryotes. More specifically the invention relates to a nucleic acid encoding a bacterial IMPDH gene that has been engineered into a eukaryotic expression vectors, thereby permitting bacterial IMPDH expression in mammalian cells. Bacterial IMPDH expression confers resistance to MPA which can be used as dominant selectable marker in eukaryotes including mammals. The invention also relates to expression vectors and cells that express the bacterial IMPDH gene as well as gene therapies and protein synthesis.

  6. Trichoderma .beta.-glucosidase

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-01-03

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  7. Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications.

    PubMed

    Advani, S J; Weichselbaum, R R; Whitley, R J; Roizman, B

    2002-09-01

    Herpes simplex virus-1 (HSV-1) is a relatively large double-stranded DNA virus encoding at least 89 proteins with well characterized disease pathology. An understanding of the functions of viral proteins together with the ability to genetically engineer specific viral mutants has led to the development of attenuated HSV-1 for gene therapy. This review highlights the progress in creating attenuated genetically engineered HSV-1 mutants that are either replication competent (viral non-essential gene deleted) or replication defective (viral essential gene deleted). The choice between a replication-competent or -defective virus is based on the end-goal of the therapeutic intervention. Replication-competent HSV-1 mutants have primarily been employed as antitumor oncolytic viruses, with the lytic nature of the virus harnessed to destroy tumor cells selectively. In replacement gene therapy, replication-defective viruses have been utilized as delivery vectors. The advantages of HSV-1 vectors are that they infect quiescent and dividing cells efficiently and can encode for relatively large transgenes.

  8. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    DOEpatents

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  9. The thiostrepton-resistance-encoding gene in Streptomyces laurentii is located within a cluster of ribosomal protein operons.

    PubMed

    Smith, T M; Jiang, Y F; Shipley, P; Floss, H G

    1995-10-16

    A common approach to identify and clone biosynthetic gene from an antibiotic-producing streptomycete is to clone the resistance gene for the antibiotic of interest and then use that gene to clone DNA that is linked to it. As a first step toward cloning the genes responsible for the biosynthesis of thiostrepton (Th) in Streptomyces laurentii (Sl), the Th resistance-encoding gene (tsnR) was cloned as a 1.5-kb BamHI-PvuII fragment in Escherichia coli (Ec), and shown to confer Th resistance when introduced into S. lividans TK24. The tsnR-containing DNA fragment was used as a probe to isolate clones from cosmid libraries of DNA in the Ec cosmid vector SuperCos, and pOJ446 (an Ec/streptomycete) cosmid vector. Sequence and genetic analysis of the DNA flanking the tsnR indicates that the Sl tsnR is not closely linked to biosynthetic genes. Instead it is located within a cluster of ribosomal protein operons.

  10. Rapid modification of the pET-28 expression vector for ligation independent cloning using homologous recombination in Saccharomyces cerevisiae

    PubMed Central

    Gay, Glen; Wagner, Drew T.; Keatinge-Clay, Adrian T.; Gay, Darren C.

    2014-01-01

    The ability to rapidly customize an expression vector of choice is a valuable tool for any researcher involved in high-throughput molecular cloning for protein overexpression. Unfortunately, it is common practice to amend or neglect protein targets if the gene that encodes the protein of interest is incompatible with the multiple-cloning region of a preferred expression vector. To address this issue, a method was developed to quickly exchange the multiple-cloning region of the popular expression plasmid pET-28 with a ligation-independent cloning cassette, generating pGAY-28. This cassette contains dual inverted restriction sites that reduce false positive clones by generating a linearized plasmid incapable of self-annealing after a single restriction-enzyme digest. We also establish that progressively cooling the vector and insert leads to a significant increase in ligation-independent transformation efficiency, demonstrated by the incorporation of a 10.3 kb insert into the vector. The method reported to accomplish plasmid reconstruction is uniquely versatile yet simple, relying on the strategic placement of primers combined with homologous recombination of PCR products in yeast. PMID:25304917

  11. Progress on adenovirus-vectored universal influenza vaccines.

    PubMed

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.

  12. Molecular Diversity between Salivary Proteins from New World and Old World Sand Flies with Emphasis on Bichromomyia olmeca, the Sand Fly Vector of Leishmania mexicana in Mesoamerica

    PubMed Central

    Townsend, Shannon; Pasos-Pinto, Silvia; Sanchez, Laura; Rasouli, Manoochehr; B. Guimaraes-Costa, Anderson; Aslan, Hamide; Francischetti, Ivo M. B.; Oliveira, Fabiano; Becker, Ingeborg; Kamhawi, Shaden; Ribeiro, Jose M. C.; Jochim, Ryan C.; Valenzuela, Jesus G.

    2016-01-01

    Background Sand fly saliva has been shown to have proteins with potent biological activities, salivary proteins that can be used as biomarkers of vector exposure, and salivary proteins that are candidate vaccines against different forms of leishmaniasis. Sand fly salivary gland transcriptomic approach has contributed significantly to the identification and characterization of many of these salivary proteins from important Leishmania vectors; however, sand fly vectors in some regions of the world are still neglected, as Bichromomyia olmeca (formerly known as Lutzomyia olmeca olmeca), a proven vector of Leishmania mexicana in Mexico and Central America. Despite the importance of this vector in transmitting Leishmania parasite in Mesoamerica there is no information on the repertoire of B. olmeca salivary proteins and their relationship to salivary proteins from other sand fly species. Methods and Findings A cDNA library of the salivary glands of wild-caught B. olmeca was constructed, sequenced, and analyzed. We identified transcripts encoding for novel salivary proteins from this sand fly species and performed a comparative analysis between B. olmeca salivary proteins and those from other sand fly species. With this new information we present an updated catalog of the salivary proteins specific to New World sand flies and salivary proteins common to all sand fly species. We also report in this work the anti-Factor Xa activity of Lofaxin, a salivary anticoagulant protein present in this sand fly species. Conclusions This study provides information on the first transcriptome of a sand fly from Mesoamerica and adds information to the limited repertoire of salivary transcriptomes from the Americas. This comparative analysis also shows a fast degree of evolution in salivary proteins from New World sand flies as compared with Old World sand flies. PMID:27409591

  13. Cloning and sequencing of a gene encoding a novel extracellular neutral proteinase from Streptomyces sp. strain C5 and expression of the gene in Streptomyces lividans 1326.

    PubMed Central

    Lampel, J S; Aphale, J S; Lampel, K A; Strohl, W R

    1992-01-01

    The gene encoding a novel milk protein-hydrolyzing proteinase was cloned on a 6.56-kb SstI fragment from Streptomyces sp. strain C5 genomic DNA into Streptomyces lividans 1326 by using the plasmid vector pIJ702. The gene encoding the small neutral proteinase (snpA) was located within a 2.6-kb BamHI-SstI restriction fragment that was partially sequenced. The molecular mass of the deduced amino acid sequence of the mature protein was determined to be 15,740, which corresponds very closely with the relative molecular mass of the purified protein (15,500) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified neutral proteinase was determined, and the DNA encoding this sequence was found to be located within the sequenced DNA. The deduced amino acid sequence contains a conserved zinc binding site, although secondary ligand binding and active sites typical of thermolysinlike metalloproteinases are absent. The combination of its small size, deduced amino acid sequence, and substrate and inhibition profile indicate that snpA encodes a novel neutral proteinase. Images PMID:1569011

  14. Immunogenicity of ORFV-based vectors expressing the rabies virus glycoprotein in livestock species.

    PubMed

    Martins, Mathias; Joshi, Lok R; Rodrigues, Fernando S; Anziliero, Deniz; Frandoloso, Rafael; Kutish, Gerald F; Rock, Daniel L; Weiblen, Rudi; Flores, Eduardo F; Diel, Diego G

    2017-11-01

    The parapoxvirus Orf virus (ORFV) encodes several immunomodulatory proteins (IMPs) that modulate host-innate and pro-inflammatory responses and has been proposed as a vaccine delivery vector for use in animal species. Here we describe the construction and characterization of two recombinant ORFV vectors expressing the rabies virus (RABV) glycoprotein (G). The RABV-G gene was inserted in the ORFV024 or ORFV121 gene loci, which encode for IMPs that are unique to parapoxviruses and inhibit activation of the NF-κB signaling pathway. The immunogenicity of the resultant recombinant viruses (ORFV ∆024 RABV-G or ORFV ∆121 RABV-G, respectively) was evaluated in pigs and cattle. Immunization of the target species with ORFV ∆024 RABV-G and ORFV ∆121 RABV-G elicited robust neutralizing antibody responses against RABV. Notably, neutralizing antibody titers induced in ORFV ∆121 RABV-G-immunized pigs and cattle were significantly higher than those detected in ORFV ∆024 RABV-G-immunized animals, indicating a higher immunogenicity of ORFV Δ121 -based vectors in these animal species. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. .beta.-glucosidase 5 (BGL5) compositions

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2010-06-01

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl5, and the corresponding BGL5 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL5, recombinant BGL5 proteins and methods for producing the same.

  16. Cloning and baculovirus expression of a desiccation stress gene from the beetle, Tenebrio molitor.

    PubMed

    Graham, L A; Bendena, W G; Walker, V K

    1996-02-01

    The cDNA sequence encoding a novel desiccation stress protein (dsp28) found in the hemolymph of the common yellow mealworm beetle, Tenebrio molitor, has been determined. The sequence encodes a 225 amino acid protein containing a 20 amino acid signal peptide. Dsp28 shows no significant similarity to any known nucleic acid or protein sequence. Levels of dsp28 mRNA were found to increase approx 5-fold following desiccation. Dsp28 cDNA has been cloned into a baculovirus expression vector and the expressed protein was compared to native dsp28. Both dsp28 expressed by recombinant baculovirus and native dsp28 are glycosylated and N-terminally processed. Although dsp28 is induced by cold in addition to desiccation stress, it does not contribute to the freezing point depression (thermal hysteresis) observed in Tenebrio hemolymph.

  17. Gene transfer of high-mobility group box 1 box-A domain in a rat acute liver failure model.

    PubMed

    Tanaka, Masayuki; Shinoda, Masahiro; Takayanagi, Atsushi; Oshima, Go; Nishiyama, Ryo; Fukuda, Kazumasa; Yagi, Hiroshi; Hayashida, Tetsu; Masugi, Yohei; Suda, Koichi; Yamada, Shingo; Miyasho, Taku; Hibi, Taizo; Abe, Yuta; Kitago, Minoru; Obara, Hideaki; Itano, Osamu; Takeuchi, Hiroya; Sakamoto, Michiie; Tanabe, Minoru; Maruyama, Ikuro; Kitagawa, Yuko

    2015-04-01

    High-mobility group box 1 (HMGB1) has recently been identified as an important mediator of various kinds of acute and chronic inflammation. The protein encoded by the box-A domain of the HMGB1 gene is known to act as a competitive inhibitor of HMGB1. In this study, we investigated whether box-A gene transfer results in box-A protein production in rats and assessed therapeutic efficacy in vivo using an acute liver failure (ALF) model. Three types of adenovirus vectors were constructed-a wild type and two mutants-and a mutant vector was then selected based on the secretion from HeLa cells. The secreted protein was subjected to a tumor necrosis factor (TNF) production inhibition test in vitro. The vector was injected via the portal vein in healthy Wistar rats to confirm box-A protein production in the liver. The vector was then injected via the portal vein in rats with ALF. Western blot analysis showed enhanced expression of box-A protein in HeLa cells transfected with one of the mutant vectors. The culture supernatant from HeLa cells transfected with the vector inhibited TNF-α production from macrophages. Expression of box-A protein was confirmed in the transfected liver at 72 h after transfection. Transfected rats showed decreased hepatic enzymes, plasma HMGB1, and hepatic TNF-α messenger RNA levels, and histologic findings and survival were significantly improved. HMGB1 box-A gene transfer results in box-A protein production in the liver and appears to have a beneficial effect on ALF in rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Phenolic acid esterases, coding sequences and methods

    DOEpatents

    Blum, David L.; Kataeva, Irina; Li, Xin-Liang; Ljungdahl, Lars G.

    2002-01-01

    Described herein are four phenolic acid esterases, three of which correspond to domains of previously unknown function within bacterial xylanases, from XynY and XynZ of Clostridium thermocellum and from a xylanase of Ruminococcus. The fourth specifically exemplified xylanase is a protein encoded within the genome of Orpinomyces PC-2. The amino acids of these polypeptides and nucleotide sequences encoding them are provided. Recombinant host cells, expression vectors and methods for the recombinant production of phenolic acid esterases are also provided.

  19. Genetically encoded calcium indicators for studying long-term calcium dynamics during apoptosis.

    PubMed

    Garcia, M Iveth; Chen, Jessica J; Boehning, Darren

    2017-01-01

    Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.

    2010-03-01

    The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

  1. Ex Vivo Adenoviral Vector Gene Delivery Results in Decreased Vector-associated Inflammation Pre- and Post–lung Transplantation in the Pig

    PubMed Central

    Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf

    2012-01-01

    Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function. PMID:22453765

  2. Acetylcholinesterase of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene identification, expression, and biochemical properties of recombinant proteins

    USDA-ARS?s Scientific Manuscript database

    Rhipicephalus (Boophilus) microplus (Bm) ticks are vectors of bovine babesiosis and anaplasmosis. Tick resistance to organophosphate (OP) acaricide involves acetylcholinesterase (AChE) insensitivity to OP and metabolic detoxification. Sequencing and in vitro expression of Bm genes encoding AChE allo...

  3. Acetylcholinesterases of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene identification, expression and biochemical properties of recombinant proteins

    USDA-ARS?s Scientific Manuscript database

    Rhipicephalus (Boophilus) microplus (Bm) is a vector of bovine babesiosis and anaplasmosis. Tick resistance to organophosphate (OP) acaricide involves acetylcholinesterase (AChE) insensitivity to OP and metabolic detoxification. In vitro expression of Bm genes encoding AChE allowed biochemical chara...

  4. Built-in adjuvanticity of genetically and protein-engineered chimeric molecules for targeting of influenza A peptide epitopes.

    PubMed

    Kerekov, Nikola S; Ivanova, Iva I; Mihaylova, Nikolina M; Nikolova, Maria; Prechl, Jozsef; Tchorbanov, Andrey I

    2014-10-01

    Highly purified, subunit, or synthetic viral antigens are known to be weakly immunogenic and potentate only the antibody, rather than cell-mediated immune responses. An alternative approach for inducing protective immunity with small viral peptides would be the direct targeting of viral epitopes to the immunocompetent cells by DNA vaccines encoding antibody fragments specific to activating cell surface co-receptor molecules. Here, we are exploring as a new genetic vaccine, a DNA chimeric molecule encoding a T and B cell epitope-containing influenza A virus hemagglutinin peptide joined to sequences encoding a single-chain variable fragment antibody fragment specific for the costimulatory B cell complement receptors 1 and 2. This recombinant DNA molecule was inserted into eukaryotic expression vector and used as a naked DNA vaccine in WT and CR1/2 KO mice. The intramuscular administration of the DNA construct resulted in the in vivo expression of an immunogenic chimeric protein, which cross-links cell surface receptors on influenza-specific B cells. The DNA vaccination was followed by prime-boosting with the protein-engineered replica of the DNA construct, thus delivering an activation intracellular signal. Immunization with an expression vector containing the described construct and boosting with the protein chimera induced a strong anti-influenza cytotoxic response, modulation of cytokine profile, and a weak antibody response in Balb/c mice. The same immunization scheme did not result in generation of influenza-specific response in mice lacking the target receptor, underlining the molecular adjuvant effect of receptor targeting.

  5. Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates.

    PubMed

    Sieker, J T; Kunz, M; Weißenberger, M; Gilbert, F; Frey, S; Rudert, M; Steinert, A F

    2015-03-01

    Bone morphogenetic protein 2 (BMP-2, encoded by BMP2) and Indian hedgehog protein (IHH, encoded by IHH) are well known regulators of chondrogenesis and chondrogenic hypertrophy. Despite being a potent chondrogenic factor BMP-2 was observed to induce chondrocyte hypertrophy in osteoarthritis (OA), growth plate cartilage and adult mesenchymal stem cells (MSCs). IHH might induce chondrogenic differentiation through different intracellular signalling pathways without inducing subsequent chondrocyte hypertrophy. The primary objective of this study is to test the efficacy of direct BMP2 and IHH gene delivery via bone marrow coagulates to influence histological repair cartilage quality in vivo. Vector-laden autologous bone marrow coagulates with 10(11) adenoviral vector particles encoding BMP2, IHH or the Green fluorescent protein (GFP) were delivered to 3.2 mm osteochondral defects in the trochlea of rabbit knees. After 13 weeks the histological repair cartilage quality was assessed using the ICRS II scoring system and the type II collagen positive area. IHH treatment resulted in superior histological repair cartilage quality than GFP controls in all of the assessed parameters (with P < 0.05 in five of 14 assessed parameters). Results of BMP2 treatment varied substantially, including severe intralesional bone formation in two of six joints after 13 weeks. IHH gene transfer is effective to improve repair cartilage quality in vivo, whereas BMP2 treatment, carried the risk intralesional bone formation. Therefore IHH protein can be considered as an attractive alternative candidate growth factor for further preclinical research and development towards improved treatments for articular cartilage defects. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Updating the Salivary Gland Transcriptome of Phlebotomus papatasi (Tunisian Strain): The Search for Sand Fly-Secreted Immunogenic Proteins for Humans

    PubMed Central

    Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M. C.; Valenzuela, Jesus G.

    2012-01-01

    Introduction Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi–a model sand fly for Leishmania-vector-host molecular interactions–is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. Methods and Findings A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Conclusions Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas. PMID:23139741

  7. Updating the salivary gland transcriptome of Phlebotomus papatasi (Tunisian strain): the search for sand fly-secreted immunogenic proteins for humans.

    PubMed

    Abdeladhim, Maha; Jochim, Ryan C; Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M C; Valenzuela, Jesus G

    2012-01-01

    Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi-a model sand fly for Leishmania-vector-host molecular interactions-is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas.

  8. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer's disease.

    PubMed

    Djelti, Fathia; Braudeau, Jerome; Hudry, Eloise; Dhenain, Marc; Varin, Jennifer; Bièche, Ivan; Marquer, Catherine; Chali, Farah; Ayciriex, Sophie; Auzeil, Nicolas; Alves, Sandro; Langui, Dominique; Potier, Marie-Claude; Laprevote, Olivier; Vidaud, Michel; Duyckaerts, Charles; Miles, Richard; Aubourg, Patrick; Cartier, Nathalie

    2015-08-01

    Abnormalities in neuronal cholesterol homeostasis have been suspected or observed in several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. However, it has not been demonstrated whether an increased abundance of cholesterol in neurons in vivo contributes to neurodegeneration. To address this issue, we used RNA interference methodology to inhibit the expression of cholesterol 24-hydroxylase, encoded by the Cyp46a1 gene, in the hippocampus of normal mice. Cholesterol 24-hydroxylase controls cholesterol efflux from the brain and thereby plays a major role in regulating brain cholesterol homeostasis. We used an adeno-associated virus vector encoding short hairpin RNA directed against the mouse Cyp46a1 mRNA to decrease the expression of the Cyp46a1 gene in hippocampal neurons of normal mice. This increased the cholesterol concentration in neurons, followed by cognitive deficits and hippocampal atrophy due to apoptotic neuronal death. Prior to neuronal death, the recruitment of the amyloid protein precursor to lipid rafts was enhanced leading to the production of β-C-terminal fragment and amyloid-β peptides. Abnormal phosphorylation of tau and endoplasmic reticulum stress were also observed. In the APP23 mouse model of Alzheimer's disease, the abundance of amyloid-β peptides increased following inhibition of Cyp46a1 expression, and neuronal death was more widespread than in normal mice. Altogether, these results suggest that increased amounts of neuronal cholesterol within the brain may contribute to inducing and/or aggravating Alzheimer's disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  10. Low rate of apoptosis and overexpression of bcl-2 in Epstein-Barr virus-associated gastric carcinoma.

    PubMed

    Kume, T; Oshima, K; Shinohara, T; Takeo, H; Yamashita, Y; Shirakusa, T; Kikuchi, M

    1999-06-01

    Epstein-Barr virus (EBV) has been demonstrated in about 10% of gastric carcinomas. However, the pathogenetic role of EBV in gastric carcinoma is uncertain. We compared the rate of apoptotic cell death, cell proliferation and the expression of apoptosis-related proteins in gastric carcinomas with or without EBV. Epstein-Barr virus was detected in 40 gastric carcinomas by EBV-encoded small RNA-1 in-situ hybridization. Apoptotic cell death, MIB-1, p53, bcl-2 and bcl-x were examined by the terminal deoxynucleotidyl-mediated dUTP-nick end labelling method and immunohistochemistry. We also included 40 age-, sex- and disease stage-matched EBV-negative cases as a control. The number of apoptotic cells was significantly lower in EBV-positive (20 +/- 15. 1/1000 cells) and bcl-2-positive (17 +/- 12.9/1000 cells) tumours than in EBV-negative (43 +/- 37.1) and bcl-2-negative tumours (38 +/- 32.1, P < 0.001, P < 0.001, respectively). bcl-2 immunostaining was significantly higher in EBV-positive tumours (24 cases) than in EBV-negative tumours (12 cases, P < 0.05). There was no significant difference in bcl-x and p53 expression between EBV-positive and -negative tumours. The number of MIB-1-positive cells in EBV-positive tumours (237 +/- 161/1000) was significantly lower than in EBV-negative tumours (480 +/- 208/1000 cells, P < 0.001). A low rate of apoptosis and high bcl-2 expression were recognized in EBV-positive gastric carcinomas, suggesting that bcl-2 protein is the main inhibitor of apoptosis in EBV-positive carcinomas. In addition, the low apoptotic and proliferative activities may reflect a low biological activity in EBV-positive gastric carcinomas.

  11. Expression of a synthetic gene encoding human insulin-like growth factor I in cultured mouse fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayne, M.L.; Cascieri, M.A.; Kelder, B.

    1987-05-01

    A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium frommore » transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.« less

  12. A set of ligation-independent in vitro translation vectors for eukaryotic protein production.

    PubMed

    Bardóczy, Viola; Géczi, Viktória; Sawasaki, Tatsuya; Endo, Yaeta; Mészáros, Tamás

    2008-03-27

    The last decade has brought the renaissance of protein studies and accelerated the development of high-throughput methods in all aspects of proteomics. Presently, most protein synthesis systems exploit the capacity of living cells to translate proteins, but their application is limited by several factors. A more flexible alternative protein production method is the cell-free in vitro protein translation. Currently available in vitro translation systems are suitable for high-throughput robotic protein production, fulfilling the requirements of proteomics studies. Wheat germ extract based in vitro translation system is likely the most promising method, since numerous eukaryotic proteins can be cost-efficiently synthesized in their native folded form. Although currently available vectors for wheat embryo in vitro translation systems ensure high productivity, they do not meet the requirements of state-of-the-art proteomics. Target genes have to be inserted using restriction endonucleases and the plasmids do not encode cleavable affinity purification tags. We designed four ligation independent cloning (LIC) vectors for wheat germ extract based in vitro protein translation. In these constructs, the RNA transcription is driven by T7 or SP6 phage polymerase and two TEV protease cleavable affinity tags can be added to aid protein purification. To evaluate our improved vectors, a plant mitogen activated protein kinase was cloned in all four constructs. Purification of this eukaryotic protein kinase demonstrated that all constructs functioned as intended: insertion of PCR fragment by LIC worked efficiently, affinity purification of translated proteins by GST-Sepharose or MagneHis particles resulted in high purity kinase, and the affinity tags could efficiently be removed under different reaction conditions. Furthermore, high in vitro kinase activity testified of proper folding of the purified protein. Four newly designed in vitro translation vectors have been constructed which allow fast and parallel cloning and protein purification, thus representing useful molecular tools for high-throughput production of eukaryotic proteins.

  13. SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda.

    PubMed

    Huang, Ning; Civciristov, Srgjan; Hawkins, Christine J; Clem, Rollie J

    2013-05-01

    Initiator caspases are the first caspases that are activated following an apoptotic stimulus, and are responsible for cleaving and activating downstream effector caspases, which directly cause apoptosis. We have cloned a cDNA encoding an ortholog of the initiator caspase Dronc in the lepidopteran insect Spodoptera frugiperda. The SfDronc cDNA encodes a predicted protein of 447 amino acids with a molecular weight of 51 kDa. Overexpression of SfDronc induced apoptosis in Sf9 cells, while partial silencing of SfDronc expression in Sf9 cells reduced apoptosis induced by baculovirus infection or by treatment with UV or actinomycin D. Recombinant SfDronc exhibited several expected biochemical characteristics of an apoptotic initiator caspase: 1) SfDronc efficiently cleaved synthetic initiator caspase substrates, but had very little activity against effector caspase substrates; 2) mutation of a predicted cleavage site at position D340 blocked autoprocessing of recombinant SfDronc and reduced enzyme activity by approximately 10-fold; 3) SfDronc cleaved the effector caspase Sf-caspase-1 at the expected cleavage site, resulting in Sf-caspase-1 activation; and 4) SfDronc was strongly inhibited by the baculovirus caspase inhibitor SpliP49, but not by the related protein AcP35. These results indicate that SfDronc is an initiator caspase involved in caspase-dependent apoptosis in S. frugiperda, and as such is likely to be responsible for the initiator caspase activity in S. frugiperda cells known as Sf-caspase-X. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Discovery of markers of exposure specific to bites of Lutzomyia longipalpis, the vector of Leishmania infantum chagasi in Latin America.

    PubMed

    Teixeira, Clarissa; Gomes, Regis; Collin, Nicolas; Reynoso, David; Jochim, Ryan; Oliveira, Fabiano; Seitz, Amy; Elnaiem, Dia-Eldin; Caldas, Arlene; de Souza, Ana Paula; Brodskyn, Cláudia I; de Oliveira, Camila Indiani; Mendonca, Ivete; Costa, Carlos H N; Volf, Petr; Barral, Aldina; Kamhawi, Shaden; Valenzuela, Jesus G

    2010-03-23

    Sand flies deliver Leishmania parasites to a host alongside salivary molecules that affect infection outcomes. Though some proteins are immunogenic and have potential as markers of vector exposure, their identity and vector specificity remain elusive. We screened human, dog, and fox sera from endemic areas of visceral leishmaniasis to identify potential markers of specific exposure to saliva of Lutzomyia longipalpis. Human and dog sera were further tested against additional sand fly species. Recombinant proteins of nine transcripts encoding secreted salivary molecules of Lu. longipalpis were produced, purified, and tested for antigenicity and specificity. Use of recombinant proteins corresponding to immunogenic molecules in Lu. longipalpis saliva identified LJM17 and LJM11 as potential markers of exposure. LJM17 was recognized by human, dog, and fox sera; LJM11 by humans and dogs. Notably, LJM17 and LJM11 were specifically recognized by humans exposed to Lu. longipalpis but not by individuals exposed to Lu. intermedia. Salivary recombinant proteins are of value as markers of vector exposure. In humans, LJM17 and LJM11 emerged as potential markers of specific exposure to Lu. longipalpis, the vector of Leishmania infantum chagasi in Latin America. In dogs, LJM17, LJM11, LJL13, LJL23, and LJL143 emerged as potential markers of sand fly exposure. Testing these recombinant proteins in large scale studies will validate their usefulness as specific markers of Lu. longipalpis exposure in humans and of sand fly exposure in dogs.

  15. Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein.

    PubMed Central

    Stevenson, S C; Rollence, M; Marshall-Neff, J; McClelland, A

    1997-01-01

    The adenovirus fiber protein is responsible for attachment of the virion to unidentified cell surface receptors. There are at least two distinct adenovirus fiber receptors which interact with the group B (Ad3) and group C (Ad5) adenoviruses. We have previously shown by using expressed adenovirus fiber proteins that it is possible to change the specificity of the fiber protein by exchanging the head domain with another serotype which recognizes a different receptor (S. C. Stevenson et al., J. Virol. 69:2850-2857, 1995). A chimeric fiber cDNA containing the Ad3 fiber head domain fused to the Ad5 fiber tail and shaft was incorporated into the genome of an adenovirus vector with E1 and E3 deleted encoding beta-galactosidase to generate Av9LacZ4, an adenovirus particle which contains a chimeric fiber protein. Western blot analysis of the chimeric fiber vector confirmed expression of the chimeric fiber protein and its association with the adenovirus capsid. Transduction experiments with fiber protein competitors demonstrated the altered receptor tropism of the chimeric fiber vector compared to that of the parental Av1LacZ4 vector. Transduction of a panel of human cell lines with the chimeric and parental vectors provided evidence for a different cellular distribution of the Ad5 and Ad3 receptors. Three cell lines (THP-1, MRC-5, and FaDu) were more efficiently transduced by the vector containing the Ad3 fiber head than by the Ad5 fiber vector. In contrast, human coronary artery endothelial cells were transduced more readily with the vector containing the Ad5 fiber than with the chimeric fiber vector. HeLa and human umbilical vein endothelial cells were transduced at equivalent levels compared with human diploid fibroblasts, which were refractory to transduction with both vectors. These results provide evidence for the differential expression of the Ad5 and Ad3 receptors on human cell lines derived from clinically relevant target tissues. Furthermore, we show that exchange of the fiber head domain is a viable approach to the production of adenovirus vectors with cell-type-selective transduction properties. It may be possible to extend this approach to the use of ligands for a range of different cellular receptors in order to target gene transfer to specific cell types at the level of transduction. PMID:9151872

  16. Method and system for efficient video compression with low-complexity encoder

    NASA Technical Reports Server (NTRS)

    Chen, Jun (Inventor); He, Dake (Inventor); Sheinin, Vadim (Inventor); Jagmohan, Ashish (Inventor); Lu, Ligang (Inventor)

    2012-01-01

    Disclosed are a method and system for video compression, wherein the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a video decoder, wherein the method for encoding includes the steps of converting a source frame into a space-frequency representation; estimating conditional statistics of at least one vector of space-frequency coefficients; estimating encoding rates based on the said conditional statistics; and applying Slepian-Wolf codes with the said computed encoding rates. The preferred method for decoding includes the steps of; generating a side-information vector of frequency coefficients based on previously decoded source data, encoder statistics, and previous reconstructions of the source frequency vector; and performing Slepian-Wolf decoding of at least one source frequency vector based on the generated side-information, the Slepian-Wolf code bits and the encoder statistics.

  17. Impact of 7,12-dimethylbenz[a]anthracene exposure on connexin gap junction proteins in cultured rat ovaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2014-01-15

    7,12-Dimethylbenz[a]anthracene (DMBA) destroys ovarian follicles in a concentration-dependent manner. The impact of DMBA on connexin (CX) proteins that mediate communication between follicular cell types along with pro-apoptotic factors p53 and Bax were investigated. Postnatal day (PND) 4 Fisher 344 rat ovaries were cultured for 4 days in vehicle medium (1% DMSO) followed by a single exposure to vehicle control (1% DMSO) or DMBA (12.5 nM or 75 nM) and cultured for 4 or 8 days. RT-PCR was performed to quantify Cx37, Cx43, p53 and Bax mRNA level. Western blotting and immunofluorescence staining were performed to determine CX37 or CX43 levelmore » and/or localization. Cx37 mRNA and protein increased (P < 0.05) at 4 days of 12.5 nM DMBA exposure. Relative to vehicle control-treated ovaries, mRNA encoding Cx43 decreased (P < 0.05) but CX43 protein increased (P < 0.05) at 4 days by both DMBA exposures. mRNA expression of pro-apoptotic p53 was decreased (P < 0.05) but no changes in Bax expression were observed after 4 days of DMBA exposures. In contrast, after 8 days, DMBA decreased Cx37 and Cx43 mRNA and protein but increased both p53 and Bax mRNA levels. CX43 protein was located between granulosa cells, while CX37 was located at the oocyte cell surface of all follicle stages. These findings support that DMBA exposure impacts ovarian Cx37 and Cx43 mRNA and protein prior to both observed changes in pro-apoptotic p53 and Bax and follicle loss. It is possible that such interference in follicular cell communication is detrimental to follicle viability, and may play a role in DMBA-induced follicular atresia. - Highlights: • DMBA increases Cx37 and Cx43 expression prior to follicle loss. • During follicle loss both Cx37 and Cx43 expressions are reduced. • CX43 protein is absent in follicle remnants lacking an oocyte.« less

  18. Grouper iridovirus GIV66 is a Bcl-2 protein that inhibits apoptosis by exclusively sequestering Bim.

    PubMed

    Banjara, Suresh; Mao, Jiahao; Ryan, Timothy M; Caria, Sofia; Kvansakul, Marc

    2018-04-13

    Programmed cell death or apoptosis is a critical mechanism for the controlled removal of damaged or infected cells, and proteins of the Bcl-2 family are important arbiters of this process. Viruses have been shown to encode functional and structural homologs of Bcl-2 to counter premature host-cell apoptosis and ensure viral proliferation or survival. Grouper iridovirus (GIV) is a large DNA virus belonging to the Iridoviridae family and harbors GIV66, a putative Bcl-2-like protein and mitochondrially localized apoptosis inhibitor. However, the molecular and structural basis of GIV66-mediated apoptosis inhibition is currently not understood. To gain insight into GIV66's mechanism of action, we systematically evaluated its ability to bind peptides spanning the BH3 domain of pro-apoptotic Bcl-2 family members. Our results revealed that GIV66 harbors an unusually high level of specificity for pro-apoptotic Bcl-2 and displays affinity only for Bcl-2-like 11 (Bcl2L11 or Bim). Using crystal structures of both apo-GIV66 and GIV66 bound to the BH3 domain from Bim, we unexpectedly found that GIV66 forms dimers via an interface that results in occluded access to the canonical Bcl-2 ligand-binding groove, which breaks apart upon Bim binding. This observation suggests that GIV66 dimerization may affect GIV66's ability to bind host pro-death Bcl-2 proteins and enables highly targeted virus-directed suppression of host apoptosis signaling. Our findings provide a mechanistic understanding for the potent anti-apoptotic activity of GIV66 by identifying it as the first single-specificity, pro-survival Bcl-2 protein and identifying a pivotal role of Bim in GIV-mediated inhibition of apoptosis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A Review on Structures and Functions of Bcl-2 Family Proteins from Homo sapiens.

    PubMed

    Sivakumar, Dakshinamurthy; Sivaraman, Thirunavukkarasu

    2016-01-01

    Cancer cells evade apoptosis, which is regulated by proteins of Bcl-2 family in the intrinsic pathways. Numerous experimental three-dimensional (3D) structures of the apoptotic proteins and the proteins bound with small chemical molecules/peptides/proteins have been reported in the literature. In this review article, the 3D structures of the Bcl-2 family proteins from Homo sapiens and as well complex structures of the anti-apoptotic proteins bound with small molecular inhibitors reported in the literature to date have been comprehensively listed out and described in detail. Moreover, the molecular mechanisms by which the Bcl-2 family proteins modulate the apoptotic processes and strategies for designing antagonists to anti-apoptotic proteins have been concisely discussed.

  20. Characterization of the cryptic plasmid pOfk55 from Legionella pneumophila and construction of a pOfk55-derived shuttle vector.

    PubMed

    Nishida, Takashi; Watanabe, Kenta; Tachibana, Masato; Shimizu, Takashi; Watarai, Masahisa

    2017-03-01

    In this study, a cryptic plasmid pOfk55 from Legionella pneumophila was isolated and characterized. pOfk55 comprised 2584bp with a GC content of 37.3% and contained three putative open reading frames (ORFs). orf1 encoded a protein of 195 amino acids and the putative protein shared 39% sequence identity with a putative plasmid replication protein RepL. ORF1 was needed for replication in L. pneumophila but pOfk55 did not replicate in Escherichia coli. orf2 and orf3 encoded putative hypothetical proteins of 114 amino acids and 78 amino acids, respectively, but the functions of the putative proteins ORF2 and OFR3 are not clear. The transfer mechanism for pOfk55 was independent on the type IVB secretion system in the original host. A L. pneumophila-E. coli shuttle vector, pNT562 (5058bp, Km R ), was constructed by In-Fusion Cloning of pOfk55 with a kanamycin-resistance gene from pUTmini-Tn5Km and the origin of replication from pBluescript SK(+) (pNT561). Multiple cloning sites from pBluescript SK(+) as well as the tac promoter region and lacI gene from pAM239-GFP were inserted into pNT561 to construct pNT562. The transformation efficiency of pNT562 in L. pneumophila strains ranged from 1.6×10 1 to 1.0×10 5 CFU/ng. The relative number of pNT562 was estimated at 5.7±1.0 copies and 73.6% of cells maintained the plasmid after 1week in liquid culture without kanamycin. A green fluorescent protein (GFP) expression vector, pNT563, was constructed by ligating pNT562 with the gfpmut3 gene from pAM239-GFP. pNT563 was introduced into L. pneumophila Lp02 and E. coli DH5α, and both strains expressed GFP successfully. These results suggest that the shuttle vector is useful for genetic studies in L. pneumophila. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants

    PubMed Central

    Perilla-Henao, Laura M.; Casteel, Clare L.

    2016-01-01

    Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant–virus–vector interactions has flourished in recent years, plant–bacteria–vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant–bacteria–vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and ‘Candidatus Phytoplasma spp.’. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector–plant–bacteria interactions. PMID:27555855

  2. The deubiquitinating enzyme DUBAI stabilizes DIAP1 to suppress Drosophila apoptosis

    PubMed Central

    Yang, C-S; Sinenko, S A; Thomenius, M J; Robeson, A C; Freel, C D; Horn, S R; Kornbluth, S

    2014-01-01

    Deubiquitinating enzymes (DUBs) counteract ubiquitin ligases to modulate the ubiquitination and stability of target signaling molecules. In Drosophila, the ubiquitin–proteasome system has a key role in the regulation of apoptosis, most notably, by controlling the abundance of the central apoptotic regulator DIAP1. Although the mechanism underlying DIAP1 ubiquitination has been extensively studied, the precise role of DUB(s) in controlling DIAP1 activity has not been fully investigated. Here we report the identification of a DIAP1-directed DUB using two complementary approaches. First, a panel of putative Drosophila DUBs was expressed in S2 cells to determine whether DIAP1 could be stabilized, despite treatment with death-inducing stimuli that would induce DIAP1 degradation. In addition, RNAi fly lines were used to detect modifiers of DIAP1 antagonist-induced cell death in the developing eye. Together, these approaches identified a previously uncharacterized protein encoded by CG8830, which we named DeUBiquitinating-Apoptotic-Inhibitor (DUBAI), as a novel DUB capable of preserving DIAP1 to dampen Drosophila apoptosis. DUBAI interacts with DIAP1 in S2 cells, and the putative active site of its DUB domain (C367) is required to rescue DIAP1 levels following apoptotic stimuli. DUBAI, therefore, represents a novel locus of apoptotic regulation in Drosophila, antagonizing cell death signals that would otherwise result in DIAP1 degradation. PMID:24362437

  3. Critical design criteria for minimal antibiotic-free plasmid vectors necessary to combine robust RNA Pol II and Pol III-mediated eukaryotic expression with high bacterial production yields

    PubMed Central

    Carnes, Aaron E.; Luke, Jeremy M.; Vincent, Justin M.; Anderson, Sheryl; Schukar, Angela; Hodgson, Clague P.; Williams, James A.

    2010-01-01

    Background For safety considerations, regulatory agencies recommend elimination of antibiotic resistance markers and nonessential sequences from plasmid DNA-based gene medicines. In the present study we analyzed antibiotic-free (AF) vector design criteria impacting bacterial production and mammalian transgene expression. Methods Both CMV-HTLV-I R RNA Pol II promoter (protein transgene) and murine U6 RNA Pol III promoter (RNA transgene) vector designs were studied. Plasmid production yield was assessed through inducible fed-batch fermentation. RNA Pol II-directed EGFP and RNA Pol III-directed RNA expression were quantified by fluorometry and quantitative real-time polymerase chain reaction (RT-PCR), respectively, after transfection of human HEK293 cells. Results Sucrose-selectable minimalized protein and therapeutic RNA expression vector designs that combined an RNA-based AF selection with highly productive fermentation manufacturing (>1,000 mg/L plasmid DNA) and high level in vivo expression of encoded products were identified. The AF selectable marker was also successfully applied to convert existing kanamycin-resistant DNA vaccine plasmids gWIZ and pVAX1 into AF vectors, demonstrating a general utility for retrofitting existing vectors. A minimum vector size for high yield plasmid fermentation was identified. A strategy for stable fermentation of plasmid dimers with improved vector potency and fermentation yields up to 1,740 mg/L was developed. Conclusions We report the development of potent high yield AF gene medicine expression vectors for protein or RNA (e.g. short hairpin RNA or microRNA) products. These AF expression vectors were optimized to exceed a newly identified size threshold for high copy plasmid replication and direct higher transgene expression levels than alternative vectors. PMID:20806425

  4. Vector design for liver specific expression of multiple interfering RNAs that target hepatitis B virus transcripts

    PubMed Central

    Snyder, Lindsey L.; Esser, Jonathan M.; Pachuk, Catherine J.; Steel, Laura F.

    2008-01-01

    RNA interference (RNAi) is a process that can target intracellular RNAs for degradation in a highly sequence specific manner, making it a powerful tool that is being pursued in both research and therapeutic applications. Hepatitis B virus (HBV) is a serious public health problem in need of better treatment options, and aspects of its life cycle make it an excellent target for RNAi-based therapeutics. We have designed a vector that expresses interfering RNAs that target HBV transcripts, including both viral RNA replicative intermediates and mRNAs encoding viral proteins. Our vector design incorporates many features of endogenous microRNA (miRNA) gene organization that are proving useful for the development of reagents for RNAi. In particular, our vector contains an RNA pol II driven gene cassette that leads to tissue specific expression and efficient processing of multiple interfering RNAs from a single transcript, without the co-expression of any protein product. This vector shows potent silencing of HBV targets in cell culture models of HBV infection. The vector design will be applicable to silencing of additional cellular or disease-related genes. PMID:18499277

  5. Engineered Lentivector Targeting of Dendritic Cells for In Vivo Immunization

    PubMed Central

    Yang, Lili; Yang, Haiguang; Rideout, Kendra; Cho, Taehoon; Joo, Kye il; Ziegler, Leslie; Elliot, Abigail; Walls, Anthony; Yu, Dongzi; Baltimore, David; Wang, Pin

    2008-01-01

    We report a method of inducing antigen production in dendritic cells (DCs) by in vivo targeting with lentiviral vectors that specifically bind to the DC surface protein, DC-SIGN. To target the DCs, the lentivector was enveloped with a viral glycoprotein from Sindbis virus, engineered to be DC-SIGN-specific. In vitro, this lentivector specifically transduced DCs and induced DC maturation. A remarkable frequency (up to 12%) of ovalbumin (OVA)-specific CD8+ T cells and a significant antibody response were observed 2 weeks following injection of a targeted lentiviral vector encoding an OVA transgene into naïve mice. These mice were solidly protected against the growth of the OVA-expressing E.G7 tumor and this methodology could even induce regression of an established tumor. Thus, lentiviral vectors targeting DCs provide a simple method of producing effective immunity and may provide an alternative route for immunization with protein antigens. PMID:18297056

  6. Use of lambdagt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovskis, E.A.; Timmins, J.G.; Post, L.E.

    1986-10-01

    A library of pseudorabies virus (PRV) DNA fragments was constructed in the expression cloning vector lambdagt11. The library was screened with antisera which reacted with mixtures of PRV proteins to isolate recombinant bacteriophages expressing PRV proteins. By the nature of the lambdagt11 vector, the cloned proteins were expressed in Escherichia coli as ..beta..-galactosidase fusion proteins. The fusion proteins from 35 of these phages were purified and injected into mice to raise antisera. The antisera were screened by several different assays, including immunoprecipitation of (/sup 14/C)glucosamine-labeled PRV proteins. This method identified phages expressing three different PRV glycoproteins: the secreted glycoprotein, gX;more » gI; and a glycoprotein that had not been previously identified, which we designate gp63. The gp63 and gI genes map adjacent to each other in the small unique region of the PRV genome. The DNA sequence was determined for the region of the genome encoding gp63 and gI. It was found that gp63 has a region of homology with a herpes simplex virus type 1 (HSV-1) protein, encoded by US7, and also with varicella-zoster virus (VZV) gpIV. The gI protein sequence has a region of homology with HSV-1 gE and VZV gpI. It is concluded that PRV, HSV, and VZV all have a cluster of homologous glycoprotein genes in the small unique components of their genomes and that the organization of these genes is conserved.« less

  7. A dual host vector for Fab phage display and expression of native IgG in mammalian cells.

    PubMed

    Tesar, Devin; Hötzel, Isidro

    2013-10-01

    A significant bottleneck in antibody discovery by phage display is the transfer of immunoglobulin variable regions from phage clones to vectors that express immunoglobulin G (IgG) in mammalian cells for screening. Here, we describe a novel phagemid vector for Fab phage display that allows expression of native IgG in mammalian cells without sub-cloning. The vector uses an optimized mammalian signal sequence that drives robust expression of Fab fragments fused to an M13 phage coat protein in Escherichia coli and IgG expression in mammalian cells. To allow the expression of Fab fragments fused to a phage coat protein in E.coli and full-length IgG in mammalian cells from the same vector without sub-cloning, the sequence encoding the phage coat protein was embedded in an optimized synthetic intron within the immunoglobulin heavy chain gene. This intron is removed from transcripts in mammalian cells by RNA splicing. Using this vector, we constructed a synthetic Fab phage display library with diversity in the heavy chain only and selected for clones binding different antigens. Co-transfection of mammalian cells with DNA from individual phage clones and a plasmid expressing the invariant light chain resulted in the expression of native IgG that was used to assay affinity, ligand blocking activity and specificity.

  8. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    USDA-ARS?s Scientific Manuscript database

    The development of a spider silk manufacturing process is of great interest. piggyBac vectors were used to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk prote...

  9. Deletion of Specific Immune-Modulatory Genes from Modified Vaccinia Virus Ankara-Based HIV Vaccines Engenders Improved Immunogenicity in Rhesus Macaques

    PubMed Central

    O'Mara, Leigh A.; Gangadhara, Sailaja; McQuoid, Monica; Zhang, Xiugen; Zheng, Rui; Gill, Kiran; Verma, Meena; Yu, Tianwei; Johnson, Brent; Li, Bing; Derdeyn, Cynthia A.; Ibegbu, Chris; Altman, John D.; Hunter, Eric; Feinberg, Mark B.

    2012-01-01

    Modified vaccinia virus Ankara (MVA) is a safe, attenuated orthopoxvirus that is being developed as a vaccine vector but has demonstrated limited immunogenicity in several early-phase clinical trials. Our objective was to rationally improve the immunogenicity of MVA-based HIV/AIDS vaccines via the targeted deletion of specific poxvirus immune-modulatory genes. Vaccines expressing codon-optimized HIV subtype C consensus Env and Gag antigens were generated from MVA vector backbones that (i) harbor simultaneous deletions of four viral immune-modulatory genes, encoding an interleukin-18 (IL-18) binding protein, an IL-1β receptor, a dominant negative Toll/IL-1 signaling adapter, and CC-chemokine binding protein (MVAΔ4-HIV); (ii) harbor a deletion of an additional (fifth) viral gene, encoding uracil-DNA glycosylase (MVAΔ5-HIV); or (iii) represent the parental MVA backbone as a control (MVA-HIV). We performed head-to-head comparisons of the cellular and humoral immune responses that were elicited by these vectors during homologous prime-boost immunization regimens utilizing either high-dose (2 × 108 PFU) or low-dose (1 × 107 PFU) intramuscular immunization of rhesus macaques. At all time points, a majority of the HIV-specific T cell responses, elicited by all vectors, were directed against Env, rather than Gag, determinants, as previously observed with other vector systems. Both modified vectors elicited up to 6-fold-higher frequencies of HIV-specific CD8 and CD4 T cell responses and up to 25-fold-higher titers of Env (gp120)-specific binding (nonneutralizing) antibody responses that were relatively transient in nature. While the correlates of protection against HIV infection remain incompletely defined, our results indicate that the rational deletion of specific genes from MVA vectors can positively alter their cellular and humoral immunogenicity profiles in nonhuman primates. PMID:22973033

  10. In vivo Clonal Tracking of Hematopoietic Stem and Progenitor Cells Marked by Five Fluorescent Proteins using Confocal and Multiphoton Microscopy

    PubMed Central

    Malide, Daniela; Métais, Jean-Yves; Dunbar, Cynthia E.

    2014-01-01

    We developed and validated a fluorescent marking methodology for clonal tracking of hematopoietic stem and progenitor cells (HSPCs) with high spatial and temporal resolution to study in vivo hematopoiesis using the murine bone marrow transplant experimental model. Genetic combinatorial marking using lentiviral vectors encoding fluorescent proteins (FPs) enabled cell fate mapping through advanced microscopy imaging. Vectors encoding five different FPs: Cerulean, EGFP, Venus, tdTomato, and mCherry were used to concurrently transduce HSPCs, creating a diverse palette of color marked cells. Imaging using confocal/two-photon hybrid microscopy enables simultaneous high resolution assessment of uniquely marked cells and their progeny in conjunction with structural components of the tissues. Volumetric analyses over large areas reveal that spectrally coded HSPC-derived cells can be detected non-invasively in various intact tissues, including the bone marrow (BM), for extensive periods of time following transplantation. Live studies combining video-rate multiphoton and confocal time-lapse imaging in 4D demonstrate the possibility of dynamic cellular and clonal tracking in a quantitative manner. PMID:25145579

  11. Real-time detection of caspase-2 activation in a single living HeLa cell during cisplatin-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zhang, Zhihong; Yang, Jie; Zeng, Shaoqun; Liu, Bifeng; Luo, Qingming

    2006-03-01

    Caspase-2 is important for the mitochondrial apoptotic pathway, however, the mechanism by which caspase-2 executes apoptosis remains obscure. We carry out the first measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. Two FRET probes are constructed that each encoded a CRS (caspase-2 or caspase-3 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using these probes, we found that during cisplatin-induced apoptosis, caspase-2 activation occurred more slowly than did activation of caspase-3; additionally, caspase-2 activation was initiated much earlier than that of caspase-3.

  12. Direct inhibition of interleukin-2 receptor alpha-mediated signaling pathway induces G1 arrest and apoptosis in human head-and-neck cancer cells.

    PubMed

    Kuhn, Deborah J; Dou, Q Ping

    2005-05-15

    Overexpression of the interleukin-2 receptor (IL-2R) alpha chain in tumor cells is associated with tumor progression and a poor patient prognosis. IL-2Ralpha is responsible for the high affinity binding of the receptor to IL-2, leading to activation of several proliferative and anti-apoptotic intracellular signaling pathways. We have previously shown that human squamous cell carcinoma of a head-and-neck line (PCI-13) genetically engineered to overexpress IL-2Ralpha exhibit increased transforming activity, proliferation, and drug resistance, compared to the vector control cells (J Cell Biochem 2003;89:824-836). In this study, we report that IL-2Ralpha(+) cells express high levels of total and phosphorylated Jak3 protein and are more resistant to apoptosis induced by a Jak3 inhibitor than the control LacZ cells. Furthermore, we used daclizumab, a monoclonal antibody specific to IL-2Ralpha, and determined the effects of IL-2Ralpha inhibition on cell cycle and apoptosis as well as the involvement of potential cell cycle and apoptosis regulatory proteins. We found that daclizumab induces G(1) arrest, associated with down-regulation of cyclin A protein, preferentially in IL-2Ralpha(+) cells, but not in LacZ cells. In addition, daclizumab activates apoptotic death program via Bcl-2 down-regulation preferentially in IL-2Ralpha(+) cells. Finally, daclizumab also sensitizes IL-2Ralpha(+) cells to other apoptotic stimuli, although the effect is moderate. These results indicate that daclizumab inhibits the proliferative potential of IL-2Ralpha(+) cells via inhibition of cell cycle progression and induction of apoptosis.

  13. In non-transformed cells Bak activates upon loss of anti-apoptotic Bcl-XL and Mcl-1 but in the absence of active BH3-only proteins.

    PubMed

    Senft, D; Weber, A; Saathoff, F; Berking, C; Heppt, M V; Kammerbauer, C; Rothenfusser, S; Kellner, S; Kurgyis, Z; Besch, R; Häcker, G

    2015-11-26

    Mitochondrial apoptosis is controlled by proteins of the B-cell lymphoma 2 (Bcl-2) family. Pro-apoptotic members of this family, known as BH3-only proteins, initiate activation of the effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), which is counteracted by anti-apoptotic family members. How the interactions of Bcl-2 proteins regulate cell death is still not entirely clear. Here, we show that in the absence of extrinsic apoptotic stimuli Bak activates without detectable contribution from BH3-only proteins, and cell survival depends on anti-apoptotic Bcl-2 molecules. All anti-apoptotic Bcl-2 proteins were targeted via RNA interference alone or in combinations of two in primary human fibroblasts. Simultaneous targeting of B-cell lymphoma-extra large and myeloid cell leukemia sequence 1 led to apoptosis in several cell types. Apoptosis depended on Bak whereas Bax was dispensable. Activator BH3-only proteins were not required for apoptosis induction as apoptosis was unaltered in the absence of all BH3-only proteins known to activate Bax or Bak directly, Bcl-2-interacting mediator of cell death, BH3-interacting domain death agonist and p53-upregulated modulator of apoptosis. These findings argue for auto-activation of Bak in the absence of anti-apoptotic Bcl-2 proteins and provide evidence of profound differences in the activation of Bax and Bak.

  14. Lentiviral gene ontology (LeGO) vectors equipped with novel drug-selectable fluorescent proteins: new building blocks for cell marking and multi-gene analysis.

    PubMed

    Weber, K; Mock, U; Petrowitz, B; Bartsch, U; Fehse, B

    2010-04-01

    Vector-encoded fluorescent proteins (FPs) facilitate unambiguous identification or sorting of gene-modified cells by fluorescence-activated cell sorting (FACS). Exploiting this feature, we have recently developed lentiviral gene ontology (LeGO) vectors (www.LentiGO-Vectors.de) for multi-gene analysis in different target cells. In this study, we extend the LeGO principle by introducing 10 different drug-selectable FPs created by fusing one of the five selection marker (protecting against blasticidin, hygromycin, neomycin, puromycin and zeocin) and one of the five FP genes (Cerulean, eGFP, Venus, dTomato and mCherry). All tested fusion proteins allowed both fluorescence-mediated detection and drug-mediated selection of LeGO-transduced cells. Newly generated codon-optimized hygromycin- and neomycin-resistance genes showed improved expression as compared with their ancestors. New LeGO constructs were produced at titers >10(6) per ml (for non-concentrated supernatants). We show efficient combinatorial marking and selection of various cells, including mesenchymal stem cells, simultaneously transduced with different LeGO constructs. Inclusion of the cytomegalovirus early enhancer/chicken beta-actin promoter into LeGO vectors facilitated robust transgene expression in and selection of neural stem cells and their differentiated progeny. We suppose that the new drug-selectable markers combining advantages of FACS and drug selection are well suited for numerous applications and vector systems. Their inclusion into LeGO vectors opens new possibilities for (stem) cell tracking and functional multi-gene analysis.

  15. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.

    PubMed

    Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung

    2011-07-18

    Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The diagnostic performance of recombinant Trypanosoma cruzi ribosomal P2beta protein is influenced by its expression system.

    PubMed

    Marcipar, Iván S; Olivares, María Laura; Robles, Lucía; Dekanty, Andrés; Marcipar, Alberto; Silber, Ariel M

    2004-03-01

    In the present work, we have determined the effect of expression vectors and their corresponding host bacteria on the antigenic performance of Trypanosoma cruzi P2beta (TcP2beta) full-length recombinant protein. The gene encoding the TcP2beta ribosomal protein was cloned in pMAL-c2 and pET-32a vectors that allow the expression of high levels of soluble fusion proteins. A panel of 32 positive and 32 negative sera was assayed with the purified proteins expressed using pMal-c2 (TcP2beta-MBP) and pET-32a (TcP2beta-TRX) vectors and with MBP and TRX purified from pMAL-c2 and pET-32a vectors, respectively. The antigenic behavior of each TcP2beta recombinant protein differed in the diagnostic performance in terms of DI(+) (93.7 for TcP2beta-MBP vs 100% for TcP2beta-TRX), in DI(-) (90.5 for TcP2beta-MBP vs 100% for TcP2beta-TRX) and in cross-reaction with negative sera. To determine if the higher reactivity of expressed pMAL-c2 protein was due to folding during protein expression or to a steric effect related to the protein adsorption at the titration plate, the reactivity of sera against soluble proteins was assessed by ELISA inhibition assays. As each soluble protein preserved its level of reactivity, we concluded that differences in reactivity were due to intrinsic characteristics of the proteins and not to differences in patterns of adsorption to the plates.

  17. The suppression of apoptosis by α-herpesvirus

    PubMed Central

    You, Yu; Cheng, An-Chun; Wang, Ming-Shu; Jia, Ren-Yong; Sun, Kun-Feng; Yang, Qiao; Wu, Ying; Zhu, Dekang; Chen, Shun; Liu, Ma-Feng; Zhao, Xin-Xin; Chen, Xiao-Yue

    2017-01-01

    Apoptosis, an important innate immune mechanism that eliminates pathogen-infected cells, is primarily triggered by two signalling pathways: the death receptor pathway and the mitochondria-mediated pathway. However, many viruses have evolved various strategies to suppress apoptosis by encoding anti-apoptotic factors or regulating apoptotic signalling pathways, which promote viral propagation and evasion of the host defence. During its life cycle, α-herpesvirus utilizes an elegant multifarious anti-apoptotic strategy to suppress programmed cell death. This progress article primarily focuses on the current understanding of the apoptosis-inhibition mechanisms of α-herpesvirus anti-apoptotic genes and their expression products and discusses future directions, including how the anti-apoptotic function of herpesvirus could be targeted therapeutically. PMID:28406478

  18. Enhanced Eradication of Lymphoma by Tumor-Specific Cytotoxic T Cells Secreting an Engineered Tumor-Specific Immunotoxin

    DTIC Science & Technology

    2008-06-01

    verified the insertion of the genes in our expression plasmids and in our lentivirus vectors. Transduction/selection of the 293T with mutated E2F... mutation created in this gene is located in the PEA targeted region of EF-2, it prevents the interaction of these 2 proteins and thus the cell death...We have cloned this mutated elongation factor in an expression vector and in a lentivirus plasmid also encoding a marker gene . The mEF-2-lentivirus

  19. Diamond Blackfan Anemia: Diagnosis, Treatment and Molecular Pathogenesis

    PubMed Central

    Lipton, Jeffrey M.; Ellis, Steven R.

    2009-01-01

    Synopsis Diamond Blackfan anemia (DBA) is a genetically and clinically heterogeneous disorder characterized by erythroid failure, congenital anomalies and a predisposition to cancer. Faulty ribosome biogenesis, resulting in pro-apoptotic erythropoiesis leading to erythroid failure, is hypothesized to be the underlying defect. The genes identified to date that are mutated in DBA all encode ribosomal proteins associated with either the small (RPS) or large (RPL) subunit and in these cases haploinsufficiency gives rise to the disease. Extraordinarily robust laboratory and clinical investigations have recently led to demonstrable improvements in clinical care for patients with DBA. PMID:19327583

  20. Relationship between Epstein-Barr virus-encoded RNA expression, apoptosis and lymphocytic infiltration in gastric carcinoma with lymphoid-rich stroma.

    PubMed

    Cho, Mee-Yon; Kim, Tae Heon; Yi, Sang Yeop; Jung, Woo Hee; Park, Kwang Hwa

    2004-01-01

    To investigate the association of apoptosis with apoptotic proteins and Epstein-Barr virus (EBV) expression in gastric carcinoma with lymphoid-rich stroma (GCLRS) in order to clarify the relationship between lymphocytic infiltration, EBV expression and apoptosis in gastric carcinoma. We performed immunohistochemical stains for bcl-2, bax and in situ hybridization for EBV-encoded RNA and the terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling technique using the 24 cases of GCLRS and 23 cases of gastric carcinoma with lymphoid-poor stroma (GCLPS) out of 1,635 cases of gastric carcinoma. The prevalence of GCLRS was 1.47% (24/1,635). The prevalence of EBV involvement in GCLRS (79%, 19/24) was significantly higher than in GCLPS (8.7%, 2/23). Apoptosis was revealed in all cases and there was no statistical difference between GCLRS and GCLPS. Immunohistochemical expression for bcl-2 was revealed only in the cytoplasm of lymphocytes in all cases, but bax showed distinct expression in the cytoplasm of neoplastic cells in all cases. There was a significant correlation between bax expression and the apoptotic index (p <0.05). Lymphocytic infiltration was significantly correlated with the expression of EBV (p <0.05) but not with survival rate and apoptosis. Most of the GCLRS cases were rated as low clinical stage (stage IA or B) and seemed to have a good prognosis. These results support the hypothesis that EBV infection plays an important role in the tumorigenesis of GCLRS, which has a better prognosis than usual gastric adenocarcinoma although there was no significant difference in the apoptotic index between GCLRS and GCLPS.

  1. Immunogenicity of a recombinant fusion protein of tandem repeat epitopes of foot-and-mouth disease virus type Asia 1 for guinea pigs.

    PubMed

    Zhang, Q; Yang, Y Q; Zhang, Z Y; Li, L; Yan, W Y; Jiang, W J; Xin, A G; Lei, C X; Zheng, Z X

    2002-01-01

    In this study, the sequences of capsid protein VPI regions of YNAs1.1 and YNAs1.2 isolates of foot-and-mouth disease virus (FMDV) were analyzed and a peptide containing amino acids (aa) 133-158 of VP1 and aa 20-34 of VP4 of FMDV type Asia I was assumed to contain B and T cell epitopes, because it is hypervariable and includes a cell attachment site RGD located in the G-H loop. The DNA fragments encoding aa 133-158 of VP1 and aa 20-34 of VP4 of FMDV type Asia 1 were chemically synthesized and ligated into a tandem repeat of aa 133-158-20 approximately 34-133-158. In order to enhance its immunogenicity, the tandem repeat was inserted downstream of the beta-galactosidase gene in the expression vector pWR590. This insertion yielded a recombinant expression vector pAS1 encoding the fusion protein. The latter reacted with sera from FMDV type Asia 1-infected animals in vitro and elicited high levels of neutralizing antibodies in guinea pigs. The T cell proliferation in immunized animals increased following stimulation with the fusion protein. It is reported for the first time that a recombinant fusion protein vaccine was produced using B and T cell epitopes of FMDV type Asia 1 and that this fusion protein was immunogenic. The fusion protein reported here can serve as a candidate of fusion epitopes for design of a vaccine against FMDV type Asia 1.

  2. Prostate Cancer Evaluation: Design, Synthesis and Evaluation of Novel Enzyme-Activated Proton MRI Contrast Agents

    DTIC Science & Technology

    2009-10-01

    NUMBER E -Mail: 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER...transcriptional activation, protein expression, and protein interaction, lacZ gene encoding E . coli β-gal has already been recognized as the most...1) Cell preparation (a) Stably transfected PC3 cell line: E . coli lacZ gene (from pSV-β-gal vector, Promega, Madison,WI) was inserted into high

  3. Decreasing Global Transcript Levels over Time Suggest that Phytoplasma Cells Enter Stationary Phase during Plant and Insect Colonization

    PubMed Central

    Pacifico, D.; Galetto, L.; Rashidi, M.; Abbà, S.; Palmano, S.; Firrao, G.; Bosco, D.

    2015-01-01

    To highlight different transcriptional behaviors of the phytoplasma in the plant and animal host, expression of 14 genes of “Candidatus Phytoplasma asteris,” chrysanthemum yellows strain, was investigated at different times following the infection of a plant host (Arabidopsis thaliana) and two insect vector species (Macrosteles quadripunctulatus and Euscelidius variegatus). Target genes were selected among those encoding antigenic membrane proteins, membrane transporters, secreted proteins, and general enzymes. Transcripts were detected for all analyzed genes in the three hosts; in particular, those encoding the antigenic membrane protein Amp, elements of the mechanosensitive channel, and two of the four secreted proteins (SAP54 and TENGU) were highly accumulated, suggesting that they play important roles in phytoplasma physiology during the infection cycle. Most transcripts were present at higher abundance in the plant host than in the insect hosts. Generally, transcript levels of the selected genes decreased significantly during infection of A. thaliana and M. quadripunctulatus but were more constant in E. variegatus. Such decreases may be explained by the fact that only a fraction of the phytoplasma population was transcribing, while the remaining part was aging to a stationary phase. This strategy might improve long-term survival, thereby increasing the likelihood that the pathogen may be acquired by a vector and/or inoculated to a healthy plant. PMID:25636844

  4. Persistent, circulative transmission of begomoviruses by whitefly vectors.

    PubMed

    Rosen, Ran; Kanakala, Surapathrudu; Kliot, Adi; Cathrin Pakkianathan, Britto; Farich, Basheer Abu; Santana-Magal, Nadine; Elimelech, Meytar; Kontsedalov, Svetlana; Lebedev, Galina; Cilia, Michelle; Ghanim, Murad

    2015-12-01

    Begomoviruses comprise an emerging and economically important group of plant viruses exclusively transmitted by the sweetpotato whitefly Bemisia tabaci in many regions of the world. The past twenty years have witnessed significant progress in studying the molecular interactions between members of this virus group and B. tabaci. Mechanisms and proteins encoded by the insect vector and its bacterial symbionts, which have been shown to be important for virus transmission, have been identified and thoroughly studied. Despite the economic importance of this group of viruses and their impact on the global agriculture, progress in investigating the virus-vector interactions is moving slowly when compared with similar virus-vector systems in plants and animals. Major advances in this field and future perspectives will be discussed in this review. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Pulse Vector-Excitation Speech Encoder

    NASA Technical Reports Server (NTRS)

    Davidson, Grant; Gersho, Allen

    1989-01-01

    Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.

  6. Cloning and high level expression of gene encoding ES antigen from Trichinella spiralis muscle larvae.

    PubMed

    Yan, Y; Xu, W; Chen, H; Ma, Z; Zhu, Y; Cai, S

    1994-01-01

    The partial structure gene encoding ES antigen derived from Trichinella spiralis (TSP) muscle larvae was cloned, characterized, and expressed in E. coli. The target DNA (0.7 kb) was directly obtained from the TSP total RNA by using RNA PCR technique. Based on the analysis with the RE digestion, the fragment was cloned into the fusion expression vector pEX31C. It was shown that a kind of 37kDa fusion protein was expressed in E. coli containing the recombinant plasmid by SDS-PAGE electrophoresis. The expressed protein was over 22% of the total cell protein, and it was aggregated in the form of inclusion bodies in E. coli. The purified protein could be recognized in ELISA both by sera from swine-infected with TSP and by the monoclonal antibody against TSP. These findings suggest that the recombinant protein is a potentially valuable antigen both for immunodiagnosis and vaccine development of trichinellosis.

  7. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  8. No evidence for positive selection at two potential targets for malaria transmission-blocking vaccines in Anopheles gambiae s.s.

    PubMed

    Crawford, Jacob E; Rottschaefer, Susan M; Coulibaly, Boubacar; Sacko, Madjou; Niaré, Oumou; Riehle, Michelle M; Traore, Sékou F; Vernick, Kenneth D; Lazzaro, Brian P

    2013-06-01

    Human malaria causes nearly a million deaths in sub-Saharan Africa each year. The evolution of drug-resistance in the parasite and insecticide resistance in the mosquito vector has complicated control measures and made the need for new control strategies more urgent. Anopheles gambiae s.s. is one of the primary vectors of human malaria in Africa, and parasite-transmission-blocking vaccines targeting Anopheles proteins have been proposed as a possible strategy to control the spread of the disease. However, the success of these hypothetical technologies would depend on the successful ability to broadly target mosquito populations that may be genetically heterogeneous. Understanding the evolutionary pressures shaping genetic variation among candidate target molecules offers a first step towards evaluating the prospects of successfully deploying such technologies. We studied the population genetics of genes encoding two candidate target proteins, the salivary gland protein saglin and the basal lamina structural protein laminin, in wild populations of the M and S molecular forms of A. gambiae in Mali. Through analysis of intraspecific genetic variation and interspecific comparisons, we found no evidence of positive natural selection at the genes encoding these proteins. On the contrary, we found evidence for particularly strong purifying selection at the laminin gene. These results provide insight into the patterns of genetic diversity of saglin and laminin, and we discuss these findings in relation to the potential development of these molecules as vaccine targets. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Method and system for efficiently searching an encoded vector index

    DOEpatents

    Bui, Thuan Quang; Egan, Randy Lynn; Kathmann, Kevin James

    2001-09-04

    Method and system aspects for efficiently searching an encoded vector index are provided. The aspects include the translation of a search query into a candidate bitmap, and the mapping of data from the candidate bitmap into a search result bitmap according to entry values in the encoded vector index. Further, the translation includes the setting of a bit in the candidate bitmap for each entry in a symbol table that corresponds to candidate of the search query. Also included in the mapping is the identification of a bit value in the candidate bitmap pointed to by an entry in an encoded vector.

  10. Expression and activity analysis of a new fusion protein targeting ovarian cancer cells.

    PubMed

    Su, Manman; Chang, Weiqin; Wang, Dingding; Cui, Manhua; Lin, Yang; Wu, Shuying; Xu, Tianmin

    2015-09-01

    The aim of the present study was to develop a new therapeutic drug to improve the prognosis of ovarian cancer patients. Human urokinase-type plasminogen activator (uPA)17-34-kunitz-type protease inhibitor (KPI) eukaryotic expression vector was constructed and recombinant human uPA17-34-KPI (rhuPA17-34-KPI) in P. pastoris was expressed. In the present study, the DNA sequences that encode uPA 17-34 amino acids were created according to the native amino acids sequence and inserted into the KPI-pPICZαC vector, which was constructed. Then, uPA17‑34-KPI-pPICZαC was transformed into P. pastoris X-33, and rhuPA17-34-KPI was expressed by induction of methanol. The bioactivities of a recombinant fusion protein were detected with trypsin inhibition analysis, and the inhibitory effects on the growth of ovarian cancer cells were identified using the TUNEL assay, in vitro wound‑healing assay and Matrigel model analysis. The results of the DNA sequence analysis of the recombinant vector uPA17-34-KPI‑pPICZα demonstrated that the DNA‑encoding human uPA 17-34 amino acids, 285-288 amino acids of amyloid precursor protein (APP) and 1-57 amino acids of KPI were correctly inserted into the pPICZαC vector. Following induction by methonal, the fusion protein with a molecular weight of 8.8 kDa was observed using SDS-PAGE and western blot analysis. RhuPA17-34-KPI was expressed in P. pastoris with a yield of 50 mg/l in a 50-ml tube. The recombinant fusion protein was able to inhibit the activity of trypsin, inhibit growth and induce apoptosis of SKOV3 cells, and inhibit the invasion and metastasis of ovarian cancer cells. By considering uPA17-34 amino acid specific binding uPAR as the targeted part of fusion protein and utilizing the serine protease inhibitor activity of KPI, it was found that the recombinant fusion protein uPA17-34-KPI inhibited the invasion and metastasis of ovarian tumors, and may therefore be regarded as effective in targeted treatment.

  11. Comparison of immune responses to different foot-and-mouth disease genetically engineered vaccines in guinea pigs.

    PubMed

    Yao, Qingxia; Qian, Ping; Huang, Qinfeng; Cao, Yi; Chen, Huanchun

    2008-01-01

    The P12A3C gene from FMDV (serotype O) encoding the capsid precursor protein, and the highly immunogenic gene FHG, which encodes multiple epitopes of FMDV capsid proteins, were inserted into eukaryotic expression vectors to compare different candidate genetically engineered vaccines for foot-and-mouth disease (FMD). A modified live pseudorabies virus (MLPRV) was also used to deliver P12A3C. Guinea pigs were inoculated intramuscularly with the candidate vaccines to compare the ability to elicit immunity of the DNA vector and a live viral vector. An indirect enzyme-linked immunosorbent assay (iELISA), virus-neutralization test and lymphoproliferation assay were used to detect antibody and cellular responses. The group immunized with P12A3C delivered by MLPRV produced significantly greater antibody and cellular responses indicating that MLPRV has a greater ability to mediate exogenous gene delivery than the plasmid DNA vector. Comparison of the immune responses induced by P12A3C and FHG, which were both mediated by DNA plasmids, showed that FHG and P12A3C elicited similar cellular responses, while P12A3C induced higher antibody levels, suggesting that P12A3C is a more powerful immunogen than FHG. In challenge experiments, guinea pigs vaccinated with P12A3C delivered by MLPRV were protected fully from FMDV challenge, whereas guinea pigs vaccinated with P12A3C or FHG delivered by DNA plasmid were only protected partially. This study provides a basis for future construction of a genetically engineered vaccine for FMDV.

  12. A recombinant fusion protein and DNA vaccines against foot-and-mouth disease virus type Asia 1 infection in guinea pigs.

    PubMed

    Zhang, Q; Zhu, M W; Yang, Y Q; Shao, M; Zhang, Z Y; Lan, H Y; Yan, W Y; Wu, J J; Zheng, Z X

    2003-01-01

    On the basis of amino acid (aa) sequence of the tandem repeat 133-158-20-34-133-158 which consisted of aa 133-158 of VP1 and aa 20-34 of VP4 of Foot-and-mouth disease virus (FMDV) type Asia 1 a recombinant prokaryotic expression vector pAS1-P encoding a fusion protein and eukaryotic expression vectors pAS1-E and pAS1-EdeltaCpG-ODN representing DNA vaccines were constructed. Guinea pigs immunized with these vaccines showed both neutralizing antibody and T cell proliferation responses. FMDV challenge tests for the first time showed that the recombinant fusion protein and pAS1-E and pAS1-EdeltaCpG-ODN vaccines protected 86%, 60% and 43% of guinea pigs from FMDV type Asia1 challenge, respectively. The results also indicated that the immune response of animals treated with the vector pAS1-E containing an oligodeoxynucleotide (ODN), which consisted of immunostimulatory cytosine-phosphate-guanosine (CpG) motifs, was augmented by CpG ODN.

  13. Dolichol-phosphate mannose synthase depletion in zebrafish leads to dystrophic muscle with hypoglycosylated α-dystroglycan.

    PubMed

    Marchese, Maria; Pappalardo, Andrea; Baldacci, Jacopo; Verri, Tiziano; Doccini, Stefano; Cassandrini, Denise; Bruno, Claudio; Fiorillo, Chiara; Garcia-Gil, Mercedes; Bertini, Enrico; Pitto, Letizia; Santorelli, Filippo M

    2016-08-12

    Defective dolichol-phosphate mannose synthase (DPMS) complex is a rare cause of congenital muscular dystrophy associated with hypoglycosylation of alpha-dystroglycan (α-DG) in skeletal muscle. We used the zebrafish (Danio rerio) to model muscle abnormalities due to defects in the subunits of DPMS. The three zebrafish ortholog subunits (encoded by the dpm1, dpm2 and dpm3 genes, respectively) showed high similarity to the human proteins, and their expression displayed localization in the midbrain/hindbrain area and somites. Antisense morpholino oligonucleotides targeting each subunit were used to transiently deplete the dpm genes. The resulting morphant embryos showed early death, muscle disorganization, low DPMS complex activity, and increased levels of apoptotic nuclei, together with hypoglycosylated α-DG in muscle fibers, thus recapitulating most of the characteristics seen in patients with mutations in DPMS. Our results in zebrafish suggest that DPMS plays a role in stabilizing muscle structures and in apoptotic cell death. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Design of magnetic polyplexes taken up efficiently by dendritic cell for enhanced DNA vaccine delivery.

    PubMed

    Nawwab Al-Deen, F M; Selomulya, C; Kong, Y Y; Xiang, S D; Ma, C; Coppel, R L; Plebanski, M

    2014-02-01

    Dendritic cells (DC) targeting vaccines require high efficiency for uptake, followed by DC activation and maturation. We used magnetic vectors comprising polyethylenimine (PEI)-coated superparamagnetic iron oxide nanoparticles, with hyaluronic acid (HA) of different molecular weights (<10 and 900 kDa) to reduce cytotoxicity and to facilitate endocytosis of particles into DCs via specific surface receptors. DNA encoding Plasmodium yoelii merozoite surface protein 1-19 and a plasmid encoding yellow fluorescent gene were added to the magnetic complexes with various % charge ratios of HA: PEI. The presence of magnetic fields significantly enhanced DC transfection and maturation. Vectors containing a high-molecular-weight HA with 100% charge ratio of HA: PEI yielded a better transfection efficiency than others. This phenomenon was attributed to their longer molecular chains and higher mucoadhesive properties aiding DNA condensation and stability. Insights gained should improve the design of more effective DNA vaccine delivery systems.

  15. The mammalian Ced-1 ortholog MEGF10/KIAA1780 displays a novel adhesion pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Emiko; Nakayama, Manabu

    2007-07-01

    Ced-1 protein is a Caenorhabditis elegans cell surface receptor involved in phagocytosis of dead cells. The gene encoding the mammalian ortholog of Ced-1 is yet to be identified. Here, we describe a potential candidate: human MEGF10. MEGF10 has the overall domain organization of Ced-1, containing a signal peptide, a EMI domain, 17 atypical EGF-like repeats, a transmembrane domain, and a cytoplasmic domain with NPXY and YXXL motifs. MEGF10-EGFP fusion protein expressed in HEK293 cells produced an irregular, mosaic-like pattern on the surface of coated glass. Protruded MEGF10 bound tightly to the glass, in effect 'pinning' the cytoplasmic membrane firmly ontomore » the glass, thereby restricting cell motility. These cells also took on a flat appearance. Although MEGF10-EGFP localized throughout the cytoplasmic membrane, no MEGF10-EGFP was found in lamellipodia. The MEGF10-EGFP signal was surrounded by a 1-2-{mu}m-wide dark strip lacking EGFP. Expression analyses of various MEGF10 deletion mutants revealed that the irregular, mosaic-like adhesion pattern characteristic of MEGF10 family members is due to concerted interactions between the EMI and 17 atypical EGF-like domains. Co-culturing of MEGF10-EGFP-expressing cells with apoptotic cells revealed that MEGF10 protein accumulated around the contact region during engulfment of apoptotic cells.« less

  16. fRMSDPred: Predicting Local RMSD Between Structural Fragments Using Sequence Information

    DTIC Science & Technology

    2007-04-04

    machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel

  17. Construction of a filamentous phage display peptide library.

    PubMed

    Fagerlund, Annette; Myrset, Astrid Hilde; Kulseth, Mari Ann

    2014-01-01

    The concept of phage display is based on insertion of random oligonucleotides at an appropriate location within a structural gene of a bacteriophage. The resulting phage will constitute a library of random peptides displayed on the surface of the bacteriophages, with the encoding genotype packaged within each phage particle. Using a phagemid/helper phage system, the random peptides are interspersed between wild-type coat proteins. Libraries of phage-expressed peptides may be used to search for novel peptide ligands to target proteins. The success of finding a peptide with a desired property in a given library is highly dependent on the diversity and quality of the library. The protocols in this chapter describe the construction of a high-diversity library of phagemid vector encoding fusions of the phage coat protein pVIII with random peptides, from which a phage library displaying random peptides can be prepared.

  18. Low expression of pro-apoptotic Bcl-2 family proteins sets the apoptotic threshold in Waldenström Macroglobulinemia

    PubMed Central

    Gaudette, Brian T.; Dwivedi, Bhakti; Chitta, Kasyapa S.; Poulain, Stéphanie; Powell, Doris; Vertino, Paula; Leleu, Xavier; Lonial, Sagar; Chanan-Khan, Asher A.; Kowalski, Jeanne; Boise, Lawrence H.

    2015-01-01

    Waldenström Macroglobulinemia (WM) is a proliferative disorder of IgM secreting, lymphoplasmacytoid cells that inhabit the lymph nodes and bone marrow. The disease carries a high prevalence of activating mutations in MyD88 (91%) and CXCR4 (28%). Because signaling through these pathways leads to Bcl-xL induction, we examined Bcl-2 family expression in WM patients and cell lines. Unlike other B-lymphocyte-derived malignancies, which become dependent on expression of anti-apoptotic proteins to counter expression of pro-apoptotic proteins, WM samples expressed both pro- and anti-apoptotic Bcl-2 proteins at low levels similar to their normal B-cell and plasma cell counterparts. Three WM cell lines expressed pro-apoptotic Bcl-2 family members Bim or Bax and Bak at low levels which determined their sensitivity to inducers of intrinsic apoptosis. In two cell lines, miR-155 upregulation, which is common in WM, was responsible for inhibition of FOXO3a and Bim expression. Both antagonizing miR-155 to induce Bim and proteasome inhibition increased the sensitivity to ABT-737 in these lines indicating a lowering of the apoptotic threshold. In this manner, treatments that increase pro-apoptotic protein expression increase the efficacy of agents treated in combination in addition to direct killing. PMID:25893290

  19. Combined effect of tumor necrosis factor (TNF)-alpha and heat shock protein (HSP)-70 in reducing apoptotic injury in hypoxia: a cell culture study.

    PubMed

    Goel, Gunjan; Guo, Miao; Ding, Jamie; Dornbos, David; Ali, Ahmer; Shenaq, Mohammed; Guthikonda, Murali; Ding, Yuchuan

    2010-10-15

    Studies have demonstrated neuroprotective effects of either TNF-alpha or HSP-70 in ischemia/reperfusion injury following exercise. However, the protective mechanisms involving combined effect of the two proteins, particularly in neuronal apoptosis, remain unclear. This study aims to elucidate the beneficial role of TNF-alpha and HSP-70 in the regulation of apoptotic proteins and ERK signaling in hypoxic injury. Cortical neurons from 20 Sprague-Dawley rat embryos were isolated and cultured in five groups with or without pretreatment with recombinant TNF-alpha, HSP-70 protein or both prior to hypoxic conditions: (1) control; (2) control/hypoxia; (3) TNF-alpha/hypoxia; (4) HSP-70/hypoxia and (5) TNF-alpha/HSP-70/hypoxia. Western blotting was used to detect pro- and anti-apoptotic proteins, including Bax, AIF, Bcl-xL, Bcl-2, and pERK1/2 protein. TNF-alpha and HSP-70 significantly (p<0.05) reduced the levels of pro-apoptotic proteins, Bax and AIF. Also, pretreatment of hypoxic brain tissue with TNF-alpha and HSP-70 significantly (p<0.05) enhanced the levels of anti-apoptotic protein, Bcl-xL. TNF-alpha and HSP-70 together increased Bcl-2 levels by 70%. Hypoxia caused a significant (p<0.05) increase in ERK1/2 phosphorylation levels by 224%. The most effective inhibition of ERK levels was obtained by the combined administration of TNF-alpha and HSP-70. This study suggested that TNF-alpha and HSP-70 together enhance the decrease in pro-apoptotic protein levels and the increase in anti-apoptotic protein levels in the event of neuronal hypoxia through ERK1/2 signal transduction. 2010. Published by Elsevier Ireland Ltd.

  20. Analysis of 14-3-3 Family Member Function in Xenopus Embryos by Microinjection of Antisense Morpholino Oligos

    NASA Astrophysics Data System (ADS)

    Lau, Jeffrey M. C.; Muslin, Anthony J.

    The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.

  1. IL-7Rα and E47: independent pathways required for development of multipotent lymphoid progenitors

    PubMed Central

    Kee, Barbara L.; Bain, Gretchen; Murre, Cornelis

    2002-01-01

    Mice that lack the transcription factors encoded by the E2A gene or the receptor for interleukin 7 (IL-7R) have severe overlapping defects in lymphocyte development. Here, we show that E2A proteins are required for the survival of early T-lineage cells; however, they function through a pathway that is distinct from the survival pathway initiated by IL-7R signaling. While E2A proteins are required to suppress caspase 3 activation, ectopic expression of the anti-apoptotic protein Bcl-2 is not sufficient to overcome the lymphopoietic defects observed in the absence of E2A. Remarkably, mice that lack both IL-7Rα and E47 display a synergistic decrease in the number of T-cell, NK-cell and multipotent progenitors in the thymus, indicating that these distinct survival pathways converge to promote the development of multipotent lymphoid progenitors. PMID:11782430

  2. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells.

    PubMed

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk

    2017-10-15

    The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus-like particles composed solely of the major capsid protein VP3, AAP's role in and relevance for assembly of genuine AAV capsids have remained largely unclear. Thus, we established a trans -complementation assay permitting assessment of AAP functionality during production of recombinant vectors based on complete AAV capsids and derived from any serotype. We find that AAP is indeed a critical factor not only for AAV2, but also for generation of vectors derived from nine other AAV serotypes. Moreover, we identify a new role of AAP in maintaining capsid protein stability in mammalian and insect cells. Thereby, our study expands our current understanding of AAV/AAP biology, and it concomitantly provides insights into the importance of AAP for AAV vector production. Copyright © 2017 American Society for Microbiology.

  3. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells

    PubMed Central

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard

    2017-01-01

    ABSTRACT The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus-like particles composed solely of the major capsid protein VP3, AAP's role in and relevance for assembly of genuine AAV capsids have remained largely unclear. Thus, we established a trans-complementation assay permitting assessment of AAP functionality during production of recombinant vectors based on complete AAV capsids and derived from any serotype. We find that AAP is indeed a critical factor not only for AAV2, but also for generation of vectors derived from nine other AAV serotypes. Moreover, we identify a new role of AAP in maintaining capsid protein stability in mammalian and insect cells. Thereby, our study expands our current understanding of AAV/AAP biology, and it concomitantly provides insights into the importance of AAP for AAV vector production. PMID:28768875

  4. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells.

    PubMed

    Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee

    2012-08-01

    The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.

  5. Apoptotic cells subjected to cold/warming exposure disorganize apoptotic microtubule network and undergo secondary necrosis.

    PubMed

    Oropesa-Ávila, Manuel; Fernández-Vega, Alejandro; de la Mata, Mario; Garrido-Maraver, Juan; Cotán, David; Paz, Marina Villanueva; Pavón, Ana Delgado; Cordero, Mario D; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Lema, Rafael; Zaderenko, Ana Paula; Sánchez-Alcázar, José A

    2014-09-01

    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath the plasma membrane which plays a critical role in preserving cell morphology and plasma membrane integrity. The aim of this study was to examine the effect of cold/warming exposure on apoptotic microtubules and plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptotic H460 cells that cold/warming exposure disorganized apoptotic microtubules and allowed the access of active caspases to the cellular cortex and the cleavage of essential proteins in the preservation of plasma membrane permeability. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase and calcium ATPase pump (PMCA-4) involved in cell calcium extrusion resulted in increased plasma permeability and calcium overload leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the addition of the pan-caspase inhibitor z-VAD during cold/warming exposure that induces AMN depolymerization avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Likewise, apoptotic microtubules stabilization by taxol during cold/warming exposure also prevented cellular cortex and plasma membrane protein cleavage and secondary necrosis. Furthermore, microtubules stabilization or caspase inhibition during cold/warming exposure was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that cold/warming exposure of apoptotic cells induces secondary necrosis which can be prevented by both, microtubule stabilization or caspase inhibition.

  6. Construction and heterologous expression of a truncated Haemagglutinin (HA) protein from the avian influenza virus H5N1 in Escherichia coli.

    PubMed

    Chee Wei, T; Nurul Wahida, A G; Shaharum, S

    2014-12-01

    Malaysia first reported H5N1 poultry case in 2004 and subsequently outbreak in poultry population in 2007. Here, a recombinant gene encoding of peptide epitopes, consisting fragments of HA1, HA2 and a polybasic cleavage site of H5N1 strain Malaysia, was amplified and cloned into pET-47b(+) bacterial expression vector. DNA sequencing and alignment analysis confirmed that the gene had no alteration and in-frame to the vector. Then, His-tagged truncated HA protein was expressed in Escherichia coli BL21 (DE3) under 1 mM IPTG induction. The protein expression was optimized under a time-course induction study and further purified using Ni-NTA agarose under reducing condition. Migration size of protein was detected at 15 kDa by Western blot using anti-His tag monoclonal antibody and demonstrated no discrepancy compared to its calculated molecular weight.

  7. Adeno-associated virus vectors can be efficiently produced without helper virus.

    PubMed

    Matsushita, T; Elliger, S; Elliger, C; Podsakoff, G; Villarreal, L; Kurtzman, G J; Iwaki, Y; Colosi, P

    1998-07-01

    The purpose of this work was to develop an efficient method for the production of adeno-associated virus (AAV) vectors in the absence of helper virus. The adenovirus regions that mediate AAV vector replication were identified and assembled into a helper plasmid. These included the VA, E2A and E4 regions. When this helper plasmid was cotransfected into 293 cells, along with plasmids encoding the AAV vector, and rep and cap genes, AAV vector was produced as efficiently as when using adenovirus infection as a source of help. CMV-driven constructs expressing the E4orf6 and the 72-M(r), E2A proteins were able to functionally replace the E4 and E2A regions, respectively. Therefore the minimum set of genes required to produce AAV helper activity equivalent to that provided by adenovirus infection consists of, or is a subset of, the following genes: the E4orf6 gene, the 72-M(r), E2A protein gene, the VA RNA genes and the E1 region. AAV vector preparations made with adenovirus and by the helper virus-free method were essentially indistinguishable with respect to particle density, particle to infectivity ratio, capsimer ratio and efficiency of muscle transduction in vivo. Only AAV vector preparations made by the helper virus-free method were not reactive with anti-adenovirus sera.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feyereisen-Koener, J.M.

    Double-stranded cDNA was prepared from infectious hematopoietic necrosis virus mRNA and cloned into the plasmid vector pUC8. A coprotein (G-protein) of infectious hematopoietic necrosis virus was selected by hybridization to a /sup 32/P-labeled probe. The restriction map and nucleotide sequence of the mRNA encoding the glycoprotein of infectious hematopoietic necrosis virus was determined using this full-length cDNA clone.

  9. Method of increasing conversion of a fatty acid to its corresponding dicarboxylic acid

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-09-14

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  10. Use of CYP52A2A promoter to increase gene expression in yeast

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-01-06

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  11. Construction of an agglutination tool: recombinant Fab fragments biotinylated in vitro.

    PubMed

    Czerwinski, Marcin; Krop-Watorek, Anna; Wasniowska, Kazimiera; Smolarek, Dorota; Spitalnik, Steven L

    2009-11-30

    The pComb3H vector system is used for constructing and panning recombinant antibody libraries. It allows for expression of monovalent Fab fragments, either on the surface of M13 phage, or in the form of soluble proteins secreted into the periplasmic space of bacteria. We constructed a modified pComb3H vector containing cDNA encoding for a 23-amino acid fragment of the Escherichia coli biotin carboxy carrier protein (BCCP), which is an acceptor sequence for biotinylation. The vector was used to express the Fab fragment recognizing human glycophorin A. The purified Fab fragment containing this biotin acceptor sequence was effectively biotinylated in vitro using biotin ligase (BirA). The specificity and avidity of the biotinylated Fab fragments were similar to the previously produced, unmodified Fab fragments. An avidin-alkaline phosphatase conjugate was used to detect the recombinant Fab fragments, instead of secondary antibody. In addition, when biotinylated Fab fragments were mixed with avidin, red blood cells were directly agglutinated.

  12. Vaccines against Botulism.

    PubMed

    Sundeen, Grace; Barbieri, Joseph T

    2017-09-02

    Botulinum neurotoxins (BoNT) cause the flaccid paralysis of botulism by inhibiting the release of acetylcholine from motor neurons. There are seven serotypes of BoNT (A-G), with limited therapies, and no FDA approved vaccine for botulism. An investigational formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was used to vaccinate people who are at high risk of contracting botulism. However, this formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was losing potency and was discontinued. This article reviews the different vaccines being developed to replace the discontinued toxoid vaccine. These vaccines include DNA-based, viral vector-based, and recombinant protein-based vaccines. DNA-based vaccines include plasmids or viral vectors containing the gene encoding one of the BoNT heavy chain receptor binding domains (HC). Viral vectors reviewed are adenovirus, influenza virus, rabies virus, Semliki Forest virus, and Venezuelan Equine Encephalitis virus. Among the potential recombinant protein vaccines reviewed are HC, light chain-heavy chain translocation domain, and chemically or genetically inactivated holotoxin.

  13. Vaccines against Botulism

    PubMed Central

    Sundeen, Grace; Barbieri, Joseph T.

    2017-01-01

    Botulinum neurotoxins (BoNT) cause the flaccid paralysis of botulism by inhibiting the release of acetylcholine from motor neurons. There are seven serotypes of BoNT (A-G), with limited therapies, and no FDA approved vaccine for botulism. An investigational formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was used to vaccinate people who are at high risk of contracting botulism. However, this formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was losing potency and was discontinued. This article reviews the different vaccines being developed to replace the discontinued toxoid vaccine. These vaccines include DNA-based, viral vector-based, and recombinant protein-based vaccines. DNA-based vaccines include plasmids or viral vectors containing the gene encoding one of the BoNT heavy chain receptor binding domains (HC). Viral vectors reviewed are adenovirus, influenza virus, rabies virus, Semliki Forest virus, and Venezuelan Equine Encephalitis virus. Among the potential recombinant protein vaccines reviewed are HC, light chain-heavy chain translocation domain, and chemically or genetically inactivated holotoxin. PMID:28869493

  14. Cloning and Characterization of the Genes Encoding the Murine Homologues of the Human Melanoma Antigens MART1 and gp100

    PubMed Central

    Zhai, Yifan; Yang, James C.; Spiess, Paul; Nishimura, Michael I.; Overwijk, Willem W.; Roberts, Bruce; Restifo, Nicholas P.; Rosenberg, Steven A.

    2008-01-01

    The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp 100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp 100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp 100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp 100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hep100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines. PMID:9101410

  15. Apoptosis Governs the Elimination of Schistosoma japonicum from the Non-Permissive Host Microtus fortis

    PubMed Central

    Peng, Jinbiao; Gobert, Geoffrey N.; Hong, Yang; Jiang, Weibin; Han, Hongxiao; McManus, Donald P.; Wang, Xinzhi; Liu, Jinming; Fu, Zhiqiang; Shi, Yaojun; Lin, Jiaojiao

    2011-01-01

    The reed vole, Microtus fortis, is the only known mammalian host in which schistosomes of Schistosoma japonicum are unable to mature and cause significant pathogenesis. However, little is known about how Schistosoma japonicum maturation (and, therefore, the development of schistosomiasis) is prevented in M. fortis. In the present study, the ultrastructure of 10 days post infection schistosomula from BALB/c mice and M. fortis were first compared using scanning electron microscopy and transmission electron microscopy. Electron microscopic investigations showed growth retardation and ultrastructural differences in the tegument and sub-tegumental tissues as well as in the parenchymal cells of schistosomula from M. fortis compared with those in BALB/c mice. Then, microarray analysis revealed significant differential expression between the schistosomula from the two rodents, with 3,293 down-regulated (by ≥2-fold) and 71 up-regulated (≥2 fold) genes in schistosomula from the former. The up-regulated genes included a proliferation-related gene encoding granulin (Grn) and tropomyosin. Genes that were down-regulated in schistosomula from M. fortis included apoptosis-inhibited genes encoding a baculoviral IAP repeat-containing protein (SjIAP) and cytokine-induced apoptosis inhibitor (SjCIAP), genes encoding molecules involved in insulin metabolism, long-chain fatty acid metabolism, signal transduction, the transforming growth factor (TGF) pathway, the Wnt pathway and in development. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) and PI/Annexin V-FITC assays, caspase 3/7 activity analysis, and flow cytometry revealed that the percentages of early apoptotic and late apoptotic and/or necrotic cells, as well as the level of caspase activity, in schistosomula from M. fortis were all significantly higher than in those from BALB/c mice. PMID:21731652

  16. Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli.

    PubMed

    Yue, Chang-Wu; Zhang, Yi-Zheng

    2009-03-01

    A novel antifreeze protein cDNA was cloned by RT-PCR from the larva of the yellow mealworm Tenebrio molitor. The coding fragment of 339 bp encodes a protein of 112 amino acid residues and was fused to the expression vectors pET32a and pTWIN1. The resulted expression plasmids were transformed into Escherischia coli strains BL21 (DE3), ER2566, and Origami B (DE3), respectively. Several strategies were used for expression of the highly disulfide-bonded beta-helix-contained protein with the activity of antifreeze in different expression systems. A protocol for production of refolded and active T. molitor antifreeze protein in bacteria was obtained.

  17. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    PubMed

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector.

  18. Effects of the Deletion of Early Region 4 (E4) Open Reading Frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on Virus-Host Cell Interaction, Transgene Expression, and Immunogenicity of Replicating Adenovirus HIV Vaccine Vectors

    PubMed Central

    Thomas, Michael A.; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A.; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector. PMID:24143187

  19. Expression of Xylella fastidiosa Fimbrial and Afimbrial Proteins during Biofilm Formation▿

    PubMed Central

    Caserta, R.; Takita, M. A.; Targon, M. L.; Rosselli-Murai, L. K.; de Souza, A. P.; Peroni, L.; Stach-Machado, D. R.; Andrade, A.; Labate, C. A.; Kitajima, E. W.; Machado, M. A.; de Souza, A. A.

    2010-01-01

    Complete sequencing of the Xylella fastidiosa genome revealed characteristics that have not been described previously for a phytopathogen. One characteristic of this genome was the abundance of genes encoding proteins with adhesion functions related to biofilm formation, an essential step for colonization of a plant host or an insect vector. We examined four of the proteins belonging to this class encoded by genes in the genome of X. fastidiosa: the PilA2 and PilC fimbrial proteins, which are components of the type IV pili, and XadA1 and XadA2, which are afimbrial adhesins. Polyclonal antibodies were raised against these four proteins, and their behavior during biofilm development was assessed by Western blotting and immunofluorescence assays. In addition, immunogold electron microscopy was used to detect these proteins in bacteria present in xylem vessels of three different hosts (citrus, periwinkle, and hibiscus). We verified that these proteins are present in X. fastidiosa biofilms but have differential regulation since the amounts varied temporally during biofilm formation, as well as spatially within the biofilms. The proteins were also detected in bacteria colonizing the xylem vessels of infected plants. PMID:20472735

  20. Identification of Strawberry vein banding virus encoded P6 as an RNA silencing suppressor.

    PubMed

    Feng, Mingfeng; Zuo, Dengpan; Jiang, Xizi; Li, Shuai; Chen, Jing; Jiang, Lei; Zhou, Xueping; Jiang, Tong

    2018-07-01

    RNA silencing is a common mechanism that plays a key role in antiviral defense. To overcome host defense responses, plant viruses encode silencing-suppressor proteins to target one or several key steps in the silencing machinery. Here, we report that the P6 protein encoded by Strawberry vein banding virus (SVBV) is an RNA silencing suppressor through Agrobacterium-mediated co-infiltration assays. SVBV P6 protein can suppress green fluorescent protein (GFP) gene silencing induced by single-stranded RNA but not by double-stranded RNA. The P6 protein can also inhibit systemic silencing of GFP through interfering the systemic spread of GFP silencing signal. Subcellular localization study indicated that P6 protein formed irregular bodies and distributed in both cytoplasm and nucleus of Nicotiana benthamiana cells. Furthermore, deletion analysis indicated that a nuclear localization signal (NLS, aa 402-426) in the P6 protein is responsible for the silencing suppression efficiency. In addition, expression of the P6 protein via a Potato virus X (PVX)-based vectors induced more severe mosaic symptoms in N. benthamiana leaves, and transgenic N. benthamiana plants expressing P6 showed obvious vein yellowing as well as severe mosaic symptoms in leaves. Taken together, our results demonstrates that SVBV P6 is a suppressor of RNA silencing, possibly acting at a upstream step for dsRNA generation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Apoptosis and Molecular Targeting Therapy in Cancer

    PubMed Central

    Hassan, Mohamed; Watari, Hidemichi; AbuAlmaaty, Ali; Ohba, Yusuke; Sakuragi, Noriaki

    2014-01-01

    Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction. PMID:25013758

  2. [Zinc-dependent metalloprotease 1 promotes apoptosis of RAW264.7 macrophages].

    PubMed

    Li, Peng; He, Yonglin; Zhang, Jiming; Fang, Chencheng

    2015-12-01

    To construct the eukaryotic expression vector of zinc-dependent metalloprotease 1 (zmp1) gene from Bacillus Calmette-Guerin (BCG) and investigate its impact on the apoptosis of RAW264.7 macrophages. Zmp1 gene was amplified from the genome of BCG by PCR. The zmp1 gene fragment was inserted into multiple cloning sites of pEGFP-N1 to construct the eukaryotic expression vector pEGFP-N1-zmp1. The constructed pEGFP-N1-zmp1 was transfected into RAW264.7 cells by Lipofectamine(TM) 2000. The expression of green fluorescent protein (GFP) was observed by fluorescence microscopy. The zmp1 mRNA was detected by quantitative real-time PCR (qR-PCR). The effect of Zmp1 protein on the apoptosis of RAW264.7 macrophages was detected by flow cytometry (FCM). With zmp1 gene amplified by PCR, we successfully constructed the recombinant vector pEGFP-N1-zmp1 as demonstrated by restriction enzyme analysis and sequencing. GFP was seen in RAW264.7 cells 24 hours after transfected with the recombinant plasmid. As qRT-PCR showed, the expression level of zmp1 mRNA was up-regulated. The early apoptotic rate increased 48 hours after transfection. The increased expression of Zmp1 in RAW264.7 cells promotes the apoptosis of RAW264.7 cells.

  3. Isolation of a novel plasmid from Couchioplanes caeruleus and construction of two plasmid vectors for gene expression in Actinoplanes missouriensis.

    PubMed

    Jang, Moon-Sun; Fujita, Azusa; Ikawa, Satomi; Hanawa, Keitaro; Yamamura, Hideki; Tamura, Tomohiko; Hayakawa, Masayuki; Tezuka, Takeaki; Ohnishi, Yasuo

    2015-01-01

    To date, no plasmid vector has been developed for the rare actinomycete Actinoplanes missouriensis. Moreover, no small circular plasmid has been reported to exist in the genus Actinoplanes. Here, a novel plasmid, designated pCAZ1, was isolated from Couchioplanes caeruleus subsp. azureus via screening for small circular plasmids in Actinoplanes (57 strains) and Couchioplanes (2 strains). Nucleotide sequencing revealed that pCAZ1 is a 5845-bp circular molecule with a G + C content of 67.5%. The pCAZ1 copy number was estimated at 30 per chromosome. pCAZ1 contains seven putative open reading frames, one of which encodes a protein containing three motifs conserved among plasmid-encoded replication proteins that are involved in the rolling-circle mechanism of replication. Detection of single-stranded DNA intermediates in C. caeruleus confirmed that pCAZ1 replicates by this mechanism. The ColE1 origin from pBluescript SK(+) and the oriT sequence with the apramycin resistance gene aac(3)IV from pIJ773 were inserted together into pCAZ1, to construct the Escherichia coli-A. missouriensis shuttle vectors, pCAM1 and pCAM2, in which the foreign DNA fragment was inserted into pCAZ1 in opposite directions. pCAM1 and pCAM2 were successfully transferred to A. missouriensis through the E. coli-mediated conjugative transfer system. The copy numbers of pCAM1 and pCAM2 in A. missouriensis were estimated to be one and four per chromosome, respectively. Thus, these vectors can be used as effective genetic tools for homologous and heterologous gene expression studies in A. missouriensis. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Herpes simplex virus vector-mediated gene delivery of glutamic acid decarboxylase reduces detrusor overactivity in spinal cord injured rats

    PubMed Central

    Miyazato, Minoru; Sugaya, Kimio; Goins, William F.; Goss, James R.; Chancellor, Michael B.; de Groat, William C.; Glorioso, Joseph C.; Yoshimura, Naoki

    2010-01-01

    We examined whether replication-defective herpes simplex virus (HSV) vectors encoding the 67 Kd form of the glutamic acid decarboxylase (GAD67) gene product, the gamma-aminobutyric acid (GABA) synthesis enzyme, can suppress detrusor overactivity (DO) in spinal cord injury (SCI) rats. One week after spinalization, HSV vectors expressing GAD and green fluorescent protein (GFP) (HSV-GAD) were injected into the bladder wall. SCI rats without HSV injection (HSV-untreated) and those injected with lacZ-encoding reporter gene HSV vectors (HSV-LacZ) were used as controls. Three weeks after viral injection, continuous cystometry was performed under awake conditions in all three groups. In the HSV-GAD group, the number and amplitude of non-voiding contractions (NVCs) were significantly decreased (40–45% and 38–40%, respectively) along with an increase in voiding efficiency, compared with HSV-untreated and HSV-LacZ groups, but micturition pressure was not different among the three groups. Intrathecal application of bicuculline partly reversed the decreased number and amplitude of NVCs, and decreased voiding efficiency in the HSV-GAD group. In the HSV-GAD group, GAD67 mRNA and protein levels were significantly increased in L6-S1 dorsal root ganglia (DRG) compared with the HSV-LacZ group while 57% of DRG cells were GFP-positive, and these neurons showed increased GAD67-like immunoreactivity compared with the HSV-LacZ group. These results indicate that GAD gene therapy effectively suppresses DO following SCI predominantly via activation of spinal GABAA receptors. Thus, HSV-based GAD gene transfer to bladder afferent pathways may represent a novel approach for the treatment of neurogenic DO. PMID:19225548

  5. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woon, J. S. K., E-mail: jameswoon@siswa.ukm.edu.my; Murad, A. M. A., E-mail: munir@ukm.edu.my; Abu Bakar, F. D., E-mail: fabyff@ukm.edu.my

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-Tmore » Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.« less

  6. "Triplet" polycistronic vectors encoding Gata4, Mef2c, and Tbx5 enhances postinfarct ventricular functional improvement compared with singlet vectors.

    PubMed

    Mathison, Megumi; Singh, Vivek P; Gersch, Robert P; Ramirez, Maricela O; Cooney, Austin; Kaminsky, Stephen M; Chiuchiolo, Maria J; Nasser, Ahmed; Yang, Jianchang; Crystal, Ronald G; Rosengart, Todd K

    2014-10-01

    The in situ reprogramming of cardiac fibroblasts into induced cardiomyocytes by the administration of gene transfer vectors encoding Gata4 (G), Mef2c (M), and Tbx5 (T) has been shown to improve ventricular function in myocardial infarction models. The efficacy of this strategy could, however, be limited by the need for fibroblast targets to be infected 3 times--once by each of the 3 transgene vectors. We hypothesized that a polycistronic "triplet" vector encoding all 3 transgenes would enhance postinfarct ventricular function compared with use of "singlet" vectors. After validation of the polycistronic vector expression in vitro, adult male Fischer 344 rats (n=6) underwent coronary ligation with or without intramyocardial administration of an adenovirus encoding all 3 major vascular endothelial growth factor (VEGF) isoforms (AdVEGF-All6A positive), followed 3 weeks later by the administration to AdVEGF-All6A-positive treated rats of singlet lentivirus encoding G, M, or T (1×10(5) transducing units each) or the same total dose of a GMT "triplet" lentivirus vector. Western blots demonstrated that triplet and singlet vectors yielded equivalent GMT transgene expression, and fluorescence activated cell sorting demonstrated that triplet vectors were nearly twice as potent as singlet vectors in generating induced cardiomyocytes from cardiac fibroblasts. Echocardiography demonstrated that GMT triplet vectors were more effective than the 3 combined singlet vectors in enhancing ventricular function from postinfarct baselines (triplet, 37%±10%; singlet, 13%±7%; negative control, 9%±5%; P<.05). These data have confirmed that the in situ administration of G, M, and T induces postinfarct ventricular functional improvement and that GMT polycistronic vectors enhance the efficacy of this strategy. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  7. Epstein–Barr virus nuclear antigen 3C interact with p73: Interplay between a viral oncoprotein and cellular tumor suppressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Sushil Kumar; Mohanty, Suchitra; Kumar, Amit

    The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein–Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein–Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, amore » commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C. - Highlights: • EBV-encoded EBNA3C suppresses doxorubicin-induced apoptosis in B-cell lymphomas. • EBNA3C binds to p73 to suppress its apoptotic effect. • EBNA3C maintains latency by regulating downstream mitochondrial pathways.« less

  8. Bax/Bak activation in the absence of Bid, Bim, Puma, and p53

    PubMed Central

    Zhang, J; Huang, K; O'Neill, K L; Pang, X; Luo, X

    2016-01-01

    How BH3-only proteins activate Bax/Bak, the two gateway proteins of the mitochondria-dependent apoptotic pathway, remains incompletely understood. Although all pro-apoptotic BH3-only proteins are known to bind/neutralize the anti-apoptotic Bcl-2 proteins, the three most potent ones, Bid (tBid), Bim, and Puma, possess an additional activity of directly activating Bax/Bak in vitro. This latter activity has been proposed to be responsible for triggering Bax/Bak activation following apoptotic stimulation. To test this hypothesis, we generated Bid−/−Bim−/−Puma−/− (TKO), TKO/Bax−/−/Bak−/− (PentaKO), and PentaKO/Mcl-1−/− (HexaKO) HCT116 cells through gene editing. Surprisingly, although the TKO cells were resistant to several apoptotic stimuli, robust apoptosis was induced upon the simultaneous inactivation of Bcl-xL and Mcl-1, two anti-apoptotic Bcl-2 proteins known to suppress Bax/Bak activation and activity. Importantly, such apoptotic activity was completely abolished in the PentaKO cells. In addition, ABT-737, a BH3 mimetic that inhibits Bcl-xL/Bcl-w/Bcl-2, induced Bax activation in HexaKO cells reconstituted with endogenous level of GFP-Bax. Further, by generating TKO/p53−/− (QKO) cells, we demonstrated that p53, a tumor suppressor postulated to directly activate Bax, is not required for Bid/Bim/Puma-independent Bax/Bak activation. Together, these results strongly suggest that the direct activation activities of Bid (tBid), Bim, Puma, and p53 are not essential for activating Bax/Bak once the anti-apoptotic Bcl-2 proteins are neutralized. PMID:27310874

  9. Cross-talk between miR-471-5p and autophagy component proteins regulates LC3-associated phagocytosis (LAP) of apoptotic germ cells.

    PubMed

    Panneerdoss, Subbarayalu; Viswanadhapalli, Suryavathi; Abdelfattah, Nourhan; Onyeagucha, Benjamin C; Timilsina, Santosh; Mohammad, Tabrez A; Chen, Yidong; Drake, Michael; Vuori, Kristiina; Kumar, T Rajendra; Rao, Manjeet K

    2017-09-19

    Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.

  10. Partial Gene Cloning and Enzyme Structure Modeling of Exolevanase Fragment from Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Azhar, M.; Natalia, D.; Syukur, S.; Andriani, N.; Jamsari, J.

    2018-04-01

    Inulin hydrolysis thermophilic and thermotolerant bacteria are potential sources of inulin hydrolysis enzymes. Partial gene that encodes inulin hydrolysis enzymes had been isolated from Bacillus subtilis using polymerase chain reaction (PCR) method with the DPE.slFandDPE.eR degenerative primers. The partial gene was cloned into pGEM-T Easy vector with E. coli as host cells and analyzed using BLASTx, CrustalW2, and Phyre2 programs. Size of thepartial gene had been found539 bp that encoded 179aminoacid residues of protein fragment. The sequences of protein fragment was more similar to exolevanase than exoinulinase. The protein fragment had conserved motif FSGS, and specific hits GH32 β-fructosidase. It had three residues of active site and five residues of substrate binding. The active site on the protein fragment were D (1-WLNDP-5), D (125-FRDPK-129) and E (177-WEC-179). Substrate binding on the protein fragment were ND (1-WLNDP-5), Q (18-FYQY-21), FS (60-FSGS-63) RD (125-FRDPK-129) and E (177-WEC-179).

  11. A Mouse Polyomavirus-encoded microRNA Targets the Cellular Apoptosis Pathway through Smad2 Inhibition

    PubMed Central

    Sung, Chang Kyoo; Yim, Hyungshin; Andrews, Erik; Benjamin, Thomas L.

    2014-01-01

    Some viruses and most eukaryotic cells have microRNAs that regulate the expression of many genes. Although many viral miRNAs have been identified, only a few have been included in in vivo functional studies. Here we show that a Py-encoded miRNA downregulates the expression of the pro-apoptotic factor Smad2, resulting in the suppression of the apoptosis pathway. To study the Py miRNA in an in vivo context, a miRNA-deficient mutant virus was created on the background of the LID virus strain which establishes a rapid and lethal infection in newborn mice. Apoptosis analysis on kidney tissues indicates that the pro-apoptotic pathway is targeted in the infected host as well. Suppression of apoptosis through targeting of Smad2 by the Py miRNA is expected to synergize with anti-apoptotic effects previously attributed to the polyoma tumor antigens in support of virus replication in the natural host. PMID:25146733

  12. Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers.

    PubMed Central

    Krajewska, M.; Krajewski, S.; Epstein, J. I.; Shabaik, A.; Sauvageot, J.; Song, K.; Kitada, S.; Reed, J. C.

    1996-01-01

    Proteins encoded by bcl-2 family genes are important regulators of programmed cell death and apoptosis. Alterations in the expression of these apoptosis-regulating genes can contribute to the origins of cancer, as well as adversely influence tumor responses to chemo- and radiotherapy. Using antibodies specific for the Bcl-2, Bax, Bcl-X, and Mcl-1 proteins in combination with immunohistochemical methods, we examined for the first time the expression of these bcl-2 family genes in 64 cases of adenocarcinoma of the prostate, including 10 Gleason grade 2 to 4 tumors, 21 grade 5 to 7 tumors, 17 grade 8 to 10 tumors, 8 lymph node metastases, and 8 bone metastases. In addition, 24 cases of prostatic intraepithelial neoplasia (PIN) or PIN coexisting with carcinoma were also evaluated. All immunostaining results were scored with regard to approximate percentage of positive tumor cells and relative immunostaining intensity. Expression of the anti-apoptotic protein Bcl-2 was present in 16 of 64 (25%) adenocarcinomas and tended to be more frequent in high grade tumors (Gleason grade 8 to 10; 41%) and nodal metastases (38%) than in lower grade (Gleason 2 to 7) primary tumors (16%; P < 0.05). Bcl-X was expressed in all 64 (100%) tumors evaluated. Bcl-X immunointensity was generally stronger in high grade primary tumors (grade 8 to 10) and metastases compared with PIN and low grade neoplasms (P < 0.0001). In addition, the proportion of specimens with > 50% Bcl-X-immunopositive tumor cells also was higher in advanced grade primary tumors (Gleason 8 to 10) and metastases than in PIN and low grade tumors (Gleason 2 to 7; P < 0.005). The anti-apoptotic protein Mcl-1 was expressed in 52 of 64 (81%) tumors, compared with only 9 of 24 (38%) cases of PIN (P < 0.001). In addition, the percentage of Mcl-1-positive cells was typically higher in Gleason grade 8 to 10 tumors and metastases than in PIN or lower grade tumors (P = 0.025). In contrast, the pro-apoptotic protein Bax was expressed in all prostate cancers evaluated, with high percentages of immunopositive cells and strong immunointensity typically occurring regardless of tumor grade. The findings suggest that expression of several anti-apoptotic members of the bcl-2 gene family, including bcl-2, bcl-X, and mcl-1 increases during progression of prostate cancers, a finding that may be relevant to the hormone-insensitive, metastatic phenotype of most advanced adenocarcinomas of the prostate. Images Figure 2 PMID:8623925

  13. Promoters and proteins from Clostridium thermocellum and uses thereof

    DOEpatents

    Wu, J. H. David; Newcomb, Michael

    2012-11-13

    The present invention relates to an inducible and a high expression nucleic acid promoter isolated from Clostridium thermocellum. These promoters are useful for directing expression of a protein or polypeptide encoded by a nucleic acid molecule operably associated with the nucleic acid promoters. The present invention also relates to nucleic acid constructs including the C. thermocellum promoters, and expression vectors and hosts containing such nucleic acid constructs. The present invention also relates to protein isolated from Clostridium thermocellum, including a repressor protein. The present invention also provides methods of using the isolated promoters and proteins from Clostridium thermocellum, including methods for directing inducible in vitro and in vivo expression of a protein or polypeptide in a host, and methods of producing ethanol from a cellulosic biomass.

  14. [Preparation and characterization of mouse polyclonal antibody against conserved region of human FOXO3].

    PubMed

    Li, Lei; Lyu, Dan

    2017-06-01

    Objective To purify the recombinant protein specific to conserved region of forkhead box O3 (FOXO3) and prepare mouse anti-human FOXO3 polyclonal antibody. Methods The DNA fragment (aa290-472) encoding conserved domain of FOXO3 was amplified by PCR, and subsequently cloned into pET28a vector. Following transformation into E.coli BL21, the soluble fusion protein His-FOXO3 was induced by IPTG and purified by Ni-NTA affinity chromatography. The purified protein was used to immunize BALB/c mice to generate polyclonal antibody. The characteristics of the polyclonal antibody were assessed by ELISA, Western blotting and immunoprecipitation assays. Results We successfully prepared the expression vector pET28a-FOXO3 (aa290-472) and expressed the purified fusion protein in a soluble form. By immunizing mice with the fusion protein, we obtained anti-human FOXO3 polyclonal antibody. ELISA and Western blotting showed that the mouse antibody could recognize specifically the endogenous FOXO3 protein. Conclusion The polyclonal antibody against conserved domain of FOXO3 can identify the endogenous FOXO3 protein. It can be used to analyze the endogenous FOXO3 expression level.

  15. Bioinformatic prediction of G protein-coupled receptor encoding sequences from the transcriptome of the foreleg, including the Haller’s organ, of the cattle tick, Rhipicephalus australis

    USDA-ARS?s Scientific Manuscript database

    The cattle tick of Australia, Rhipicephalus australis, is a vector for microbial parasites that cause serious bovine diseases. The Haller's organ, located in the tick's forelegs, is crucial for host detection and mating. To facilitate the development of new technologies for better control of this ag...

  16. Nucleotide Sequence of the Hantaan Virus S RNA Segment and Expression of Encoded Proteins

    DTIC Science & Technology

    1987-11-03

    human vaccinia vaccination ). A second dose of virus was given in the same ...vaccinia vector. A necessary first step in vaccine investigation woul d be to determine if animals infected with the two HTV recombinant viruses can ...vaccinia virus (Buller et al., 1985). Mice were infected by tail scarification since it is identical to the method used to vaccinate 169 humans

  17. A Novel System for Simultaneous or Sequential Integration of Multiple Gene-Loading Vectors into a Defined Site of a Human Artificial Chromosome

    PubMed Central

    Suzuki, Teruhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko

    2014-01-01

    Human artificial chromosomes (HACs) are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV) into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system) via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming. PMID:25303219

  18. A novel system for simultaneous or sequential integration of multiple gene-loading vectors into a defined site of a human artificial chromosome.

    PubMed

    Suzuki, Teruhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko

    2014-01-01

    Human artificial chromosomes (HACs) are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV) into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system) via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming.

  19. Localization of survival motor neuron protein in human apoptotic-like and regenerating muscle fibers, and neuromuscular junctions.

    PubMed

    Broccolini, A; Engel, W K; Askanas, V

    1999-06-03

    Mutations in the gene encoding survival motor neuron (SMN) protein are found in > 98% of patients with autosomal-recessive spinal muscular atrophy. We investigated the possible role of SMN in normal and abnormal human muscle by immunostaining biopsies of 20 patients with various neuromuscular diseases using monoclonal antibodies against SMN. SMN was strongly expressed cytoplasmically in chronic peripheral neuropathies, in about 80% of chronically denervated, very atrophic muscle fibers containing clumps of TUNEL-positive pyknotic nuclei: about 60% of those fibers also had cytoplasmic Bcl-2 and Bax immunoreactivity. In regenerating muscle fibers of various myopathies SMN co-localized with desmin, Bcl-2 and Bax; it was also present at the postsynaptic domain of normal human neuromuscular junctions. Thus, SMN may play a role in normal and pathological processes of adult human muscle fibers.

  20. Cloning of gene-encoded stem bromelain on system coming from Pichia pastoris as therapeutic protein candidate

    NASA Astrophysics Data System (ADS)

    Yusuf, Y.; Hidayati, W.

    2018-01-01

    The process of identifying bacterial recombination using PCR, and restriction, and then sequencing process was done after identifying the bacteria. This research aimed to get a yeast cell of Pichia pastoris which has an encoder gene of stem bromelain enzyme. The production of recombinant stem bromelain enzymes using yeast cells of P. pastoris can produce pure bromelain rod enzymes and have the same conformation with the enzyme’s conformation in pineapple plants. This recombinant stem bromelain enzyme can be used as a therapeutic protein in inflammatory, cancer and degenerative diseases. This study was an early stage of a step series to obtain bromelain rod protein derived from pineapple made with genetic engineering techniques. This research was started by isolating the RNA of pineapple stem which was continued with constructing cDNA using reserve transcriptase-PCR technique (RT-PCR), doing the amplification of bromelain enzyme encoder gene with PCR technique using a specific premiere couple which was designed. The process was continued by cloning into bacterium cells of Escherichia coli. A vector which brought the encoder gene of stem bromelain enzyme was inserted into the yeast cell of P. pastoris and was continued by identifying the yeast cell of P. pastoris which brought the encoder gene of stem bromelain enzyme. The research has not found enzyme gene of stem bromelain in yeast cell of P. pastoris yet. The next step is repeating the process by buying new reagent; RNase inhibitor, and buying liquid nitrogen.

  1. Fluorescent protein vectors for pancreatic islet cell identification in live-cell imaging.

    PubMed

    Shuai, Hongyan; Xu, Yunjian; Yu, Qian; Gylfe, Erik; Tengholm, Anders

    2016-10-01

    The islets of Langerhans contain different types of endocrine cells, which are crucial for glucose homeostasis. β- and α-cells that release insulin and glucagon, respectively, are most abundant, whereas somatostatin-producing δ-cells and particularly pancreatic polypeptide-releasing PP-cells are more scarce. Studies of islet cell function are hampered by difficulties to identify the different cell types, especially in live-cell imaging experiments when immunostaining is unsuitable. The aim of the present study was to create a set of vectors for fluorescent protein expression with cell-type-specific promoters and evaluate their applicability in functional islet imaging. We constructed six adenoviral vectors for expression of red and green fluorescent proteins controlled by the insulin, preproglucagon, somatostatin, or pancreatic polypeptide promoters. After transduction of mouse and human islets or dispersed islet cells, a majority of the fluorescent cells also immunostained for the appropriate hormone. Recordings of the sub-plasma membrane Ca(2+) and cAMP concentrations with a fluorescent indicator and a protein biosensor, respectively, showed that labeled cells respond to glucose and other modulators of secretion and revealed a striking variability in Ca(2+) signaling among α-cells. The measurements allowed comparison of the phase relationship of Ca(2+) oscillations between different types of cells within intact islets. We conclude that the fluorescent protein vectors allow easy identification of specific islet cell types and can be used in live-cell imaging together with organic dyes and genetically encoded biosensors. This approach will facilitate studies of normal islet physiology and help to clarify molecular defects and disturbed cell interactions in diabetic islets.

  2. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect.

    PubMed

    Lao, Guojuan; Ren, Meng; Wang, Xiaoyi; Zhang, Jinglu; Huang, Yanrui; Liu, Dan; Luo, Hengcong; Yang, Chuan; Yan, Li

    2017-09-08

    Impaired wound healing accompanies severe cell apoptosis in diabetic patients. Tissue inhibitor of metalloproteinases-1 (TIMP-1) was known to have effects on promoting growth and anti-apoptosis for cells. We aimed to determine the actual levels of TIMP-1 and cell apoptosis in: (i) the biopsies of diabetic and non-diabetic foot tissue and (ii) the human fibroblasts with or without treatments of advanced glycation end-products (AGEs). Next, we aimed to determine the improved levels of cell apoptosis and wound healing after the treatments of either active protein of TIMP-1 or in vivo expression of gene therapy vector-mediated TIMP-1 in both the human fibroblasts and the animal model of diabetic rats. The levels of TIMP-1 were significantly reduced in diabetic skin tissues and in AGEs-treated fibroblasts. Both AGEs-treated cells were effectively protected from apoptosis by active protein of TIMP-1 at appropriate dose level. So did the induced in vivo TIMP-1 expression after gene delivery. Similar effects were also found on the significant improvement of impaired wound healing in diabetic rats. We concluded that TIMP-1 improved wound healing through its anti-apoptotic effect. Treatments with either active protein TIMP-1 or TIMP-1 gene therapy delivered in local wound sites may be used as a strategy for accelerating diabetic wound healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Site-specific integration of Streptomyces PhiC31 integrase-based vectors in the chromosome of Rhodococcus equi.

    PubMed

    Hong, Yang; Hondalus, Mary K

    2008-10-01

    Streptomyces PhiC31-based site-specific integration was used to transform the facultative intracellular pathogen Rhodococcus equi. The transformation efficiency of vectors incorporating the PhiC31 integrase and attP sites was comparable to that of replication plasmids using the same electroporation procedure. A single attB integration site was identified within an ORF encoding a pirin-like protein, which deviates slightly from the consensus sequence of Streptomyces attB sites. Vector integration was stably maintained in the R. equi chromosome for as many as 100 generations during unselected passage in vitro. In addition, integration does not appear to affect the replication of bacteria inside macrophages. Finally, this integration system was also used to successfully complement an R. equi mutant.

  4. Marek's disease virus protein kinase gene identified within the short unique region of the viral genome is not essential for viral replication in cell culture and vaccine-induced immunity in chickens.

    PubMed

    Sakaguchi, M; Urakawa, T; Hirayama, Y; Miki, N; Yamamoto, M; Zhu, G S; Hirai, K

    1993-07-01

    The open reading frame (ORF) of 1206 bp within the short unique region (Us) of Marek's disease virus type 1 (MDV1) shows significant homology with the herpes simplex virus type 1 US3 gene encoding protein kinase (PK). The lacZ gene of Escherichia coli was inserted within the ORF, designated MDV1-US3, of MDV1 K544 strain DNA by homologous recombination. The plaque-purified recombinant MDV1 stably expressed the beta-galactosidase encoded by the inserted lacZ gene in infected cells and replicated well as the parental K544 strain. Antibodies against both MDV1 antigen and beta-galactosidase were detected in the sera of chickens immunized with recombinant MDV1. Chickens vaccinated with the recombinant MDV1 were protected from challenge with virulent MDV1. The MDV1 US3 gene expressed by a baculovirus vector encoded a 44-kDa protein. Mouse antisera against the 44-kDa protein reacted with two proteins of 44 and 45 kDa in extracts of cells infected with MDV1 but not with MDV types 2 or 3. The PK activity was detected in immune complexes of the anti-44-kDa sera with extracts of cells infected with MDV1 but not with the recombinant MDV1. Thus, PK encoded from the MDV1-US3 is not essential for virus replication in cell culture and vaccine-induced immunity.

  5. KLF4 overexpression and apigenin treatment down regulated anti-apoptotic Bcl-2 proteins and matrix metalloproteinases to control growth of human malignant neuroblastoma SK-N-DZ and IMR-32 cells.

    PubMed

    Mohan, Nishant; Ai, Walden; Chakrabarti, Mrinmay; Banik, Naren L; Ray, Swapan K

    2013-06-01

    Neuroblastoma is a childhood tumor that arises from immature neuroblasts of the sympathetic nervous system. Krüpple-like factor 4 (KLF4) is a transcription factor, the precise function of which in neuroblastoma is unclear. We examined the effects of KLF4 overexpression and apigenin (APG) treatment in human malignant neuroblastoma SK-N-DZ and IMR-32 cell lines. KLF4 overexpression in both SK-N-DZ and IMR-32 cell lines was confirmed by laser scanning immunofluorescent confocal microscopy and Western blotting. We found that 100 nM KLF4 plasmid and 25 μM APG synergistically inhibited the growth of SK-N-DZ and IMR-32 cells. We also found increase in KLF4 expression in response to treatment with various concentrations of APG. Combination of KLF4 plasmid and APG treatment significantly increased the amounts of apoptosis in both cell lines when compared with control vector or single treatment. We also noticed that the combination therapy decreased expression of the anti-apoptotic proteins Bcl-2 and Mcl-1, increased expression of the pro-apoptotic proteins Bax, Noxa, and Puma, upregulated p53, and caused activation of caspase-3 for cleavage of the inhibitor of caspase-activated DNase (ICAD) leading to completion of apoptosis machinery. Further, combination of KLF4 overexpression and APG treatment was highly effective in inhibiting migration of both neuroblastoma cell lines and was associated with down regulation of matrix metalloproteinases (MMPs) such as MMP-2 and MMP-9. Collectively, our results from this investigation strongly suggest that KLF4 functions as a tumor suppressor and potentiates the anti-cancer activities of APG in two different human malignant neuroblastoma cell lines. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. DrugECs: An Ensemble System with Feature Subspaces for Accurate Drug-Target Interaction Prediction

    PubMed Central

    Jiang, Jinjian; Wang, Nian; Zhang, Jun

    2017-01-01

    Background Drug-target interaction is key in drug discovery, especially in the design of new lead compound. However, the work to find a new lead compound for a specific target is complicated and hard, and it always leads to many mistakes. Therefore computational techniques are commonly adopted in drug design, which can save time and costs to a significant extent. Results To address the issue, a new prediction system is proposed in this work to identify drug-target interaction. First, drug-target pairs are encoded with a fragment technique and the software “PaDEL-Descriptor.” The fragment technique is for encoding target proteins, which divides each protein sequence into several fragments in order and encodes each fragment with several physiochemical properties of amino acids. The software “PaDEL-Descriptor” creates encoding vectors for drug molecules. Second, the dataset of drug-target pairs is resampled and several overlapped subsets are obtained, which are then input into kNN (k-Nearest Neighbor) classifier to build an ensemble system. Conclusion Experimental results on the drug-target dataset showed that our method performs better and runs faster than the state-of-the-art predictors. PMID:28744468

  7. Bad and Bid - potential background players in preneoplastic to neoplastic shift in human endometrium.

    PubMed

    Driak, D; Dvorska, M; Bolehovska, P; Svandova, I; Novotny, J; Halaska, M

    2014-01-01

    The most common malignancies of the female genital tract are endometrial carcinomas, whose are generally proceeded by hyperplasia. The maintenance of tissue homeostasis is to great extent governed by apoptosis, whose defects can lead to the preneoplastic and/or cancerous changes. Endometrial apoptosis involves among others three groups of proteins of the Bcl-2 family. First group contains anti-apoptotic proteins (e. g. Bcl-2, Bcl-xL). The other two groups belong to the pro-apoptotic proteins with three (e. g. Bax, Bak) or one (e. g. Bad, Bid) so-called BH domains. Bad and Bid trigger the oligomerization of Bak and Bax protein, which permeabilize the outer mitochondrial wall. Unlike Bid, Bad cannot directly trigger apoptosis. Instead, Bad lowers the threshold at which apoptosis is induced, by binding anti-apoptotic Bcl-2 proteins. However, their mutual counterbalance or synergism in the human endometrium has not been reported yet.In this study, the levels of Bid and Bad were measured using SDS-PAGE and Western blotting with specific antibodies, with the aim to analyse expression of Bid and Bad proteins in normal (NE), hyperplastic (HE) and cancerous (CE) endometrium. We demonstrated that Bid expression in CE reached only 47% and 50% of this observed in NE and HE. Conversely, Bad expression in HE reached only 40% and 36% of this observed in NE and CE, respectively. We detected no significant changes of Bid expression between HE and NE, and levels of Bad protein were not different between CE and NE.Trend of Bid and Bad protein expression is clearly opposite in HE and CE. We hypothesise that disrupted apoptotic program in CE seems to be reduced further by lowering levels of direct apoptotic trigger protein Bid. We suggest that the adenocarcinoma tissue of human endometrium thus tries to strengthen its apoptotic effort by lowering the apoptotic threshold via higher Bad levels.

  8. Decoding the Ubiquitin-Mediated Pathway of Arthropod Disease Vectors

    PubMed Central

    Choy, Anthony; Severo, Maiara S.; Sun, Ruobai; Girke, Thomas; Gillespie, Joseph J.; Pedra, Joao H. F.

    2013-01-01

    Protein regulation by ubiquitin has been extensively described in model organisms. However, characterization of the ubiquitin machinery in disease vectors remains mostly unknown. This fundamental gap in knowledge presents a concern because new therapeutics are needed to control vector-borne diseases, and targeting the ubiquitin machinery as a means for disease intervention has been already adopted in the clinic. In this study, we employed a bioinformatics approach to uncover the ubiquitin-mediated pathway in the genomes of Anopheles gambiae, Aedes aegypti, Culex quinquefasciatus, Ixodes scapularis, Pediculus humanus and Rhodnius prolixus. We observed that (1) disease vectors encode a lower percentage of ubiquitin-related genes when compared to Drosophila melanogaster, Mus musculus and Homo sapiens but not Saccharomyces cerevisiae; (2) overall, there are more proteins categorized as E3 ubiquitin ligases when compared to E2-conjugating or E1-activating enzymes; (3) the ubiquitin machinery within the three mosquito genomes is highly similar; (4) ubiquitin genes are more than doubled in the Chagas disease vector (R. prolixus) when compared to other arthropod vectors; (5) the deer tick I. scapularis and the body louse (P. humanus) genomes carry low numbers of E1-activating enzymes and HECT-type E3 ubiquitin ligases; (6) R. prolixus have low numbers of RING-type E3 ubiquitin ligases; and (7) C. quinquefasciatus present elevated numbers of predicted F-box E3 ubiquitin ligases, JAB and UCH deubiquitinases. Taken together, these findings provide novel opportunities to study the interaction between a pathogen and an arthropod vector. PMID:24205097

  9. Combination therapy utilizing shRNA knockdown and an optimized resistant transgene for rescue of diseases caused by misfolded proteins.

    PubMed

    Li, Chengwen; Xiao, Pingjie; Gray, Steven James; Weinberg, Marc Scott; Samulski, R Jude

    2011-08-23

    Molecular knockdown of disease proteins and restoration of wild-type activity represent a promising but challenging strategy for the treatment of diseases that result from the accumulation of misfolded proteins (i.e., Huntington disease, amyotrophic lateral sclerosis, and α-1 antitrypsin deficiency). In this study we used alpha-1 antitrypsin (AAT) deficiency with the piZZ mutant phenotype as a model system to evaluate the efficiency of gene-delivery approaches that both silence the piZZ transcript (e.g., shRNA) and restore circulating wild-type AAT expression from resistant codon-optimized AAT (AAT-opt) transgene cassette using adeno-associated virus (AAV) vector delivery. After systemic injection of a self-complimentary AAV serotype 8 (scAAV8) vector encoding shRNA in piZZ transgenic mice, both mutant AAT mRNA in the liver and defected serum protein level were inhibited by 95%, whereas liver pathology, as monitored by dPAS and fibrosis staining, reversed. To restore blood AAT levels in AAV8/shRNA-treated mice, several strategies to restore functional AAT levels were tested, including using AAV AAT-opt transgene cassettes targeted to muscle and liver, or combination vectors carrying piZZ shRNA and AAT-opt transgenes separately, or a single bicistronic AAV vector. With these molecular approaches, we observed over 90% knockdown of mutant AAT with a 13- to 30-fold increase of circulating wild-type AAT protein from the shRNA-resistant AAT-opt cassette. The molecular approaches applied in this study can simultaneously prevent liver pathology and restore blood AAT concentration in AAT deficiencies. Based on these observations, similar gene-therapy strategies could be considered for any diseases caused by accumulation of misfolded proteins.

  10. Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids

    PubMed Central

    Chamberlain, Kyle; Riyad, Jalish Mahmud; Weber, Thomas

    2016-01-01

    Recombinant adeno-associated virus vectors (rAAV) are being explored as gene delivery vehicles for the treatment of various inherited and acquired disorders. rAAVs are attractive vectors for several reasons: wild-type AAVs are nonpathogenic, and rAAVs can trigger long-term transgene expression even in the absence of genome integration—at least in postmitotic tissues. Moreover, rAAVs have a low immunogenic profile, and the various AAV serotypes and variants display broad but distinct tropisms. One limitation of rAAVs is that their genome-packaging capacity is only ∼5 kb. For most applications this is not of major concern because the median human protein size is 375 amino acids. Excluding the ITRs, for a protein of typical length, this allows the incorporation of ∼3.5 kb of DNA for the promoter, polyadenylation sequence, and other regulatory elements into a single AAV vector. Nonetheless, for certain diseases the packaging limit of AAV does not allow the delivery of a full-length therapeutic protein by a single AAV vector. Hence, approaches to overcome this limitation have become an important area of research for AAV gene therapy. Among the most promising approaches to overcome the limitation imposed by the packaging capacity of AAV is the use of dual-vector approaches, whereby a transgene is split across two separate AAV vectors. Coinfection of a cell with these two rAAVs will then—through a variety of mechanisms—result in the transcription of an assembled mRNA that could not be encoded by a single AAV vector because of the DNA packaging limits of AAV. The main purpose of this review is to assess the current literature with respect to dual-AAV-vector design, to highlight the effectiveness of the different methodologies and to briefly discuss future areas of research to improve the efficiency of dual-AAV-vector transduction. PMID:26757051

  11. Genetic transformation of tobacco NT1 cells with Agrobacterium tumefaciens.

    PubMed

    Mayo, Kristin J; Gonzales, Barbara J; Mason, Hugh S

    2006-01-01

    This protocol is used to produce stably transformed tobacco (Nicotiana tabacum) NT1 cell lines, using Agrobacterium tumefaciens-mediated DNA delivery of a binary vector containing a gene encoding hepatitis B surface antigen and a gene encoding the kanamycin selection marker. The NT1 cultures, at the appropriate stage of growth, are inoculated with A. tumefaciens containing the binary vector. A 3-day cocultivation period follows, after which the cultures are rinsed and placed on solid selective medium. Transformed colonies ('calli') appear in approximately 4 weeks; they are subcultured until adequate material is obtained for analysis of antigen production. 'Elite' lines are selected based on antigen expression and growth characteristics. The time required for the procedure from preparation of the plant cell materials to callus development is approximately 5 weeks. Growth of selected calli to sufficient quantities for antigen screening may require 4-6 weeks beyond the initial selection. Creation of the plasmid constructs, transformation of the A. tumefaciens line, and ELISA and Bradford assays to assess protein production require additional time.

  12. BAD: undertaker by night, candyman by day.

    PubMed

    Danial, N N

    2008-12-01

    The BH3-only pro-apoptotic proteins are upstream sensors of cellular damage that selectively respond to specific, proximal death and survival signals. Genetic models and biochemical studies indicate that these molecules are latent killers until activated through transcriptional or post-translational mechanisms in a tissue-restricted and signal-specific manner. The large number of BH3-only proteins, their unique subcellular localization, protein-interaction network and diverse modes of activation suggest specialization of their damage-sensing function, ensuring that the core apoptotic machinery is poised to receive input from a wide range of cellular stress signals. The apoptotic response initiated by the activation of BH3-only proteins ultimately culminates in allosteric activation of pro-apoptotic BAX and BAK, the gateway proteins to the mitochondrial pathway of apoptosis. From activation of BH3-only proteins to oligomerization of BAX and BAK and mitochondrial outer membrane permeabilization, an intricate network of interactions between the pro- and anti-apoptotic members of the BCL-2 family orchestrates the decision to undergo apoptosis. Beyond regulation of apoptosis, multiple BCL-2 proteins have recently emerged as active components of select homeostatic pathways carrying other cellular functions. This review focuses on BAD, which was the first BH3-only protein linked to proximal survival signals through phosphorylation by survival kinases. In addition to findings that delineated the physiological role of BAD in apoptosis and its dynamic regulation by phosphorylation, studies pointing to new roles for this protein in other physiological pathways, such as glucose metabolism, are highlighted. By executing its 'day' and 'night' jobs in metabolism and apoptosis, respectively, BAD helps coordinate mitochondrial fuel metabolism and the apoptotic machinery.

  13. The effect of N-nitrosodimethylamine (NDMA) on Bax and Mcl-1 expression in human neutrophils.

    PubMed

    Jablonski, Jakub; Jablonska, Ewa; Leonik, Agnieszka

    2011-12-01

    In the present study we examined a role of pro-apoptotic Bax and anti-apoptotic Mcl-1 proteins, participating in the regulation of intrinsic apoptosis pathway in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA), the environmental xenobiotic. For the purpose comparison, the same studies were conducted in autologous peripheral blood mononuclear cells (PBMCs). The production of cytochrome c by PMNs was also determined. A deficit of anti-apoptotic Mcl-1 and overexpression of the pro-apoptotic protein Bax suggest that the apoptosis process in human neutrophils exposed to NDMA is dependent on changes in the expression of these proteins. PMNs were more sensitive to NDMA than PBMCs.

  14. Mitochondrial protein import: a matter of death?

    PubMed

    Paschen, Stefan A; Weber, Arnim; Häcker, Georg

    2007-10-15

    Mitochondria play a central role not only in energy generation but also for apoptosis. A key step in mitochondrial apoptosis is the release of mitochondrial proteins, most importantly cytochrome c. This release is orchestrated by the pro- and anti-apoptotic members of the Bcl-2 protein family. The functions of these Bcl-2 family members are clear in terms of order and of principle: the pro-apoptotic BH3-only protein group contains the triggers, which cause the activation of the effectors Bax and Bak, while the anti-apoptotic Bcl-2-like proteins prevent this activation. However, the molecular details are still insufficiently clear and the proposed models have certain gaps and are partly contradictory. We have recently presented evidence that targeting to mitochondria of at least one BH3-only protein is essential for its pro-apoptotic functions. Here we discuss how this mechanism might fit into and expand existing models and speculate about the potential implications of this finding.

  15. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information.

    PubMed

    Wang, Lei; You, Zhu-Hong; Chen, Xing; Yan, Xin; Liu, Gang; Zhang, Wei

    2018-01-01

    Identification of interaction between drugs and target proteins plays an important role in discovering new drug candidates. However, through the experimental method to identify the drug-target interactions remain to be extremely time-consuming, expensive and challenging even nowadays. Therefore, it is urgent to develop new computational methods to predict potential drugtarget interactions (DTI). In this article, a novel computational model is developed for predicting potential drug-target interactions under the theory that each drug-target interaction pair can be represented by the structural properties from drugs and evolutionary information derived from proteins. Specifically, the protein sequences are encoded as Position-Specific Scoring Matrix (PSSM) descriptor which contains information of biological evolutionary and the drug molecules are encoded as fingerprint feature vector which represents the existence of certain functional groups or fragments. Four benchmark datasets involving enzymes, ion channels, GPCRs and nuclear receptors, are independently used for establishing predictive models with Rotation Forest (RF) model. The proposed method achieved the prediction accuracy of 91.3%, 89.1%, 84.1% and 71.1% for four datasets respectively. In order to make our method more persuasive, we compared our classifier with the state-of-theart Support Vector Machine (SVM) classifier. We also compared the proposed method with other excellent methods. Experimental results demonstrate that the proposed method is effective in the prediction of DTI, and can provide assistance for new drug research and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Expression from cloned DNA of biologically active glycoprotein C of herpes simplex virus type 1 in mammalian cells.

    PubMed

    Ghosh-Choudhury, N; Butcher, M; Ghosh, H P

    1990-03-01

    A DNA fragment of the herpes simplex virus type 1 genome encoding glycoprotein C (gC-1) has been cloned into different eukaryotic expression vectors for transient and stable expression of the glycoprotein in a number of cell lines. All of these expression vectors use a non-HSV promoter, such as the adenovirus major late promoter or murine leukemia virus long terminal repeat promoter to express gC-1 in COS and CHO cells or 3T3 cells. The gC-1 protein synthesized was fully glycosylated with both N- and O-linked oligosaccharides. Synthesis of the mature 120K gC-1 glycoprotein involved partially glycosylated 100K and 105K proteins and the non-glycosylated 70K protein as intermediate molecules. Immunofluorescence studies showed that the expressed gC-1 was localized intracellularly in the nuclear envelope as well as on the cell surface. The expressed gC-1 was biologically active and could act as a receptor for the complement component C3b in the absence of other HSV proteins.

  17. Functional display of family 11 endoxylanases on the surface of phage M13.

    PubMed

    Beliën, T; Hertveldt, K; Van den Brande, K; Robben, J; Van Campenhout, S; Volckaert, G

    2005-02-09

    Two family 11 endoxylanases (EC 3.2.1.8) were functionally displayed on the surface of bacteriophage M13. The genes encoding endo-1,4-xylanase I from Aspergillus niger (ExlA) and endo-1,4-xylanase A from Bacillus subtilis (XynA) were fused to the gene encoding the minor coat protein g3p in phagemid vector pHOS31. Phage rescue resulted in functional monovalent display of the enzymes as was demonstrated by three independent tests. Firstly, purified recombinant phage particles showed a clear hydrolytic activity in an activity assay based on insoluble, chromagenic arabinoxylan substrate. Secondly, specific binding of endoxylanase displaying phages to immobilized endoxylanase inhibitors was demonstrated by interaction ELISA. Finally, two rounds of selection and amplification in a biopanning procedure against immobilized endoxylanase inhibitor were performed. Phages displaying endoxylanases were strongly enriched from background phages displaying unrelated proteins. These results open perspectives to use phage display for analysing protein-protein interactions at the interface between endoxylanases and their inhibitors. In addition, this technology should enable engineering of endoxylanases into novel variants with altered binding properties towards endoxylanase inhibitors.

  18. Anti-apoptotic signaling as a cytoprotective mechanism in mammalian hibernation.

    PubMed

    Rouble, Andrew N; Hefler, Joshua; Mamady, Hapsatou; Storey, Kenneth B; Tessier, Shannon N

    2013-01-01

    In the context of normal cell turnover, apoptosis is a natural phenomenon involved in making essential life and death decisions. Apoptotic pathways balance signals which promote cell death (pro-apoptotic pathways) or counteract these signals (anti-apoptotic pathways). We proposed that changes in anti-apoptotic proteins would occur during mammalian hibernation to aid cell preservation during prolonged torpor under cellular conditions that are highly injurious to most mammals (e.g. low body temperatures, ischemia). Immunoblotting was used to analyze the expression of proteins associated with pro-survival in six tissues of thirteen-lined ground squirrels, Ictidomys tridecemlineatus. The brain showed a concerted response to torpor with significant increases in the levels of all anti-apoptotic targets analyzed (Bcl-2, Bcl-xL, BI-1, Mcl-1, cIAP1/2, xIAP) as well as enhanced phosphorylation of Bcl-2 at S70 and T56. Heart responded similarly with most anti-apoptotic proteins elevated significantly during torpor except for Bcl-xL and xIAP that decreased and Mcl-1 that was unaltered. In liver, BI-1 increased whereas cIAP1/2 decreased. In kidney, there was an increase in BI-1, cIAP and xIAP but decreases in Bcl-xL and p-Bcl-2(T56) content. In brown adipose tissue, protein levels of BI-1, cIAP1/2, and xIAP decreased significantly during torpor (compared with euthermia) whereas Bcl-2, Bcl-xL, Mcl-1 were unaltered; however, Bcl-2 showed enhanced phosphorylation at Thr56 but not at Ser70. In skeletal muscle, only xIAP levels changed significantly during torpor (an increase). The data show that anti-apoptotic pathways have organ-specific responses in hibernators with a prominent potential role in heart and brain where coordinated enhancement of anti-apoptotic proteins occurred in response to torpor.

  19. Anti-apoptotic signaling as a cytoprotective mechanism in mammalian hibernation

    PubMed Central

    Mamady, Hapsatou; Tessier, Shannon N.

    2013-01-01

    In the context of normal cell turnover, apoptosis is a natural phenomenon involved in making essential life and death decisions. Apoptotic pathways balance signals which promote cell death (pro-apoptotic pathways) or counteract these signals (anti-apoptotic pathways). We proposed that changes in anti-apoptotic proteins would occur during mammalian hibernation to aid cell preservation during prolonged torpor under cellular conditions that are highly injurious to most mammals (e.g. low body temperatures, ischemia). Immunoblotting was used to analyze the expression of proteins associated with pro-survival in six tissues of thirteen-lined ground squirrels, Ictidomys tridecemlineatus. The brain showed a concerted response to torpor with significant increases in the levels of all anti-apoptotic targets analyzed (Bcl-2, Bcl-xL, BI-1, Mcl-1, cIAP1/2, xIAP) as well as enhanced phosphorylation of Bcl-2 at S70 and T56. Heart responded similarly with most anti-apoptotic proteins elevated significantly during torpor except for Bcl-xL and xIAP that decreased and Mcl-1 that was unaltered. In liver, BI-1 increased whereas cIAP1/2 decreased. In kidney, there was an increase in BI-1, cIAP and xIAP but decreases in Bcl-xL and p-Bcl-2(T56) content. In brown adipose tissue, protein levels of BI-1, cIAP1/2, and xIAP decreased significantly during torpor (compared with euthermia) whereas Bcl-2, Bcl-xL, Mcl-1 were unaltered; however, Bcl-2 showed enhanced phosphorylation at Thr56 but not at Ser70. In skeletal muscle, only xIAP levels changed significantly during torpor (an increase). The data show that anti-apoptotic pathways have organ-specific responses in hibernators with a prominent potential role in heart and brain where coordinated enhancement of anti-apoptotic proteins occurred in response to torpor. PMID:23638364

  20. Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside.

    PubMed

    Vela, Laura; Marzo, Isabel

    2015-08-01

    Bcl-2 proteins are key determinants in the life-death balance. In recent years, proteins in this family have been identified as drug targets in the design of new anti-tumor therapies. Advances in the knowledge of the mechanism of action of anti-apoptotic and pro-apoptotic members of the Bcl-2 family have enabled the development of the so-called 'BH3 mimetics'. These compounds act by inhibiting anti-apoptotic proteins of the family, imitating the function of the BH3-only subset of pro-apoptotic members. Combinations of BH3-mimetics with anti-tumor drugs are being evaluated in both preclinical models and clinical trials. Recent advances in these approaches will be reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. On the efficacy of malaria DNA vaccination with magnetic gene vectors.

    PubMed

    Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L

    2013-05-28

    We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Expression of chicken parvovirus VP2 in chicken embryo fibroblasts requires codon optimization for production of naked DNA and vectored meleagrid herpesvirus type 1 vaccines.

    PubMed

    Spatz, Stephen J; Volkening, Jeremy D; Mullis, Robert; Li, Fenglan; Mercado, John; Zsak, Laszlo

    2013-10-01

    Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspected in causing Runting Stunting Syndrome (RSS) in chickens. Initial attempts to express the wild-type gene encoding the capsid protein VP2 of ChPV by insertion into the thymidine kinase gene of MeHV-1 were unsuccessful. However, transient expression of a codon-optimized synthetic VP2 gene cloned into the bicistronic vector pIRES2-Ds-Red2, could be demonstrated by immunocytochemical staining of transfected chicken embryo fibroblasts (CEFs). Red fluorescence could also be detected in these transfected cells since the red fluorescent protein gene is downstream from the internal ribosome entry site (IRES). Strikingly, fluorescence could not be demonstrated in cells transiently transfected with the bicistronic vector containing the wild-type or non-codon-optimized VP2 gene. Immunocytochemical staining of these cells also failed to demonstrate expression of wild-type VP2, indicating that the lack of expression was at the RNA level and the VP2 protein was not toxic to CEFs. Chickens vaccinated with a DNA vaccine consisting of the bicistronic vector containing the codon-optimized VP2 elicited a humoral immune response as measured by a VP2-specific ELISA. This VP2 codon-optimized bicistronic cassette was rescued into the MeHV-1 genome generating a vectored vaccine against ChPV disease.

  3. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle.

    PubMed

    Kirkness, Ewen F; Haas, Brian J; Sun, Weilin; Braig, Henk R; Perotti, M Alejandra; Clark, John M; Lee, Si Hyeock; Robertson, Hugh M; Kennedy, Ryan C; Elhaik, Eran; Gerlach, Daniel; Kriventseva, Evgenia V; Elsik, Christine G; Graur, Dan; Hill, Catherine A; Veenstra, Jan A; Walenz, Brian; Tubío, José Manuel C; Ribeiro, José M C; Rozas, Julio; Johnston, J Spencer; Reese, Justin T; Popadic, Aleksandar; Tojo, Marta; Raoult, Didier; Reed, David L; Tomoyasu, Yoshinori; Kraus, Emily; Krause, Emily; Mittapalli, Omprakash; Margam, Venu M; Li, Hong-Mei; Meyer, Jason M; Johnson, Reed M; Romero-Severson, Jeanne; Vanzee, Janice Pagel; Alvarez-Ponce, David; Vieira, Filipe G; Aguadé, Montserrat; Guirao-Rico, Sara; Anzola, Juan M; Yoon, Kyong S; Strycharz, Joseph P; Unger, Maria F; Christley, Scott; Lobo, Neil F; Seufferheld, Manfredo J; Wang, Naikuan; Dasch, Gregory A; Struchiner, Claudio J; Madey, Greg; Hannick, Linda I; Bidwell, Shelby; Joardar, Vinita; Caler, Elisabet; Shao, Renfu; Barker, Stephen C; Cameron, Stephen; Bruggner, Robert V; Regier, Allison; Johnson, Justin; Viswanathan, Lakshmi; Utterback, Terry R; Sutton, Granger G; Lawson, Daniel; Waterhouse, Robert M; Venter, J Craig; Strausberg, Robert L; Berenbaum, May R; Collins, Frank H; Zdobnov, Evgeny M; Pittendrigh, Barry R

    2010-07-06

    As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.

  4. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle

    PubMed Central

    Kirkness, Ewen F.; Haas, Brian J.; Sun, Weilin; Braig, Henk R.; Perotti, M. Alejandra; Clark, John M.; Lee, Si Hyeock; Robertson, Hugh M.; Kennedy, Ryan C.; Elhaik, Eran; Gerlach, Daniel; Kriventseva, Evgenia V.; Elsik, Christine G.; Graur, Dan; Hill, Catherine A.; Veenstra, Jan A.; Walenz, Brian; Tubío, José Manuel C.; Ribeiro, José M. C.; Rozas, Julio; Johnston, J. Spencer; Reese, Justin T.; Popadic, Aleksandar; Tojo, Marta; Raoult, Didier; Reed, David L.; Tomoyasu, Yoshinori; Kraus, Emily; Mittapalli, Omprakash; Margam, Venu M.; Li, Hong-Mei; Meyer, Jason M.; Johnson, Reed M.; Romero-Severson, Jeanne; VanZee, Janice Pagel; Alvarez-Ponce, David; Vieira, Filipe G.; Aguadé, Montserrat; Guirao-Rico, Sara; Anzola, Juan M.; Yoon, Kyong S.; Strycharz, Joseph P.; Unger, Maria F.; Christley, Scott; Lobo, Neil F.; Seufferheld, Manfredo J.; Wang, NaiKuan; Dasch, Gregory A.; Struchiner, Claudio J.; Madey, Greg; Hannick, Linda I.; Bidwell, Shelby; Joardar, Vinita; Caler, Elisabet; Shao, Renfu; Barker, Stephen C.; Cameron, Stephen; Bruggner, Robert V.; Regier, Allison; Johnson, Justin; Viswanathan, Lakshmi; Utterback, Terry R.; Sutton, Granger G.; Lawson, Daniel; Waterhouse, Robert M.; Venter, J. Craig; Strausberg, Robert L.; Collins, Frank H.; Zdobnov, Evgeny M.; Pittendrigh, Barry R.

    2010-01-01

    As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens. PMID:20566863

  5. A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast.

    PubMed

    Jaschke, Paul R; Lieberman, Erica K; Rodriguez, Jon; Sierra, Adrian; Endy, Drew

    2012-12-20

    The 5386 nucleotide bacteriophage øX174 genome has a complicated architecture that encodes 11 gene products via overlapping protein coding sequences spanning multiple reading frames. We designed a 6302 nucleotide synthetic surrogate, øX174.1, that fully separates all primary phage protein coding sequences along with cognate translation control elements. To specify øX174.1f, a decompressed genome the same length as wild type, we truncated the gene F coding sequence. We synthesized DNA encoding fragments of øX174.1f and used a combination of in vitro- and yeast-based assembly to produce yeast vectors encoding natural or designer bacteriophage genomes. We isolated clonal preparations of yeast plasmid DNA and transfected E. coli C strains. We recovered viable øX174 particles containing the øX174.1f genome from E. coli C strains that independently express full-length gene F. We expect that yeast can serve as a genomic 'drydock' within which to maintain and manipulate clonal lineages of other obligate lytic phage. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Binding Affinity prediction with Property Encoded Shape Distribution signatures

    PubMed Central

    Das, Sourav; Krein, Michael P.

    2010-01-01

    We report the use of the molecular signatures known as “Property-Encoded Shape Distributions” (PESD) together with standard Support Vector Machine (SVM) techniques to produce validated models that can predict the binding affinity of a large number of protein ligand complexes. This “PESD-SVM” method uses PESD signatures that encode molecular shapes and property distributions on protein and ligand surfaces as features to build SVM models that require no subjective feature selection. A simple protocol was employed for tuning the SVM models during their development, and the results were compared to SFCscore – a regression-based method that was previously shown to perform better than 14 other scoring functions. Although the PESD-SVM method is based on only two surface property maps, the overall results were comparable. For most complexes with a dominant enthalpic contribution to binding (ΔH/-TΔS > 3), a good correlation between true and predicted affinities was observed. Entropy and solvent were not considered in the present approach and further improvement in accuracy would require accounting for these components rigorously. PMID:20095526

  7. PERMutation Using Transposase Engineering (PERMUTE): A Simple Approach for Constructing Circularly Permuted Protein Libraries.

    PubMed

    Jones, Alicia M; Atkinson, Joshua T; Silberg, Jonathan J

    2017-01-01

    Rearrangements that alter the order of a protein's sequence are used in the lab to study protein folding, improve activity, and build molecular switches. One of the simplest ways to rearrange a protein sequence is through random circular permutation, where native protein termini are linked together and new termini are created elsewhere through random backbone fission. Transposase mutagenesis has emerged as a simple way to generate libraries encoding different circularly permuted variants of proteins. With this approach, a synthetic transposon (called a permuteposon) is randomly inserted throughout a circularized gene to generate vectors that express different permuted variants of a protein. In this chapter, we outline the protocol for constructing combinatorial libraries of circularly permuted proteins using transposase mutagenesis, and we describe the different permuteposons that have been developed to facilitate library construction.

  8. An effective system for detecting protein-protein interaction based on in vivo cleavage by PPV NIa protease.

    PubMed

    Zheng, Nuoyan; Huang, Xiahe; Yin, Bojiao; Wang, Dan; Xie, Qi

    2012-12-01

    Detection of protein-protein interaction can provide valuable information for investigating the biological function of proteins. The current methods that applied in protein-protein interaction, such as co-immunoprecipitation and pull down etc., often cause plenty of working time due to the burdensome cloning and purification procedures. Here we established a system that characterization of protein-protein interaction was accomplished by co-expression and simply purification of target proteins from one expression cassette within E. coli system. We modified pET vector into co-expression vector pInvivo which encoded PPV NIa protease, two cleavage site F and two multiple cloning sites that flanking cleavage sites. The target proteins (for example: protein A and protein B) were inserted at multiple cloning sites and translated into polyprotein in the order of MBP tag-protein A-site F-PPV NIa protease-site F-protein B-His(6) tag. PPV NIa protease carried out intracellular cleavage along expression, then led to the separation of polyprotein components, therefore, the interaction between protein A-protein B can be detected through one-step purification and analysis. Negative control for protein B was brought into this system for monitoring interaction specificity. We successfully employed this system to prove two cases of reported protien-protein interaction: RHA2a/ANAC and FTA/FTB. In conclusion, a convenient and efficient system has been successfully developed for detecting protein-protein interaction.

  9. Pathogen-mediated manipulation of arthropod microbiota to promote infection

    PubMed Central

    Abraham, Nabil M.; Liu, Lei; Jutras, Brandon Lyon; Yadav, Akhilesh K.; Narasimhan, Sukanya; Gopalakrishnan, Vissagan; Ansari, Juliana M.; Jefferson, Kimberly K.; Cava, Felipe; Jacobs-Wagner, Christine; Fikrig, Erol

    2017-01-01

    Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier—critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal d-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector. PMID:28096373

  10. Efficacy of chimeric DNA vaccines encoding Eimeria tenella 5401 and chicken IFN-γ or IL-2 against coccidiosis in chickens.

    PubMed

    Song, Xiaokai; Huang, Xinmei; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-09-01

    Chimeric DNA vaccines encoding Eimeria tenella (E. tenella) surface antigen 5401 were constructed and their efficacies against E. tenella challenge were studied. The open reading frame (ORF) of 5401 was cloned into the prokaryotic expression vector pGEX-4T2 to express the recombinant protein and the expressed recombinant protein was identified by Western blot. The ORF of 5401 and chicken cytokine gene IFN-γ or IL-2 were cloned into the eukaryotic expression vector pVAX1 consecutively to construct DNA vaccines pVAX-5401-IFN-γ, pVAX-5401-IL-2 and pVAX-5401. The expression of aim genes in vivo was detected by reverse transcription-polymerase chain reaction and Western blot. Fourteen-day-old chickens were inoculated twice at an interval of 7 days with 100 µg of plasmids pVAX-5401, pVAX-5401-IFN-γ and pVAX-5401-IL-2 or 200 µg of recombinant 5401 protein by leg intramuscular injection, respectively. Seven days after the second inoculation, all chickens except the unchallenged control group were challenged orally with 5 × 10(4) sporulated oocysts of E. tenella. Seven days after challenge, all chickens were weighted and slaughtered to determine the effects of immunization. The results showed the recombinant protein was about 90 kDa and reacted with antiserum against soluble sporozoites. The animal experiment showed that all the DNA vaccines pVAX-5401, pVAX-5401-IFN-γ or pVAX-5401-IL-2 and the recombinant 5401 protein could obviously alleviate body weight loss and cecal lesions as compared with non-vaccinated challenged control and empty vector pVAX1control. Furthermore, pVAX-5401-IFN-γ or pVAX-5401-IL-2 induced anti-coccidial index (ACI) of 180.01 or 177.24 which were significantly higher than that of pVAX-5401. The results suggested that 5401 was an effective candidate antigen for vaccine. This finding also suggested that chicken IFN-γ or IL-2 could effectively improve the efficacies of DNA vaccines against avian coccidiosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Prevalence of mutations in hepatitis C virus core protein associated with alteration of NF-kappaB activation.

    PubMed

    Mann, Elizabeth A; Stanford, Sandra; Sherman, Kenneth E

    2006-10-01

    The hepatitis C virus (HCV) core protein is a key structural element of the virion but also affects a number of cellular pathways, including nuclear factor kappaB (NF-kappaB) signaling. NF-kappaB is a transcription factor that regulates both anti-apoptotic and pro-inflammatory genes and its activation may contribute to HCV-mediated pathogenesis. Amino acid sequence divergence in core is seen at the genotype level as well as within patient isolates. Recent work has implicated amino acids 9-11 of core in the modulation of NF-kappaB activation. We report that the sequence RKT is highly conserved (93%) at this position across all HCV genotypes, based on sequences collected in the Los Alamos HCV database. Of the 13 types of variants present in the database, the two most prevalent substitutions are RQT and RKP. We further show that core encoding RKP fails to activate NF-kappaB signaling in vitro while NF-kappaB activation by core encoding RQT does not differ from control RKT core. The effect of RKP core is specific to NF-kappaB signaling as activator protein 1 (AP-1) activity is not altered. Further studies are needed to assess potential associations between specific amino acid substitutions at positions 9-11 and liver disease progression and/or response to treatment in individual patients.

  12. [Study of the functional role of mutation in the guinea pig-adapted Ebola virus genome on a Drosophila melanogaster model].

    PubMed

    Shelemba-Chepurnova, A A; Omel'ianchuk, L V; Chepurnov, A A

    2011-01-01

    Ebola virus virulence in guinea pigs, which appears through virus adaptation to this animal host, correlates with substitutions in the gene encoding vp24 protein. In particular, the substitution His-->Tyr186 was found when obtaining strain 8 ms. An attempt was made to clarify the functional role of this substitution in a transgenic fruit fly model. Using the drosophila transformation technique provided transgenic strains that contained genomic insertions of wild-type Ebola virus vp24 gene and the mutant gene with the His-->Tyr substitution at the above position. Thus, the drosophila strains carrying the sequences encoding for the vp24 proteins of Ebola virus Zaire and 8 ms in pUAST vector were obtained. This makes it possible to study the expression of transgenic constructs in various D. melanogaster organs and tissues.

  13. Enhancing venetoclax activity in acute myeloid leukemia by co-targeting MCL1.

    PubMed

    Teh, T-C; Nguyen, N-Y; Moujalled, D M; Segal, D; Pomilio, G; Rijal, S; Jabbour, A; Cummins, K; Lackovic, K; Blombery, P; Thompson, E; Ekert, P G; Lessene, G; Glaser, S P; Huang, D C S; Roberts, A W; Guthridge, M A; Wei, A H

    2018-02-01

    Targeted therapies are frequently combined with standard cytotoxic drugs to enhance clinical response. Targeting the B-cell lymphoma 2 (BCL-2) family of proteins is an attractive option to combat chemoresistance in leukemia. Preclinical and clinical studies indicate modest single-agent activity with selective BCL-2 inhibitors (for example, venetoclax). We show that venetoclax synergizes with cytarabine and idarubicin to increase antileukemic efficacy in a TP53-dependent manner. Although TP53 deficiency impaired sensitivity to combined venetoclax and chemotherapy, higher-dose idarubicin was able to suppress MCL1 and induce cell death independently of TP53. Consistent with an MCL1-specific effect, cell death from high-dose idarubicin was dependent on pro-apoptotic Bak. Combining higher-dose idarubicin with venetoclax was able to partially overcome resistance in Bak-deficient cells. Using inducible vectors and venetoclax to differentially target anti-apoptotic BCL-2 family members, BCL-2 and MCL1 emerged as critical and complementary proteins regulating cell survival in acute myeloid leukemia. Dual targeting of BCL-2 and MCL1, but not either alone, prolonged survival of leukemia-bearing mice. In conclusion, our findings support the further investigation of venetoclax in combination with standard chemotherapy, including intensified doses of idarubicin. Venetoclax should also be investigated in combination with direct inhibitors of MCL1 as a chemotherapy-free approach in the future.

  14. Regulatory effect of chrysin on expression of lenticular calcium transporters, calpains, and apoptotic-cascade components in selenite-induced cataract

    PubMed Central

    Sundararajan, Mahalingam; Thomas, Philip A.; Teresa, P. Archana; Anbukkarasi, Muniyandi

    2016-01-01

    Purpose Selenite-induced cataract is associated with oxidative stress, loss of calcium homeostasis, activation of calpain enzymes, and apoptotic cell death in the lens. An evaluation of naturally occurring antioxidants that also restrict calcium influx into the lens and calpain activation and thus prevent lenticular cell death may lead to the development of safe and effective anticataractogenic drugs. This study focuses on a naturally occurring flavone, chrysin, and its efficacy in preventing cataractogenic changes in in vitro cultured Wistar rat lenses. Methods Lenses from Wistar rats incubated for 24 h at 37 °C in Dulbecco’s modified Eagle’s medium (DMEM) were categorized into four main groups: Group I (control, incubated in DMEM alone); Group II (selenite-challenged and untreated, incubated in DMEM that contained 100 µM/ml of sodium selenite only); Group III (selenite-challenged and chrysin-treated, incubated in DMEM that contained sodium selenite [100 µM/ml of DMEM] and chrysin [200 µM/ml of DMEM]); and Group IV (chrysin-treated, incubated in DMEM that contained chrysin [200 µM/ml of DMEM] only). The Group III (selenite-challenged and chrysin-treated) lenses were further categorized into five sub-groups: Group IIIa (incubated for 24 h in DMEM that contained sodium selenite and chrysin added simultaneously), Group IIIb (first incubated for 2 h in DMEM that contained chrysin only and then for up to 24 h in fresh DMEM that contained sodium selenite only), Group IIIc (first incubated for 30 min in DMEM that contained sodium selenite only and subsequently for up to 24 h in DMEM that contained chrysin only), and Groups IIId and IIIe (first incubated for 1 h and 2 h, respectively, in DMEM that contained sodium selenite only and subsequently for up to 24 h in DMEM that contained chrysin only). Results Gross morphological assessment revealed dense opacification (Grade +++) in the selenite-challenged, untreated lenses (Group II); however, seven of the eight selenite-challenged and simultaneously chrysin-treated (Group IIIa) lenses showed no opacification (Grade 0) after 24 h incubation, while the remaining single lens exhibited only a slight degree of opacification (Grade +). In the Group IIIa lenses, the reduced glutathione, protein sulfhydryl, and malondialdehyde concentrations appeared to have been maintained at near-normal levels. The mean lenticular concentration of calcium was significantly lower in the Group IIIa lenses than that in the Group II lenses and approximated the values observed in the normal control (Group I) lenses. The Group IIIa lenses also exhibited significantly (p<0.05) higher mean lenticular activity of calpain, significantly higher mean mRNA transcript levels of genes that encode m-calpain and lenticular preferred calpain (Lp82), and significantly higher mean levels of the m-calpain and Lp82 proteins than the corresponding values in the Group II lenses. Casein zymography results suggested that chrysin prevented calpain activation and autolysis. Significantly (p<0.05) lower mean levels of mRNA transcripts of the genes that encode calcium transporter proteins (plasma membrane Ca2+-ATPase-1 and sarco/endoplasmic reticulum Ca2+-ATPase-2) and lenticular apoptotic-cascade proteins (early growth response protein-1, caspase-3, caspase-8, and caspase-9) and significantly (p<0.05) lower mean concentrations of the proteins themselves were seen in the Group IIIa rat lenses in comparison to the values noted in the Group II rat lenses. Conclusions Chrysin appears to prevent selenite-induced cataractogenesis in vitro by maintaining the redox system components at near-normal levels and by preventing the abnormal expression of several lenticular calcium transporters and apoptotic-cascade proteins, thus preventing accumulation of calcium and subsequent calpain activation and lenticular cell death in cultured Wistar rat lenses. PMID:27168717

  15. Regulatory effect of chrysin on expression of lenticular calcium transporters, calpains, and apoptotic-cascade components in selenite-induced cataract.

    PubMed

    Sundararajan, Mahalingam; Thomas, Philip A; Teresa, P Archana; Anbukkarasi, Muniyandi; Geraldine, Pitchairaj

    2016-01-01

    Selenite-induced cataract is associated with oxidative stress, loss of calcium homeostasis, activation of calpain enzymes, and apoptotic cell death in the lens. An evaluation of naturally occurring antioxidants that also restrict calcium influx into the lens and calpain activation and thus prevent lenticular cell death may lead to the development of safe and effective anticataractogenic drugs. This study focuses on a naturally occurring flavone, chrysin, and its efficacy in preventing cataractogenic changes in in vitro cultured Wistar rat lenses. Lenses from Wistar rats incubated for 24 h at 37 °C in Dulbecco's modified Eagle's medium (DMEM) were categorized into four main groups: Group I (control, incubated in DMEM alone); Group II (selenite-challenged and untreated, incubated in DMEM that contained 100 µM/ml of sodium selenite only); Group III (selenite-challenged and chrysin-treated, incubated in DMEM that contained sodium selenite [100 µM/ml of DMEM] and chrysin [200 µM/ml of DMEM]); and Group IV (chrysin-treated, incubated in DMEM that contained chrysin [200 µM/ml of DMEM] only). The Group III (selenite-challenged and chrysin-treated) lenses were further categorized into five sub-groups: Group IIIa (incubated for 24 h in DMEM that contained sodium selenite and chrysin added simultaneously), Group IIIb (first incubated for 2 h in DMEM that contained chrysin only and then for up to 24 h in fresh DMEM that contained sodium selenite only), Group IIIc (first incubated for 30 min in DMEM that contained sodium selenite only and subsequently for up to 24 h in DMEM that contained chrysin only), and Groups IIId and IIIe (first incubated for 1 h and 2 h, respectively, in DMEM that contained sodium selenite only and subsequently for up to 24 h in DMEM that contained chrysin only). Gross morphological assessment revealed dense opacification (Grade +++) in the selenite-challenged, untreated lenses (Group II); however, seven of the eight selenite-challenged and simultaneously chrysin-treated (Group IIIa) lenses showed no opacification (Grade 0) after 24 h incubation, while the remaining single lens exhibited only a slight degree of opacification (Grade +). In the Group IIIa lenses, the reduced glutathione, protein sulfhydryl, and malondialdehyde concentrations appeared to have been maintained at near-normal levels. The mean lenticular concentration of calcium was significantly lower in the Group IIIa lenses than that in the Group II lenses and approximated the values observed in the normal control (Group I) lenses. The Group IIIa lenses also exhibited significantly (p<0.05) higher mean lenticular activity of calpain, significantly higher mean mRNA transcript levels of genes that encode m-calpain and lenticular preferred calpain (Lp82), and significantly higher mean levels of the m-calpain and Lp82 proteins than the corresponding values in the Group II lenses. Casein zymography results suggested that chrysin prevented calpain activation and autolysis. Significantly (p<0.05) lower mean levels of mRNA transcripts of the genes that encode calcium transporter proteins (plasma membrane Ca(2+)-ATPase-1 and sarco/endoplasmic reticulum Ca(2+)-ATPase-2) and lenticular apoptotic-cascade proteins (early growth response protein-1, caspase-3, caspase-8, and caspase-9) and significantly (p<0.05) lower mean concentrations of the proteins themselves were seen in the Group IIIa rat lenses in comparison to the values noted in the Group II rat lenses. Chrysin appears to prevent selenite-induced cataractogenesis in vitro by maintaining the redox system components at near-normal levels and by preventing the abnormal expression of several lenticular calcium transporters and apoptotic-cascade proteins, thus preventing accumulation of calcium and subsequent calpain activation and lenticular cell death in cultured Wistar rat lenses.

  16. The abundant extrachromosomal DNA content of the Spiroplasma citri GII3-3X genome

    PubMed Central

    Saillard, Colette; Carle, Patricia; Duret-Nurbel, Sybille; Henri, Raphaël; Killiny, Nabil; Carrère, Sébastien; Gouzy, Jérome; Bové, Joseph-Marie; Renaudin, Joël; Foissac, Xavier

    2008-01-01

    Background Spiroplama citri, the causal agent of citrus stubborn disease, is a bacterium of the class Mollicutes and is transmitted by phloem-feeding leafhopper vectors. In order to characterize candidate genes potentially involved in spiroplasma transmission and pathogenicity, the genome of S. citri strain GII3-3X is currently being deciphered. Results Assembling 20,000 sequencing reads generated seven circular contigs, none of which fit the 1.8 Mb chromosome map or carried chromosomal markers. These contigs correspond to seven plasmids: pSci1 to pSci6, with sizes ranging from 12.9 to 35.3 kbp and pSciA of 7.8 kbp. Plasmids pSci were detected as multiple copies in strain GII3-3X. Plasmid copy numbers of pSci1-6, as deduced from sequencing coverage, were estimated at 10 to 14 copies per spiroplasma cell, representing 1.6 Mb of extrachromosomal DNA. Genes encoding proteins of the TrsE-TraE, Mob, TraD-TraG, and Soj-ParA protein families were predicted in most of the pSci sequences, in addition to members of 14 protein families of unknown function. Plasmid pSci6 encodes protein P32, a marker of insect transmissibility. Plasmids pSci1-5 code for eight different S. citri adhesion-related proteins (ScARPs) that are homologous to the previously described protein P89 and the S. kunkelii SkARP1. Conserved signal peptides and C-terminal transmembrane alpha helices were predicted in all ScARPs. The predicted surface-exposed N-terminal region possesses the following elements: (i) 6 to 8 repeats of 39 to 42 amino acids each (sarpin repeats), (ii) a central conserved region of 330 amino acids followed by (iii) a more variable domain of about 110 amino acids. The C-terminus, predicted to be cytoplasmic, consists of a 27 amino acid stretch enriched in arginine and lysine (KR) and an optional 23 amino acid stretch enriched in lysine, aspartate and glutamate (KDE). Plasmids pSci mainly present a linear increase of cumulative GC skew except in regions presenting conserved hairpin structures. Conclusion The genome of S. citri GII3-3X is characterized by abundant extrachromosomal elements. The pSci plasmids could not only be vertically inherited but also horizontally transmitted, as they encode proteins usually involved in DNA element partitioning and cell to cell DNA transfer. Because plasmids pSci1-5 encode surface proteins of the ScARP family and pSci6 was recently shown to confer insect transmissibility, diversity and abundance of S. citri plasmids may essentially aid the rapid adaptation of S. citri to more efficient transmission by different insect vectors and to various plant hosts. PMID:18442384

  17. Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo

    PubMed Central

    Li, Wenyan; Shen, Jun

    2016-01-01

    Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction. PMID:28116172

  18. N-(3-oxo-acyl) homoserine lactone inhibits tumor growth independent of Bcl-2 proteins.

    PubMed

    Zhao, Guoping; Neely, Aaron M; Schwarzer, Christian; Lu, Huayi; Whitt, Aaron G; Stivers, Nicole S; Burlison, Joseph A; White, Carl; Machen, Terry E; Li, Chi

    2016-02-02

    Pseudomonas aeruginosa produces N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule for bacterial communication. C12 has also been reported to induce apoptosis in various types of tumor cells. However, the detailed molecular mechanism of C12-triggerred tumor cell apoptosis is still unclear. In addition, it is completely unknown whether C12 possesses any potential therapeutic effects in vivo. Our data indicate that, unlike most apoptotic inducers, C12 evokes a novel form of apoptosis in tumor cells through inducing mitochondrial membrane permeabilization independent of both pro- and anti-apoptotic Bcl-2 proteins. Importantly, C12 inhibits tumor growth in animals regardless of either pro- or anti-apoptotic Bcl-2 proteins. Furthermore, opposite to conventional chemotherapeutics, C12 requires paraoxonase 2 (PON2) to exert its cytotoxicity on tumor cells in vitro and its inhibitory effects on tumor growth in vivo. Overall, our results demonstrate that C12 inhibits tumor growth independent of both pro- and anti-apoptotic Bcl-2 proteins, and through inducing unique apoptotic signaling mediated by PON2 in tumor cells.

  19. N-(3-oxo-acyl) homoserine lactone inhibits tumor growth independent of Bcl-2 proteins

    PubMed Central

    Zhao, Guoping; Neely, Aaron M.; Schwarzer, Christian; Lu, Huayi; Whitt, Aaron G.; Stivers, Nicole S.; Burlison, Joseph A.; White, Carl; Machen, Terry E.; Li, Chi

    2016-01-01

    Pseudomonas aeruginosa produces N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule for bacterial communication. C12 has also been reported to induce apoptosis in various types of tumor cells. However, the detailed molecular mechanism of C12-triggerred tumor cell apoptosis is still unclear. In addition, it is completely unknown whether C12 possesses any potential therapeutic effects in vivo. Our data indicate that, unlike most apoptotic inducers, C12 evokes a novel form of apoptosis in tumor cells through inducing mitochondrial membrane permeabilization independent of both pro- and anti-apoptotic Bcl-2 proteins. Importantly, C12 inhibits tumor growth in animals regardless of either pro- or anti-apoptotic Bcl-2 proteins. Furthermore, opposite to conventional chemotherapeutics, C12 requires paraoxonase 2 (PON2) to exert its cytotoxicity on tumor cells in vitro and its inhibitory effects on tumor growth in vivo. Overall, our results demonstrate that C12 inhibits tumor growth independent of both pro- and anti-apoptotic Bcl-2 proteins, and through inducing unique apoptotic signaling mediated by PON2 in tumor cells. PMID:26758417

  20. Plant rhabdoviruses.

    PubMed

    Redinbaugh, M G; Hogenhout, S A

    2005-01-01

    This chapter provides an overview of plant rhabdovirus structure and taxonomy, genome structure, protein function, and insect and plant infection. It is focused on recent research and unique aspects of rhabdovirus biology. Plant rhabdoviruses are transmitted by aphid, leafhopper or planthopper vectors, and the viruses replicate in both their insect and plant hosts. The two plant rhabdovirus genera, Nucleorhabdovirus and Cytorhabdovirus, can be distinguished on the basis of their intracellular site of morphogenesis in plant cells. All plant rhabdoviruses carry analogs of the five core genes: the nucleocapsid (N), phosphoprotein (P), matrix (M), glycoprotein (G) and large or polymerase (L). However, compared to vesiculoviruses that are composed of the five core genes, all plant rhabdoviruses encode more than these five genes, at least one of which is inserted between the P and M genes in the rhabdoviral genome. Interestingly, while these extra genes are not similar among plant rhabdoviruses, two encode proteins with similarity to the 30K superfamily of plant virus movement proteins. Analysis of nucleorhabdoviral protein sequences revealed nuclear localization signals for the N, P, M and L proteins, consistent with virus replication and morphogenesis of these viruses in the nucleus. Plant and insect factors that limit virus infection and transmission are discussed.

  1. Development of a new vector using Soybean yellow common mosaic virus for gene function study or heterologous protein expression in soybeans.

    PubMed

    Lim, Seungmo; Nam, Moon; Kim, Kil Hyun; Lee, Su-Heon; Moon, Jung-Kyung; Lim, Hyoun-Sub; Choung, Myoung-Gun; Kim, Sang-Mok; Moon, Jae Sun

    2016-02-01

    A new vector using Soybean yellow common mosaic virus (SYCMV) was constructed for gene function study or heterologous protein expression in soybeans. The in vitro transcript with a 5' cap analog m7GpppG from an SYCMV full-length infectious vector driven by a T7 promoter infected soybeans (pSYCMVT7-full). The symptoms observed in the soybeans infected with either the sap from SYCMV-infected leaves or pSYCMVT7-full were indistinguishable, suggesting that the vector exhibits equivalent biological activity as the virus itself. To utilize the vector further, a DNA-based vector driven by the Cauliflower mosaic virus (CaMV) 35S promoter was constructed. The complete sequence of the SYCMV genome was inserted into a binary vector flanked by a CaMV 35S promoter at the 5' terminus of the SYCMV genome and a cis-cleaving ribozyme sequence followed by a nopaline synthase terminator at the 3' terminus of the SYCMV genome (pSYCMV-full). The SYCMV-derived vector was tested for use as a virus-induced gene silencing (VIGS) vector for the functional analysis of soybean genes. VIGS constructs containing either a fragment of the Phytoene desaturase (PDS) gene (pSYCMV-PDS1) or a fragment of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RbcS) gene (pSYCMV-RbcS2) were constructed. Plants infiltrated with each vector using the Agrobacterium-mediated inoculation method exhibited distinct symptoms, such as photo-bleaching in plants infiltrated with pSYCMV-PDS1 and yellow or pale green coloring in plants infiltrated with pSYCMV-RbcS2. In addition, down-regulation of the transcripts of the two target genes was confirmed via northern blot analysis. Particle bombardment and direct plasmid DNA rubbing were also confirmed as alternative inoculation methods. To determine if the SYCMV vector can be used for the expression of heterologous proteins in soybean plants, the vector encoding amino acids 135-160 of VP1 of Foot-and-mouth disease virus (FMDV) serotype O1 Campos (O1C) was constructed (pSYCMV-FMDV). Plants infiltrated with pSYCMV-FMDV were only detected via western blotting using the O1C antibody. Based on these results, we propose that the SYCMV-derived vector can be used for gene function study or expression of useful heterologous proteins in soybeans. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Tightly regulated, high-level expression from controlled copy number vectors based on the replicon of temperate phage N15.

    PubMed

    Mardanov, Andrey V; Strakhova, Taisia S; Smagin, Vladimir A; Ravin, Nikolai V

    2007-06-15

    A new Escherichia coli host/vector system has been developed to allow a dual regulation of both the plasmid copy number and gene expression. The new pN15E vectors are low copy number plasmids based on the replicon of temperate phage N15, comprising the repA replicase gene and cB repressor gene, controlling the plasmid copy number. Regulation of pN15E copy number is achieved through arabinose-inducible expression of phage N15 antirepressor protein, AntA, whose gene was integrated into the chromosome of the host strain under control of the PBAD promoter. The host strain also carried phage N15 partition operon, sop, allowing stable inheritance of pN15E vectors in the absence of selection pressure. In the first vector, pN15E4, the same PBAD promoter controls expression of a cloned gene. The second vector, pN15E6, carries the phage T5 promoter with a double lac operator repression module thus allowing independent regulation of promoter activity and copy number. Using the lacZ gene to monitor expression in these vectors, we show that the ratio of induction/repression can be about 7600-fold for pN15E4 and more than 15,000-fold for pN15E6. The low copy number of these vectors ensures very low basal level of expression allowing cloning genes encoding toxic products that was demonstrated by the stable maintenance of a gene encoding a restriction endonuclease in pN15E4. The tight control of transcription and the potential to regulate gene activities quantitatively over wide ranges will open up new approaches in the study of gene function in vivo and controlled expression of heterologous genes.

  3. Identification and Cloning of gusA, Encoding a New β-Glucuronidase from Lactobacillus gasseri ADH†

    PubMed Central

    Russell, W. M.; Klaenhammer, T. R.

    2001-01-01

    The gusA gene, encoding a new β-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a β-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored β-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to β-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a β-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified β-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested. PMID:11229918

  4. The Env-like open reading frame of the baculovirus-integrated retrotransposon TED encodes a retrovirus-like envelope protein.

    PubMed

    Ozers, M S; Friesen, P D

    1996-12-15

    TED is a 7.5-kbp member of the gypsy family of retrotransposons that was first identified by its integration within the baculovirus DNA genome. This lepidopteran (moth) transposon contains three retrovirus-like genes, including functional gag and pol that yield reverse transcriptase-containing virus-like particles. To identify and characterize the product(s) of the third env-like open reading frame, TED ORF3 was expressed in homologous lepidopteran cells by using a baculovirus vector, vENV. Immunoblots and immunoprecipitations with antiserum raised against a bacterial ORF3-fusion protein detected two ORF3-encoded proteins, p68env and gp75env. On the basis of selective incorporation of [3H]mannose and inhibition of modification by tunicamycin which blocks N-linked glycosylation, gp75env is a glycoprotein derived from core precursor p68env. As predicted by the presence of a transmembrane domain near the carboxyl terminus, both p68env and gp75env were associated with heavy membranes of vENV-infected cells. Thus, TED ORF3 encodes a membrane glycoprotein with properties characteristic of retroviral env proteins. These data are consistent with the hypothesis that TED is an invertebrate retrovirus. Moreover, TED integration within the baculovirus genome provides an example of retroelement-mediated acquisition of host genes that may contribute to virus evolution.

  5. Molecular Cloning and Characterization of cDNA Encoding a Putative Stress-Induced Heat-Shock Protein from Camelus dromedarius

    PubMed Central

    Elrobh, Mohamed S.; Alanazi, Mohammad S.; Khan, Wajahatullah; Abduljaleel, Zainularifeen; Al-Amri, Abdullah; Bazzi, Mohammad D.

    2011-01-01

    Heat shock proteins are ubiquitous, induced under a number of environmental and metabolic stresses, with highly conserved DNA sequences among mammalian species. Camelus dromedaries (the Arabian camel) domesticated under semi-desert environments, is well adapted to tolerate and survive against severe drought and high temperatures for extended periods. This is the first report of molecular cloning and characterization of full length cDNA of encoding a putative stress-induced heat shock HSPA6 protein (also called HSP70B′) from Arabian camel. A full-length cDNA (2417 bp) was obtained by rapid amplification of cDNA ends (RACE) and cloned in pET-b expression vector. The sequence analysis of HSPA6 gene showed 1932 bp-long open reading frame encoding 643 amino acids. The complete cDNA sequence of the Arabian camel HSPA6 gene was submitted to NCBI GeneBank (accession number HQ214118.1). The BLAST analysis indicated that C. dromedaries HSPA6 gene nucleotides shared high similarity (77–91%) with heat shock gene nucleotide of other mammals. The deduced 643 amino acid sequences (accession number ADO12067.1) showed that the predicted protein has an estimated molecular weight of 70.5 kDa with a predicted isoelectric point (pI) of 6.0. The comparative analyses of camel HSPA6 protein sequences with other mammalian heat shock proteins (HSPs) showed high identity (80–94%). Predicted camel HSPA6 protein structure using Protein 3D structural analysis high similarities with human and mouse HSPs. Taken together, this study indicates that the cDNA sequences of HSPA6 gene and its amino acid and protein structure from the Arabian camel are highly conserved and have similarities with other mammalian species. PMID:21845074

  6. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae.

    PubMed

    Gritz, L; Davies, J

    1983-11-01

    The plasmid-borne gene hph coding for hygromycin B phosphotransferase (HPH) in Escherichia coli has been identified and its nucleotide sequence determined. The hph gene is 1026 nucleotides long, coding for a protein with a predicted Mr of 39 000. The hph gene was placed in a shuttle plasmid vector, downstream from the promoter region of the cyc 1 gene of Saccharomyces cerevisiae, and an hph construction containing a single AUG in the 5' noncoding region allowed direct selection following transformation in yeast and in E. coli. Thus the hph gene can be used in cloning vectors for both pro- and eukaryotes.

  7. Anti-apoptotic BCL-2 family proteins in acute neural injury

    PubMed Central

    Anilkumar, Ujval; Prehn, Jochen H. M.

    2014-01-01

    Cells under stress activate cell survival and cell death signaling pathways. Cell death signaling frequently converges on mitochondria, a process that is controlled by the activities of pro- and anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins. In this review, we summarize current knowledge on the control of neuronal survival, development and injury by anti-apoptotic BCL-2 family proteins. We discuss overlapping and differential effects of the individual family members BCL-2, BCL-extra long (BCL-XL), myeloid cell leukemia 1 (MCL-1), and BCL2-like 2 (BCL-W) in the control of survival during development and pathophysiological processes such as trophic factor withdrawal, ischemic injury, excitotoxicity, oxidative stress and energy stress. Finally we discuss recent evidence that several anti-apoptotic BCL-2 proteins influence mitochondrial bioenergetics and control neuronal Ca2+ homeostasis independent of their classical role in cell death signaling. PMID:25324720

  8. Anti-apoptotic BCL-2 family proteins in acute neural injury.

    PubMed

    Anilkumar, Ujval; Prehn, Jochen H M

    2014-01-01

    Cells under stress activate cell survival and cell death signaling pathways. Cell death signaling frequently converges on mitochondria, a process that is controlled by the activities of pro- and anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins. In this review, we summarize current knowledge on the control of neuronal survival, development and injury by anti-apoptotic BCL-2 family proteins. We discuss overlapping and differential effects of the individual family members BCL-2, BCL-extra long (BCL-XL), myeloid cell leukemia 1 (MCL-1), and BCL2-like 2 (BCL-W) in the control of survival during development and pathophysiological processes such as trophic factor withdrawal, ischemic injury, excitotoxicity, oxidative stress and energy stress. Finally we discuss recent evidence that several anti-apoptotic BCL-2 proteins influence mitochondrial bioenergetics and control neuronal Ca(2+) homeostasis independent of their classical role in cell death signaling.

  9. Development of a gene synthesis platform for the efficient large scale production of small genes encoding animal toxins.

    PubMed

    Sequeira, Ana Filipa; Brás, Joana L A; Guerreiro, Catarina I P D; Vincentelli, Renaud; Fontes, Carlos M G A

    2016-12-01

    Gene synthesis is becoming an important tool in many fields of recombinant DNA technology, including recombinant protein production. De novo gene synthesis is quickly replacing the classical cloning and mutagenesis procedures and allows generating nucleic acids for which no template is available. In addition, when coupled with efficient gene design algorithms that optimize codon usage, it leads to high levels of recombinant protein expression. Here, we describe the development of an optimized gene synthesis platform that was applied to the large scale production of small genes encoding venom peptides. This improved gene synthesis method uses a PCR-based protocol to assemble synthetic DNA from pools of overlapping oligonucleotides and was developed to synthesise multiples genes simultaneously. This technology incorporates an accurate, automated and cost effective ligation independent cloning step to directly integrate the synthetic genes into an effective Escherichia coli expression vector. The robustness of this technology to generate large libraries of dozens to thousands of synthetic nucleic acids was demonstrated through the parallel and simultaneous synthesis of 96 genes encoding animal toxins. An automated platform was developed for the large-scale synthesis of small genes encoding eukaryotic toxins. Large scale recombinant expression of synthetic genes encoding eukaryotic toxins will allow exploring the extraordinary potency and pharmacological diversity of animal venoms, an increasingly valuable but unexplored source of lead molecules for drug discovery.

  10. Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin.

    PubMed

    Okere, Isidore C; Chandler, Margaret P; McElfresh, Tracy A; Rennison, Julie H; Sharov, Victor; Sabbah, Hani N; Tserng, Kou-Yi; Hoit, Brian D; Ernsberger, Paul; Young, Martin E; Stanley, William C

    2006-07-01

    Fatty acids are the primary fuel for the heart and are ligands for peroxisome proliferator-activated receptors (PPARs), which regulate the expression of genes encoding proteins involved in fatty acid metabolism. Saturated fatty acids, particularly palmitate, can be converted to the proapoptotic lipid intermediate ceramide. This study assessed cardiac function, expression of PPAR-regulated genes, and cardiomyocyte apoptosis in rats after 8 wk on either a low-fat diet [normal chow control (NC); 10% fat calories] or high-fat diets composed mainly of either saturated (Sat) or unsaturated fatty acids (Unsat) (60% fat calories) (n = 10/group). The Sat group had lower plasma insulin and leptin concentrations compared with the NC or Unsat groups. Cardiac function and mass and body mass were not different. Cardiac triglyceride content was increased in the Sat and Unsat groups compared with NC (P < 0.05); however, ceramide content was higher in the Sat group compared with the Unsat group (2.9 +/- 0.2 vs. 1.4 +/- 0.2 nmol/g; P < 0.05), whereas the NC group was intermediate (2.3 +/- 0.3 nmol/g). The number of apoptotic myocytes, assessed by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling staining, was higher in the Sat group compared with the Unsat group (0.28 +/- 0.05 vs. 0.17 +/- 0.04 apoptotic cells/1,000 nuclei; P < 0.04) and was positively correlated to ceramide content (P < 0.02). Both high-fat diets increased the myocardial mRNA expression of the PPAR-regulated genes encoding uncoupling protein-3 and pyruvate dehydrogenase kinase-4, but only the Sat diet upregulated medium-chain acyl-CoA dehydrogenase. In conclusion, dietary fatty acid composition affects cardiac ceramide accumulation, cardiomyocyte apoptosis, and expression of PPAR-regulated genes independent of cardiac mass or function.

  11. Lentiviral vectors encoding shRNAs efficiently transduce and knockdown LINGO-1 but induce an interferon response and cytotoxicity in CNS neurons

    PubMed Central

    Hutson, Thomas H.; Foster, Edmund; Dawes, John M.; Hindges, Robert; Yáñez-Muñoz, Rafael J.; Moon, Lawrence D.F.

    2017-01-01

    Background Knocking down neuronal LINGO-1 using short hairpin RNAs (shRNAs) might enhance axon regeneration in the CNS. Integration-deficient lentiviral vectors have great potential as a therapeutic delivery system for CNS injuries. However, recent studies have revealed that shRNAs can induce an interferon response resulting in off-target effects and cytotoxicity. Methods CNS neurons were transduced with integration-deficient lentiviral vectors in vitro. The transcriptional effect of shRNA expression was analysed using qRT-PCR and northern blots were used to assess shRNA production. Results Integration-deficient lentiviral vectors efficiently transduced CNS neurons and knocked down LINGO-1 mRNA in vitro. However, an increase in cell death was observed when lentiviral vectors encoding an shRNA were applied or when high vector concentrations were used. We demonstrate that high doses of vector or the use of vectors encoding shRNAs can induce an up-regulation of interferon stimulated genes (OAS1 and PKR) and a down-regulation of off- target genes (including p75NTR and NgR1). Furthermore, the northern blot demonstrated that these negative consequences occur even when lentiviral vectors express low levels of shRNAs. Together, these results may explain why neurite outgrowth was not enhanced on an inhibitory substrate after transduction with lentiviral vectors encoding an shRNA targeting LINGO-1. Conclusions These findings highlight the importance of including appropriate controls to verify silencing specificity and the requirement to check for an interferon response when conducting RNA interference experiments. However, the potential benefits that RNA interference and viral vectors offer to gene-based therapies to CNS injuries cannot be overlooked and demand further investigation. PMID:22499506

  12. The low expression of Dmrt7 is associated with spermatogenic arrest in cattle-yak.

    PubMed

    Yan, Ping; Xiang, Lin; Guo, Xian; Bao, Peng-Jia; Jin, Shuai; Wu, Xiao-Yun

    2014-11-01

    Dmrt7 is a member of the DM domain family of genes. Dmrt7 deficiency is also a strong candidate as a cause for male cattle-yak infertility, as it is regarded as essential for male spermatogenesis, between the pachynema and diplonema stages. In our study, the coding region sequence of yak and cattle-yak Dmrt7 was cloned by molecular cloning techniques, and the sequence, conserved domains, functional sites, and secondary and tertiary structures of the Dmrt7-encoded protein were predicted and analyzed using bioinformatics methods. The coding region sequences of the Dmrt7 gene, encoding 370 amino acids, were consistent in yak and cattle-yak. The protein encoded by yak and cattle-yak Dmrt7 contains a DM domain. We detected Dmrt7 mRNA expression in testis, but not in any other tissue. Dmrt7 mRNA and protein expression was significantly higher in testis of cattle and yak than that in cattle-yak (p < 0.01). Histological analysis indicated that seminiferous tubules in male cattle-yak were highly vacuolated and contained primarily Sertoli cells and spermatogonia, while those of cattle and yak contained abundant primary spermatocytes. Male cattle-yak testis contained a significantly larger number of apoptotic cells than those in cattle and yak assessed by terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) analysis. The accumulation of SCP3-positive spermatocytes indicated the arrest of spermatogenesis at the pachynema stage in the cattle-yak. These results suggest low levels of Dmrt7 expression lead to male sterility in cattle-yak. The molecular function of Dmrt7 and the regulation of its expression warrant need to be examined in future studies.

  13. TIPE attenuates the apoptotic effect of radiation and cisplatin and promotes tumor growth via JNK and p38 activation in Raw264.7 and EL4 cells.

    PubMed

    Liu, Yao; Ni, Xiao Yan; Chen, Rui Ling; Li, Juan; Gao, Feng Guang

    2018-06-01

    Tumor necrosis factor α‑induced protein 8 (TIPE) is highly expressed in many types of malignancies. Apoptosis is the process of programmed cell death which maintains the balance of cell survival and death. TIPE is involved in the carcinogenesis of many tumor types, yet the exact role of TIPE in defective apoptosis‑associated carcinogenesis remains uncertain. In the present study, TIPE‑overexpressing Raw264.7 and EL4 cells and vector control cells were treated with 4 mJ/cm2 ultraviolet radiation or 2 µg/ml cisplatin. Following ultraviolet irradiation, TIPE overexpression decreased the percentage of apoptotic cells as detected by flow cytometric and reversed the cisplatin‑mediated decrease in mitochondrial membrane potential by JC‑1 assay. Western blot analyses also revealed that TIPE overexpression inhibited cisplatin‑induced activation of caspase‑3 and ‑9 and PARP. Secondly, TIPE overexpression increased the levels of phosphorylated JNK, MEK and p38. Moreover, inhibition of JNK and p38, but not MEK, efficiently abolished the cell pro‑survival effect of TIPE. Most importantly, an in vivo tumor implantation model revealed that TIPE overexpression augmented the volume and weight of the implanted tumors, indicating that TIPE facilitated tumor formation. We found that TIPE exhibited an anti‑apoptotic effect via JNK and p38 activation, which ultimately promoted tumor. Hence, the present study revealed that activation of JNK and p38 kinases contribute to the TIPE‑mediated anti‑apoptotic effect, indicating that JNK and p38 may be potential therapeutic molecules for TIPE overexpression‑associated diseases.

  14. Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes.

    PubMed

    Shemarova, Irina V

    2010-04-01

    In unicellular eukaryotes, apoptosis-like cell death occurs during development, aging and reproduction, and can be induced by environmental stresses and exposure to toxic agents. The essence of the apoptotic machinery in unicellular organisms is similar to that in mammals, but the apoptotic signal network is less complex and of more ancient origin. The review summarizes current data about key apoptotic proteins and mechanisms of the transduction of apoptotic signals by caspase-like proteases and mitochondrial apoptogenic proteins in unicellular eukaryotes. The roles of receptor-dependent and receptor-independent caspase cascades are reviewed. 2010 Elsevier Inc. All rights reserved.

  15. Vector Adaptive/Predictive Encoding Of Speech

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey; Gersho, Allen

    1989-01-01

    Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.

  16. Molecular Characterization of Mosquitocidal Toxin (Surface Layer Protein, SLP) from Bacillus cereus VCRC B540.

    PubMed

    Mani, Chinnasamy; Selvakumari, Jeyaperumal; Han, YeonSoo; Jo, YongHun; Thirugnanasambantham, Krishnaraj; Sundarapandian, Somaiah; Poopathi, Subbiah

    2018-04-01

    A marine Bacillus cereus (VCRC B540) with mosquitocidal effect was recently reported from red snapper fish (Lutjanus sanguineous) gut and surface layer protein (S-layer protein, SLP) was reported to be mosquito larvicidal factor. In this present study, the gene encoding the surface layer protein was amplified from the genomic DNA and functionally characterized. Amplification of SLP-encoding gene revealed 1,518 bp PCR product, and analysis of the sequence revealed the presence of 1482 bp open reading frame with coding capacity for a polypeptide of 493 amino acids. Phylogenetic analysis revealed with homology among closely related Bacillus cereus groups of organisms as well as Bacillus strains. Removal of nucleotides encoding signaling peptide revealed the functional cloning fragment of length 1398 bp. Theoretical molecular weight (51.7 kDa) and isoelectric point (5.99) of the deduced functional SLP protein were predicted using ProtParam. The amplified PCR product was cloned into a plasmid vector (pGEM-T), and the open reading frame free off signaling peptide was subsequently cloned inpET-28a(+) and expressed in Escherichia coli BL21 (DE3). The isopropyl-β-D-thiogalactopyranoside (IPTG)-induced recombinant SLP was confirmed using western blotting, and functional SLP revealed mosquito larvicidal property. Therefore, the major findings revealed that SLP is a factor responsible for mosquitocidal activity, and the molecular characterization of this toxin was extensively studied.

  17. Binding affinity of pro-apoptotic BH3 peptides for the anti-apoptotic Mcl-1 and A1 proteins: Molecular dynamics simulations of Mcl-1 and A1 in complex with six different BH3 peptides.

    PubMed

    Modi, Vivek; Sankararamakrishnan, Ramasubbu

    2017-05-01

    The anti-apoptotic members of Bcl-2 family of proteins bind to their pro-apoptotic counterparts to induce or prevent cell death.Based on the distinct binding profiles for specific pro-apoptotic BH3 peptides, the anti-apoptotic Bcl-2 proteins can be divided into at least two subclasses. The subclass that includes Bcl-X L binds strongly to Bad BH3 peptide while it has weak binding affinity for the second subclass of Bcl-2 proteins such as Mcl-1 and A1. Anti-apoptotic Bcl-2 proteins are considered to be attractive drug targets for anti-cancer drugs. BH3-mimetic inhibitors such as ABT-737 have been shown to be specific to Bcl-X L subclass while Mcl-1 and A1 show resistance to the same drug. An efficacious inhibitor should target all the anti-apoptotic Bcl-2 proteins. Hence, development of inhibitors selective to Mcl-1 and A1 is of prime importance for targeted cancer therapeutics. The first step to achieve this goal is to understand the molecular basis of high binding affinities of specific pro-apoptotic BH3 peptides for Mcl-1 and A1. To understand the interactions between the BH3 peptides and Mcl-1/A1, we performed multi-nanosecond molecular dynamics (MD) simulations of six complex structures of Mcl-1 and A1. With the exception of Bad, all complex structures were experimentally determined. Bad complex structures were modeled. Our simulation studies identified specific pattern of polar interactions between Mcl-1/A1 and high-affinity binding BH3 peptides. The lack of such polar interactions in Bad peptide complex is attributed to specific basic residues present before and after the highly conserved Leu residue. The close approach of basic residues in Bad and Mcl-1/A1 is hypothesized to be the cause of weak binding affinity. To test this hypothesis, we generated in silico mutants of these basic residues in Bad peptide and Mcl-1/A1 proteins. MD simulations of the mutant systems established the pattern of stable polar interactions observed in high-affinity binding BH3 peptides. We have thus identified specific residue positions in Bad and Mcl-1/A1 responsible for the weak binding affinity. Results from these simulation studies will aid in the development of inhibitors specific to Mcl-1 and A1 proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries.

    PubMed

    Scanlon, Thomas C; Gray, Elizabeth C; Griswold, Karl E

    2009-11-20

    In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the most widely used eukaryotic platform for cell surface display, combinatorial protein engineering, and other recombinant library screens. In order to characterize the extent and nature of multiple vector transformants in this important host, plasmid-born gene libraries constructed by yeast homologous recombination were analyzed by DNA sequencing. It was found that up to 90% of clones in yeast homologous recombination libraries may be multiple vector transformants, that on average these clones bear four or more unique mutant genes, and that these multiple vector cells persist as a significant proportion of library populations for greater than 24 hours during liquid outgrowth. Both vector concentration and vector to insert ratio influenced the library proportion of multiple vector transformants, but their population frequency was independent of transformation efficiency. Interestingly, the average number of plasmids born by multiple vector transformants did not vary with their library population proportion. These results highlight the potential for multiple vector transformants to dominate yeast libraries constructed by homologous recombination. The previously unrecognized prevalence and persistence of multiply transformed yeast cells have important implications for yeast library screens. The quantitative information described herein should increase awareness of this issue, and the rapid sequencing approach developed for these studies should be widely useful for identifying multiple vector transformants and avoiding complications associated with cells that have acquired more than one unique plasmid.

  19. Cloning, enhanced expression and characterization of an α-amylase gene from a wild strain in B. subtilis WB800.

    PubMed

    Chen, Jing; Chen, Xianghua; Dai, Jun; Xie, Guangrong; Yan, Luying; Lu, Lina; Chen, Jianhua

    2015-09-01

    A Bacillus strain with high productivity of α-amylase isolated from a starch farm was identified as Bacillus amyloliquefaciens. The α-amylase encoding gene amy1 was cloned into pMD18-T vector and amplified in E. coli DH5α. Shuttle vector pP43MNX was reconstructed to obtain vector pP43X for heterologous expression of the α-amylase in B. subtilis WB800. Recombinant enzyme was sufficiently purified by precipitation, gel filtration and anion exchange with a specific activity of 5566 U/mg. The α-amylase sequence contains an open reading frame of 1545 bp, which encodes a protein of 514 amino acid residues with a predicted molecular mass of 58.4 kDa. The enzyme exhibited maximal activity at pH 6.0 and 60 °C. Catalytic efficiency of the recombinant α-amylase was inhibited by Hg(2+), Pb(2+) and Cu(2+), but stimulated by Li(+), Mn(2+) and Ca(2+). The purified enzyme showed decreased activity toward detergents (SDS, Tween 20 and Triton X-100). Compared with production by the wild strain, there was a 1.48-fold increase in the productivity of α-amylase in recombinant B. subtilis WB800. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [HMGA proteins and their genes as a potential neoplastic biomarkers].

    PubMed

    Balcerczak, Ewa; Balcerczak, Mariusz; Mirowski, Marek

    2005-01-01

    HMGA proteins and their genes are described in this article. HMGA proteins reveal ability to bind DNA in AT-rich regions, which are characteristic for gene promoter sequences. This interaction lead to gene silencing or their overexpression. In normal tissue HMGA proteins level is low or even undetectable. During embriogenesis their level is increasing. High HMGA proteins level is characteristic for tumor phenotype of spontaneous and experimental malignant neoplasms. High HMGA proteins expression correlate with bad prognostic factors and with metastases formation. HMGA genes expression can be used as a marker of tumor progression. Present studies connected with tumor gene therapy based on HMGA proteins sythesis inhibition by the use of viral vectors containing gene encoding these proteins in antisence orientation, as well as a new potential anticancer drugs acting as crosslinkers between DNA and HMGA proteins suggest their usefulness as a targets in cancer therapy.

  1. Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis

    PubMed Central

    Nichols, Daniel Brian; De Martini, William; Cottrell, Jessica

    2017-01-01

    Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence. PMID:28786952

  2. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    PubMed

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  3. Induction of protective and therapeutic antitumor immunity by a DNA vaccine with C3d as a molecular adjuvant.

    PubMed

    Xu, Gui-lian; Zhang, Ke-qin; Guo, Bo; Zhao, Ting-ting; Yang, Fei; Jiang, Man; Wang, Qing-hong; Shang, Yu-hang; Wu, Yu-zhang

    2010-10-18

    Although the critical role of complement component C3d as a molecular adjuvant in preventing virus infection is well established, its role in cancer therapies is unclear. In this study, we have engineered a DNA vaccine that expresses extracellular region of murine VEGFR-2 (FLK1(265-2493)) and 3 copies of C3d (C3d3), a component of complement as a molecular adjuvant, designed to increase antitumor immunity. VEGFR-2 has a more restricted expression on endothelial cells and is upregulated once these cells proliferate during angiogenesis in the tumor vasculature. Immunization of mice with vector encoding FLK1(265-2493) alone generated only background levels of anti-VEGFR-2 antibodies and slight inhibitory effect on tumor growth. However, the addition of C3d3 to the vaccine construct significantly augmented the anti-VEGFR-2 humoral immune response and inhibited the tumor growth. The antitumor activity induced by vaccination with vector encoding FLK1(265-2493)-C3d3 fusion protein was also demonstrated via growth inhibition of established tumors following passive transfer of immune serum from vaccinated mice. Our results suggest that vaccination with vector encoding FLK1(265-2493) with C3d3 as a molecular adjuvant induces adaptive humoral activity, which is directed against the murine VEGFR-2 and can significantly inhibit tumor growth, and that administration of C3d as a molecular adjuvant to increase antibodies levels to VEGFR-2 may provide an alternative treatment modality for cancer therapies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Full-Genome Characterisation of Orungo, Lebombo and Changuinola Viruses Provides Evidence for Co-Evolution of Orbiviruses with Their Arthropod Vectors

    PubMed Central

    Mohd Jaafar, Fauziah; Belhouchet, Mourad; Belaganahalli, Manjunatha; Tesh, Robert B.; Mertens, Peter P. C.; Attoui, Houssam

    2014-01-01

    The complete genomes of Orungo virus (ORUV), Lebombo virus (LEBV) and Changuinola virus (CGLV) were sequenced, confirming that they each encode 11 distinct proteins (VP1-VP7 and NS1-NS4). Phylogenetic analyses of cell-attachment protein ‘outer-capsid protein 1′ (OC1), show that orbiviruses fall into three large groups, identified as: VP2(OC1), in which OC1 is the 2nd largest protein, including the Culicoides transmitted orbiviruses; VP3(OC1), which includes the mosquito transmitted orbiviruses; and VP4(OC1) which includes the tick transmitted viruses. Differences in the size of OC1 between these groups, places the T2 ‘subcore-shell protein’ as the third largest protein ‘VP3(T2)’ in the first of these groups, but the second largest protein ‘VP3(T2)’ in the other two groups. ORUV, LEBV and CGLV all group with the Culicoides-borne VP2(OC1)/VP3(T2) viruses. The G+C content of the ORUV, LEBV and CGLV genomes is also similar to that of the Culicoides-borne, rather than the mosquito-borne, or tick borne orbiviruses. These data suggest that ORUV and LEBV are Culicoides- rather than mosquito-borne. Multiple isolations of CGLV from sand flies suggest that they are its primary vector. OC1 of the insect-borne orbiviruses is approximately twice the size of the equivalent protein of the tick borne viruses. Together with internal sequence similarities, this suggests its origin by duplication (concatermerisation) of a smaller OC1 from an ancestral tick-borne orbivirus. Phylogenetic comparisons showing linear relationships between the dates of evolutionary-separation of their vector species, and genetic-distances between tick-, mosquito- or Culicoides-borne virus-groups, provide evidence for co-evolution of the orbiviruses with their arthropod vectors. PMID:24475112

  5. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer.

    PubMed

    Buchlis, George; Podsakoff, Gregory M; Radu, Antonetta; Hawk, Sarah M; Flake, Alan W; Mingozzi, Federico; High, Katherine A

    2012-03-29

    In previous work we transferred a human factor IX-encoding adeno-associated viral vector (AAV) into skeletal muscle of men with severe hemophilia B. Biopsy of injected muscle up to 1 year after vector injection showed evidence of gene transfer by Southern blot and of protein expression by IHC and immunofluorescent staining. Although the procedure appeared safe, circulating F.IX levels remained subtherapeutic (< 1%). Recently, we obtained muscle tissue from a subject injected 10 years earlier who died of causes unrelated to gene transfer. Using Western blot, IHC, and immunofluorescent staining, we show persistent factor IX expression in injected muscle tissue. F.IX transcripts were detected in injected skeletal muscle using RT-PCR, and isolated whole genomic DNA tested positive for the presence of the transferred AAV vector sequence. This is the longest reported transgene expression to date from a parenterally administered AAV vector, with broad implications for the future of muscle-directed gene transfer.

  6. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer

    PubMed Central

    Buchlis, George; Podsakoff, Gregory M.; Radu, Antonetta; Hawk, Sarah M.; Flake, Alan W.; Mingozzi, Federico

    2012-01-01

    In previous work we transferred a human factor IX–encoding adeno-associated viral vector (AAV) into skeletal muscle of men with severe hemophilia B. Biopsy of injected muscle up to 1 year after vector injection showed evidence of gene transfer by Southern blot and of protein expression by IHC and immunofluorescent staining. Although the procedure appeared safe, circulating F.IX levels remained subtherapeutic (< 1%). Recently, we obtained muscle tissue from a subject injected 10 years earlier who died of causes unrelated to gene transfer. Using Western blot, IHC, and immunofluorescent staining, we show persistent factor IX expression in injected muscle tissue. F.IX transcripts were detected in injected skeletal muscle using RT-PCR, and isolated whole genomic DNA tested positive for the presence of the transferred AAV vector sequence. This is the longest reported transgene expression to date from a parenterally administered AAV vector, with broad implications for the future of muscle-directed gene transfer. PMID:22271447

  7. Identification of human ferritin, heavy polypeptide 1 (FTH1) and yeast RGI1 (YER067W) as pro-survival sequences that counteract the effects of Bax and copper in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eid, Rawan; Department of Biology, Queen's University, Kingston, Ontario; Boucher, Eric

    Ferritin is a sub-family of iron binding proteins that form multi-subunit nanotype iron storage structures and prevent oxidative stress induced apoptosis. Here we describe the identification and characterization of human ferritin, heavy polypeptide 1 (FTH1) as a suppressor of the pro-apoptotic murine Bax sequence in yeast. In addition we demonstrate that FTH1 is a general pro-survival sequence since it also prevents the cell death inducing effects of copper when heterologously expressed in yeast. Although ferritins are phylogenetically widely distributed and are present in most species of Bacteria, Archaea and Eukarya, ferritin is conspicuously absent in most fungal species including Saccharomycesmore » cerevisiae. An in silico analysis of the yeast proteome lead to the identification of the 161 residue RGI1 (YER067W) encoded protein as a candidate for being a yeast ferritin. In addition to sharing 20% sequence identity with the 183 residue FTH1, RGI1 also has similar pro-survival properties as ferritin when overexpressed in yeast. Analysis of recombinant protein by SDS-PAGE and by electron microscopy revealed the expected formation of higher-order structures for FTH1 that was not observed with Rgi1p. Further analysis revealed that cells overexpressing RGI1 do not show increased resistance to iron toxicity and do not have enhanced capacity to store iron. In contrast, cells lacking RGI1 were found to be hypersensitive to the toxic effects of iron. Overall, our results suggest that Rgi1p is a novel pro-survival protein whose function is not related to ferritin but nevertheless it may have a role in regulating yeast sensitivity to iron stress. - Highlights: • Human ferritin, heavy polypeptide 1 (FTH1) was identified as a suppressor of the pro-apoptotic Bax in yeast. • Based on its similarity to ferritin we examined Rgi1p/YER067W for potential ferritin like functions. • Like human H-ferritin, RGI1 confers increased resistance to apoptotic inducing stresses in yeast. • Rgi1p is a pro-survival protein that is not a ferritin but that may play a role in iron metabolism of yeast.« less

  8. Phosphorylation of Puma modulates its apoptotic function by regulating protein stability

    PubMed Central

    Fricker, M; O'Prey, J; Tolkovsky, A M; Ryan, K M

    2010-01-01

    Puma is a potent BH3-only protein that antagonises anti-apoptotic Bcl-2 proteins, promotes Bax/Bak activation and has an essential role in multiple apoptotic models. Puma expression is normally kept very low, but can be induced by several transcription factors including p53, p73, E2F1 and FOXO3a, whereby it can induce an apoptotic response. As Puma can to bind and inactivate all anti-apoptotic members of the Bcl-2 family, its activity must be tightly controlled. We report here, for the first time, evidence that Puma is subject to post-translational control through phosphorylation. We show that Puma is phosphorylated at multiple sites, with the major site of phosphorylation being serine 10. Replacing serine 10 with alanine causes reduced Puma turnover and enhanced cell death. Interestingly, Puma turnover occurs through the proteasome, and substitution of serine 10 causes elevated Puma levels independently of macroautophagy, Bcl-2 family member binding, caspase activity and apoptotic death. We conclude, therefore, that phosphorylation of Puma at serine 10 promotes Puma turnover, represses Puma's cell death potential and promotes cell survival. Owing to the highly pro-apoptotic nature of Puma, these studies highlight an important additional regulatory step in the determination of cellular life or death. PMID:21364664

  9. Perturbations in the apoptotic pathway and mitochondrial network dynamics in peripheral blood mononuclear cells from bipolar disorder patients

    PubMed Central

    Scaini, G; Fries, G R; Valvassori, S S; Zeni, C P; Zunta-Soares, G; Berk, M; Soares, J C; Quevedo, J

    2017-01-01

    Bipolar disorder (BD) is a severe psychiatric disorder characterized by phasic changes of mood and can be associated with progressive structural brain change and cognitive decline. The numbers and sizes of glia and neurons are reduced in several brain areas, suggesting the involvement of apoptosis in the pathophysiology of BD. Because the changes in mitochondrial dynamics are closely related with the early process of apoptosis and the specific processes of apoptosis and mitochondrial dynamics in BD have not been fully elucidated, we measured the apoptotic pathway and the expression of mitochondrial fission/fusion proteins from BD patients and healthy controls. We recruited 16 patients with BD type I and sixteen well-matched healthy controls and investigated protein levels of several pro-apoptotic and anti-apoptotic factors, as well as the expression of mitochondrial fission/fusion proteins in peripheral blood mononuclear cells (PBMCs). Our results showed that the levels of the anti-apoptotic proteins Bcl-xL, survivin and Bcl-xL/Bak dimer were significantly decreased, while active caspase-3 protein levels were significantly increased in PBMCs from BD patients. Moreover, we observed the downregulation of the mitochondrial fusion-related proteins Mfn2 and Opa1 and the upregulation of the fission protein Fis1 in PBMCs from BD patients, both in terms of gene expression and protein levels. We also showed a significantly decrease in the citrate synthase activity. Finally, we found a positive correlation between Mfn2 and Opa1 with mitochondrial content markers, as well as a negative correlation between mitochondrial fission/fusion proteins and apoptotic markers. Overall, data reported here are consistent with the working hypothesis that apoptosis may contribute to cellular dysfunction, brain volume loss and progressive cognitive in BD. Moreover, we show an important relationship between mitochondrial dynamics and the cell death pathway activation in BD patients, supporting the link between mitochondrial dysfunction and the pathophysiology of BD. PMID:28463235

  10. Method and System for Temporal Filtering in Video Compression Systems

    NASA Technical Reports Server (NTRS)

    Lu, Ligang; He, Drake; Jagmohan, Ashish; Sheinin, Vadim

    2011-01-01

    Three related innovations combine improved non-linear motion estimation, video coding, and video compression. The first system comprises a method in which side information is generated using an adaptive, non-linear motion model. This method enables extrapolating and interpolating a visual signal, including determining the first motion vector between the first pixel position in a first image to a second pixel position in a second image; determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image; determining a third motion vector between the first pixel position in the first image and the second pixel position in the second image, the second pixel position in the second image, and the third pixel position in the third image using a non-linear model; and determining a position of the fourth pixel in a fourth image based upon the third motion vector. For the video compression element, the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a decoder. The encoder converts the source frame into a space-frequency representation, estimates the conditional statistics of at least one vector of space-frequency coefficients with similar frequencies, and is conditioned on previously encoded data. It estimates an encoding rate based on the conditional statistics and applies a Slepian-Wolf code with the computed encoding rate. The method for decoding includes generating a side-information vector of frequency coefficients based on previously decoded source data and encoder statistics and previous reconstructions of the source frequency vector. It also performs Slepian-Wolf decoding of a source frequency vector based on the generated side-information and the Slepian-Wolf code bits. The video coding element includes receiving a first reference frame having a first pixel value at a first pixel position, a second reference frame having a second pixel value at a second pixel position, and a third reference frame having a third pixel value at a third pixel position. It determines a first motion vector between the first pixel position and the second pixel position, a second motion vector between the second pixel position and the third pixel position, and a fourth pixel value for a fourth frame based upon a linear or nonlinear combination of the first pixel value, the second pixel value, and the third pixel value. A stationary filtering process determines the estimated pixel values. The parameters of the filter may be predetermined constants.

  11. Retroviral vectors encoding ADA regulatory locus control region provide enhanced T-cell-specific transgene expression.

    PubMed

    Trinh, Alice T; Ball, Bret G; Weber, Erin; Gallaher, Timothy K; Gluzman-Poltorak, Zoya; Anderson, French; Basile, Lena A

    2009-12-30

    Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements in T-cell specific gene expression were observed with the incorporation of additional cis-regulatory elements, such as a human polyadenylation signal and intron 7 from the human ADA gene. These studies suggest that the combination of an authentically regulated ADA gene in a murine retroviral vector, together with additional locus-specific regulatory refinements, will yield a vector with a safer profile and greater efficacy in terms of high-level, therapeutic, regulated gene expression for the treatment of ADA-deficient severe combined immunodeficiency.

  12. Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis.

    PubMed

    Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A

    2013-03-07

    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na(+)/Ca(2+) exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na(+)/K(+) pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.

  13. Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis

    PubMed Central

    Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A

    2013-01-01

    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis. PMID:23470534

  14. Under-Expression of Chemosensory Genes in Domiciliary Bugs of the Chagas Disease Vector Triatoma brasiliensis

    PubMed Central

    Marchant, Axelle; Mougel, Florence; Jacquin-Joly, Emmanuelle; Costa, Jane; Almeida, Carlos Eduardo; Harry, Myriam

    2016-01-01

    Background In Latin America, the bloodsucking bugs Triatominae are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical elimination programs have been launched to control Chagas disease vectors. However, the disease persists because native vectors from sylvatic habitats are able to (re)colonize houses—a process called domiciliation. Triatoma brasiliensis is one example. Because the chemosensory system allows insects to interact with their environment and plays a key role in insect adaption, we conducted a descriptive and comparative study of the chemosensory transcriptome of T. brasiliensis samples from different ecotopes. Methodology/Principal Finding In a reference transcriptome built using de novo assembly, we found transcripts encoding 27 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), 3 odorant receptors (ORs), 5 transient receptor potential channel (TRPs), 1 sensory neuron membrane protein (SNMPs), 25 takeout proteins, 72 cytochrome P450s, 5 gluthatione S-transferases, and 49 cuticular proteins. Using protein phylogenies, we showed that most of the OBPs and CSPs for T. brasiliensis had well supported orthologs in the kissing bug Rhodnius prolixus. We also showed a higher number of these genes within the bloodsucking bugs and more generally within all Hemipterans compared to the other species in the super-order Paraneoptera. Using both DESeq2 and EdgeR software, we performed differential expression analyses between samples of T. brasiliensis, taking into account their environment (sylvatic, peridomiciliary and domiciliary) and sex. We also searched clusters of co-expressed contigs using HTSCluster. Among differentially expressed (DE) contigs, most were under-expressed in the chemosensory organs of the domiciliary bugs compared to the other samples and in females compared to males. We clearly identified DE genes that play a role in the chemosensory system. Conclusion/Significance Chemosensory genes could be good candidates for genes that contribute to adaptation or plastic rearrangement to an anthropogenic system. The domiciliary environment probably includes less diversity of xenobiotics and probably has more stable abiotic parameters than do sylvatic and peridomiciliary environments. This could explain why both detoxification and cuticle protein genes are less expressed in domiciliary bugs. Understanding the molecular basis for how vectors adapt to human dwellings may reveal new tools to control disease vectors; for example, by disrupting chemical communication. PMID:27792774

  15. Under-Expression of Chemosensory Genes in Domiciliary Bugs of the Chagas Disease Vector Triatoma brasiliensis.

    PubMed

    Marchant, Axelle; Mougel, Florence; Jacquin-Joly, Emmanuelle; Costa, Jane; Almeida, Carlos Eduardo; Harry, Myriam

    2016-10-01

    In Latin America, the bloodsucking bugs Triatominae are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical elimination programs have been launched to control Chagas disease vectors. However, the disease persists because native vectors from sylvatic habitats are able to (re)colonize houses-a process called domiciliation. Triatoma brasiliensis is one example. Because the chemosensory system allows insects to interact with their environment and plays a key role in insect adaption, we conducted a descriptive and comparative study of the chemosensory transcriptome of T. brasiliensis samples from different ecotopes. In a reference transcriptome built using de novo assembly, we found transcripts encoding 27 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), 3 odorant receptors (ORs), 5 transient receptor potential channel (TRPs), 1 sensory neuron membrane protein (SNMPs), 25 takeout proteins, 72 cytochrome P450s, 5 gluthatione S-transferases, and 49 cuticular proteins. Using protein phylogenies, we showed that most of the OBPs and CSPs for T. brasiliensis had well supported orthologs in the kissing bug Rhodnius prolixus. We also showed a higher number of these genes within the bloodsucking bugs and more generally within all Hemipterans compared to the other species in the super-order Paraneoptera. Using both DESeq2 and EdgeR software, we performed differential expression analyses between samples of T. brasiliensis, taking into account their environment (sylvatic, peridomiciliary and domiciliary) and sex. We also searched clusters of co-expressed contigs using HTSCluster. Among differentially expressed (DE) contigs, most were under-expressed in the chemosensory organs of the domiciliary bugs compared to the other samples and in females compared to males. We clearly identified DE genes that play a role in the chemosensory system. Chemosensory genes could be good candidates for genes that contribute to adaptation or plastic rearrangement to an anthropogenic system. The domiciliary environment probably includes less diversity of xenobiotics and probably has more stable abiotic parameters than do sylvatic and peridomiciliary environments. This could explain why both detoxification and cuticle protein genes are less expressed in domiciliary bugs. Understanding the molecular basis for how vectors adapt to human dwellings may reveal new tools to control disease vectors; for example, by disrupting chemical communication.

  16. Stable and Efficient Gene Transfer into the Retina Using an HIV-Based Lentiviral Vector

    NASA Astrophysics Data System (ADS)

    Miyoshi, Hiroyuki; Takahashi, Masayo; Gage, Fred H.; Verma, Inder M.

    1997-09-01

    The development of methods for efficient gene transfer to terminally differentiated retinal cells is important to study the function of the retina as well as for gene therapy of retinal diseases. We have developed a lentiviral vector system based on the HIV that can transduce terminally differentiated neurons of the brain in vivo. In this study, we have evaluated the ability of HIV vectors to transfer genes into retinal cells. An HIV vector containing a gene encoding the green fluorescent protein (GFP) was injected into the subretinal space of rat eyes. The GFP gene under the control of the cytomegalovirus promoter was efficiently expressed in both photoreceptor cells and retinal pigment epithelium. However, the use of the rhodopsin promoter resulted in expression predominantly in photoreceptor cells. Most successfully transduced eyes showed that photoreceptor cells in >80% of the area of whole retina expressed the GFP. The GFP expression persisted for at least 12 weeks with no apparent decrease. The efficient gene transfer into photoreceptor cells by HIV vectors will be useful for gene therapy of retinal diseases such as retinitis pigmentosa.

  17. Development of replication-competent viral vectors for HIV vaccine delivery

    PubMed Central

    Parks, Christopher L.; Picker, Louis J.; King, C. Richter

    2014-01-01

    Purpose of review Briefly describe some of the replication-competent (RC) vectors being investigated for development of candidate HIV vaccines focusing primarily on technologies that have advanced to testing in macaques or have entered clinical trials. Recent findings RC viral vectors have advanced to the stage were decisions can be made regarding future development of HIV vaccines. The viruses being used as RC vector platforms vary considerably, and their unique attributes make it possible to test multiple vaccine design concepts and also mimic various aspects of an HIV infection. RC viral vectors encoding SIV or HIV proteins can be used to safely immunize macaques, and in some cases, there is evidence of significant vaccine efficacy in challenge protection studies. Several live HIV vaccine vectors are in clinical trials to evaluate immunogenicity, safety, the effect of mucosal delivery, and potential effects of pre-existing immunity. Summary A variety of DNA and RNA viruses are being used to develop RC viral vectors for HIV vaccine delivery. Multiple viral vector platforms have proven to be safe and immunogenic with evidence of efficacy in macaques. Some of the more advanced HIV vaccine prototypes based on vesicular stomatitis virus, vaccinia virus, measles virus, and Sendai virus are in clinical trials. PMID:23925000

  18. Resistance to human immunodeficiency virus type 1 (HIV-1) generated by lentivirus vector-mediated delivery of the CCR5Δ32 gene despite detectable expression of the HIV-1 co-receptors

    PubMed Central

    Jin, Qingwen; Marsh, Jon; Cornetta, Kenneth; Alkhatib, Ghalib

    2009-01-01

    It has previously been demonstrated that there are two distinct mechanisms for genetic resistance to human immunodeficiency virus type 1 (HIV-1) conferred by the CCR5Δ32 gene: the loss of wild-type CCR5 surface expression and the generation of CCR5Δ32 protein, which interacts with CXCR4. To analyse the protective effects of long-term expression of the CCR5Δ32 protein, recombinant lentiviral vectors were used to deliver the CCR5Δ32 gene into human cell lines and primary peripheral blood mononuclear cells that had been immortalized by human T-cell leukemia virus type 1. Blasticidin S-resistant cell lines expressing the lentivirus-encoded CCR5Δ32 showed a significant reduction in HIV-1 Env-mediated fusion assays. It was shown that CD4+ T lymphocytes expressing the lentivirus-encoded CCR5Δ32 gene were highly resistant to infection by a primary but not by a laboratory-adapted X4 strain, suggesting different infectivity requirements. In contrast to previous studies that analysed the CCR5Δ32 protective effects in a transient expression system, this study showed that long-term expression of CCR5Δ32 conferred resistance to HIV-1 despite cell-surface expression of the HIV co-receptors. The results suggest an additional unknown mechanism for generating the CCR5Δ32 resistance phenotype and support the hypothesis that the CCR5Δ32 protein acts as an HIV-suppressive factor by altering the stoichiometry of the molecules involved in HIV-1 entry. The lentiviral-CCR5Δ32 vectors offer a method of generating HIV-resistant cells by delivery of the CCR5Δ32 gene that may be useful for stem cell- or T-cell-based gene therapy for HIV-1 infection. PMID:18796731

  19. An infectious recombinant equine arteritis virus expressing green fluorescent protein from its replicase gene.

    PubMed

    van den Born, Erwin; Posthuma, Clara C; Knoops, Kèvin; Snijder, Eric J

    2007-04-01

    Thus far, systems developed for heterologous gene expression from the genomes of nidoviruses (arteriviruses and coronaviruses) have relied mainly on the translation of foreign genes from subgenomic mRNAs, whose synthesis is a key feature of the nidovirus life cycle. In general, such expression vectors often suffered from relatively low and unpredictable expression levels, as well as genome instability. In an attempt to circumvent these disadvantages, the possibility to express a foreign gene [encoding enhanced green fluorescent protein (eGFP)] from within the nidovirus replicase gene, which encodes two large polyproteins that are processed proteolytically into the non-structural proteins (nsps) required for viral RNA synthesis, has now been explored. A viable recombinant of the arterivirus Equine arteritis virus, EAV-GFP2, was obtained, which contained the eGFP insert at the site specifying the junction between the two most N-proximal replicase-cleavage products, nsp1 and nsp2. EAV-GFP2 replication could be launched by transfection of cells with either in vitro-generated RNA transcripts or a DNA launch plasmid. EAV-GFP2 displayed growth characteristics similar to those of the wild-type virus and was found to maintain the insert stably for at least eight passages. It is proposed that EAV-GFP2 has potential for arterivirus vector development and as a tool in inhibitor screening. It can also be used for fundamental studies into EAV replication, which was illustrated by the fact that the eGFP signal of EAV-GFP2, which largely originated from an eGFP-nsp2 fusion protein, could be used to monitor the formation of the membrane-bound EAV replication complex in real time.

  20. Lack of Humoral Immune Response to the Tetracycline (Tet) Activator in Rats Injected Intracranially with Tet-off rAAV Vectors

    PubMed Central

    Han, Ye; Chang, Qin A.; Virag, Tamas; West, Neva C.; George, David; Castro, Maria G.; Bohn, Martha C.

    2010-01-01

    The ability to safely control transgene expression from viral vectors is a long-term goal in the gene therapy field. We have previously reported tight regulation of GFP expression in rat brain using a self-regulating tet-off rAAV vector. The immune responses against tet regulatory elements observed by other groups in nonhuman primates after intramuscular injection of tet-on encoding vectors raise concerns about the clinical value of tet-regulated vectors. However, previous studies have not examined immune responses following injection of AAV vectors into brain. Therefore, rat striatum was injected with tet-off rAAV harboring a therapeutic gene for Parkinson's disease, either hAADC or hGDNF. The expression of each gene was tightly controlled by the tet-off regulatory system. Using an ELISA developed with purified GST-tTA protein, no detectable immunogenicity against tTA was observed in sera of rats that received an intrastriatal injection of either vector. In contrast, sera from rats intradermally injected with an adenovirus containing either tTA or rtTA, as positive controls, had readily detectable antibodies. These observations suggest that tet-off rAAV vectors do not elicit an immune response when injected into rat brain and that these may offer safer vectors for Parkinson's disease than vectors with constitutive expression. PMID:20164859

  1. Intracellular Acidosis Promotes Mitochondrial Apoptosis Pathway: Role of EMMPRIN Down-regulation via Specific Single-chain Fv Intrabody

    PubMed Central

    Thammasit, Patcharin; Sangboonruang, Sirikwan; Suwanpairoj, Supattara; Khamaikawin, Wannisa; Intasai, Nutjeera; Kasinrerk, Watchara; Tayapiwatana, Chatchai; Tragoolpua, Khajornsak

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a human leukocyte surface molecule that is enriched on the surface of many cancer cells, and it plays an important role in proliferation and metastasis. In this study, we utilized the chimeric adenoviral vector Ad5/F35 carrying gene encoding scFv against EMMPRIN (scFv-M6-1B9) to down-regulate EMMPRIN cell surface expression and investigated programmed cell death response in colorectal cancer (CRC) cell, Caco-2. The scFv-M6-1B9 intrabody exhibits robust activity in reducing EMMPRIN cell surface expression. This approach led to the inducing of apoptosis, which was relative to the increasing of apoptotic bodies in sub-G1 peak, phosphatidylserine externalization, as well as TUNEL-positive cells. In addition, real-time RT-PCR and western blotting analysis indicated that apoptosis was enhanced through the mitochondrial pathway, a marked reduction of Bcl-2, leading to the translocation of cytochrome c and also the dramatic activation of caspase-3. Moreover, carcinoembryonic antigen (CEA), a tumor marker for CRC, was found to have significantly diminished in both secreted protein and mRNA levels. In conclusion, these findings suggest that EMMPRIN down-regulation by scFv-M6-1B9 intrabody has great potential in enhancing the efficacy of apoptosis induction through the mitochondrial pathway and in effecting a decline in the CEA level. Thus, its benefits could be applied to project the future prospects for targeted gene therapy and therapeutic application in monitoring colorectal cancer. PMID:25663946

  2. 5-Lipoxygenase contributes to PPARγ activation in macrophages in response to apoptotic cells.

    PubMed

    von Knethen, Andreas; Sha, Lisa K; Kuchler, Laura; Heeg, Annika K; Fuhrmann, Dominik; Heide, Heinrich; Wittig, Ilka; Maier, Thorsten J; Steinhilber, Dieter; Brüne, Bernhard

    2013-12-01

    Macrophage polarization to an anti-inflammatory phenotype upon contact with apoptotic cells is a contributing hallmark to immune suppression during the late phase of sepsis. Although the peroxisome proliferator-activated receptor γ (PPARγ) supports this macrophage phenotype switch, it remains elusive how apoptotic cells activate PPARγ. Assuming that a molecule causing PPARγ activation in macrophages originates in the cell membrane of apoptotic cells we analyzed lipid rafts from apoptotic, necrotic, and living human Jurkat T cells which showed the presence of 5-lipoxygenase (5-LO) in lipid rafts of apoptotic cells only. Incubating macrophages with lipid rafts of apoptotic, but not necrotic or living cells, induced PPAR responsive element (PPRE)-driven mRuby reporter gene expression in RAW 264.7 macrophages stably transduced with a 4xPPRE containing vector. Experiments with lipid rafts of apoptotic murine EL4 T cells revealed similar results. To verify the involvement of 5-LO in activating PPARγ in macrophages, Jurkat T cells were incubated with the 5-LO inhibitor MK-866 prior to induction of apoptosis, which failed to induce mRuby expression. Similar results were obtained with lipid rafts of apoptotic EL4 T cells preexposed to the 5-LO inhibitors zileuton and CJ-13610. Interestingly, Jurkat T cells overexpressing 5-LO failed to activate PPARγ in macrophages, while their 5-LO overexpressing apoptotic counterparts did. Our results suggest that during apoptosis 5-LO gets associated with lipid rafts and synthesizes ligands that in turn stimulate PPARγ in macrophages. © 2013.

  3. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation.

    PubMed

    Zeilinger, Susanne

    2004-02-01

    A modified Agrobacterium-mediated transformation method for the efficient disruption of two genes encoding signaling compounds of the mycoparasite Trichoderma atroviride is described, using the hph gene of Escherichia coli as selection marker. The transformation vectors contained about 1 kb of 5' and 3' non-coding regions from the tmk1 (encoding a MAP kinase) or tga3 (encoding an alpha-subunit of a heterotrimeric G protein) target loci flanking a selection marker. Transformation of fungal conidia and selection on hygromycin-containing media applying an overlay-based procedure, which overcomes the lack of formation of distinct single colonies by the fungus, led to stable clones for both disruption constructs. Southern and PCR analyses proved gene disruption by single-copy homologous integration with a frequency of approximately 60% for both genes; and the loss of tmk1 and tga3 transcript formation in the disruptants was demonstrated by RT-PCR.

  4. Systems analysis of apoptotic priming in ovarian cancer identifies vulnerabilities and predictors of drug response.

    PubMed

    Zervantonakis, Ioannis K; Iavarone, Claudia; Chen, Hsing-Yu; Selfors, Laura M; Palakurthi, Sangeetha; Liu, Joyce F; Drapkin, Ronny; Matulonis, Ursula; Leverson, Joel D; Sampath, Deepak; Mills, Gordon B; Brugge, Joan S

    2017-08-28

    The lack of effective chemotherapies for high-grade serous ovarian cancers (HGS-OvCa) has motivated a search for alternative treatment strategies. Here, we present an unbiased systems-approach to interrogate a panel of 14 well-annotated HGS-OvCa patient-derived xenografts for sensitivity to PI3K and PI3K/mTOR inhibitors and uncover cell death vulnerabilities. Proteomic analysis reveals that PI3K/mTOR inhibition in HGS-OvCa patient-derived xenografts induces both pro-apoptotic and anti-apoptotic signaling responses that limit cell killing, but also primes cells for inhibitors of anti-apoptotic proteins. In-depth quantitative analysis of BCL-2 family proteins and other apoptotic regulators, together with computational modeling and selective anti-apoptotic protein inhibitors, uncovers new mechanistic details about apoptotic regulators that are predictive of drug sensitivity (BIM, caspase-3, BCL-X L ) and resistance (MCL-1, XIAP). Our systems-approach presents a strategy for systematic analysis of the mechanisms that limit effective tumor cell killing and the identification of apoptotic vulnerabilities to overcome drug resistance in ovarian and other cancers.High-grade serous ovarian cancers (HGS-OvCa) frequently develop chemotherapy resistance. Here, the authors through a systematic analysis of proteomic and drug response data of 14 HGS-OvCa PDXs demonstrate that targeting apoptosis regulators can improve response of these tumors to inhibitors of the PI3K/mTOR pathway.

  5. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yan; Jain, Neeraj; Limpanawat, Suweeraya

    2015-08-15

    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH proteinmore » in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target. - Highlights: • A yeast two-hybrid system (MbY2H) detected BAP31 as a binder of RSV SH protein. • Transfected SH and BAP31 co-localize in lung epithelial cells. • Endogenous BAP31 is pulled down by RSV SH protein. • BAP31 endodomain interacts with the N-terminal α-helix of SH protein in micelles. • This interaction is proposed to be a potential drug target.« less

  6. DNA and RNA-based vaccines: principles, progress and prospects

    PubMed Central

    Leitner, Wolfgang W.; Ying, Han; Restifo, Nicholas P.

    2007-01-01

    DNA vaccines were introduced less than a decade ago but have already been applied to a wide range of infectious and malignant diseases. Here we review the current understanding of the mechanisms underlying the activities of these new vaccines. We focus on recent strategies designed to enhance their function including the use of immunostimulatory (CpG) sequences, dendritic cells (DC), co-stimulatory molecules and cytokine- and chemokine-adjuvants. Although genetic vaccines have been significantly improved, they may not be sufficiently immunogenic for the therapeutic vaccination of patients with infectious diseases or cancer in clinical trials. One promising approach aimed at dramatically increasing the immunogenicity of genetic vaccines involves making them ‘self-replicating’. This can be accomplished by using a gene encoding RNA replicase, a polyprotein derived from alphaviruses, such as Sindbis virus. Replicase-containing RNA vectors are significantly more immunogenic than conventional plasmids, immunizing mice at doses as low as 0.1 μg of nucleic acid injected once intramuscularly. Cells transfected with ‘self-replicating’ vectors briefly produce large amounts of antigen before undergoing apoptotic death. This death is a likely result of requisite double-stranded (ds) RNA intermediates, which also have been shown to super-activate DC. Thus, the enhanced immunogenicity of ‘self-replicating’ genetic vaccines may be a result of the production of pro-inflammatory dsRNA, which mimics an RNA-virus infection of host cells. PMID:10580187

  7. PDGF-B Gene Therapy Accelerates Bone Engineering and Oral Implant Osseointegration

    PubMed Central

    Chang, Po-Chun; Seol, Yang-Jo; Cirelli, Joni A; Pellegrini, Gaia R.; Jin, Qiming; Franco, Lea M.; Goldstein, Steven A.; Chandler, Lois A.; Sosnowski, Barbara; Giannobile, William V.

    2009-01-01

    Platelet-derived growth factor-BB (PDGF-BB) stimulates repair of healing-impaired chronic wounds such as diabetic ulcers and periodontal lesions. However, limitations in predictability of tissue regeneration occur due in part to transient growth factor bioavailability in vivo. Here, we report that gene delivery of PDGF-B stimulates repair of oral implant extraction socket defects. Alveolar ridge defects were created in rats and were treated at the time of titanium implant installation with a collagen matrix containing an adenoviral (Ad) vector encoding PDGF-B (5.5×108 or 5.5×109 pfu/ml), Ad encoding luciferase (Ad-Luc; 5.5×109 pfu/ml; control) or recombinant human PDGF-BB protein (rhPDGF-BB, 0.3 mg/ml). Bone repair and osseointegration were measured via backscattered SEM, histomorphometry, microcomputed tomography, and biomechanical assessments. Further, a panel of local and systemic safety assessments was performed. Results demonstrated bone repair was accelerated by Ad-PDGF-B and rhPDGF-BB delivery compared to Ad-Luc, with the high dose of Ad-PDGF-B more effective than the low dose. No significant dissemination of the vector construct or alteration of systemic parameters was noted. In summary, gene delivery of Ad-PDGF-B demonstrates regenerative and safety capabilities for bone tissue engineering and osseointegration in alveolar bone defects comparable to rhPDGF-BB protein delivery in vivo. PMID:19741730

  8. [Construction and functional identification of eukaryotic expression vector carrying Sprague-Dawley rat MSX-2 gene].

    PubMed

    Yang, Xian-Xian; Zhang, Mei; Yan, Zhao-Wen; Zhang, Ru-Hong; Mu, Xiong-Zheng

    2008-01-01

    To construct a high effective eukaryotic expressing plasmid PcDNA 3.1-MSX-2 encoding Sprague-Dawley rat MSX-2 gene for the further study of MSX-2 gene function. The full length SD rat MSX-2 gene was amplified by PCR, and the full length DNA was inserted in the PMD1 8-T vector. It was isolated by restriction enzyme digest with BamHI and Xhol, then ligated into the cloning site of the PcDNA3.1 expression plasmid. The positive recombinant was identified by PCR analysis, restriction endonudease analysis and sequence analysis. Expression of RNA and protein was detected by RT-PCR and Western blot analysis in PcDNA3.1-MSX-2 transfected HEK293 cells. Sequence analysis and restriction endonudease analysis of PcDNA3.1-MSX-2 demonstrated that the position and size of MSX-2 cDNA insertion were consistent with the design. RT-PCR and Western blot analysis showed specific expression of mRNA and protein of MSX-2 in the transfected HEK293 cells. The high effective eukaryotic expression plasmid PcDNA3.1-MSX-2 encoding Sprague-Dawley Rat MSX-2 gene which is related to craniofacial development can be successfully reconstructed. It may serve as the basis for the further study of MSX-2 gene function.

  9. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand.

    PubMed

    Saralamma, Venu Venkatarame Gowda; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-09-18

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  10. A synthetic system for expression of components of a bacterial microcompartment.

    PubMed

    Sargent, Frank; Davidson, Fordyce A; Kelly, Ciarán L; Binny, Rachelle; Christodoulides, Natasha; Gibson, David; Johansson, Emelie; Kozyrska, Katarzyna; Lado, Lucia Licandro; Maccallum, Jane; Montague, Rachel; Ortmann, Brian; Owen, Richard; Coulthurst, Sarah J; Dupuy, Lionel; Prescott, Alan R; Palmer, Tracy

    2013-11-01

    In general, prokaryotes are considered to be single-celled organisms that lack internal membrane-bound organelles. However, many bacteria produce proteinaceous microcompartments that serve a similar purpose, i.e. to concentrate specific enzymic reactions together or to shield the wider cytoplasm from toxic metabolic intermediates. In this paper, a synthetic operon encoding the key structural components of a microcompartment was designed based on the genes for the Salmonella propanediol utilization (Pdu) microcompartment. The genes chosen included pduA, -B, -J, -K, -N, -T and -U, and each was shown to produce protein in an Escherichia coli chassis. In parallel, a set of compatible vectors designed to express non-native cargo proteins was also designed and tested. Engineered hexa-His tags allowed isolation of the components of the microcompartments together with co-expressed, untagged, cargo proteins. Finally, an in vivo protease accessibility assay suggested that a PduD-GFP fusion could be protected from proteolysis when co-expressed with the synthetic microcompartment operon. This work gives encouragement that it may be possible to harness the genes encoding a non-native microcompartment for future biotechnological applications.

  11. [Establishment and identification of mouse lymphoma cell line EL4 expressing red fluorescent protein].

    PubMed

    Li, Yan-Jie; Cao, Jiang; Chen, Chong; Wang, Dong-Yang; Zeng, Ling-Yu; Pan, Xiu-Ying; Xu, Kai-Lin

    2010-02-01

    This study was purposed to construct a lentiviral vector encoding red fluorescent protein (DsRed) and transfect DsRed into EL4 cells for establishing mouse leukemia/lymphoma model expressing DsRed. The bicistronic SIN lentiviral transfer plasmid containing the genes encoding neo and internal ribosomal entry site-red fluorescent protein (IRES-DsRed) was constructed. Human embryonic kidney 293FT cells were co-transfected with the three plasmids by liposome method. The viral particles were collected and used to transfect EL4 cells, then the cells were selected by G418. The results showed that the plasmid pXZ208-neo-IRES-DsRed was constructed successfully, and the viral titer reached to 10(6) U/ml. EL4 cells were transfected by the viral solution efficiently. The transfected EL4 cells expressing DsRed survived in the final concentration 600 microg/ml of G418. The expression of DsRed in the transfected EL4 cells was demonstrated by fluorescence microscopy and flow cytometry. In conclusion, the EL4/DsRed cell line was established successfully.

  12. Identification of antigenic regions on VP2 of African horsesickness virus serotype 3 by using phage-displayed epitope libraries.

    PubMed

    Bentley, L; Fehrsen, J; Jordaan, F; Huismans, H; du Plessis, D H

    2000-04-01

    VP2 is an outer capsid protein of African horsesickness virus (AHSV) and is recognized by serotype-discriminatory neutralizing antibodies. With the objective of locating its antigenic regions, a filamentous phage library was constructed that displayed peptides derived from the fragmentation of a cDNA copy of the gene encoding VP2. Peptides ranging in size from approximately 30 to 100 amino acids were fused with pIII, the attachment protein of the display vector, fUSE2. To ensure maximum diversity, the final library consisted of three sub-libraries. The first utilized enzymatically fragmented DNA encoding only the VP2 gene, the second included plasmid sequences, while the third included a PCR step designed to allow different peptide-encoding sequences to recombine before ligation into the vector. The resulting composite library was subjected to immunoaffinity selection with AHSV-specific polyclonal chicken IgY, polyclonal horse immunoglobulins and a monoclonal antibody (MAb) known to neutralize AHSV. Antigenic peptides were located by sequencing the DNA of phages bound by the antibodies. Most antigenic determinants capable of being mapped by this method were located in the N-terminal half of VP2. Important binding areas were mapped with high resolution by identifying the minimum overlapping areas of the selected peptides. The MAb was also used to screen a random 17-mer epitope library. Sequences that may be part of a discontinuous neutralization epitope were identified. The amino acid sequences of the antigenic regions on VP2 of serotype 3 were compared with corresponding regions on three other serotypes, revealing regions with the potential to discriminate AHSV serotypes serologically.

  13. Expression of human electron transfer flavoprotein-ubiquinone oxidoreductase from a baculovirus vector: kinetic and spectral characterization of the human protein.

    PubMed

    Simkovic, Martin; Degala, Gregory D; Eaton, Sandra S; Frerman, Frank E

    2002-06-15

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is an iron-sulphur flavoprotein and a component of an electron-transfer system that links 10 different mitochondrial flavoprotein dehydrogenases to the mitochondrial bc1 complex via electron transfer flavoprotein (ETF) and ubiquinone. ETF-QO is an integral membrane protein, and the primary sequences of human and porcine ETF-QO were deduced from the sequences of the cloned cDNAs. We have expressed human ETF-QO in Sf9 insect cells using a baculovirus vector. The cDNA encoding the entire protein, including the mitochondrial targeting sequence, was present in the vector. We isolated a membrane-bound form of the enzyme that has a molecular mass identical with that of the mature porcine protein as determined by SDS/PAGE and has an N-terminal sequence that is identical with that predicted for the mature holoenzyme. These data suggest that the heterologously expressed ETF-QO is targeted to mitochondria and processed to the mature, catalytically active form. The detergent-solubilized protein was purified by ion-exchange and hydroxyapatite chromatography. Absorption and EPR spectroscopy and redox titrations are consistent with the presence of flavin and iron-sulphur centres that are very similar to those in the equivalent porcine and bovine proteins. Additionally, the redox potentials of the two prosthetic groups appear similar to those of the other eukaryotic ETF-QO proteins. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues, a ubiquinone analogue, and with human wild-type ETF and a Paracoccus-human chimaeric ETF as varied substrates. The results demonstrate that this expression system provides sufficient amounts of human ETF-QO to enable crystallization and mechanistic investigations of the iron-sulphur flavoprotein.

  14. ORFeome Phage Display.

    PubMed

    Zantow, Jonas; Moreira, Gustavo Marçal Schmidt Garcia; Dübel, Stefan; Hust, Michael

    2018-01-01

    ORFeome phage display allows the efficient functional screening of entire proteomes or even metaproteomes to identify immunogenic proteins. For this purpose, randomly fragmented, whole genomes or metagenomes are cloned into a phage-display vector allowing positive selection for open reading frames (ORF) to improve the library quality. These libraries display all possible proteins encoded by a pathogen or a microbiome on the phage surface. Consequently, immunogenic proteins can be selected from these libraries using disease-related immunoglobulins from patient serum. ORFeome phage display in particular allows the identification of immunogenic proteins that are only expressed in the host-pathogen interaction but not in cultivation, as well as the detection of very low expressed and very small immunogens and immunogenic proteins of non-cultivable organisms. The identified immunogenic proteins are potential biomarkers for the development of diagnostic assays or vaccines. These articles will give an introduction to ORFeome phage-display technology and give detailed protocols to identify immunogenic proteins by phage display.

  15. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans

    PubMed Central

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline; Karlsson, Ingrid; Krog, Jesper S; Williams, James A; Fomsgaard, Anders

    2015-01-01

    The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages such as the induction of cellular and humoral immunity, inherent safety and rapid production time. We have previously developed a DNA vaccine encoding selected influenza proteins of pandemic origin and demonstrated broad protective immune responses in ferrets and pigs. In this study, we evaluated our DNA vaccine expressed by next-generation vectors. These new vectors can improve gene expression, but they are also efficiently produced on large scales and comply with regulatory guidelines by avoiding antibiotic resistance genes. In addition, a new needle-free delivery of the vaccine, convenient for mass vaccinations, was compared with intradermal needle injection followed by electroporation. We report that when our DNA vaccine is expressed by the new vectors and delivered to the skin with the needle-free device in the rabbit model, it can elicit an antibody response with the same titers as a conventional vector with intradermal electroporation. The needle-free delivery is already in use for traditional protein vaccines in pigs but should be considered as a practical alternative for the mass administration of broadly protective influenza DNA vaccines. PMID:25746201

  16. A repertoire of the dominant transcripts from the salivary glands of the blood-sucking bug, Triatoma dimidiata, a vector of Chagas disease

    PubMed Central

    Kato, Hirotomo; Jochim, Ryan C.; Gomez, Eduardo A.; Sakoda, Ryo; Iwata, Hiroyuki; Valenzuela, Jesus G.; Hashiguchi, Yoshihisa

    2010-01-01

    Triatoma (T.) dimidiata is a hematophagous Hemiptera and a main vector of Chagas disease. The saliva of this and other blood-sucking insects contains potent pharmacologically active components that assist them in counteracting the host hemostatic and inflammatory systems during blood feeding. To describe the repertoire of potential bioactive salivary molecules from this insect, a number of randomly selected transcripts from the salivary gland cDNA library of T. dimidiata were sequenced and analyzed. This analysis showed that 77.5% of the isolated transcripts coded for putative secreted proteins, and 89.9% of these coded for variants of the lipocalin family proteins. The most abundant transcript was a homologue of procalin, the major allergen of T. protracta saliva, and contributed more than 50% of the transcripts coding for putative secreted proteins, suggesting that it may play an important role in the blood-feeding process. Other salivary transcripts encoding lipocalin family proteins had homology to triabin (a thrombin inhibitor), triafestin (an inhibitor of kallikrein–kinin system), pallidipin (an inhibitor of collagen-induced platelet aggregation) and others with unknown function. PMID:19900580

  17. Transfer of a gene encoding the anticandidal protein histatin 3 to salivary glands.

    PubMed

    O'Connell, B C; Xu, T; Walsh, T J; Sein, T; Mastrangeli, A; Crystal, R G; Oppenheim, F G; Baum, B J

    1996-12-01

    Mucosal candidiasis, the most common opportunistic fungal infection in human immunodeficiency virus (HIV)-infected patients, is an early sign of clinically overt acquired immunodeficiency syndrome (AIDS) and an important cause of morbidity, particularly in HIV-infected children. The appearance of azole-resistant strains of Candida albicans had made clinical management of candidiasis increasingly difficult. We propose a novel approach to the management of candidal infections that involves the use of naturally occurring antifungal proteins, such as the histatins. Histatins are a family of small proteins that are secreted in human saliva. We have constructed recombinant adenovirus vectors that contain the histatin 3 cDNA. These vectors are capable of directing the expression of histatin 3 in the saliva of rats at up to 1,045 micrograms/ml, well above the levels found in normal human saliva. The adenovirus-directed histatin demonstrated a 90% candidacidal effect in the timed-kill assay against both fluconazole-susceptible and fluconazole-resistant strains of C. albicans and inhibited germination by 45% in the same strains. These studies suggest that a gene transfer approach to overexpress naturally occurring antifungal proteins may be useful in the management of mucosal candidiasis.

  18. [Preparation and characterization of monoclonal antibodies against Micrococcus luteus Rpf domain].

    PubMed

    Fan, Ai-lin; Shi, Chang-hong; Su, Ming-quan; Ma, Jing; Bai, Yin-lan; Cheng, Xiao-dong; Xu, Zhi-kai; Hao, Xiao-ke

    2008-05-01

    To express Micrococcus luteus Rpf domain in prokaryotic cells and prepare monoclonal antibodies against Rpf domain. The gene encoding Micrococcus luteus Rpf domain was amplified from genome of Micrococcus luteus by polymerase chain reaction(PCR), and inserted into cloning vector pUC-19. After sequenced, Micrococcus luteus Rpf domain gene was subcloned into the expression vector pPro-EXHT and transfected into E.coli DH5alpha. After induced by IPTG, the bacteria controlled by T7 promoter expressed the fused Micrococcus luteus Rpf domain protein with a hexahistidine tail at its N-terminal and the target protein was purified under denaturing conditions. Using this protein as antigen to immunize the BALB/c mice and prepare monoclonal antibodies against Micrococcus luteus Rpf domain. Then specifities and relative affinities of mAbs were identified by ELISA. The fusion protein was purified by metal chelate affinity chromatography under denaturing condition. Three cloned mAbs were prepared from the mice immunized by Rpf domain. All of them could recognize Rpf domain. specifically. The prepared mAbs against Rpf domain have strong specificity with high titers, which provides useful tools for further study of the function of Rpf domain in TB prevention.

  19. Improvement of In Vivo Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins

    PubMed Central

    Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C.; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2017-01-01

    Among nucleic acid–based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned. PMID:28877647

  20. Improvement of In Vivo Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins.

    PubMed

    Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2017-12-01

    Among nucleic acid-based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned.

  1. Genes from the medicinal leech (Hirudo medicinalis) coding for unusual enzymes that specifically cleave endo-epsilon (gamma-Glu)-Lys isopeptide bonds and help to dissolve blood clots.

    PubMed

    Zavalova, L; Lukyanov, S; Baskova, I; Snezhkov, E; Akopov, S; Berezhnoy, S; Bogdanova, E; Barsova, E; Sverdlov, E D

    1996-11-27

    We previously detected in salivary gland secretions of the medicinal leech (Hirudo medicinalis) a novel enzymatic activity, endo-epsilon(gamma-Glu)-Lys isopeptidase, which cleaves isopeptide bonds formed by transglutaminase (Factor XIIIa) between glutamine gamma-carboxamide and the epsilon-amino group of lysine. Such isopeptide bonds, either within or between protein polypeptide chains are formed in many biological processes. However, before we started our work no enzymes were known to be capable of specifically splitting isopeptide bonds in proteins. The isopeptidase activity we detected was specific for isopeptide bonds. The enzyme was termed destabilase. Here we report the first purification of destabilase, part of its amino acid sequence isolation and sequencing of two related cDNAs derived from the gene family that encodes destabilase proteins, and the detection of isopeptidase activity encoded by one of these cDNAs cloned in a baculovirus expression vector. The deduced mature protein products of these cDNAs contain 115 and 116 amino acid residues, including 14 highly conserved Cys residues, and are formed from precursors containing specific leader peptides. No homologous sequences were found in public databases.

  2. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs

    PubMed Central

    Daniels, Sylvanne M; Sinck, Lucile; Ward, Natalie J; Melendez-Peña, Carlos E; Scarborough, Robert J; Azar, Ibrahim; Rance, Elodie; Daher, Aïcha; Pang, Ka-Ming; Rossi, John J; Gatignol, Anne

    2015-01-01

    Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses. PMID:25668122

  3. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs.

    PubMed

    Daniels, Sylvanne M; Sinck, Lucile; Ward, Natalie J; Melendez-Peña, Carlos E; Scarborough, Robert J; Azar, Ibrahim; Rance, Elodie; Daher, Aïcha; Pang, Ka-Ming; Rossi, John J; Gatignol, Anne

    2015-01-01

    Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses.

  4. Calcein+/PI- as an early apoptotic feature in Leishmania.

    PubMed

    Basmaciyan, Louise; Azas, Nadine; Casanova, Magali

    2017-01-01

    Although leishmaniases are responsible for high morbidity and mortality all over the world, no really satisfying treatment exists. Furthermore, the corresponding parasite Leishmania undergoes a very characteristic form of programmed cell death. Indeed, different stimuli can induce morphological and biochemical apoptotic-like features. However, the key proteins involved in mammal apoptosis, such as caspases and death receptors, are not encoded in the genome of this parasite. Currently, little is known about Leishmania apoptosis, notably owing to the lack of specific tools for programmed cell death analysis in these parasites. Furthermore, there is a need for a better understanding of Leishmania programmed cell death in order (i) to better understand the role of apoptosis in unicellular organisms, (ii) to better understand apoptosis in general through the study of an ancestral eukaryote, and (iii) to identify new therapeutic targets against leishmaniases. To advance understanding of apoptosis in Leishmania, in this study we developed a new tool based on the quantification of calcein and propidium iodide by flow cytometry. This double labeling can be employed to distinguish early apoptosis, late apoptosis and necrosis in Leishmania live cells with a very simple and rapid assay. This paper should, therefore, be of interest for people working on Leishmania and related parasites.

  5. Adeno-associated virus type 8 vector–mediated expression of siRNA targeting vascular endothelial growth factor efficiently inhibits neovascularization in a murine choroidal neovascularization model

    PubMed Central

    Igarashi, Tsutomu; Miyake, Noriko; Fujimoto, Chiaki; Yaguchi, Chiemi; Iijima, Osamu; Shimada, Takashi; Takahashi, Hiroshi

    2014-01-01

    Purpose To assess the feasibility of a gene therapeutic approach to treating choroidal neovascularization (CNV), we generated an adeno-associated virus type 8 vector (AAV2/8) encoding an siRNA targeting vascular endothelial growth factor (VEGF), and determined the AAV2/8 vector’s ability to inhibit angiogenesis. Methods We initially transfected 3T3 cells expressing VEGF with the AAV2/8 plasmid vector psiRNA-VEGF using the H1 promoter and found that VEGF expression was significantly diminished in the transfectants. We next injected 1 μl (3 × 1014 vg/ml) of AAV2/8 vector encoding siRNA targeting VEGF (AAV2/8/SmVEGF-2; n = 12) or control vector encoding green fluorescent protein (GFP) (AAV2/8/GFP; n = 14) into the subretinal space in C57BL/6 mice. One week later, CNV was induced by using a diode laser to make four separate choroidal burns around the optic nerve in each eye. After an additional 2 weeks, the eyes were removed for flat mount analysis of the CNV surface area. Results Subretinal delivery of AAV2/8/SmVEGF-2 significantly diminished CNV at the laser lesions, compared to AAV8/GFP (1597.3±2077.2 versus 5039.5±4055.9 µm2; p<0.05). Using an enzyme-linked immunosorbent assay, we found that VEGF levels were reduced by approximately half in the AAV2/8/SmVEGF-2 treated eyes. Conclusions These results suggest that siRNA-VEGF can be expressed across the retina and that long-term suppression of CNV is possible through the use of stable AAV2/8-mediated siRNA-VEGF expression. In vivo gene therapy may thus be a feasible approach to the clinical management of CNV in conditions such as age-related macular degeneration. PMID:24744609

  6. Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection

    PubMed Central

    Throm, Robert E.; Ouma, Annastasia A.; Zhou, Sheng; Chandrasekaran, Anantharaman; Lockey, Timothy; Greene, Michael; De Ravin, Suk See; Moayeri, Morvarid; Malech, Harry L.; Sorrentino, Brian P.

    2009-01-01

    Retroviral vectors containing internal promoters, chromatin insulators, and self-inactivating (SIN) long terminal repeats (LTRs) may have significantly reduced genotoxicity relative to the conventional retroviral vectors used in recent, otherwise successful clinical trials. Large-scale production of such vectors is problematic, however, as the introduction of SIN vectors into packaging cells cannot be accomplished with the traditional method of viral transduction. We have derived a set of packaging cell lines for HIV-based lentiviral vectors and developed a novel concatemeric array transfection technique for the introduction of SIN vector genomes devoid of enhancer and promoter sequences in the LTR. We used this method to derive a producer cell clone for a SIN lentiviral vector expressing green fluorescent protein, which when grown in a bioreactor generated more than 20 L of supernatant with titers above 107 transducing units (TU) per milliliter. Further refinement of our technique enabled the rapid generation of whole populations of stably transformed cells that produced similar titers. Finally, we describe the construction of an insulated, SIN lentiviral vector encoding the human interleukin 2 receptor common γ chain (IL2RG) gene and the efficient derivation of cloned producer cells that generate supernatants with titers greater than 5 × 107 TU/mL and that are suitable for use in a clinical trial for X-linked severe combined immunodeficiency (SCID-X1). PMID:19286997

  7. Production of SV40-derived vectors.

    PubMed

    Strayer, David S; Mitchell, Christine; Maier, Dawn A; Nichols, Carmen N

    2010-06-01

    Recombinant simian virus 40 (rSV40)-derived vectors are particularly useful for gene delivery to bone marrow progenitor cells and their differentiated derivatives, certain types of epithelial cells (e.g., hepatocytes), and central nervous system neurons and microglia. They integrate rapidly into cellular DNA to provide long-term gene expression in vitro and in vivo in both resting and dividing cells. Here we describe a protocol for production and purification of these vectors. These procedures require only packaging cells (e.g., COS-7) and circular vector genome DNA. Amplification involves repeated infection of packaging cells with vector produced by transfection. Cotransfection is not required in any step. Viruses are purified by centrifugation using discontinuous sucrose or cesium chloride (CsCl) gradients and resulting vectors are replication-incompetent and contain no detectable wild-type SV40 revertants. These approaches are simple, give reproducible results, and may be used to generate vectors that are deleted only for large T antigen (Tag), or for all SV40-coding sequences capable of carrying up to 5 kb of foreign DNA. These vectors are best applied to long-term expression of proteins normally encoded by mammalian cells or by viruses that infect mammalian cells, or of untranslated RNAs (e.g., RNA interference). The preparative approaches described facilitate application of these vectors and allow almost any laboratory to exploit their strengths for diverse gene delivery applications.

  8. Cloning and expression of phosphoglycerate mutase from the psychrophilic yeast, Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Jaafar, Nardiah Rizwana; Bakar, Farah Diba Abu; Murad, Abdul Munir Abdul; Mahadi, Nor Muhammad

    2015-09-01

    The conversion of 3-phosphoglycerate to 2-phosphoglycerate during glycolysis and gluconeogenesis is catalyzed by phosphoglycerate mutase (PGM). Better understanding of metabolic reactions performed by this enzyme has been studied extensively in prokaryotes and eukaryotes. Here, we report a phosphoglycerate mutase from the psychrophilic yeast, Glaciozyma antarctica. cDNA encoding for PGM from G. antarctica PI12, a psychrophilic yeast isolated from sea ice at Casey Station, Antarctica was amplified. The gene was then cloned into a cloning vector and sequenced, which verified its identity as the gene putatively encoding for PGM. The recombinant protein was expressed in Escherichia coli BL21 (DE3) as inclusion bodies and this was confirmed by SDS-PAGE and Western blot.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoo, Masako; Fujita, Ryosuke; Innate Immunity Laboratory, Graduate School of Life Science and Creative Research Institution, Hokkaido University, Sapporo 001-0021

    Highlights: •The baculovirus vector infiltrates the cells of economic important fishes. •Drosophila Mos1 transposase expressed in fish cells maintains its ability to localize to the nucleus. •The baculoviral vector carrying Mos1 is a useful tool to stably transform fish cells. -- Abstract: Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes locatedmore » between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells.« less

  10. Construction of Stable Fluorescent Reporter Plasmids for Use in Staphylococcus aureus

    PubMed Central

    Rodriguez, Michelle D.; Paul, Zubin; Wood, Charles E.; Rice, Kelly C.; Triplett, Eric W.

    2017-01-01

    Here, the genes encoding three different fluorescent proteins were cloned into the stably maintained Staphylococcus aureus shuttle vector pKK30. The resulting plasmids were transformed into two S. aureus strains; SH1000 and RN4220. Stability assays illustrated that the three recombinant plasmids retained near 100% maintenance in vitro for 160 generations. S. aureus strain SH1000 expressing green fluorescent protein was then inoculated in an ovine model and in vivo stability for 6 days was demonstrated. In essence, these reporter plasmids represent a useful set of tools for dynamic imaging studies in S. aureus. These three reporter plasmids are available through BEI Resources. PMID:29312199

  11. Construction of Stable Fluorescent Reporter Plasmids for Use in Staphylococcus aureus.

    PubMed

    Rodriguez, Michelle D; Paul, Zubin; Wood, Charles E; Rice, Kelly C; Triplett, Eric W

    2017-01-01

    Here, the genes encoding three different fluorescent proteins were cloned into the stably maintained Staphylococcus aureus shuttle vector pKK30. The resulting plasmids were transformed into two S. aureus strains; SH1000 and RN4220. Stability assays illustrated that the three recombinant plasmids retained near 100% maintenance in vitro for 160 generations. S. aureus strain SH1000 expressing green fluorescent protein was then inoculated in an ovine model and in vivo stability for 6 days was demonstrated. In essence, these reporter plasmids represent a useful set of tools for dynamic imaging studies in S. aureus . These three reporter plasmids are available through BEI Resources.

  12. [Cloning of human CD45 gene and its expression in Hela cells].

    PubMed

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  13. Involvement of RNA2-encoded proteins in the specific transmission of Grapevine fanleaf virus by its nematode vector Xiphinema index.

    PubMed

    Belin, C; Schmitt, C; Demangeat, G; Komar, V; Pinck, L; Fuchs, M

    2001-12-05

    The nepovirus Grapevine fanleaf virus (GFLV) is specifically transmitted by the nematode Xiphinema index. To identify the RNA2-encoded proteins involved in X. index-mediated spread of GFLV, chimeric RNA2 constructs were engineered by replacing the 2A, 2B(MP), and/or 2C(CP) sequences of GFLV with their counterparts in Arabis mosaic virus (ArMV), a closely related nepovirus which is transmitted by Xiphinema diversicaudatum but not by X. index. Among the recombinant viruses obtained from transcripts of GFLV RNA1 and chimeric RNA2, only those which contained the 2C(CP) gene (504 aa) and 2B(MP) contiguous 9 C-terminal residues of GFLV were transmitted by X. index as efficiently as natural and synthetic wild-type GFLV, regardless of the origin of the 2A and 2B(MP) genes. As expected, ArMV was not transmitted probably because it is not retained by X. index. These results indicate that the determinants responsible for the specific spread of GFLV by X. index are located within the 513 C-terminal residues of the polyprotein encoded by RNA2. Copyright 2001 Elsevier Science.

  14. [The Effects of Chronic Alcoholization on the Expression of Brain-Derived Neurotrophic Factor and Its Receptors in the Brains of Mice Genetically Predisposed to Depressive-Like Behavior].

    PubMed

    Bazovkina, D V; Kondaurova, E M; Tsybko, A S; Kovetskaya, A I; Ilchibaeva, T V; Naumenko, V S

    2017-01-01

    Brain-derived neurotropic factor (BDNF) plays an important role in mechanisms of depression. Precursor protein of this factor (proBDNF) can initiate apoptosis in the brain, while the mature form of BDNF is involved in neurogenesis. It is known that chronic alcoholization leads to the activation of apoptotic processes, neurodegeneration, brain injury, and cognitive dysfunction. In this work, we have studied the influence of long-term ethanol exposure on the proBDNF and BDNF protein levels, as well as on the expression of genes that encode these proteins in the brain structures of ASC mice with genetic predisposition to depressive-like behavior and in mice from parental nondepressive CBA strain. It was shown that chronic alcoholization results in a reduction of the BDNF level in the hippocampus and an increase in the amount of TrkB and p75 receptors in the frontal cortex of nondepressive CBA mice. At the same time, the long-term alcoholization of depressive ASC mice results in an increase of the proBDNF level in the frontal cortex and a reduction in the p75 protein level in the hippocampus. It has also been shown that, in depressive ASC mice, proBDNF and BDNF levels are significantly lower in the hippocampus and the frontal cortex compared with nondepressive CBA strain. However, no significant differences in the expression of genes encoding the studied proteins were observed. Thus, changes in the expression patterns of proBDNF, BDNF, and their receptors under the influence of alcoholization in the depressive ASC strain and nondepressive CBA strain mice are different.

  15. The baculovirus-integrated retrotransposon TED encodes gag and pol proteins that assemble into viruslike particles with reverse transcriptase.

    PubMed Central

    Lerch, R A; Friesen, P D

    1992-01-01

    TED is a lepidopteran retrotransposon found inserted within the DNA genome of the Autographa californica nuclear polyhedrosis virus mutant, FP-D. To examine the proteins and functions encoded by this representative of the gypsy family of retrotransposons, the gag- and pol-like open reading frames (ORFs 1 and 2) were expressed in homologous lepidopteran cells by using recombinant baculovirus vectors. Expression of ORF 1 resulted in synthesis of an abundant TED-specific protein (Pr55gag) that assembled into viruslike particles with a diameter of 55 to 60 nm. Expression of ORF 2, requiring a -1 translational frameshift, resulted in synthesis of a protease that mediated cleavage of Pr55gag to generate p37, the major protein component of the resulting particles. Expression of ORF 2 also produced reverse transcriptase that associated with these particles. Both protease and reverse transcriptase activities mapped to domains within ORF 2 that contain sequence similarities with the corresponding functional domains of the pol gene of the vertebrate retroviruses. These results indicated that TED ORFs 1 and 2 functionally resemble the retrovirus gag and pol genes and demonstrated for the first time that an invertebrate member of the gypsy family of elements encodes active forms of the structural and enzymatic functions necessary for transposition via an RNA intermediate. TED integration within the baculovirus genome thus represents one of the first examples of transposon-mediated transfer of host-derived genes to an eukaryotic virus. Images PMID:1371168

  16. CrpP Is a Novel Ciprofloxacin-Modifying Enzyme Encoded by the Pseudomonas aeruginosa pUM505 Plasmid.

    PubMed

    Chávez-Jacobo, Víctor M; Hernández-Ramírez, Karen C; Romo-Rodríguez, Pamela; Pérez-Gallardo, Rocío Viridiana; Campos-García, Jesús; Gutiérrez-Corona, J Félix; García-Merinos, Juan Pablo; Meza-Carmen, Víctor; Silva-Sánchez, Jesús; Ramírez-Díaz, Martha I

    2018-06-01

    The pUM505 plasmid, isolated from a clinical Pseudomonas aeruginosa isolate, confers resistance to ciprofloxacin (CIP) when transferred into the standard P. aeruginosa strain PAO1. CIP is an antibiotic of the quinolone family that is used to treat P. aeruginosa infections. In silico analysis, performed to identify CIP resistance genes, revealed that the 65-amino-acid product encoded by the orf131 gene in pUM505 displays 40% amino acid identity to the Mycobacterium smegmatis aminoglycoside phosphotransferase (an enzyme that phosphorylates and inactivates aminoglycoside antibiotics). We cloned orf131 (renamed crpP , for c iprofloxacin r esistance p rotein, p lasmid encoded) into the pUCP20 shuttle vector. The resulting recombinant plasmid, pUC- crpP , conferred resistance to CIP on Escherichia coli strain J53-3, suggesting that this gene encodes a protein involved in CIP resistance. Using coupled enzymatic analysis, we determined that the activity of CrpP on CIP is ATP dependent, while little activity against norfloxacin was detected, suggesting that CIP may undergo phosphorylation. Using a recombinant His-tagged CrpP protein and liquid chromatography-tandem mass spectrometry, we also showed that CIP was phosphorylated prior to its degradation. Thus, our findings demonstrate that CrpP, encoded on the pUM505 plasmid, represents a new mechanism of CIP resistance in P. aeruginosa , which involves phosphorylation of the antibiotic. Copyright © 2018 American Society for Microbiology.

  17. Vector adaptive predictive coder for speech and audio

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey (Inventor); Gersho, Allen (Inventor)

    1990-01-01

    A real-time vector adaptive predictive coder which approximates each vector of K speech samples by using each of M fixed vectors in a first codebook to excite a time-varying synthesis filter and picking the vector that minimizes distortion. Predictive analysis for each frame determines parameters used for computing from vectors in the first codebook zero-state response vectors that are stored at the same address (index) in a second codebook. Encoding of input speech vectors s.sub.n is then carried out using the second codebook. When the vector that minimizes distortion is found, its index is transmitted to a decoder which has a codebook identical to the first codebook of the decoder. There the index is used to read out a vector that is used to synthesize an output speech vector s.sub.n. The parameters used in the encoder are quantized, for example by using a table, and the indices are transmitted to the decoder where they are decoded to specify transfer characteristics of filters used in producing the vector s.sub.n from the receiver codebook vector selected by the vector index transmitted.

  18. Small-molecule targeting of signal transducer and activator of transcription (STAT) 3 to treat non-small cell lung cancer.

    PubMed

    Lewis, Katherine M; Bharadwaj, Uddalak; Eckols, T Kris; Kolosov, Mikhail; Kasembeli, Moses M; Fridley, Colleen; Siller, Ricardo; Tweardy, David J

    2015-11-01

    Lung cancer is the leading cause of cancer death in both men and women. Non-small cell lung cancer (NSCLC) has an overall 5-year survival rate of 15%. While aberrant STAT3 activation has previously been observed in NSCLC, the scope of its contribution is uncertain and agents that target STAT3 for treatment are not available clinically. We determined levels of activated STAT3 (STAT3 phosphorylated on Y705, pSTAT3) and the two major isoforms of STAT3 (α and β) in protein extracts of 8 NSCLC cell lines, as well as the effects of targeting STAT3 in vitro and in vivo in NSCLC cells using short hairpin (sh) RNA and two novel small-molecule STAT3 inhibitors, C188-9 and piperlongumine (PL). Levels of pSTAT3, STAT3α, and STATβ were increased in 7 of 8 NSCLC cell lines. Of note, levels of pSTAT3 were tightly correlated with levels of STAT3β, but not STAT3α. Targeting of STAT3 in A549 cells using shRNA decreased tSTAT3 by 75%; this was accompanied by a 47-78% reduction in anchorage-dependent and anchorage-independent growth and a 28-45% reduction in mRNA levels for anti-apoptotic STAT3 gene targets. C188-9 and PL (@30 μM) each reduced pSTAT3 levels in all NSCLC cell lines tested by ≥50%, reduced anti-apoptotic protein mRNA levels by 25-60%, and reduced both anchorage-dependent and anchorage-independent growth of NSCLC cell lines with IC50 values ranging from 3.06 to 52.44 μM and 0.86 to 11.66 μM, respectively. Treatment of nude mice bearing A549 tumor xenografts with C188-9 or PL blocked tumor growth and reduced levels of pSTAT3 and mRNA encoding anti-apoptotic proteins. STAT3 is essential for growth of NSCLC cell lines and tumors and its targeting using C188-9 or PL may be a useful strategy for treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. In cellulo examination of a beta-alpha hybrid construct of beta-hexosaminidase A subunits, reported to interact with the GM2 activator protein and hydrolyze GM2 ganglioside.

    PubMed

    Sinici, Incilay; Yonekawa, Sayuri; Tkachyova, Ilona; Gray, Steven J; Samulski, R Jude; Wakarchuk, Warren; Mark, Brian L; Mahuran, Don J

    2013-01-01

    The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside.

  20. In Cellulo Examination of a Beta-Alpha Hybrid Construct of Beta-Hexosaminidase A Subunits, Reported to Interact with the GM2 Activator Protein and Hydrolyze GM2 Ganglioside

    PubMed Central

    Sinici, Incilay; Yonekawa, Sayuri; Tkachyova, Ilona; Gray, Steven J.; Samulski, R. Jude; Wakarchuk, Warren; Mark, Brian L.; Mahuran, Don J.

    2013-01-01

    The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside. PMID:23483939

  1. [Cloning and expressing of cyclophilin B gene from Schistosoma japonnicum and the analysis of immunoprotective effect].

    PubMed

    Peng, Jinbiao; Han, Hongxiao; Hong, Yang; Wang, Yan; Guo, Fanji; Shi, Yaojun; Fu, Zhiqiang; Liu, Jinming; Cheng, Guofeng; Lin, Jiaojiao

    2010-03-01

    The present study was intend to clone and express the cDNA encoding Cyclophilin B (CyPB) of Schistosoma japonicum, its preliminary biological function and further immunoprotective effect against schistosome infection in mice. RT-PCR technique was applied to amplify a full-length cDNA encoding protein Cyclophilin B (Sj CyPB) from schistosomula cDNA. The expression profiles of Sj CyPB were determined by Real-time PCR using the template cDNAs isolated from 7, 13, 18, 23, 32 and 42 days parasites. The cDNA containing the Open Reading Frame of CyPB was then subcloned into a pGEX-6P-1 vector and transformed into competent Escherichia coli BL21 for expressing. The recombinant protein was renaturated, purified and its antigenicity were detected by Western blotting, and the immunoprotective effect induced by recombinant Sj CyPB was evaluated in Balb/C mice. The cDNA containing the ORF of Sj CyPB was cloned with the length of 672 base pairs, encoding 223 amino acids. Real-time PCR analysis revealed that the gene had the highest expression in 18-day schistosomula, suggesting that Sj CyPB was schistosomula differentially expressed gene. The recombinant protein showed a good antigenicity detected by Western blotting. Animal experiment indicated that the vaccination of recombinant CyPB protein in mice led to 31.5% worm and 41.01% liver egg burden reduction, respectively, compared with those of the control. A full-length cDNA differentially expressed in schistosomula was obtained. The recombinant Sj CyPB protein could induce partial protection against schistosome infection.

  2. Adeno-associated-virus-mediated transduction of the mammary gland enables sustained production of recombinant proteins in milk

    PubMed Central

    Wagner, Stefan; Thresher, Rosemary; Bland, Ross; Laible, Götz

    2015-01-01

    Biopharming for the production of recombinant pharmaceutical proteins in the mammary gland of transgenic animals is an attractive but laborious alternative compared to mammalian cell fermentation. The disadvantage of the lengthy process of genetically modifying an entire animal could be circumvented with somatic transduction of only the mammary epithelium with recombinant, replication-defective viruses. While other viral vectors offer very limited scope for this approach, vectors based on adeno-associated virus (AAV) appear to be ideal candidates because AAV is helper-dependent, does not induce a strong immune response and has no association with disease. Here, we sought to test the suitability of recombinant AAV (rAAV) for biopharming. Using reporter genes, we showed that injected rAAV efficiently transduced mouse mammary cells. When rAAV encoding human myelin basic protein (hMBP) was injected into the mammary glands of mice and rabbits, this resulted in the expression of readily detectable protein levels of up to 0.5 g/L in the milk. Furthermore we demonstrated that production of hMBP persisted over extended periods and that protein expression could be renewed in a subsequent lactation by re-injection of rAAV into a previously injected mouse gland. PMID:26463440

  3. Molecular Characterization of Bombyx mori Cytoplasmic Polyhedrosis Virus Genome Segment 4

    PubMed Central

    Ikeda, Keiko; Nagaoka, Sumiharu; Winkler, Stefan; Kotani, Kumiko; Yagi, Hiroaki; Nakanishi, Kae; Miyajima, Shigetoshi; Kobayashi, Jun; Mori, Hajime

    2001-01-01

    The complete nucleotide sequence of the genome segment 4 (S4) of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) was determined. The 3,259-nucleotide sequence contains a single long open reading frame which spans nucleotides 14 to 3187 and which is predicted to encode a protein with a molecular mass of about 130 kDa. Western blot analysis showed that S4 encodes BmCPV protein VP3, which is one of the outer components of the BmCPV virion. Sequence analysis of the deduced amino acid sequence of BmCPV VP3 revealed possible sequence homology with proteins from rice ragged stunt virus (RRSV) S2, Nilaparvata lugens reovirus S4, and Fiji disease fijivirus S4. This may suggest that plant reoviruses originated from insect viruses and that RRSV emerged more recently than other plant reoviruses. A chimeric protein consisting of BmCPV VP3 and green fluorescent protein (GFP) was constructed and expressed with BmCPV polyhedrin using a baculovirus expression vector. The VP3-GFP chimera was incorporated into BmCPV polyhedra and released under alkaline conditions. The results indicate that specific interactions occur between BmCPV polyhedrin and VP3 which might facilitate BmCPV virion occlusion into the polyhedra. PMID:11134312

  4. Effects of voluntary and treadmill exercise on spontaneous withdrawal signs, cognitive deficits and alterations in apoptosis-associated proteins in morphine-dependent rats.

    PubMed

    Mokhtari-Zaer, Amin; Ghodrati-Jaldbakhan, Shahrbanoo; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Akhavan, Maziar M; Bandegi, Ahmad Reza; Rashidy-Pour, Ali

    2014-09-01

    Chronic exposure to morphine results in cognitive deficits and alterations of apoptotic proteins in favor of cell death in the hippocampus, a brain region critically involved in learning and memory. Physical activity has been shown to have beneficial effects on brain health. In the current work, we examined the effects of voluntary and treadmill exercise on spontaneous withdrawal signs, the associated cognitive defects, and changes of apoptotic proteins in morphine-dependent rats. Morphine dependence was induced through bi-daily administrations of morphine (10mg/kg) for 10 days. Then, the rats were trained under two different exercise protocols: mild treadmill exercise or voluntary wheel exercise for 10 days. After exercise training, their spatial learning and memory and aversive memory were examined by a water maze and by an inhibitory avoidance task, respectively. The expression of the pro-apoptotic protein Bax and the anti-apoptotic protein Bcl-2 in the hippocampus were determined by immunoblotting. We found that chronic exposure to morphine impaired spatial and aversive memory and remarkably suppressed the expression of Bcl-2, but Bax expression remained constant. Both voluntary and treadmill exercise alleviated memory impairment, increased the expression of Bcl-2 protein, and only the later suppressed the expression of Bax protein in morphine-dependent animals. Moreover, both exercise protocols diminished the occurrence of spontaneous morphine withdrawal signs. Our findings showed that exercise reduces the spontaneous morphine-withdrawal signs, blocks the associated impairment of cognitive performance, and overcomes morphine-induced alterations in apoptotic proteins in favor of cell death. Thus, exercise may be a useful therapeutic strategy for cognitive and behavioral deficits in addict individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Modeling gene-environment interactions in oral cavity and esophageal cancers demonstrates a role for the p53 R72P polymorphism in modulating susceptibility.

    PubMed

    Sarkar, Jayanta; Dominguez, Emily; Li, Guojun; Kusewitt, Donna F; Johnson, David G

    2014-08-01

    A large number of epidemiological studies have linked a common single-nucleotide polymorphism (SNP) in the human p53 gene to risk for developing a variety of cancers. This SNP encodes either an arginine or proline at position 72 (R72P) of the p53 protein, which can alter the apoptotic activity of p53 via transcriptional and non-transcriptional mechanisms. This SNP has also been reported to modulate the development of human papilloma virus (HPV)-driven cancers through differential targeting of the p53 variant proteins by the E6 viral oncoprotein. Mouse models for the p53 R72P polymorphism have recently been developed but a role for this SNP in modifying cancer risk in response to viral and chemical carcinogens has yet to be established experimentally. Here, we demonstrate that the p53 R72P polymorphism modulates the hyperprolferative, apoptotic and inflammatory phenotypes caused by expression of the HPV16 E6 and E7 oncoproteins. Moreover, the R72P SNP also modifies the carcinogenic response to the chemical carcinogen 4NQO, in the presence and absence of the HPV16 transgene. Our findings confirm several human epidemiological studies associating the codon 72 proline variant with increased risk for certain cancers but also suggest that there are tissue-specific differences in how the R72P polymorphism influences the response to environmental carcinogens. © 2013 Wiley Periodicals, Inc.

  6. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma

    PubMed Central

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P.; Al-Hendy, Ayman

    2016-01-01

    Background: Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. Study design: An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Materials and methods: Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. Results: In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Conclusion: Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. PMID:26884457

  7. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma.

    PubMed

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman

    2016-04-01

    Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. © The Author(s) 2016.

  8. Alveolar macrophage phagocytosis is enhanced after blunt chest trauma and alters the posttraumatic mediator release.

    PubMed

    Seitz, Daniel H; Palmer, Annette; Niesler, Ulrike; Fröba, Janine S; Heidemann, Vera; Rittlinger, Anne; Braumüller, Sonja T; Zhou, Shaoxia; Gebhard, Florian; Knöferl, Markus W

    2011-12-01

    Blunt chest trauma is known to induce a pulmonary invasion of short-lived polymorphonuclear neutrophils and apoptosis of alveolar epithelial type 2 (AT2) cells. Apoptotic cells are removed by alveolar macrophages (AMΦ). We hypothesized that chest trauma alters the phagocytic response of AMΦ as well as the mediator release of AMΦ during phagocytosis. To study this, male Sprague-Dawley rats were subjected to blunt chest trauma. Phagocytosis assays were performed in AMΦ isolated 2 or 24 h after trauma with apoptotic cells or opsonized beads. Phagocytosis of apoptotic AT2 cells by unstimulated AMΦ was significantly increased 2 h after trauma. At 24 h, AMΦ from traumatized animals, stimulated with phorbol-12-myristate-13-acetate, ingested significantly more apoptotic polymorphonuclear neutrophils than AMΦ from sham animals. Alveolar macrophages after trauma released significantly higher levels of tumor necrosis factor α, macrophage inflammatory protein 1α, and cytokine-induced neutrophil chemoattractant 1 when they incorporated latex beads, but significantly lower levels of interleukin 1β and macrophage inflammatory protein 1α when they ingested apoptotic cells. In vivo, phagocytosis of intratracheally instilled latex beads was decreased in traumatized rats. The bronchoalveolar lavage concentrations of the phagocytosis-supporting surfactant proteins A and D after blunt chest trauma were slightly decreased, whereas surfactant protein D mRNA expression in AT2 cells was significantly increased after 2 h. These findings indicate that chest trauma augments the phagocytosis of apoptotic cells by AMΦ. Phagocytosis of opsonized beads enhances and ingestion of apoptotic cells downregulates the immunologic response following lung contusion. Our data emphasize the important role of phagocytosis during posttraumatic inflammation after lung contusion.

  9. Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Hwa; Ha, Ji-Hyang; Kim, Yul

    Highlights: {yields} Identification of a conserved BH3 motif in C-terminal coiled coil region of nCLU. {yields} The nCLU BH3 domain binds to BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. {yields} A conserved binding mechanism of nCLU BH3 and the other pro-apoptotic BH3 peptides with Bcl-X{sub L}. {yields} The absolutely conserved Leu323 and Asp328 of nCLU BH3 domain are critical for binding to Bcl-X{sub L.} {yields} Molecular understanding of the pro-apoptotic function of nCLU as a novel BH3-only protein. -- Abstract: Clusterin (CLU) is a multifunctional glycoprotein that is overexpressed in prostate and breast cancers. Although CLU is knownmore » to be involved in the regulation of apoptosis and cell survival, the precise molecular mechanism underlying the pro-apoptotic function of nuclear CLU (nCLU) remains unclear. In this study, we identified a conserved BH3 motif in C-terminal coiled coil (CC2) region of nCLU by sequence analysis and characterized the molecular interaction of the putative nCLU BH3 domain with anti-apoptotic Bcl-2 family proteins by nuclear magnetic resonance (NMR) spectroscopy. The chemical shift perturbation data demonstrated that the nCLU BH3 domain binds to pro-apoptotic BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. A structural model of the Bcl-X{sub L}/nCLU BH3 peptide complex reveals that the binding mode is remarkably similar to those of other Bcl-X{sub L}/BH3 peptide complexes. In addition, mutational analysis confirmed that Leu323 and Asp328 of nCLU BH3 domain, absolutely conserved in the BH3 motifs of BH3-only protein family, are critical for binding to Bcl-X{sub L}. Taken altogether, our results suggest a molecular basis for the pro-apoptotic function of nCLU by elucidating the residue specific interactions of the BH3 motif in nCLU with anti-apoptotic Bcl-2 family proteins.« less

  10. Molecular characterization of enolase gene from Taenia multiceps.

    PubMed

    Li, W H; Qu, Z G; Zhang, N Z; Yue, L; Jia, W Z; Luo, J X; Yin, H; Fu, B Q

    2015-10-01

    Taenia multiceps is a cestode parasite with its larval stage, known as Coenurus cerebralis, mainly encysts in the central nervous system of sheep and other livestocks. Enolase is a key glycolytic enzyme and represents multifunction in most organisms. In the present study, a 1617bp full-length cDNA encoding enolase was cloned from T. multiceps and designated as TmENO. A putative encoded protein of 433 amino acid residues that exhibited high similarity to helminth parasites. The recombinant TmENO protein (rTmENO) showed the catalytic and plasminogen-binding characteristics after the TmENO was subcloned and expressed in the pET30a(+) vector. The TmENO gene was transcribed during the adult and larval stages and was also identified in both cyst fluid and as a component of the adult worms and the metacestode by western blot analysis. Taken together, our results will facilitate further structural characterization for TmENO and new potential control strategies for T. multiceps. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Amino acid sequence of a trypsin inhibitor from a Spirometra (Spirometra erinaceieuropaei).

    PubMed

    Sanda, A; Uchida, A; Itagaki, T; Kobayashi, H; Inokuchi, N; Koyama, T; Iwama, M; Ohgi, K; Irie, M

    2001-12-01

    A trypsin inhibitor that is highly homologous with bovine pancreatic trypsin inhibitor (BPTI) was co-purified along with RNase from Spirometra (Spirometra erinaceieuropaei). The amino acid sequence of this inhibitor (SETI) and the nucleotide sequence of the cDNA encoding this protein were determined by protein chemistry and gene technology. SETI contains 68 amino acid residues and has a molecular mass of 7,798 Da. SETI has 31 amino acid residues that are identical with BPTI's sequence, including 6 half-cystine and 5 aromatic amino acid residues. The active site Lys residue in BPTI is replaced by an Arg residue in SETI. SETI is an effective inhibitor of trypsin and moderately inhibits a-chymotrypsin, but less inhibits elastase or subtilisin. SETI was expressed by E. coli containing a PelB vector carrying the SETI encoding cDNA; an expression yield of 0.68 mg/l was obtained. The phylogenetic relationship of SETI and the other BPTI-like trypsin inhibitors was analyzed using most likelihood inference methods.

  12. Development of Gutless Adenoviral Vectors Encoding Anti Angiogenic Proteins for Therapy of Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    PRINCIPAL INVESTIGATOR: Calvin J. Kuo, M.D., Ph.D. CONTRACTING ORGANIZATION : Stanford University Stanford, California 94305-5401 REPORT DATE: January...cloned in between the I-Scel site and the T’. This extra DNA fragment is used as a stuffer DNA in order to increase the size of the viral genome up to...regularly increasing sizes above the 2 fragments specific for the virus left and right ends can only be explained by the phenomenon known as ’postreplicative

  13. Virus inhibition of RIP3-dependent necrosis.

    PubMed

    Upton, Jason W; Kaiser, William J; Mocarski, Edward S

    2010-04-22

    Viral infection activates cytokine expression and triggers cell death, the modulation of which is important for successful pathogenesis. Necroptosis is a form of programmed necrosis dependent on two related RIP homotypic interaction motif (RHIM)-containing signaling adaptors, receptor-interacting protein kinases (RIP) 1 and 3. We find that murine cytomegalovirus infection induces RIP3-dependent necrosis. Whereas RIP3 kinase activity and RHIM-dependent interactions control virus-associated necrosis, virus-induced death proceeds independently of RIP1 and is therefore distinct from TNFalpha-dependent necroptosis. Viral M45-encoded inhibitor of RIP activation (vIRA) targets RIP3 during infection and disrupts RIP3-RIP1 interactions characteristic of TNFalpha-induced necroptosis, thereby suppressing both death pathways. Importantly, attenuation of vIRA mutant virus in wild-type mice is normalized in RIP3-deficient mice. Thus, vIRA function validates necrosis as central to host defense against viral infections and highlights the benefit of multiple virus-encoded cell-death suppressors that inhibit not only apoptotic, but also necrotic mechanisms of virus clearance. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Co-expression of hepatitis C virus polytope-HBsAg and p19-silencing suppressor protein in tobacco leaves.

    PubMed

    Mohammadzadeh, Sara; Roohvand, Farzin; Memarnejadian, Arash; Jafari, Anis; Ajdary, Soheila; Salmanian, Ali-Hatef; Ehsani, Parastoo

    2016-01-01

    Plants transformed by virus-based vectors have emerged as promising tools to rapidly express large amounts and inexpensive antigens in transient condition. We studied the possibility of transient-expression of an HBsAg-fused polytopic construct (HCVpc) [containing H-2d and HLA-A2-restricted CD8+CTL-epitopic peptides of C (Core; aa 132-142), E6 (Envelope2; aa 614-622), N (NS3; aa 1406-1415), and E4 (Envelope2; aa 405-414) in tandem of CE6NE4] in tobacco (Nicotiana tabacum) leaves for the development of a plant-based HCV vaccine. A codon-optimized gene encoding the Kozak sequence, hexahistidine (6×His)-tag peptide, and HCVpc in tandem was designed, chemically synthesized, fused to HBsAg gene, and inserted into Potato virus X (PVX-GW) vector under the control of duplicated PVX coat protein promoter (CPP). The resulted recombinant plasmids (after confirmation by restriction and sequencing analyses) were transferred into Agrobacterium tumefaciens strain GV3101 and vacuum infiltrated into tobacco leaves. The effect of gene-silencing suppressor, p19 protein from tomato bushy stunt virus, on the expression yield of HCVpc-HBsAg was also evaluated by co-infiltration of a p19 expression vector. Codon-optimized gene increased adaptation index (CAI) value (from 0.61 to 0.92) in tobacco. The expression of the HCVpc-HBsAg was confirmed by western blot and HBsAg-based detection ELISA on total extractable proteins of tobacco leaves. The expression level of the fusion protein was significantly higher in p19 co-agroinfiltrated plants. The results indicated the possibility of expression of HCVpc-HBsAg constructs with proper protein conformations in tobacco for final application as a plant-derived HCV vaccine.

  15. Adenovirus Type 5 Viral Particles Pseudotyped with Mutagenized Fiber Proteins Show Diminished Infectivity of Coxsackie B-Adenovirus Receptor-Bearing Cells

    PubMed Central

    Jakubczak, John L.; Rollence, Michele L.; Stewart, David A.; Jafari, Jonathon D.; Von Seggern, Dan J.; Nemerow, Glen R.; Stevenson, Susan C.; Hallenbeck, Paul L.

    2001-01-01

    A major limitation of adenovirus type 5 (Ad5)-based gene therapy, the inability to target therapeutic genes to selected cell types, is attributable to the natural tropism of the virus for the widely expressed coxsackievirus-adenovirus receptor (CAR) protein. Modifications of the Ad5 fiber knob domain have been shown to alter the tropism of the virus. We have developed a novel system to rapidly evaluate the function of modified fiber proteins in their most relevant context, the adenoviral capsid. This transient transfection/infection system combines transfection of cells with plasmids that express high levels of the modified fiber protein and infection with Ad5.βgal.ΔF, an E1-, E3-, and fiber-deleted adenoviral vector encoding β-galactosidase. We have used this system to test the adenoviral transduction efficiency mediated by a panel of fiber protein mutants that were proposed to influence CAR interaction. A series of amino acid modifications were incorporated via mutagenesis into the fiber expression plasmid, and the resulting fiber proteins were subsequently incorporated onto adenoviral particles. Mutations located in the fiber knob AB and CD loops demonstrated the greatest reduction in fiber-mediated gene transfer in HeLa cells. We also observed effects on transduction efficiency with mutations in the FG loop, indicating that the binding site may extend to the adjacent monomer in the fiber trimer and in the HI loop. These studies support the concept that modification of the fiber knob domain to diminish or ablate CAR interaction should result in a detargeted adenoviral vector that can be combined simultaneously with novel ligands for the development of a systemically administered, targeted adenoviral vector. PMID:11222722

  16. ENA/VASP downregulation triggers cell death by impairing axonal maintenance in hippocampal neurons.

    PubMed

    Franco, D Lorena; Rezával, Carolina; Cáceres, Alfredo; Schinder, Alejandro F; Ceriani, M Fernanda

    2010-06-01

    Neurodegenerative diseases encompass a broad variety of motor and cognitive disorders that are accompanied by death of specific neuronal populations or brain regions. Cellular and molecular mechanisms underlying these complex disorders remain largely unknown. In a previous work we searched for novel Drosophila genes relevant for neurodegeneration and singled out enabled (ena), which encodes a protein involved in cytoskeleton remodeling. To extend our understanding on the mechanisms of ENA-triggered degeneration we now investigated the effect of silencing ena ortholog genes in mouse hippocampal neurons. We found that ENA/VASP downregulation led to neurite retraction and concomitant neuronal cell death through an apoptotic pathway. Remarkably, this retraction initially affected the axonal structure, showing no effect on dendrites. Reduction in ENA/VASP levels blocked the neuritogenic effect of a specific RhoA kinase (ROCK) inhibitor, thus suggesting that these proteins could participate in the Rho-signaling pathway. Altogether these observations demonstrate that ENA/VASP proteins are implicated in the establishment and maintenance of the axonal structure and that a change on their expression levels triggers neuronal degeneration. 2010 Elsevier Inc. All rights reserved.

  17. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor

    PubMed Central

    De Meyer, Simon F.; Vanhoorelbeke, Karen; Chuah, Marinee K.; Pareyn, Inge; Gillijns, Veerle; Hebbel, Robert P.; Collen, Désiré; Deckmyn, Hans; VandenDriessche, Thierry

    2006-01-01

    Von Willebrand disease (VWD) is an inherited bleeding disorder, caused by quantitative (type 1 and 3) or qualitative (type 2) defects in von Willebrand factor (VWF). Gene therapy is an appealing strategy for treatment of VWD because it is caused by a single gene defect and because VWF is secreted into the circulation, obviating the need for targeting specific organs or tissues. However, development of gene therapy for VWD has been hampered by the considerable length of the VWF cDNA (8.4 kb [kilobase]) and the inherent complexity of the VWF protein that requires extensive posttranslational processing. In this study, a gene-based approach for VWD was developed using lentiviral transduction of blood-outgrowth endothelial cells (BOECs) to express functional VWF. A lentiviral vector encoding complete human VWF was used to transduce BOECs isolated from type 3 VWD dogs resulting in high-transduction efficiencies (95.6% ± 2.2%). Transduced VWD BOECs efficiently expressed functional vector-encoded VWF (4.6 ± 0.4 U/24 hour per 106 cells), with normal binding to GPIbα and collagen and synthesis of a broad range of multimers resulting in phenotypic correction of these cells. These results indicate for the first time that gene therapy of type 3 VWD is feasible and that BOECs are attractive target cells for this purpose. PMID:16478886

  18. Robust RNAi enhancement via human Argonaute-2 overexpression from plasmids, viral vectors and cell lines

    PubMed Central

    Börner, Kathleen; Niopek, Dominik; Cotugno, Gabriella; Kaldenbach, Michaela; Pankert, Teresa; Willemsen, Joschka; Zhang, Xian; Schürmann, Nina; Mockenhaupt, Stefan; Serva, Andrius; Hiet, Marie-Sophie; Wiedtke, Ellen; Castoldi, Mirco; Starkuviene, Vytaute; Erfle, Holger; Gilbert, Daniel F.; Bartenschlager, Ralf; Boutros, Michael; Binder, Marco; Streetz, Konrad; Kräusslich, Hans-Georg; Grimm, Dirk

    2013-01-01

    As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems. PMID:24049077

  19. Characterization of Endogenous Plasmids from Lactobacillus salivarius UCC118▿ †

    PubMed Central

    Fang, Fang; Flynn, Sarah; Li, Yin; Claesson, Marcus J.; van Pijkeren, Jan-Peter; Collins, J. Kevin; van Sinderen, Douwe; O'Toole, Paul W.

    2008-01-01

    The genome of Lactobacillus salivarius UCC118 comprises a 1.83-Mb chromosome, a 242-kb megaplasmid (pMP118), and two smaller plasmids of 20 kb (pSF118-20) and 44 kb (pSF118-44). Annotation and bioinformatic analyses suggest that both of the smaller plasmids replicate by a theta replication mechanism. Furthermore, it appears that they are transmissible, although neither possesses a complete set of conjugation genes. Plasmid pSF118-20 encodes a toxin-antitoxin system composed of pemI and pemK homologs, and this plasmid could be cured when PemI was produced in trans. The minimal replicon of pSF118-20 was determined by deletion analysis. Shuttle vector derivatives of pSF118-20 were generated that included the replication region (pLS203) and the replication region plus mobilization genes (pLS208). The plasmid pLS203 was stably maintained without selection in Lactobacillus plantarum, Lactobacillus fermentum, and the pSF118-20-cured derivative strain of L. salivarius UCC118 (strain LS201). Cloning in pLS203 of genes encoding luciferase and green fluorescent protein, and expression from a constitutive L. salivarius promoter, demonstrated the utility of this vector for the expression of heterologous genes in Lactobacillus. This study thus expands the knowledge base and vector repertoire of probiotic lactobacilli. PMID:18390685

  20. Cloning and characterization of an inulinase gene from the marine yeast Candida membranifaciens subsp. flavinogenie W14-3 and its expression in Saccharomyces sp. W0 for ethanol production.

    PubMed

    Zhang, Lin-Lin; Tan, Mei-Juan; Liu, Guang-Lei; Chi, Zhe; Wang, Guang-Yuan; Chi, Zhen-Ming

    2015-04-01

    The INU1 gene encoding an exo-inulinase from the marine-derived yeast Candida membranifaciens subsp. flavinogenie W14-3 was cloned and characterized. It had an open reading frame of 1,536 bp long encoding an inulinase. The coding region of it was not interrupted by any intron. The cloned gene encoded 512 amino acid residues of a protein with a putative signal peptide of 23 amino acids and a calculated molecular mass of 57.8 kDa. The protein sequence deduced from the inulinase gene contained the inulinase consensus sequences (WMNDPNGL), (RDP), ECP FS and Q. The protein also had six conserved putative N-glycosylation sites. The deduced inulinase from the yeast strain W14-3 was found to be closely related to that from Candida kutaonensis sp. nov. KRF1, Kluyveromyces marxianus, and Cryptococcus aureus G7a. The inulinase gene with its signal peptide encoding sequence was subcloned into the pMIRSC11 expression vector and expressed in Saccharomyces sp. W0. The recombinant yeast strain W14-3-INU-112 obtained could produce 16.8 U/ml of inulinase activity and 12.5 % (v/v) ethanol from 250 g/l of inulin within 168 h. The monosaccharides were detected after the hydrolysis of inulin with the crude inulinase (the yeast culture). All the results indicated that the cloned gene and the recombinant yeast strain W14-3-INU-112 had potential applications in biotechnology.

  1. Anti-CHMP5 single chain variable fragment antibody retrovirus infection induces programmed cell death of AML leukemic cells in vitro.

    PubMed

    Wang, Hai-rong; Xiao, Zhen-yu; Chen, Miao; Wang, Fei-long; Liu, Jia; Zhong, Hua; Zhong, Ji-hua; Ou-Yang, Ren-rong; Shen, Yan-lin; Pan, Shu-ming

    2012-06-01

    Over-expressed CHMP5 was found to act as oncogene that probably participated in leukemogenesis. In this study, we constructed the CHMP5 single chain variable fragment antibody (CHMP5-scFv) retrovirus and studied the changes of programmed cell death (PCD) of AML leukemic cells after infection by the retrovirus. The anti-CHMP5 KC14 hybridoma cell line was constructed to generate monoclonal antibody of CHMP5. The protein expression of CHMP5 was studied using immunofluorescence analysis. pMIG-CHMP5 scFv antibody expressible retroviral vector was constructed to prepare CHMP5-scFv retrovirus. AML leukemic U937 cells were infected with the retrovirus, and programmed cell death was studied using confocal microscope, FCM and Western blot. We obtained a monoclonal antibody of CHMP5, and found the expression of CHMP5 was up-regulated in the leukemic cells. After U937 cells were infected with CHMP5-scFv retrovirus, CHMP5 protein was neutralized. Moreover, the infection resulted in a significant increase in apoptosis and necrosis of U937 cells. In U937 cells infected with CHMP5-scFv retrovirus, apoptosis-inducing factor (AIF)-mediated caspase-independent necrotic PCD was activated, but autophagic programmed cell death was not observed. Neither the intrinsic nor extrinsic apoptotic PCD pathway was activated. The granzyme B/perforin-mediated caspase-dependent apoptotic PCD pathway was not activated. CHMP5-scFv retrovirus can neutralize the abnormally high levels of the CHMP5 protein in the cytosol of AML leukemic U937 cells, thereby inducing the programmed cell death of the leukemic cells via AIF-mediated caspase-independent necrosis and apoptosis.

  2. Adenine nucleotide translocase-1 induces cardiomyocyte death through upregulation of the pro-apoptotic protein Bax.

    PubMed

    Baines, Christopher P; Molkentin, Jeffery D

    2009-06-01

    Overexpression of the adenine nucleotide translocase (ANT) has been shown to be cytotoxic in several cell types. Although ANT was originally proposed to be a critical component of the mitochondrial permeability transition (MPT) pore, recent data have suggested that this may not be the case. We therefore hypothesized that the cytotoxic actions of ANT are through an alternative mechanism, independent of the MPT pore. Infection of cultured neonatal cardiomyocytes with an ANT1-encoding adenovirus induced a gene dosage-dependent increase in cell death. However, ANT1 overexpression failed to induce MPT, and neither pharmacological nor genetic inhibition of the MPT pore was able to prevent ANT1-induced cell death. These data suggested that ANT1-induced death progressed through an MPT pore-independent pathway. Somewhat surprisingly, we observed that protein levels of Bax, a pro-apoptotic Bcl protein, were consistently elevated in ANT1-infected cardiomyocytes. Membranes isolated from ANT1-infected myocytes exhibited significantly increased amounts of membrane-inserted Bax, and immunocytochemistry revealed increased Bax activation in ANT1-infected myocytes. Co-expression with the Bax antagonist Bcl2 was able to greatly reduce the degree of ANT1-induced cell death. Furthermore, Bax/Bak-deficient fibroblasts were resistant to the cytotoxic effects of ANT1 overexpression. Interestingly, ANT1 overexpression was also associated with enhanced production of reactive oxygen species (ROS), and the antioxidant MnTBAP was able to significantly attenuate both the ANT1-induced upregulation of Bax and cell death. Taken together, these data indicate that ANT mediates cell death, not through the MPT pore, but rather via a ROS-dependent upregulation and activation of Bax.

  3. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1994-01-01

    The unequal error protection capabilities of convolutional and trellis codes are studied. In certain environments, a discrepancy in the amount of error protection placed on different information bits is desirable. Examples of environments which have data of varying importance are a number of speech coding algorithms, packet switched networks, multi-user systems, embedded coding systems, and high definition television. Encoders which provide more than one level of error protection to information bits are called unequal error protection (UEP) codes. In this work, the effective free distance vector, d, is defined as an alternative to the free distance as a primary performance parameter for UEP convolutional and trellis encoders. For a given (n, k), convolutional encoder, G, the effective free distance vector is defined as the k-dimensional vector d = (d(sub 0), d(sub 1), ..., d(sub k-1)), where d(sub j), the j(exp th) effective free distance, is the lowest Hamming weight among all code sequences that are generated by input sequences with at least one '1' in the j(exp th) position. It is shown that, although the free distance for a code is unique to the code and independent of the encoder realization, the effective distance vector is dependent on the encoder realization.

  4. HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review).

    PubMed

    Wang, Xiaoxia; Chen, Meijuan; Zhou, Jing; Zhang, Xu

    2014-07-01

    Among the heat shock proteins (HSP), HSP27, HSP70 and HSP90 are the most studied stress-inducible HSPs, and are induced in response to a wide variety of physiological and environmental insults, thus allowing cells to survive to lethal conditions based on their powerful cytoprotective functions. Different functions of HSPs have been described to explain their cytoprotective functions, including their most basic role as molecular chaperones, that is to regulate protein folding, transport, translocation and assembly, especially helping in the refolding of misfolded proteins, as well as their anti-apoptotic properties. In cancer cells, the expression and/or activity of the three HSPs is abnormally high, and is associated with increased tumorigenicity, metastatic potential of cancer cells and resistance to chemotherapy. Associating with key apoptotic factors, they are powerful anti-apoptotic proteins, having the capacity to block the cell death process at different levels. Altogether, the properties suggest that HSP27, HSP70 and HSP90 are appropriate targets for modulating cell death pathways. In this review, we summarize the role of HSP90, HSP70 and HSP27 in apoptosis and the emerging strategies that have been developed for cancer therapy based on the inhibition of the three HSPs.

  5. NELL2 function in the protection of cells against endoplasmic reticulum stress.

    PubMed

    Kim, Dong Yeol; Kim, Han Rae; Kim, Kwang Kon; Park, Jeong Woo; Lee, Byung Ju

    2015-01-01

    Continuous intra- and extracellular stresses induce disorder of Ca(2+) homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.

  6. Myocardial protective effect of extracellular superoxide dismutase gene modified bone marrow mesenchymal stromal cells on infarcted mice hearts.

    PubMed

    Pan, Qiao; Qin, Xing; Ma, Sai; Wang, Haichang; Cheng, Kang; Song, Xinxing; Gao, Haokao; Wang, Qiang; Tao, Rannie; Wang, Yabin; Li, Xiujuan; Xiong, Lize; Cao, Feng

    2014-01-01

    Extracellular superoxide dismutase (ecSOD) is a unique scavenger of superoxide anions and a promising target of gene therapy for ischemia/reperfusion injury (I/R). However, conventional gene therapies have limitation in effectiveness and efficiency. This study aimed to investigate the protective effects of ecSOD gene modified bone marrow mesenchymal stromal cells (BMSCs) on cardiac function improvement in mice infarcted heart. BMSCs were isolated from Fluc(+) transgenic mice (Tg FVB[Fluc(+)]) and transfected by adenovirus combined with human ecSOD gene. ELISA was performed to determine ecSOD protein level. Female syngeneic FVB mice were randomized into 5 groups: (1) Sham group (sham); (2) MI group (MI); (3) MI+BMSCs group (BMSC); (4) MI+BMSCs-vector group (BMSC-vector); (5) MI+ BMSCs-ecSOD group (BMSC-ecSOD). MI was accomplished by ligation of the left anterior descending artery. BMSCs (2 x 10(6)) were injected into the border zone of infarction. In vivo bioluminescence imaging (BLI) was performed to monitor transplanted BMSCs viability. Echocardiography and histological staining revealed that BMSCs-ecSOD significantly reduced myocardial infarction size and improved cardiac function. Lucigenin chemiluminescence, DHE and TUNEL staining demonstrated that BMSCs-ecSOD delivery reduced ROS level and cell apoptosis both in vivo and in vitro. Western blot assay revealed that ecSOD supplementation increased FoxO3a phosphorylation in cardiomyocytes. Moreover, quantitative real-time PCR showed that pro-apoptotic factors (bim and bax) were decreased while the anti-apoptotic factor mir-21 expression was increased after ecSOD intervention. Intra-myocardial transplantation of adenovirus-ecSOD transfected BMSCs could exert potential cardiac protection against MI, which may be partly through reduction of oxidative stress and improvement of BMSCs survival.

  7. Retroviral vectors encoding ADA regulatory locus control region provide enhanced T-cell-specific transgene expression

    PubMed Central

    2009-01-01

    Background Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. Methods A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Results Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements in T-cell specific gene expression were observed with the incorporation of additional cis-regulatory elements, such as a human polyadenylation signal and intron 7 from the human ADA gene. Conclusion These studies suggest that the combination of an authentically regulated ADA gene in a murine retroviral vector, together with additional locus-specific regulatory refinements, will yield a vector with a safer profile and greater efficacy in terms of high-level, therapeutic, regulated gene expression for the treatment of ADA-deficient severe combined immunodeficiency. PMID:20042112

  8. Hyperforin Inhibits Cell Growth by Inducing Intrinsic and Extrinsic Apoptotic Pathways in Hepatocellular Carcinoma Cells.

    PubMed

    Chiang, I-Tsang; Chen, Wei-Ting; Tseng, Chih-Wei; Chen, Yen-Chung; Kuo, Yu-Cheng; Chen, Bi-Jhih; Weng, Mao-Chi; Lin, Hwai-Jeng; Wang, Wei-Shu

    2017-01-01

    The aim of the present study was to investigate the antitumor effect and mechanism of action of hyperforin in hepatocellular carcinoma (HCC) SK-Hep1 cells in vitro. Cells were treated with different concentrations of hyperforin for different periods of time. Effects of hyperforin on cell viability, apoptosis signaling, and expression of anti-apoptotic and proliferative proteins [cellular FLICE-like inhibitory protein (c-FLIP), X-linked inhibitor of apoptosis protein (XIAP), myeloid cell leukemia 1(MCL1), and cyclin-D1] were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, and western blotting. Hyperforin significantly inhibited cell viability and expression of anti-apoptotic and proliferative proteins. We also found that hyperforin significantly induced accumulation of cells in sub-G 1 phase, loss of mitochondrial membrane potential, and increased levels of active caspase-3, and caspase-8. Taken together, our findings indicate that hyperforin triggers inhibition of tumor cell growth by inducing intrinsic and extrinsic apoptotic pathways in HCC SK-Hep1 cells. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Interleukin-17 retinotoxicity is prevented by gene transfer of a soluble interleukin-17 receptor acting as a cytokine blocker: implications for age-related macular degeneration.

    PubMed

    Ardeljan, Daniel; Wang, Yujuan; Park, Stanley; Shen, Defen; Chu, Xi Kathy; Yu, Cheng-Rong; Abu-Asab, Mones; Tuo, Jingsheng; Eberhart, Charles G; Olsen, Timothy W; Mullins, Robert F; White, Gary; Wadsworth, Sam; Scaria, Abraham; Chan, Chi-Chao

    2014-01-01

    Age-related macular degeneration (AMD) is a common yet complex retinal degeneration that causes irreversible central blindness in the elderly. Pathology is widely believed to follow loss of retinal pigment epithelium (RPE) and photoreceptor degeneration. Here we report aberrant expression of interleukin-17A (IL17A) and the receptor IL17RC in the macula of AMD patients. In vitro, IL17A induces RPE cell death characterized by the accumulation of cytoplasmic lipids and autophagosomes with subsequent activation of pro-apoptotic Caspase-3 and Caspase-9. This pathology is reduced by siRNA knockdown of IL17RC. IL17-dependent retinal degeneration in a mouse model of focal retinal degeneration can be prevented by gene therapy with adeno-associated virus vector encoding soluble IL17 receptor. This intervention rescues RPE and photoreceptors in a MAPK-dependent process. The IL17 pathway plays a key role in RPE and photoreceptor degeneration and could hold therapeutic potential in AMD.

  10. An Elk transcription factor is required for Runx-dependent survival signaling in the sea urchin embryo.

    PubMed

    Rizzo, Francesca; Coffman, James A; Arnone, Maria Ina

    2016-08-01

    Elk proteins are Ets family transcription factors that regulate cell proliferation, survival, and differentiation in response to ERK (extracellular-signal regulated kinase)-mediated phosphorylation. Here we report the embryonic expression and function of Sp-Elk, the single Elk gene of the sea urchin Strongylocentrotus purpuratus. Sp-Elk is zygotically expressed throughout the embryo beginning at late cleavage stage, with peak expression occurring at blastula stage. Morpholino antisense-mediated knockdown of Sp-Elk causes blastula-stage developmental arrest and embryo disintegration due to apoptosis, a phenotype that is rescued by wild-type Elk mRNA. Development is also rescued by Elk mRNA encoding a serine to aspartic acid substitution (S402D) that mimics ERK-mediated phosphorylation of a conserved site that enhances DNA binding, but not by Elk mRNA encoding an alanine substitution at the same site (S402A). This demonstrates both that the apoptotic phenotype of the morphants is specifically caused by Elk depletion, and that phosphorylation of serine 402 of Sp-Elk is critical for its anti-apoptotic function. Knockdown of Sp-Elk results in under-expression of several regulatory genes involved in cell fate specification, cell cycle control, and survival signaling, including the transcriptional regulator Sp-Runt-1 and its target Sp-PKC1, both of which were shown previously to be required for cell survival during embryogenesis. Both Sp-Runt-1 and Sp-PKC1 have sequences upstream of their transcription start sites that specifically bind Sp-Elk. These results indicate that Sp-Elk is the signal-dependent activator of a feed-forward gene regulatory circuit, consisting also of Sp-Runt-1 and Sp-PKC1, which actively suppresses apoptosis in the early embryo. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Modulation of Mcl-1 expression reduces age-related cochlear degeneration

    PubMed Central

    Yang, Wei Ping; Xu, Yang; Guo, Wei Wei; Liu, Hui Zhan; Hu, Bo Hua

    2013-01-01

    Mcl-1 is an anti-apoptotic member of the Bcl-2 family that modulates apoptosis-related signaling pathways and promotes cell survival. We have previously demonstrated a reduction of Mcl-1 expression in aging cochleae. To investigate whether restoring Mcl-1 expression would reduce aging-related cochlear degeneration, we developed a rat model of Mcl-1 overexpression. A plasmid encoding human Mcl-1/enhanced green fluorescent protein was applied to the round window of the cochlea. This in vivo treatment transfected both the sensory and supporting cells of the cochlear sensory epithelium and enhanced Mcl-1 expression at both the mRNA and the protein level. The upregulation of Mcl-1 expression reduced the progression of age-related cochlear dysfunction and sensory cell death. Furthermore, the transfection of Mcl-1 exerted its protective effect by suppressing cochlear apoptosis at the mitochondrial level. This study demonstrates that the genetic modulation of Mcl-1 expression reduces the progression of age-related cochlear degeneration. PMID:23790646

  12. A phage display vector optimized for the generation of human antibody combinatorial libraries and the molecular cloning of monoclonal antibody fragments.

    PubMed

    Solforosi, Laura; Mancini, Nicasio; Canducci, Filippo; Clementi, Nicola; Sautto, Giuseppe Andrea; Diotti, Roberta Antonia; Clementi, Massimo; Burioni, Roberto

    2012-07-01

    A novel phagemid vector, named pCM, was optimized for the cloning and display of antibody fragment (Fab) libraries on the surface of filamentous phage. This vector contains two long DNA "stuffer" fragments for easier differentiation of the correctly cut forms of the vector. Moreover, in pCM the fragment at the heavy-chain cloning site contains an acid phosphatase-encoding gene allowing an easy distinction of the Escherichia coli cells containing the unmodified form of the phagemid versus the heavy-chain fragment coding cDNA. In pCM transcription of heavy-chain Fd/gene III and light chain is driven by a single lacZ promoter. The light chain is directed to the periplasm by the ompA signal peptide, whereas the heavy-chain Fd/coat protein III is trafficked by the pelB signal peptide. The phagemid pCM was used to generate a human combinatorial phage display antibody library that allowed the selection of a monoclonal Fab fragment antibody directed against the nucleoprotein (NP) of Influenza A virus.

  13. A newly identified protein of Leptospira interrogans mediates binding to laminin.

    PubMed

    Longhi, Mariana T; Oliveira, Tatiane R; Romero, Eliete C; Gonçales, Amane P; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2009-10-01

    Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. The search for novel antigens that could be relevant in host-pathogen interactions is being pursued. These antigens have the potential to elicit several activities, including adhesion. This study focused on a hypothetical predicted lipoprotein of Leptospira, encoded by the gene LIC12895, thought to mediate attachment to extracellular matrix (ECM) components. The gene was cloned and expressed in Escherichia coli BL21 Star (DE3)pLys by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. The capacity of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC12895, named Lsa27 (leptospiral surface adhesin, 27 kDa), bound strongly to laminin in a dose-dependent and saturable fashion. Moreover, Lsa27 was recognized by antibodies from serum samples of confirmed leptospirosis specimens in both the initial and the convalescent phases of the disease. Lsa27 is most likely a surface protein of Leptospira as revealed in liquid-phase immunofluorescence assays with living organisms. Taken together, these data indicate that this newly identified membrane protein is expressed during natural infection and may play a role in mediating adhesion of L. interrogans to its host.

  14. Cloning of novel cellulases from cellulolytic fungi: heterologous expression of a family 5 glycoside hydrolase from Trametes versicolor in Pichia pastoris.

    PubMed

    Salinas, Alejandro; Vega, Marcela; Lienqueo, María Elena; Garcia, Alejandro; Carmona, Rene; Salazar, Oriana

    2011-12-10

    Total cDNA isolated from cellulolytic fungi cultured in cellulose was examined for the presence of sequences encoding for endoglucanases. Novel sequences encoding for glycoside hydrolases (GHs) were identified in Fusarium oxysporum, Ganoderma applanatum and Trametes versicolor. The cDNA encoding for partial sequences of GH family 61 cellulases from F. oxysporum and G. applanatum shares 58 and 68% identity with endoglucanases from Glomerella graminicola and Laccaria bicolor, respectively. A new GH family 5 endoglucanase from T. versicolor was also identified. The cDNA encoding for the mature protein was completely sequenced. This enzyme shares 96% identity with Trametes hirsuta endoglucanase and 22% with Trichoderma reesei endoglucanase II (EGII). The enzyme, named TvEG, has N-terminal family 1 carbohydrate binding module (CBM1). The full length cDNA was cloned into the pPICZαB vector and expressed as an active, extracellular enzyme in the methylotrophic yeast Pichia pastoris. Preliminary studies suggest that T. versicolor could be useful for lignocellulose degradation. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. DNA encoding for plant digalactosyldiacylglycerol galactosyltransferase and methods of use

    DOEpatents

    Benning, Christoph; Doermann, Peter

    2003-11-04

    The cDNA encoding digalactosyldiacylglycerol galactosyltransferase (DGD1) is provided. The deduced amino acid sequence is also provided. Methods of making and using DGD1 to screen for new herbicides and alter a plant's leaf lipid composition are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors.

  16. Vector assembly of colloids on monolayer substrates

    NASA Astrophysics Data System (ADS)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  17. Complementation between avirulent Newcastle disease virus and a fusion protein gene expressed from a retrovirus vector: requirements for membrane fusion.

    PubMed Central

    Morrison, T; McQuain, C; McGinnes, L

    1991-01-01

    The cDNA derived from the fusion gene of the virulent AV strain of Newcastle disease virus (NDV) was expressed in chicken embryo cells by using a retrovirus vector. The fusion protein expressed in this system was transported to the cell surface and was efficiently cleaved into the disulfide-linked F1-F2 form found in infectious virions. The cells expressing the fusion gene grew normally and could be passaged many times. Monolayers of these cells would plaque, in the absence of trypsin, avirulent NDV strains (strains which encode a fusion protein which is not cleaved in tissue culture). Fusion protein-expressing cells would not fuse if mixed with uninfected cells or uninfected cells expressing the hemagglutinin-neuraminidase (HN) protein. However, the fusion protein-expressing cells, if infected with avirulent strains of NDV, would fuse with uninfected cells, suggesting that fusion requires both the fusion protein and another viral protein expressed in the same cell. Fusion was also seen after transfection of the HN protein gene into fusion protein-expressing cells. Thus, the expressed fusion protein gene is capable of complementing the virus infection, providing an active cleaved fusion protein required for the spread of infection. However, the fusion protein does not mediate cell fusion unless the cell also expresses the HN protein. Fusion protein-expressing cells would not plaque influenza virus in the absence of trypsin, nor would influenza virus-infected fusion protein-expressing cells fuse with uninfected cells. Thus, the influenza virus HA protein will not substitute for the NDV HN protein in cell-to-cell fusion. Images PMID:1987376

  18. Adeno-Associated Virus Type 6 (AAV6) Vectors Mediate Efficient Transduction of Airway Epithelial Cells in Mouse Lungs Compared to That of AAV2 Vectors

    PubMed Central

    Halbert, Christine L.; Allen, James M.; Miller, A. Dusty

    2001-01-01

    Although vectors derived from adeno-associated virus type 2 (AAV2) promote gene transfer and expression in many somatic tissues, studies with animal models and cultured cells show that the apical surface of airway epithelia is resistant to transduction by AAV2 vectors. Approaches to increase transduction rates include increasing the amount of vector and perturbing the integrity of the epithelia. In this study, we explored the use of vectors based on AAV6 to increase transduction rates in airways. AAV vectors were made using combinations of rep, cap, and packaged genomes from AAV2 or AAV6. The packaged genomes encoded human placental alkaline phosphatase and contained terminal repeat sequences from AAV2 or AAV6. We found that transduction efficiency was primarily dependent on the source of Cap protein, defined here as the vector pseudotype. The AAV6 and AAV2 pseudotype vectors exhibited different tropisms in tissue-cultured cells, and cell transduction by AAV6 vectors was not inhibited by heparin, nor did they compete for entry in a transduction assay, indicating that AAV6 and AAV2 capsid bind different receptors. In vivo analysis of vectors showed that AAV2 pseudotype vectors gave high transduction rates in alveolar cells but much lower rates in the airway epithelium. In contrast, the AAV6 pseudotype vectors exhibited much more efficient transduction of epithelial cells in large and small airways, showing up to 80% transduction in some airways. These results, combined with our previous results showing lower immunogenicity of AAV6 than of AAV2 vectors, indicate that AAV6 vectors may provide significant advantages over AAV2 for gene therapy of lung diseases like cystic fibrosis. PMID:11413329

  19. Hesperidin Induces Apoptosis by Inhibiting Sp1 and Its Regulatory Protein in MSTO-211H Cells

    PubMed Central

    Lee, Kyung-Ae; Lee, Sang-Han; Lee, Yong-Jin; Baeg, Seung Mi; Shim, Jung-Hyun

    2012-01-01

    Hesperidin, a flavanone present in citrus fruits, has been studied as potential therapeutic agents that have anti-tumor activity and apoptotic effects in several cancers, but there is no report about the apoptotic effect of hesperidin in human malignant pleural mesothelioma through the specificity protein 1 (Sp1) protein. We investigated whether hesperidin inhibited cell growth and regulated Sp1 target proteins by suppressing the levels of Sp1 protein in MSTO-211H cells. The IC50 value of hesperidin was determined to be 152.3 μM in MSTO-211H cells for 48 h. Our results suggested that hesperidin (0-160 μM) decreased cell viability, and induced apoptotic cell death. Hesperidin increased Sub-G1 population in MSTO-211H cells. Hesperidin significantly suppressed mRNA/protein level of Sp1 and modulated the expression level of the Sp1 regulatory protein such as p27, p21, cyclin D1, Mcl-1, and survivin in mesothelioma cells. Also, hesperidin induced apoptotic signaling including: cleavages of Bid, caspase-3, and PARP, upregulation of Bax, and down-regulation of Bcl-xl in mesothelioma cells. These results show that hesperidin suppressed mesothelioma cell growth through inhibition of Sp1. In this study, we demonstrated that Sp1 acts as a novel molecular target of hesperidin in human malignant pleural mesothelioma. PMID:24130923

  20. Correction of mutant Fanconi anemia gene by homologous recombination in human hematopoietic cells using adeno-associated virus vector.

    PubMed

    Paiboonsukwong, Kittiphong; Ohbayashi, Fumi; Shiiba, Haruka; Aizawa, Emi; Yamashita, Takayuki; Mitani, Kohnosuke

    2009-11-01

    Adeno-associated virus (AAV) vectors have been shown to correct a variety of mutations in human cells by homologous recombination (HR) at high rates, which can overcome insertional mutagenesis and transgene silencing, two of the major hurdles in conventional gene addition therapy of inherited diseases. We examined an ability of AAV vectors to repair a mutation in human hematopoietic cells by HR. We infected a human B-lymphoblastoid cell line (BCL) derived from a normal subject with an AAV, which disrupts the hypoxanthine phosphoribosyl transferase1 (HPRT1) locus, to measure the frequency of AAV-mediated HR in BCL cells. We subsequently constructed an AAV vector encoding the normal sequences from the Fanconi anemia group A (FANCA) locus to correct a mutation in the gene in BCL derived from a FANCA patient. Under optimal conditions, approximately 50% of BCL cells were transduced with an AAV serotype 2 (AAV-2) vector. In FANCA BCL cells, up to 0.016% of infected cells were gene-corrected by HR. AAV-mediated restoration of normal genotypic and phenotypic characteristics in FANCA-mutant cells was confirmed at the DNA, protein and functional levels. The results obtained in the present study indicate that AAV vectors may be applicable for gene correction therapy of inherited hematopoietic disorders.

  1. Multiplexing clonality: combining RGB marking and genetic barcoding

    PubMed Central

    Cornils, Kerstin; Thielecke, Lars; Hüser, Svenja; Forgber, Michael; Thomaschewski, Michael; Kleist, Nadja; Hussein, Kais; Riecken, Kristoffer; Volz, Tassilo; Gerdes, Sebastian; Glauche, Ingmar; Dahl, Andreas; Dandri, Maura; Roeder, Ingo; Fehse, Boris

    2014-01-01

    RGB marking and DNA barcoding are two cutting-edge technologies in the field of clonal cell marking. To combine the virtues of both approaches, we equipped LeGO vectors encoding red, green or blue fluorescent proteins with complex DNA barcodes carrying color-specific signatures. For these vectors, we generated highly complex plasmid libraries that were used for the production of barcoded lentiviral vector particles. In proof-of-principle experiments, we used barcoded vectors for RGB marking of cell lines and primary murine hepatocytes. We applied single-cell polymerase chain reaction to decipher barcode signatures of individual RGB-marked cells expressing defined color hues. This enabled us to prove clonal identity of cells with one and the same RGB color. Also, we made use of barcoded vectors to investigate clonal development of leukemia induced by ectopic oncogene expression in murine hematopoietic cells. In conclusion, by combining RGB marking and DNA barcoding, we have established a novel technique for the unambiguous genetic marking of individual cells in the context of normal regeneration as well as malignant outgrowth. Moreover, the introduction of color-specific signatures in barcodes will facilitate studies on the impact of different variables (e.g. vector type, transgenes, culture conditions) in the context of competitive repopulation studies. PMID:24476916

  2. Heterogeneous RNA-binding protein M4 is a receptor for carcinoembryonic antigen in Kupffer cells.

    PubMed

    Bajenova, O V; Zimmer, R; Stolper, E; Salisbury-Rowswell, J; Nanji, A; Thomas, P

    2001-08-17

    Here we report the isolation of the recombinant cDNA clone from rat macrophages, Kupffer cells (KC) that encodes a protein interacting with carcinoembryonic antigen (CEA). To isolate and identify the CEA receptor gene we used two approaches: screening of a KC cDNA library with a specific antibody and the yeast two-hybrid system for protein interaction using as a bait the N-terminal part of the CEA encoding the binding site. Both techniques resulted in the identification of the rat heterogeneous RNA-binding protein (hnRNP) M4 gene. The rat ortholog cDNA sequence has not been previously described. The open reading frame for this gene contains a 2351-base pair sequence with the polyadenylation signal AATAAA and a termination poly(A) tail. The mRNA shows ubiquitous tissue expression as a 2.4-kilobase transcript. The deduced amino acid sequence comprised a 78-kDa membrane protein with 3 putative RNA-binding domains, arginine/methionine/glutamine-rich C terminus and 3 potential membrane spanning regions. When hnRNP M4 protein is expressed in pGEX4T-3 vector system in Escherichia coli it binds (125)I-labeled CEA in a Ca(2+)-dependent fashion. Transfection of rat hnRNP M4 cDNA into a non-CEA binding mouse macrophage cell line p388D1 resulted in CEA binding. These data provide evidence for a new function of hnRNP M4 protein as a CEA-binding protein in Kupffer cells.

  3. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    PubMed

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  4. Effects of proteasome inhibitor MG-132 on the parasite Schistosoma mansoni

    PubMed Central

    de Paula, Renato G.; Ornelas, Alice M. M.; Moreira, Érika B. C.; Badoco, Fernanda Rafacho; Magalhães, Lizandra G.; Verjovski-Almeida, Sergio; Rodrigues, Vanderlei

    2017-01-01

    Proteasome is a proteolytic complex responsible for intracellular protein turnover in eukaryotes, archaea and in some actinobacteria species. Previous work has demonstrated that in Schistosoma mansoni parasites, the proteasome inhibitor MG-132 affects parasite development. However, the molecular targets affected by MG-132 in S. mansoni are not entirely known. Here, we used expression microarrays to measure the genome-wide changes in gene expression of S. mansoni adult worms exposed in vitro to MG-132, followed by in silico functional analyses of the affected genes using Ingenuity Pathway Analysis (IPA). Scanning electron microscopy was used to document changes in the parasites’ tegument. We identified 1,919 genes with a statistically significant (q-value ≤ 0.025) differential expression in parasites treated for 24 h with MG-132, when compared with control. Of these, a total of 1,130 genes were up-regulated and 790 genes were down-regulated. A functional gene interaction network comprised of MG-132 and its target genes, known from the literature to be affected by the compound in humans, was identified here as affected by MG-132. While MG-132 activated the expression of the 26S proteasome genes, it also decreased the expression of 19S chaperones assembly, 20S proteasome maturation, ubiquitin-like NEDD8 and its partner cullin-3 ubiquitin ligase genes. Interestingly, genes that encode proteins related to potassium ion binding, integral membrane component, ATPase and potassium channel activities were significantly down-regulated, whereas genes encoding proteins related to actin binding and microtubule motor activity were significantly up-regulated. MG-132 caused important changes in the worm tegument; peeling, outbreaks and swelling in the tegument tubercles could be observed, which is consistent with interference on the ionic homeostasis in S. mansoni. Finally, we showed the down-regulation of Bax pro-apoptotic gene, as well as up-regulation of two apoptosis inhibitor genes, IAP1 and BRE1, and in contrast, down-regulation of Apaf-1 apoptotic activator, thus suggesting that apoptosis is deregulated in S. mansoni exposed to MG-132. A considerable insight has been gained concerning the potential of MG-132 as a gene expression modulator, and overall the data suggest that the proteasome might be an important molecular target for the design of new drugs against schistosomiasis. PMID:28898250

  5. Toxoplasma gondii infection confers resistance against BimS-induced apoptosis by preventing the activation and mitochondrial targeting of pro-apoptotic Bax.

    PubMed

    Hippe, Diana; Weber, Arnim; Zhou, Liying; Chang, Donald C; Häcker, Georg; Lüder, Carsten G K

    2009-10-01

    In order to accomplish their life style, intracellular pathogens, including the apicomplexan Toxoplasma gondii, subvert the innate apoptotic response of infected host cells. However, the precise mechanisms of parasite interference with the mitochondrial apoptotic pathway remain unknown. Here, we used the conditional expression of the BH3-only protein Bim(S) to pinpoint the interaction of T. gondii with the intrinsic pathway of apoptosis. Infection of epithelial cells with T. gondii dose-dependently abrogated Bim(S)-triggered release of cytochrome c from host-cell mitochondria into the cytosol, induction of activity of caspases 3, 7 and 9, and chromatin condensation. Furthermore, inhibition of apoptosis in parasite-infected lymphocytes counteracted death of Toxoplasma-infected host cells. Although total cellular levels and mitochondrial targeting of Bim(S) was not altered by the infection, the activation of pro-apoptotic effector proteins Bax and Bak was strongly impaired. Inhibition of Bax and Bak activation by T. gondii was seen with regard to their conformational changes, the cytosol-to-mitochondria targeting and the oligomerization of Bax but not their cellular protein levels. Blockade of Bax and Bak activation was not mediated by the upregulation of anti-apoptotic Bcl-2-like proteins following infection. Further, the BH3-mimetic ABT-737 failed to overcome the Toxoplasma-imposed inhibition of Bim(S)-triggered apoptosis. These results indicate that T. gondii targets activation of pro-apoptotic Bax and Bak to inhibit the apoptogenic function of mitochondria and to increase host-cell viability.

  6. Characterization and evaluation of apoptotic potential of double gene construct pVIVO.VP3.NS1.

    PubMed

    Saxena, Shikha; Desai, G S; Kumar, G Ravi; Sahoo, A P; Santra, Lakshman; Singh, Lakshya Veer

    2015-05-01

    Viral gene oncotherapy, targeted killing of cancer cells by viral genes, is an emerging non-infectious therapeutic cancer treatment modality. Chemo and radiotherapy in cancer treatment is limited due to their genotoxic side effects on healthy cells and need of functional p53, which is mutated in most of the cancers. VP3 (apoptin) of chicken infectious anaemia (CIA) and NS1 (Non structural protein 1) of Canine Parvovirus-2 (CPV-2) have been proven to have oncolytic potential in our laboratory. To evaluate oncolytic potential of VP3 and NS1 together these genes needed to be cloned in a bicistronic vector. In this study, both these genes were cloned and characterized for expression of their gene products and its apoptotic potential. The expression of VP3 and NS1 was studied by confocal microscopy and flowcytometry. Expression of VP3 and NS1 in pVIVO.VP3.NS1 transfected HeLa cells in comparison to mock transfected cells indicated that the double gene construct expresses both the products. This was further confirmed by flowcytometry where there was increase in cells expressing VP3 and NS1 in pVIVO.VP3.NS1 transfected group in comparison with the mock control group. The apoptotic inducing potential of this characterized pVIVO.VP3.NS1 was evaluated in human cervical cancer cell line (HeLa) by DNA fragmentation assay, TUNEL assay and Hoechst staning. This double construct was observed to induce apoptosis in HeLa cells.

  7. Chemical chaperone 4-phenylbutyric acid protects H9c2 cardiomyocytes from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis.

    PubMed

    Jian, Lian; Lu, Yuan; Lu, Shan; Lu, Chengzhi

    2016-05-01

    Myocardial ischemia/reperfusion (I/R) is a potential contributor to high rates of mortality in several cardiovascular diseases. I/R initiates the unfolded protein response and endoplasmic reticulum (ER) stress, which may lead to apoptotic pathways and exaggerate I/R injury. 4‑phenylbutyric acid (4‑PBA), a low molecular weight, terminal aromatic substituted fatty acid, has been reported to function as an ER chaperone. The aim of the present study was to investigate whether 4‑PBA is able to reduce ER stress‑induced apoptosis and prevent cardiomyocyte damage during the process of I/R in vitro. Accordingly, the rat cardiomyocyte line, H9c2, was treated with hypoxia/reoxygenation as an I/R model in vitro. Myocardium apoptosis was determined with TUNEL staining. The expression of ER stress‑related proteins were examined by western blotting. The resulting data showed that I/R activates the ER stress proteins, glucose‑regulated protein 78, activating transcription factor 6 and protein kinase RNA‑like endoplasmic reticulum kinase, which were all reduced by pretreatment with 4‑PBA. In addition, pretreatment with 4‑PBA significantly inhibited the expression levels of pro‑apoptotic proteins, C/EBP homologous protein, B cell lymphoma (Bcl‑2)‑associated X protein and phosphorylated c‑Jun N‑terminal kinase, and enhanced the expression of the anti‑apoptotic protein Bcl‑2 (n=3; P<0.05). The data demonstrated that I/R initiates ER stress‑associated apoptotic pathways, and 4‑PBA pretreatment protected the cardiomyocytes from I/R‑induced cell death. To the best of our knowledge, the present study is the first to report on the cell repair mechanism of 4‑PBA against I/R damage in cardiomyocytes based on ER stress‑associated apoptotic pathways.

  8. The BAX/BAK-like protein BOK is a prognostic marker in colorectal cancer.

    PubMed

    Carberry, Steven; D'Orsi, Beatrice; Monsefi, Naser; Salvucci, Manuela; Bacon, Orna; Fay, Joanna; Rehm, Markus; McNamara, Deborah; Kay, Elaine W; Prehn, Jochen H M

    2018-01-26

    The intrinsic or mitochondrial apoptosis pathway is controlled by the interaction of antiapoptotic and pro-apoptotic members of the BCL-2 protein family. Activation of this death pathway plays a crucial role in cancer progression and chemotherapy responses. The BCL-2-related ovarian killer (BOK) possesses three BCL-2 homology domains and has been proposed to act in a similar pro-apoptotic pathway as the pro-apoptotic proteins BAX and BAK. In this study, we showed that stage II and III colorectal cancer patients possessed decreased levels of BOK protein in their tumours compared to matched normal tissue. BOK protein levels in tumours were also prognostic of clinical outcome but increased BOK protein levels surprisingly associated with earlier disease recurrence and reduced overall survival. We found no significant association of BOK protein tumour levels with ER stress markers GRP78 or GRP94 or with cleaved caspase-3. In contrast, BOK protein levels correlated with Calreticulin. These data indicate BOK as a prognostic marker in colorectal cancer and suggest that different activities of BOK may contribute to cancer progression and prognosis.

  9. Identification of a follistatin-related protein from the tick Haemaphysalis longicornis and its effect on tick oviposition.

    PubMed

    Zhou, Jinlin; Liao, Min; Hatta, Takeshi; Tanaka, Miho; Xuan, Xuenan; Fujisaki, Kozo

    2006-05-10

    The identification of ovary-associated molecules will lead to a better understanding of the physiology of tick reproduction and vector-pathogen interactions. A gene encoding a follistatin-related protein (FRP) was obtained by random sequencing from the ovary cDNA library of the tick Haemaphysalis longicornis. The full-length cDNA is 1157 bp, including an intact ORF encoding an expected protein with 289 amino acids. Three distinct domains were present in the deduced amino acids, namely, the follistatin-like domain, KAZAL, and two calcium-binding motifs, EFh. The sequence shows homology with the follistatin-related protein (FRP), which was thought to play some roles in the negative regulation of cellular growth. RT-PCR showed that the gene was expressed throughout the developing stages and mainly in the ovary as well as in fat body, hemocytes, salivary glands, and midgut. This gene was expressed in GST-fused recombinant protein with an expected size. The mouse antiserum against the recombinant protein recognized a 56-kDa native protein in both tick ovary and hemolymph. The recombinant proteins were found to have binding activity for both activin A and bone morphogenetic protein-2 (BMP-2). Silencing of FRP by RNAi showed a decrease in tick oviposition, which is consistent with the effect of a recombinant protein vaccine on the adult tick. These results showed that the tick FRP might be involved in tick oviposition. This is the first report of a member of follistatin family proteins in Chelicerata, which include ticks, spiders, and scorpions.

  10. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com; Kim, Dong-Wook; Jung, Chang-Hwa

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We alsomore » found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.« less

  11. Pro-apoptotic Bid induces membrane perturbation by inserting selected lysolipids into the bilayer.

    PubMed

    Goonesinghe, Alexander; Mundy, Elizabeth S; Smith, Melanie; Khosravi-Far, Roya; Martinou, Jean-Claude; Esposti, Mauro D

    2005-04-01

    Bid is a BH3-only member of the Bcl-2 family that regulates cell death at the level of mitochondrial membranes. Bid appears to link the mitochondrial pathway with the death receptor-mediated pathway of cell death. It is generally assumed that the f.l. (full-length) protein becomes activated after proteolytic cleavage, especially by apical caspases like caspase 8. The cleaved protein then relocates to mitochondria and promotes membrane permeabilization, presumably by interaction with mitochondrial lipids and other Bcl-2 proteins that facilitate the release of apoptogenic proteins like cytochrome c. Although the major action may reside in the C-terminus part, tBid (cleaved Bid), un-cleaved Bid also has pro-apoptotic potential when ectopically expressed in cells or in vitro. This pro-apoptotic action of f.l. Bid has remained unexplained, especially at the biochemical level. In the present study, we show that f.l. (full-length) Bid can insert specific lysolipids into the membrane surface, thereby priming mitochondria for the release of apoptogenic factors. This is most effective for lysophosphatidylcholine species that we report to accumulate in mitochondria during apoptosis induction. A Bid mutant that is not pro-apoptotic in vivo is defective in lysophosphatidylcholine-mediated membrane perturbation in vitro. Our results thus provide a biochemical explanation for the pro-apoptotic action of f.l. Bid.

  12. Two Closely Related Ubiquitin C-Terminal Hydrolase Isozymes Function as Reciprocal Modulators of Germ Cell Apoptosis in Cryptorchid Testis

    PubMed Central

    Kwon, Jungkee; Wang, Yu-Lai; Setsuie, Rieko; Sekiguchi, Satoshi; Sato, Yae; Sakurai, Mikako; Noda, Mami; Aoki, Shunsuke; Yoshikawa, Yasuhiro; Wada, Keiji

    2004-01-01

    The experimentally induced cryptorchid mouse model is useful for elucidating the in vivo molecular mechanism of germ cell apoptosis. Apoptosis, in general, is thought to be partly regulated by the ubiquitin-proteasome system. Here, we analyzed the function of two closely related members of the ubiquitin C-terminal hydrolase (UCH) family in testicular germ cell apoptosis experimentally induced by cryptorchidism. The two enzymes, UCH-L1 and UCH-L3, deubiquitinate ubiquitin-protein conjugates and control the cellular balance of ubiquitin. The testes of gracile axonal dystrophy (gad) mice, which lack UCH-L1, were resistant to cryptorchid stress-related injury and had reduced ubiquitin levels. The level of both anti-apoptotic (Bcl-2 family and XIAP) and prosurvival (pCREB and BDNF) proteins was significantly higher in gad mice after cryptorchid stress. In contrast, Uchl3 knockout mice showed profound testicular atrophy and apoptotic germ cell loss after cryptorchid injury. Ubiquitin level was not significantly different between wild-type and Uchl3 knockout mice, whereas the levels of Nedd8 and the apoptotic proteins p53, Bax, and caspase3 were elevated in Uchl3 knockout mice. These results demonstrate that UCH-L1 and UCH-L3 function differentially to regulate the cellular levels of anti-apoptotic, prosurvival, and apoptotic proteins during testicular germ cell apoptosis. PMID:15466400

  13. Intranasal adenovirus-vectored vaccine for induction of long-lasting humoral immunity-mediated broad protection against influenza in mice.

    PubMed

    Kim, Eun Hye; Park, Hae-Jung; Han, Gye-Yeong; Song, Man-Ki; Pereboev, Alexander; Hong, Jeong S; Chang, Jun; Byun, Young-Ho; Seong, Baik Lin; Nguyen, Huan H

    2014-09-01

    Influenza vaccines aimed at inducing antibody (Ab) responses against viral surface hemagglutinin (HA) and neuraminidase (NA) provide sterile immunity to infection with the same subtypes. Vaccines targeting viral conserved determinants shared by the influenza A viruses (IAV) offer heterosubtypic immunity (HSI), a broad protection against different subtypes. We proposed that vaccines targeting both HA and the conserved ectodomain of matrix protein 2 (M2e) would provide protection against infection with the same subtype and also HSI against other subtypes. We report here that single intranasal immunization with a recombinant adenovirus (rAd) vector encoding both HA of H5 virus and M2e (rAdH5/M2e) induced significant HA- and M2e-specific Ab responses, along with protection against heterosubtypic challenge in mice. The protection is superior compared to that induced by rAd vector encoding either HA (rAdH5), or M2e (rAdM2e). While protection against homotypic H5 virus is primarily mediated by virus-neutralizing Abs, the cross-protection is associated with Abs directed to conserved stalk HA and M2e that seem to have an additive effect. Consistently, adoptive transfer of antisera induced by rAdH5/M2e provided the best protection against heterosubtypic challenge compared to that provided by antisera derived from mice immunized with rAdH5 or rAdM2e. These results support the development of rAd-vectored vaccines encoding both H5 and M2e as universal vaccines against different IAV subtypes. Current licensed influenza vaccines provide protection limited to the infection with same virus strains; therefore, the composition of influenza vaccines has to be revised every year. We have developed a new universal influenza vaccine that is highly efficient in induction of long-lasting cross-protection against different influenza virus strains. The cross-protection is associated with a high level of vaccine-induced antibodies against the conserved stalk domain of influenza virus hemagglutinin and the ectodomain of matrix protein. The vaccine could be used to stimulate cross-protective antibodies for the prevention and treatment of influenza with immediate effect for individuals who fail to respond to or receive the vaccine in due time. The vaccine offers a new tool to control influenza outbreaks, including pandemics. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Real-time detecting gelatinases activity in living cells by FRET imaging

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Zhihong; Liu, Bifeng; Luo, Qingming

    2006-01-01

    Degradation of the extracellular matrix by Matrix metalloproteinases (MMPs) not only enhances tumor invasion, but also affects tumor cell behaviour and leads to cancer progression. To monitor gelatinases (contain MMP2 and MMP9) activity in living cells, we constructed a vector that encoded a gelatinases recognition site (GRS) between citrine (mutation of EYFP Q69M) in N terminal and ECFP in C terminal. Because Gelatinases are secretory proteins and act outside of cell, an expressing vector displayed the fusion protein on cellular surface was used for this FRET gene probe. On expression of YFP-GRS-ECFP in MCF-7 cells that expressed no gelatinases, we were able to observe the efficient transfer of energy from excited ECFP to YFP within the YFP-GRS-ECFP molecule. However, the fusion protein YFP-GRS-ECFP was expressed in MDA-MB 453s cell line with high secretory gelatinases, so YFP-GRS-ECFP was cleaved by gelatinases, no such transfer of energy was detected and fluorescence signal disappeared in YFP channel since YFP protein was cut down. Moreover, Doxycycline, a MMP inhibitor, could make FRET signal increase and fluorescence signal appeared in YFP channel. Thus, the FRET probe YFP-GRS-ECFP can sensitively and reliably monitor gelatinases activation in living cells and can be used for screening MMP inhibitors.

  15. Production and immunogenicity of Actinobacillus pleuropneumoniae ApxIIA protein in transgenic rice callus.

    PubMed

    Kim, Mi-Young; Kim, Tae-Geum; Yang, Moon-Sik

    2017-04-01

    Actinobacillus pleuropneumoniae is a major etiological agent that is responsible for swine pleuropneumonia, a highly contagious respiratory infection that causes severe economic losses in the swine production industry. ApxIIA is one of the virulence factors in A. pleuropneumoniae and has been considered as a candidate for developing a vaccine against the bacterial infection. A gene encoding an ApxIIA fragment (amino acids 439-801) was modified based on a plant-optimized codon and constructed into a plant expression vector under the control of a promoter and the 3' UTR of the rice amylase 3D gene. The plant expression vector was introduced into rice embryogenic callus (Oryza sativa L. cv. Dongjin) via particle bombardment-mediated transformation. The integration and transcription of the ApxIIA 439-801 gene were confirmed by using genomic DNA PCR amplification and Northern blot analysis, respectively. The synthesis of ApxIIA 439-801 antigen protein in transgenic rice callus was confirmed by western blot analysis. The concentration of antigen protein in lyophilized samples of transgenic rice callus was 250 μg/g. Immunizing mice with protein extracts from transgenic plants intranasally elicited secretory IgA. These results demonstrate the feasibility of using a transgenic plant to elicit immune responses against A. pleuropneumoniae. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Transcriptome Sequencing and Developmental Regulation of Gene Expression in Anopheles aquasalis

    PubMed Central

    Silva, Maria C. P.; Lopes, Adriana R.; Barros, Michele S.; Sá-Nunes, Anderson; Kojin, Bianca B.; Carvalho, Eneas; Suesdek, Lincoln; Silva-Neto, Mário Alberto C.; James, Anthony A.; Capurro, Margareth L.

    2014-01-01

    Background Anopheles aquasalis is a major malaria vector in coastal areas of South and Central America where it breeds preferentially in brackish water. This species is very susceptible to Plasmodium vivax and it has been already incriminated as responsible vector in malaria outbreaks. There has been no high-throughput investigation into the sequencing of An. aquasalis genes, transcripts and proteins despite its epidemiological relevance. Here we describe the sequencing, assembly and annotation of the An. aquasalis transcriptome. Methodology/Principal Findings A total of 419 thousand cDNA sequence reads, encompassing 164 million nucleotides, were assembled in 7544 contigs of ≥2 sequences, and 1999 singletons. The majority of the An. aquasalis transcripts encode proteins with their closest counterparts in another neotropical malaria vector, An. darlingi. Several analyses in different protein databases were used to annotate and predict the putative functions of the deduced An. aquasalis proteins. Larval and adult-specific transcripts were represented by 121 and 424 contig sequences, respectively. Fifty-one transcripts were only detected in blood-fed females. The data also reveal a list of transcripts up- or down-regulated in adult females after a blood meal. Transcripts associated with immunity, signaling networks and blood feeding and digestion are discussed. Conclusions/Significance This study represents the first large-scale effort to sequence the transcriptome of An. aquasalis. It provides valuable information that will facilitate studies on the biology of this species and may lead to novel strategies to reduce malaria transmission on the South American continent. The An. aquasalis transcriptome is accessible at http://exon.niaid.nih.gov/transcriptome/An_aquasalis/Anaquexcel.xlsx. PMID:25033462

  17. Prioritization of candidate disease genes by combining topological similarity and semantic similarity.

    PubMed

    Liu, Bin; Jin, Min; Zeng, Pan

    2015-10-01

    The identification of gene-phenotype relationships is very important for the treatment of human diseases. Studies have shown that genes causing the same or similar phenotypes tend to interact with each other in a protein-protein interaction (PPI) network. Thus, many identification methods based on the PPI network model have achieved good results. However, in the PPI network, some interactions between the proteins encoded by candidate gene and the proteins encoded by known disease genes are very weak. Therefore, some studies have combined the PPI network with other genomic information and reported good predictive performances. However, we believe that the results could be further improved. In this paper, we propose a new method that uses the semantic similarity between the candidate gene and known disease genes to set the initial probability vector of a random walk with a restart algorithm in a human PPI network. The effectiveness of our method was demonstrated by leave-one-out cross-validation, and the experimental results indicated that our method outperformed other methods. Additionally, our method can predict new causative genes of multifactor diseases, including Parkinson's disease, breast cancer and obesity. The top predictions were good and consistent with the findings in the literature, which further illustrates the effectiveness of our method. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. AAV9-mediated engineering of autotransplanted kidney of non-human primates.

    PubMed

    Tomasoni, S; Trionfini, P; Azzollini, N; Zentilin, L; Giacca, M; Aiello, S; Longaretti, L; Cozzi, E; Baldan, N; Remuzzi, G; Benigni, A

    2017-05-01

    Ex vivo gene transfer to the graft before transplantation is an attractive option for circumventing systemic side effects of chronic antirejection therapy. Gene delivery of the immunomodulatory protein cytotoxic T-lymphocyte-associated protein 4-immunoglobulin (CTLA4-Ig) prevented chronic kidney rejection in a rat model of allotransplantation without the need for systemic immunosuppression. Here we generated adeno-associated virus type 2 (AAV2) and AAV9 vectors encoding for LEA29Y, an optimized version of CTLA4-Ig. Both LEA29Y vectors were equally efficient for reducing T-cell proliferation in vitro. Serotype 9 was chosen for in vivo experiments owing to a lower frequency of preformed antibodies against the AAV9 capsid in 16 non-human primate tested sera. AAV9-LEA29Y was able to transduce the kidney of non-human primates in an autotransplantation model. Expression of LEA29Y mRNA by renal cells translated into the production of the corresponding protein, which was confined to the graft but not detected in serum. Results in non-human primates represent a step forward in maintaining the portability of this strategy into clinics.

  19. Sustained AAV9-mediated expression of a non-self protein in the CNS of non-human primates after immunomodulation

    PubMed Central

    Ramsingh, Arlene I.; Gray, Steven J.; Reilly, Andrew; Koday, Michael; Bratt, Debbie; Koday, Merika Treants; Murnane, Robert; Hu, Yuhui; Messer, Anne

    2018-01-01

    A critical issue in transgene delivery studies is immune reactivity to the transgene- encoded protein and its impact on sustained gene expression. Here, we test the hypothesis that immunomodulation by rapamycin can decrease immune reactivity after intrathecal AAV9 delivery of a transgene (GFP) in non-human primates, resulting in sustained GFP expression in the CNS. We show that rapamycin treatment clearly reduced the overall immunogenicity of the AAV9/GFP vector by lowering GFP- and AAV9-specific antibody responses, and decreasing T cell responses including cytokine and cytolytic effector responses. Spinal cord GFP protein expression was sustained for twelve weeks, with no toxicity. Immune correlates of robust transgene expression include negligible GFP-specific CD4 and CD8 T cell responses, absence of GFP-specific IFN-γ producing T cells, and absence of GFP-specific cytotoxic T cells, which support the hypothesis that decreased T cell reactivity results in sustained transgene expression. These data strongly support the use of modest doses of rapamycin to modulate immune responses for intrathecal gene therapies, and potentially a much wider range of viral vector-based therapeutics. PMID:29874260

  20. LY294002 enhances expression of proteins encoded by recombinant replication-defective adenoviruses via mTOR- and non-mTOR-dependent mechanisms.

    PubMed

    Shepelev, Mikhail V; Korobko, Elena V; Vinogradova, Tatiana V; Kopantsev, Eugene P; Korobko, Igor V

    2013-03-04

    Adenovirus-based drugs are efficient when combined with other anticancer treatments. Here we show that treatment with LY294002 and LY303511 upregulates expression of recombinant proteins encoded by replication-defective adenoviruses, including expression of therapeutically valuable combination of herpes simplex virus thymidine kinase controlled by human telomerase reverse transcriptase promoter (Ad-hTERT-HSVtk). In line with this, treatment with LY294002 synergized with Ad-hTERT-HSVtk infection in the presence of gancyclovir prodrug on Calu-I lung cancer cell death. The effect of LY294002 and LY303511 on adenovirus-delivered transgene expression was demonstrated in 4 human lung cancer cell lines. LY294002-induced upregulation of adenovirally delivered transgene is mediated in part by direct inhibition of mTOR protein kinase in mTORC2 signaling complex thus suggesting that anticancer drugs targeting mTOR will also enhance expression of transgenes delivered with adenoviral vectors. As both LY294002 and LY303511 are candidate prototypic anticancer drugs, and many mTOR inhibitors for cancer treatment are under development, our results have important implication for development of future therapeutic strategies with adenoviral gene delivery.

  1. Expression of Caenorhabditis elegans antimicrobial peptide NLP-31 in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Lim, Mei-Perng; Nathan, Sheila

    2014-09-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a fulminant disease endemic in Southeast Asia and Northern Australia. The standardized form of therapy is antibiotics treatment; however, the bacterium has become increasingly resistant to these antibiotics. This has spurred the need to search for alternative therapeutic agents. Antimicrobial peptides (AMPs) are small proteins that possess broad-spectrum antimicrobial activity. In a previous study, the nematode Caenorhabditis elegans was infected by B. pseudomallei and a whole animal transcriptome analysis identified a number of AMP-encoded genes which were induced significantly in the infected worms. One of the AMPs identified is NLP-31 and to date, there are no reports of anti-B. pseudomallei activity demonstrated by NLP-31. To produce NLP-31 protein for future studies, the gene encoding for NLP-31 was cloned into the pET32b expression vector and transformed into Escherichia coli BL21(DE3). Protein expression was induced with 1 mM IPTG for 20 hours at 20°C and recombinant NLP-31 was detected in the soluble fraction. Taken together, a simple optimized heterologous production of AMPs in an E. coli expression system has been successfully developed.

  2. Isolation and characterization of a cDNA clone for the complete protein coding region of the delta subunit of the mouse acetylcholine receptor.

    PubMed Central

    LaPolla, R J; Mayne, K M; Davidson, N

    1984-01-01

    A mouse cDNA clone has been isolated that contains the complete coding region of a protein highly homologous to the delta subunit of the Torpedo acetylcholine receptor (AcChoR). The cDNA library was constructed in the vector lambda 10 from membrane-associated poly(A)+ RNA from BC3H-1 mouse cells. Surprisingly, the delta clone was selected by hybridization with cDNA encoding the gamma subunit of the Torpedo AcChoR. The nucleotide sequence of the mouse cDNA clone contains an open reading frame of 520 amino acids. This amino acid sequence exhibits 59% and 50% sequence homology to the Torpedo AcChoR delta and gamma subunits, respectively. However, the mouse nucleotide sequence has several stretches of high homology with the Torpedo gamma subunit cDNA, but not with delta. The mouse protein has the same general structural features as do the Torpedo subunits. It is encoded by a 3.3-kilobase mRNA. There is probably only one, but at most two, chromosomal genes coding for this or closely related sequences. Images PMID:6096870

  3. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent.

    PubMed

    Modi, Vivek; Lama, Dilraj; Sankararamakrishnan, Ramasubbu

    2013-01-01

    The anti-apoptotic protein Bfl-1, also known as A1, belongs to the Bcl-2 family of proteins and interacts with pro-apoptotic Bcl-2 counterparts to regulate programmed cell death. As demonstrated for other anti-apoptotic Bcl-2 proteins, Bfl-1/A1 has also been shown to be overexpressed in various human cancers and hence they are attractive targets for anticancer drugs. Peptides derived from the BH3 region of pro-apoptotic Bcl-2 proteins have been shown to elicit similar biological response as that of parent proteins. BH3 peptides from different pro-apoptotic proteins have wide range of affinities for Bfl-1/A1. Experimentally determined complex structures show that the hydrophobic side of amphipathic BH3 peptides binds to the hydrophobic groove formed by the α-helical bundle of Bfl-1/A1 protein. Apart from the length and amino acid composition, a BH3 peptide's ability to form a stable helical structure has been suggested to be important for its high binding affinity. Molecular dynamics simulations of three BH3 peptides derived from the pro-apoptotic proteins Bak, Bid, and Bmf were carried out each for a period of at least 100 ns after 2 ns equilibration run. The length of simulated BH3 peptides varied from 22 to 24 residues and their binding affinities for Bfl-1/A1 varied from 1 to 180 nM. Our results show that the hydrophobic residues from the hydrophobic face of BH3 peptides tend to cluster together quickly to avoid being exposed to the solvent. This resulted in either reduction of helix length or complete loss of helical character. Bak and Bid BH3 peptides with high affinities for Bf1-1/A1 have stable helical segments in the N-terminal region. The highly conserved Leu residue lies just outside the helical region at the C-terminal end. Capping interactions arising out of N-cap residues seem to be extremely important to maintain the helical stability. Favorable hydrophilic interactions between residues also give further stability to the helix fragment and at least one of the interacting residues resides within the helical region. Bmf BH3 peptide with a weaker binding affinity for Bmf-1/A1 completely lost its helical character at the end of 100 ns production run and a further 50 ns simulation showed that the Bmf peptide continues to remain in random conformation. The present study clearly establishes a link between a BH3 peptide's ability to form a stable helical segment and its high binding affinity for an anti-apoptotic protein. To further test this hypothesis, we simulated a mutant Bmf peptide for 100 ns in which two residues R129 and H146 were substituted by Asn in silico in the wild-type peptide. Introduction of N-terminal Asn clearly enabled the formation of capping interactions at the N-terminus and resulted in a stable N-terminal helical segment. This demonstrates that the knowledge of interactions that help to maintain stable helical segments in a high-affinity BH3 peptide will help in designing highly specific peptide-based drugs/inhibitors. Such molecules will have the ability to bind a particular anti-apoptotic protein with high affinity.

  4. In vitro evaluation of a mammary gland specific expression vector encoding recombinant human lysozyme for development of transgenic dairy goat embryos.

    PubMed

    Gui, Tao; Zhang, Meiling; Chen, Jianwen; Zhang, Yuanliang; Zhou, Naru; Zhang, Yu; Tao, Jia; Sui, Liucai; Li, Yunsheng; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai

    2012-08-01

    A vector expressing human lysozyme (pBC1-hLYZ-GFP-Neo) was evaluated for gene and protein expression following liposome-mediated transformation of C-127 mouse mammary cancer cells. Cultures of G418-resistant clones were harvested 24-72 h after induction with prolactin, insulin and hydrocortisone. Target gene expression was analyzed by RT-PCR and Western blot and recombinant human lysozyme (rhLYZ) bacteriostatic activity was also evaluated. The hLYZ gene was correctly transcribed and translated in C-127 cells and hLYZ inhibited gram-positive bacterial growth, indicating the potential of this expression vector for development of a mammary gland bioreactor in goats. Guanzhong dairy goat skin fibroblasts transfected with pBC1-hLYZ-GFP-Neo were used to construct a goat embryo transgenically expressing rhLYZ by somatic nuclear transplantation with a blastocyst rate of 9.0 ± 2.8 %. These data establish the basis for cultivation of mastitis-resistant hLYZ transgenic goats.

  5. Cloning, expression, and purification of recombinant protein MPT-64 from a virulent strain of Mycobacterium bovis in a prokaryotic system.

    PubMed

    Tashakkori, Maryam Mohammadi; Tebianian, Majid; Tabatabaei, Mohammad; Mosavari, Nader

    2016-12-01

    Tuberculosis (TB) is a zoonotic infectious disease common to humans and animals that is caused by the rod-shaped acid-fast bacterium Mycobacterium bovis. Rapid and sensitive detection of TB is promoted by specific antigens. Virulent strains of the TB complex from M. bovis contain 16 regions of difference (RD) in their genome that encode important proteins, including major protein of Mycobacterium Tuberculosis 64 (MBT-64, which is a primary immune-stimulating antigen encoded by RD-2. In this study, we cloned, expressed, and purified MPT-64 as a potent M. bovis antigen in a prokaryotic system for use in future diagnostic studies. The antigenic region of the Mpt64 gene was investigated by bioinformatics methods, cloned into the PQE-30 plasmid, and expressed in Escherichia coli M15 cells, followed by isopropyl β-d-1-thiogalactopyranoside induction. The expressed protein was analyzed sodium dodecyl sulfate polyacrylamide gel electrophoresis and purified using a nickel-affinity column. Biological activity was confirmed by western blot using specific antibodies. Our data verified the successful cloning of the Mpt64 gene (687-bp segment) via the expression vector and purification of recombinant MPT-64 as a 24-kDa protein. These results indicated successful expression and purification of recombinant MPT-64 protein in a prokaryotic system. This protein can be used for serological diagnosis, improved detection of pathogenicity and non-pathogenicity between infected cattle, and for verification of suspected cases of bovine TB. Copyright © 2016.

  6. Suppression of bcr-abl synthesis by siRNAs or tyrosine kinase activity by Glivec alters different oncogenes, apoptotic/antiapoptotic genes and cell proliferation factors (microarray study).

    PubMed

    Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki; Ewis, Ashraf; Ishikawa, Mitsuru; Shinohara, Yasuo; Baba, Yoshinobu

    2004-07-16

    Short 21-mer double-stranded/small-interfering RNAs (ds/siRNAs) were designed to target bcr-abl mRNA in chronic myelogenous leukemia. The ds/siRNAs were transfected into bcr-abl-positive K-562 (derived from blast crisis chronic myelogenous leukemia), using lipofectamine. Penetrating of ds/siRNAs into the cells was detected by fluorescent confocal microscopy, using fluorescein-labeled ds/siRNAs. The cells were treated with mix of three siRNA sequences (3 x 60 nM) during 6 days with three repetitive transfections. The siRNA-treatment was accompanied with significant reduction of bcr-abl mRNA, p210, protein tyrosine kinase activity and cell proliferation index. Treatment of cells with Glivec (during 8 days with four repetitive doses, 180 nM single dose) resulted in analogous reduction of cell proliferation activity, stronger suppression of protein tyrosine kinase activity, and very low reduction of p210. siRNA-mix and Glivec did not affect significantly the viability of normal lymphocytes. Microarray analysis of siRNA- and Glivec-treated K-562 cells demonstrated that both pathways of bcr-abl suppression were accompanied with overexpression and suppression of many different oncogenes, apoptotic/antiapoptotic and cell proliferation factors. The following genes of interest were found to decrease in relatively equal degree in both siRNA- and Glivec-treated cells: Bcd orf1 and orf2 proto-oncogene, chromatin-specific transcription elongation factor FACT 140-kDa subunit mRNA, gene encoding splicing factor SF1, and mRNA for Tec protein tyrosine kinase. siRNA-mix and Glivec provoked overexpression of the following common genes: c-jun proto-oncogene, protein kinase C-alpha, pvt-1 oncogene homologue (myc activator), interleukin-6, 1-8D gene from interferon-inducible gene family, tumor necrosis factor receptor superfamily (10b), and STAT-induced STAT inhibitor.

  7. TITER AND PRODUCT AFFECTS THE DISTRIBUTION OF GENE EXPRESSION AFTER INTRAPUTAMINAL CONVECTION-ENHANCED DELIVERY

    PubMed Central

    Emborg, Marina E.; Hurley, Samuel A.; Joers, Valerie; Tromp, Do P.M.; Swanson, Christine R.; Ohshima-Hosoyama, Sachiko; Bondarenko, Viktorya; Cummisford, Kyle; Sonnemans, Marc; Hermening, Stephan; Blits, Bas; Alexander, Andrew L.

    2014-01-01

    Background Efficacy and safety of intracerebral gene therapy for brain disorders, like Parkinson’s disease, depends on appropriate distribution of gene expression. Objectives To assess if the distribution of gene expression is affected by vector titer and protein type. Methods Four adult macaque monkeys seronegative for adeno-associated virus 5 (AAV5) received in the right and left ventral postcommisural putamen 30μl inoculation of a high or low titer suspension of AAV5 encoding glial derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Inoculations were performed using convection enhanced delivery and intraoperative MRI (IMRI). Results IMRI confirmed targeting and infusion cloud irradiating from the catheter tip into surrounding area. Postmortem analysis six weeks after surgery revealed GFP and GDNF expression ipsilateral to the injection side that had a titer-dependent distribution. GFP and GDNF expression was also observed in fibers in the Substantia Nigra (SN) pars reticulata (pr), demonstrating anterograde transport. Few GFP-positive neurons were present in the SN pars compacta (pc), possibly by direct retrograde transport of the vector. GDNF was present in many SNpc and SNpr neurons. Conclusions After controlling for target and infusate volume, intracerebral distribution of gene product is affected by vector titer and product biology. PMID:24943657

  8. Polymers for Improving the In Vivo Transduction Efficiency of AAV2 Vectors

    PubMed Central

    Moulay, Gilles; Boutin, Sylvie; Masurier, Carole; Scherman, Daniel; Kichler, Antoine

    2010-01-01

    Background Adeno-associated virus has attracted great attention as vehicle for body-wide gene delivery. However, for the successful treatment of a disease such as Duchenne muscular dystrophy infusion of very large amounts of vectors is required. This not only raises questions about the technical feasibility of the large scale production but also about the overall safety of the approach. One way to overcome these problems would be to find strategies able to increase the in vivo efficiency. Methodology Here, we investigated whether polymers can act as adjuvants to increase the in vivo efficiency of AAV2. Our strategy consisted in the pre-injection of polymers before intravenous administration of mice with AAV2 encoding a murine secreted alkaline phosphatase (mSeAP). The transgene expression, vector biodistribution and tissue transduction were studied by quantification of the mSeAP protein and real time PCR. The injection of polyinosinic acid and polylysine resulted in an increase of plasmatic mSeAP of 2- and 12-fold, respectively. Interestingly, polyinosinic acid pre-injection significantly reduced the neutralizing antibody titer raised against AAV2. Conclusions Our results show that the pre-injection of polymers can improve the overall transduction efficiency of systemically administered AAV2 and reduce the humoral response against the capsid proteins. PMID:21203395

  9. [Prokaryotic expression and histological localization of the Taenia solium CDC37 gene].

    PubMed

    Huang, Jiang; Li, Bo; Dai, Jia-Lin; Zhang, Ai-Hua

    2013-02-01

    To express Taenia solium gene encoding cell division cycle 37 protein (TsCDC37) and investigate its antigenicity and localization in adults of Taenia solium. The complete coding sequence of TsCDC37 was amplified by PCR based on the recombinant plasmid clone from the cDNA library of adult Taenia solium. The PCR product was cloned into a prokaryotic expression vector pET-28a (+). The recombinant expression plasmid was identified by PCR, double endonuclease digestion and sequencing. The recombinant plasmid was transformed into E. coli BL21/DE3 and followed by expression of the protein induced by IPTG. The mice were immunized subcutaneously with purified recombinant TsCDC37 formulated in Freund's adjuvant. The antigenicity of the recombinant protein was examined by Western blotting. The localization of TsCDC37 in adult worms was demonstrated by immunofluorescent technique. The recombinant expression vector was constructed successfully. The recombinant protein was about M(r) 52 000, it was then purified and specifically recognized by immuno sera of SD rats and sera from patients infected with Taenia solium, Taenia saginata or Taenia asiatica. The immunofluorescence assay revealed that TsCDC37 located at the tegument of T. solium adult and the eggs. TsCDC37 gene has been expressed with immunoreactivity. The recombinant protein is mainly expressed in tegument and egg, and is a common antigen of the three human taenia cestodes.

  10. Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery.

    PubMed

    Volak, Adrienn; LeRoy, Stanley G; Natasan, Jeya Shree; Park, David J; Cheah, Pike See; Maus, Andreas; Fitzpatrick, Zachary; Hudry, Eloise; Pinkham, Kelsey; Gandhi, Sheetal; Hyman, Bradley T; Mu, Dakai; GuhaSarkar, Dwijit; Stemmer-Rachamimov, Anat O; Sena-Esteves, Miguel; Badr, Christian E; Maguire, Casey A

    2018-05-16

    The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.

  11. Predication-based semantic indexing: permutations as a means to encode predications in semantic space.

    PubMed

    Cohen, Trevor; Schvaneveldt, Roger W; Rindflesch, Thomas C

    2009-11-14

    Corpus-derived distributional models of semantic distance between terms have proved useful in a number of applications. For both theoretical and practical reasons, it is desirable to extend these models to encode discrete concepts and the ways in which they are related to one another. In this paper, we present a novel vector space model that encodes semantic predications derived from MEDLINE by the SemRep system into a compact spatial representation. The associations captured by this method are of a different and complementary nature to those derived by traditional vector space models, and the encoding of predication types presents new possibilities for knowledge discovery and information retrieval.

  12. Leptin signaling and apoptotic effects in human prostate cancer cell lines.

    PubMed

    Samuel-Mendelsohn, Sigal; Inbar, Michal; Weiss-Messer, Esther; Niv-Spector, Leonora; Gertler, Arieh; Barkey, Ronnie J

    2011-06-15

    Prostate cancer (PCa) progression is often associated with transactivation of the androgen receptor (AR) by endogenous hormones/growth factors. One such factor affecting growth, proliferation, and apoptostis (pro-/anti-) in various cancers is the adipokine leptin. This research studied leptin-induced signaling and apoptosis in androgen sensitive (LNCaP, PC3/AR) and insensitive (PC3, DU145) PCa cell lines. Signaling was studied by immunoblotting in cells overexpressing leptin receptors (LRb), Janus kinase 2 (JAK2), and kinase negative-HER2-YFP cDNAs. Apoptosis was measured by immunoblotting of apoptotic proteins and by Hoechst staining of condensed DNA. Leptin rapidly induced activation of JAK2, STAT3, and MAPK (ERK1/2) signaling cascades; it may also induce HER2 transactivation via leptin-induced phospho-JAK2. Leptin was then shown to exert clear pro-apoptotic effects, increasing levels of caspase 3, cleavage of its substrate, poly (ADP-ribose) polymerase (PARP) to cleaved PARP(89) , levels of CK 18, a cytoskeletal protein formed during apoptosis, and DNA condensation. Kinase inhibitors indicated that leptin-induced apoptosis is probably mediated by balanced activation of JAK2/STAT3, p38 MAPK, and PKC pathways in PCa cells. A human leptin mutein LRb antagonist, L39A/D40A/F41A, fully inhibited leptin-induced phosphorylation of JAK2, ERK1/2, and Akt/PKB, and partially abrogated effects on apoptotic proteins. In LNCaP and PC3/AR cells, leptin increased AR protein levels in correlation with raised apoptotic markers. Thus, AR may mediate, at least partly, the leptin-induced apoptotic response. Leptin can clearly induce apoptosis in human PCa cell lines. These findings could lead to development of new leptin agonists with enhanced pro-apoptotic effects and targeted for use in human PCa. Copyright © 2010 Wiley-Liss, Inc.

  13. Altered expressions of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients

    PubMed Central

    Kim, Hyung-Wook; Rapoport, Stanley I; Rao, Jagadeesh S

    2009-01-01

    Bipolar disorder (BD) is a progressive psychiatric disorder characterized by recurrent changes of mood, and is associated with cognitive decline. There is evidence of excitotoxicity, neuroinflammation, upregulated arachidonic acid (AA) cascade signaling and brain atrophy in BD patients. These observations suggest that BD pathology may be associated with apoptosis as well as with disturbed synaptic function. To test this hypothesis, we measured mRNA and protein levels of the pro-apoptotic (Bax, BAD, Caspase-9 and Caspase-3) and anti-apoptotic factors (BDNF and Bcl-2), and of pre- and post-synaptic markers (synaptophysin and drebrin), in postmortem brain from 10 BD patients and 10 age-matched controls. Consistent with the hypothesis, BD brains showed significant increases in protein and mRNA levels of the pro-apoptotic factors and significant decreases of levels of the anti-apoptotic factors and the synaptic markers, synaptophysin and drebrin. These differences may contribute to brain atrophy and progressive cognitive changes in BD. PMID:19945534

  14. Synthesis and Biological Evaluation of Apogossypolone Derivatives as Pan-active Inhibitors of Anti-apoptotic B-Cell Lymphoma/Leukemia-2 (Bcl-2) Family Proteins

    PubMed Central

    Wei, Jun; Kitada, Shinichi; Stebbins, John L.; Placzek, William; Zhai, Dayong; Wu, Bainan; Rega, Michele F.; Zhang, Ziming; Cellitti, Jason; Yang, Li; Dahl, Russell; Reed, John C.; Pellecchia, Maurizio

    2010-01-01

    Overexpression of anti-apoptotic Bcl-2 family proteins is commonly related with tumor maintenance, progression, and chemoresistance. Inhibition of these anti-apoptotic proteins is an attractive approach for cancer therapy. Guided by nuclear magnetic resonance (NMR) binding assays, a series of 5, 5′ substituted compound 6a (Apogossypolone) derivatives was synthesized and identified pan-active antagonists of anti-apoptotic Bcl-2 family proteins, with binding potency in the low micromolar to nanomolar range. Compound 6f inhibits the binding of BH3 peptides to Bcl-XL, Bcl-2 and Mcl-1 with IC50 values of 3.10, 3.12 and 2.05 μM, respectively. In a cellular assay, 6f potently inhibits cell growth in several human cancer cell lines in a dose-dependent manner. Compound 6f further displays in vivo efficacy in transgenic mice and demonstrated superior single-agent antitumor efficacy in a PPC-1 mouse xenograft model. Together with its negligible toxicity, compound 6f represents a promising drug lead for the development of novel apoptosis-based therapies for cancer. PMID:21033669

  15. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review.

    PubMed

    Sreedhar, Amere Subbarao; Csermely, Peter

    2004-03-01

    Heat shock proteins (Hsp) form the most ancient defense system in all living organisms on earth. These proteins act as molecular chaperones by helping in the refolding of misfolded proteins and assisting in their elimination if they become irreversibly damaged. Hsp interact with a number of cellular systems and form efficient cytoprotective mechanisms. However, in some cases, wherein it is better if the cell dies, there is no reason for any further defense. Programmed cell death is a widely conserved general phenomenon helping in many processes involving the reconstruction of multicellular organisms, as well as in the elimination of old or damaged cells. Here, we review some novel elements of the apoptotic process, such as its interrelationship with cellular senescence and necrosis, as well as bacterial apoptosis. We also give a survey of the most important elements of the apoptotic machinery and show the various modes of how Hsp interact with the apoptotic events in detail. We review caspase-independent apoptotic pathways and anoikis as well. Finally, we show the emerging variety of pharmacological interventions inhibiting or, just conversely, inducing Hsp and review the emergence of Hsp as novel therapeutic targets in anticancer protocols.

  16. Hsp70 suppresses apoptosis of BRL cells by regulating the expression of Bcl-2, cytochrome C, and caspase 8/3.

    PubMed

    Kong, Fanzhi; Wang, Hui; Guo, Jingru; Peng, Mengling; Ji, Hong; Yang, Huanmin; Liu, Binrun; Wang, Jianfa; Zhang, Xu; Li, Shize

    2016-05-01

    During cold stress, liver cells undergo apoptotic injury as a result of oxidative stress. Heat shock 70 kDa protein (Hsp70) is a protein involved in modulating a variety of physiological processes, including stress responses, proliferation, and apoptosis. In addition, Hsp70 regulates apoptotic signaling pathways in different manners, promoting or suppressing apoptosis. In this study, we investigated the effects of Hsp70 overexpression on hydrogen peroxide (H2O2)-induced apoptosis of Buffalo rat liver (BRL) cells and the underlying mechanisms of these effects. Our results show that in comparison with the control group, Hsp70 overexpression displayed increased protein levels of Bcl-2, and decreased cytochrome c (Cyt c), cleaved caspase 3, and cleaved caspase 8, but no apparent differences were found in levels of Bax. Furthermore, Hsp70 overexpression significantly suppresses the amount of apoptotic cells. Such findings indicate that overexpression of Hsp70 inhibits H2O2-mediated activation of caspase 8 and caspase 3, upregulates the expression of Bcl-2 which is a known anti-apoptotic protein, and decreases the release of Cyt c from the mitochondria into the cytoplasm, collectively decreasing cell apoptosis.

  17. In Vitro Proliferation and Anti-Apoptosis of the Papain-Generated Casein and Soy Protein Hydrolysates towards Osteoblastic Cells (hFOB1.19).

    PubMed

    Pan, Xiao-Wen; Zhao, Xin-Huai

    2015-06-17

    Casein and soy protein were digested by papain to three degrees of hydrolysis (DH) 7.3%-13.3%, to obtain respective six casein and soy protein hydrolysates, aiming to clarify their in vitro proliferation and anti-apoptosis towards a human osteoblastic cell line (hFOB1.19 cells). Six casein and soy protein hydrolysates at five levels (0.01-0.2 mg/mL) mostly showed proliferation as positive 17β-estradiol did, because they conferred the osteoblasts with cell viability of 100%-114% and 104%-123%, respectively. The hydrolysates of higher DH values had stronger proliferation. Casein and soy protein hydrolysates of the highest DH values altered cell cycle progression, and enhanced cell proportion of S-phase from 50.5% to 56.5% and 60.5%. The two also antagonized etoposide- and NaF-induced osteoblast apoptosis. In apoptotic prevention, apoptotic cells were decreased from 31.6% to 22.6% and 15.6% (etoposide treatment), or from 19.5% to 17.7% and 12.4% (NaF treatment), respectively. In apoptotic reversal, soy protein hydrolysate decreased apoptotic cells from 13.3% to 11.7% (etoposide treatment), or from 14.5% to 11.0% (NaF treatment), but casein hydrolysate showed no reversal effect. It is concluded that the hydrolysates of two kinds had estradiol-like action on the osteoblasts, and soy protein hydrolysates had stronger proliferation and anti-apoptosis on the osteoblasts than casein hydrolysates.

  18. Lsa63, a newly identified surface protein of Leptospira interrogans binds laminin and collagen IV.

    PubMed

    Vieira, Monica L; de Morais, Zenaide M; Gonçales, Amane P; Romero, Eliete C; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2010-01-01

    Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease that affects populations worldwide. We have identified in proteomic studies a protein that is encoded by the gene LIC10314 and expressed in virulent strain of L. interrogans serovar Pomona. This protein was predicted to be surface exposed by PSORT program and contains a p83/100 domain identified by BLAST analysis that is conserved in protein antigens of several strains of Borrelia and Treponema spp. The proteins containing this domain have been claimed antigen candidates for serodiagnosis of Lyme borreliosis. Thus, we have cloned the LIC10314 and expressed the protein in Escherichia coli BL21-SI strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. This protein is conserved among several species of pathogenic Leptospira and absent in the saprophytic strain L. biflexa. We confirm by liquid-phase immunofluorescence assays with living organisms that this protein is most likely a new surface leptospiral protein. The ability of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC10314, named Lsa63 (Leptospiral surface adhesin of 63kDa), binds strongly to laminin and collagen IV in a dose-dependent and saturable fashion. In addition, Lsa63 is probably expressed during infection since it was recognized by antibodies of serum samples of confirmed-leptospirosis patients in convalescent phase of the disease. Altogether, the data suggests that this novel identified surface protein may be involved in leptospiral pathogenesis. 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. The apoptotic effect of simvastatin via the upregulation of BIM in nonsmall cell lung cancer cells.

    PubMed

    Lee, Hwa Young; Kim, In Kyoung; Lee, Hye In; Mo, Jin Young; Yeo, Chang Dong; Kang, Hyeon Hui; Moon, Hwa Sik; Lee, Sang Haak

    2016-01-01

    Statins are known to have pleiotropic effects that induce cell death in certain cancer cells. BIM is a member of the bcl-2 gene family, which promotes apoptotic cell death. This study investigated the hypothesis that simvastatin has pro-apoptotic effects in epidermal growth factor receptor (EGFR)-mutated lung cancer cell lines via the upregulation of the expression of the BIM protein. The cytotoxic effects of simvastatin on gefitinib-sensitive (HCC827, E716-A750del) and -resistant (H1975, T790M + L858R) nonsmall cell lung cancer (NSCLC) cells were compared. Cell proliferation and expression of apoptosis-related and EGFR downstream signaling proteins were evaluated. Expression of BIM was compared in H1975 cells after treatment with simvastatin or gefitinib. SiRNA-mediated BIM depletion was performed to confirm whether the cytotoxicity of simvastatin was mediated by the expression of BIM. H1975 cells showed significantly reduced viability compared with HCC827 cells after treatment with simvastatin (2 μM) for 48 hours. In simvastatin-treated H1975 cells, expression of pro-apoptotic proteins was increased and the phosphorylation of ERK 1/2 (p-ERK 1/2) was reduced. Expression of BIM was suppressed by gefitinib (1 μM) treatment in H1975 cells, but it was significantly increased by treatment with simvastatin. BIM depletion by siRNA transfection enhanced the viability of H1975 cells that received simvastatin treatment and increased their expression of anti-apoptotic proteins. Simvastatin restored the expression of BIM to induce apoptotic cell death in NSCLC cells harboring an EGFR-resistant mutation. Our study suggests the potential utility of simvastatin as a BIM-targeted treatment for NSCLC.

  20. Chinonin, a novel drug against cardiomyocyte apoptosis induced by hypoxia and reoxygenation.

    PubMed

    Shen, J G; Quo, X S; Jiang, B; Li, M; Xin, W; Zhao, B L

    2000-02-21

    The inhibitory effects of Chinonin, a natural antioxidant extracted from a Chinese medicine, on apoptotic and necrotic cell death of cardiomyocytes in hypoxia-reoxygenation process were observed in this study. The possible mechanisms of Chinonin on scavenging reactive oxygen species and regulating apoptotic related genes bcl-2 and p53 were also investigated. Neonatal rat cardiomyocytes were subjected to 24-h hypoxia and 4-h reoxygenation. Cell death was evaluated by DNA electrophoresis on agarose gel, cell death ELISA and annexin-V-FLUOS/propidium iodide (PI) double staining cytometry. Hypoxia caused the increase of apoptotic rates and the release of lactate dehydrogenase (LDH), while reoxygenation not only further increased the apoptotic rates and leakage of LDH, but also induced necrosis of cardiomyocytes. In addition, hypoxia increased the levels of NO(2)(-)/NO(3)(-) and thiobarbituric acid reacted substances (TBARS), while reoxygenation decreased NO(2)(-)/NO(3)(-), but further increased TBARS in the cultured media. Moreover, hypoxia up-regulated the expression levels of bcl-2 and p53 proteins, while reoxygenation down-regulated bcl-2 and further up-regulated p53. Chinonin significantly decreased the rates of apoptotic and necrotic cardiomyocytes, and inhibited the leakage of LDH. It also diminished NO(2)(-)/NO(3)(-) and TBARS, down-regulated the expression level of p53 protein, and up-regulated bcl-2 protein, respectively. The results suggest that Chinonin has preventive effects against apoptotic and necrotic cell death and its protective mechanisms are related to the antioxidant properties of scavenging nitric oxide and oxygen free radicals, and the modulating effects on the expression levels of bcl-2 and p53 proteins.

  1. Amentoflavone Induces Apoptosis and Inhibits NF-ĸB-modulated Anti-apoptotic Signaling in Glioblastoma Cells

    PubMed Central

    YEN, TSUNG-HSIEN; HSIEH, CHIA-LING; LIU, TSU-TE; HUANG, CHIH-SHENG; CHEN, YEN-CHUNG; CHUANG, YAO-CHEN; LIN, SONG-SHEI; HSU, FEI-TING

    2018-01-01

    >The goal of the present study was to investigate anticancer effect of amentoflavone on glioblastoma cells in vitro. Our results demonstrated that amentoflavone not only significantly reduced cell viability, nuclear factor-ĸappa B (NF-ĸB) activation, and protein expression of cellular Fas-associated protein with death domain-like interleukin 1 beta-converting enzyme inhibitory protein (C-FLIP) and myeloid cell leukemia 1 (MCL1), but significantly triggered cell accumulation at the sub-G 1 phase, loss of mitochondrial membrane potential, and expression of active caspase-3 and -8. In order to verify the effect of NF-ĸB inhibitor on expression of anti-apoptotic proteins, we performed western blotting. We found that the of NF-ĸB inhibitor or amentoflavone markedly diminished protein levels of MCL1 and C-FLIP. Taken all together, our findings show that amentoflavone induces intrinsic and extrinsic apoptosis and inhibits NF-ĸB-modulated anti-apoptotic signaling in U-87 MG cells in vitro. PMID:29475910

  2. Prime-boost vaccination with heterologous live vectors encoding SIV gag and multimeric HIV-1 gp160 protein: efficacy against repeated mucosal R5 clade C SHIV challenges

    PubMed Central

    Lakhashe, Samir K.; Velu, Vijayakumar; Sciaranghella, Gaia; Siddappa, Nagadenahalli B.; DiPasquale, Janet M.; Hemashettar, Girish; Yoon, John K.; Rasmussen, Robert A.; Yang, Feng; Lee, Sandra J.; Montefiori, David C.; Novembre, Francis J.; Villinger, François; Amara, Rama Rao; Kahn, Maria; Hu, Shiu-Lok; Li, Sufen; Li, Zhongxia; Frankel, Fred R.; Robert-Guroff, Marjorie; Johnson, Welkin E.; Lieberman, Judy; Ruprecht, Ruth M.

    2011-01-01

    We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus >90%; these RM also had strong SIV Gag-specific proliferation of CD8+ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4β7-expressing CD4+ T cells; the latter have been implicated as preferential virus targets in-vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection. PMID:21693155

  3. Prime-boost vaccination with heterologous live vectors encoding SIV gag and multimeric HIV-1 gp160 protein: efficacy against repeated mucosal R5 clade C SHIV challenges.

    PubMed

    Lakhashe, Samir K; Velu, Vijayakumar; Sciaranghella, Gaia; Siddappa, Nagadenahalli B; Dipasquale, Janet M; Hemashettar, Girish; Yoon, John K; Rasmussen, Robert A; Yang, Feng; Lee, Sandra J; Montefiori, David C; Novembre, Francis J; Villinger, François; Amara, Rama Rao; Kahn, Maria; Hu, Shiu-Lok; Li, Sufen; Li, Zhongxia; Frankel, Fred R; Robert-Guroff, Marjorie; Johnson, Welkin E; Lieberman, Judy; Ruprecht, Ruth M

    2011-08-05

    We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus > 90%; these RM also had strong SIV Gag-specific proliferation of CD8⁺ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4β7-expressing CD4⁺ T cells; the latter have been implicated as preferential virus targets in vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Altering the selection capabilities of common cloning vectors via restriction enzyme mediated gene disruption

    PubMed Central

    2013-01-01

    Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512

  5. Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17α-ethinylestradiol and fadrozole exposures.

    PubMed

    Luzio, Ana; Matos, Manuela; Santos, Dércia; Fontaínhas-Fernandes, António A; Monteiro, Sandra M; Coimbra, Ana M

    2016-08-01

    Zebrafish (Danio rerio) sex determination seems to involve genetic factors (GSD) but also environmental factors (ESD), such as endocrine disrupting chemicals (EDCs) that are known to mimic endogenous hormones and disrupt gonad differentiation. Apoptosis has also been proposed to play a crucial role in zebrafish gonad differentiation. Nevertheless, the interactions between EDCs and apoptosis have received little attention. Thus, this study aimed to assess if and which apoptotic pathways are involved in zebrafish gonad differentiation and how EDCs may interfere with this process. With these purposes, zebrafish were exposed to 17α-ethinylestradiol (EE2, 4ng/L) and fadrozole (Fad, 50μg/L) from 2h to 35days post-fertilization (dpf). Afterwards, a gene expression analysis by qRT-PCR and a stereological analysis, based on systematic sampling and protein immunohistochemistry, were performed. The death receptors (FAS; TRADD), anti-apoptotic (BCL-2; MDM2), pro-apoptotic (CASP-2 and -6) and cell proliferation (BIRC5/survivin; JUN) genes and proteins were evaluated. In general, apoptosis was inhibited in females through the involvement of anti-apoptotic pathways, while in males apoptosis seemed to be crucial to the failure of the "juvenile ovary" development and the induction of testes transformation. The JUN protein was shown to be necessary in juvenile ovaries, while the BIRC5 protein seemed to be involved in zebrafish spermatogenesis. Both EDCs, EE2 and Fad, increased the apoptosis stimulus in zebrafish gonad. It was noticed that the few females that were resistant to Fad-induced sex reversal had increased anti-apoptotic factor levels, while males exposed to EE2 showed increased pro-apoptotic genes/proteins and were more advanced in gonad differentiation. Overall, our findings show that apoptosis pathways are involved in zebrafish gonad differentiation and that EDCs can disrupt this process. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features.

    PubMed

    Yu, Dongjun; Wu, Xiaowei; Shen, Hongbin; Yang, Jian; Tang, Zhenmin; Qi, Yong; Yang, Jingyu

    2012-12-01

    Membrane proteins are encoded by ~ 30% in the genome and function importantly in the living organisms. Previous studies have revealed that membrane proteins' structures and functions show obvious cell organelle-specific properties. Hence, it is highly desired to predict membrane protein's subcellular location from the primary sequence considering the extreme difficulties of membrane protein wet-lab studies. Although many models have been developed for predicting protein subcellular locations, only a few are specific to membrane proteins. Existing prediction approaches were constructed based on statistical machine learning algorithms with serial combination of multi-view features, i.e., different feature vectors are simply serially combined to form a super feature vector. However, such simple combination of features will simultaneously increase the information redundancy that could, in turn, deteriorate the final prediction accuracy. That's why it was often found that prediction success rates in the serial super space were even lower than those in a single-view space. The purpose of this paper is investigation of a proper method for fusing multiple multi-view protein sequential features for subcellular location predictions. Instead of serial strategy, we propose a novel parallel framework for fusing multiple membrane protein multi-view attributes that will represent protein samples in complex spaces. We also proposed generalized principle component analysis (GPCA) for feature reduction purpose in the complex geometry. All the experimental results through different machine learning algorithms on benchmark membrane protein subcellular localization datasets demonstrate that the newly proposed parallel strategy outperforms the traditional serial approach. We also demonstrate the efficacy of the parallel strategy on a soluble protein subcellular localization dataset indicating the parallel technique is flexible to suite for other computational biology problems. The software and datasets are available at: http://www.csbio.sjtu.edu.cn/bioinf/mpsp.

  7. Efficient Transduction of Human and Rhesus Macaque Primary T Cells by a Modified Human Immunodeficiency Virus Type 1-Based Lentiviral Vector.

    PubMed

    He, Huan; Xue, Jing; Wang, Weiming; Liu, Lihong; Ye, Chaobaihui; Cong, Zhe; Kimata, Jason T; Qin, Chuan; Zhou, Paul

    2017-03-01

    Human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors efficiently transduce genes to human, but not rhesus, primary T cells and hematopoietic stem cells (HSCs). The poor transduction of HIV-1 vectors to rhesus cells is mainly due to species-specific restriction factors such as rhesus TRIM5α. Previously, several strategies to modify HIV-1 vectors were developed to overcome rhesus TRIM5α restriction. While the modified HIV-1 vectors efficiently transduce rhesus HSCs, they remain suboptimal for rhesus primary T cells. Recently, HIV-1 variants that encode combinations of LNEIE mutations in capsid (CA) protein and SIVmac239 Vif were found to replicate efficiently in rhesus primary T cells. Thus, the present study tested whether HIV-1 vectors packaged by a packaging construct containing these CA substitutions could efficiently transduce both human and rhesus primary CD4 T cells. To accomplish this, LNEIE mutations were made in the packaging construct CEMΔ8.9, and recombinant HIV-1 vectors packaged by Δ8.9 WT or Δ8.9 LNEIE were generated. Transduction rates, CA stability, and vector integration in CEMss-CCR5 and CEMss-CCR5-rhTRIM5α/green fluorescent protein cells, as well as transduction rates in human and rhesus primary CD4 T cells by Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors, were compared. Finally, the influence of rhesus TRIM5α variations in transduction rates to primary CD4 T cells from a cohort of 37 Chinese rhesus macaques was studied. While it maintains efficient transduction for human T-cell line and primary CD4 T cells, Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α-mediated CA degradation, resulting in significantly higher transduction efficiency of rhesus primary CD4 T cells than Δ8.9 WT-packaged HIV-1 vector. Rhesus TRIM5α variations strongly influence transduction efficiency of rhesus primary CD4 T cells by both Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors. Thus, it is concluded that Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α restriction and efficiently transduces both human and rhesus primary T cells.

  8. Efficient Transduction of Human and Rhesus Macaque Primary T Cells by a Modified Human Immunodeficiency Virus Type 1–Based Lentiviral Vector

    PubMed Central

    He, Huan; Xue, Jing; Wang, Weiming; Liu, Lihong; Ye, Chaobaihui; Cong, Zhe; Kimata, Jason T.; Qin, Chuan; Zhou, Paul

    2017-01-01

    Human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors efficiently transduce genes to human, but not rhesus, primary T cells and hematopoietic stem cells (HSCs). The poor transduction of HIV-1 vectors to rhesus cells is mainly due to species-specific restriction factors such as rhesus TRIM5α. Previously, several strategies to modify HIV-1 vectors were developed to overcome rhesus TRIM5α restriction. While the modified HIV-1 vectors efficiently transduce rhesus HSCs, they remain suboptimal for rhesus primary T cells. Recently, HIV-1 variants that encode combinations of LNEIE mutations in capsid (CA) protein and SIVmac239 Vif were found to replicate efficiently in rhesus primary T cells. Thus, the present study tested whether HIV-1 vectors packaged by a packaging construct containing these CA substitutions could efficiently transduce both human and rhesus primary CD4 T cells. To accomplish this, LNEIE mutations were made in the packaging construct CEMΔ8.9, and recombinant HIV-1 vectors packaged by Δ8.9 WT or Δ8.9 LNEIE were generated. Transduction rates, CA stability, and vector integration in CEMss-CCR5 and CEMss-CCR5-rhTRIM5α/green fluorescent protein cells, as well as transduction rates in human and rhesus primary CD4 T cells by Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors, were compared. Finally, the influence of rhesus TRIM5α variations in transduction rates to primary CD4 T cells from a cohort of 37 Chinese rhesus macaques was studied. While it maintains efficient transduction for human T-cell line and primary CD4 T cells, Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α-mediated CA degradation, resulting in significantly higher transduction efficiency of rhesus primary CD4 T cells than Δ8.9 WT-packaged HIV-1 vector. Rhesus TRIM5α variations strongly influence transduction efficiency of rhesus primary CD4 T cells by both Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors. Thus, it is concluded that Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α restriction and efficiently transduces both human and rhesus primary T cells. PMID:28042947

  9. XIAP impairs mitochondrial function during apoptosis by regulating the Bcl-2 family in renal cell carcinoma.

    PubMed

    Chen, Chao; Liu, Tian Shu; Zhao, Si Cong; Yang, Wen Zheng; Chen, Zong Ping; Yan, Yong

    2018-05-01

    Efficient apoptosis requires Bcl-2 family-mediated mitochondrial outer membrane permeabilization (MOMP), which releases pro-apoptotic proteins to the cytosol, activating apoptosis and inhibiting X-linked inhibitor of apoptosis protein (XIAP). XIAP is a member of the inhibitors of apoptosis protein family whose expression is elevated in many cancer types and participates in the release of pro-apoptotic proteins. To explore the association between XIAP and the Bcl-2 family, and the influence of XIAP on mitochondria, RNA interference of XIAP was performed in Caki-1 cells and the dynamic change in the levels of related proteins was compared with the original Caki-1 cells upon induction of apoptosis. Upon knockdown of XIAP, the release of cytochrome c (Cyt-c), second mitochondria-derived activator of caspase (Smac) and apoptotic protease activating factor 1 (Apaf-1) from mitochondria proceeded normally, whereas in Caki-1 cells, the release of these pro-apoptotic proteins was significantly prolonged, and incomplete. Downregulation of XIAP through small interfering RNA resulted in an increase of apoptosis and a marked decrease in Bcl-2 and Bcl-xl levels at 3 h. Additionally, the regulation of the level of XIAP protein affected the specific ratios of Bcl-2/Bax and Bcl-xl/Bax, which play decisive roles in cell death. In the present study, it was revealed that XIAP can feed back to mitochondria, delaying Cyt-c and Apaf-1 release. Furthermore, XIAP can limit the release of its inhibitor Smac with the involvement of Bcl-2 family proteins.

  10. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    PubMed Central

    Rieger, Daniela; Assinger, Alice; Einfinger, Katrin; Sokolikova, Barbora; Geiger, Margarethe

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10–30% of cells). PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal. PMID:25000564

  11. C1q Protein Binds to the Apoptotic Nucleolus and Causes C1 Protease Degradation of Nucleolar Proteins*

    PubMed Central

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-01-01

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. PMID:26231209

  12. CDK4 inhibition and doxorubicin mediate breast cancer cell apoptosis through Smad3 and survivin

    PubMed Central

    Tarasewicz, Elizabeth; Hamdan, Randala; Straehla, Joelle; Hardy, Ashley; Nunez, Omar; Zelivianski, Stanislav; Dokic, Danijela; Jeruss, Jacqueline S

    2014-01-01

    Cyclin D1/CDK4 activity is upregulated in up to 50% of breast cancers and CDK4-mediated phosphorylation negatively regulates the TGFβ superfamily member Smad3. We sought to determine if CDK4 inhibition and doxorubicin chemotherapy could impact Smad3-mediated cell/colony growth and apoptosis in breast cancer cells. Parental and cyclin D1-overexpressing MCF7 cells were treated with CDK4 inhibitor, doxorubicin, or combination therapy and cell proliferation, apoptosis, colony formation, and expression of apoptotic proteins were evaluated using an MTS assay, TUNEL staining, 3D Matrigel assay, and apoptosis array/immunoblotting. Study cells were also transduced with WT Smad3 or a Smad3 construct resistant to CDK4 phosphorylation (5M) and colony formation and expression of apoptotic proteins were assessed. Treatment with CDK4 inhibitor/doxorubicin combination therapy, or transduction with 5M Smad3, resulted in a similar decrease in colony formation. Treating cyclin D overexpressing breast cancer cells with combination therapy also resulted in the greatest increase in apoptosis, resulted in decreased expression of anti-apoptotic proteins survivin and XIAP, and impacted subcellular localization of pro-apoptotic Smac/DIABLO. Additionally, transduction of 5M Smad3 and doxorubicin treatment resulted in the greatest change in apoptotic protein expression. Collectively, this work showed the impact of CDK4 inhibitor-mediated, Smad3-regulated tumor suppression, which was augmented in doxorubicin-treated cyclin D-overexpressing study cells. PMID:25006666

  13. Intrinsic and extrinsic apoptotic pathways are involved in rat testis by cold water immersion-induced acute and chronic stress.

    PubMed

    Juárez-Rojas, Adriana Lizbeth; García-Lorenzana, Mario; Aragón-Martínez, Andrés; Gómez-Quiroz, Luis Enrique; Retana-Márquez, María del Socorro

    2015-01-01

    Testicular apoptosis is activated by stress, but it is not clear which signaling pathway is activated in response to stress. The aim of this study was to investigate whether intrinsic, extrinsic, or both apoptotic signaling pathways are activated by acute and chronic stress. Adult male rats were subjected to cold water immersion-induced stress for 1, 20, 40, and 50 consecutive days. The seminiferous tubules:apoptotic cell ratio was assayed on acute (1 day) and chronic (20, 40, 50 days) stress. Apoptotic markers, including cleaved-caspase 3 and 8, the pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins were also determined after acute and chronic stress induction. Additionally, epididymal sperm quality was evaluated, as well as corticosterone and testosterone levels. An increase in tubule apoptotic cell count percentage after an hour of acute stress and during chronic stress induction was observed. The apoptotic cells rate per tubule increment was only detected one hour after acute stress, but not with chronic stress. Accordingly, there was an increase in Bax, cleaved caspase-8 and caspase-3 pro-apoptotic proteins with a decrease of anti-apoptotic Bcl-2 in both acutely and chronically stressed male testes. In addition, sperm count, viability, as well as total and progressive motility were low in chronically stressed males. Finally, the levels of corticosterone increased whereas testosterone levels decreased in chronically stressed males. Activation of the extrinsic apoptotic pathway was shown by cleaved caspase-8 increase whereas the intrinsic apoptotic pathway activation was determined by the increase of Bax, along with Bcl-2 decrease, making evident a cross-talk between these two pathways with the activation of caspase-3. These results suggest that both acute and chronic stress can potentially activate the intrinsic/extrinsic apoptosis pathways in testes. Chronic stress also reduces the quality of epididymal spermatozoa, possibly due to a decrease in testosterone.

  14. Apoptosis in unicellular organisms: mechanisms and evolution.

    PubMed

    Gordeeva, A V; Labas, Y A; Zvyagilskaya, R A

    2004-10-01

    Data about the programmed death (apoptosis) in unicellular organisms, from bacteria to ciliates, are discussed. Firstly apoptosis appeared in lower eukaryotes, but its mechanisms in these organisms are different from the classical apoptosis. During evolution, the apoptotic process has been improving gradually, with reactive oxygen species and Ca2+ playing an essential role in triggering apoptosis. All eukaryotic organisms have apoptosis inhibitors, which might be introduced by viruses. In the course of evolution, caspases and apoptosis-inducing factor appeared before other apoptotic proteins, with so-called death receptors being the last among them. The functional analogs of eukaryotic apoptotic proteins take parts in the programmed death of bacteria.

  15. Weaving Knotted Vector Fields with Tunable Helicity.

    PubMed

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M

    2016-12-30

    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  16. Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo

    PubMed Central

    White, JD; Thesier, DM; Swain, JBD; Katz, MG; Tomasulo, C; Henderson, A; Wang, L; Yarnall, C; Fargnoli, A; Sumaroka, M; Isidro, A; Petrov, M; Holt, D; Nolen-Walston, R; Koch, WJ; Stedman, HH; Rabinowitz, J; Bridges, CR

    2013-01-01

    We use a novel technique that allows for closed recirculation of vector genomes in the cardiac circulation using cardiopulmonary bypass, referred to here as molecular cardiac surgery with recirculating delivery (MCARD). We demonstrate that this platform technology is highly efficient in isolating the heart from the systemic circulation in vivo. Using MCARD, we compare the relative efficacy of single-stranded (ss) adeno-associated virus (AAV)6, ssAAV9 and self-complimentary (sc)AAV6-encoding enhanced green fluorescent protein, driven by the constitutive cytomegalovirus promoter to transduce the ovine myocardium in situ. MCARD allows for the unprecedented delivery of up to 48 green fluorescent protein genome copies per cell globally in the sheep left ventricular (LV) myocardium. We demonstrate that scAAV6-mediated MCARD delivery results in global, cardiac-specific LV gene expression in the ovine heart and provides for considerably more robust and cardiac-specific gene delivery than other available delivery techniques such as intramuscular injection or intracoronary injection; thus, representing a potential, clinically translatable platform for heart failure gene therapy. PMID:21228882

  17. The road ahead: working towards effective clinical translation of myocardial gene therapies

    PubMed Central

    Katz, Michael G; Fargnoli, Anthony S; Williams, Richard D; Bridges, Charles R

    2014-01-01

    During the last two decades the fields of molecular and cellular cardiology, and more recently molecular cardiac surgery, have developed rapidly. The concept of delivering cDNA encoding a therapeutic gene to cardiomyocytes using a vector system with substantial cardiac tropism, allowing for long-term expression of a therapeutic protein, has moved from hypothesis to bench to clinical application. However, the clinical results to date are still disappointing. The ideal gene transfer method should be explored in clinically relevant animal models of heart disease to evaluate the relative roles of specific molecular pathways in disease pathogenesis, helping to validate the potential targets for therapeutic intervention. Successful clinical cardiovascular gene therapy also requires the use of nonimmunogenic cardiotropic vectors capable of expressing the requisite amount of therapeutic protein in vivo and in situ. Depending on the desired application either regional or global myocardial gene delivery is required. Cardiac-specific delivery techniques incorporating mapping technologies for regional delivery and highly efficient methodologies for global delivery should improve the precision and specificity of gene transfer to the areas of interest and minimize collateral organ gene expression. PMID:24341816

  18. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy.

    PubMed

    Cartier, Nathalie; Hacein-Bey-Abina, Salima; Bartholomae, Cynthia C; Bougnères, Pierre; Schmidt, Manfred; Kalle, Christof Von; Fischer, Alain; Cavazzana-Calvo, Marina; Aubourg, Patrick

    2012-01-01

    X-linked adrenoleukodystrophy (X-ALD) is a severe genetic demyelinating disease caused by a deficiency in ALD protein, an adenosine triphosphate-binding cassette transporter encoded by the ABCD1 gene. When performed at an early stage of the disease, allogeneic hematopoietic stem cell transplantation (HCT) can arrest the progression of cerebral demyelinating lesions. To overcome the limitations of allogeneic HCT, hematopoietic stem cell (HSC) gene therapy strategy aiming to perform autologous transplantation of lentivirally corrected cells was developed. We demonstrated the preclinical feasibility of HSC gene therapy for ALD based on the correction of CD34+ cells from X-ALD patients using an HIV1-derived lentiviral vector. These results prompted us to initiate an HSC gene therapy trial in two X-ALD patients who had developed progressive cerebral demyelination, were candidates for allogeneic HCT, but had no HLA-matched donors or cord blood. Autologous CD34+ cells were purified from the peripheral blood after G-CSF stimulation, genetically corrected ex vivo with a lentiviral vector encoding wild-type ABCD1 cDNA, and then reinfused into the patients after they had received full myeloablative conditioning. Over 3 years of follow-up, the hematopoiesis remained polyclonal in the two patients treated with 7-14% of granulocytes, monocytes, and T and B lymphocytes expressing the lentivirally encoded ALD protein. There was no evidence of clonal dominance or skewing based on the retrieval of lentiviral insertion repertoire in different hematopoietic lineages by deep sequencing. Cerebral demyelination was arrested 14 and 16months, respectively, in the two treated patients, without further progression up to the last follow-up, a clinical outcome that is comparable to that observed after allogeneic HCT. Longer follow-up of these two treated patients and HSC gene therapy performed in additional ALD patients are however needed to evaluate the safety and efficacy of lentiviral HSC gene therapy in cerebral forms of X-ALD. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag.

    PubMed

    Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L

    2015-03-01

    Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    PubMed

    Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C

    2013-01-01

    The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

Top