Sample records for vectorcardiography

  1. Vectorcardiographic diagnostic & prognostic information derived from the 12-lead electrocardiogram: Historical review and clinical perspective.

    PubMed

    Man, Sumche; Maan, Arie C; Schalij, Martin J; Swenne, Cees A

    2015-01-01

    In the course of time, electrocardiography has assumed several modalities with varying electrode numbers, electrode positions and lead systems. 12-lead electrocardiography and 3-lead vectorcardiography have become particularly popular. These modalities developed in parallel through the mid-twentieth century. In the same time interval, the physical concepts underlying electrocardiography were defined and worked out. In particular, the vector concept (heart vector, lead vector, volume conductor) appeared to be essential to understanding the manifestations of electrical heart activity, both in the 12-lead electrocardiogram (ECG) and in the 3-lead vectorcardiogram (VCG). Not universally appreciated in the clinic, the vectorcardiogram, and with it the vector concept, went out of use. A revival of vectorcardiography started in the 90's, when VCGs were mathematically synthesized from standard 12-lead ECGs. This facilitated combined electrocardiography and vectorcardiography without the need for a special recording system. This paper gives an overview of these historical developments, elaborates on the vector concept and seeks to define where VCG analysis/interpretation can add diagnostic/prognostic value to conventional 12-lead ECG analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Studies into Equine Electrocardiography and Vectorcardiography

    PubMed Central

    Holmes, J. R.; Alps, B. J.

    1967-01-01

    Theoretical consideration has been given in two horses to the properties of the electric field created by the equine heart acting as a simple electric generator. The principles of the vectorial theory have been applied to test the validity of application of the dipole concept. The cardiac electric forces, althrough complex in the immediate region of the heart, appear at the body surface in a similar form to those arising from a relatively immobile, single equivalent dipole. The potential value of the technique of vectorcardiography in cardiological investigations is briefly discussed. ImagesFig. 1.Fig. 3.Fig. 5.Fig. 10.Fig. 12.Fig. 13. PMID:17649586

  3. Bridging Computational Genetics and Vectorcardiography: A Robust Platform for the Early Detection of Heart Disease

    NASA Astrophysics Data System (ADS)

    Sridhar, S.

    2017-12-01

    By 2030, it is predicted that over 14 million people will die of heart disease annually, many of whom will discover their risk when it is too late to seek effective treatment or pursue lifestyle changes. In this research study, I sought to design a robust computational platform to gauge a patient's risk for cardiac diseases (CDs) based on demographics, genotype, and cardiac action potentials through machine learning, statistical analysis, and vectorcardiography. By analyzing previously published data, I discovered that certain polymorphisms in the ACE and MTHFR genes contribute significantly to CD risk. The deletion allele of the ACE insertion/deletion polymorphism increases ACE serum levels, promoting CD phenotypes. A point mutation in the MTHFR gene curbs the metabolism of folic acid, giving rise to CD phenotypes. I analyzed over 9000 British Medical Journal and American Heart Association patients to determine the CD risk associated with each ACE and MTHFR genotype. In the vectorcardiography phase of my study, I investigated trends in the maximal vectors of the QRS loop of the cardiac wave. Using a database with both normal and diseased vectorcardiographic action potentials, I plotted the maximal vectors on a 3D RAS coordinate plane to analyze their magnitude and direction. From the ACE datasets, I discovered that female patients over 45 and of Indian descent with two ACE deletion alleles exhibited the highest CD risk. Using this spectrum, I successfully constructed a neural network with an accuracy score of 0.867 that predicts CD risk based on ACE genotype, gender, region, and age. Investigation of the MTHFR genome showed that those with a homozygous mutated gene had a significantly higher CD risk. In my vectorcardiography study, I found that healthy QRS vectors pointed predominantly to the right-anterior region of the coordinate plane and exhibited short, consistent magnitudes. On the other hand, diseased vectors pointed to the left-posterior region and exhibited large, varying magnitudes. Since these vectors exhibited a stark dichotomy in orientation, I designed an SVM classifier that was able to distinguish between normal and diseased vectorcardiographs with an F1 score of 0.965. Overall, my neural network and SVM classifiers have the potential to enhance clinical CD diagnosis in developing nations.

  4. Novel technique for ST-T interval characterization in patients with acute myocardial ischemia.

    PubMed

    Correa, Raúl; Arini, Pedro David; Correa, Lorena Sabrina; Valentinuzzi, Max; Laciar, Eric

    2014-07-01

    The novel signal processing techniques have allowed and improved the use of vectorcardiography (VCG) to diagnose and characterize myocardial ischemia. Herein, we studied vectorcardiographic dynamic changes of ventricular repolarization in 80 patients before (control) and during Percutaneous Transluminal Coronary Angioplasty (PTCA). We propose four vectorcardiographic ST-T parameters, i.e., (a) ST Vector Magnitude Area (aSTVM); (b) T-wave Vector Magnitude Area (aTVM); (c) ST-T Vector Magnitude Difference (ST-TVD), and (d) T-wave Vector Magnitude Difference (TVD). For comparison, the conventional ST-Change Vector Magnitude (STCVM) and Spatial Ventricular Gradient (SVG) were also calculated. Our results indicate that several vectorcardiographic parameters show significant differences (p-value<0.05) before starting and during PTCA. Statistical minute-by-minute PTCA comparison against the control situation showed that ischemic monitoring reached a sensitivity=90.5% and a specificity=92.6% at the 5th minute of the PTCA, when aSTVM and ST-TVD were used as classifiers. We conclude that the sensitivity and specificity for acute ischemia monitoring could be increased with the use of only two vectorcardiographic parameters. Hence, the proposed technique based on vectorcardiography could be used in addition to the conventional ST-T analysis for better monitoring of ischemic patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. [An overview of the history of electro-vectorcardiography. Tribute to the memory of the unforgettable Dr. Gustavo A. Medrano Castro].

    PubMed

    de Micheli Serra, Alfredo; Iturralde Torres, Pedro

    2014-01-01

    The history of the investigations about of the so-called irritability of animal tissues showed by English physician Francis Glisson in the 17th century, is summarized. During the 18th century, reliable studies on the bioelectric properties of these tissues began, due to the Swiss scientist Albrecht von Haller and continuated by the Italian naturalist Felice Fontana. In the second half of this century, multiple controversies of the partisans of the animal electricity against the partisans of the contact electricity took place. The Danish scientist Oersted in 1820 proved the close relation of magnetism to electricity, which led to construction of electrometers. These instruments allowed to register and measure record of the electric current. On this way, at middle 21st century, the true animal electricity was identified as the injury current. Later it was possible to record the electric current, risen in the myocardium, out the thorax first by means of the Lippmann' capillary electrometer and later thanks to the Einthoven's string galvanometer at the beginning of the 20th century. So the modern electro-vectorcardiography took off, due to English Thomas Lewis, the North-American Frank N. Wilson and the Mexican Demetrio Sodi Pallares. The last one allowed to rationalize the electro-vectorcardiographic exploration on experimental bases. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  6. Myocardial infarction size and location: a comparative study of epicardial isopotential mapping, thallium-201 scintigraphy, electrocardiography and vectorcardiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyama, S.; Suzuki, K.; Takahashi, T.

    1987-07-01

    Based on epicardial isopotential mapping (the Ep Map), which was calculated from body surface isopotential mapping (the Body Map) with Yamashita's method, using the finite element technique, we predicted the location and size of the abnormal depolarized area (the infarcted area) in 19 clinical cases of anterior and 18 cases of inferoposterior infarction. The prediction was done using Toyama's diagnostic method, previously reported. The accuracy of the prediction by the Ep Map was assessed by comparing it with findings from thallium-201 scintigraphy (SCG), electrocardiography (ECG) and vectorcardiography (VCG). In all cases of anterior infarction, the location of the abnormal depolarizedmore » areas determined on the Ep Map, which was localized at the anterior wall along the anterior intraventricular septum, agreed with the location of the abnormal findings obtained by SCG, ECG and VCG. For all inferoposterior infarction cases, the abnormal depolarized areas were localized at the posterior wall and the location also coincided with that of the abnormal findings obtained by SCG, ECG and VCG. Furthermore, we ranked and ordered the size of the abnormal depolarized areas, which were predicted by the Ep Map for both anterior and inferoposterior infarction cases. In the cases of anterior infarction, the order of the size of the abnormal depolarized area by the Ep Map was correlated to the size of the abnormal findings by SCG, as well as to the results from Selvester's QRS scoring system in ECG and to the angle of the maximum QRS vector in the horizontal plane in VCG.« less

  7. Octant vectorcardiography - the evaluation by peaks.

    PubMed

    Laufberger, V

    1982-01-01

    From the Frank lead potentials a computer prints out an elementary table. Therein, the electrical space of left ventricle depolarization is divided into eight spatial parts labelled by numbers 1-8 and called octants. Within these octants six peaks are determined labelled with letters ALPR-IS. Their localization is described by six-digit topograms characteristic for each patient. From 300 cases of patients after myocardial infarction, three data bases were compiled enabling every case to be classified into classes, subclasses and types. The follow up of patients according to these principles gives an objective and detailed image about the progress of coronary artery disease.

  8. The association between reconstructed phase space and Artificial Neural Networks for vectorcardiographic recognition of myocardial infarction.

    PubMed

    Costa, Cecília M; Silva, Ittalo S; de Sousa, Rafael D; Hortegal, Renato A; Regis, Carlos Danilo M

    Myocardial infarction is one of the leading causes of death worldwide. As it is life threatening, it requires an immediate and precise treatment. Due to this, a growing number of research and innovations in the field of biomedical signal processing is in high demand. This paper proposes the association of Reconstructed Phase Space and Artificial Neural Networks for Vectorcardiography Myocardial Infarction Recognition. The algorithm promotes better results for the box size 10 × 10 and the combination of four parameters: box counting (Vx), box counting (Vz), self-similarity method (Vx) and self-similarity method (Vy) with sensitivity = 92%, specificity = 96% and accuracy = 94%. The topographic diagnosis presented different performances for different types of infarctions with better results for anterior wall infarctions and less accurate results for inferior infarctions. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Professor Herman Burger (1893-1965), eminent teacher and scientist, who laid the theoretical foundations of vectorcardiography--and electrocardiography.

    PubMed

    van Herpen, Gerard

    2014-01-01

    Einthoven not only designed a high quality instrument, the string galvanometer, for recording the ECG, he also shaped the conceptual framework to understand it. He reduced the body to an equilateral triangle and the cardiac electric activity to a dipole, represented by an arrow (i.e. a vector) in the triangle's center. Up to the present day the interpretation of the ECG is based on the model of a dipole vector being projected on the various leads. The model is practical but intuitive, not physically founded. Burger analysed the relation between heart vector and leads according to the principles of physics. It then follows that an ECG lead must be treated as a vector (lead vector) and that the lead voltage is not simply proportional to the projection of the vector on the lead, but must be multiplied by the value (length) of the lead vector, the lead strength. Anatomical lead axis and electrical lead axis are different entities and the anatomical body space must be distinguished from electrical space. Appreciation of these underlying physical principles should contribute to a better understanding of the ECG. The development of these principles by Burger is described, together with some personal notes and a sketch of the personality of this pioneer of medical physics. Copyright © 2014. Published by Elsevier Inc.

  10. Thallium myocardial perfusion scans for the assessment of right ventricular hypertrophy in patients with cystic fibrosis. A comparison with other noninvasive techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newth, C.J.; Corey, M.L.; Fowler, R.S.

    1981-01-01

    The incidence of right ventricular hypertrophy in 32 patients with cystic fibrosis was studied using thallium 201 (TI-201) myocardial perfusion scans, and compared with other noninvasive techniques including electrocardiography, vectorcardiography, and M-mode echocardiography. The patients (mean age, 17.3 yr; range, 7 to 33) had a wide range of clinical and pulmonary abnormalities (mean Shwachman-Kulczycki score, 66.6). In the total study group, TI-201 scans, like the vectorcardiograms and the M-mode echocardiograms, gave a surprisingly high proportion of positive predictions for right ventricular hypertrophy (RVH) (44%). The correlations with all other noninvasive methods were uniformly poor, so caution must be exercised inmore » using this technique to predict early RVH in order to follow the natural history of cor pulmonale in cystic fibrosis. At the time of the study, 6 patients had clinical evidence of right ventricular failure, and in this disease setting must have had RVH. In 3 patients, RVH was confirmed at autopsy, and it was successfully predicted by TI-201 scans in 5 of the 6 patients. The false negative scan may have been due to regional myocardial ischemia secondary to severe right ventricular failure. In contrast, the vectorcardiogram, using Fowler's new criteria, made a successful prediction of RVH in all 6 patients, and the electro cardiogram in only 3. Although the M-mode echocardiogram was abnormal in all patients, it would have predicted RVH (with increased right ventricular anterior wall thickness) in only 1 patient. We concluded that TI-201 myocardial perfusion cans are good at confirming RVH in cases with established right ventricular failure, but have no advantage over vectorcardiographic assessments, which are logistically easier to perform and carry no radiation risks.« less

  11. T-wave area as biomarker of clinical response to cardiac resynchronization therapy.

    PubMed

    Végh, Eszter M; Engels, Elien B; van Deursen, Caroline J M; Merkely, Béla; Vernooy, Kevin; Singh, Jagmeet P; Prinzen, Frits W

    2016-07-01

    There is increasing evidence that left bundle branch block (LBBB) morphology on the electrocardiogram is a positive predictor for response to cardiac resynchronization therapy (CRT). We previously demonstrated that the vectorcardiography (VCG)-derived T-wave area predicts echocardiographic CRT response in LBBB patients. In the present study, we investigate whether the T-wave area also predicts long-term clinical outcome to CRT. This is a retrospective study consisting of 335 CRT recipients. Primary endpoint were the composite of heart failure (HF) hospitalization, heart transplantation, left ventricular assist device implantation or death during a 3-year follow-up period. HF hospitalization and death alone were secondary endpoints. The patient subgroup with a large T-wave area and LBBB 36% reached the primary endpoint, which was considerably less (P < 0.01) than for patients with LBBB and a small T-wave area or non-LBBB patients with a small or large T-wave area (48, 57, and 51%, respectively). Similar differences were observed for the secondary endpoints, HF hospitalization (31 vs. 51, 51, and 38%, respectively, P < 0.01) and death (19 vs. 42, 34, and 42%, respectively, P < 0.01). In multivariate analysis, a large T-wave area and LBBB were the only independent predictors of the combined endpoint besides high creatinine levels and use of diuretics. T-wave area may be useful as an additional biomarker to stratify CRT candidates and improve selection of those most likely to benefit from CRT. A large T-wave area may derive its predictive value from reflecting good intrinsic myocardial properties and a substrate for CRT. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  12. Advanced ECG in 2016: is there more than just a tracing?

    PubMed

    Reichlin, Tobias; Abächerli, Roger; Twerenbold, Raphael; Kühne, Michael; Schaer, Beat; Müller, Christian; Sticherling, Christian; Osswald, Stefan

    2016-01-01

    The 12-lead electrocardiogram (ECG) is the most frequently used technology in clinical cardiology. It is critical for evidence-based management of patients with most cardiovascular conditions, including patients with acute myocardial infarction, suspected chronic cardiac ischaemia, cardiac arrhythmias, heart failure and implantable cardiac devices. In contrast to many other techniques in cardiology, the ECG is simple, small, mobile, universally available and cheap, and therefore particularly attractive. Standard ECG interpretation mainly relies on direct visual assessment. The progress in biomedical computing and signal processing, and the available computational power offer fascinating new options for ECG analysis relevant to all fields of cardiology. Several digital ECG markers and advanced ECG technologies have shown promise in preliminary studies. This article reviews promising novel surface ECG technologies in three different fields. (1) For the detection of myocardial ischaemia and infarction, QRS morphology feature analysis, the analysis of high frequency QRS components (HF-QRS) and methods using vectorcardiography as well as ECG imaging are discussed. (2) For the identification and management of patients with cardiac arrhythmias, methods of advanced P-wave analysis are discussed and the concept of ECG imaging for noninvasive localisation of cardiac arrhythmias is presented. (3) For risk stratification of sudden cardiac death and the selection of patients for medical device therapy, several novel markers including an automated QRS-score for scar quantification, the QRS-T angle or the T-wave peak-to-end-interval are discussed. Despite the existing preliminary data, none of the advanced ECG markers and technologies has yet accomplished the transition into clinical practice. Further refinement of these technologies and broader validation in large unselected patient cohorts are the critical next step needed to facilitate translation of advanced ECG technologies into clinical cardiology.

  13. Refining success of cardiac resynchronization therapy using a simple score predicting the amount of reverse ventricular remodelling: results from the Markers and Response to CRT (MARC) study.

    PubMed

    Maass, Alexander H; Vernooy, Kevin; Wijers, Sofieke C; van 't Sant, Jetske; Cramer, Maarten J; Meine, Mathias; Allaart, Cornelis P; De Lange, Frederik J; Prinzen, Frits W; Gerritse, Bart; Erdtsieck, Erna; Scheerder, Coert O S; Hill, Michael R S; Scholten, Marcoen; Kloosterman, Mariëlle; Ter Horst, Iris A H; Voors, Adriaan A; Vos, Marc A; Rienstra, Michiel; Van Gelder, Isabelle C

    2018-02-01

    Cardiac resynchronization therapy (CRT) reduces morbidity and mortality in systolic heart failure patients with ventricular conduction delay. Variability of individual response to CRT warrants improved patient selection. The Markers and Response to CRT (MARC) study was designed to investigate markers related to response to CRT. We prospectively studied the ability of 11 clinical, 11 electrocardiographic, 4 echocardiographic, and 16 blood biomarkers to predict CRT response in 240 patients. Response was measured by the reduction of indexed left ventricular end-systolic volume (LVESVi) at 6 months follow-up. Biomarkers were related to LVESVi change using log-linear regression on continuous scale. Covariates that were significant univariately were included in a multivariable model. The final model was utilized to compose a response score. Age was 67 ± 10 years, 63% were male, 46% had ischaemic aetiology, LV ejection fraction was 26 ± 8%, LVESVi was 75 ± 31 mL/m2, and QRS was 178 ± 23 ms. At 6 months LVESVi was reduced to 58 ± 31 mL/m2 (relative reduction of 22 ± 24%), 130 patients (61%) showed ≥ 15% LVESVi reduction. In univariate analysis 17 parameters were significantly associated with LVESVi change. In the final model age, QRSAREA (using vectorcardiography) and two echocardiographic markers (interventricular mechanical delay and apical rocking) remained significantly associated with the amount of reverse ventricular remodelling. This CAVIAR (CRT-Age-Vectorcardiographic QRSAREA -Interventricular Mechanical delay-Apical Rocking) response score also predicted clinical outcome assessed by heart failure hospitalizations and all-cause mortality. The CAVIAR response score predicts the amount of reverse remodelling after CRT and may be used to improve patient selection. Clinical Trials: NCT01519908. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  14. How electricity was discovered and how it is related to cardiology.

    PubMed

    de Micheli-Serra, Alfredo; Iturralde-Torres, Pedro; Izaguirre-Ávila, Raúl

    2012-01-01

    We relate the fundamental stages of the long road leading to the discovery of electricity and its uses in cardiology. The first observations on the electromagnetic phenomena were registered in ancient texts; many Greek and Roman writers referred to them, although they provided no explanations. The first extant treatise dates back to the XIII century and was written by Pierre de Maricourt during the siege of Lucera, Italy, by the army of Charles of Anjou, French king of Naples. There were no significant advances in the field of magnetism between the appearance of this treatise and the publication of the study De magnete magneticisque corporibus (1600) by the English physician William Gilbert. Scientists became increasingly interested in electromagnetic phenomena occurring in certain fish, i.e., the so-called electric ray that lived in the South American seas and the Torpedo fish that roamed the Mediterranean Sea. This interest increased in the 18th century, when condenser devices such as the Leyden jar were explored. It was subsequently demonstrated that the discharges produced by "electric fish" were of the same nature as those produced in this device. The famous "controversy" relating to animal electricity or electricity inherent to an animal's body also arose in the second half of the 18th century. The school of thought of the physicist Volta sustained the principle of a single electrical action generated by metallic contact. This led Volta to invent his electric pile, considered as the first wet cell battery. Toward the middle of the XIX century, the disciples of the physiologist Galvani were able to demonstrate the existence of animal electricity through experiments exploring the so-called current of injury. On the path of Volta's approach, many characteristics of electricity were detailed, which ultimately led to their usage in the industrial field. The route followed by Galvani-Nobili-Matteucci led to the successes of Waller, Einthoven, etcetera, enabling the modern conquests of electro-vectorcardiography. Copyright © 2012 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

Top