Taguchi, Masumi; Kanki, Masashi; Yamaguchi, Yuko; Inamura, Hideichi; Koganei, Yosuke; Sano, Tetsuya; Nakamura, Hiromi; Asakura, Hiroshi
2017-03-01
Incidences of food poisoning traced to nonanimal food products have been increasingly reported. One of these was a recent large outbreak of Shiga toxin-producing Escherichia coli (STEC) O157 infection from the consumption of lightly pickled vegetables, indicating the necessity of imposing hygienic controls during manufacturing. However, little is known about the bacterial contamination levels in these minimally processed vegetables. Here we examined the prevalence of STEC, Salmonella spp., and Listeria monocytogenes in 100 lightly pickled vegetable products manufactured at 55 processing factories. Simultaneously, we also performed quantitative measurements of representative indicator bacteria (total viable counts, coliform counts, and β-glucuronidase-producing E. coli counts). STEC and Salmonella spp. were not detected in any of the samples; L. monocytogenes was detected in 12 samples manufactured at five of the factories. Microbiological surveillance at two factories (two surveys at factory A and three surveys at factory B) between June 2014 and January 2015 determined that the areas predominantly contaminated with L. monocytogenes included the refrigerators and packaging rooms. Genotyping provided further evidence that the contaminants found in these areas were linked to those found in the final products. Taken together, we demonstrated the prevalence of L. monocytogenes in lightly pickled vegetables sold at the retail level. Microbiological surveillance at the manufacturing factories further clarified the sources of the contamination in the retail products. These data indicate the necessity of implementing adequate monitoring programs to minimize health risks attributable to the consumption of these minimally processed vegetables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sandmore » and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.« less
Vegetable oils and animal fats for diesel fuels: a systems study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinsky, E.S.; Kresovich, S.; Wagner, C.K.
1982-01-01
This paper provided some information on the possible use of vegetable oils and animal fats as substitute fuels and as emergency diesel fuels in the United States. This paper is confined to using triglyceride fuels in agricultural, automotive, and highway transportation applications. Satisfactory substitution of petroleum-based diesel fuels with triglyceride-based fuels requires the development of an integrated system for the production, processing, and end use of the new fuels on a basis that is both technically attractive and economically rewarding to all of the elements of the system. The three subsystems, the farms that produce oilseed crops, the production ofmore » triglycerides and protein, and the manufacturers of the diesel engines and the owners of the present stock of auto-ignition engines, are discussed. It was concluded that vegetable oils and animal fats have substantial prospects as long-term substitutes for diesel fuels. If special auto-ignition engines were developed to handle vegetable oils, on-farm production and use might succeed. In the absence of such engine development, it is likely that large, centralized facilities to manufacture vegetable oils and their methylesters will be the successful processing route. Vegetable oils are likely to succeed first in geographical areas with benign climates. Vegetable oils and animal fats have limited prospects as diesel fuels for acute emergencies. The high viscosity of vegetable oils and the necessity to make substantial capital investments to obtain oils from oilseeds render the system relatively inflexible. 4 tables. (DP)« less
ERIC Educational Resources Information Center
Backman, Desiree; Gonzaga, Gian; Sugerman, Sharon; Francis, Dona; Cook, Sara
2011-01-01
Objective: To examine the impact of fresh fruit availability at worksites on the fruit and vegetable consumption and related psychosocial determinants of low-wage employees. Design: A prospective, randomized block experimental design. Setting: Seven apparel manufacturing and 2 food processing worksites. Participants: A convenience sample of 391…
USDA-ARS?s Scientific Manuscript database
Fundamental processing needs identified by industry for the large-scale manufacture of biofuels and bioproducts from sweet sorghum (Sorghum bicolor L. Moench), include the long-term storage of 65 Brix syrups for year-round supply, efficient transport, and acceptable end-product yields. Sweet sorghu...
Contamination pathways of spore-forming bacteria in a vegetable cannery.
Durand, Loïc; Planchon, Stella; Guinebretiere, Marie-Hélène; André, Stéphane; Carlin, Frédéric; Remize, Fabienne
2015-06-02
Spoilage of low-acid canned food during prolonged storage at high temperatures is caused by heat resistant thermophilic spores of strict or facultative bacteria. Here, we performed a bacterial survey over two consecutive years on the processing line of a French company manufacturing canned mixed green peas and carrots. In total, 341 samples were collected, including raw vegetables, green peas and carrots at different steps of processing, cover brine, and process environment samples. Thermophilic and highly-heat-resistant thermophilic spores growing anaerobically were counted. During vegetable preparation, anaerobic spore counts were significantly decreased, and tended to remain unchanged further downstream in the process. Large variation of spore levels in products immediately before the sterilization process could be explained by occasionally high spore levels on surfaces and in debris of vegetable combined with long residence times in conditions suitable for growth and sporulation. Vegetable processing was also associated with an increase in the prevalence of highly-heat-resistant species, probably due to cross-contamination of peas via blanching water. Geobacillus stearothermophilus M13-PCR genotypic profiling on 112 isolates determined 23 profile-types and confirmed process-driven cross-contamination. Taken together, these findings clarify the scheme of contamination pathway by thermophilic spore-forming bacteria in a vegetable cannery. Copyright © 2015 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... Meat processing facilities. 311411 Frozen fruit, juice, and vegetable manufacturing facilities. 311421... volume conversion factor. Y 98.256(m)(3) Only total quantity of crude oil plus the quantity of...
USDA-ARS?s Scientific Manuscript database
A major sustainability goal of food processing wastewater (FPWW) management is to not only decrease environmental pollution but also utilize valuable co-products present in the FPWW. Many processed food products, especially those from fruits and vegetables, result in FPWW streams that contain compou...
Effect of food processing on the physicochemical properties of dietary fibre.
Ozyurt, Vasfiye Hazal; Ötles, Semih
2016-01-01
Products derived from the manufacturing or processing of plant based foods: cereals, fruits, vegetables, as well as algae, are sources of abundant dietary fibre. Diets high in dietary fibre have been associated with the reduced risk of cardiovascular disease, diabetes, hypertension, obesity, and gastrointestinal disorders. These fibre-rich products and byproducts can also fortify foods, increase their dietary fibre content and result in healthy products, low in calories, cholesterol and fat. Traditionally, consumers have chosen foods such as whole grains, fruits and vegetables as sources of dietary fibre. Recently, food manufacturers have responded to consumer demand for foods with a higher fibre content by developing products in which highfibre ingredients are used. Different food processing methods also increase the dietary fiber content of food. Moreover, its chemical and physical properties may be affected by food processing. Some of them might even improve the functionality of fibre. Therefore, they may also be applied as functional ingredients to improve physical properties like the physical and structural properties of hydration, oil-holding capacity, viscosity. This study was conducted to examine the effect of different food processing methods on the physicochemical properties of dietary fibre.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masanet, Eric; Masanet, Eric; Worrell, Ernst
2008-01-01
The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implementedmore » at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.« less
Process Evaluation Results from the Healthy Directions-Small Business Study
ERIC Educational Resources Information Center
Hunt, Mary K.; Barbeau, Elizabeth M.; Lederman, Ruth; Stoddard, Anne M.; Chetkovich, Carol; Goldman, Roberta; Wallace, Lorraine; Sorensen, Glorian
2007-01-01
The Healthy Directions-Small Business randomized, controlled study aimed to reduce cancer risk among multiethnic workers in small manufacturing businesses by increasing fruit and vegetable consumption, physical activity, and daily multivitamin in take and decreasing consumption of red meat. The intervention incorporated participatory strategies…
7 CFR 361.4 - Inspection at the port of first arrival.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) indicates that the screenings are being imported for processing or manufacturing purposes; (4) Seed that is... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE IMPORTATION OF SEED AND SCREENINGS UNDER THE FEDERAL SEED ACT § 361.4 Inspection at the port of first arrival. (a) All agricultural seed, vegetable seed, and...
7 CFR 361.4 - Inspection at the port of first arrival.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) indicates that the screenings are being imported for processing or manufacturing purposes; (4) Seed that is... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE IMPORTATION OF SEED AND SCREENINGS UNDER THE FEDERAL SEED ACT § 361.4 Inspection at the port of first arrival. (a) All agricultural seed, vegetable seed, and...
7 CFR 361.4 - Inspection at the port of first arrival.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) indicates that the screenings are being imported for processing or manufacturing purposes; (4) Seed that is... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE IMPORTATION OF SEED AND SCREENINGS UNDER THE FEDERAL SEED ACT § 361.4 Inspection at the port of first arrival. (a) All agricultural seed, vegetable seed, and...
7 CFR 361.4 - Inspection at the port of first arrival.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) indicates that the screenings are being imported for processing or manufacturing purposes; (4) Seed that is... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE IMPORTATION OF SEED AND SCREENINGS UNDER THE FEDERAL SEED ACT § 361.4 Inspection at the port of first arrival. (a) All agricultural seed, vegetable seed, and...
7 CFR 361.4 - Inspection at the port of first arrival.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) indicates that the screenings are being imported for processing or manufacturing purposes; (4) Seed that is... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE IMPORTATION OF SEED AND SCREENINGS UNDER THE FEDERAL SEED ACT § 361.4 Inspection at the port of first arrival. (a) All agricultural seed, vegetable seed, and...
Presence of Trihalomethanes in ready-to-eat vegetables disinfected with chlorine.
Coroneo, Valentina; Carraro, Valentina; Marras, Barbara; Marrucci, Alessandro; Succa, Sara; Meloni, Barbara; Pinna, Antonella; Angioni, Alberto; Sanna, Adriana; Schintu, Marco
2017-12-01
Trihalomethanes (THMs) - CHCl 3 , CHCl 2 Br, CHClBr 2 and CHBr 3 - are drinking water disinfection by-products (DBPs). These compounds can also be absorbed by different types of foods, including ready-to-eat (RTE) fresh vegetables. The potential absorption of THMs during washing of RTE vegetables could pose a potential risk to consumers' health. The concentration of THMs in the water used in the manufacturing process of these products shall not exceed the limit of 100 or 80 µgL -1 according to European Union (EU) and United States legislation, respectively. By contrast, there is little information about the presence of such compounds in the final product. This study evaluated the concentration of THMs in different types of RTE vegetables (carrots, iceberg lettuce, lettuce, mixed salad, parsley, parsley and garlic, rocket salad, valerian) after washing with chlorinated water. In the 115 samples analysed, the average value of total THMs was equal to 76.7 ng g -1 . Chloroform was the THM present in the largest percentage in all the RTE vegetables. These results show that the process of washing RTE vegetables should be optimised in order to reduce the risk for consumers associated with the presence of DBPs.
Preliminary process engineering evaluation of ethanol production from vegetative crops
NASA Astrophysics Data System (ADS)
Moreira, A. R.; Linden, J. C.; Smith, D. H.; Villet, R. H.
1982-12-01
Vegetative crops show good potential as feedstock for ethanol production via cellulose hydrolysis and yeast fermentation. The low levels of lignin encountered in young plant tissues show an inverse relationship with the high cellulose digestibility during hydrolysis with cellulose enzymes. Ensiled sorghum species and brown midrib mutants of sorghum exhibit high glucose yields after enzyme hydrolysis as well. Vegetative crop materials as candidate feedstocks for ethanol manufacture should continue to be studied. The species studied so far are high value cash crops and result in relatively high costs for the final ethanol product. Unconventional crops, such as pigweed, kochia, and Russian thistle, which can use water efficiently and grow on relatively arid land under conditions not ideal for food production, should be carefully evaluated with regard to their cultivation requirements, photosynthesis rates, and cellulose digestibility. Such crops should result in more favorable process economics for alcohol production.
Chung, Stephen Wc
2018-06-01
Nowadays, the use of pesticides is inevitable for pest control in crops, especially for fruit and vegetables. After the harvest from raw agricultural commodities, the amount of pesticide residues in food is mainly influenced by the storage, handling and processing that follow. If good agricultural and good manufacturing practices are enforced effectively, the amount of pesticide residues would be brought below the corresponding maximum residue level. Thus, the consumption of raw and/or prepared fruit and vegetables would be safe. Nonetheless, reports regarding pesticide residues in fruit or vegetables on mass media have been worrying consumers, who are concerned about the adverse effects of pesticide residues. As a result, consumers perform household processing before consumption to reduce any related risks. However, can these preparations effectively remove pesticide residues? Reviewing the extensive literature, it showed that, in most cases, washing and soaking can only lead to a certain degree of reduction in residue level, while other processing such as peeling, soaking in chemical baths and blanching can reduce pesticide residues more effectively. In general, the behaviour of residues during processing can be rationalised in terms of the physico-chemical properties of the pesticide and the nature of the process. In contrast, the reported studies are diversified and some areas still lack sufficient studies to draw any remarks. Recommendations are provided with respect to the available information that aims to formulate an environmental friendly, cost-effective and efficient household processing of fruit and vegetables to reduce pesticide residues. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Pothakos, Vasileios; Snauwaert, Cindy; De Vos, Paul; Huys, Geert; Devlieghere, Frank
2014-08-18
A study monitoring lactic acid bacteria contamination was conducted in a company producing fresh, minimally processed, packaged and ready-to-eat (RTE) vegetable salads (stored at 4°C) in order to investigate the reason for high psychrotrophic LAB levels in the products at the end of shelf-life. Initially, high microbial counts exceeding the established psychrotrophic thresholds (>10(7)-10(8)CFU/g) and spoilage manifestations before the end of the shelf-life (7days) occurred in products containing an assortment of sliced and diced vegetables, but within a one year period these spoilage defects became prevalent in the entire processing plant. Environmental sampling and microbiological analyses of the raw materials and final products throughout the manufacturing process highlighted the presence of high numbers of Leuconostoc spp. in halved and unseeded, fresh sweet bell peppers provided by the supplier. A combination of two DNA fingerprinting techniques facilitated the assessment of the species diversity of LAB present in the processing environment along with the critical point of their introduction in the production facility. Probably through air mediation and surface adhesion, mainly members of the strictly psychrotrophic species Leuconostoc gelidum subsp. gasicomitatum and L. gelidum subsp. gelidum were responsible for the cross-contamination of every vegetable handled within the plant. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of a method to manufacture uncured, no-nitrate/nitrite-added whole muscle jerky.
Sindelar, Jeffrey J; Terns, Matthew J; Meyn, Elizabeth; Boles, Jane A
2010-10-01
"Natural curing" is accomplished by use of vegetable juice/powder high in naturally occurring nitrates combined with a nitrate reducing starter culture to result in indirectly "cured" products. Since the starter culture used is not water soluble, making "naturally cured" whole muscle jerky with current manufacturing techniques has been found ineffective. The objective was to investigate processes for whole muscle beef jerky that might provide cured meat characteristics similar to those of a nitrite-added control. Treatments where jerky was placed in a barrier bag during incubation were found to be the least similar to the nitrite-added control. Jerky placed in a 40.6 degrees C smokehouse during incubation resulted in significantly more (P<0.05) converted cured pigment than the barrier bag treatments but less (P<0.05) than the control. The processing methods investigated to manufacture "naturally cured" whole muscle jerky in this study were ineffective in resulting in products similar to those cured with sodium nitrite. Published by Elsevier Ltd.
Health benefits of kimchi (Korean fermented vegetables) as a probiotic food.
Park, Kun-Young; Jeong, Ji-Kang; Lee, Young-Eun; Daily, James W
2014-01-01
Kimchi is a traditional Korean food manufactured by fermenting vegetables with probiotic lactic acid bacteria (LAB). Many bacteria are involved in the fermentation of kimchi, but LAB become dominant while the putrefactive bacteria are suppressed during salting of baechu cabbage and the fermentation. The addition of other subingredients and formation of fermentation byproducts of LAB promote the fermentation process of LAB to eventually lead to eradication of putrefactive- and pathogenic bacteria, and also increase the functionalities of kimchi. Accordingly, kimchi can be considered a vegetable probiotic food that contributes health benefits in a similar manner as yogurt as a dairy probiotic food. Further, the major ingredients of kimchi are cruciferous vegetables; and other healthy functional foods such as garlic, ginger, red pepper powder, and so on are added to kimchi as subingredients. As all of these ingredients undergo fermentation by LAB, kimchi is regarded as a source of LAB; and the fermentative byproducts from the functional ingredients significantly boost its functionality. Because kimchi is both tasty and highly functional, it is typically served with steamed rice at every Korean meal. Health functionality of kimchi, based upon our research and that of other, includes anticancer, antiobesity, anticonstipation, colorectal health promotion, probiotic properties, cholesterol reduction, fibrolytic effect, antioxidative and antiaging properties, brain health promotion, immune promotion, and skin health promotion. In this review we describe the method of kimchi manufacture, fermentation, health functionalities of kimchi and the probiotic properties of its LAB.
Sawada, Kimi; Murayama, Nobuko; Takemi, Yukari; Ishida, Hiromi
2015-01-01
Overweight and obesity increase the risk of hypertension, type 2 diabetes, and other metabolic disorders and are increasing in Japan, particularly among men. Several prospective studies have suggested that high vegetable intake is inversely associated with weight gain. Here, the association between vegetable consumption and weight gain in a group of food manufacturing workers over the course of one year was investigated. The study was a one-year cohort study of the nutrition and lifestyle survey. The study population consisted of 900 and 910 Japanese employees (aged 19-60 years) from a manufacturing company located in Musashino City, Tokyo, Japan, that were administered the same validated brief self-administered diet history and dietary lifestyle questionnaire in 2006 and 2007, respectively. Clinical examinations of body weight were also performed to assess changes in weight. We analyzed participants who responded in both 2006 and 2007 (n=478). Risk of weight gain of more than 3 kg was significantly lower in the group consuming the most vegetables than in the group consuming the least, and this difference remained significant after adjustment for baseline age, sex, and consumption of other foods (p for trend=0.028). Weight gain was inversely associated with high consumption of vegetables. Encouraging Japanese employees to consume more vegetables may be an important strategy in controlling weight gain and preventing metabolic syndrome.
DNA-based identification of Brassica vegetable species for the juice industry.
Etoh, Kazumi; Niijima, Noritaka; Yokoshita, Masahiko; Fukuoka, Shin-Ichi
2003-10-01
Since kale (Brassica oleracea var. acephala), a cruciferous vegetable with a high level of vitamins and functional compounds beneficial to health and wellness, has become widely used in the juice industry, a precise method for quality control of vegetable species is necessary. We describe here a DNA-based identification method to distinguish kale from cabbage (Brassica oleracea var. capitata), a closely related species, which can be inadvertently mixed with kale during the manufacturing process. Using genomic DNA from these vegetables and combinatory sets of nucleotide primers, we screened for random amplified polymorphic DNA (RAPD) fragments and found three cabbage-specific fragments. These RAPD fragments, with lengths of 1.4, 0.5, and 1.5 kb, were purified, subcloned, and sequenced. Based on sequence-tagged sites (STS), we designed sets of primers to detect cabbage-specific identification (CAI) DNA markers. Utilizing the CAI markers, we successfully distinguished more than 10 different local cabbage accessions from 20 kale accessions, and identified kale juices experimentally spiked with different amounts of cabbage.
Processing Of Neem And Jatropha Methyl Esters -Alternative Fuels From Vegetable Oil
NASA Astrophysics Data System (ADS)
Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.
2017-03-01
Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.
NASA Astrophysics Data System (ADS)
Passant, Neil R.; Richardson, Stephen J.; Swannell, Richard P. J.; Gibson, N.; Woodfield, M. J.; van der Lugt, Jan Pieter; Wolsink, Johan H.; Hesselink, Paul G. M.
Estimates were made of the amounts of volatile organic compounds (VOCs) released into the atmosphere as a result of the industrial manufacture and processing of food and drink in the European Community. The estimates were based on a review of literature sources, industrial and government contacts and recent measurements. Data were found on seven food manufacturing sectors (baking, vegetable oil extraction, solid fat processing, animal rendering, fish meal processing, coffee production and sugar beet processing) and three drink manufacturing sectors (brewing, spirit production and wine making). The principle of a data quality label is advocated to illustrate the authors' confidence in the data, and to highlight areas for further research. Emissions of ethanol from bread baking and spirit maturation were found to be the principle sources. However, significant losses of hexane and large quantities of an ill-defined mixture of partially oxidized hydrocarbons were noted principally from seed oil extraction and the drying of plant material, respectively. This latter mixture included low molecular weight aldehydes, carboxylic acids, ketones, amines and esters. However, the precise composition of many emissions were found to be poorly understood. The total emission from the food and drink industry in the EC was calculated as 260 kt yr -1. However, many processes within the target industry were found to be completely uncharacterized and therefore not included in the overall estimate (e.g. soft drink manufacture, production of animal food, flavourings, vinegar, tea, crisps and other fried snacks). Moreover, the use of data quality labels illustrated the fact that many of our estimates were based on limited data. Hence, further emissions monitoring is recommended from identified sources (e.g. processing of sugar beet, solid fat and fish meal) and from uncharacterized sources.
NASA Technical Reports Server (NTRS)
2002-01-01
Epner Technology, Inc., worked with Goddard Space Center to apply gold coating to the Vegetation Canopy Lidar (VCL) mirror. This partnership resulted in new commercial applications for Epner's LaserGold(R) process in the automotive industry. Previously, the company did not have equipment large enough to handle the plating of the stainless steel panels cost effectively. Seeing a chance to renew this effort, Epner Technology and Goddard entered into an agreement by which NASA would fund the facility needed to do the gold-plating, and Epner Technology would cover all other costs as part of their internal research and development. The VCL mirror project proceeded successfully, fulfilling Goddard's needs and leaving Epner Technology with a new facility to provide LaserGold for the automotive industry. The new capability means increased power savings and improvements in both quality and production time for BMW Manufacturing Corporation of Spartanburg, South Carolina, and Cadillac of Detroit, Michigan, as well as other manufacturers who have implemented Epner Technology's LaserGold process. LaserGold(R) is a registered trademark of Epner Technology, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-05
... development and implementation of handling regulations (audit metrics) to reflect the United States Food and... Good Manufacturing Practices (GMPs). DATES: This termination is made on December 6, 2013. FOR FURTHER... implementation of handling audit metrics consistent with the FDA's good production, handling, and manufacturing...
Tariq, Saadia R; Shah, Munir H; Shaheen, Nazia
2009-09-30
Two tanning units of Pakistan, namely, Kasur and Mian Channun were investigated with respect to the tanning processes (chrome and vegetable, respectively) and the effects of the tanning agents on the quality of soil in vicinity of tanneries were evaluated. The effluent and soil samples from 16 tanneries each of Kasur and Mian Channun were collected. The levels of selected metals (Na, K, Ca, Mg, Fe, Cr, Mn, Co, Cd, Ni, Pb and Zn) were determined by using flame atomic absorption spectrophotometer under optimum analytical conditions. The data thus obtained were subjected to univariate and multivariate statistical analyses. Most of the metals exhibited considerably higher concentrations in the effluents and soils of Kasur compared with those of Mian Channun. It was observed that the soil of Kasur was highly contaminated by Na, K, Ca and Mg emanating from various processes of leather manufacture. Furthermore, the levels of Cr were also present at much enhanced levels than its background concentration due to the adoption of chrome tanning. The levels of Cr determined in soil samples collected from the vicinity of Mian Channun tanneries were almost comparable to the background levels. The soil of this city was found to have contaminated only by the metals originating from pre-tanning processes. The apportionment of selected metals in the effluent and soil samples was determined by a multivariate cluster analysis, which revealed significant differences in chrome and vegetable tanning processes.
Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel
rapeseed oil; animal tallow; vegetable oil waste or brown trap grease; and other fats and vegetable oils new pipelines, storage tanks, or retail station pumps), can be produced using existing oil refinery manufacturers-including ConocoPhillips, Neste Oil, Petrobras, REG, and UOP-are developing and testing HDRD
Sevenier, V; Delannoy, S; André, S; Fach, P; Remize, F
2012-04-16
Two categories of vegetables (carrots and green beans) that are widely used in the manufacture of canned food were surveyed for their spore contamination. Samples were recovered from 10 manufactures spread over all producing areas in France. Two samples over 316 raw vegetables collected were found positive for botulinum neurotoxin producing Clostridia spores as tested by PCR-based GeneDisc assay. Both positive samplestested positive for the type B neurotoxin gene (bont/B). In parallel, heat-resistant spores of thermophilic bacteria that are likely to be associated with canned food spoilage after prolonged incubation at 55 °C were surveyed after specific enrichment. Prevalence varied between 1.6% for Moorella thermoacetica/thermoautotrophica in green bean samples and 8.6% for either Geobacillus stearothermophilus or Thermoanaerobacterium spp. in carrot samples. Vegetable preparation, e.g. washing and edge cutting, considerably reduced spore contamination levels. These data constitute the first wide examination of vegetables specifically cultivated for industrialpurposes for their contamination by spores of thermophilic bacterial species. Copyright © 2012 Elsevier B.V. All rights reserved.
[In vitro availability of minerals in infant foods with different protein source].
Pérez-Llamas, F; Larqué, E; Marín, J F; Zamora, S
2001-01-01
As the result of the digestion process, it is produced at gastrointestinal level interactions between proteins-minerals and minerals-minerals that might modify the bioavailability of the nutrients initially designed for an adequate nutrition in infant formulas. The aim of the present study is to compare the in vitro availability of some minerals and trace elements (calcium, phosphorus, magnesium, iron and zinc) in infant formulas of initiation elaborated with different protein sources: formulas based on cow milk protein (whey-casein) versus vegetal protein (soy-based infant formulas). Also, for evaluating the effects of the different mineral supplementation in the availability of minerals, it was used infant formulas from two different manufacturers. Milk-protein based infant formulas showed for both manufacturers higher dialysis percentage (%) of phosphorus and zinc than the soy-protein based formulas. The availability of iron in the soy formula of the manufacturer A lowered significantly (P < 0.05) respect to the whey-casein based formula (9.6 +/- 2.3 versus 4.6 +/- 0.8), but not respect to the whey-casein formula of manufacturer B (9.6 +/- 1.1 versus 9.0 +/- 0.7), which might be due to the lowest proportion of phytic acid in this last commercial formula. Dialysability of all the minerals analysed from soy-protein based formulas showed significant differences depending on the manufacturer. The purification processes of the soy protein have a high repercussion in the mineral availability of soy-based infant formulas. It could be more interesting to use soy proteins more purified, with low level of phytic acid, in the elaboration of soy infants formulas, than the supplementation them with high amounts of minerals.
Evaluation of nitrite contamination in baby foods and infant formulas marketed in Turkey.
Erkekoglu, Pinar; Baydar, Terken
2009-05-01
Nitrites are responsible for methemoglobinemia, to which infants younger than 6 months are thought to be the most susceptible population. This study aimed to detect whether there was any nitrite contamination in infant formulas and baby foods marketed in Turkey and to estimate possible toxicological risks in this sensitive physiological period. For this purpose, the samples were randomly collected and divided into four groups: milk-based, cereal-based, vegetable-based, and fruit-based. An easy and reliable spectrophotometric method was used by modifying the Griess method. The average nitrite contamination was found to be 204.07+/-65.80 microg/g in 42 samples, with 1,073 microg/g maximum. According to the results, baby and infant formulas include various nitrite levels; nitrite contamination might come from several sources during manufacturing, and so extreme attention must be given throughout the manufacturing process of food for infants.
Platform Chemicals from an Oilseed Biorefinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tupy, Mike; Schrodi Yann
2006-11-06
The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced inmore » this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the Materia/Cargill relationship. This project exceeded expectations and is having immediate impact on DOE success by replacing petroleum products with renewables in a large volume application today.« less
75 FR 68323 - Annual Surveys in the Manufacturing Area
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... quarterly reports: Survey Title M311C Corn (Wet & Dry Producers of Ethanol) M311H Animal and Vegetable Fats and Oils (Warehouse Stocks) M311J Oilseeds, Beans, and Nuts (Primary Producers) M311K Fats and Oils (Renderers) M311L Fats and Oils M311M Animal and Vegetable Fats and Oils (Consumption and Stocks) M311N...
Effect of high pressure-high temperature process on meat product quality
NASA Astrophysics Data System (ADS)
Duranton, Frédérique; Marée, Elvire; Simonin, Hélène; Chéret, Romuald; de Lamballerie, Marie
2011-03-01
High pressure/high temperature (HPHT) processing is an innovative way to sterilize food and has been proposed as an alternative to conventional retorting. By using elevated temperatures and adiabatic compression, it allows the inactivation of vegetative microorganisms and pathogen spores. Even though the microbial inactivation has been widely studied, the effect of such process on sensorial attributes of food products, especially meat products, remains rare. The aim of this study was to investigate the potential of using HPHT process (500 MPa/115 °C) instead of conventional retorting to stabilize Toulouse sausages while retaining high organoleptic quality. The measurements of texture, color, water-holding capacity and microbial stability were investigated. It was possible to manufacture stable products at 500 MPa/115 °C/30 min. However, in these conditions, no improvement of the quality was found compared with conventional retorting.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... present in all vascular plants, algae, and some fungi. It is naturally present in fruits and vegetables at... potentially affected by this action if you are an agricultural producer, food manufacturer, or pesticide manufacturer. Potentially affected entities may include, but are not limited to: Crop production (NAICS code...
Siciliano, Alessio
2016-03-01
Leachates generated in methanogenic landfills contain high strength of ammonium nitrogen which removal is hard to be accomplished by means of conventional techniques. The chemical precipitation of struvite, which is a mineral that could be reused as a slow-release fertilizer, is an effective process in the removal and recovery of NH4 amount of high-concentrated wastewaters. In this paper, a struvite precipitation process using unconventional reagents is proposed for a sustainable recovery of nitrogen content. In particular, seawater bittern, a by-product of marine salt manufacturing, and bone meal, a by-product of the thermal treatment of meat waste, have been used as low-cost sources of magnesium and phosphorus, respectively. The process enables the removal of more than 98 % ammonia load, the recovery about 99 and 95 % of phosphorus and magnesium, respectively, and the production of a precipitate containing struvite crystals. Heavy metals concentrations of produced precipitate were below the threshold values specified by the EC Directive for use of sewage sludges as fertilizers. Specific agronomic tests were conducted to investigate the fertilizing value of precipitate recovered from landfill leachate. The fertilizing effect of struvite deposit in cultivating Spinacia oleracea was compared with that of vegetable soil and commercial fertilizer. The growth of selected vegetable in the pots with struvite precipitate resulted significantly greater in both than those in the control pots and in the pots with the complex fertilizer. Furthermore, the struvite application as fertilizer did not result in more heavy metals in the vegetables respect those from soil and model fertilizer.
Romer, Frederik H; Underwood, Andrew P; Senekal, Nadine D; Bonnet, Susan L; Duer, Melinda J; Reid, David G; van der Westhuizen, Jan H
2011-01-28
Solid state ¹³C-NMR spectra of pure tannin powders from four different sources--mimosa, quebracho, chestnut and tara--are readily distinguishable from each other, both in pure commercial powder form, and in leather which they have been used to tan. Groups of signals indicative of the source, and type (condensed vs. hydrolyzable) of tannin used in the manufacture are well resolved in the spectra of the finished leathers. These fingerprints are compared with those arising from leathers tanned with other common tanning agents. Paramagnetic chromium (III) tanning causes widespread but selective disappearance of signals from the spectrum of leather collagen, including resonances from acidic aspartyl and glutamyl residues, likely bound to Cr (III) structures. Aluminium (III) and glutaraldehyde tanning both cause considerable leather collagen signal sharpening suggesting some increase in molecular structural ordering. The ²⁷Al-NMR signal from the former material is consistent with an octahedral coordination by oxygen ligands. Solid state NMR thus provides easily recognisable reagent specific spectral fingerprints of the products of vegetable and some other common tanning processes. Because spectra are related to molecular properties, NMR is potentially a powerful tool in leather process enhancement and quality or provenance assurance.
Formulation and characterization of functional foods based on fruit and vegetable residue flour.
Ferreira, Mariana S L; Santos, Mônica C P; Moro, Thaísa M A; Basto, Gabriela J; Andrade, Roberta M S; Gonçalves, Édira C B A
2015-02-01
Fruits and vegetables are extensively processed and the residues are often discarded. However, due to their rich composition, they could be used to minimize food waste. This study aimed to develop food products based on the solid residue generated from the manufacture of an isotonic beverage. This beverage was produced based on integral exploitation of several fruits and vegetables: orange, passion fruit, watermelon, lettuce, courgette, carrot, spinach, mint, taro, cucumber and rocket. The remaining residue was processed into flour and its functional properties were evaluated. The fruit and vegetable residue (FVR) flour was incorporated with different levels (20 to 35 %) into biscuits and cereal bars. The proximate composition, microbiological stability until 90 days and consumer acceptance were analyzed. The FVR flour presented a higher water holding capacity than oil holding capacity, respectively 7.43 and 1.91 g g(-1) of flour, probably associated with its high levels of carbohydrates (53 %) and fibres (21.5 %). Biscuits enriched with 35 % of FVR flour presented significantly higher fibre, ranging from 57 % to 118 % and mineral contents, from 25 % to 37 % than when only 20 % was added. Cereal bars presented about 75 % of fibres and variable mineral contents between 14 % and 37 %. The incorporation of FVR did not change the fat content. The microbiological examinations are within acceptable limits according to international regulation. The incorporation of FVR flour did not impair consumer acceptance, the sensory attributes averaged around 6. The chemical, microbiological and sensorial results of the designed products attested for an alternative towards applying and reducing agro-industrial wastes.
Experimental Evaluation of the Flight Line Food Service Facility at Travis AFB
1974-06-01
8217emm^^mmi - TABLE 1 DINNER MENU SOUPS DAILY Chili Con Came, Chicken Noodle Soup, Vegetable Soup, Cream of Tomato Soup MON - Vegetable-Beef...Soup TUE - Cream of Chicken Soup WED - Minestrone Soup THU - Beef Noodle Soup FRI - Clam Chowder SAT - Chicken Rice Soup SUN...within two days; frozen sandwiches and breakfast meals would be manufactured once a week and dinner meals every two weeks. During the experiment
NASA Astrophysics Data System (ADS)
Elvistia Firdaus, Flora
2016-04-01
The polyurethanes (PUs) foam were made from vegetable oil; a soybean based polyol. The foams were categorized into flexible and semi rigid. This research is manufacturally designed polyurethane foams by a process requiring the reaction of mixture of 2, 4- and 2, 6-Toluene di Isocyanate isomers, soy polyol in the presence of other ingredients. The objective of this work was to functionalized soy-polyol using phosporic acid catalyst and chain extender, study their collaborative reaction in producing ultimate property of PU foam. Correlates the foam morphology images in accordance to mechanical properties of foams.
Plessz, Marie; Gojard, Séverine
2013-10-01
Vegetable consumption varies highly across households, based on household structure and socio-economic status, but little is known about the share of fresh vs. processed (e.g. frozen or canned) vegetables. Our aim was to compare the social and economic determinants of fresh and processed vegetable consumption. We reviewed detailed data on vegetable purchases for at-home consumption of 2600 French households during 2007. We took into account a wide range of processed vegetables (excluding potatoes) and made a distinction between fresh vegetables, processed vegetables and baby food containing vegetables. We conducted regression analyses to predict consumption of fresh and processed vegetables in kilograms per year and unit values in euros per kilogram. About 60% of the vegetables bought by the sample households were fresh. Fresh vegetable consumption increased with the respondent's income, age and educational level, and with the number of adults but not with the presence of children aged <6 years. The quantity of processed vegetables purchased increased with the household size but was not dependent on age, education or household income, although the richest households spent more per kilogram on processed vegetables. Households with a child aged <6 years also purchased 10 kg of baby foods containing vegetables. We found socio-economic inequalities in the quantities of fresh vegetables, in the spending on fresh and processed vegetables but not in the quantities of processed vegetables. This suggests that monitoring the price and nutritional quality of processed vegetables and providing this information to consumers could help them identify nutritious, affordable and convenient foods.
Ivezic, Nenad; Potok, Thomas E.
2003-09-30
A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.
Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites
NASA Astrophysics Data System (ADS)
Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.
2017-10-01
Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.
Gañan, J; González, J F; González-García, C M; Cuerda-Correa, E M; Macías-García, A
2006-03-01
In this work, a pyrolysis plant located in Valverde de Leganes, Badajoz (SW Spain) was studied. At present, only the solid phase obtained by pyrolysis finds an application as domestic fuel. In order to analyze the feasibility of a further energetic exploitation of the plant under study, the gases flowing through the chimneys were collected at different times throughout the pyrolysis process. Next, they were characterized and quantified by gas chromatography, the energy potential of each of the gases being determined. According to the results obtained in this study, a total energy potential of 5.6 x 10(7) MJ (i.e., 1.78 MW(t)) might be generated yearly. Hence, considering an overall process yield equal to 20%, up to 358 KW(e) would be produced. This power would supply enough electric energy to the industry, the remaining being added to the common electric network.
21 CFR 176.120 - Alkyl ketene dimers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... section. (a) The alkyl ketene dimers are manufactured by the dehydrohalogenation of the acyl halides derived from the fatty acids of animal or vegetable fats and oils. (b) The alkyl ketene dimers are used as...
7 CFR 987.157 - Approved date product manufacturers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 987.157 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DOMESTIC DATES PRODUCED OR PACKED IN RIVERSIDE COUNTY, CALIFORNIA Administrative Rules Qualification to...
40 CFR 52.478 - Rules and Regulations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... truck manufacturing; (2) Coating of cans, coils, paper, fabric and vinyl, metal furniture, large... synthesized pharmaceutical products, pneumatic rubber tires, vegetable oil, synthetic organic chemicals... following VOC categories: (1) Coating of plastic parts (business machines and other); (2) Aerospace; (3...
40 CFR 52.478 - Rules and Regulations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... truck manufacturing; (2) Coating of cans, coils, paper, fabric and vinyl, metal furniture, large... synthesized pharmaceutical products, pneumatic rubber tires, vegetable oil, synthetic organic chemicals... following VOC categories: (1) Coating of plastic parts (business machines and other); (2) Aerospace; (3...
40 CFR 52.478 - Rules and Regulations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... truck manufacturing; (2) Coating of cans, coils, paper, fabric and vinyl, metal furniture, large... synthesized pharmaceutical products, pneumatic rubber tires, vegetable oil, synthetic organic chemicals... following VOC categories: (1) Coating of plastic parts (business machines and other); (2) Aerospace; (3...
Design of an SolidWorks-based household substrate cultivation device
NASA Astrophysics Data System (ADS)
Yi, Guo; Yueying, Wang
2018-03-01
Rapid urbanization has caused increasingly severe environmental problems and smaller tillable land area. Even worse, negative reports on vegetable production are repeatedly found. In this case, home gardening has become an inexorable trend. To meet demand for vegetable cultivation in the home environment, an SolidWorks-based household substrate cultivation device has been designed. This device is composed of the cultivation tank, upright post, base, irrigation system, supplemental lighting system and control system. The household substrate cultivation device manufactured based on the design results has shown in practice that this device features an esthetic appearance, low cost, automatic irrigation and lighting supplementation, good vegetable growing conditions, full of ornamental value and practicability and thus is suitable for vegetable growing in the home environment. Hence it has a higher promotion value in the home gardening field.
Autonomous Agents for Dynamic Process Planning in the Flexible Manufacturing System
NASA Astrophysics Data System (ADS)
Nik Nejad, Hossein Tehrani; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka
Rapid changes of market demands and pressures of competition require manufacturers to maintain highly flexible manufacturing systems to cope with a complex manufacturing environment. This paper deals with development of an agent-based architecture of dynamic systems for incremental process planning in the manufacturing systems. In consideration of alternative manufacturing processes and machine tools, the process plans and the schedules of the manufacturing resources are generated incrementally and dynamically. A negotiation protocol is discussed, in this paper, to generate suitable process plans for the target products real-timely and dynamically, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans are searched and generated to cope with both the dynamic changes of the product specifications and the disturbances of the manufacturing resources. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans in the dynamic manufacturing environment.
Engineering a cardosin B-derived rennet for sheep and goat cheese manufacture.
Almeida, Carla Malaquias; Gomes, David; Faro, Carlos; Simões, Isaura
2015-01-01
Different sheep and goat cheeses with world-renowned excellence are produced using aqueous extracts of Cynara cardunculus flowers as coagulants. However, the use of this vegetable rennet is mostly limited to artisanal scale production, and no effective solutions to large-scale industrial applications have been reported so far. In this sense, the development of a synthetic rennet based on the most abundant cardoon milk-clotting enzymes (cardosins) would emerge as a solution for scalability of production and for application of these proteases as alternative rennets in dairy industry. In this work, we report the development of a new cardosin B-derived rennet produced in the generally regarded as safe (GRAS) yeast Kluyveromyces lactis. Using a stepwise optimization strategy-consisting of culture media screening, complemented with a protein engineering approach with removal of the plant-specific domain, and a codon optimization step-we successfully improved cardosin B production yield (35×) in K. lactis. We demonstrated that the secreted enzyme displays similar proteolytic properties, such as casein digestion profiles as well as optimum pH (pH 4.5) and temperature (40 °C), with those of native cardosin B. From this optimization process resulted the rennet preparation Vegetable Rennet (VRen), requiring no downstream protein purification steps. The effectiveness of VRen in cheese production was demonstrated by manufacturing sheep, goat, and cow cheeses. Interestingly, the use of VRen resulted in a higher cheese yield for all three types of cheese when compared with synthetic chymosin. Altogether, these results clearly position VRen as an alternative/innovative coagulant for the cheese-making industry.
Gao, Lihua; Liu, Ting; An, Xinjing; Zhang, Jinlan; Ma, Xiaoran; Cui, Jinmei
2017-01-01
Soy sauce contains a variety of volatiles that are highly valuable to its quality with regard to sensory characteristics. This paper describes the analysis of volatile compounds influencing the flavor quality of Chinese-type soy sauces. Gas chromatography-mass spectrometry (GC-MS) combined with headspace-solid phase microextraction and electronic nose (E-nose) were applied for identifying the volatile flavor compounds as well as determining their volatile profiles of 12 soy sauces manufactured by different fermentation process. Forty one key volatile components of these 12 soy sauce products, a pure soy sauce and an acid-hydrolyzed vegetable protein sample, were compared in semi-quantitative form, and their volatile flavor profiles were analyzed by E-nose. The substantially similar results between hierarchical cluster analysis based on GC-MS data and E-nose analysis suggested that both techniques may be useful in evaluating the flavor quality of soy sauces and differentiating soy sauce products. The study also showed that there were less volatile flavor compounds in soy sauces produced through low-salt solid-state fermentation process, a traditional manufacturing technology and a widely adopted technology in Chinese soy sauce industries. In addition, the investigation suggested that the flavor quality of soy sauce varied widely in Chinese domestic market, and that the present Chinese national standards of soy sauce should be further perfected by the addition of flavor grades of soy sauce in the physical and chemical index. Meanwhile, this research provided valuable information to manufacturers and government regulators, which have practical significance to improve quality of soy sauces.
Fang, Fang; Feng, Tingting; Du, Guocheng; Chen, Jian
2016-01-01
Four strains of lactic acid bacteria showing antimicrobial activity against some food-spoilage microorganisms or pathogens, including both Gram-negative and -positive strains, were isolated from naturally fermented pickled vegetables and a traditional cheese product. Among these isolates, Lactobacillus coryniformis strain BBE-H3, characterised previously to be a non-biogenic amine producer, showed a high level of activity in degrading sodium nitrite and exhibited the ability to eliminate ethyl carbamate and one of its precursors, urea. The antimicrobial substance produced by L. coryniformis BBE-H3 was found to be active at an acidic pH range of 4.0-4.5. The antimicrobial activity of this strain decreased differentially after treatment with proteolytic enzymes (pepsin, papain, trypsin and proteinase K), implying this growth inhibitory compound is either a protein or a polypeptide. The results of this study show the suitability of L. coryniformis BBE-H3 as a starter in food manufacturing processes, and demonstrate its potential role in eliminating food origin carcinogens such as sodium nitrite and ethyl carbamate.
Dietary intake of cadmium from Bangladeshi foods.
Al-Rmalli, S W; Jenkins, R O; Haris, P I
2012-01-01
Human exposure to cadmium (Cd) is associated with various diseases and high levels of Cd have been detected in Bangladeshi population warranting further research to identify the source of this exposure. In this study, Cd levels in 327 and 94 samples of Bangladeshi food and non-food samples, respectively, were determined using inductively coupled plasma mass spectrometry. This is the largest number of Bangladeshi food and nonfood samples investigated for their Cd content. High Cd levels were detected in leafy vegetables (mean 31 [SD 29]μg/kg). Of these vegetables, lal shak (Amaranthus tricolor) contained the highest Cd level (303 μg/kg [wet weight]; mean 100.5 [SD 95]μg/kg). Bangladeshi rice also showed significant concentration of Cd (mean 37.2 [SD 30]μg/kg). Of particular concern is the very high level of Cd detected in some puffed rice, which we attribute to the illegal practice of using urea for whitening the puffed rice. Tobacco leaves, which are commonly consumed during betel quid chewing by Bangladeshis, contain significant levels of Cd (mean 95 [SD 87]μg/kg). The total daily intake (TDI) of Cd from foods for Bangladeshis was estimated to be 34.55 μg/d. This is rather high when compared to the TDI of Cd for other populations. Our analysis reveals that this is mainly due to the very high intake of rice and vegetables, and lower consumption of animal products (which are low in Cd), by the Bangladeshis. We also determined the provisional maximum tolerable daily intake and target hazard quotients values for Cd. Clearly a more balanced diet is necessary to reduce the Cd intake in the Bangladeshi population, especially by reducing the very high intake of rice and certain leafy vegetables. Food manufacturing and agricultural practices needs to be altered to reduce the entry of Cd into the food chain. Exposure to high levels of Cd can be harmful to human health and this study provides a comprehensive analysis of Cd levels in a variety of food items from Bangladesh. The findings are of particular importance to consumers of Bangladeshi foods in both Bangladesh and in other countries. Data obtained will be valuable resources for food safety and regulatory bodies as our study suggests entry of Cd in foods through use of illegal chemicals in food manufacturing processes. © 2011 Institute of Food Technologists®
Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V
2007-01-01
Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.
77 FR 16544 - Pesticide Product Registration Approvals
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
...? You may be potentially affected by this action if you are an agricultural producer, food manufacturer.... No. 84059-10) for use on agricultural and greenhouse crops, including vegetables, fruit, flowers... Number: EPA-HQ-OPP- 2010-0081. a. Description of New Use: Novozymes Biologicals, Inc. submitted...
Daily water-temperature records for Utah streams, 1944-68
Whitaker, G.L.
1970-01-01
Temperature is an important and sometimes critical factor for many uses of water. Temperature affects the usefulness of the water for recreation, fish and wildlife propagation, industrial cooling, food processing, and manufacturing. Temperature also affects the ability of the water to accommodate biologic and vegetative types of life.The purpose of this report is to summarize in tabular form the water- temperature data that have been collected by the U.S. Geological Survey on a daily basis for streams in Utah. A few stream sites near the boundaries of Utah in neighboring States have been included. These sites are on streams which either flow out of or into Utah, and they may provide information of value in studies dealing with water quality in the State.
Nasal cancer in the Northamptonshire boot and shoe industry: is it declining?
Acheson, E. D.; Pippard, E. C.; Winter, P. D.
1982-01-01
This paper reports a survey of nasal cancer in Northamptonshire during the period 1950-79. An increased risk of various histological types of nasal tumour has been observed within the footwear manufacturing industry, which seems to be limited to the minority of men and women exposed to the dust of leather soles and heels. In Northamptonshire this exposure has usually occurred in the preparation, press and finishing rooms of factories making boots and shoes by the welted process. This type of leather is tanned by treatment with vegetable extracts, not chrome salts. Although the population of workers involved has diminished over the period of the study there has been no evidence of a decline in incidence of these tumours within it. PMID:7150487
Fluvial processes and vegetation - Glimpses of the past, the present, and perhaps the future
Osterkamp, W.R.; Hupp, C.R.
2010-01-01
Most research before 1960 into interactions among fluvial processes, resulting landforms, and vegetation was descriptive. Since then, however, research has become more detailed and quantitative permitting numerical modeling and applications including agricultural-erosion abatement and rehabilitation of altered bottomlands. Although progress was largely observational, the empiricism increasingly yielded to objective recognition of how vegetation interacts with and influences geomorphic process. A review of advances relating fluvial processes and vegetation during the last 50 years centers on hydrologic reconstructions from tree rings, plant indicators of flow- and flood-frequency parameters, hydrologic controls on plant species, regulation of sediment movement by vegetation, vegetative controls on mass movement, and relations between plant cover and sediment movement. Extension of present studies of vegetation as a regulator of bottomland hydrologic and geomorphic processes may become markedly more sophisticated and widespread than at present. Research emphases that are likely to continue include vegetative considerations for erosion modeling, response of riparian-zone forests to disturbance such as dams and water diversion, the effect of vegetation on channel and bottomland dynamics, and rehabilitation of stream corridors. Research topics that presently are receiving attention are the effect of woody vegetation on the roughness of stream corridors and, hence, processes of flood conveyance and flood-plain sedimentation, the development of a theoretical basis for rehabilitation projects as opposed to fully empirical approaches, the effect of invasive plant species on the dynamics of bottomland vegetation, the quantification of below-surface biomass and related soil-stability factors for use in erosion-prediction models, and the effect of impoundments on downstream narrowing of channels and accompanying encroachment of vegetation. Bottomland vegetation partially controls and is controlled by fluvial-geomorphic processes. The purposes of this paper are to identify and review investigations that have related vegetation to bottomland features and processes, to distinguish the present status of these investigations, and to anticipate future research into how hydrologic and fluvial-geomorphic processes of bottomlands interact with vegetation.
Comparison of the efficacy of gamma and UV irradiation in sanitization of fresh carrot juice
NASA Astrophysics Data System (ADS)
Jo, Cheorun; Lee, Kyung Haeng
2012-08-01
As there is no pasteurization procedure for the manufacture of fresh vegetable juice, both industry and consumers have sought a method for improving the storage stability and shelf-life of this category of products. In this study, the effects of commercially available, non-thermal pasteurization processes, such as gamma and UV irradiation, were compared for their efficacy in sanitizing fresh carrot juice (FCJ). FCJ was manufactured, packaged, and gamma irradiated with doses of 0, 1, 3, and 5 kGy. The manufactured FCJ was also passed through 4 UV light lamps at doses of 3.67, 4.69, and 6.50 kGy. The total aerobic bacterial count of the FCJ approached the legal limit (105 CFU/mL) after manufacturing. Both treatments were effective in reducing the number of total aerobic bacteria, and the reduced number was maintained during storage for 7 days. Gamma irradiation was more effective in suppressing microbial growth during storage. When the doses for UV treatment and gamma irradiation were higher, the inactivation effects were higher. The reduction of ascorbic acid content was greater upon gamma irradiation than UV treatment. No difference was found in the contents of flavonoids and polyphenols in FCJ after either treatment. After 3 days of refrigerated storage, the sensory scores of gamma- or UV-irradiated FCJ were superior to those of the control. The results indicate that both non-thermal treatments were effective in improving storage stability and extending shelf-life, but gamma irradiation was slightly better in suppressing microbial growth after treatment.
15 CFR 400.33 - Restrictions on manufacturing and processing activity.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a zone... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Restrictions on manufacturing and...
21 CFR 1005.25 - Service of process on manufacturers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Service of process on manufacturers. 1005.25....25 Service of process on manufacturers. (a) Every manufacturer of electronic products, prior to... United States as the manufacturer's agent upon whom service of all processes, notices, orders, decisions...
Quality management of manufacturing process based on manufacturing execution system
NASA Astrophysics Data System (ADS)
Zhang, Jian; Jiang, Yang; Jiang, Weizhuo
2017-04-01
Quality control elements in manufacturing process are elaborated. And the approach of quality management of manufacturing process based on manufacturing execution system (MES) is discussed. The functions of MES for a microcircuit production line are introduced conclusively.
7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and... 7 Agriculture 5 2014-01-01 2014-01-01 false Importation of dried, cured, or processed fruits...
7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and... 7 Agriculture 5 2013-01-01 2013-01-01 false Importation of dried, cured, or processed fruits...
7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and... 7 Agriculture 5 2012-01-01 2012-01-01 false Importation of dried, cured, or processed fruits...
[Dietary fibers and new food products].
Dudkin, M S; Shchelkunov, L F
1998-01-01
On purpose to preventive measures, and in some cases treatment of every possible diseases, plenty of the food additives and biologically active substance is used. A problem of a filling a deficient of rough vegetable food in the human ration has got rapid development lately. In this connection, in many countries are led studies of structure, composition, properties food fibres, technologies of their extraction from source vegetable raw material, use them as one of the components when making products of therapeutic and preventive nutrition. Nowadays importance of ensuring a sufficient contents food fibres in the human ration without doubts. To reach this possible two ways: either by inclusion to the diet of vegetables, fruits, berries, special sorts of bread, or manufacturing of concentrates of homogeneous and heterogeneous food fibres and addition them in formulae of various products.
NASA Astrophysics Data System (ADS)
Obriejetan, M.; Florineth, F.; Rauch, H. P.
2012-04-01
As a consequence of land use change resulting in an increased number of slope protection constructions and with respect to effects associated with climate change like extremes in temperatures and temperature variations or increased frequency of heavy precipitation, adaptation strategies for sustainable erosion protection systems are needed which meet ecological compatibility and economical requirements. Therefore a wide range of different technical solutions respectively geotextiles and geotextile-related products (blankets, nettings, grids etc.) are available on the market differing considerably in function, material, durability and pricing. Manufacturers usually provide product-specific information pertaining to application field, functional range or (technical) installation features whereas vegetational aspects are frequently neglected while vegetation can contribute substantially to increased near-surface erosion protection respectively slope stability. Though, the success of sustainable erosion control is directly dependent on several vegetational aspects. Adequate development of a functional vegetation layer in combination with geotextiles is closely associated to application aspects such as seeding technique, sowing date and intensity, seed-soil contact or maintenance measures as well as to qualitative aspects like seed quality, germination rates, area of origin, production method or certification. As a general guideline, erosion control within an initial phase is directly related to restoration techniques whereas vegetation specifics with regard to species richness or species composition play a key role in medium to long-term development and slope protection. In this context one of the fundamental objectives of our study is the identification and subsequently the determination of the main interaction processes between technical and biological components of combined slope protection systems. The influence of different geotextile characteristics on specific vegetation properties are studied by setting up comparative test plots at a field study site located at a headrace channel of a hydroelectric power plant. Different vegetational parameters such as basal coverage, species richness, species composition, abundance/dominance values by using a refined Braun-Blanquet cover estimation scale were collected as well as local environmental properties. Results during the first vegetation period show distinct effects of geotextiles especially on overall vegetation coverage and grasses-herbs-ratio. Geotextile supported plots show 20% higher overall coverage but lower amount of herbs after three months of vegetation growth compared to control plots without installation of auxiliary materials. Furthermore coir blankets reveal higher penetration resistance for seed leaves of herbal plants compared to coir nettings. Hence technical erosion protection products, biological components and it's combination have to be closely coordinated in order to achieve specified revegetation objectives and meet long-term functionality.
An Overview of Cloud Implementation in the Manufacturing Process Life Cycle
NASA Astrophysics Data System (ADS)
Kassim, Noordiana; Yusof, Yusri; Hakim Mohamad, Mahmod Abd; Omar, Abdul Halim; Roslan, Rosfuzah; Aryanie Bahrudin, Ida; Ali, Mohd Hatta Mohamed
2017-08-01
The advancement of information and communication technology (ICT) has changed the structure and functions of various sectors and it has also started to play a significant role in modern manufacturing in terms of computerized machining and cloud manufacturing. It is important for industries to keep up with the current trend of ICT for them to be able survive and be competitive. Cloud manufacturing is an approach that wanted to realize a real-world manufacturing processes that will apply the basic concept from the field of Cloud computing to the manufacturing domain called Cloud-based manufacturing (CBM) or cloud manufacturing (CM). Cloud manufacturing has been recognized as a new paradigm for manufacturing businesses. In cloud manufacturing, manufacturing companies need to support flexible and scalable business processes in the shop floor as well as the software itself. This paper provides an insight or overview on the implementation of cloud manufacturing in the modern manufacturing processes and at the same times analyses the requirements needed regarding process enactment for Cloud manufacturing and at the same time proposing a STEP-NC concept that can function as a tool to support the cloud manufacturing concept.
Hazardous Waste Cleanup: Cherokee Columbus Real Estate, LLC in Bainbridge, New York
Cherokee Columbus Real Estate is located on the 210-acre site, 10 acres of which were occupied by manufacturing facilities, and was operated by Borden, Inc., from the 1940s until 1981. The site is bounded to the north by an undeveloped and vegetated area,
Code of Federal Regulations, 2010 CFR
2010-07-01
... manufacture and processing in the special production area. All manufacturing, processing, and use operations... shape or design during manufacture, (ii) which has end use function(s) dependent in whole or in part... production area, the ambient air concentration of the new chemical substance during manufacture, processing...
Bongoni, R; Verkerk, R; Dekker, M; Steenbekkers, L P A
2015-06-01
Preferences for sensory properties (e.g. taste and texture) are assumed to control cooking behaviour with respect to vegetables. Conditions such as the cooking method, amount of water used and the time-temperature profile determine the nutritional quality (e.g. vitamins and phytochemicals) of cooked vegetables. Information on domestic processing and any underlying motives can be used to inform consumers about cooking vegetables that are equally liked and are nutrient-rich. Two online self-reporting questionnaires were used to identify domestic processing conditions of broccoli and carrots by Dutch households. Questions on various aspects of domestic processing and consumer motives were included. Descriptive data analysis and hierarchical cluster analysis were performed for both vegetables, separately, to group consumers with similar motives and behaviour towards vegetables. Approximately 70% of consumers boiled vegetables, 8-9% steamed vegetables, 10-15% stir fried raw vegetables and 8-10% stir fried boiled vegetables. Mainly texture was used as a way to decide the 'doneness' of the vegetables. For both vegetables, three clusters of consumers were identified: texture-orientated, health-orientated, or taste-orientated. The texture-orientated consumers are identified as the most prevalent (56-59%) group in the present study. Statistically significant associations are found between domestic processing conditions and clusters, whereas no such association are found between demographic details and clusters. A wide variation in domestic processing of broccoli and carrots is found in the present study. Mainly sensory properties (i.e. texture and taste) determined the domestic processing conditions. The findings of the present study can be used to optimise cooking to yield vegetables that meet consumer's specific sensory preference and are higher in nutrients, and as well as to communicate with target consumer groups. © 2014 The British Dietetic Association Ltd.
NASA Astrophysics Data System (ADS)
Nejad, Hossein Tehrani Nik; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka
Process planning and scheduling are important manufacturing planning activities which deal with resource utilization and time span of manufacturing operations. The process plans and the schedules generated in the planning phase shall be modified in the execution phase due to the disturbances in the manufacturing systems. This paper deals with a multi-agent architecture of an integrated and dynamic system for process planning and scheduling for multi jobs. A negotiation protocol is discussed, in this paper, to generate the process plans and the schedules of the manufacturing resources and the individual jobs, dynamically and incrementally, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans and schedules are searched and generated to cope with both the dynamic status and the disturbances of the manufacturing systems. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans and schedules in the dynamic manufacturing environment. A simulation software has been developed to carry out case studies, aimed at verifying the performance of the proposed multi-agent architecture.
NASA Astrophysics Data System (ADS)
Kumbhar, N. N.; Mulay, A. V.
2016-08-01
The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.
NASA Astrophysics Data System (ADS)
Bras, R. L.; Istanbulluoglu, E.
2004-12-01
Topography acts as a template for numerous landscape processes that includes hydrologic, ecologic and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on known geomorphic relations, thresholds for channel initiation and landform evolution, using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants, and is killed by geomorphic disturbances (runoff erosion and landsliding), and wildfires. Analytical results suggest that, in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion dominated landscape, under none or loose vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the CHILD model. Numerical experiments reveal the importance of vegetation disturbances on the landscape structure. Simulated landscapes resemble real-world catchments in the OCR when vegetation disturbances are considered.
Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke
2016-05-01
An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.
Advanced optical manufacturing digital integrated system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong
2012-10-01
It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.
NASA Astrophysics Data System (ADS)
Luqman, M.; Rosli, M. U.; Khor, C. Y.; Zambree, Shayfull; Jahidi, H.
2018-03-01
Crank arm is one of the important parts in a bicycle that is an expensive product due to the high cost of material and production process. This research is aimed to investigate the potential type of manufacturing process to fabricate composite bicycle crank arm and to describe an approach based on analytical hierarchy process (AHP) that assists decision makers or manufacturing engineers in determining the most suitable process to be employed in manufacturing of composite bicycle crank arm at the early stage of the product development process to reduce the production cost. There are four types of processes were considered, namely resin transfer molding (RTM), compression molding (CM), vacuum bag molding and filament winding (FW). The analysis ranks these four types of process for its suitability in the manufacturing of bicycle crank arm based on five main selection factors and 10 sub factors. Determining the right manufacturing process was performed based on AHP process steps. Consistency test was performed to make sure the judgements are consistent during the comparison. The results indicated that the compression molding was the most appropriate manufacturing process because it has the highest value (33.6%) among the other manufacturing processes.
Consumption of vegetables and their relation with ultra-processed foods in Brazil
Canella, Daniela Silva; Louzada, Maria Laura da Costa; Claro, Rafael Moreira; Costa, Janaina Calu; Bandoni, Daniel Henrique; Levy, Renata Bertazzi; Martins, Ana Paula Bortoletto
2018-01-01
ABSTRACT OBJECTIVE To characterize the household purchase and the individual consumption of vegetables in Brazil and to analyze their relation with the consumption of ultra-processed foods. METHODS We have used data on the purchase of food for household consumption and individual consumption from the 2008–2009 Brazilian Household Budget Survey. The Brazilian Household Budget Survey studied the purchase of food of 55,970 households and the food consumption of 34,003 individuals aged 10 years and over. The foods of interest in this study were vegetables (excluding roots and tubers) and ultra-processed foods. We have described the amount of vegetables (grams) purchased and consumed by all Brazilians and according to the quintiles of caloric intake of ultra-processed food. To this end, we have calculated the crude and predicted values obtained by regression models adjusted for sociodemographic variables. We have analyzed the most commonly purchased types of vegetables (% in the total amount) and, in relation to individual food consumption, the variety of vegetables consumed (absolute number), the participation (%) of the types of culinary preparations based on vegetables, and the time of consumption. RESULTS The adjusted mean household purchase of vegetables was 42.9 g/per capita/day. The adjusted mean individual consumption was 46.1 g. There was an inverse relation between household purchase and individual consumption of vegetables and ultra-processed foods. Ten types of vegetables account for more than 80% of the total amount usually purchased. The variety consumed was, on average, 1.08 type/per capita/day. Approximately 60% of the vegetables were eaten raw, and the amount consumed at lunch was twice that consumed at dinner; individuals with higher consumption of ultra-processed foods tended to consume even less vegetables at dinner. CONCLUSIONS The consumption of vegetables in Brazil is insufficient, and this is worse among individuals with higher consumption of ultra-processed foods. The most frequent habit was to consume raw vegetables at lunch and with limited variety. PMID:29791530
NASA Astrophysics Data System (ADS)
Alamsjah, Mochammad Amin; Abdillah, Annur Ahadi; Mustikawati, Hutami; Atari, Suci Dwi Purnawa
2017-09-01
Biodiesel has several advantages over solar. Compared to solar, biodiesel has more eco-friendly characteristic and produces lower greenhouse gas emissions. Biodiesel that is made from animal fats can be produced from fish oil, while other alternative sources from vegetable oils are seaweed Kappaphycus alvarezii and Gracilaria sp. Waste tuna oil (Thunnus sp.) in Indonesia is commonly a side product of tuna canning industries known as tuna precook oil; on the other hand, seaweed Gracilaria sp. and Kappaphycus alvarezii are commonly found in Indonesia's seas. Seaweed waste that was used in the present study was 100 kg and in wet condition, and the waste oil was 10 liter. The seaweed was extracted with soxhletation method that used n-hexane as the solvent. To produce biodiesel, trans esterification was performed on the seaweed oil that was obtained from the soxhletation process and waste tuna oil. Biodiesel manufactured from seaweed K. alvarezii obtained the best score in flash point, freezing point, and viscosity test. However, according to level of manufacturing efficiency, biodiesel from waste tuna oil is more efficient and relatively easier compared to biodiesel from waste K. alvarezii and Gracilaria sp.
7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. 319.56-11 Section 319.56-11 Agriculture Regulations of the Department of..., vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and...
7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. 319.56-11 Section 319.56-11 Agriculture Regulations of the Department of..., vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and...
NASA Technical Reports Server (NTRS)
Crowell, H. A.
1979-01-01
The product manufacturing interactions with the design process and the IPAD requirements to support the interactions are described. The data requirements supplied to manufacturing by design are identified and quantified. Trends in computer-aided manufacturing are discussed and the manufacturing process of the 1980's is anticipated.
Lucan, Sean C; Karpyn, Allison; Sherman, Sandy
2010-05-01
Corner stores are part of the urban food environment that may contribute to obesity and diet-related diseases, particularly for low-income and minority children. The snack foods available in corner stores may be a particularly important aspect of an urban child's food environment. Unfortunately, there is little data on exactly what snack foods corner stores stock, or where these foods come from. We evaluated snack foods in 17 Philadelphia corner stores, located in three ethnically distinct, low-income school neighborhoods. We recorded the manufacturer, calories, fat, sugar, and sodium for all snack items, excluding candy and prepared foods. We then compared the nutritive content of assessed snack items to established dietary recommendations and a school nutrition standard. In total, stores stocked 452 kinds of snacks, with only 15% of items common between all three neighborhoods. Total and unique snacks and snack food manufacturers varied by neighborhood, but distributions in snack type varied negligibly: overall, there were no fruit snacks, no vegetable snacks, and only 3.6% of all snacks (by liberal definition) were whole grain. The remainder (96.4% of snacks) was highly processed foods. Five of 65 manufacturers supplied 73.4% of all kinds of snack foods. Depending on serving size definition, 80.0-91.5% of snack foods were "unhealthy" (by the school nutrition standard), including seven of 11 wholegrain products. A single snack item could supply 6-14% of a day's recommended calories, fat, sugar, and sodium on average (or 56-169% at the extreme) for a "typical" child. We conclude that corner store snack food inventories are almost entirely unhealthful, and we discuss possible implications and next steps for research and intervention.
Karpyn, Allison; Sherman, Sandy
2010-01-01
Corner stores are part of the urban food environment that may contribute to obesity and diet-related diseases, particularly for low-income and minority children. The snack foods available in corner stores may be a particularly important aspect of an urban child’s food environment. Unfortunately, there is little data on exactly what snack foods corner stores stock, or where these foods come from. We evaluated snack foods in 17 Philadelphia corner stores, located in three ethnically distinct, low-income school neighborhoods. We recorded the manufacturer, calories, fat, sugar, and sodium for all snack items, excluding candy and prepared foods. We then compared the nutritive content of assessed snack items to established dietary recommendations and a school nutrition standard. In total, stores stocked 452 kinds of snacks, with only 15% of items common between all three neighborhoods. Total and unique snacks and snack food manufacturers varied by neighborhood, but distributions in snack type varied negligibly: overall, there were no fruit snacks, no vegetable snacks, and only 3.6% of all snacks (by liberal definition) were whole grain. The remainder (96.4% of snacks) was highly processed foods. Five of 65 manufacturers supplied 73.4% of all kinds of snack foods. Depending on serving size definition, 80.0-91.5% of snack foods were “unhealthy” (by the school nutrition standard), including seven of 11 wholegrain products. A single snack item could supply 6-14% of a day’s recommended calories, fat, sugar, and sodium on average (or 56-169% at the extreme) for a “typical” child. We conclude that corner store snack food inventories are almost entirely unhealthful, and we discuss possible implications and next steps for research and intervention. PMID:20405225
Manufacturing vegetable oil based biodiesel: An engineering management perspective
USDA-ARS?s Scientific Manuscript database
According to the USDA, 6.45 million tons of cottonseed was produced in 2007. Each ton will yield approximately 44 to 46 gallons unrefined oil. Cottonseed oil bio-diesel could have the potential to create a more competitive oil market for oil mills. The proposed cost model is based on an existing cot...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... Practices (GAPs) and Good Manufacturing Practices (GMPs), and United States Department of Agriculture (USDA) Good Handling Practices (GHPs). The program would be voluntary, and cover both United States and... referred to as the ``Act'', and the applicable rules of practice and procedure governing the formulation of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...
Code of Federal Regulations, 2011 CFR
2011-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...
Code of Federal Regulations, 2012 CFR
2012-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...
Code of Federal Regulations, 2014 CFR
2014-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troitskii, V.L.; Tumanyan, M.A. et al.
1959-10-31
Experiments are reported which give encouraging results for applications of ionizing radiations in the sterilization of vaccines, antitoxins, and serums for use in medical prophylaxis and treatment. A cobalt-60 gamma source was used. A dose of 1.5 Mr had a sterilizing effect, killing not only vegetative bacteria but sporeformers as well. Irradiation with sterilizing doses did not reduce the nutrient properties of meat media used for growth of bacteria of the intestinal group. The formation of diphtheria toxin proceeded on irradiated media the same as on nonirradiated. Irradiation did not reduce the antigenic or immunological properties of typhoid vaccines ormore » diphtheria and tetanus antitoxins. Serum products deteriorated after exposure to sterilizing doses but showed good tolerances to doses which killed vegetative forms of bacteria. It was concluded that ionizing radiation will prove practical for the preparation of many pharmaceutical products, the cold sterilization of nutrient broth, and the cold sterilization of the wastes from the manufacture of bacterial preparations. (C.H.)« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1... harmless extraneous vegetable material, stems, and portions thereof, blemishes, wrinkles, mutilated olives... these two axes exceeds 45 degrees. (5) Harmless extraneous vegetable material. Harmless extraneous...
Geomorphic predictors of riparian vegetation in small mountain watersheds
Blake M. Engelhardt; Jeanne C. Chambers; Peter J. Weisberg
2015-01-01
Hydrogeomorphic processes operating at watershed, process zone and site scales influence the distribution of riparian vegetation. However, most studies examining the relationships between hydrogeomorphic processes and riparian vegetation are conducted at site scales. We quantified the relative importance of watershed, process zone and site geomorphic characteristics...
[Evaluation of soy bean proteins obtained by pressure].
Bau, H M; Poullain, B; Debry, G
1978-01-01
Besides the processes of extrusion and protein fiber spinning, analogous utilization research with a range of protein sources is continuing at an accelerated pace. However, the pressure forming process, an attractive process for producing protein foods, has not received the attention as it merits. The fabrication techniques contribute the advantages of nutritional value, economic and simplicity in manufacture; it can be extend to utilize in the development of useful textured vegetable protein foods. Here, we present a pressure forming process for producing protein foods with soybean grains. In this paper, we evaluated the composition, and the yield of the products obtained by this process; the trypsin inhibitor and enzymatic proteolyse of the products were also studied. The product obtained contents soluble and insoluble proteins of soybean, 45 p. 100 of protein (N x 6,25), 20-25 p. 100 of carbohydrates of which the fibers are included; moreover it contents 6-7 p. 100 of ash and 20-22 p. 100 of fat. It does not content any starch, the oligosaccharides and antinutritional factors were almost eliminated. This product presents in acceptable textural form resembling traditional animal protein foodstuffs; its fonctional and nutritional properties can meet different utilizations in foodstuffs such as dietetic products and protein complements.
The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams
Michael G. Dosskey; Philippe Vidon; Noel P. Gurwick; Craig J. Allan; Tim P. Duval; Richard Lowrance
2010-01-01
We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality...
ERIC Educational Resources Information Center
Obi, Samuel C.
2004-01-01
Manufacturing professionals within universities tend to view manufacturing systems from a global perspective. This perspective tends to assume that manufacturing processes are employed equally in every manufacturing enterprise, irrespective of the geography and the needs of the people in those diverse regions. But in reality local and societal…
Exploitation of vegetables and fruits through lactic acid fermentation.
Di Cagno, Raffaella; Coda, Rossana; De Angelis, Maria; Gobbetti, Marco
2013-02-01
Lactic acid fermentation represents the easiest and the most suitable way for increasing the daily consumption of fresh-like vegetables and fruits. Literature data are accumulating, and this review aims at describing the main features of the lactic acid bacteria to be used for fermentation. Lactic acid bacteria are a small part of the autochthonous microbiota of vegetables and fruits. The diversity of the microbiota markedly depends on the intrinsic and extrinsic parameters of the plant matrix. Notwithstanding the reliable value of the spontaneous fermentation to stabilize and preserve raw vegetables and fruits, a number of factors are in favour of using selected starters. Two main options may be pursued for the controlled lactic acid fermentation of vegetables and fruits: the use of commercial/allochthonous and the use of autochthonous starters. Several evidences were described in favour of the use of selected autochthonous starters, which are tailored for the specific plant matrix. Pro-technological, sensory and nutritional criteria for selecting starters were reported as well as several functional properties, which were recently ascribed to autochthonous lactic acid bacteria. The main features of the protocols used for the manufacture of traditional, emerging and innovative fermented vegetables and fruits were reviewed. Tailored lactic acid bacteria starters completely exploit the potential of vegetables and fruits, which enhances the hygiene, sensory, nutritional and shelf life properties. Copyright © 2012 Elsevier Ltd. All rights reserved.
21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be dispensed...
The presence of Enterococcus, coliforms and E. coli in a commercial yeast manufacturing process.
O'Brien, S S; Lindsay, D; von Holy, A
2004-07-01
This study evaluated a typical commercial yeast manufacturing process for bacterial contamination. Product line samples of a commercial yeast manufacturing process and the corresponding seed yeast manufacturing process were obtained upstream from the final compressed and dry yeast products. All samples were analysed before (non-PI) and after preliminary incubation (PI) at 37 degrees C for 24 h. The PI procedure was incorporated for amplification of bacterial counts below the lower detection limit. Enterococcus, coliform and Escherichia coli counts were quantified by standard pour-plate techniques using selective media. Presence at all stages and progressive increases in counts of Enterococcus, coliforms and E. coli during processing in the commercial manufacturing operation suggested that the primary source of contamination of both compressed and dry yeast with these bacteria was the seed yeast manufacturing process and that contamination was amplified throughout the commercial yeast manufacturing process. This was confirmed by surveys of the seed yeast manufacturing process which indicated that contamination of the seed yeast with Enterococcus, coliforms and E. coli occurred during scale up of seed yeast biomass destined as inoculum for the commercial fermentation.
NASA Astrophysics Data System (ADS)
Istanbulluoglu, Erkan; Bras, Rafael L.
2005-06-01
Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion-dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases, resulting in hollow erosion dominated by landsliding. Interestingly, our simulations underscore the importance of vegetation disturbances by geomorphic events and wildfires on the landscape structure. Simulated landscapes resemble real-world catchments in the OCR when such disturbances are considered.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
..., Glass Manufacturing and Secondary Nonferrous Metals Processing Area Sources (Renewal) AGENCY... for Clay Ceramics Manufacturing, Glass Manufacturing and Secondary Nonferrous Metals Processing Area..., glass manufacturing, and secondary nonferrous metals processing area sources. Estimated Number of...
Decontamination of minimally invasive surgical endoscopes and accessories.
Ayliffe, G
2000-08-01
(1) Infections following invasive endoscopy are rare and are usually of endogenous origin. Nevertheless, infections do occur due to inadequate cleaning and disinfection and the use of contaminated rinse water and processing equipment. (2) Rigid and flexible operative endoscopes and accessories should be thoroughly cleaned and preferably sterilized using properly validated processes. (3) Heat tolerant operative endoscopes and accessories should be sterilized using a vacuum assisted steam sterilizer. Use autoclavable instrument trays or containers to protect equipment during transit and processing. Small bench top sterilizers without vacuum assisted air removal are unsuitable for packaged and lumened devices. (4) Heat sensitive rigid and flexible endoscopes and accessories should preferably be sterilized using ethylene oxide, low temperature steam and formaldehyde (rigid only) or gas plasma (if appropriate). (5) If there are insufficient instruments or time to sterilize invasive endoscopes, or if no suitable method is available locally, they may be disinfected by immersion in 2% glutaraldehyde or a suitable alternative. An immersion time of at least 10 min should be adopted for glutaraldehyde. This is sufficient to inactivate most vegetative bacteria and viruses including HIV and hepatitis B virus (HBV). Longer contact times of 20 min or more may be necessary if a mycobacterial infection is known or suspected. At least 3 h immersion in glutaraldehyde is required to kill spores. (6) Glutaraldehyde is irritant and sensitizing to the skin, eyes and respiratory tract. Measures must be taken to ensure glutaraldehyde is used in a safe manner, i.e., total containment and/or extraction of harmful vapour and the provision of suitable personal protective equipment, i.e., gloves, apron and eye protection if splashing could occur. Health surveillance of staff is recommended and should include a pre-employment enquiry regarding asthma, skin and mucosal sensitivity problems and lung function testing by spirometry. (7) Possible alternative disinfectants to glutaraldehyde include peracetic acid (0.2-0.35%), chlorine dioxide (700-1100 ppm) and superoxidized water. These are very effective, killing vegetative bacteria, including mycobacteria, and viruses in 5 min and bacterial spores in 10 min. An endorsement of compatibility with endoscopes, accessories and processing equipment is required from both the solution/device manufacturer and the endoscope manufacturer. Other important considerations are stability, cost and safety from the user and environmental standpoints. (8) Cleaning and disinfection or sterilization should be undertaken by trained staff in a dedicated area, e.g., SSD or TSSU. A suitable training programme is described. (9) If endoscopes are processed by immersion in disinfectants, harmful residues must be removed by thorough rinsing. Sterile or bacteria free water is essential for rinsing all invasive endoscopes and accessories to prevent recontamination. (10) If an automated washer disinfector is used it must be effective, non-damaging, reliable, easy to use and its performance regularly monitored. (11) If used, washer disinfectors and other processing equipment should be disinfected on a regular basis, i.e., between patients or at the start of each session. This will prevent biofilm formation and recontamination of instruments during rinsing. Disinfection should include the water treatment system, if present. (12) To comply with the Medical Devices Directive, manufacturers are obliged to provide full details on how to decontaminate the reusable devices they supply. This should include details of compatibility with heat, pressure, moisture, processing chemicals and ultrasonics. (13) The Infection Control Team should always be involved in the formulation and implementation of decontamination policies. Wherever possible, the national good practice guidelines produced by the Medical Devices Agency and/or professional societies shoul
A Process Management System for Networked Manufacturing
NASA Astrophysics Data System (ADS)
Liu, Tingting; Wang, Huifen; Liu, Linyan
With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.
Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst.
Jaya, N; Selvan, B Karpanai; Vennison, S John
2015-11-01
Biodiesel is a clean-burning renewable substitute fuel for petroleum. Biodiesel could be effectively produced by transesterification reaction of triglycerides of vegetable oils with short-chain alcohols in the presence of homogeneous or heterogeneous catalysts. Conventionally, biodiesel manufacturing processes employ strong acids or bases as catalysts. But, separation of the catalyst and the by-product glycerol from the product ester is too expensive to justify the product use as an automobile fuel. Hence heterogeneous catalysts are preferred. In this study, transesterification of pongamia oil with ethanol was performed using a solid ion-exchange resin catalyst. It is a macro porous strongly basic anion exchange resin. The process parameters affecting the ethyl ester yield were investigated. The reaction conditions were optimized for the maximum yield of fatty acid ethyl ester (FAEE) of pongamia oil. The properties of FAEE were compared with accepted standards of biodiesel. Engine performance was also studied with pongamia oil diesel blend and engine emission characteristics were observed. Copyright © 2015 Elsevier Inc. All rights reserved.
Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L
2015-03-01
We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are: Form precompetitive partnerships, including industry (pharmaceutical companies and equipment manufacturers), government, and universities. These precompetitive partnerships would develop case studies of continuous manufacturing and ideally perform joint-technology development, including development of small-scale equipment and processes. Develop ways to invest internally in continuous manufacturing. How best to do this will depend on the specifics of a given organization, in particular the current development projects. Upper managers will need to energize their process developers to incorporate continuous manufacturing in at least part of their processes to gain experience and demonstrate directly the benefits. Training of continuous manufacturing technologies, organizational approaches, and regulatory approaches is a key area that industrial leaders should pursue together. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Unique Microbial Diversity and Metabolic Pathway Features of Fermented Vegetables From Hainan, China
Peng, Qiannan; Jiang, Shuaiming; Chen, Jieling; Ma, Chenchen; Huo, Dongxue; Shao, Yuyu; Zhang, Jiachao
2018-01-01
Fermented vegetables are typically traditional foods made of fresh vegetables and their juices, which are fermented by beneficial microorganisms. Herein, we applied high-throughput sequencing and culture-dependent technology to describe the diversities of microbiota and identify core microbiota in fermented vegetables from different areas of Hainan Province, and abundant metabolic pathways in the fermented vegetables were simultaneously predicted. At the genus level, Lactobacillus bacteria were the most abundant. Lactobacillus plantarum was the most abundant species, followed by Lactobacillus fermentum, Lactobacillus pentosaceus, and Weissella cibaria. These species were present in each sample with average absolute content values greater than 1% and were thus defined as core microbiota. Analysis results based on the alpha and beta diversities of the microbial communities showed that the microbial profiles of the fermented vegetables differed significantly based on the regions and raw materials used, and the species of the vegetables had a greater effect on the microbial community structure than the region from where they were harvested. Regarding microbial functional metabolism, we observed an enrichment of metabolic pathways, including membrane transport, replication and repair and translation, which implied that the microbial metabolism in the fermented vegetables tended to be vigorous. In addition, Lactobacillus plantarum and Lactobacillus fermentum were calculated to be major metabolic pathway contributors. Finally, we constructed a network to better explain correlations among the core microbiota and metabolic pathways. This study facilitates an understanding of the differences in microbial profiles and fermentation pathways involved in the production of fermented vegetables, establishes a basis for optimally selecting microorganisms to manufacture high-quality fermented vegetable products, and lays the foundation for better utilizing tropical microbial resources. PMID:29559966
Harnessing the Potential of Additive Manufacturing
2016-12-01
manufacturing age, which is dominated by standards for materials, processes and process control. Conventional manufacturing is based upon a design that is...documented either in a drawing or a computer-aided design (CAD) file. The manufacturing team then develops a docu- mented public or private process for...31 Defense AT&L: November-December 2016 Harnessing the Potential of Additive Manufacturing Bill Decker Decker is director of Technology
Europe Report, Science and Technology
1986-11-19
engineered organisms 9. Production , analysis & selection of hybridones 10. Animal cell cultures & scale production of cullular products 11. Vegetable... cell cultures & metabolite production 12. Genetic engineering of plants & their symbionts 13. Polynucleotide synthesis 14. Protein chemistry 15...problem of circuit production , a problem caused by the high cost of investment required for manufacturing lines of GaAs components. Thus the system
ERIC Educational Resources Information Center
Moore, Robin C.
1996-01-01
Presents a list of imaginative design options for optimal outdoor learning as well as intimate contact with nature. Focuses on entrances, pathways, signage and displays, barriers and enclosures, manufactured equipment and play structures, multipurpose game settings, groundcovers and safety surfaces, landforms and topography, trees and vegetation,…
76 FR 40052 - Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... Current Good Manufacturing 0910-AG10 Practice in Manufacturing, Processing, Packing or Holding Animal Food... in Manufacturing, Processing, Packing or Holding Animal Food Legal Authority: 21 U.S.C. 342; 21 U.S.C... constitute on farm manufacturing or processing of food that is not grown, raised, or consumed on a farm or...
Manufacturing Process Simulation of Large-Scale Cryotanks
NASA Technical Reports Server (NTRS)
Babai, Majid; Phillips, Steven; Griffin, Brian; Munafo, Paul M. (Technical Monitor)
2002-01-01
NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA's Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aid in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI.
U.S. Fruit and Vegetable Processing Industries.
ERIC Educational Resources Information Center
Buckley, Katharine C.; And Others
Because of shifts in consumer tastes and preferences, demographics, technology, government regulation, and the expanding interdependence of world markets, the United States fruit and vegetable processing industries must operate in a constantly changing and uncertain economic environment. U.S. per capita use of processed fruits and vegetables is…
NASA Astrophysics Data System (ADS)
Beaman, Joseph
2015-03-01
Starting in the late 1980's, several new technologies were created that have the potential to revolutionize manufacturing. These technologies are, for the most part, additive processes that build up parts layer by layer. In addition, the processes that are being touted for hard-core manufacturing are primarily laser or e-beam based processes. This presentation gives a brief history of Additive Manufacturing and gives an assessment for these technologies. These technologies initially grew out of a commercial need for rapid prototyping. This market has a different requirement for process and quality control than traditional manufacturing. The relatively poor process control of the existing commercial Additive Manufacturing equipment is a vestige of this history. This presentation discusses this history and improvements in quality over time. The emphasis will be on Additive Manufacturing processes that are being considered for direct manufacturing, which is a different market than the 3D Printing ``Makerbot'' market. Topics discussed include past and present machine sensors, materials, and operational methods that were used in the past and those that are used today to create manufactured parts. Finally, a discussion of new methods and future directions of AM is presented.
Code of Federal Regulations, 2010 CFR
2010-07-01
... streams in open systems within a chemical manufacturing process unit. 63.149 Section 63.149 Protection of... open systems within a chemical manufacturing process unit. (a) The owner or operator shall comply with... Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage...
19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings
Code of Federal Regulations, 2014 CFR
2014-04-01
... drawback; and 9. Description of the manufacturing or production process, unless specifically described in...) and 55207(1) (see § 191.9 of this part). D. Process Of Manufacture Or Production The imported... it is first separated in the manufacturing process. 2. Appearing-in method The appearing in basis may...
19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings
Code of Federal Regulations, 2013 CFR
2013-04-01
... drawback; and 9. Description of the manufacturing or production process, unless specifically described in...) and 55207(1) (see § 191.9 of this part). D. Process Of Manufacture Or Production The imported... it is first separated in the manufacturing process. 2. Appearing-in method The appearing in basis may...
19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings
Code of Federal Regulations, 2011 CFR
2011-04-01
... drawback; and 9. Description of the manufacturing or production process, unless specifically described in...) and 55207(1) (see § 191.9 of this part). D. Process Of Manufacture Or Production The imported... it is first separated in the manufacturing process. 2. Appearing-in method The appearing in basis may...
19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings
Code of Federal Regulations, 2012 CFR
2012-04-01
... drawback; and 9. Description of the manufacturing or production process, unless specifically described in...) and 55207(1) (see § 191.9 of this part). D. Process Of Manufacture Or Production The imported... it is first separated in the manufacturing process. 2. Appearing-in method The appearing in basis may...
Monitoring the sensory quality of canned white asparagus through cluster analysis.
Arana, Inés; Ibañez, Francisco C; Torre, Paloma
2016-05-01
White asparagus is one of the 30 vegetables most consumed in the world. This paper unifies the stages of their sensory quality control. The aims of this work were to describe the sensory properties of canned white asparagus and their quality control and to evaluate the applicability of agglomerative hierarchical clustering (AHC) for classifying and monitoring the sensory quality of manufacturers. Sixteen sensory descriptors and their evaluation technique were defined. The sensory profile of canned white asparagus was high flavor characteristic, little acidity and bitterness, medium firmness and very light fibrosity, among other characteristics. The dendrogram established groups of manufacturers that had similar scores in the same set of descriptors, and each cluster grouped the manufacturers that had a similar quality profile. The sensory profile of canned white asparagus was clearly defined through the intensity evaluation of 16 descriptors, and the sensory quality report provided to the manufacturers is in detail and of easy interpretation. AHC grouped the manufacturers according to the highest quality scores in certain descriptors and is a useful tool because it is very visual. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Boosting Manufacturing through Modular Chemical Process Intensification
None
2018-06-12
Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.
Boosting Manufacturing through Modular Chemical Process Intensification
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-12-09
Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.
Continuous Manufacturing in Pharmaceutical Process Development and Manufacturing.
Burcham, Christopher L; Florence, Alastair J; Johnson, Martin D
2018-06-07
The pharmaceutical industry has found new applications for the use of continuous processing for the manufacture of new therapies currently in development. The transformation has been encouraged by regulatory bodies as well as driven by cost reduction, decreased development cycles, access to new chemistries not practical in batch, improved safety, flexible manufacturing platforms, and improved product quality assurance. The transformation from batch to continuous manufacturing processing is the focus of this review. The review is limited to small, chemically synthesized organic molecules and encompasses the manufacture of both active pharmaceutical ingredients (APIs) and the subsequent drug product. Continuous drug product is currently used in approved processes. A few examples of production of APIs under current good manufacturing practice conditions using continuous processing steps have been published in the past five years, but they are lagging behind continuous drug product with respect to regulatory filings.
Potential of Continuous Manufacturing for Liposomal Drug Products.
Worsham, Robert D; Thomas, Vaughan; Farid, Suzanne S
2018-05-21
Over the last several years, continuous manufacturing of pharmaceuticals has evolved from bulk APIs and solid oral dosages into the more complex realm of biologics. The development of continuous downstream processing techniques has allowed biologics manufacturing to realize the benefits (e.g. improved economics, more consistent quality) that come with continuous processing. If relevant processing techniques and principles are selected, the opportunity arises to develop continuous manufacturing designs for additional pharmaceutical products including liposomal drug formulations. Liposome manufacturing has some inherent aspects that make it favorable for a continuous process. Other aspects such as formulation refinement, materials of construction, and aseptic processing need development, but present an achievable challenge. This paper reviews the current state of continuous manufacturing technology applicable to liposomal drug product manufacturing and an assessment of the challenges and potential of this application. This article is protected by copyright. All rights reserved.
21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.
Code of Federal Regulations, 2010 CFR
2010-04-01
....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”. ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices for processing, repacking, or...
Veda, Supriya; Platel, Kalpana; Srinivasan, Krishnapura
2008-09-24
Four common food acidulants--amchur, lime, tamarind, and kokum--and two antioxidant spices--turmeric and onion--were examined for their influence on the bioaccessibility of beta-carotene from two fleshy and two leafy vegetables. Amchur and lime generally enhanced the bioaccessibility of beta-carotene from these test vegetables in many instances. Such an improved bioaccessibility was evident in both raw and heat-processed vegetables. The effect of lime juice was generally more pronounced than that of amchur. Turmeric significantly enhanced the bioaccessibility of beta-carotene from all of the vegetables tested, especially when heat-processed. Onion enhanced the bioaccessibility of beta-carotene from pressure-cooked carrot and amaranth leaf and from open-pan-boiled pumpkin and fenugreek leaf. Lime juice and the antioxidant spices turmeric and onion minimized the loss of beta-carotene during heat processing of the vegetables. In the case of antioxidant spices, improved bioaccessibility of beta-carotene from heat-processed vegetables is attributable to their role in minimizing the loss of this provitamin. Lime juice, which enhanced the bioaccessibility of this provitamin from both raw and heat-processed vegetables, probably exerted this effect by some other mechanism in addition to minimizing the loss of beta-carotene. Thus, the presence of food acidulants (lime juice/amchur) and antioxidant spices (turmeric/onion) proved to be advantageous in the context of deriving maximum beta-carotene from the vegetable sources.
Advanced Material Strategies for Next-Generation Additive Manufacturing
Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen
2018-01-01
Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754
Advanced Material Strategies for Next-Generation Additive Manufacturing.
Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin
2018-01-22
Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.
Brookie, Kate L.; Best, Georgia I.; Conner, Tamlin S.
2018-01-01
Background: Higher intakes of fruits and vegetables, rich in micronutrients, have been associated with better mental health. However, cooking or processing may reduce the availability of these important micronutrients. This study investigated the differential associations between intake of raw fruits and vegetables, compared to processed (cooked or canned) fruits and vegetables, and mental health in young adults. Methods: In a cross-sectional survey design, 422 young adults ages 18–25 (66.1% female) living in New Zealand and the United States completed an online survey that assessed typical consumption of raw vs. cooked/canned/processed fruits and vegetables, negative and positive mental health (depressive symptoms, anxiety, negative mood, positive mood, life satisfaction, and flourishing), and covariates (including socio-economic status, body mass index, sleep, physical activity, smoking, and alcohol use). Results: Controlling for covariates, raw fruit and vegetable intake (FVI) predicted reduced depressive symptoms and higher positive mood, life satisfaction, and flourishing; processed FVI only predicted higher positive mood. The top 10 raw foods related to better mental health were carrots, bananas, apples, dark leafy greens like spinach, grapefruit, lettuce, citrus fruits, fresh berries, cucumber, and kiwifruit. Conclusions: Raw FVI, but not processed FVI, significantly predicted higher mental health outcomes when controlling for the covariates. Applications include recommending the consumption of raw fruits and vegetables to maximize mental health benefits. PMID:29692750
NASA Astrophysics Data System (ADS)
Petrila, S.; Brabie, G.; Chirita, B.
2016-08-01
The analysis performed on manufacturing flows within industrial enterprises producing hydrostatic components twos made on a number of factors that influence smooth running of production such: distance between pieces, waiting time from one surgery to another; time achievement of setups on CNC machines; tool changing in case of a large number of operators and manufacturing complexity of large files [2]. To optimize the manufacturing flow it was used the software Tecnomatix. This software represents a complete portfolio of manufacturing solutions digital manufactured by Siemens. It provides innovation by linking all production methods of a product from process design, process simulation, validation and ending the manufacturing process. Among its many capabilities to create a wide range of simulations, the program offers various demonstrations regarding the behavior manufacturing cycles. This program allows the simulation and optimization of production systems and processes in several areas such as: car suppliers, production of industrial equipment; electronics manufacturing, design and production of aerospace and defense parts.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (see § 191.8(a)).) LOCATION OF FACTORY (Give the address of the factory(s) where the process of... article described under the PROCESS OF MANUFACTURE OR PRODUCTION section below and each article listed... manufacture or production by giving a thorough description of the manufacturing process. This description...
Research on manufacturing service behavior modeling based on block chain theory
NASA Astrophysics Data System (ADS)
Zhao, Gang; Zhang, Guangli; Liu, Ming; Yu, Shuqin; Liu, Yali; Zhang, Xu
2018-04-01
According to the attribute characteristics of processing craft, the manufacturing service behavior is divided into service attribute, basic attribute, process attribute, resource attribute. The attribute information model of manufacturing service is established. The manufacturing service behavior information is successfully divided into public and private domain. Additionally, the block chain technology is introduced, and the information model of manufacturing service based on block chain principle is established, which solves the problem of sharing and secreting information of processing behavior, and ensures that data is not tampered with. Based on the key pairing verification relationship, the selective publishing mechanism for manufacturing information is established, achieving the traceability of product data, guarantying the quality of processing quality.
Zhang, YunHui; Hou, DeYi; Xiong, GuanNan; Duan, YongHong; Cai, ChuanYang; Wang, Xin; Li, JingYa; Tao, Shu; Liu, WenXin
2018-08-01
A series of field samples including ambient air (gaseous and particulate phases), dust fall, surface soil, rhizosphere soil and cabbage tissues (leaf, root and core), were collected in vegetable bases near a large coking manufacturer in Shanxi Province, Northern China, during a harvest season. A factor analysis was employed to apportion the emission sources of polycyclic aromatic hydrocarbons (PAHs), and the statistical results indicated coal combustion was the dominant emission source that accounted for different environmental media and cabbage tissues, while road traffic, biomass burning and the coking industry contributed to a lesser extent. A structural equation model was first developed to quantitatively explore the transport pathways of PAHs from surrounding media to cabbage tissues. The modeling results showed that PAHs in ambient air were positively associated with those in dust fall, and a close relationship was also true for PAHs in dust fall and in surface soil due to air-soil exchange process. Furthermore, PAHs in surface soil were correlated with those in rhizosphere soil and in the cabbage leaf with the path coefficients of 0.83 and 0.39, respectively. PAHs in the cabbage leaf may dominantly contribute to the accumulation of PAHs in the edible part of cabbages. Copyright © 2018 Elsevier Ltd. All rights reserved.
Integrating Vegetation Classification, Mapping, and Strategic Inventory for Forest Management
C. K. Brewer; R. Bush; D. Berglund; J. A. Barber; S. R. Brown
2006-01-01
Many of the analyses needed to address multiple resource issues are focused on vegetation pattern and process relationships and most rely on the data models produced from vegetation classification, mapping, and/or inventory. The Northern Region Vegetation Mapping Project (R1-VMP) data models are based on these three integrally related, yet separate processes. This...
27 CFR 40.525 - Discontinuance of operations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... operations. 40.525 Section 40.525 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... AND TUBES, AND PROCESSED TOBACCO Manufacture of Processed Tobacco Operations by Manufacturers of Processed Tobacco § 40.525 Discontinuance of operations. Every manufacturer of processed tobacco who desires...
Key technologies for manufacturing and processing sheet materials: A global perspective
NASA Astrophysics Data System (ADS)
Demeri, Mahmoud Y.
2001-02-01
Modern industrial technologies continue to seek new materials and processes to produce products that meet design and functional requirements. Sheet materials made from ferrous and non-ferrous metals, laminates, composites, and reinforced plastics constitute a large percentage of today’s products, components, and systems. Major manufacturers of sheet products include automotive, aerospace, appliance, and food-packaging industries. The Second Global Symposium on Innovations in Materials Processing & Manufacturing: Sheet Materials is organized to provide a forum for presenting advances in sheet processing and manufacturing by worldwide researchers and engineers from industrial, research, and academic centers. The symposium, sponsored by the TMS Materials Processing & Manufacturing Division (MPMD), was planned for the 2001 TMS Annual Meeting, New Orleans, Louisiana, February 11 15, 2001. This article is a review of key papers submitted for publication in the concurrent volume. The selected papers present significant developments in the rapidly expanding areas of advanced sheet materials, innovative forming methods, industrial applications, primary and secondary processing, composite processing, and numerical modeling of manufacturing processes.
Optimization evaluation of cutting technology based on mechanical parts
NASA Astrophysics Data System (ADS)
Wang, Yu
2018-04-01
The relationship between the mechanical manufacturing process and the carbon emission is studied on the basis of the process of the mechanical manufacturing process. The formula of carbon emission calculation suitable for mechanical manufacturing process is derived. Based on this, a green evaluation method for cold machining process of mechanical parts is proposed. The application verification and data analysis of the proposed evaluation method are carried out by an example. The results show that there is a great relationship between the mechanical manufacturing process data and carbon emissions.
Current manufacturing processes of drug-eluting sutures.
Champeau, Mathilde; Thomassin, Jean-Michel; Tassaing, Thierry; Jérôme, Christine
2017-11-01
Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Two general approaches can be followed: (i) the ones that add the API into the material during the manufacturing process of the suture and (ii) the ones that load the API to an already manufactured suture. Areas covered: This review provides an overview of the current manufacturing processes for drug-eluting suture production and discusses their benefits and drawbacks depending on the type of drugs. The mechanical properties and the drug delivery profile of drug-eluting sutures are highlighted since these implants must fulfill both criteria. Expert opinion: For limited drug contents, melt extrusion and electrospinning are the emerging processes since the drug is added during the suture manufacture process. Advantageously, the drug release profile can be tuned by controlling the processing parameters specific to each process and the composition of the drug-containing polymer. If high drug content is targeted, the coating or grafting of a drug layer on a pre-manufactured suture allows for preservation of the tensile strength requirements of the suture.
USDA-ARS?s Scientific Manuscript database
Vegetable oils are broadly used in the manufacture of many human and animal nutritional products, and in various industrial applications. Along with other well-known edible plant oils from soybean, corn, and canola, cottonseed oil is a valuable commodity. Cottonseed oil is a co-product derived fro...
21 CFR 101.12 - Reference amounts customarily consumed per eating occasion.
Code of Federal Regulations, 2011 CFR
2011-04-01
... § 101.9(b)(j)(11). 13 For raw fruit, vegetables, and fish, manufacturers should follow the label..., March 6, 1992). 14 Pizza sauce is part of the pizza and is not considered to be sauce topping. (c) If a... rules: (1) Except as provided for in paragraph (c)(2) of this section, the reference amount for the...
21 CFR 101.12 - Reference amounts customarily consumed per eating occasion.
Code of Federal Regulations, 2010 CFR
2010-04-01
... § 101.9(b)(j)(11). 13 For raw fruit, vegetables, and fish, manufacturers should follow the label..., March 6, 1992). 14 Pizza sauce is part of the pizza and is not considered to be sauce topping. (c) If a... rules: (1) Except as provided for in paragraph (c)(2) of this section, the reference amount for the...
The changing Arctic carbon cycle: using the past to understand terrestrial-aquatic linkages
NASA Astrophysics Data System (ADS)
Anderson, N. J.; van Hardenbroek, M.; Jones, V.; McGowan, S.; Langdon, P. G.; Whiteford, E.; Turner, S.; Edwards, M. E.
2016-12-01
Predicted shifts in terrestrial vegetation cover associated with Arctic warming are altering the delivery and processing of carbon to aquatic ecosystems. This process could determine whether lakes are net carbon sources or sinks and, because lake density is high in many Arctic areas, may alter regional carbon budgets. Lake sediment records integrate information from within the lake and its catchment and can be used quantify past vegetation shifts associated with known climatic episodes of warmer (Holocene Thermal Maximum) and cooler (Neoglacial) conditions. We analysed sediment cores located in different Arctic vegetation biomes (tundra, shrub, forested) in Greenland, Norway and Alaska and used biochemical (algal pigments, stable isotopes) remains to evaluate whether past vegetation shifts were associated with changes in ecosystem carbon processing and biodiversity. When lake catchments were sparsely vegetated and soil vegetation was limited ultra-violet radiation (UVR) screening pigments indicate clear lake waters, scarce dissolved organic carbon/ matter (DOC/M). Moderate vegetation development (birch scrub in Norway; herb tundra in Greenland) appears to enhance delivery of DOM to lakes, and to stimulate algal production which is apparently linked to heterotrophic carbon processing pathways (e.g. algal mixotrophy, nutrient release via the microbial loop). Mature forest cover (in Alaska and Norway) supressed lake autotrophic production, most likely because coloured DOM delivered from catchment vegetation limited light availability. During wetter periods when mires developed lake carbon processing also changed, indicating that hydrological delivery of terrestrial DOM is also important. Therefore, future changes in Arctic vegetation and precipitation patterns are highly likely to alter the way that arctic ecosystems process carbon. Our approach provides an understanding of how ecosystem diversity and carbon processing respond to past climate change and the difficulty of identifying the drivers of state changes in the arctic.
NASA Astrophysics Data System (ADS)
Forkel, Matthias; Dorigo, Wouter; Lasslop, Gitta; Teubner, Irene; Chuvieco, Emilio; Thonicke, Kirsten
2017-12-01
Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1). SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with data-driven modelling and model-data integration approaches can guide the future development of global process-oriented vegetation-fire models.
75 FR 74773 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
..., Methods for Estimating Air Emissions from Chemical Manufacturing Facilities; Protocol for Equipment Leak... chemical vapor deposition process (CVD) or other manufacturing processes use N 2 O. Production processes.... N 2 O emissions from chemical vapor deposition and other electronics manufacturing processes...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Inventories. 40.523... PROCESSED TOBACCO Manufacture of Processed Tobacco Operations by Manufacturers of Processed Tobacco § 40.523 Inventories. Every manufacturer of processed tobacco must provide a true and accurate inventory on TTB F 5210...
Manufacturing Process Simulation of Large-Scale Cryotanks
NASA Technical Reports Server (NTRS)
Babai, Majid; Phillips, Steven; Griffin, Brian
2003-01-01
NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing simulation support. This paper highlights the accomplishments of this task agreement, while also introducing the capabilities of simulation software.
Code of Federal Regulations, 2010 CFR
2010-07-01
... chemical that is produced coincidentally during the production of another chemical. Chemical manufacturing... manufacture an intended product. A chemical manufacturing process unit consists of more than one unit... ethylene process does not include the manufacture of SOCMI chemicals such as the production of butadiene...
Microstructure characterisation of Ti-6Al-4V from different additive manufacturing processes
NASA Astrophysics Data System (ADS)
Neikter, M.; Åkerfeldt, P.; Pederson, R.; Antti, M.-L.
2017-10-01
The focus of this work has been microstructure characterisation of Ti-6Al-4V manufactured by five different additive manufacturing (AM) processes. The microstructure features being characterised are the prior β size, grain boundary α and α lath thickness. It was found that material manufactured with powder bed fusion processes has smaller prior β grains than the material from directed energy deposition processes. The AM processes with fast cooling rate render in thinner α laths and also thinner, and in some cases discontinuous, grain boundary α. Furthermore, it has been observed that material manufactured with the directed energy deposition processes has parallel bands, except for one condition when the parameters were changed, while the powder bed fusion processes do not have any parallel bands.
NASA Astrophysics Data System (ADS)
Chen, Ruey-Shun; Tsai, Yung-Shun; Tu, Arthur
In this study we propose a manufacturing control framework based on radio-frequency identification (RFID) technology and a distributed information system to construct a mass-customization production process in a loosely coupled shop-floor control environment. On the basis of this framework, we developed RFID middleware and an integrated information system for tracking and controlling the manufacturing process flow. A bicycle manufacturer was used to demonstrate the prototype system. The findings of this study were that the proposed framework can improve the visibility and traceability of the manufacturing process as well as enhance process quality control and real-time production pedigree access. Using this framework, an enterprise can easily integrate an RFID-based system into its manufacturing environment to facilitate mass customization and a just-in-time production model.
NASA Astrophysics Data System (ADS)
Lousberg, G. P.; Lemagne, F.; Gloesener, P.; Flebus, C.; Rougelot, S.; Coatantiec, C.; Harnisch, B.
2017-11-01
In the framework of the Fluorescence Explorer (FLEX) phase A/B1 study, an elegant breadboard (EBB) of an imaging spectrometer is designed, manufactured and aligned by AMOS, with Airbus Defence&Space as the prime Contractor of the study. The FLEX mission is one of the two candidates of the 8th Earth Explorer mission. The main constituting instrument of the FLEX mission is an imaging spectrometer observing vegetation fluorescence and reflectance with a high- and a low-resolution channels in the 500 nm -780 nm band. As part of the system feasibility study of the mission, a breadboard of the high-resolution channel of the instrument is designed and manufactured with a high representativeness of a future flight concept. The high-resolution channel is referred to as FIMAS (Fluorescence IMAging Spectrometer). The main purpose of the EBB is to demonstrate (1) the manufacturability of the instrument and (2) the compliance of the optical performances with respect to the science requirements (including spatial and spectral resolution and stray-light).
Manufacturing of GLARE Parts and Structures
NASA Astrophysics Data System (ADS)
Sinke, J.
2003-07-01
GLARE is a hybrid material consisting of alternating layers of metal sheets and composite layers, requiring special attention when manufacturing of parts and structures is concerned. On one hand the applicable manufacturing processes for GLARE are limited, on the other hand, due to the constituents and composition of the laminate, it offers new opportunities for production. One of the opportunities is the manufacture of very large skin panels by lay-up techniques. Lay-up techniques are common for full composites, but uncommon for metallic structures. Nevertheless, large GLARE skin panels are made by lay-up processes. In addition, the sequences of forming and laminating processes, that can be selected, offer manufacturing options that are not applicable to metals or full composites. With respect to conventional manufacturing processes, the possibilities for Fibre Metal Laminates in general, are limited. The limits are partly due to the different failure modes, partly due to the properties of the constituents in the laminate. For machining processes: the wear of the cutting tools during machining operations of GLARE stems from the abrasive nature of the glass fibres. For the forming processes: the limited formability, expressed by a small failure strain, is related to the glass fibres. However, although these manufacturing issues may restrict the use of manufacturing processes for FMLs, application of these laminates in aircraft is not hindered.
NASA Astrophysics Data System (ADS)
Zaharia, C.
2017-08-01
Nowadays, wastewater (WW) treatment facilities are considered significant exposure pathways for solid particles, and also significant concerns of any quality conscious manufacturer. Most solid particles have some forms of organic coating either used as active material or to suspend and/or stabilize different present solid materials, having increase in toxicity that must be reduced, or sometimes even totally eliminated, especially if effluent is either discharged directly to surface water, or distributed through industrial water supplies. Representatives providing innovative technologies, comprehensive supports and expertise in wastewater and sludge treatment field are known, each one using modern treatment technology and facilities. Mechanical treatment is indispensable in primary treatment steps of both municipal and industrial WW applications, its main goal being separation of floating, settling and suspended materials (especially into a primary sedimentation-based treatment step). The aim of this work is to present comparatively the performance in solids removal of conventional mechanical WW treatment stages, especially those based on primary sedimentation, or sedimentation-like operations applied for Romanian urban WW treatment plants (serving two towns with ca 18,000 inhabitants), industrial WW treatment plants (deserving industries of vegetal food processing and organic chemicals’ manufacturing) and additional information on valorisation of separated solid material and improvement possibilities.
Reyes Fernández, Benjamín; Warner, Lisa Marie; Knoll, Nina; Montenegro Montenegro, Esteban; Schwarzer, Ralf
2015-04-01
Self-efficacy and social support are considered relevant predictors of fruit and vegetable intake. This study examines whether the effect of self-efficacy on fruit and vegetable intake is mediated by intention and whether this motivational process is moderated by received dietary social support. A longitudinal study with two measurement points in time, four weeks apart, on fruit and vegetable intake was carried out with 473 students aged 19 years on average (52% women). In a conditional process analysis, dietary intention was specified as a mediator between self-efficacy and fruit and vegetable intake, whereas received dietary support was specified as a moderator of the self-efficacy-intention association, controlling for baseline fruit and vegetable intake. Self-efficacy was positively associated with fruit and vegetable intake four weeks later, and intention mediated this process. Moreover, an interaction between received dietary support and self-efficacy on intention emerged. The effect of self-efficacy on fruit and vegetable intake was fully mediated by intention. Moreover, received support exhibited a moderating role within the motivational process: high dietary support appeared to accentuate the positive relationship between self-efficacy and dietary intention. Copyright © 2014 Elsevier Ltd. All rights reserved.
Numerical simulation of complex part manufactured by selective laser melting process
NASA Astrophysics Data System (ADS)
Van Belle, Laurent
2017-10-01
Selective Laser Melting (SLM) process belonging to the family of the Additive Manufacturing (AM) technologies, enable to build parts layer by layer, from metallic powder and a CAD model. Physical phenomena that occur in the process have the same issues as conventional welding. Thermal gradients generate significant residual stresses and distortions in the parts. Moreover, the large and complex parts to manufacturing, accentuate the undesirable effects. Therefore, it is essential for manufacturers to offer a better understanding of the process and to ensure production reliability of parts with high added value. This paper focuses on the simulation of manufacturing turbine by SLM process in order to calculate residual stresses and distortions. Numerical results will be presented.
Free-world microelectronic manufacturing equipment
NASA Astrophysics Data System (ADS)
Kilby, J. S.; Arnold, W. H.; Booth, W. T.; Cunningham, J. A.; Hutcheson, J. D.; Owen, R. W.; Runyan, W. R.; McKenney, Barbara L.; McGrain, Moira; Taub, Renee G.
1988-12-01
Equipment is examined and evaluated for the manufacture of microelectronic integrated circuit devices and sources for that equipment within the Free World. Equipment suitable for the following are examined: single-crystal silicon slice manufacturing and processing; required lithographic processes; wafer processing; device packaging; and test of digital integrated circuits. Availability of the equipment is also discussed, now and in the near future. Very adequate equipment for most stages of the integrated circuit manufacturing process is available from several sources, in different countries, although the best and most widely used versions of most manufacturing equipment are made in the United States or Japan. There is also an active market in used equipment, suitable for manufacture of capable integrated circuits with performance somewhat short of the present state of the art.
77 FR 48992 - Tobacco Product Manufacturing Facility Visits
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-15
... manufacturing operations--from the receipt of raw materials to the distribution of finished products, and Learn... Manufacturing facilities for materials used for further processing in finished tobacco products (including, but..., parts, accessories, and Manufacturers of materials used for further processing in finished tobacco...
Jenke, Dennis
2012-01-01
An emerging trend in the biotechnology industry is the utilization of plastic components in manufacturing systems for the production of an active pharmaceutical ingredient (API) or a finished drug product (FDP). If the API, the FDP, or any solution used to generate them (for example, process streams such as media, buffers, and the like) come in contact with a plastic at any time during the manufacturing process, there is the potential that substances leached from the plastic may accumulate in the API or FDP, affecting safety and/or efficacy. In this article the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the article outlines the safety assessment process for manufacturing systems, specifically addressing the topics of risk management and the role of compendial testing. Finally, the proper use of vendor-supplied extractables information is considered. Manufacturing suites used to produce biopharmaceuticals can include components that are made out of plastics. Thus it is possible that substances could leach out of the plastics and into manufacturing solutions, and it is further possible that such leachables could accumulate in the pharmaceutical product. In this article, the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the author proposes a process by which the impact on product safety of such leached substances can be assessed.
Agile manufacturing: The factory of the future
NASA Technical Reports Server (NTRS)
Loibl, Joseph M.; Bossieux, Terry A.
1994-01-01
The factory of the future will require an operating methodology which effectively utilizes all of the elements of product design, manufacturing and delivery. The process must respond rapidly to changes in product demand, product mix, design changes or changes in the raw materials. To achieve agility in a manufacturing operation, the design and development of the manufacturing processes must focus on customer satisfaction. Achieving greatest results requires that the manufacturing process be considered from product concept through sales. This provides the best opportunity to build a quality product for the customer at a reasonable rate. The primary elements of a manufacturing system include people, equipment, materials, methods and the environment. The most significant and most agile element in any process is the human resource. Only with a highly trained, knowledgeable work force can the proper methods be applied to efficiently process materials with machinery which is predictable, reliable and flexible. This paper discusses the affect of each element on the development of agile manufacturing systems.
21 CFR 110.80 - Processes and controls.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN MANUFACTURING, PACKING, OR HOLDING HUMAN FOOD Production and Process Controls § 110.80 Processes and controls. All operations in the receiving, inspecting, transporting, segregating, preparing, manufacturing, packaging, and storing of food shall be conducted in...
DOT National Transportation Integrated Search
1981-02-01
Extensive material substitution and resizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pro...
40 CFR 98.70 - Definition of source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...
40 CFR 98.70 - Definition of source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...
40 CFR 98.70 - Definition of source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...
40 CFR 98.70 - Definition of source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...
40 CFR 98.70 - Definition of source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...
Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays
NASA Technical Reports Server (NTRS)
Chamberlain, R. G.
1979-01-01
An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.
This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources
Space Manufacturing: The Next Great Challenge
NASA Technical Reports Server (NTRS)
Whitaker, Ann F.; Curreri, Peter; Sharpe, Jonathan B.; Colberg, Wendell R.; Vickers, John H.
1998-01-01
Space manufacturing encompasses the research, development and manufacture necessary for the production of any product to be used in near zero gravity, and the production of spacecraft required for transporting research or production devices to space. Manufacturing for space, and manufacturing in space will require significant breakthroughs in materials and manufacturing technology, as well as in equipment designs. This report reviews some of the current initiatives in achieving space manufacturing. The first initiative deals with materials processing in space, e.g., processing non-terrestrial and terrestrial materials, especially metals. Some of the ramifications of the United States Microgravity Payloads fourth (USMP-4) mission are discussed. Some problems in non-terrestrial materials processing are mentioned. The second initiative is structures processing in space. In order to accomplish this, the International Space Welding Experiment was designed to demonstrate welding technology in near-zero gravity. The third initiative is advancements in earth-based manufacturing technologies necessary to achieve low cost access to space. The advancements discussed include development of lightweight material having high specific strength, and automated fabrication and manufacturing methods for these materials.
A risk-based auditing process for pharmaceutical manufacturers.
Vargo, Susan; Dana, Bob; Rangavajhula, Vijaya; Rönninger, Stephan
2014-01-01
The purpose of this article is to share ideas on developing a risk-based model for the scheduling of audits (both internal and external). Audits are a key element of a manufacturer's quality system and provide an independent means of evaluating the manufacturer's or the supplier/vendor's compliance status. Suggestions for risk-based scheduling approaches are discussed in the article. Pharmaceutical manufacturers are required to establish and implement a quality system. The quality system is an organizational structure defining responsibilities, procedures, processes, and resources that the manufacturer has established to ensure quality throughout the manufacturing process. Audits are a component of the manufacturer's quality system and provide a systematic and an independent means of evaluating the manufacturer's overall quality system and compliance status. Audits are performed at defined intervals for a specified duration. The intention of the audit process is to focus on key areas within the quality system and may not cover all relevant areas during each audit. In this article, the authors provide suggestions for risk-based scheduling approaches to aid pharmaceutical manufacturers in identifying the key focus areas for an audit.
NASA Technical Reports Server (NTRS)
Bao, Han P.; Samareh, J. A.
2000-01-01
The primary objective of this paper is to demonstrate the use of process-based manufacturing and assembly cost models in a traditional performance-focused multidisciplinary design and optimization process. The use of automated cost-performance analysis is an enabling technology that could bring realistic processbased manufacturing and assembly cost into multidisciplinary design and optimization. In this paper, we present a new methodology for incorporating process costing into a standard multidisciplinary design optimization process. Material, manufacturing processes, and assembly processes costs then could be used as the objective function for the optimization method. A case study involving forty-six different configurations of a simple wing is presented, indicating that a design based on performance criteria alone may not necessarily be the most affordable as far as manufacturing and assembly cost is concerned.
Cleaning and Cleanliness Measurement of Additive Manufactured Parts
NASA Technical Reports Server (NTRS)
Mitchell, Mark A.; Edwards, Kevin; Fox, Eric; Boothe, Richard
2017-01-01
Additive Manufacturing processes allow for the manufacture of complex three dimensional components that otherwise could not be manufactured. Post treatment processes require the removal of any remnant bulk powder that may become entrapped within small cavities and channels within a component. This project focuses on several gross cleaning methods and the verification metrics associated with additive manufactured parts for oxygen propulsion usage.
Effect of processing on phenolic antioxidants of fruits, vegetables, and grains--a review.
Nayak, Balunkeswar; Liu, Rui Hai; Tang, Juming
2015-01-01
Understanding the influence of processing operations such as drying/dehydration, canning, extrusion, high hydrostatic pressure, pulsed electric field, and ohmic heating on the phytochemicals of fruits, vegetables, and grains is important in retaining the health benefiting properties of these antioxidative compounds in processed food products. Most of the previous investigations in the literature on the antioxidants of fruits, vegetables, and grains have shown that food-processing operations reduced the antioxidants of the processed foods, which is also the usual consumer perception. However, in the last decade some articles in the literature reported that the evaluation of nutritional quality of processed fruits and vegetables not only depend on the quantity of vitamin C but should include analyses of other antioxidant phytochemicals and antioxidant activity. Thermal processing increased the total antioxidant activity of tomato and sweet corn. Most importantly, analysis also depends on the condition, type, and mechanism of antioxidant assays used. This review aims to provide concise information on the influence of various thermal and nonthermal food-processing operations on the stability and kinetics of health beneficial phenolic antioxidants of fruits, vegetables, and grains.
Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L
2015-03-01
We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
40 CFR 407.81 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... semisolid food prepared from the combining of edible vegetable oil with acidifying, and egg yolk containing... STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Canned and... and vegetables. (c) The term baby foods shall mean the processing of canned fresh fruits and...
27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.
Code of Federal Regulations, 2012 CFR
2012-04-01
... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part contains...
Printing Processes Used to Manufacture Photovoltaic Solar Cells
ERIC Educational Resources Information Center
Rardin, Tina E.; Xu, Renmei
2011-01-01
There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…
27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.
Code of Federal Regulations, 2013 CFR
2013-04-01
... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part contains...
27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.
Code of Federal Regulations, 2011 CFR
2011-04-01
... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part contains...
27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.
Code of Federal Regulations, 2010 CFR
2010-04-01
... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part contains...
27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.
Code of Federal Regulations, 2014 CFR
2014-04-01
... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part contains...
NASA Technical Reports Server (NTRS)
Nanzetta, Philip
1992-01-01
The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.
75 FR 17645 - Polychlorinated Biphenyls (PCBs); Reassessment of Use Authorizations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
... reassessing the definitions of ``excluded manufacturing process,'' ``quantifiable level/level of detection... reassessing the definitions of ``excluded manufacturing process,'' ``quantifiable level/level of detection... to authorize by rule the manufacturing, processing, distribution in commerce, and use of PCBs in a...
Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li
2016-01-01
A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.
Study of process variables associated with manufacturing hermetically-sealed nickel-cadmium cells
NASA Technical Reports Server (NTRS)
Miller, L.
1974-01-01
A two year study of the major process variables associated with the manufacturing process for sealed, nickel-cadmium, areospace cells is summarized. Effort was directed toward identifying the major process variables associated with a manufacturing process, experimentally assessing each variable's effect, and imposing the necessary changes (optimization) and controls for the critical process variables to improve results and uniformity. A critical process variable associated with the sintered nickel plaque manufacturing process was identified as the manual forming operation. Critical process variables identified with the positive electrode impregnation/polarization process were impregnation solution temperature, free acid content, vacuum impregnation, and sintered plaque strength. Positive and negative electrodes were identified as a major source of carbonate contamination in sealed cells.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
..., including warehousing and distribution; research and development; technology manufacturing; food processing... warehousing and distribution; research and development; technology manufacturing; food processing and... defense manufacturing, sensor manufacturing, or medical devices; (iv) Food/Agriculture--such as wine, food...
Towards a commercial process for the manufacture of genetically modified T cells for therapy
Kaiser, A D; Assenmacher, M; Schröder, B; Meyer, M; Orentas, R; Bethke, U; Dropulic, B
2015-01-01
The recent successes of adoptive T-cell immunotherapy for the treatment of hematologic malignancies have highlighted the need for manufacturing processes that are robust and scalable for product commercialization. Here we review some of the more outstanding issues surrounding commercial scale manufacturing of personalized-adoptive T-cell medicinal products. These include closed system operations, improving process robustness and simplifying work flows, reducing labor intensity by implementing process automation, scalability and cost, as well as appropriate testing and tracking of products, all while maintaining strict adherence to Current Good Manufacturing Practices and regulatory guidelines. A decentralized manufacturing model is proposed, where in the future patients' cells could be processed at the point-of-care in the hospital. PMID:25613483
Green chemistry in protected horticulture: the use of peroxyacetic acid as a sustainable strategy.
Carrasco, Gilda; Urrestarazu, Miguel
2010-05-03
Global reduction of chemical deposition into the environment is necessary. In protected horticulture, different strategies with biodegradable products are used to control pathogens. This review presents the available tools, especially for the management of protected horticultural species, including vegetables and ornamental plants. An analysis of the potential for degradable products that control pathogens and also encourage other productive factors, such as oxygen in the root system, is presented. Biosecurity in fertigation management of protected horticulture is conducted by using peroxyacetic acid mixtures that serve three basic principles: first, the manufacture of these products does not involve polluting processes; second, they have the same function as other chemicals, and third, after use and management there is no toxic residue left in the environment. The sustainability of protected horticulture depends on the development and introduction of technologies for implementation in the field.
Green Chemistry in Protected Horticulture: The Use of Peroxyacetic Acid as a Sustainable Strategy
Carrasco, Gilda; Urrestarazu, Miguel
2010-01-01
Global reduction of chemical deposition into the environment is necessary. In protected horticulture, different strategies with biodegradable products are used to control pathogens. This review presents the available tools, especially for the management of protected horticultural species, including vegetables and ornamental plants. An analysis of the potential for degradable products that control pathogens and also encourage other productive factors, such as oxygen in the root system, is presented. Biosecurity in fertigation management of protected horticulture is conducted by using peroxyacetic acid mixtures that serve three basic principles: first, the manufacture of these products does not involve polluting processes; second, they have the same function as other chemicals, and third, after use and management there is no toxic residue left in the environment. The sustainability of protected horticulture depends on the development and introduction of technologies for implementation in the field. PMID:20559497
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
... of Agriculture (USDA) Recommended Requirements for Milk for Manufacturing Purposes and its Production and Processing (Milk for Manufacturing Purposes and Its Production and Processing; Requirements... for Manufacturing Purposes and its Production and Processing, or equivalent State dairy regulatory...
Kovačević, Mira; Burazin, Jelena; Pavlović, Hrvoje; Kopjar, Mirela; Piližota, Vlasta
2013-04-01
Minimally processed and refrigerated vegetables can be contaminated with Listeria species bacteria including Listeria monocytogenes due to extensive handling during processing or by cross contamination from the processing environment. The objective of this study was to examine the microbiological quality of ready-to-eat minimally processed and refrigerated vegetables from supermarkets in Osijek, Croatia. 100 samples of ready-to-eat vegetables collected from different supermarkets in Osijek, Croatia, were analyzed for presence of Listeria species and Listeria monocytogenes. The collected samples were cut iceberg lettuces (24 samples), other leafy vegetables (11 samples), delicatessen salads (23 samples), cabbage salads (19 samples), salads from mixed (17 samples) and root vegetables (6 samples). Listeria species was found in 20 samples (20 %) and Listeria monocytogenes was detected in only 1 sample (1 %) of cut red cabbage (less than 100 CFU/g). According to Croatian and EU microbiological criteria these results are satisfactory. However, the presence of Listeria species and Listeria monocytogenes indicates poor hygiene quality. The study showed that these products are often improperly labeled, since 24 % of analyzed samples lacked information about shelf life, and 60 % of samples lacked information about storage conditions. With regard to these facts, cold chain abruption with extended use after expiration date is a probable scenario. Therefore, the microbiological risk for consumers of ready-to-eat minimally processed and refrigerated vegetables is not completely eliminated.
Simulation of a Start-Up Manufacturing Facility for Nanopore Arrays
ERIC Educational Resources Information Center
Field, Dennis W.
2009-01-01
Simulation is a powerful tool in developing and troubleshooting manufacturing processes, particularly when considering process flows for manufacturing systems that do not yet exist. Simulation can bridge the gap in terms of setting up full-scale manufacturing for nanotechnology products if limited production experience is an issue. An effective…
Code of Federal Regulations, 2010 CFR
2010-01-01
... PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1... means any vegetable substance (including, but not being limited to, a leaf or a stem, and any portions...
40 CFR 98.73 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...
40 CFR 98.73 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...
40 CFR 98.73 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...
40 CFR 98.73 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...
40 CFR 98.73 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
...] Draft Guidance for Industry: Assessing the Effects of Significant Manufacturing Process Changes... Substances, Including Food Ingredients That Are Color Additives; Availability AGENCY: Food and Drug... Manufacturing Process Changes, Including Emerging Technologies, on the Safety and Regulatory Status of Food...
DOT National Transportation Integrated Search
1981-02-01
Extensive material substitution and resizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pro...
31 CFR 500.412 - Process vs. manufacture.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Process vs. manufacture. 500.412... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN ASSETS CONTROL REGULATIONS Interpretations § 500.412 Process vs. manufacture. A commodity subject to § 500.204 remains subject howsoever it...
Lexical-semantic deficits in processing food and non-food items.
Rumiati, Raffaella I; Foroni, Francesco; Pergola, Giulio; Rossi, Paola; Silveri, Maria Caterina
2016-12-01
The study of category specific deficits in brain-damaged patients has been instrumental in explaining how knowledge about different types of objects is organized in the brain. Much of this research focused on testing putative semantic sensory/functional subsystems that could explain the observed dissociations in performance between living things (e.g., animals and fruits/vegetables) and non-living things (e.g., tools). As neuropsychological patterns that did not fit the original living/non-living distinction were observed, an alternative organization of semantic memory in domains constrained by evolutionary pressure was hypothesized. However, the category of food, that contains both living-natural items, such as an apple, and nonliving-manufactured items as in the case of a hamburger, has never been systematically investigated. As such, food category could turn out to be very useful to test whether the brain organizes the knowledge about food in sensory/functional subsystems, in a specific domain, or whether both approaches might need to be integrated. In the present study we tested the ability of patients with Alzheimer dementia (AD) and with Primary Progressive Aphasias (PPA) as well as healthy controls to perform a confrontation naming task, a categorization task, and a comprehension of edible (natural and manufactured food) and non edible items (tools and non-edible natural things) task (Tasks 1-3). The same photographs of natural and manufactured food were presented together with a description of food's sensory or functional property that could be either congruent or incongruent with that particular food (Task 4). Patients were overall less accurate than healthy individuals, and PPA patients were generally more impaired than AD patients, especially on the naming task. Food tended to be processed better than non-food in two out of three tasks (categorization and comprehension tasks). Patient groups showed no difference in naming food and non-food items, while controls were more accurate with non-food than food (controlling for the linguistic variables and calorie content). AD patients named manufactured food more accurately than natural food (with PPA and controls showing no difference). Recognition of food and, to some extent, of manufactured food seems to be more resilient to brain damage, possibly by virtue of its survival relevance. Furthermore, on Task 4 patients showed an advantage for the sensory-natural pairs over sensory-manufactured combination. Overall, findings do not fit an existing model of semantic memory and suggest that properties intrinsic to the food items (such as the level of transformation and the calorie content) or even to the participants like the Body Mass Index (as shown in another study reviewed here) should be considered. Copyright © 2016 Elsevier Inc. All rights reserved.
Powdered hide model for vegetable tanning
USDA-ARS?s Scientific Manuscript database
Powdered hide samples for this initial study of vegetable tanning were prepared from hides that were dehaired by a typical sulfide or oxidative process, and carried through the delime/bate step of a tanning process. In this study, we report on interactions of the vegetable tannin, quebracho with th...
NASA Technical Reports Server (NTRS)
Goldman, H.; Wolf, M.
1979-01-01
The energy consumed in manufacturing silicon solar cell modules was calculated for the current process, as well as for 1982 and 1986 projected processes. In addition, energy payback times for the above three sequences are shown. The module manufacturing energy was partitioned two ways. In one way, the silicon reduction, silicon purification, sheet formation, cell fabrication, and encapsulation energies were found. In addition, the facility, equipment, processing material and direct material lost-in-process energies were appropriated in junction formation processes and full module manufacturing sequences. A brief methodology accounting for the energy of silicon wafers lost-in-processing during cell manufacturing is described.
Low Cost Manufacturing of Composite Cryotanks
NASA Technical Reports Server (NTRS)
Meredith, Brent; Palm, Tod; Deo, Ravi; Munafo, Paul M. (Technical Monitor)
2002-01-01
This viewgraph presentation reviews research and development of cryotank manufacturing conducted by Northrup Grumman. The objectives of the research and development included the development and validation of manufacturing processes and technology for fabrication of large scale cryogenic tanks, the establishment of a scale-up and facilitization plan for full scale cryotanks, the development of non-autoclave composite manufacturing processes, the fabrication of subscale tank joints for element tests, the performance of manufacturing risk reduction trials for the subscale tank, and the development of full-scale tank manufacturing concepts.
A MODIS-based begetation index climatology
USDA-ARS?s Scientific Manuscript database
Passive microwave soil moisture algorithms must account for vegetation attenuation of the signal in the retrieval process. One approach to accounting for vegetation is to use vegetation indices such as the Normalized Difference Vegetation Index (NDVI) to estimate the vegetation optical depth. The pa...
Additive Manufacturing of Functional Elements on Sheet Metal
NASA Astrophysics Data System (ADS)
Schaub, Adam; Ahuja, Bhrigu; Butzhammer, Lorenz; Osterziel, Johannes; Schmidt, Michael; Merklein, Marion
Laser Beam Melting (LBM) process with its advantages of high design flexibility and free form manufacturing methodology is often applied limitedly due to its low productivity and unsuitability for mass production compared to conventional manufacturing processes. In order to overcome these limitations, a hybrid manufacturing methodology is developed combining the additive manufacturing process of laser beam melting with sheet forming processes. With an interest towards aerospace and medical industry, the material in focus is Ti-6Al-4V. Although Ti-6Al-4V is a commercially established material and its application for LBM process has been extensively investigated, the combination of LBM of Ti-6Al-4V with sheet metal still needs to be researched. Process dynamics such as high temperature gradients and thermally induced stresses lead to complex stress states at the interaction zone between the sheet and LBM structure. Within the presented paper mechanical characterization of hybrid parts will be performed by shear testing. The association of shear strength with process parameters is further investigated by analyzing the internal structure of the hybrid geometry at varying energy inputs during the LBM process. In order to compare the hybrid manufacturing methodology with conventional fabrication, the conventional methodologies subtractive machining and state of the art Laser Beam Melting is evaluated within this work. These processes will be analyzed for their mechanical characteristics and productivity by determining the build time and raw material consumption for each case. The paper is concluded by presenting the characteristics of the hybrid manufacturing methodology compared to alternative manufacturing technologies.
UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction
NASA Astrophysics Data System (ADS)
Delistoian, Dmitri; Chirchor, Mihael
2017-12-01
UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.
OPERATOR BURDEN IN METAL ADDITIVE MANUFACTURING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Amy M; Love, Lonnie J
2016-01-01
Additive manufacturing (AM) is an emerging manufacturing process that creates usable machine parts via layer-by-layer joining of a stock material. With this layer-wise approach, high-performance geometries can be created which are impossible with traditional manufacturing methods. Metal AM technology has the potential to significantly reduce the manufacturing burden of developing custom hardware; however, a major consideration in choosing a metal AM system is the required amount of operator involvement (i.e., operator burden) in the manufacturing process. The operator burden not only determines the amount of operator training and specialization required but also the usability of the system in a facility.more » As operators of several metal AM processes, the Manufacturing Demonstration Facility (MDF) at Oak Ridge National Labs is uniquely poised to provide insight into requirements for operator involvement in each of the three major metal AM processes. The paper covers an overview of each of the three metal AM technologies, focusing on the burden on the operator to complete the build cycle, process the part for final use, and reset the AM equipment for future builds.« less
Additive Manufacturing in Production: A Study Case Applying Technical Requirements
NASA Astrophysics Data System (ADS)
Ituarte, Iñigo Flores; Coatanea, Eric; Salmi, Mika; Tuomi, Jukka; Partanen, Jouni
Additive manufacturing (AM) is expanding the manufacturing capabilities. However, quality of AM produced parts is dependent on a number of machine, geometry and process parameters. The variability of these parameters affects the manufacturing drastically and therefore standardized processes and harmonized methodologies need to be developed to characterize the technology for end use applications and enable the technology for manufacturing. This research proposes a composite methodology integrating Taguchi Design of Experiments, multi-objective optimization and statistical process control, to optimize the manufacturing process and fulfil multiple requirements imposed to an arbitrary geometry. The proposed methodology aims to characterize AM technology depending upon manufacturing process variables as well as to perform a comparative assessment of three AM technologies (Selective Laser Sintering, Laser Stereolithography and Polyjet). Results indicate that only one machine, laser-based Stereolithography, was feasible to fulfil simultaneously macro and micro level geometrical requirements but mechanical properties were not at required level. Future research will study a single AM system at the time to characterize AM machine technical capabilities and stimulate pre-normative initiatives of the technology for end use applications.
Additive Manufacturing Infrared Inspection
NASA Technical Reports Server (NTRS)
Gaddy, Darrell; Nettles, Mindy
2015-01-01
The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.
NASA Technical Reports Server (NTRS)
Sampson, Paul G.; Sny, Linda C.
1992-01-01
The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).
40 CFR 98.72 - GHGs to report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.72 GHGs to report. You must report: (a) CO2 process..., reported for each ammonia manufacturing process unit following the requirements of this subpart (CO2... production, and therefore is not released to the ambient air from the ammonia manufacturing process unit). (b...
40 CFR 98.72 - GHGs to report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.72 GHGs to report. You must report: (a) CO2 process..., reported for each ammonia manufacturing process unit following the requirements of this subpart (CO2... production, and therefore is not released to the ambient air from the ammonia manufacturing process unit). (b...
40 CFR 98.72 - GHGs to report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.72 GHGs to report. You must report: (a) CO2 process..., reported for each ammonia manufacturing process unit following the requirements of this subpart (CO2... production, and therefore is not released to the ambient air from the ammonia manufacturing process unit). (b...
40 CFR 98.72 - GHGs to report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.72 GHGs to report. You must report: (a) CO2 process..., reported for each ammonia manufacturing process unit following the requirements of this subpart (CO2... production, and therefore is not released to the ambient air from the ammonia manufacturing process unit). (b...
75 FR 28335 - Testing and Labeling Pertaining to Product Certification
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-20
... material change in the product's design or manufacturing process, including the sourcing of component parts... ``material change'' in a product's design or manufacturing process? Are there criteria by which one might... production begins. Some comments stated that neither the same materials nor the same manufacturing processes...
40 CFR 63.100 - Applicability and designation of source.
Code of Federal Regulations, 2010 CFR
2010-07-01
... manufacturing process unit has two or more products that have the same maximum annual design capacity on a mass... subject to this subpart. (3) For chemical manufacturing process units that are designed and operated as... chemical manufacturing process units that are designed and operated as flexible operation units shall be...
Code of Federal Regulations, 2010 CFR
2010-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS General Records and Reports § 761.193 Maintenance of monitoring records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing...
Encapsulation Processing and Manufacturing Yield Analysis
NASA Technical Reports Server (NTRS)
Willis, P. B.
1984-01-01
The development of encapsulation processing and a manufacturing productivity analysis for photovoltaic cells are discussed. The goals were: (1) to understand the relationships between both formulation variables and process variables; (2) to define conditions required for optimum performance; (3) to predict manufacturing yield; and (4) to provide documentation to industry.
Encapsulation processing and manufacturing yield analysis
NASA Astrophysics Data System (ADS)
Willis, P. B.
1984-10-01
The development of encapsulation processing and a manufacturing productivity analysis for photovoltaic cells are discussed. The goals were: (1) to understand the relationships between both formulation variables and process variables; (2) to define conditions required for optimum performance; (3) to predict manufacturing yield; and (4) to provide documentation to industry.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 2 2012-04-01 2011-04-01 true Reports. 40.522 Section 40... TOBACCO Manufacture of Processed Tobacco Operations by Manufacturers of Processed Tobacco § 40.522 Reports. (a) General. Every manufacturer of processed tobacco must prepare a monthly report on TTB F 5250.1 in...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 2 2011-04-01 2011-04-01 false Reports. 40.522 Section 40... TOBACCO Manufacture of Processed Tobacco Operations by Manufacturers of Processed Tobacco § 40.522 Reports. (a) General. Every manufacturer of processed tobacco must prepare a monthly report on TTB F 5250.1 in...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 2 2013-04-01 2013-04-01 false Reports. 40.522 Section 40... TOBACCO Manufacture of Processed Tobacco Operations by Manufacturers of Processed Tobacco § 40.522 Reports. (a) General. Every manufacturer of processed tobacco must prepare a monthly report on TTB F 5250.1 in...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 1005 [Docket No. FDA-2007-N-0091; (formerly 2007N-0104)] Service of Process on Manufacturers; Manufacturers Importing Electronic Products Into the United States; Agent Designation; Change of Address AGENCY: Food and Drug...
Hengsbach, Stefan; Lantada, Andrés Díaz
2014-08-01
The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.
40 CFR 63.2840 - What emission requirements must I meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... National Emission Standards for Hazardous Air Pollutants: Solvent Extraction for Vegetable Oil Production... month. (e) Low-HAP solvent option. For all vegetable oil production processes subject to this subpart... paragraphs (e)(1) through (5) of this section. Your vegetable oil production process is not subject to the...
40 CFR 63.2840 - What emission requirements must I meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... National Emission Standards for Hazardous Air Pollutants: Solvent Extraction for Vegetable Oil Production... month. (e) Low-HAP solvent option. For all vegetable oil production processes subject to this subpart... paragraphs (e)(1) through (5) of this section. Your vegetable oil production process is not subject to the...
NASA Astrophysics Data System (ADS)
Murphy, L. M.; Hauser, S. G.; Clyne, R. J.
1992-05-01
Concentrated solar radiation is now a viable alternative energy source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar-induced surface transformation of materials (SISTM), solar-based manufacturing, and solar-pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offers even greater potential for tomorrow, especially as applied to the radiation-abundant environment available in space and on the lunar surface.
NASA Astrophysics Data System (ADS)
Murphy, Lawrence M.; Hauser, Steven G.; Clyne, Richard J.
1991-12-01
Concentrated solar radiation is now a viable alternative source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar induced surface transformation of materials (SISTM), solar based manufacturing, and solar pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offer greater potential for tomorrow, especially as applied to the radiation abundant environment available in space and on the lunar surface.
NASA Technical Reports Server (NTRS)
Murphy, Lawrence M.; Hauser, Steven G.; Clyne, Richard J.
1991-01-01
Concentrated solar radiation is now a viable alternative source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar induced surface transformation of materials (SISTM), solar based manufacturing, and solar pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offer greater potential for tomorrow, especially as applied to the radiation abundant environment available in space and on the lunar surface.
Technological Improvements for Digital Fire Control Systems
2017-09-30
Final Technical Status Report For DOTC-12-01-INIT061 Technological Improvements for Digital Fire Control Systems Reporting Period: 30 Sep...Initiative Information Develop and fabricate next generation designs using advanced materials and processes. This will include but is not limited to...4.2 Develop manufacturing processes 100% 4.3 Develop manufacturing processes 100% 4.4 Develop manufacturing processes 100% 5 Design Tooling
Energetic additive manufacturing process with feed wire
Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.
2000-11-07
A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.
Overview of the production of sintered SiC optics and optical sub-assemblies
NASA Astrophysics Data System (ADS)
Williams, S.; Deny, P.
2005-08-01
The following is an overview on sintered silicon carbide (SSiC) material properties and processing requirements for the manufacturing of components for advanced technology optical systems. The overview will compare SSiC material properties to typical materials used for optics and optical structures. In addition, it will review manufacturing processes required to produce optical components in detail by process step. The process overview will illustrate current manufacturing process and concepts to expand the process size capability. The overview will include information on the substantial capital equipment employed in the manufacturing of SSIC. This paper will also review common in-process inspection methodology and design rules. The design rules are used to improve production yield, minimize cost, and maximize the inherent benefits of SSiC for optical systems. Optimizing optical system designs for a SSiC manufacturing process will allow systems designers to utilize SSiC as a low risk, cost competitive, and fast cycle time technology for next generation optical systems.
Advanced Manufacturing Processes in the Motor Vehicle Industry
DOT National Transportation Integrated Search
1983-05-01
Advanced manufacturing processes, which include a range of automation and management techniques, are aiding U.S. motor vehicle manufacturers to reduce vehicle costs. This report discusses these techniques in general and their specific applications in...
The Development of Model for Measuring Railway Wheels Manufacturing Readiness Level
NASA Astrophysics Data System (ADS)
Inrawan Wiratmadja, Iwan; Mufid, Anas
2016-02-01
In an effort to grow the railway wheel industry in Indonesia and reduce the dependence on imports, Metal Industries Development Center (MIDC) makes the implementation of the railway wheel manufacturing technology in Indonesia. MIDC is an institution based on research and development having a task to research the production of railway wheels prototype and acts as a supervisor to the industry in Indonesia, for implementing the railway wheel manufacturing technology. The process of implementing manufacturing technology requires a lot of resources. Therefore it is necessary to measure the manufacturing readiness process. Measurement of railway wheels manufacturing readiness was in this study done using the manufacturing readiness level (MRL) model from the United States Department of Defense. MRL consists of 10 manufacturing readiness levels described by 90 criteria and 184 sub-criteria. To get a manufacturing readiness measurement instrument that is good and accurate, the development process involved experts through expert judgment method and validated with a content validity ratio (CVR). Measurement instrument developed in this study consist of 448 indicators. The measurement results show that MIDC's railway wheels manufacturing readiness is at the level 4. This shows that there is a gap between the current level of manufacturing readiness owned by MIDC and manufacturing readiness levels required to achieve the program objectives, which is level 5. To achieve the program objectives at level 5, a number of actions were required to be done by MIDC. Indicators that must be improved to be able to achieve level 5 are indicators related to the cost and financing, process capability and control, quality management, workers, and manufacturing management criteria.
Pelfrêne, Aurélie; Waterlot, Christophe; Guerin, Annie; Proix, Nicolas; Richard, Antoine; Douay, Francis
2015-08-01
Metal contamination of urban soils and homegrown vegetables has caused major concern. Some studies showed that cadmium (Cd) was among the most significant hazards in kitchen garden soils and prolonged exposure to this metal could cause deleterious health effects in humans. In general, most risk assessment procedures are based on total concentrations of metals in vegetables. The present study assesses human bioaccessibility of Cd in vegetables cultivated in smelter-impacted kitchen garden soils. Seven vegetables (radish, lettuce, French bean, carrot, leek, tomato, and potato) were considered. Using the UBM protocol (unified BARGE bioaccessibility method), the bioaccessibility of Cd was measured in raw/cooked vegetables. A considerable amount of Cd was mobilized from raw vegetables during the digestion process (on average 85% in the gastric phase and 69% in the gastrointestinal phase), which could be attributed to a high uptake of Cd during the growth of the vegetables. Most Cd is accumulated in the vacuoles of plant cells, except what is absorbed by the cell wall, allowing Cd to be released from plant tissues under moderate conditions. Cooking by the steaming process generally increased the bioaccessibility of Cd in French bean, carrot, and leek. For potato, few or no significant differences of Cd bioaccessibility were observed after the steaming process, while the frying process strongly decreased bioaccessibility in both phases. The estimation of metal bioaccessibility in vegetables is helpful for human health risk assessment.
NASA Astrophysics Data System (ADS)
Sharif, Safian; Sadiq, Ibrahim Ogu; Suhaimi, Mohd Azlan; Rahim, Shayfull Zamree Abd
2017-09-01
Pollution related activities in addition to handling cost of conventional cutting fluid application in metal cutting industry has generated a lot of concern over time. The desire for a green machining environment which will preserve the environment through reduction or elimination of machining related pollution, reduction in oil consumption and safety of the machine operators without compromising an efficient machining process led to search for alternatives to conventional cutting fluid. Amongst the alternatives of dry machining, cryogenic cooling, high pressure cooling, near dry or minimum quantity lubrication (MQL), MQL have shown remarkable performance in terms of cost, machining output, safety of environment and machine operators. However, the MQL under aggressive machining or very high speed machining pose certain restriction as the lubrication media cannot perform efficiently at elevated temperature. In compensating for the shortcomings of MQL technique, high thermal conductivity nanoparticles are introduced in cutting fluids for use in the MQL lubrication process. They have indicated enhanced performance of machining process and significant reduction of loads on the environment. The present work is aimed at evaluating the application and performance of nanofluid in metal cutting process through MQL lubrication technique highlighting their impacts and prospects as lubrication strategy in metal cutting process for sustainable green manufacturing. Enhanced performance of vegetable oil based nanofluids over mineral oil-based nanofluids have been reported and thus highlighted.
7 CFR 52.783 - Ascertaining the grade of a lot.
Code of Federal Regulations, 2010 CFR
2010-01-01
... MARKETING ACT OF 1946 PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Canned Red Tart Pitted Cherries 1 Lot... Inspection and Certification of Processed Fruits and Vegetables, Processed Products Thereof, and Certain...
Stang, Christoph; Wieczorek, Matthias Valentin; Noss, Christian; Lorke, Andreas; Scherr, Frank; Goerlitz, Gerhard; Schulz, Ralf
2014-07-01
Quantitative information on the processes leading to the retention of plant protection products (PPPs) in surface waters is not available, particularly for flow-through systems. The influence of aquatic vegetation on the hydraulic- and sorption-mediated mitigation processes of three PPPs (triflumuron, pencycuron, and penflufen; logKOW 3.3-4.9) in 45-m slow-flowing stream mesocosms was investigated. Peak reductions were 35-38% in an unvegetated stream mesocosm, 60-62% in a sparsely vegetated stream mesocosm (13% coverage with Elodea nuttallii), and in a similar range of 57-69% in a densely vegetated stream mesocosm (100% coverage). Between 89% and 93% of the measured total peak reductions in the sparsely vegetated stream can be explained by an increase of vegetation-induced dispersion (estimated with the one-dimensional solute transport model OTIS), while 7-11% of the peak reduction can be attributed to sorption processes. However, dispersion contributed only 59-71% of the peak reductions in the densely vegetated stream mesocosm, where 29% to 41% of the total peak reductions can be attributed to sorption processes. In the densely vegetated stream, 8-27% of the applied PPPs, depending on the logKOW values of the compounds, were temporarily retained by macrophytes. Increasing PPP recoveries in the aqueous phase were accompanied by a decrease of PPP concentrations in macrophytes indicating kinetic desorption over time. This is the first study to provide quantitative data on how the interaction of dispersion and sorption, driven by aquatic macrophytes, influences the mitigation of PPP concentrations in flowing vegetated stream systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bortnowska, Grazyna; Kałuzna-Zajaczkowska, Justyna
2011-01-01
The objective of this study was to evaluate preferences and frequency choice of commercially available powdered spices, applied to the dishes prepared at home by professionally working persons as well as factors which determine the acceptance of innovative changes in relation to the number and type of components used for their manufacturing. It was shown that above 80% mixtures of spices contained except vegetable spices also other flavourings, spice-products and functional additives but mostly monosodium glutamate (MSG) and sodium chloride. The respondents mostly accepted multicomponent powdered spices, manufactured with the application of new technologies which permitted creation original tastes and next their health-promoting role as well as convenience in use however, without changes in recipe. The women declared that to the dishes prepared at home usually applied herb spices. Conversely, the men mostly liked and often chose spices with savoury and distinctive taste and most willingly multicomponent ones which were suitable for flavour improvement of many dishes.
Sharkey, Joseph R; Horel, Scott; Dean, Wesley R
2010-05-25
There has been limited study of all types of food stores, such as traditional (supercenters, supermarkets, and grocery stores), convenience stores, and non-traditional (dollar stores, mass merchandisers, and pharmacies) as potential opportunities for purchase of fresh and processed (canned and frozen) fruits and vegetables, especially in small-town or rural areas. Data from the Brazos Valley Food Environment Project (BVFEP) are combined with 2000 U.S. Census data for 101 Census block groups (CBG) to examine neighborhood access to fruits and vegetables. BVFEP data included identification and geocoding of all food stores (n = 185) in six rural counties in Texas, using ground-truthed methods and on-site assessment of the availability and variety of fresh and processed fruits and vegetables in all food stores. Access from the population-weighted centroid of each CBG was measured using proximity (minimum network distance) and coverage (number of shopping opportunities) for a good selection of fresh and processed fruits and vegetables. Neighborhood inequalities (deprivation and vehicle ownership) and spatial access for fruits and vegetables were examined using Wilcoxon matched-pairs signed-rank test and multivariate regression models. The variety of fruits or vegetables was greater at supermarkets compared with grocery stores. Among non-traditional and convenience food stores, the largest variety was found at dollar stores. On average, rural neighborhoods were 9.9 miles to the nearest supermarket, 6.7 miles and 7.4 miles to the nearest food store with a good variety of fresh fruits and vegetables, respectively, and 4.7 miles and 4.5 miles to a good variety of fresh and processed fruits or vegetables. High deprivation or low vehicle ownership neighborhoods had better spatial access to a good variety of fruits and vegetables, both in the distance to the nearest source and in the number of shopping opportunities. Supermarkets and grocery stores are no longer the only shopping opportunities for fruits or vegetables. The inclusion of data on availability of fresh or processed fruits or vegetables in the measurements provides robust meaning to the concept of potential access in this large rural area.
2010-01-01
Objective There has been limited study of all types of food stores, such as traditional (supercenters, supermarkets, and grocery stores), convenience stores, and non-traditional (dollar stores, mass merchandisers, and pharmacies) as potential opportunities for purchase of fresh and processed (canned and frozen) fruits and vegetables, especially in small-town or rural areas. Methods Data from the Brazos Valley Food Environment Project (BVFEP) are combined with 2000 U.S. Census data for 101 Census block groups (CBG) to examine neighborhood access to fruits and vegetables. BVFEP data included identification and geocoding of all food stores (n = 185) in six rural counties in Texas, using ground-truthed methods and on-site assessment of the availability and variety of fresh and processed fruits and vegetables in all food stores. Access from the population-weighted centroid of each CBG was measured using proximity (minimum network distance) and coverage (number of shopping opportunities) for a good selection of fresh and processed fruits and vegetables. Neighborhood inequalities (deprivation and vehicle ownership) and spatial access for fruits and vegetables were examined using Wilcoxon matched-pairs signed-rank test and multivariate regression models. Results The variety of fruits or vegetables was greater at supermarkets compared with grocery stores. Among non-traditional and convenience food stores, the largest variety was found at dollar stores. On average, rural neighborhoods were 9.9 miles to the nearest supermarket, 6.7 miles and 7.4 miles to the nearest food store with a good variety of fresh fruits and vegetables, respectively, and 4.7 miles and 4.5 miles to a good variety of fresh and processed fruits or vegetables. High deprivation or low vehicle ownership neighborhoods had better spatial access to a good variety of fruits and vegetables, both in the distance to the nearest source and in the number of shopping opportunities. Conclusion Supermarkets and grocery stores are no longer the only shopping opportunities for fruits or vegetables. The inclusion of data on availability of fresh or processed fruits or vegetables in the measurements provides robust meaning to the concept of potential access in this large rural area. PMID:20500853
Nonterrestrial material processing and manufacturing of large space systems
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G. F.
1978-01-01
An attempt is made to provide pertinent and readily usable information on the extraterrestrial processing of materials and manufacturing of components and elements of these planned large space systems from preprocessed lunar materials which are made available at a processing and manufacturing site in space. Required facilities, equipment, machinery, energy and manpower are defined.
24 CFR 3282.53 - Service of process on foreign manufacturers and importers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Service of process on foreign manufacturers and importers. 3282.53 Section 3282.53 Housing and Urban Development Regulations Relating to... REGULATIONS Formal Procedures § 3282.53 Service of process on foreign manufacturers and importers. The...
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.
This guide is intended for use in teaching an introductory course in manufacturing materials and processes. The course centers around four basic materials--metallics, polymers, ceramics, and composites--and seven manufacturing processes--casting, forming, molding, separating, conditioning, assembling, and finishing. Concepts and classifications of…
27 CFR 24.250 - Application for use of new treating material or process.
Code of Federal Regulations, 2011 CFR
2011-04-01
... from the testing program conducted by the chemical manufacturer demonstrating the function of the material or process; (7) A list of all chemicals used in compounding the treating material and the quantity... manufacturer or supplier of the treating material or process may be forwarded by the manufacturer or supplier...
27 CFR 24.250 - Application for use of new treating material or process.
Code of Federal Regulations, 2012 CFR
2012-04-01
... from the testing program conducted by the chemical manufacturer demonstrating the function of the material or process; (7) A list of all chemicals used in compounding the treating material and the quantity... manufacturer or supplier of the treating material or process may be forwarded by the manufacturer or supplier...
27 CFR 24.250 - Application for use of new treating material or process.
Code of Federal Regulations, 2013 CFR
2013-04-01
... from the testing program conducted by the chemical manufacturer demonstrating the function of the material or process; (7) A list of all chemicals used in compounding the treating material and the quantity... manufacturer or supplier of the treating material or process may be forwarded by the manufacturer or supplier...
27 CFR 24.250 - Application for use of new treating material or process.
Code of Federal Regulations, 2014 CFR
2014-04-01
... from the testing program conducted by the chemical manufacturer demonstrating the function of the material or process; (7) A list of all chemicals used in compounding the treating material and the quantity... manufacturer or supplier of the treating material or process may be forwarded by the manufacturer or supplier...
Pharmaceutical quality by design: product and process development, understanding, and control.
Yu, Lawrence X
2008-04-01
The purpose of this paper is to discuss the pharmaceutical Quality by Design (QbD) and describe how it can be used to ensure pharmaceutical quality. The QbD was described and some of its elements identified. Process parameters and quality attributes were identified for each unit operation during manufacture of solid oral dosage forms. The use of QbD was contrasted with the evaluation of product quality by testing alone. The QbD is a systemic approach to pharmaceutical development. It means designing and developing formulations and manufacturing processes to ensure predefined product quality. Some of the QbD elements include: Defining target product quality profile; Designing product and manufacturing processes; Identifying critical quality attributes, process parameters, and sources of variability; Controlling manufacturing processes to produce consistent quality over time. Using QbD, pharmaceutical quality is assured by understanding and controlling formulation and manufacturing variables. Product testing confirms the product quality. Implementation of QbD will enable transformation of the chemistry, manufacturing, and controls (CMC) review of abbreviated new drug applications (ANDAs) into a science-based pharmaceutical quality assessment.
Development of a Launch Vehicle Manufacturing Process. Chapter 4
NASA Technical Reports Server (NTRS)
Vickers, John; Munafo, Paul M. (Technical Monitor)
2002-01-01
One of the goals of this chapter is to provide sufficient information so that you can develop a manufacturing process for a potential launch vehicle. With the variety of manufacturing options available, you might ask how this can possibly be done in the span of a single chapter. Actually, it will be quite simple because a basic manufacturing process is nothing more than a set of logical steps that are iterated until they produce a desired product. Although these statements seem simple and logical, don't let this simplicity fool you. Manufacturing problems with launch vehicles and their subassemblies have been the primary cause of project failures because the vehicle concept delivered to the manufacturing floor could not be built as designed.
Application of ICME Methods for the Development of Rapid Manufacturing Technologies
NASA Astrophysics Data System (ADS)
Maiwald-Immer, T.; Göhler, T.; Fischersworring-Bunk, A.; Körner, C.; Osmanlic, F.; Bauereiß, A.
Rapid manufacturing technologies are lately gaining interest as alternative manufacturing method. Due to the large parameter sets applicable in these manufacturing methods and their impact on achievable material properties and quality, support of the manufacturing process development by the use of simulation is highly attractive. This is especially true for aerospace applications with their high quality demands and controlled scatter in the resulting material properties. The applicable simulation techniques to these manufacturing methods are manifold. The paper will focus on the melt pool simulation for a SLM (selective laser melting) process which was originally developed for EBM (electron beam melting). It will be discussed in the overall context of a multi-scale simulation within a virtual process chain.
Measurement science and manufacturing science research
NASA Technical Reports Server (NTRS)
Phillips, D. Howard
1987-01-01
The research program of Semiconductor Research Corp. is managed as three overlapping areas: Manufacturing Sciences, Design Sciences and Microstructure Sciences. A total of 40 universities are participating in the performance of over 200 research tasks. The goals and direction of Manufacturing Sciences research became more clearly focused through the efforts of the Manufacturing Sciences Committee of the SRC Technical Advisory Board (TAB). The mission of the SRC Manufacturing Research is the quantification, control, and understanding of semiconductor manufacturing process necessary to achieve a predictable and profitable product output in the competitive environment of the next decade. The 1994 integrated circuit factory must demonstrate a three level hierarchy of control: (1) operation control, (2) process control, and (3) process design. These levels of control are briefly discussed.
Large-area copper indium diselenide (CIS) process, control and manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillespie, T.J.; Lanning, B.R.; Marshall, C.H.
1997-12-31
Lockheed Martin Astronautics (LMA) has developed a large-area (30x30cm) sequential CIS manufacturing approach amenable to low-cost photovoltaics (PV) production. A prototype CIS manufacturing system has been designed and built with compositional uniformity (Cu/In ratio) verified within {+-}4 atomic percent over the 30x30cm area. CIS device efficiencies have been measured by the National Renewable Energy Laboratory (NREL) at 7% on a flexible non-sodium-containing substrate and 10% on a soda-lime-silica (SLS) glass substrate. Critical elements of the manufacturing capability include the CIS sequential process selection, uniform large-area material deposition, and in-situ process control. Details of the process and large-area manufacturing approach aremore » discussed and results presented.« less
A Knowledge Database on Thermal Control in Manufacturing Processes
NASA Astrophysics Data System (ADS)
Hirasawa, Shigeki; Satoh, Isao
A prototype version of a knowledge database on thermal control in manufacturing processes, specifically, molding, semiconductor manufacturing, and micro-scale manufacturing has been developed. The knowledge database has search functions for technical data, evaluated benchmark data, academic papers, and patents. The database also displays trends and future roadmaps for research topics. It has quick-calculation functions for basic design. This paper summarizes present research topics and future research on thermal control in manufacturing engineering to collate the information to the knowledge database. In the molding process, the initial mold and melt temperatures are very important parameters. In addition, thermal control is related to many semiconductor processes, and the main parameter is temperature variation in wafers. Accurate in-situ temperature measurment of wafers is important. And many technologies are being developed to manufacture micro-structures. Accordingly, the knowledge database will help further advance these technologies.
Feasibility of Carbon Fiber/PEEK Composites for Cryogenic Fuel Tank Applications
NASA Astrophysics Data System (ADS)
Doyle, K.; Doyle, A.; O Bradaigh, C. M.; Jaredson, D.
2012-07-01
This paper investigates the feasibility of CF/PEEK composites for manufacture of cryogenic fuel tanks for Next Generation Space Launchers. The material considered is CF/PEEK tape from Suprem SA and the proposed manufacturing process for the fuel tank is Automated Tape Placement. Material characterization was carried out on test laminates manufactured in an autoclave and also by Automated Tape Placement with in-situ consolidation. The results of the two processes were compared to establish if there is any knock down in properties for the automated tape placement process. A permeability test rig was setup with a helium leak detector and the effect of thermal cycling on the permeability properties of CF/PEEK was measured. A 1/10th scale demonstrator was designed and manufactured consisting of a cylinder manufactured by automated tape placement and an upper dome manufactured by autoclave processing. The assembly was achieved by Amorphous Interlayer Bonding with PEI.
Lactic acid bacteria in dried vegetables and spices.
Säde, Elina; Lassila, Elisa; Björkroth, Johanna
2016-02-01
Spices and dried vegetable seasonings are potential sources of bacterial contamination for foods. However, little is known about lactic acid bacteria (LAB) in spices and dried vegetables, even though certain LAB may cause food spoilage. In this study, we enumerated LAB in 104 spices and dried vegetables products aimed for the food manufacturing industry. The products were obtained from a spice wholesaler operating in Finland, and were sampled during a one-year period. We picked isolates (n = 343) for species identification based on numerical analysis of their ribotyping patterns and comparing them with the corresponding patterns of LAB type strains. We found LAB at levels >2 log CFU/g in 68 (65%) of the samples, with the highest counts detected from dried onion products and garlic powder with counts ranging from 4.24 to 6.64 log CFU/g. The LAB identified were predominantly Weissella spp. (61%) and Pediococcus spp. (15%) with Weissella confusa, Weissella cibaria, Weissella paramesenteroides, Pediococcus acidilactici and Pediococcus pentosaceus being the species identified. Other species identified belonged to the genera of Enterococcus spp. (8%), Leuconostoc spp. (6%) and Lactobacillus spp. (2%). Among the LAB identified, Leuconostoc citreum, Leuconostoc mesenteroides and W. confusa have been associated with food spoilage. Our findings suggest that spices and dried vegetables are potential sources of LAB contamination in the food industry. Copyright © 2015 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
... Inspection, Certification, Standards, and Audit Services for Fresh Fruits, Vegetables, and Other Products--7... Certification of Processed Fruits and Vegetables and Related Products-- 7 CFR part 52. This notice also combines... Regulations Governing Inspections and Certification of Processed Fruits and Vegetables and Related Products--7...
40 CFR 63.2832 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants: Solvent Extraction for Vegetable Oil Production What This Subpart... operate a vegetable oil production process that is a major source of HAP emissions or is collocated within... emissions. (i) A vegetable oil production process is defined in § 63.2872. In general, it is the collection...
40 CFR 63.2832 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants: Solvent Extraction for Vegetable Oil Production What This Subpart... operate a vegetable oil production process that is a major source of HAP emissions or is collocated within... emissions. (i) A vegetable oil production process is defined in § 63.2872. In general, it is the collection...
Additive Manufacturing: Ensuring Quality for Spacecraft Applications
NASA Technical Reports Server (NTRS)
Swanson, Theodore; Stephenson, Timothy
2014-01-01
Reliable manufacturing requires that material properties and fabrication processes be well defined in order to insure that the manufactured parts meet specified requirements. While this issue is now relatively straightforward for traditional processes such as subtractive manufacturing and injection molding, this capability is still evolving for AM products. Hence, one of the principal challenges within AM is in qualifying and verifying source material properties and process control. This issue is particularly critical for applications in harsh environments and demanding applications, such as spacecraft.
Advance Manufacturing Office FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-03-01
The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.
Cleaning Process Development for Metallic Additively Manufactured Parts
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark
2014-01-01
Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.
Nonterrestrial material processing and manufacturing of large space systems
NASA Technical Reports Server (NTRS)
Von Tiesenhausen, G.
1979-01-01
Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.
Flexible Manufacturing Systems: What's in It for the Manufacturer.
ERIC Educational Resources Information Center
Chowdhury, A. R.; Peckman, Donald C.
1987-01-01
The authors define the Flexible Manufacturing System and outline its history. They describe what the processing time includes and provide advantages and disadvantages of Flexible Manufacturing Systems compared to conventional manufacturing. (CH)
In-situ acoustic signature monitoring in additive manufacturing processes
NASA Astrophysics Data System (ADS)
Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.
2018-04-01
Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.
Wellbore manufacturing processes for in situ heat treatment processes
Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles
2012-12-11
A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.
Discrete State Change Model of Manufacturing Quality to Aid Assembly Process Design
NASA Astrophysics Data System (ADS)
Koga, Tsuyoshi; Aoyama, Kazuhiro
This paper proposes a representation model of the quality state change in an assembly process that can be used in a computer-aided process design system. In order to formalize the state change of the manufacturing quality in the assembly process, the functions, operations, and quality changes in the assembly process are represented as a network model that can simulate discrete events. This paper also develops a design method for the assembly process. The design method calculates the space of quality state change and outputs a better assembly process (better operations and better sequences) that can be used to obtain the intended quality state of the final product. A computational redesigning algorithm of the assembly process that considers the manufacturing quality is developed. The proposed method can be used to design an improved manufacturing process by simulating the quality state change. A prototype system for planning an assembly process is implemented and applied to the design of an auto-breaker assembly process. The result of the design example indicates that the proposed assembly process planning method outputs a better manufacturing scenario based on the simulation of the quality state change.
SAMICS: Input data preparation. [Solar Array Manufacturing Industry Costing Standards
NASA Technical Reports Server (NTRS)
Chamberlain, R. G.; Aster, R. W.
1979-01-01
The Solar Array Manufacturing Industry Costing Standards (SAMICS) provide standard formats, data, assumptions, and procedures for estimating the price that a manufacturer would have to charge for the product of a specified manufacturing process sequence. A line-by-line explanation is given of those standard formats which describe the economically important characteristics of the manufacturing processes and the technological structure of the companies and the industry. This revision provides an updated presentation of Format A Process Description, consistent with the October 1978 version of that form. A checklist of items which should be entered on Format A as direct expenses is included.
Gui, Jiadong; Fu, Xiumin; Zhou, Ying; Katsuno, Tsuyoshi; Mei, Xin; Deng, Rufang; Xu, Xinlan; Zhang, Linyun; Dong, Fang; Watanabe, Naoharu; Yang, Ziyin
2015-08-12
It was generally thought that aroma of oolong tea resulted from hydrolysis of glycosidically bound volatiles (GBVs). In this study, most GBVs showed no reduction during the oolong tea manufacturing process. β-Glycosidases either at protein or gene level were not activated during the manufacturing process. Subcellular localization of β-primeverosidase provided evidence that β-primeverosidase was located in the leaf cell wall. The cell wall remained intact during the enzyme-active manufacturing process. After the leaf cell disruption, GBV content was reduced. These findings reveal that, during the enzyme-active process of oolong tea, nondisruption of the leaf cell walls resulted in impossibility of interaction of GBVs and β-glycosidases. Indole, jasmine lactone, and trans-nerolidol were characteristic volatiles produced from the manufacturing process. Interestingly, the contents of the three volatiles was reduced after the leaf cell disruption, suggesting that mechanical damage with the cell disruption, which is similar to black tea manufacturing, did not induce accumulation of the three volatiles. In addition, 11 volatiles with flavor dilution factor ≥4(4) were identified as relatively potent odorants in the oolong tea. These results suggest that enzymatic hydrolysis of GBVs was not involved in the formation of volatiles of oolong tea, and some characteristic volatiles with potent odorants were produced from the manufacturing process.
Ricordi, Camillo; Goldstein, Julia S; Balamurugan, A N; Szot, Gregory L; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W; Barbaro, Barbara; Bridges, Nancy D; Cano, Jose; Clarke, William R; Eggerman, Thomas L; Hunsicker, Lawrence G; Kaufman, Dixon B; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S; Lei, Ji; Wang, Ling-Jia; Wilhelm, Joshua J; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J; Posselt, Andrew M; Stock, Peter G; Shapiro, A M James; Chen, Xiaojuan
2016-11-01
Eight manufacturing facilities participating in the National Institutes of Health-sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. © 2016 by the American Diabetes Association.
Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James
2016-01-01
Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220
Manufacturing development for the SAFE 100 kW core
NASA Astrophysics Data System (ADS)
Carter, Robert; Roman, Jose; Salvail, Pat
2002-01-01
In stark contrast to what is sometimes considered the norm in traditional manufacturing processes, engineers at the Marshall Space Flight Center (MSFC) arc in the practice of altering the standard in an effort to realize other potential methods in core manufacturing. While remaining within the bounds of the materials database, we are researching into core manufacturing techniques that may have been overlooked in the past due to funding and/or time constraints. To augment proven core fabrication capabilities we are pursuing plating processes as another possible method for core build-up and assembly. Although brazing and a proprietary HIP cycle are used for module assembly (proven track record for stability and endurance), it is prudent to pursue secondary or backup methods of module and core assembly. For this reason heat tube manufacture and module assembly by means of plating is being investigated. Potentially, the plating processes will give engineers the ability to manufacture replacement modules for any module that might fail to perform nominally, and to assemble/disassemble a complete core in much less time than would be required for the conventional Braze-HIP process. Another area of improvement in core manufacturing capabilities is the installation of a sodium and lithium liquid metal heat pipe fill machine. This, along with the ability to Electron Beam Weld heat pipe seals and wet-in the pipes in the necessary vacuum atmosphere, will eliminate the need to ship potentially hazardous components outside for processing. In addition to developing core manufacturing techniques, the SAFE manufacturing team has been evaluating the thermal heat transfer characteristics, and manufacturability of several heat exchanger design concepts. .
NASA Astrophysics Data System (ADS)
Vanacker, V.
2012-04-01
The surface of the Earth is changing rapidly, largely in response to anthropogenic perturbation. Direct anthropogenic disturbance of natural environments may be much larger in many places than the (projected) indirect effects of climate change. There is now large evidence that humans have significantly altered geomorphic process rates, mainly through changes in vegetation composition, density and cover. While much attention has been given to the impact of vegetation degradation on geomorphic process rates, I suggest that the pathway of restoration is equally important to investigate. First, vegetation recovery after crop abandonment has a rapid and drastic impact on geomorphic process rates. Our data from degraded catchments in the tropical Andes show that erosion rates can be reduced by up to 100 times when increasing the protective vegetation cover. During vegetation restoration, the combined effects of the reduction in surface runoff, sediment production and hydrological connectivity are stronger than the individual effects together. Therefore, changes in erosion and sedimentation during restoration are not simply the reverse of those observed during degradation. Second, anthropogenic perturbation causes a profound but often temporary change in geomorphic process rates. Reconstruction of soil erosion rates in Spain shows us that modern erosion rates in well-vegetated areas are similar to long-term rates, despite evidence of strong pulses in historical erosion rates after vegetation clearance and agriculture. The soil vegetation system might be resilient to short pulses of accelerated erosion (and deposition), as there might exist a dynamic coupling between soil erosion and production also in degraded environments.
Hassanein, Mohamed; El-Sheimy, Naser
2018-01-01
Over the last decade, the use of unmanned aerial vehicle (UAV) technology has evolved significantly in different applications as it provides a special platform capable of combining the benefits of terrestrial and aerial remote sensing. Therefore, such technology has been established as an important source of data collection for different precision agriculture (PA) applications such as crop health monitoring and weed management. Generally, these PA applications depend on performing a vegetation segmentation process as an initial step, which aims to detect the vegetation objects in collected agriculture fields’ images. The main result of the vegetation segmentation process is a binary image, where vegetations are presented in white color and the remaining objects are presented in black. Such process could easily be performed using different vegetation indexes derived from multispectral imagery. Recently, to expand the use of UAV imagery systems for PA applications, it was important to reduce the cost of such systems through using low-cost RGB cameras Thus, developing vegetation segmentation techniques for RGB images is a challenging problem. The proposed paper introduces a new vegetation segmentation methodology for low-cost UAV RGB images, which depends on using Hue color channel. The proposed methodology follows the assumption that the colors in any agriculture field image can be distributed into vegetation and non-vegetations colors. Therefore, four main steps are developed to detect five different threshold values using the hue histogram of the RGB image, these thresholds are capable to discriminate the dominant color, either vegetation or non-vegetation, within the agriculture field image. The achieved results for implementing the proposed methodology showed its ability to generate accurate and stable vegetation segmentation performance with mean accuracy equal to 87.29% and standard deviation as 12.5%. PMID:29670055
Performance measurement integrated information framework in e-Manufacturing
NASA Astrophysics Data System (ADS)
Teran, Hilaida; Hernandez, Juan Carlos; Vizán, Antonio; Ríos, José
2014-11-01
The implementation of Internet technologies has led to e-Manufacturing technologies becoming more widely used and to the development of tools for compiling, transforming and synchronising manufacturing data through the Web. In this context, a potential area for development is the extension of virtual manufacturing to performance measurement (PM) processes, a critical area for decision making and implementing improvement actions in manufacturing. This paper proposes a PM information framework to integrate decision support systems in e-Manufacturing. Specifically, the proposed framework offers a homogeneous PM information exchange model that can be applied through decision support in e-Manufacturing environment. Its application improves the necessary interoperability in decision-making data processing tasks. It comprises three sub-systems: a data model, a PM information platform and PM-Web services architecture. A practical example of data exchange for measurement processes in the area of equipment maintenance is shown to demonstrate the utility of the model.
Wang, Zhi; Liang, Jiabin; Rong, Xing; Zhou, Hao; Duan, Chuanwei; Du, Weijia; Liu, Yimin
2015-12-01
To investigate noise hazard and its influence on hearing loss in workers in the automotive component manufacturing industry. Noise level in the workplace of automotive component manufacturing enterprises was measured and hearing examination was performed for workers to analyze the features and exposure levels of noise in each process, as well as the influence on hearing loss in workers. In the manufacturing processes for different products in this industry, the manufacturing processes of automobile hub and suspension and steering systems had the highest degrees of noise hazard, with over-standard rates of 79.8% and 57.1%, respectively. In the different technical processes for automotive component manufacturing, punching and casting had the highest degrees of noise hazard, with over-standard rates of 65.0% and 50%, respectively. The workers engaged in the automotive air conditioning system had the highest rate of abnormal hearing ability (up to 3.1%). In the automotive component manufacturing industry, noise hazard exceeds the standard seriously. Although the rate of abnormal hearing is lower than the average value of the automobile manufacturing industry in China, this rate tends to increase gradually. Enough emphasis should be placed on the noise hazard in this industry.
A new chapter in pharmaceutical manufacturing: 3D-printed drug products.
Norman, James; Madurawe, Rapti D; Moore, Christine M V; Khan, Mansoor A; Khairuzzaman, Akm
2017-01-01
FDA recently approved a 3D-printed drug product in August 2015, which is indicative of a new chapter for pharmaceutical manufacturing. This review article summarizes progress with 3D printed drug products and discusses process development for solid oral dosage forms. 3D printing is a layer-by-layer process capable of producing 3D drug products from digital designs. Traditional pharmaceutical processes, such as tablet compression, have been used for decades with established regulatory pathways. These processes are well understood, but antiquated in terms of process capability and manufacturing flexibility. 3D printing, as a platform technology, has competitive advantages for complex products, personalized products, and products made on-demand. These advantages create opportunities for improving the safety, efficacy, and accessibility of medicines. Although 3D printing differs from traditional manufacturing processes for solid oral dosage forms, risk-based process development is feasible. This review highlights how product and process understanding can facilitate the development of a control strategy for different 3D printing methods. Overall, the authors believe that the recent approval of a 3D printed drug product will stimulate continual innovation in pharmaceutical manufacturing technology. FDA encourages the development of advanced manufacturing technologies, including 3D-printing, using science- and risk-based approaches. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulvatunyou, Boonserm; Wysk, Richard A.; Cho, Hyunbo
2004-06-01
In today's global manufacturing environment, manufacturing functions are distributed as never before. Design, engineering, fabrication, and assembly of new products are done routinely in many different enterprises scattered around the world. Successful business transactions require the sharing of design and engineering data on an unprecedented scale. This paper describes a framework that facilitates the collaboration of engineering tasks, particularly process planning and analysis, to support such globalized manufacturing activities. The information models of data and the software components that integrate those information models are described. The integration framework uses an Integrated Product and Process Data (IPPD) representation called a Resourcemore » Independent Operation Summary (RIOS) to facilitate the communication of business and manufacturing requirements. Hierarchical process modeling, process planning decomposition and an augmented AND/OR directed graph are used in this representation. The Resource Specific Process Planning (RSPP) module assigns required equipment and tools, selects process parameters, and determines manufacturing costs based on two-level hierarchical RIOS data. The shop floor knowledge (resource and process knowledge) and a hybrid approach (heuristic and linear programming) to linearize the AND/OR graph provide the basis for the planning. Finally, a prototype system is developed and demonstrated with an exemplary part. Java and XML (Extensible Markup Language) are used to ensure software and information portability.« less
Producing Hybrid Metal Composites by Combining Additive Manufacturing and Casting
Pawlowski, Alex E.; Splitter, Derek A.; Muth, Thomas R.; ...
2017-10-01
Additive manufacturing by itself provides many benefits, but by combining different materials processing techniques like traditional casting with additive manufacturing to create hybrid processes, custom materials can be tailor-made and mass produced for applications with specific performance needs.
40 CFR 415.551 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Fluoride Production... shall apply to this subpart. (b) The term process wastewater means any water which, during manufacturing... wastewater shall mean any water which, during manufacturing or processing, comes into incidental contact with...
40 CFR 415.551 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Fluoride Production... shall apply to this subpart. (b) The term process wastewater means any water which, during manufacturing... wastewater shall mean any water which, during manufacturing or processing, comes into incidental contact with...
40 CFR 415.551 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Fluoride Production... shall apply to this subpart. (b) The term process wastewater means any water which, during manufacturing... wastewater shall mean any water which, during manufacturing or processing, comes into incidental contact with...
Automated manufacturing process for DEAP stack-actuators
NASA Astrophysics Data System (ADS)
Tepel, Dominik; Hoffstadt, Thorben; Maas, Jürgen
2014-03-01
Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP), which are coated with compliant and conductive electrodes on each side. Due to the influence of an electrical field, dielectric elastomers perform a large amount of deformation. In this contribution a manufacturing process of automated fabricated stack-actuators based on dielectric electroactive polymers (DEAP) are presented. First of all the specific design of the considered stack-actuator is explained and afterwards the development, construction and realization of an automated manufacturing process is presented in detail. By applying this automated process, stack-actuators with reproducible and homogeneous properties can be manufactured. Finally, first DEAP actuator modules fabricated by the mentioned process are validated experimentally.
Tracking the course of the manufacturing process in selective laser melting
NASA Astrophysics Data System (ADS)
Thombansen, U.; Gatej, A.; Pereira, M.
2014-02-01
An innovative optical train for a selective laser melting based manufacturing system (SLM) has been designed under the objective to track the course of the SLM process. In this, the thermal emission from the melt pool and the geometric properties of the interaction zone are addressed by applying a pyrometer and a camera system respectively. The optical system is designed such that all three radiations from processing laser, thermal emission and camera image are coupled coaxially and that they propagate on the same optical axis. As standard f-theta lenses for high power applications inevitably lead to aberrations and divergent optical axes for increasing deflection angles in combination with multiple wavelengths, a pre-focus system is used to implement a focusing unit which shapes the beam prior to passing the scanner. The sensor system records synchronously the current position of the laser beam, the current emission from the melt pool and an image of the interaction zone. Acquired data of the thermal emission is being visualized after processing which allows an instant evaluation of the course of the process at any position of each layer. As such, it provides a fully detailed history of the product This basic work realizes a first step towards self-optimization of the manufacturing process by providing information about quality relevant events during manufacture. The deviation from the planned course of the manufacturing process to the actual course of the manufacturing process can be used to adapt the manufacturing strategy from one layer to the next. In the current state, the system can be used to facilitate the setup of the manufacturing system as it allows identification of false machine settings without having to analyze the work piece.
Engineering of mechanical manufacturing from the cradle to cradle
NASA Astrophysics Data System (ADS)
Peralta, M. E.; Aguayo, F.; Lama, J. R.
2012-04-01
The sustainability of manufacturing processes lies in industrial planning and productive activity. Industrial plants are characterized by the management of resource (inputs and outputs), processing and conversion processes, which usually are organized in a linear system. Good planning will optimize the manufacturing and promoting the quality of the industrial system. Cradle to Cradle is a new paradigm for engineering and sustainable manufacturing that integrates projects (industrial parks, manufacturing plants, systems and products) in a framework consistent with the environment, adapted to the society and technology and economically viable. To carry it out, we implement this paradigm in the MGE2 (Genomic Model of Eco-innovation and Eco-design), as a methodology for designing and developing products and manufacturing systems with an approach from the cradle to cradle.
29 CFR 780.915 - “Place of first processing.”
Code of Federal Regulations, 2010 CFR
2010-07-01
... Fruit and Vegetable Harvest Transportation; Exemption From Overtime Pay Requirements Under Section 13(b)(16) Exempt Operations on Fruits Or Vegetables § 780.915 “Place of first processing.” Under section 13(b)(16) the fruits or vegetables may be transported to only two types of places. One is a “place of...
Advances in solid dosage form manufacturing technology.
Andrews, Gavin P
2007-12-15
Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation.
7 CFR 52.38 - Sampling plans and procedures for determining lot compliance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 Regulations Governing Inspection and Certification.... Grade. Table I—Canned or Similarly Processed Fruits, Vegetables, and Products Containing Units of Such...
77 FR 18752 - Benzidine-Based Chemical Substances; Di-n
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... persons who intend to manufacture, import, or process these chemical substances for an activity that is.... Benzidine-based chemical substances. You may be potentially affected by this action if you manufacture... manufacturing, 313-textile manufacturers, 316-leather and allied products manufacturers, 322-paper manufacturers...
An In-Depth Review on Direct Additive Manufacturing of Metals
NASA Astrophysics Data System (ADS)
Azam, Farooq I.; Rani, Ahmad Majdi Abdul; Altaf, Khurram; Rao, T. V. V. L. N.; Aimi Zaharin, Haizum
2018-03-01
Additive manufacturing (AM), also known as 3D Printing, is a revolutionary manufacturing technique which has been developing rapidly in the last 30 years. The evolution of this precision manufacturing process from rapid prototyping to ready-to-use parts has significantly alleviated manufacturing constraints and design freedom has been outstandingly widened. AM is a non-conventional manufacturing technique which utilizes a 3D CAD model data to build parts by adding one material layer at a time, rather than removing it and fulfills the demand for manufacturing parts with complex geometric shapes, great dimensional accuracy, and easy to assemble parts. Additive manufacturing of metals has become the area of extensive research, progressing towards the production of final products and replacing conventional manufacturing methods. This paper provides an insight to the available metal additive manufacturing technologies that can be used to produce end user products without using conventional manufacturing methods. The paper also includes the comparison of mechanical and physical properties of parts produced by AM with the parts manufactured using conventional processes.
Dominique Bachelet; James M. Lenihan; Christopher Daly; Ronald P. Neilson; Dennis S. Ojima; William J. Parton
2001-01-01
Assessments of vegetation response to climate change have generally been made only by equilibrium vegetation models that predict vegetation composition under steady-state conditions. These models do not simulate either ecosystem biogeochemical processes or changes in ecosystem structure that may, in turn, act as feedbacks in determining the dynamics of vegetation...
Framework for Sustainability Performance Assessment for Manufacturing Processes- A Review
NASA Astrophysics Data System (ADS)
Singh, K.; Sultan, I.
2017-07-01
Manufacturing industries are facing tough competition due to increasing raw material cost and depleting natural resources. There is great pressure on the industry to produce environmental friendly products using environmental friendly processes. To address these issues modern manufacturing industries are focusing on sustainable manufacturing. To develop more sustainable societies, industries need to better understand how to respond to environmental, economic and social challenges. This paper proposed some framework and tools that accelerate the transition towards a sustainable system. The developed framework will be beneficial for sustainability assessment comparing different plans alongside material properties, ultimately helping the manufacturing industries to reduce the carbon emissions and material waste, besides improving energy efficiency. It is expected that this would be highly beneficial for determination of environmental impact of a process at early design stages. Therefore, it would greatly help the manufacturing industries for selection of process plan based on sustainable indices. Overall objective of this paper would have good impact on reducing air emissions and protecting environment. We expect this work to contribute to the development of a standard reference methodology to help further sustainability in the manufacturing sector.
NASA Technical Reports Server (NTRS)
Waid, Michael
2011-01-01
Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
NASA Astrophysics Data System (ADS)
Ajay Guru Dev, C.; Senthil Kumar, V. S.
2016-09-01
Manufacturing industries are facing challenges in the implementation of agile manufacturing in their products and processes. Agility is widely accepted as a new competitive concept in the manufacturing sector in fulfilling varying customer demand. Thus, evaluation of agile manufacturing in industries has become a necessity. The success of an organisation depends on its ability to manage finding the critical success factors and give them special and continued attention in order to bring about high performance. This paper proposes a set of critical success factors (CSFs) for evaluating agile manufacturing considered appropriate for the manufacturing sector. The analytical hierarchy process (AHP) method is applied for prioritizing the success factors, by summarizing the opinions of experts. It is believed that the proposed CSFs enable and assist manufacturing industries to achieve a higher performance in agile manufacturing so as to increase competitiveness.
CIMOSA process classification for business process mapping in non-manufacturing firms: A case study
NASA Astrophysics Data System (ADS)
Latiffianti, Effi; Siswanto, Nurhadi; Wiratno, Stefanus Eko; Saputra, Yudha Andrian
2017-11-01
A business process mapping is one important means to enable an enterprise to effectively manage the value chain. One of widely used approaches to classify business process for mapping purpose is Computer Integrated Manufacturing System Open Architecture (CIMOSA). CIMOSA was initially designed for Computer Integrated Manufacturing (CIM) system based enterprises. This paper aims to analyze the use of CIMOSA process classification for business process mapping in the firms that do not fall within the area of CIM. Three firms of different business area that have used CIMOSA process classification were observed: an airline firm, a marketing and trading firm for oil and gas products, and an industrial estate management firm. The result of the research has shown that CIMOSA can be used in non-manufacturing firms with some adjustment. The adjustment includes addition, reduction, or modification of some processes suggested by CIMOSA process classification as evidenced by the case studies.
Yoghurts with addition of selected vegetables: acidity, antioxidant properties and sensory quality.
Najgebauer-Lejko, Dorota; Grega, Tadeusz; Tabaszewska, Małgorzata
2014-01-01
Yoghurt is a fermented milk of unique sensory, nutritive and dietetic value offered in a variety of types and in different flavours. Vegetables belong to the group of food products rich in antioxidant substances (e.g., vitamin C, carotenoids, tocopherols, polyphenols) which regular consumption lowers the risk of many diseases including cancers and cardiovascular disorders. The aim of the present work was to manufacture and assess the acidity, sensory quality and antioxidant capacity of yoghurts with addition of selected vegetables during 2-week refrigerated storage. The vegetable preparations (carrot, pumpkin, broccoli and red sweet pepper) were added to the cow's milk fermented using DVS type yoghurt culture after initial cooling to 15-20°C in the amount of 10% (w/w). The following analyses were performed: determination of pH, titratable acidity, antioxidant activity by ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) method as well as sensory evaluation and were conducted after 1, 7 and 14 days of cold storage. The yoghurt supplementation with selected vegetables had no significant effect on the pH and titratable acidity level. The highest ability to scavenge DPPH radicals was stated for yoghurts with broccoli and red sweet pepper. The latter treatment gained the highest notes in sensory evaluation. All vegetable yoghurts were characterised by higher than the natural yoghurt FRAP values measured directly after production. However, the level of this parameter significantly decreased after storage. The red sweet pepper additive was the most beneficial regarding antioxidant properties and organoleptic acceptance of the studied yoghurts.
Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R
2017-01-01
Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.
Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.
Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans
2015-05-01
Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of vegetation quality (community-weighted mean trait values and functional diversity) from those of vegetation quantity (biomass) on ecosystem processes and services.
Defect recognition in CFRP components using various NDT methods within a smart manufacturing process
NASA Astrophysics Data System (ADS)
Schumacher, David; Meyendorf, Norbert; Hakim, Issa; Ewert, Uwe
2018-04-01
The manufacturing process of carbon fiber reinforced polymer (CFRP) components is gaining a more and more significant role when looking at the increasing amount of CFRPs used in industries today. The monitoring of the manufacturing process and hence the reliability of the manufactured products, is one of the major challenges we need to face in the near future. Common defects which arise during manufacturing process are e.g. porosity and voids which may lead to delaminations during operation and under load. To find irregularities and classify them as possible defects in an early stage of the manufacturing process is of high importance for the safety and reliability of the finished products, as well as of significant impact from an economical point of view. In this study we compare various NDT methods which were applied to similar CFRP laminate samples in order to detect and characterize regions of defective volume. Besides ultrasound, thermography and eddy current, different X-ray methods like radiography, laminography and computed tomography are used to investigate the samples. These methods are compared with the intention to evaluate their capability to reliably detect and characterize defective volume. Beyond the detection and evaluation of defects, we also investigate possibilities to combine various NDT methods within a smart manufacturing process in which the decision which method shall be applied is inherent within the process. Is it possible to design an in-line or at-line testing process which can recognize defects reliably and reduce testing time and costs? This study aims to show up opportunities of designing a smart NDT process synchronized to the production based on the concepts of smart production (Industry 4.0). A set of defective CFRP laminate samples and different NDT methods were used to demonstrate how effective defects are recognized and how communication between interconnected NDT sensors and the manufacturing process could be organized.
21 CFR 108.12 - Manufacturing, processing, or packing without a permit, or in violation of a permit.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Manufacturing, processing, or packing without a permit, or in violation of a permit. 108.12 Section 108.12 Food and Drugs FOOD AND DRUG ADMINISTRATION... General Provisions § 108.12 Manufacturing, processing, or packing without a permit, or in violation of a...
NASA Astrophysics Data System (ADS)
Collins, P. C.; Haden, C. V.; Ghamarian, I.; Hayes, B. J.; Ales, T.; Penso, G.; Dixit, V.; Harlow, G.
2014-07-01
Electron beam direct manufacturing, synonymously known as electron beam additive manufacturing, along with other additive "3-D printing" manufacturing processes, are receiving widespread attention as a means of producing net-shape (or near-net-shape) components, owing to potential manufacturing benefits. Yet, materials scientists know that differences in manufacturing processes often significantly influence the microstructure of even widely accepted materials and, thus, impact the properties and performance of a material in service. It is important to accelerate the understanding of the processing-structure-property relationship of materials being produced via these novel approaches in a framework that considers the performance in a statistically rigorous way. This article describes the development of a process model, the assessment of key microstructural features to be incorporated into a microstructure simulation model, a novel approach to extract a constitutive equation to predict tensile properties in Ti-6Al-4V (Ti-64), and a probabilistic approach to measure the fidelity of the property model against real data. This integrated approach will provide designers a tool to vary process parameters and understand the influence on performance, enabling design and optimization for these highly visible manufacturing approaches.
Additive manufacturing of reflective optics: evaluating finishing methods
NASA Astrophysics Data System (ADS)
Leuteritz, G.; Lachmayer, R.
2018-02-01
Individually shaped light distributions become more and more important in lighting technologies and thus the importance of additively manufactured reflectors increases significantly. The vast field of applications ranges from automotive lighting to medical imaging and bolsters the statement. However, the surfaces of additively manufactured reflectors suffer from insufficient optical properties even when manufactured using optimized process parameters for the Selective Laser Melting (SLM) process. Therefore post-process treatments of reflectors are necessary in order to further enhance their optical quality. This work concentrates on the effectiveness of post-process procedures for reflective optics. Based on already optimized aluminum reflectors, which are manufactured with a SLM machine, the parts are differently machined after the SLM process. Selected finishing methods like laser polishing, sputtering or sand blasting are applied and their effects quantified and compared. The post-process procedures are investigated on their impact on surface roughness and reflectance as well as geometrical precision. For each finishing method a demonstrator will be created and compared to a fully milled sample and among themselves. Ultimately, guidelines are developed in order to figure out the optimal treatment of additively manufactured reflectors regarding their optical and geometrical properties. Simulations of the light distributions will be validated with the developed demonstrators.
NASA Astrophysics Data System (ADS)
Gentry, Jeffery D.
2000-05-01
A relational database is a powerful tool for collecting and analyzing the vast amounts of inner-related data associated with the manufacture of composite materials. A relational database contains many individual database tables that store data that are related in some fashion. Manufacturing process variables as well as quality assurance measurements can be collected and stored in database tables indexed according to lot numbers, part type or individual serial numbers. Relationships between manufacturing process and product quality can then be correlated over a wide range of product types and process variations. This paper presents details on how relational databases are used to collect, store, and analyze process variables and quality assurance data associated with the manufacture of advanced composite materials. Important considerations are covered including how the various types of data are organized and how relationships between the data are defined. Employing relational database techniques to establish correlative relationships between process variables and quality assurance measurements is then explored. Finally, the benefits of database techniques such as data warehousing, data mining and web based client/server architectures are discussed in the context of composite material manufacturing.
NASA Astrophysics Data System (ADS)
Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti; Nyrhilä, Olli
Laser additive manufacturing (LAM) is a fabrication technology that enables production of complex parts from metallic materials with mechanical properties comparable to conventionally manufactured parts. In the LAM process, parts are manufactured by melting metallic powder layer-by-layer with a laser beam. This manufacturing technology is nowadays called powder bed fusion (PBF) according to the ASTM F2792-12a standard. This strategy involves several different independent and dependent thermal cycles, all of which have an influence on the final properties of the manufactured part. The quality of PBF parts depends strongly on the characteristics of each single laser-melted track and each single layer. This study consequently concentrates on investigating the effects of process parameters such as laser power on single track and layer formation and laser-material interaction phenomena occurring during the PBF process. Experimental tests were done with two different machines: a modified research machine based on an EOS EOSINT M-series system and an EOS EOSINT M280 system. The material used was EOS stainless steel 17-4 PH. Process monitoring was done with an active illuminated high speed camera system. After microscopy analysis, it was concluded that a keyhole can form during laser additive manufacturing of stainless steel. It was noted that heat input has an important effect on the likelihood of keyhole formation. The threshold intensity value for keyhole formation of 106 W/cm2 was exceeded in all manufactured single tracks. Laser interaction time was found to have an effect on penetration depth and keyhole formation, since the penetration depth increased with increased laser interaction time. It was also concluded that active illuminated high speed camera systems are suitable for monitoring of the manufacturing process and facilitate process control.
NASA Astrophysics Data System (ADS)
Takemine, S.; Rikimaru, A.; Takahashi, K.
The rice is one of the staple foods in the world High quality rice production requires periodically collecting rice growth data to control the growth of rice The height of plant the number of stem the color of leaf is well known parameters to indicate rice growth Rice growth diagnosis method based on these parameters is used operationally in Japan although collecting these parameters by field survey needs a lot of labor and time Recently a laborsaving method for rice growth diagnosis is proposed which is based on vegetation cover rate of rice Vegetation cover rate of rice is calculated based on discriminating rice plant areas in a digital camera image which is photographed in nadir direction Discrimination of rice plant areas in the image was done by the automatic binarization processing However in the case of vegetation cover rate calculation method depending on the automatic binarization process there is a possibility to decrease vegetation cover rate against growth of rice In this paper a calculation method of vegetation cover rate was proposed which based on the automatic binarization process and referred to the growth hysteresis information For several images obtained by field survey during rice growing season vegetation cover rate was calculated by the conventional automatic binarization processing and the proposed method respectively And vegetation cover rate of both methods was compared with reference value obtained by visual interpretation As a result of comparison the accuracy of discriminating rice plant areas was increased by the proposed
Vegetation ecogeomorphology, dynamic equilibrium, and disturbance: chapter 7
Hupp, Cliff R.
2013-01-01
Early ecologists understood the need to document geomorphic form and process to explain plant species distributions. Although this relationship has been acknowledged for over a century, with the exception of a few landmark papers, only the past few decades have experienced intensive research on this interdisciplinary topic. Here the authors provide a summary of the intimate relations between vegetation and geomorphic/process on hillslopes and fluvial systems. These relations are separated into systems (primarily fluvial) in dynamic equilibrium and those that are in nonequilibrium conditions including the impacts of various human disturbances affecting landforms, geomorphic processes, and interrelated, attendant vegetation patterns and processes. The authors conclude with a conceptual model of stream regime focusing on sediment deposition, erosion, and equilibrium that can be expanded to organize and predict vegetation patterns and life history strategies.
Code of Federal Regulations, 2010 CFR
2010-07-01
... production process for the manufacture of low density polyethylene in which a reaction pressure of about 15... terephthalate) (PET) manufacture using dimethyl terephthalate means the manufacturing of poly(ethylene.... Poly(ethylene terephthalate) (PET) manufacture using terephthalic acid means the manufacturing of poly...
Prepreg effects on honeycomb composite manufacturing
NASA Astrophysics Data System (ADS)
Martin, Cary Joseph
Fiber reinforced composites offer many advantages over traditional materials and are widely utilized in aerospace applications. Advantages include a high stiffness to weight ratio and excellent fatigue resistance. However, the pace of new implementation is slow. The manufacturing processes used to transform composite intermediates into final products are poorly understood and are a source of much variability. This limits new implementation and increases the manufacturing costs of existing designs. One such problem is honeycomb core crush, in which a core-stiffened structure collapses during autoclave manufacture, making the structure unusable and increasing the overall manufacturing cost through increased scrap rates. Consequently, the major goal of this research was to investigate the scaling of core crush from prepreg process-structure-property relations to commercial composite manufacture. The material dependent nature of this defect was of particular interest. A methodology and apparatus were developed to measure the frictional resistance of prepreg materials under typical processing conditions. Through a characterization of commercial and experimental prepregs, it was found that core crush behavior was the result of differences in prepreg frictional resistance. This frictional resistance was related to prepreg morphology and matrix rheology and elasticity. Resin composition and prepreg manufacturing conditions were also found to affect manufacturing behavior. Mechanical and dimensional models were developed and demonstrated utility for predicting this crushing behavior. Collectively, this work explored and identified the process-structure-property relations as they relate to the manufacture of composite materials and suggested several avenues by which manufacturing-robust materials may be developed.
Food and Agricultural Imports from China
2007-07-17
2006. Among the product categories that at least doubled in volume during the period were live animals, wine/ beer , fruit/vegetable juices, wheat...product had complied with safe manufacturing practices (e.g., HACCP for low acid canned foods or seafoods).22 Refusals of Imports from China Of the 720...Phytosanitary Measures,” Choices, 1st quarter 2007. 30 Calvin. 31 Dong. 32 FDA information on HACCP is at [http://www.cfsan.fda.gov/~lrd/haccp.html]. 33
40 CFR 63.102 - General standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry § 63... in § 63.101 of this subpart), malfunction, or non-operation of the chemical manufacturing process... one portion of a chemical manufacturing process unit does not affect the ability of a particular...
40 CFR 63.102 - General standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry § 63... in § 63.101 of this subpart), malfunction, or non-operation of the chemical manufacturing process... one portion of a chemical manufacturing process unit does not affect the ability of a particular...
40 CFR 63.102 - General standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry § 63... in § 63.101 of this subpart), malfunction, or non-operation of the chemical manufacturing process... one portion of a chemical manufacturing process unit does not affect the ability of a particular...
40 CFR 63.600 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.600 Applicability. (a... apply to the owner or operator of each phosphoric acid manufacturing plant. (b) The requirements of this... affected sources at a phosphoric acid manufacturing plant: (1) Each wet-process phosphoric acid process...
40 CFR 63.600 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.600 Applicability. (a... apply to the owner or operator of each phosphoric acid manufacturing plant. (b) The requirements of this... affected sources at a phosphoric acid manufacturing plant: (1) Each wet-process phosphoric acid process...
Additive Manufacturing Infrared Inspection
NASA Technical Reports Server (NTRS)
Gaddy, Darrell
2014-01-01
Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.
NASA Astrophysics Data System (ADS)
Piqué, Alberto; Auyeung, Raymond C. Y.; Kim, Heungsoo; Charipar, Nicholas A.; Mathews, Scott A.
2016-06-01
Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications.
Development of a novel cold forging process to manufacture eccentric shafts
NASA Astrophysics Data System (ADS)
Pasler, Lukas; Liewald, Mathias
2018-05-01
Since the commercial usage of compact combustion engines, eccentric shafts have been used to transform translational into rotational motion. Over the years, several processes to manufacture these eccentric shafts or crankshafts have been developed. Especially for single-cylinder engines manufactured in small quantities, built crankshafts disclose advantages regarding tooling costs and performance. Those manufacturing processes do have one thing in common: They are all executed at elevated temperatures to enable the material to be formed to high forming degree. In this paper, a newly developed cold forging process is presented, which combines lateral extrusion and shifting for manufacturing a crank in one forming operation at room temperature. In comparison to the established upsetting and shifting methods to manufacture such components, the tool cavity or crank web thickness remains constant. Therefore, the developed new process presented in this paper consists of a combination of shifting and extrusion of the billet, which allows pushing material into the forming zone during shifting. In order to reduce the tensile stresses induced by the shifting process, compressive stresses are superimposed. It is expected that the process limits will be expanded regarding the horizontal displacement and form filling. In the following report, the simulation and design of the tooling concept are presented. Experiments were conducted and compared with corresponding simulation results afterwards.
Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Huwyler, Joerg; Eder, Juergen; Fritsch, Kamila; Posset, Tobias; Mohl, Silke; Streubel, Alexander
2016-01-01
Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters (e.g., pre-compression force, capping plate height, turntable rotating speed) contribute to the final residual seal force of a sealed container closure system and its relation to container closure integrity and other drug product quality parameters. Stopper compression measured by computer tomography correlated to residual seal force measurements.In our studies, we used different container closure system configurations from different good manufacturing practice drug product fill & finish facilities to investigate the influence of differences in primary packaging, that is, vial size and rubber stopper design on the capping process and the capped drug product. In addition, we compared two large-scale good manufacturing practice manufacturing capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force.The capping plate to plunger distance had a major influence on the obtained residual seal force values of a sealed vial, whereas the capping pre-compression force and the turntable rotation speed showed only a minor influence on the residual seal force of a sealed vial. Capping process parameters could not easily be transferred from capping equipment of different manufacturers. However, the residual seal force tester did provide a valuable tool to compare capping performance of different capping equipment. No vial showed any leakage greater than 10(-8)mbar L/s as measured by a helium mass spectrometry system, suggesting that container closure integrity was warranted in the residual seal force range tested for the tested container closure systems. Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in the literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters contribute to the final capping result.In this study, we used different container closure system configurations from different good manufacturing process drug product fill & finish facilities to investigate the influence of the vial size and the rubber stopper design on the capping process. In addition, we compared two examples of large-scale good manufacturing process capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force. © PDA, Inc. 2016.
André, S; Zuber, F; Remize, F
2013-07-15
Thermal processing of Low Acid Canned Foods (LACF), which are safe and shelf-stable at ambient temperature for several years, results in heat inactivation of all vegetative microorganisms and the partial or total inactivation of spores. Good Manufacturing Hygienic Practices include stability tests for managing the pathogen risk related to surviving mesophilic bacterial spores. LACF are also often submitted to additional incubation conditions, typically 55 °C for 7 days, to monitor spoilage by thermophiles. In this study we identified the bacterial species responsible for non-stability after prolonged at 55 °C of incubation of LACF from 455 samples collected from 122 French canneries over 10 years. Bacteria were identified by microsequencing or a recent developed tool for group-specific PCR detection (SporeTraQ™). A single species was identified for 93% of examined samples. Three genera were responsible for more than 80% of all non-stability cases: mostly Moorella (36%) and Geobacillus (35%), and less frequently Thermoanaerobacterium (10%). The other most frequent bacterial genera identified were Bacillus, Thermoanaerobacter, Caldanaerobius, Anoxybacillus, Paenibacillus and Clostridium. Species frequency was dependent on food category, i.e. vegetables, ready-made meals containing meat, seafood or other recipes, products containing fatty duck, and related to the intensity of the thermal treatment applied in these food categories. The spore heat resistance parameters (D or δ and z values) from 36 strains isolated in this study were determined. Taken together, our results single out the species most suitable for use as indicators for thermal process settings. This extensively-documented survey of the species that cause non-stability at 55 °C in LACF will help canneries to improve the management of microbial contamination. Copyright © 2013 Elsevier B.V. All rights reserved.
Climate Change Implications to Vegetation Production in Alaska
NASA Technical Reports Server (NTRS)
Neigh, Christopher S.R.
2008-01-01
Investigation of long-term meteorological satellite data revealed statistically significant vegetation response to climate drivers of temperature, precipitation and solar radiation with exclusion of fire disturbance in Alaska. Abiotic trends were correlated to satellite remote sensing observations of normalized difference vegetation index to understand biophysical processes that could impact ecosystem carbon storage. Warming resulted in disparate trajectories for vegetation growth due to precipitation and photosynthetically active radiation variation. Interior spruce forest low lands in late summer through winter had precipitation deficit which resulted in extensive fire disturbance and browning of undisturbed vegetation with reduced post-fire recovery while Northern slope moist alpine tundra had increased production due to warmer-wetter conditions during the late 1990s and early 2000s. Coupled investigation of Alaska s vegetation response to warming climate found spatially dynamic abiotic processes with vegetation browning not a result from increased fire disturbance.
Kettlitz, Beate; Kemendi, Gabriella; Thorgrimsson, Nigel; Cattoor, Nele; Verzegnassi, Ludovica; Le Bail-Collet, Yves; Maphosa, Farai; Perrichet, Aurélie; Christall, Birgit; Stadler, Richard H
2016-06-01
Recently, reports have been published on the occurrence of chlorate mainly in fruits and vegetables. Chlorate is a by-product of chlorinating agents used to disinfect water, and can be expected to be found in varying concentrations in drinking water. Data on potable water taken at 39 sampling points across Europe showed chlorate to range from < 0.003 to 0.803 mg l(-1) with a mean of 0.145 mg l(-1). Chlorate, however, can also be used as a pesticide, but authorisation was withdrawn in the European Union (EU), resulting in a default maximum residue limit (MRL) for foods of 0.01 mg kg(-1). This default MRL has now led to significant problems in the EU, where routinely disinfected water, used in the preparation of food products such as vegetables or fruits, leaves chlorate residues in excess of the default MRL, and in strict legal terms renders the food unmarketable. Due to the paucity of data on the chlorate content of prepared foods in general, we collated chlorate data on more than 3400 samples of mainly prepared foods, including dairy products, meats, fruits, vegetables and different food ingredients/additives. In total, 50.5% of the food samples contained chlorate above 0.01 mg kg(-1), albeit not due to the use of chlorate as a pesticide but mainly due to the occurrence of chlorate as an unavoidable disinfectant by-product. A further entry point of chlorate into foods may be via additives/ingredients that may contain chlorate as a by-product of the manufacturing process (e.g. electrolysis). Of the positive samples in this study, 22.4% revealed chlorate above 0.1 mg kg(-1). In the absence of EU levels for chlorate in water, any future EU regulations must consider the already available WHO guideline value of 0.7 mg l(-1) in potable water, and the continued importance of the usage of oxyhalides for disinfection purposes.
Manufacture and quality control of interconnecting wire hardnesses, Volume 1
NASA Technical Reports Server (NTRS)
1972-01-01
A standard is presented for manufacture, installation, and quality control of eight types of interconnecting wire harnesses. The processes, process controls, and inspection and test requirements reflected are based on acknowledgment of harness design requirements, acknowledgment of harness installation requirements, identification of the various parts, materials, etc., utilized in harness manufacture, and formulation of a typical manufacturing flow diagram for identification of each manufacturing and quality control process, operation, inspection, and test. The document covers interconnecting wire harnesses defined in the design standard, including type 1, enclosed in fluorocarbon elastomer convolute, tubing; type 2, enclosed in TFE convolute tubing lines with fiberglass braid; type 3, enclosed in TFE convolute tubing; and type 5, combination of types 3 and 4. Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated.
NASA Astrophysics Data System (ADS)
Ghosh, Supriyo
2018-01-01
Additive manufacturing (AM) processes produce parts with improved physical, chemical, and mechanical properties compared to conventional manufacturing processes. In AM processes, intricate part geometries are produced from multicomponent alloy powder, in a layer-by-layer fashion with multipass laser melting, solidification, and solid-state phase transformations, in a shorter manufacturing time, with minimal surface finishing, and at a reasonable cost. However, there is an increasing need for post-processing of the manufactured parts via, for example, stress relieving heat treatment and hot isostatic pressing to achieve homogeneous microstructure and properties at all times. Solidification in an AM process controls the size, shape, and distribution of the grains, the growth morphology, the elemental segregation and precipitation, the subsequent solid-state phase changes, and ultimately the material properties. The critical issues in this process are linked with multiphysics (such as fluid flow and diffusion of heat and mass) and multiscale (lengths, times and temperature ranges) challenges that arise due to localized rapid heating and cooling during AM processing. The alloy chemistry-process-microstructure-property-performance correlation in this process will be increasingly better understood through multiscale modeling and simulation.
40 CFR 419.50 - Applicability; description of the integrated subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... topping, cracking, lube oil manufacturing processes, and petrochemical operations, whether or not the facility includes any process in addition to topping, cracking, lube oil manufacturing processes, and...
40 CFR 419.50 - Applicability; description of the integrated subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... topping, cracking, lube oil manufacturing processes, and petrochemical operations, whether or not the facility includes any process in addition to topping, cracking, lube oil manufacturing processes, and...
Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen
2017-01-01
Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031
Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen
2017-06-19
Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.
Summary and recommendations. [reduced gravitational effects on materials manufactured in space
NASA Technical Reports Server (NTRS)
1975-01-01
An economic analysis using econometric and cost benefit analysis techniques was performed to determine the feasibility of space processing of certain products. The overall objectives of the analysis were (1) to determine specific products or processes uniquely connected with space manufacturing, (2) to select a specific product or process from each of the areas of semiconductors, metals, and biochemicals, and (3) to determine the overall price/cost structure of each product or process considered. The economic elements of the analysis involved a generalized decision making format for analyzing space manufacturing, a comparative cost study of the selected processes in space vs. earth manufacturing, and a supply and demand study of the economic relationships of one of the manufacturing processes. Space processing concepts were explored. The first involved the use of the shuttle as the factory with all operations performed during individual flights. The second concept involved a permanent unmanned space factory which would be launched separately. The shuttle in this case would be used only for maintenance and refurbishment. Finally, some consideration was given to a permanent manned space factory.
Laser Additive Manufacturing of Magnetic Materials
NASA Astrophysics Data System (ADS)
Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.
2017-03-01
While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.
Techno-economic evaluation of membrane filtration for the recovery and re-use of tanning chemicals.
Scholz, W; Lucas, M
2003-04-01
The majority of pollution generated from leather manufacturing can be contributed to the inefficiency of chemical use in leather processing and to organic substances derived from the hides during processing. In particular, the overall tanning processes performed in drums can be characterized by a high consumption of water and chemicals, most of which are found in the final wastewater. To ensure full penetration and reaction of chemicals with collagen, chemicals are added in excess and are only partly up-taken by the leather. Significant savings of chemicals can be achieved by recovery and recycling of chemicals and water from part streams, thus reducing environmental impacts. This research formed an integrated approach to investigate and exploit the potential of a closed loop operation for various part streams of tanneries. Each of the process streams was separately collected, treated and purified by membrane technologies to obtain a recyclable liquor which can be re-used operationally. In this way a complete recovery of process liquors can be achieved for immediate operational re-use. Membrane technology has been applied to recover chemicals from un-hairing, vegetable tanning, chrome liquors and to polish saline part streams for re-use. By applying membrane filtration up to 90% of the treated liquors can be recovered giving a remaining concentrate volume of only 10%. The permeate obtained from several process areas contained to a high extent chemicals, which were re-used for leather processing.
Economics of polysilicon process: A view from Japan
NASA Technical Reports Server (NTRS)
Shimizu, Y.
1986-01-01
The production process of solar grade silicon (SOG-Si) through trichlorosilane (TCS) was researched in a program sponsored by New Energy Development Organization (NEDO). The NEDO process consists of the following two steps: TCS production from by-product silicon tetrachloride (STC) and SOG-Si formation from TCS using a fluidized bed reactor. Based on the data obtained during the research program, the manufacturing cost of the NEDO process and other polysilicon manufacturing processes were compared. The manufacturing cost was calculated on the basis of 1000 tons/year production. The cost estimate showed that the cost of producing silicon by all of the new processes is less than the cost by the conventional Siemens process. Using a new process, the cost of producing semiconductor grade silicon was found to be virtually the same with any to the TCS, diclorosilane, and monosilane processes when by-products were recycled. The SOG-Si manufacturing processes using the fluidized bed reactor, which needs further development, shows a greater probablility of cost reduction than the filament processes.
Progress toward Topology Optimization (TO) for Additive Manufacturing (AM) and Fatigue
2017-06-15
traditional manufacturing processes due to cost, tool-path constraints, or operator limitations. While AM significantly widens the design space for TO... manufacturing constraints and limitations remain1 and should be addressed in the design process. An objective of this work is to consider manufacturing ...account for AM limitations within the design . The limitations of interest in this work are the production of support material and enclosed pores. Both
76 FR 69481 - Testing and Labeling Pertaining to Product Certification
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
... material change in the product's design or manufacturing process, including the sourcing of component parts... the product's design or manufacturing process and safeguarding against the exercise of undue influence..., such as proposed Sec. 1107.23(a) regarding ``material change'' in the product's design, manufacturing...
Manufacturing, Marketing and Distribution, Business and Office Occupations: Grade 8. Cluster III.
ERIC Educational Resources Information Center
Calhoun, Olivia H.
A curriculum guide for grade 8, the document is divided into eleven units: marketing and distribution; food manufacturing; data processing and automation; administration, management, and labor; secretarial and clerical services; office machines; equipment; metal manufacturing and processing; prefabrication and prepackaging; textile and clothing…
14 CFR 21.143 - Quality control data requirements; prime manufacturer.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., purchased items, and parts and assemblies produced by manufacturers' suppliers including methods used to... special manufacturing processes involved, the means used to control the processes, the final test... procedure for recording review board decisions and disposing of rejected parts; (5) An outline of a system...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
Post-processing of 3D-printed parts using femtosecond and picosecond laser radiation
NASA Astrophysics Data System (ADS)
Mingareev, Ilya; Gehlich, Nils; Bonhoff, Tobias; Meiners, Wilhelm; Kelbassa, Ingomar; Biermann, Tim; Richardson, Martin C.
2014-03-01
Additive manufacturing, also known as 3D-printing, is a near-net shape manufacturing approach, delivering part geometry that can be considerably affected by various process conditions, heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the manufacturing tool motion and processing strategy. High-repetition rate femtosecond and picosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. Different laser scanning approaches were utilized to increase the ablation efficiency and to reduce the surface roughness while preserving the initial part geometry. We studied post-processing of 3D-shaped parts made of Nickel- and Titanium-base alloys by utilizing Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) as additive manufacturing techniques. Process parameters such as the pulse energy, the number of layers and their spatial separation were varied. Surface processing in several layers was necessary to remove the excessive material, such as individual powder particles, and to reduce the average surface roughness from asdeposited 22-45 μm to a few microns. Due to the ultrafast laser-processing regime and the small heat-affected zone induced in materials, this novel integrated manufacturing approach can be used to post-process parts made of thermally and mechanically sensitive materials, and to attain complex designed shapes with micrometer precision.
McCue, J; Osborne, D; Dumont, J; Peters, R; Mei, B; Pierce, G F; Kobayashi, K; Euwart, D
2014-01-01
Recombinant factor IX Fc (rFIXFc) fusion protein is the first of a new class of bioengineered long-acting factors approved for the treatment and prevention of bleeding episodes in haemophilia B. The aim of this work was to describe the manufacturing process for rFIXFc, to assess product quality and to evaluate the capacity of the process to remove impurities and viruses. This manufacturing process utilized a transferable and scalable platform approach established for therapeutic antibody manufacturing and adapted for production of the rFIXFc molecule. rFIXFc was produced using a process free of human- and animal-derived raw materials and a host cell line derived from human embryonic kidney (HEK) 293H cells. The process employed multi-step purification and viral clearance processing, including use of a protein A affinity capture chromatography step, which binds to the Fc portion of the rFIXFc molecule with high affinity and specificity, and a 15 nm pore size virus removal nanofilter. Process validation studies were performed to evaluate identity, purity, activity and safety. The manufacturing process produced rFIXFc with consistent product quality and high purity. Impurity clearance validation studies demonstrated robust and reproducible removal of process-related impurities and adventitious viruses. The rFIXFc manufacturing process produces a highly pure product, free of non-human glycan structures. Validation studies demonstrate that this product is produced with consistent quality and purity. In addition, the scalability and transferability of this process are key attributes to ensure consistent and continuous supply of rFIXFc. PMID:24811361
Nasr, Moheb M; Krumme, Markus; Matsuda, Yoshihiro; Trout, Bernhardt L; Badman, Clive; Mascia, Salvatore; Cooney, Charles L; Jensen, Keith D; Florence, Alastair; Johnston, Craig; Konstantinov, Konstantin; Lee, Sau L
2017-11-01
Continuous manufacturing plays a key role in enabling the modernization of pharmaceutical manufacturing. The fate of this emerging technology will rely, in large part, on the regulatory implementation of this novel technology. This paper, which is based on the 2nd International Symposium on the Continuous Manufacturing of Pharmaceuticals, describes not only the advances that have taken place since the first International Symposium on Continuous Manufacturing of Pharmaceuticals in 2014, but the regulatory landscape that exists today. Key regulatory concepts including quality risk management, batch definition, control strategy, process monitoring and control, real-time release testing, data processing and management, and process validation/verification are outlined. Support from regulatory agencies, particularly in the form of the harmonization of regulatory expectations, will be crucial to the successful implementation of continuous manufacturing. Collaborative efforts, among academia, industry, and regulatory agencies, are the optimal solution for ensuring a solid future for this promising manufacturing technology. Copyright © 2017 American Pharmacists Association®. All rights reserved.
Design and implementation of a Windows NT network to support CNC activities
NASA Technical Reports Server (NTRS)
Shearrow, C. A.
1996-01-01
The Manufacturing, Materials, & Processes Technology Division is undergoing dramatic changes to bring it's manufacturing practices current with today's technological revolution. The Division is developing Computer Automated Design and Computer Automated Manufacturing (CAD/CAM) abilities. The development of resource tracking is underway in the form of an accounting software package called Infisy. These two efforts will bring the division into the 1980's in relationship to manufacturing processes. Computer Integrated Manufacturing (CIM) is the final phase of change to be implemented. This document is a qualitative study and application of a CIM application capable of finishing the changes necessary to bring the manufacturing practices into the 1990's. The documentation provided in this qualitative research effort includes discovery of the current status of manufacturing in the Manufacturing, Materials, & Processes Technology Division including the software, hardware, network and mode of operation. The proposed direction of research included a network design, computers to be used, software to be used, machine to computer connections, estimate a timeline for implementation, and a cost estimate. Recommendation for the division's improvement include action to be taken, software to utilize, and computer configurations.
Allison, Gretchen; Cain, Yanxi Tan; Cooney, Charles; Garcia, Tom; Bizjak, Tara Gooen; Holte, Oyvind; Jagota, Nirdosh; Komas, Bekki; Korakianiti, Evdokia; Kourti, Dora; Madurawe, Rapti; Morefield, Elaine; Montgomery, Frank; Nasr, Moheb; Randolph, William; Robert, Jean-Louis; Rudd, Dave; Zezza, Diane
2015-03-01
This paper assesses the current regulatory environment, relevant regulations and guidelines, and their impact on continuous manufacturing. It summarizes current regulatory experience and learning from both review and inspection perspectives. It outlines key regulatory aspects, including continuous manufacturing process description and control strategy in regulatory files, process validation, and key Good Manufacturing Practice (GMP) requirements. In addition, the paper identifies regulatory gaps and challenges and proposes a way forward to facilitate implementation. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Phenological Parameters Estimation Tool
NASA Technical Reports Server (NTRS)
McKellip, Rodney D.; Ross, Kenton W.; Spruce, Joseph P.; Smoot, James C.; Ryan, Robert E.; Gasser, Gerald E.; Prados, Donald L.; Vaughan, Ronald D.
2010-01-01
The Phenological Parameters Estimation Tool (PPET) is a set of algorithms implemented in MATLAB that estimates key vegetative phenological parameters. For a given year, the PPET software package takes in temporally processed vegetation index data (3D spatio-temporal arrays) generated by the time series product tool (TSPT) and outputs spatial grids (2D arrays) of vegetation phenological parameters. As a precursor to PPET, the TSPT uses quality information for each pixel of each date to remove bad or suspect data, and then interpolates and digitally fills data voids in the time series to produce a continuous, smoothed vegetation index product. During processing, the TSPT displays NDVI (Normalized Difference Vegetation Index) time series plots and images from the temporally processed pixels. Both the TSPT and PPET currently use moderate resolution imaging spectroradiometer (MODIS) satellite multispectral data as a default, but each software package is modifiable and could be used with any high-temporal-rate remote sensing data collection system that is capable of producing vegetation indices. Raw MODIS data from the Aqua and Terra satellites is processed using the TSPT to generate a filtered time series data product. The PPET then uses the TSPT output to generate phenological parameters for desired locations. PPET output data tiles are mosaicked into a Conterminous United States (CONUS) data layer using ERDAS IMAGINE, or equivalent software package. Mosaics of the vegetation phenology data products are then reprojected to the desired map projection using ERDAS IMAGINE
NASA Astrophysics Data System (ADS)
Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin
2014-04-01
Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic-fibre sensors, Rayleigh, Luna Technologies
Gándara, Carolina; Affleck, Valerie; Stoll, Elizabeth Ann
2018-02-01
Lentiviral vectors are used in laboratories around the world for in vivo and ex vivo delivery of gene therapies, and increasingly clinical investigation as well as preclinical applications. The third-generation lentiviral vector system has many advantages, including high packaging capacity, stable gene expression in both dividing and post-mitotic cells, and low immunogenicity in the recipient organism. Yet, the manufacture of these vectors is challenging, especially at high titers required for direct use in vivo, and further challenges are presented by the process of translating preclinical gene therapies toward manufacture of products for clinical investigation. The goals of this paper are to report the protocol for manufacturing high-titer third-generation lentivirus for preclinical testing and to provide detailed information on considerations for translating preclinical viral vector manufacture toward scaled-up platforms and processes in order to make gene therapies under Good Manufacturing Practice that are suitable for clinical trials.
Gándara, Carolina; Affleck, Valerie; Stoll, Elizabeth Ann
2018-01-01
Lentiviral vectors are used in laboratories around the world for in vivo and ex vivo delivery of gene therapies, and increasingly clinical investigation as well as preclinical applications. The third-generation lentiviral vector system has many advantages, including high packaging capacity, stable gene expression in both dividing and post-mitotic cells, and low immunogenicity in the recipient organism. Yet, the manufacture of these vectors is challenging, especially at high titers required for direct use in vivo, and further challenges are presented by the process of translating preclinical gene therapies toward manufacture of products for clinical investigation. The goals of this paper are to report the protocol for manufacturing high-titer third-generation lentivirus for preclinical testing and to provide detailed information on considerations for translating preclinical viral vector manufacture toward scaled-up platforms and processes in order to make gene therapies under Good Manufacturing Practice that are suitable for clinical trials. PMID:29212357
Composite fuselage crown panel manufacturing technology
NASA Technical Reports Server (NTRS)
Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.
1992-01-01
Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, materials costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structure. Key technologies, such as large crown panel fabrication, were pursued for low cost. An intricate bond panel design and manufacturing concept were selected based on the efforts of the Design Build Team. The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and use of low cost materials forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing costs by 18 pct. and weight by 45 pct. relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.
Composite fuselage crown panel manufacturing technology
NASA Technical Reports Server (NTRS)
Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.
1992-01-01
Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.
19 CFR 191.7 - General manufacturing drawback ruling.
Code of Federal Regulations, 2010 CFR
2010-04-01
... followed without variation; and (iv) The described manufacturing or production process is a manufacture or... ruling. (a) Purpose; eligibility. General manufacturing drawback rulings are designed to simplify... parent corporation is engaged in manufacture or production for drawback, the subsidiary is the proper...
Rodríguez-Carpena, J G; Morcuende, D; Estévez, M
2012-01-01
The present study investigates the effects of avocado, sunflower and olive oils used as back-fat replacers, on the fatty acid composition, oxidative stability, volatiles profile and color and texture properties of cooked pork patties. The vegetable oils modified the fatty acid profiles of the patties by lowering the percentages of SFA (from 36.96% to ~25.30%) and reducing the atherogenic index (from 0.41 to ~0.24). Vegetable oils had higher amounts of antioxidant compounds such as tocopherols (10.8-53.9 mg/100 g) than back-fat (5.9 mg/100 g). Consistently, patties manufactured with the oils had significantly lower amounts of lipid and protein oxidation products than control patties. Avocado oil contributed with specific aroma-active terpenes to patties and had a significant impact on particular color and texture parameters. The results from this study highlight the technological applications of the vegetable oils as food ingredients in the design of healthier meat commodities. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chen, Shaohua; Xiao, Ying; Hu, Meiying; Zhong, Guohua
2014-01-01
Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues. PMID:25061758
Liu, Jie; He, Yue; Chen, Shaohua; Xiao, Ying; Hu, Meiying; Zhong, Guohua
2014-01-01
Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues.
Desktop Manufacturing Technologies.
ERIC Educational Resources Information Center
Snyder, Mark
1991-01-01
Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)
Ecosystems past: prehistory of California vegetation
C.I. Millar; W.B. Woolfenden
2016-01-01
The history of California's vegetation, from origins in the Mesozoic through Quaternary is outlined. Climatic and geologic history and the processes driving changes in vegetation over time are also described.Â
Enhancing Manufacturing Process Education via Computer Simulation and Visualization
ERIC Educational Resources Information Center
Manohar, Priyadarshan A.; Acharya, Sushil; Wu, Peter
2014-01-01
Industrially significant metal manufacturing processes such as melting, casting, rolling, forging, machining, and forming are multi-stage, complex processes that are labor, time, and capital intensive. Academic research develops mathematical modeling of these processes that provide a theoretical framework for understanding the process variables…
Developments and trends in fruit bar production and characterization.
Orrego, C E; Salgado, N; Botero, C A
2014-01-01
Fruits serve as a source of energy, vitamins, minerals, and dietary fiber. One of the barriers in increasing fruit and vegetables consumption is time required to prepare them. Overall, fruit bars have a far greater nutritional value than the fresh fruits because all nutrients are concentrated and, therefore, would be a convenience food assortment to benefit from the health benefits of fruits. The consumers prefer fruit bars that are more tasted followed by proper textural features that could be obtained by establishing the equilibrium of ingredients, the proper choosing of manufacturing stages and the control of the product final moisture content. Fruit bar preparations may include a mixture of pulps, fresh or dried fruit, sugar, binders, and a variety of minor ingredients. Additionally to the conventional steps of manufacturing (pulping, homogenizing, heating, concentrating, and drying) there have been proposed the use of gelled fruit matrices, dried gels or sponges, and extruders as new trends for processing fruit bars. Different single-type dehydration or combined methods include, in order of increasing process time, air-infrared, vacuum and vacuum-microwave drying convective-solar drying, convective drying, and freeze drying are also suggested as alternative to solar traditional drying stage. The dehydration methods that use vacuum exhibited not only higher retention of antioxidants but also better color, texture, and rehydration capacity. Antioxidant activity resulting from the presence of phenolic compounds in the bars is well established. Besides this, fruit bars are also important sources of carbohydrates and minerals. Given the wide range of bioactive factors in fresh fruits that are preserved in fruit bars, it is plausible that their uptake consumption have a positive effect in reducing the risk of many diseases.
NASA Astrophysics Data System (ADS)
Martin, Ffion A.; Warrior, Nicholas A.; Simacek, Pavel; Advani, Suresh; Hughes, Adrian; Darlington, Roger; Senan, Eissa
2018-03-01
Very short manufacture cycle times are required if continuous carbon fibre and epoxy composite components are to be economically viable solutions for high volume composite production for the automotive industry. Here, a manufacturing process variant of resin transfer moulding (RTM), targets a reduction of in-mould manufacture time by reducing the time to inject and cure components. The process involves two stages; resin injection followed by compression. A flow simulation methodology using an RTM solver for the process has been developed. This paper compares the simulation prediction to experiments performed using industrial equipment. The issues encountered during the manufacturing are included in the simulation and their sensitivity to the process is explored.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-23
... Records by Persons Who Manufacture, Process, Pack, Transport, Distribute, Receive, Hold, or Import Food... ``Questions and Answers Regarding Establishment and Maintenance of Records by Persons Who Manufacture, Process... updated information pertaining to the establishment and maintenance of records by persons who manufacture...
Code of Federal Regulations, 2010 CFR
2010-01-01
... promethium-147: Requirements for license to manufacture, process, produce, or initially transfer. 32.22 Section 32.22 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER... containing tritium, krypton-85 or promethium-147: Requirements for license to manufacture, process, produce...
78 FR 38210 - Significant New Use Rules on Certain Chemical Substances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... substances (NAICS codes 325 and 324110), e.g., chemical manufacturing and petroleum refineries. This listing... and evaluate data submitted in a SNUN before the notice submitter begins manufacturing, or processing... projected volume of manufacturing and processing of a chemical substance. The extent to which a use changes...
Near infared spectroscopy in the forest products industry
Chi-Leung So; Brian K. Via; Leslie H. Groom; Lawrence R. Schimleck; Todd F. Shupe; Stephen S. Kelley; Timothy G. Rials
2004-01-01
Improving manufacturing efficiency and increasing product worth requires the right combination of actions throughout the manufacturing process. Many innovations have been developed over the last several decades to achieve these goals. Innovations typically work their way backwards in the manufacturing process, with an increasing level of monitoring occurring at the end...
21 CFR 640.102 - Manufacture of Immune Globulin (Human).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Manufacture of Immune Globulin (Human). 640.102... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Immune Globulin (Human) § 640.102 Manufacture of Immune Globulin (Human). (a) Processing method. The processing method shall be one...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guest, Daniel A.; Cairns, Douglas S.
2014-02-01
The increased use and interest in wind energy over the last few years has necessitated an increase in the manufacturing of wind turbine blades. This increase in manufacturing has in many ways out stepped the current understanding of not only the materials used but also the manufacturing methods used to construct composite laminates. The goal of this study is to develop a list of process parameters which influence the quality of composite laminates manufactured using vacuum assisted resin transfer molding and to evaluate how they influence laminate quality. Known to be primary factors for the manufacturing process are resin flowmore » rate and vacuum pressure. An incorrect balance of these parameters will often cause porosity or voids in laminates that ultimately degrade the strength of the composite. Fiber waviness has also been seen as a major contributor to failures in wind turbine blades and is often the effect of mishandling during the lay-up process. Based on laboratory tests conducted, a relationship between these parameters and laminate quality has been established which will be a valuable tool in developing best practices and standard procedures for the manufacture of wind turbine blade composites.« less
MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control
NASA Astrophysics Data System (ADS)
Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming
2017-09-01
Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.
Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models
NASA Astrophysics Data System (ADS)
Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca
2017-12-01
Several decades of field observations, laboratory experiments and mathematical modelings have demonstrated that the riparian environment is a disturbance-driven ecosystem, and that the main source of disturbance is river flow fluctuations. The focus of the present work has been on the key role that flow fluctuations play in determining the abundance, zonation and species composition of patches of riparian vegetation. To this aim, the scientific literature on the subject, over the last 20 years, has been reviewed. First, the most relevant ecological, morphological and chemical mechanisms induced by river flow fluctuations are described from a process-based perspective. The role of flow variability is discussed for the processes that affect the recruitment of vegetation, the vegetation during its adult life, and the morphological and nutrient dynamics occurring in the riparian habitat. Particular emphasis has been given to studies that were aimed at quantifying the effect of these processes on vegetation, and at linking them to the statistical characteristics of the river hydrology. Second, the advances made, from a modeling point of view, have been considered and discussed. The main models that have been developed to describe the dynamics of riparian vegetation have been presented. Different modeling approaches have been compared, and the corresponding advantages and drawbacks have been pointed out. Finally, attention has been paid to identifying the processes considered by the models, and these processes have been compared with those that have actually been observed or measured in field/laboratory studies.
Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology
NASA Technical Reports Server (NTRS)
Griffin, D. E. (Editor); Stanley, D. C. (Editor)
2001-01-01
The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.
Production process stability - core assumption of INDUSTRY 4.0 concept
NASA Astrophysics Data System (ADS)
Chromjakova, F.; Bobak, R.; Hrusecka, D.
2017-06-01
Today’s industrial enterprises are confronted by implementation of INDUSTRY 4.0 concept with basic problem - stabilised manufacturing and supporting processes. Through this phenomenon of stabilisation, they will achieve positive digital management of both processes and continuously throughput. There is required structural stability of horizontal (business) and vertical (digitized) manufacturing processes, supported through digitalised technologies of INDUSTRY 4.0 concept. Results presented in this paper based on the research results and survey realised in more industrial companies. Following will described basic model for structural process stabilisation in manufacturing environment.
Integrating artificial and human intelligence into tablet production process.
Gams, Matjaž; Horvat, Matej; Ožek, Matej; Luštrek, Mitja; Gradišek, Anton
2014-12-01
We developed a new machine learning-based method in order to facilitate the manufacturing processes of pharmaceutical products, such as tablets, in accordance with the Process Analytical Technology (PAT) and Quality by Design (QbD) initiatives. Our approach combines the data, available from prior production runs, with machine learning algorithms that are assisted by a human operator with expert knowledge of the production process. The process parameters encompass those that relate to the attributes of the precursor raw materials and those that relate to the manufacturing process itself. During manufacturing, our method allows production operator to inspect the impacts of various settings of process parameters within their proven acceptable range with the purpose of choosing the most promising values in advance of the actual batch manufacture. The interaction between the human operator and the artificial intelligence system provides improved performance and quality. We successfully implemented the method on data provided by a pharmaceutical company for a particular product, a tablet, under development. We tested the accuracy of the method in comparison with some other machine learning approaches. The method is especially suitable for analyzing manufacturing processes characterized by a limited amount of data.
Validation of a 30-year-old process for the manufacture of L-asparaginase from Erwinia chrysanthemi.
Gervais, David; Allison, Nigel; Jennings, Alan; Jones, Shane; Marks, Trevor
2013-04-01
A 30-year-old manufacturing process for the biologic product L-asparaginase from the plant pathogen Erwinia chrysanthemi was rigorously qualified and validated, with a high level of agreement between validation data and the 6-year process database. L-Asparaginase exists in its native state as a tetrameric protein and is used as a chemotherapeutic agent in the treatment regimen for Acute Lymphoblastic Leukaemia (ALL). The manufacturing process involves fermentation of the production organism, extraction and purification of the L-asparaginase to make drug substance (DS), and finally formulation and lyophilisation to generate drug product (DP). The extensive manufacturing experience with the product was used to establish ranges for all process parameters and product quality attributes. The product and in-process intermediates were rigorously characterised, and new assays, such as size-exclusion and reversed-phase UPLC, were developed, validated, and used to analyse several pre-validation batches. Finally, three prospective process validation batches were manufactured and product quality data generated using both the existing and the new analytical methods. These data demonstrated the process to be robust, highly reproducible and consistent, and the validation was successful, contributing to the granting of an FDA product license in November, 2011.
Economic assessment of single-walled carbon nanotube processes
NASA Astrophysics Data System (ADS)
Isaacs, J. A.; Tanwani, A.; Healy, M. L.; Dahlben, L. J.
2010-02-01
The carbon nanotube market is steadily growing and projected to reach 1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling 1,906, 1,706, and 485, respectively. For each SWNT process, the synthesis and filtration steps showed the highest costs, with direct labor as a primary cost driver. Reductions in production costs are calculated for increased working hours per day and for increased synthesis reaction yield (SRY) in each process. The process-based cost models offer a means for exploring opportunities for cost reductions, and provide a structured system for comparisons among alternative SWNT manufacturing processes. Further, the models can be used to comprehensively evaluate additional scenarios on the economics of environmental, health, and safety best manufacturing practices.
Impact of storage under ambient conditions on the vitamin content of dehydrated vegetables.
Peñas, Elena; Sidro, Beatiz; Ullate, Mónica; Vidal-Valverde, Concepción; Frias, Juana
2013-04-01
The consumption of dehydrated vegetables, which provides an important source of vitamins, is increasing worldwide. Dehydrated vegetables are located on non-refrigerated shelves in food shops and, therefore, it is of utmost importance to understand the modifications that take place in the content of these labile micronutrients at the ambient conditions currently found in food shops. The present study discusses the effect of storage for 3, 6, 9 and 12 months on the content of thiamin and vitamin C in different commercial and pilot plant dehydrated garlic, onions, potatoes and carrots in darkness at room temperature under vacuum conditions. The content of β-carotene under these conditions was also studied in dehydrated carrots. Thiamin remained stable over the first 3 months of storage (∼90% retention), while long-term storage led to larger losses (retention of 85% in garlic and 45% in commercial carrots after 12 months of storage). The content of vitamin C drastically decreased during the storage period and even disappeared in some dried onions and carrots following 12 months of storage. Storage for 6 months at ambient conditions preserved 80-90% of the β-carotene content in dehydrated vegetables, while long-term storage led to significant β-carotene degradation (retentions between 43 and 81%). These results suggest that vitamins are gradually lost during storage at the practical conditions in food shops and will thus provide relevant information concerning dried vegetables, so manufacturers may calculate shelf life under established storage conditions.
Implementation of a Web-Based Collaborative Process Planning System
NASA Astrophysics Data System (ADS)
Wang, Huifen; Liu, Tingting; Qiao, Li; Huang, Shuangxi
Under the networked manufacturing environment, all phases of product manufacturing involving design, process planning, machining and assembling may be accomplished collaboratively by different enterprises, even different manufacturing stages of the same part may be finished collaboratively by different enterprises. Based on the self-developed networked manufacturing platform eCWS(e-Cooperative Work System), a multi-agent-based system framework for collaborative process planning is proposed. In accordance with requirements of collaborative process planning, share resources provided by cooperative enterprises in the course of collaboration are classified into seven classes. Then a reconfigurable and extendable resource object model is built. Decision-making strategy is also studied in this paper. Finally a collaborative process planning system e-CAPP is developed and applied. It provides strong support for distributed designers to collaboratively plan and optimize product process though network.
NASA Astrophysics Data System (ADS)
Currie, W.; Brown, D. G.; Brunner, A.; Fouladbash, L.; Hadzick, Z.; Hutchins, M.; Kiger, S. E.; Makino, Y.; Nassauer, J. I.; Robinson, D. T.; Riolo, R. L.; Sun, S.
2012-12-01
A key element in the study of coupled human-natural systems is the interactions of human populations with vegetation and soils. In human-dominated landscapes, vegetation production and change results from a combination of ecological processes and human decision-making and behavior. Vegetation is often dramatically altered, whether to produce food for humans and livestock, to harvest fiber for construction and other materials, to harvest fuel wood or feedstock for biofuels, or simply for cultural preferences as in the case of residential lawns with sparse trees in the exurban landscape. This alteration of vegetation and its management has a substantial impact on the landscape carbon balance. Models can be used to simulate scenarios in human-natural systems and to examine the integration of processes that determine future trajectories of carbon balance. However, most models of human-natural systems include little integration of the human alteration of vegetation with the ecosystem processes that regulate carbon balance. Here we illustrate a few case studies of pilot-study models that strive for this integration from our research across various types of landscapes. We focus greater detail on a fully developed research model linked to a field study of vegetation and soils in the exurban residential landscape of Southeastern Michigan, USA. The field study characterized vegetation and soil carbon storage in 5 types of ecological zones. Field-observed carbon storage in the vegetation in these zones ranged widely, from 150 g C/m2 in turfgrass zones, to 6,000 g C/m2 in zones defined as turfgrass with sparse woody vegetation, to 16,000 g C/m2 in a zone defined as dense trees and shrubs. Use of these zones facilitated the scaling of carbon pools to the landscape, where the areal mixtures of zone types had a significant impact on landscape C storage. Use of these zones also facilitated the use of the ecosystem process model Biome-BGC to simulate C trajectories and also facilitated our linkage of vegetation management, such as lawn mowing, fertilizer use, and leaf litter removal, to agent-based modeling of human preferences and behaviors.
Physiology of fresh-cut fruits and vegetables
USDA-ARS?s Scientific Manuscript database
The idea to pre-process fruits and vegetables in the fresh state started with fresh-cut salads and now has expanded to fresh-cut fruits and other vegetables. The fresh-cut portion of the fresh produce industry includes fruits, vegetables, sprouts, mushrooms and even herbs that are cut, cored, sliced...
Yanjun Su; Qinghua Guo; Danny L. Fry; Brandon M. Collins; Maggi Kelly; Jacob P. Flanagan; John J. Battles
2016-01-01
Abstract. Accurate vegetation mapping is critical for natural resources management, ecological analysis, and hydrological modeling, among other tasks. Remotely sensed multispectral and hyperspectral imageries have proved to be valuable inputs to the vegetation mapping process, but they can provide only limited vegetation structure...
Determination of the robot location in a workcell of a flexible production line
NASA Astrophysics Data System (ADS)
Banas, W.; Sekala, A.; Gwiazda, A.; Foit, K.; Hryniewicz, P.; Kost, G.
2015-11-01
Location of components of a manufacturing cell is apparently an easy task but even during the constructing of a manufacturing cell, in which is planned a production of one, simple component it is necessary, among others, to check access to all required points. The robot in a manufacturing cell must handle both machine tools located in a manufacturing cell and parts store (input and output one). It handles also transport equipment and auxiliary stands. Sometimes, during the design phase, the changes of robot location are necessary due to the limitation of access to its required working positions. Often succeeding changes of a manufacturing cell configuration are realized. They occur at the stages of visualization and simulation of robot program functioning. In special cases, it is even necessary to replace the planned robot with a robot of greater range or of a different configuration type. This article presents and describes the parameters and components which should be taken into consideration during designing robotised manufacturing cells. The main idea bases on application of advanced engineering programs to adding the designing process. Using this approach it could be possible to present the designing process of an exemplar flexible manufacturing cell intended to manufacture two similar components. The proposed model of such designed manufacturing cell could be easily extended to the manufacturing cell model in which it is possible to produce components belonging the one technological group of chosen similarity level. In particular, during the design process, one should take into consideration components which limit the ability of robot foundation. It is also important to show the method of determining the best location of robot foundation. The presented design method could also support the designing process of other robotised manufacturing cells.
NASA Astrophysics Data System (ADS)
The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.
Characterization of process air emissions in automotive production plants.
D'Arcy, J B; Dasch, J M; Gundrum, A B; Rivera, J L; Johnson, J H; Carlson, D H; Sutherland, J W
2016-01-01
During manufacturing, particles produced from industrial processes become airborne. These airborne emissions represent a challenge from an industrial hygiene and environmental standpoint. A study was undertaken to characterize the particles associated with a variety of manufacturing processes found in the auto industry. Air particulates were collected in five automotive plants covering ten manufacturing processes in the areas of casting, machining, heat treatment and assembly. Collection procedures provided information on air concentration, size distribution, and chemical composition of the airborne particulate matter for each process and insight into the physical and chemical processes that created those particles.
NASA Astrophysics Data System (ADS)
Iebba, Maurizio; Astarita, Antonello; Mistretta, Daniela; Colonna, Ivano; Liberini, Mariacira; Scherillo, Fabio; Pirozzi, Carmine; Borrelli, Rosario; Franchitti, Stefania; Squillace, Antonino
2017-08-01
This paper aims to study the genesis of defects in titanium components made through two different additive manufacturing technologies: selective laser melting and electron beam melting. In particular, we focussed on the influence of the powders used on the formation of porosities and cavities in the manufactured components. A detailed experimental campaign was carried out to characterize the components made through the two additive manufacturing techniques aforementioned and the powders used in the process. It was found that some defects of the final components can be attributed to internal porosities of the powders used in the manufacturing process. These internal porosities are a consequence of the gas atomization process used for the production of the powders themselves. Therefore, the importance of using tailored powders, free from porosities, in order to manufacture components with high mechanical properties is highlighted.
The Economics of Big Area Addtiive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Brian; Lloyd, Peter D; Lindahl, John
Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupledmore » with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.« less
Eisinaite, Viktorija; Vinauskiene, Rimante; Viskelis, Pranas; Leskauskaite, Daiva
2016-09-01
The aim of this study was to compare the chemical composition of freeze-dried vegetable powders: celery, celery juice, parsnip and leek. The effect of different freeze-dried vegetables onto the ripening process and the properties of dry fermented sausages was also evaluated. Vegetable products significantly (p < 0.05) differed in their chemical composition: celery products contained higher amounts of nitrates, total phenolic compounds and lower amounts of sucrose, parsnip had higher concentration of proteins, leek was rich in fat. The analysis of pH, water activity, lactic acid bacteria, coagulase-positive staphylococci and coliforms content showed that the incorporation of freeze-dried vegetables had no negative effect on the fermentation and ripening process of dry fermented sausages. In addition, the color parameters for sausages with the added lyophilised celery products were considerable (p < 0.05) more stable during these processes. At the end of the ripening process the sausages made with lyophilised celery juice were characterised by higher lightness and lower hardness than those made with the addition of other vegetable products and control. Freeze-dried celery, celery juice, parsnip and leek have some potential for the usage as a functional ingredient or as a source for indirect addition of nitrate in the production of fermented sausages. © 2016 Institute of Food Technologists®
19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings
Code of Federal Regulations, 2010 CFR
2010-04-01
... manufacture or production. B. These general manufacturing drawback rulings supersede general “contracts... manufacturing drawback rulings which have been designed to simplify drawback procedures. Any person who can... drawback; and 9. Description of the manufacturing or production process, unless specifically described in...
Sandia National Labs: Manufacturing Science and Technology
Additional Resources R&D Projects Current Partnerships Creating Partnerships Welcome to the Manufacturing Science and Technology home page Manufacturing Science and Technology Showcase The Manufacturing Science & Technology Center develops and applies advanced manufacturing processes for realization of
27 CFR 40.355 - Return of manufacturer.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Manufacture of Cigarette Papers and Tubes Taxes § 40.355 Return of manufacturer. (a) Requirement for filing. A manufacturer of cigarette papers and tubes shall file, for each factory...
27 CFR 40.355 - Return of manufacturer.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Manufacture of Cigarette Papers and Tubes Taxes § 40.355 Return of manufacturer. (a) Requirement for filing. A manufacturer of cigarette papers and tubes shall file, for each factory...
27 CFR 40.355 - Return of manufacturer.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Manufacture of Cigarette Papers and Tubes Taxes § 40.355 Return of manufacturer. (a) Requirement for filing. A manufacturer of cigarette papers and tubes shall file, for each factory...
27 CFR 40.355 - Return of manufacturer.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Manufacture of Cigarette Papers and Tubes Taxes § 40.355 Return of manufacturer. (a) Requirement for filing. A manufacturer of cigarette papers and tubes shall file, for each factory...
27 CFR 40.355 - Return of manufacturer.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Manufacture of Cigarette Papers and Tubes Taxes § 40.355 Return of manufacturer. (a) Requirement for filing. A manufacturer of cigarette papers and tubes shall file, for each factory...
Revilla-León, Marta; Özcan, Mutlu
2018-04-22
There are 7 categories of additive manufacturing (AM) technologies, and a wide variety of materials can be used to build a CAD 3D object. The present article reviews the main AM processes for polymers for dental applications: stereolithography (SLA), digital light processing (DLP), material jetting (MJ), and material extrusion (ME). The manufacturing process, accuracy, and precision of these methods will be reviewed, as well as their prosthodontic applications. © 2018 by the American College of Prosthodontists.
Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary
NASA Technical Reports Server (NTRS)
Miller, R. H.; Smith, D. B. S.
1979-01-01
Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.
de Sousa, Jossana Pereira; de Azerêdo, Geíza Alves; de Araújo Torres, Rayanne; da Silva Vasconcelos, Margarida Angélica; da Conceição, Maria Lúcia; de Souza, Evandro Leite
2012-03-15
This study assessed the occurrence of an enhancing inhibitory effect of the combined application of carvacrol and 1,8-cineole against bacteria associated with minimally processed vegetables using the determination of Fractional Inhibitory Concentration (FIC) index, time-kill assay in vegetable broth and application in vegetable matrices. Their effects, individually and in combination, on the sensory characteristics of the vegetables were also determined. Carvacrol and 1,8-cineole displayed Minimum Inhibitory Concentration (MIC) in a range of 0.6-2.5 and 5-20 μL/mL, respectively, against the organisms studied. FIC indices of the combined application of the compounds were 0.25 against Listeria monocytogenes, Aeromonas hydrophila and Pseudomonas fluorescens, suggesting a synergic interaction. Application of carvacrol and 1,8-cineole alone (MIC) or in a mixture (1/8 MIC+1/8 MIC or 1/4 MIC+1/4 MIC) in vegetable broth caused a significant decrease (p<0.05) in bacterial count over 24h. Mixtures of carvacrol and 1,8-cineole reduced (p<0.05) the inocula of all bacteria in vegetable broth and in experimentally inoculated fresh-cut vegetables. A similar efficacy was observed in the reduction of naturally occurring microorganisms in vegetables. Sensory evaluation revealed that the scores of the most-evaluated attributes fell between "like slightly" and "neither like nor dislike." The combination of carvacrol and 1,8-cineole at sub-inhibitory concentrations could constitute an interesting approach to sanitizing minimally processed vegetables. Copyright © 2011 Elsevier B.V. All rights reserved.
Phenopix: a R package to process digital images of a vegetation cover
NASA Astrophysics Data System (ADS)
Filippa, Gianluca; Cremonese, Edoardo; Migliavacca, Mirco; Galvagno, Marta; Morra di Cella, Umberto; Richardson, Andrew
2015-04-01
Plant phenology is a globally recognized indicator of the effects of climate change on the terrestrial biosphere. Accordingly, new tools to automatically track the seasonal development of a vegetation cover are becoming available and more and more deployed. Among them, near-continuous digital images are being collected in several networks in the US, Europe, Asia and Australia in a range of different ecosystems, including agricultural lands, deciduous and evergreen forests, and grasslands. The growing scientific interest in vegetation image analysis highlights the need of easy to use, flexible and standardized processing techniques. In this contribution we illustrate a new open source package called "phenopix" written in R language that allows to process images of a vegetation cover. The main features include: (i) define of one or more areas of interest on an image and process pixel information within them, (ii) compute vegetation indexes based on red green and blue channels, (iii) fit a curve to the seasonal trajectory of vegetation indexes and extract relevant dates (aka thresholds) on the seasonal trajectory; (iv) analyze image pixels separately to extract spatially explicit phenological information. The utilities of the package will be illustrated in detail for two subalpine sites, a grassland and a larch stand at about 2000 m in the Italian Western Alps. The phenopix package is a cost free and easy-to-use tool that allows to process digital images of a vegetation cover in a standardized, flexible and reproducible way. The software is available for download at the R forge web site (r-forge.r-project.org/projects/phenopix/).
Advanced composite rudders for DC-10 aircraft: Design, manufacturing, and ground tests
NASA Technical Reports Server (NTRS)
Lehman, G. M.; Purdy, D. M.; Cominsky, A.; Hawley, A. V.; Amason, M. P.; Kung, J. T.; Palmer, R. J.; Purves, N. B.; Marra, P. J.; Hancock, G. R.
1976-01-01
Design synthesis, tooling and process development, manufacturing, and ground testing of a graphite epoxy rudder for the DC-10 commercial transport are discussed. The composite structure was fabricated using a unique processing method in which the thermal expansion characteristics of rubber tooling mandrels were used to generate curing pressures during an oven cure cycle. The ground test program resulted in certification of the rudder for passenger-carrying flights. Results of the structural and environmental tests are interpreted and detailed development of the rubber tooling and manufacturing process is described. Processing, tooling, and manufacturing problems encountered during fabrication of four development rudders and ten flight-service rudders are discussed and the results of corrective actions are described. Non-recurring and recurring manufacturing labor man-hours are tabulated at the detailed operation level. A weight reduction of 13.58 kg (33 percent) was attained in the composite rudder.
NASA Astrophysics Data System (ADS)
Raguvarun, K.; Balasubramaniam, Krishnan; Rajagopal, Prabhu; Palanisamy, Suresh; Nagarajah, Romesh; Hoye, Nicholas; Curiri, Dominic; Kapoor, Ajay
2015-03-01
Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.
Continuous flow technology vs. the batch-by-batch approach to produce pharmaceutical compounds.
Cole, Kevin P; Johnson, Martin D
2018-01-01
For the manufacture of small molecule drugs, many pharmaceutical innovator companies have recently invested in continuous processing, which can offer significant technical and economic advantages over traditional batch methodology. This Expert Review will describe the reasons for this interest as well as many considerations and challenges that exist today concerning continuous manufacturing. Areas covered: Continuous processing is defined and many reasons for its adoption are described. The current state of continuous drug substance manufacturing within the pharmaceutical industry is summarized. Current key challenges to implementation of continuous manufacturing are highlighted, and an outlook provided regarding the prospects for continuous within the industry. Expert commentary: Continuous processing at Lilly has been a journey that started with the need for increased safety and capability. Over twelve years the original small, dedicated group has grown to more than 100 Lilly employees in discovery, development, quality, manufacturing, and regulatory designing in continuous drug substance processing. Recently we have focused on linked continuous unit operations for the purpose of all-at-once pharmaceutical manufacturing, but the technical and business drivers that existed in the very beginning for stand-alone continuous unit operations in hybrid processes have persisted, which merits investment in both approaches.
NASA Astrophysics Data System (ADS)
Tewolde, Mahder
Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by optimizing cutting speed and power while maintaining surface quality and interface properties. Key parameters are obtained from these experiments and used to develop a process that can be used to fabricate a working TEG directly onto the waste-heat component surface. A TEG module has been fabricated for the first time entirely by using thermal spray technology and laser micromachining. The target applications include automotive exhaust systems and other high-volume industrial waste heat sources. The application of TEGs for thermoelectrically powered sensors for Small Modular Reactors (SMRs) is presented. In conclusion, more ways to improve the fabrication process of TEGs are suggested.
Sustainability Characterization for Additive Manufacturing.
Mani, Mahesh; Lyons, Kevin W; Gupta, S K
2014-01-01
Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts.
[Efficiency evaluation of capsaicinoids to discriminate bio-waste oils from edible vegetable oils].
Mao, Lisha; Liu, Honghe; Kang, Li; Jiang, Jie; Liao, Shicheng; Liu, Guihua; Deng, Pingjian
2014-07-01
To evaluate the efficiency of capsaicinoids to discriminate bio-waste oil from edible vegetable oil. 14 raw vegetable oils, 24 fried waste oils, 34 kitchen-waste oils, 32 edible non-peanut vegetable oil, 32 edible peanuts oil, 16 edible oil add flavorand and 11 refined bio-waste oils were prepared and examined for capsaicinoids including capsaicin, dihydrocapsaicin and nonylic acid vanillylamide. The detection results of the above samples were statistically tested based on sample category to assessment identify the effectiveness of the bio-waste oils with capsaicinoids. As a indicator, capsaincin was possessed of high detection sensitivity and has the highest efficiency to discern kitchen-waste oils and refined bio-waste oils samples from edible non-peanut vegetable oil correctly. The accuracy rate of identification were 100% and 90.1% respectively. There is the background in peanut oil. CONCLUSION Capsaicin added in cooking process can be retained in the refining process and hardly be removed in the refining process. In the case of fully eliminating the background interference, capsaicinoids can effectively identify bio-waste oils and edible vegetable oil in combination.
Micro-topographic hydrologic variability due to vegetation acclimation under climate change
NASA Astrophysics Data System (ADS)
Le, P. V.; Kumar, P.
2012-12-01
Land surface micro-topography and vegetation cover have fundamental effects on the land-atmosphere interactions. The altered temperature and precipitation variability associated with climate change will affect the water and energy processes both directly and that mediated through vegetation. Since climate change induces vegetation acclimation that leads to shifts in evapotranspiration and heat fluxes, it further modifies microclimate and near-surface hydrological processes. In this study, we investigate the impacts of vegetation acclimation to climate change on micro-topographic hydrologic variability. The ability to accurately predict these impacts requires the simultaneous considerations of biochemical, ecophysiological and hydrological processes. A multilayer canopy-root-soil system model coupled with a conjunctive surface-subsurface flow model is used to capture the acclimatory responses and analyze the changes in dynamics of structure and connectivity of micro-topographic storage and in magnitudes of runoff. The study is performed using Light Detection and Ranging (LiDAR) topographic data in the Birds Point-New Madrid floodway in Missouri, U.S.A. The result indicates that both climate change and its associated vegetation acclimation play critical roles in altering the micro-topographic hydrological responses.
Additive manufacturing in production: challenges and opportunities
NASA Astrophysics Data System (ADS)
Ahuja, Bhrigu; Karg, Michael; Schmidt, Michael
2015-03-01
Additive manufacturing, characterized by its inherent layer by layer fabrication methodology has been coined by many as the latest revolution in the manufacturing industry. Due to its diversification of Materials, processes, system technology and applications, Additive Manufacturing has been synonymized with terminology such as Rapid prototyping, 3D printing, free-form fabrication, Additive Layer Manufacturing, etc. A huge media and public interest in the technology has led to an innovative attempt of exploring the technology for applications beyond the scope of the traditional engineering industry. Nevertheless, it is believed that a critical factor for the long-term success of Additive Manufacturing would be its ability to fulfill the requirements defined by the traditional manufacturing industry. A parallel development in market trends and product requirements has also lead to a wider scope of opportunities for Additive Manufacturing. The presented paper discusses some of the key challenges which are critical to ensure that Additive Manufacturing is truly accepted as a mainstream production technology in the industry. These challenges would highlight on various aspects of production such as product requirements, process management, data management, intellectual property, work flow management, quality assurance, resource planning, etc. In Addition, changing market trends such as product life cycle, mass customization, sustainability, environmental impact and localized production will form the foundation for the follow up discussion on the current limitations and the corresponding research opportunities. A discussion on ongoing research to address these challenges would include topics like process monitoring, design complexity, process standardization, multi-material and hybrid fabrication, new material development, etc.
NASA Technical Reports Server (NTRS)
Stachulla, M.; Pernpeinter, R.; Brewster J.; Curreri, P.; Hoffman, E.
2010-01-01
Improving structural efficiency while reducing manufacturing costs are key objectives when making future heavy-lift launchers more performing and cost efficient. The main enabling technologies are the application of advanced high performance materials as well as cost effective manufacture processes. This paper presents the status and main results of a joint industrial research & development effort to demonstrate TRL 6 of a novel manufacturing process for large liquid propellant tanks for launcher applications. Using high strength aluminium-lithium alloy combined with the spin forming manufacturing technique, this development aims at thinner wall thickness and weight savings up to 25% as well as a significant reduction in manufacturing effort. In this program, the concave spin forming process is used to manufacture tank domes from a single flat plate. Applied to aluminium alloy, this process allows reaching the highest possible material strength status T8, eliminating numerous welding steps which are typically necessary to assemble tank domes from 3D-curved panels. To minimize raw material costs for large diameter tank domes for launchers, the dome blank has been composed from standard plates welded together prior to spin forming by friction stir welding. After welding, the dome blank is contoured in order to meet the required wall thickness distribution. For achieving a material state of T8, also in the welding seams, the applied spin forming process allows the required cold stretching of the 3D-curved dome, with a subsequent ageing in a furnace. This combined manufacturing process has been demonstrated up to TRL 6 for tank domes with a 5.4 m diameter. In this paper, the manufacturing process as well as test results are presented. Plans are shown how this process could be applied to future heavy-lift launch vehicles developments, also for larger dome diameters.
7 CFR 318.13-14 - Movement of processed fruits, vegetables, and other products.
Code of Federal Regulations, 2010 CFR
2010-01-01
.../import_export/plants/manuals/ports/downloads/hawaii.pdf and http://www.aphis.usda.gov/import_export/plants/manuals/ports/downloads/puerto_rico.pdf. (b) Consignments of processed fruits, vegetables, or...
Simulation Environment Synchronizing Real Equipment for Manufacturing Cell
NASA Astrophysics Data System (ADS)
Inukai, Toshihiro; Hibino, Hironori; Fukuda, Yoshiro
Recently, manufacturing industries face various problems such as shorter product life cycle, more diversified customer needs. In this situation, it is very important to reduce lead-time of manufacturing system constructions. At the manufacturing system implementation stage, it is important to make and evaluate facility control programs for a manufacturing cell, such as ladder programs for programmable logical controllers (PLCs) rapidly. However, before the manufacturing systems are implemented, methods to evaluate the facility control programs for the equipment while mixing and synchronizing real equipment and virtual factory models on the computers have not been developed. This difficulty is caused by the complexity of the manufacturing system composed of a great variety of equipment, and stopped precise and rapid support of a manufacturing engineering process. In this paper, a manufacturing engineering environment (MEE) to support manufacturing engineering processes using simulation technologies is proposed. MEE consists of a manufacturing cell simulation environment (MCSE) and a distributed simulation environment (DSE). MCSE, which consists of a manufacturing cell simulator and a soft-wiring system, is emphatically proposed in detail. MCSE realizes making and evaluating facility control programs by using virtual factory models on computers before manufacturing systems are implemented.
Sorensen, Glorian; Barbeau, Elizabeth; Stoddard, Anne M.; Hunt, Mary Kay; Kaphingst, Kimberly; Wallace, Lorraine
2005-01-01
Objectives. We examined the efficacy of a cancer prevention intervention designed to improve health behaviors among working-class, multiethnic populations employed in small manufacturing businesses. Methods. Worksites were randomly assigned to an intervention or minimal-intervention control condition. The intervention targeted fruit and vegetable consumption, red meat consumption, multivitamin use, and physical activity. Results. Employees in the intervention group showed greater improvements for every outcome compared with employees in the control group. Differences in improvement were statistically significant for multivitamin use and physical activity. Intervention effects were larger among workers than among managers for fruit and vegetable consumption and for physical activity. Conclusions. The social-context model holds promise for reducing disparities in health behaviors. Further research is needed to improve the effectiveness of the intervention. PMID:16006422
21 CFR 210.2 - Applicability of current good manufacturing practice regulations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Applicability of current good manufacturing... AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE IN MANUFACTURING, PROCESSING, PACKING, OR HOLDING OF DRUGS; GENERAL § 210.2 Applicability of current good manufacturing...
Advanced Manufacturing Technologies
NASA Technical Reports Server (NTRS)
Fikes, John
2016-01-01
Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.
2017-02-01
work was started in October 2015 and completed in October 2016. The use of either trade or manufacturers ’ names in this report does not...active culture and were not the result of residual environmental contamination . Major threat agents such as Bacillus anthracis, Yersinia pestis...presence of Y. pestis and B. anthracis, even though no deliberate contamination was verified (Afshinnekoo et al., 2015). In fact, as of 2015, there have
Near ground level sensing for spatial analysis of vegetation
NASA Technical Reports Server (NTRS)
Sauer, Tom; Rasure, John; Gage, Charlie
1991-01-01
Measured changes in vegetation indicate the dynamics of ecological processes and can identify the impacts from disturbances. Traditional methods of vegetation analysis tend to be slow because they are labor intensive; as a result, these methods are often confined to small local area measurements. Scientists need new algorithms and instruments that will allow them to efficiently study environmental dynamics across a range of different spatial scales. A new methodology that addresses this problem is presented. This methodology includes the acquisition, processing, and presentation of near ground level image data and its corresponding spatial characteristics. The systematic approach taken encompasses a feature extraction process, a supervised and unsupervised classification process, and a region labeling process yielding spatial information.
The influence of badland surfaces and erosion processes on vegetation cover
NASA Astrophysics Data System (ADS)
Hardenbicker, Ulrike; Matheis, Sarah
2014-05-01
To assess the links between badland geomorphology and vegetation cover, we used detailed mapping in the Avonlea badlands, 60 km southwest of Regina, Saskatchewan Canada. Three badlands surfaces are typical in the study area: a basal pediment surface, a mid-slope of bentonitic mudstone with typical popcorn surface, and an upper slope with mud-cemented sandstone. Badland development was triggered by rapid post Pleistocene incision of a meltwater channel in Upper Cretaceous marine and lagoonal sediments. After surveying and mapping of a test area, sediment samples were taken to analyze geophysical parameters. A detailed geomorphic map and vegetation map (1:1000) were compared and analyzed in order to determine the geomorphic environment for plant colonization. The shrink-swell capacity of the bentonitic bedrock, slaking potential and dispersivity are controlled by soil texture, clay mineralogy and chemistry, strongly influencing the timing and location of runoff and the relative significance of surface and subsurface erosional processes. The absence of shrink-swell cracking of the alluvial surfaces of the pediments indicates a low infiltration capacity and sheetflow. The compact lithology of the sandstone is responsible for its low permeability and high runoff coefficient. Slope drainage of steep sandstone slopes is routed through a deep corrasional pipe network. Silver sagebrush (Artemisia cana) is the only species growing on the popcorn surface of the mudrock, which is in large parts vegetation free. The basal pediment shows a distinct 2 m band surrounding the mudrock outcrop without vegetation as a result of high sedimentation rate due to slope wash. Otherwise the typical pioneer vegetation of this basal pediment are grasses. In the transition zone below the steep sandstone cliffs and above the gentle bentonitic mudrock surfaces patches of short-grass vegetation are found, marking slumped blocks with intact vegetation and soil cover. These patches are surrounded by less dense pioneer vegetation consisting of grasses and sage bushes indicating minimal surface erosion or sedimentation. Geomorphic mapping documented a high density of active pipes in this area, transporting silt and fine sand from the sandstone cliffs to lower and basal pediments. Vegetation cover alone is a poor indicator of badland surfaces and erosion processes because of the three-dimensional nature of badland erosion processes, and the shrink-swell capacity of the bentonitic bedrock. A combination of geomorphic and vegetation mapping is needed to identify badland surfaces and processes in the study area.
Zhang, Haiyan; Vestergren, Robin; Wang, Thanh; Yu, Junchao; Jiang, Guibin; Herzke, Dorte
2017-05-16
Emissions of perfluoroalkyl acids (PFAAs) have increased in China over the past decade, but human exposure pathways are poorly understood. Here we analyzed 15 PFAAs in commonly consumed food items and calculated body weight normalized dietary intake rates (estimated dietary intake, EDIs) in an area with ongoing PFAA production (Hubei province; n = 121) and an urbanized coastal area (Zhejiang province; n = 106). Geographical differences in concentrations were primarily observed for perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) in animal food items and short-chain PFAAs in vegetable food items. The average EDI of ∑PFAAs for adults in Hubei (998 ng kg -1 day -1 ) was more than 2 orders of magnitude higher than that in Zhejiang (9.03 ng kg -1 day -1 ). In Hubei province, the average EDI of PFOS for adults (87 ng kg -1 day -1 ) was close to or exceeded advisory guidelines used in other countries indicating health risks for the population from long-term exposure. Yet, PFOS could only account for about 10% of the EDI of ∑PFAAs in the Hubei province, which was dominated by short-chain PFAAs through consumption of vegetables. The large contribution of short-chain PFAAs to the total EDIs in manufacturing areas emphasize the need for improved exposure and hazard assessment tools of these substances.
JTEC Panel report on electronic manufacturing and packaging in Japan
NASA Technical Reports Server (NTRS)
Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John; Meieran, Gene; Pecht, Michael; Peeples, John; Tummala, Rao; Dehaemer, Michael J.; Holdridge, Geoff (Editor); Gamota, George
1995-01-01
This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies.
Manufacturing process and material selection in concurrent collaborative design of MEMS devices
NASA Astrophysics Data System (ADS)
Zha, Xuan F.; Du, H.
2003-09-01
In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
... elements of process validation for the manufacture of human and animal drug and biological products... process validation for the manufacture of human and animal drug and biological products, including APIs. This guidance describes process validation activities in three stages: In Stage 1, Process Design, the...
78 FR 4038 - Critical Parts for Airplane Propellers
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... requiring a system of processes to identify and manage these parts throughout their service life. This rule... engineering process, a manufacturing process, and a service management process for propeller critical parts... engineering process, to how the part is manufactured and to how the part is maintained in service. Engineering...
Determination of several common disinfection by-products in frozen foods.
Cardador, Maria Jose; Gallego, Mercedes
2018-01-01
Disinfected water and/or disinfectants are commonly used by the freezing industry in such processes as sanitising, washing, blanching, cooling and transporting the final product. For this reason, disinfection by-products (DBPs) can be expected in frozen foods. This study focused on the presence of DBPs in a wide variety of frozen vegetables, meats and fish. For this purpose, the 14 halogenated DBPs more prevalent in disinfected water were selected (four trihalomethanes, seven haloacetic acids, two haloacetonitriles and trichloronitromethane). Up to seven DBPs were found in vegetables, whereas only four DBPs were present in meats and fish, and at lower concentrations, since their contact with disinfected water is lower than in frozen vegetables. It is important to emphasise that trichloronitromethane (the most abundant nitrogenous DBP in disinfected water) was found for the first time in foods. Finally, it was concluded that the freezing process can keep the compounds stable longer than other preservation processes (viz. sanitising, canning) and, therefore, frozen foods present higher DBP concentrations than other food categories (minimally processed vegetables, or canned vegetables and meats).
21 CFR 133.170 - Pasteurized process cheese with fruits, vegetables, or meats.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese with fruits, vegetables... AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.170 Pasteurized process cheese with...
21 CFR 133.170 - Pasteurized process cheese with fruits, vegetables, or meats.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized process cheese with fruits, vegetables... AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.170 Pasteurized process cheese with...
Looby, Mairead; Ibarra, Neysi; Pierce, James J; Buckley, Kevin; O'Donovan, Eimear; Heenan, Mary; Moran, Enda; Farid, Suzanne S; Baganz, Frank
2011-01-01
This study describes the application of quality by design (QbD) principles to the development and implementation of a major manufacturing process improvement for a commercially distributed therapeutic protein produced in Chinese hamster ovary cell culture. The intent of this article is to focus on QbD concepts, and provide guidance and understanding on how the various components combine together to deliver a robust process in keeping with the principles of QbD. A fed-batch production culture and a virus inactivation step are described as representative examples of upstream and downstream unit operations that were characterized. A systematic approach incorporating QbD principles was applied to both unit operations, involving risk assessment of potential process failure points, small-scale model qualification, design and execution of experiments, definition of operating parameter ranges and process validation acceptance criteria followed by manufacturing-scale implementation and process validation. Statistical experimental designs were applied to the execution of process characterization studies evaluating the impact of operating parameters on product quality attributes and process performance parameters. Data from process characterization experiments were used to define the proven acceptable range and classification of operating parameters for each unit operation. Analysis of variance and Monte Carlo simulation methods were used to assess the appropriateness of process design spaces. Successful implementation and validation of the process in the manufacturing facility and the subsequent manufacture of hundreds of batches of this therapeutic protein verifies the approaches taken as a suitable model for the development, scale-up and operation of any biopharmaceutical manufacturing process. Copyright © 2011 American Institute of Chemical Engineers (AIChE).
McCue, J; Osborne, D; Dumont, J; Peters, R; Mei, B; Pierce, G F; Kobayashi, K; Euwart, D
2014-07-01
Recombinant factor IX Fc (rFIXFc) fusion protein is the first of a new class of bioengineered long-acting factors approved for the treatment and prevention of bleeding episodes in haemophilia B. The aim of this work was to describe the manufacturing process for rFIXFc, to assess product quality and to evaluate the capacity of the process to remove impurities and viruses. This manufacturing process utilized a transferable and scalable platform approach established for therapeutic antibody manufacturing and adapted for production of the rFIXFc molecule. rFIXFc was produced using a process free of human- and animal-derived raw materials and a host cell line derived from human embryonic kidney (HEK) 293H cells. The process employed multi-step purification and viral clearance processing, including use of a protein A affinity capture chromatography step, which binds to the Fc portion of the rFIXFc molecule with high affinity and specificity, and a 15 nm pore size virus removal nanofilter. Process validation studies were performed to evaluate identity, purity, activity and safety. The manufacturing process produced rFIXFc with consistent product quality and high purity. Impurity clearance validation studies demonstrated robust and reproducible removal of process-related impurities and adventitious viruses. The rFIXFc manufacturing process produces a highly pure product, free of non-human glycan structures. Validation studies demonstrate that this product is produced with consistent quality and purity. In addition, the scalability and transferability of this process are key attributes to ensure consistent and continuous supply of rFIXFc. © 2014 The Authors. Haemophilia Published by John Wiley & Sons Ltd.
Code of Federal Regulations, 2011 CFR
2011-04-01
... PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Returned Dietary Supplements § 111.530 When must an investigation be conducted of your manufacturing processes and other batches? If the reason for a dietary supplement being returned implicates other batches, you must...
Code of Federal Regulations, 2014 CFR
2014-04-01
... PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Returned Dietary Supplements § 111.530 When must an investigation be conducted of your manufacturing processes and other batches? If the reason for a dietary supplement being returned implicates other batches, you must...
Code of Federal Regulations, 2012 CFR
2012-04-01
... PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Returned Dietary Supplements § 111.530 When must an investigation be conducted of your manufacturing processes and other batches? If the reason for a dietary supplement being returned implicates other batches, you must...
Code of Federal Regulations, 2013 CFR
2013-04-01
... PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Returned Dietary Supplements § 111.530 When must an investigation be conducted of your manufacturing processes and other batches? If the reason for a dietary supplement being returned implicates other batches, you must...
Hardwood pallet cant quality and pallet part yields
Hal L. Mitchell; Marshall White; Philip Araman; Peter Hamner
2005-01-01
Raw materials are the largest cost component in pallet manufacturing. The primary raw material used to produce pallet parts are pallet cants. Therefore, pallet cant quality directly impacts pallet part processing and material costs. By knowing the quality of the cants being processed, pallet manufacturers can predict these costs and improve manufacturing efficiency....
Code of Federal Regulations, 2010 CFR
2010-04-01
... PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Returned Dietary Supplements § 111.530 When must an investigation be conducted of your manufacturing processes and other batches? If the reason for a dietary supplement being returned implicates other batches, you must...
Near Infrared Spectroscopy in the Forest Products Industry, Forest Products Journal
Chi-Leung So; Brian K. Via; Leslie H. Groom; Laurence R. Schimleck; Todd F. Shupe; Stephen S. Kelley; Timothy G. Rials
2004-01-01
Improving manufacturing efficiency and increasing product worth requires the right combination of actions throughout the manufacturing process. Many innovations have been developed over the last several decades to achieve these goals. Innovations typically work their way backwards in the manufacturing process, with an increasing level of monitoring occurring at the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... promethium-147: Requirements for license to manufacture, process, produce, or initially transfer. 32.22 Section 32.22 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER..., or initially transfer. (a) An application for a specific license to manufacture, process, or produce...
NIST: Information Management in the AMRF
NASA Technical Reports Server (NTRS)
Callaghan, George (Editor)
1991-01-01
The information management strategies developed for the NIST Automated Manufacturing Research Facility (AMRF) - a prototype small batch manufacturing facility used for integration and measurement related standards research are outlined in this video. The five major manufacturing functions - design, process planning, off-line programming, shop floor control, and materials processing are explained and their applications demonstrated.
Inter-species competition-facilitation in stochastic riparian vegetation dynamics.
Tealdi, Stefano; Camporeale, Carlo; Ridolfi, Luca
2013-02-07
Riparian vegetation is a highly dynamic community that lives on river banks and which depends to a great extent on the fluvial hydrology. The stochasticity of the discharge and erosion/deposition processes in fact play a key role in determining the distribution of vegetation along a riparian transect. These abiotic processes interact with biotic competition/facilitation mechanisms, such as plant competition for light, water, and nutrients. In this work, we focus on the dynamics of plants characterized by three components: (1) stochastic forcing due to river discharges, (2) competition for resources, and (3) inter-species facilitation due to the interplay between vegetation and fluid dynamics processes. A minimalist stochastic bio-hydrological model is proposed for the dynamics of the biomass of two vegetation species: one species is assumed dominant and slow-growing, the other is subdominant, but fast-growing. The stochastic model is solved analytically and the probability density function of the plant biomasses is obtained as a function of both the hydrologic and biologic parameters. The impact of the competition/facilitation processes on the distribution of vegetation species along the riparian transect is investigated and remarkable effects are observed. Finally, a good qualitative agreement is found between the model results and field data. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1984-01-01
Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.
Allison, Gretchen; Cain, Yanxi Tan; Cooney, Charles; Garcia, Tom; Bizjak, Tara Gooen; Holte, Oyvind; Jagota, Nirdosh; Komas, Bekki; Korakianiti, Evdokia; Kourti, Dora; Madurawe, Rapti; Morefield, Elaine; Montgomery, Frank; Nasr, Moheb; Randolph, William; Robert, Jean-Louis; Rudd, Dave; Zezza, Diane
2015-03-01
This paper assesses the current regulatory environment, relevant regulations and guidelines, and their impact on continuous manufacturing. It summarizes current regulatory experience and learning from both review and inspection perspectives. It outlines key regulatory aspects, including continuous manufacturing process description and control strategy in regulatory files, process validation, and key Good Manufacturing Practice (GMP) requirements. In addition, the paper identifies regulatory gaps and challenges and proposes a way forward to facilitate implementation. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Llorente, Berta E; Obregón, Walter David; Avilés, Francesc X; Caffini, Néstor O; Vairo-Cavalli, Sandra
2014-09-15
Artichoke (Cynara scolymus L.) flower extract was assayed with the aim of replacing animal rennet in the manufacture of Gouda-type cheeses from bovine milk. Floral extract coagulated milk within a suitable time for use on an industrial scale, while the yield of cheese obtained was equal to that achieved with bovine abomasum. Five proteolytic fractions with milk-clotting activity were isolated in a two-step purification protocol, three belonging to the cardosin group. Cheeses made with C. scolymus proteases must be brined for a longer period (40 h) to prevent overproteolysis and avoid the development of a background flavor. The type of coagulant (bovine or vegetable) had no significant effect on the cheeses' chemical parameters analyzed throughout ripening, and no significant organoleptic differences were detected between those manufactured with C. scolymus or animal rennet. The results indicate that C. scolymus flower extract is suitable for replacing animal rennet in the production of Gouda-type cheeses. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McEwan, W.; Butterfield, J.
2011-05-01
The well established benefits of composite materials are driving a significant shift in design and manufacture strategies for original equipment manufacturers (OEMs). Thermoplastic composites have advantages over the traditional thermosetting materials with regards to sustainability and environmental impact, features which are becoming increasingly pertinent in the aerospace arena. However, when sustainability and environmental impact are considered as design drivers, integrated methods for part design and product development must be developed so that any benefits of sustainable composite material systems can be assessed during the design process. These methods must include mechanisms to account for process induced part variation and techniques related to re-forming, recycling and decommissioning, which are in their infancy. It is proposed in this paper that predictive techniques related to material specification, part processing and product cost of thermoplastic composite components, be integrated within a Through Life Management (TLM) product development methodology as part of a larger strategy of product system modeling to improve disciplinary concurrency, realistic part performance, and to place sustainability at the heart of the design process. This paper reports the enhancement of digital manufacturing tools as a means of drawing simulated part manufacturing scenarios, real time costing mechanisms, and broader lifecycle performance data capture into the design cycle. The work demonstrates predictive processes for sustainable composite product manufacture and how a Product-Process-Resource (PPR) structure can be customised and enhanced to include design intent driven by `Real' part geometry and consequent assembly. your paper.
Transforming nanomedicine manufacturing toward Quality by Design and microfluidics.
Colombo, Stefano; Beck-Broichsitter, Moritz; Bøtker, Johan Peter; Malmsten, Martin; Rantanen, Jukka; Bohr, Adam
2018-04-05
Nanopharmaceuticals aim at translating the unique features of nano-scale materials into therapeutic products and consequently their development relies critically on the progression in manufacturing technology to allow scalable processes complying with process economy and quality assurance. The relatively high failure rate in translational nanopharmaceutical research and development, with respect to new products on the market, is at least partly due to immature bottom-up manufacturing development and resulting sub-optimal control of quality attributes in nanopharmaceuticals. Recently, quality-oriented manufacturing of pharmaceuticals has undergone an unprecedented change toward process and product development interaction. In this context, Quality by Design (QbD) aims to integrate product and process development resulting in an increased number of product applications to regulatory agencies and stronger proprietary defense strategies of process-based products. Although QbD can be applied to essentially any production approach, microfluidic production offers particular opportunities for QbD-based manufacturing of nanopharmaceuticals. Microfluidics provides unique design flexibility, process control and parameter predictability, and also offers ample opportunities for modular production setups, allowing process feedback for continuously operating production and process control. The present review aims at outlining emerging opportunities in the synergistic implementation of QbD strategies and microfluidic production in contemporary development and manufacturing of nanopharmaceuticals. In doing so, aspects of design and development, but also technology management, are reviewed, as is the strategic role of these tools for aligning nanopharmaceutical innovation, development, and advanced industrialization in the broader pharmaceutical field. Copyright © 2018 Elsevier B.V. All rights reserved.
The vegetative communities associated with mammals of the South. Chapter 2
Beverly Collins; Philip E. Hyatt; Margaret K. Trani
2007-01-01
This chapter describes the ecoregions and vegetation types associated with mammals of the South. The distribution of mammals in the South reflects historic biogeographical processes as well as physiography and vegetation.
Synthesis and study of the roadside vegetation establishment process.
DOT National Transportation Integrated Search
2011-05-01
The Texas Pollutant Discharge Elimination System (TPDES), which is administered and enforced by the : Texas Commission on Environmental Quality (TCEQ), requires perennial vegetation to 70 percent of native : or adjacent background vegetation before a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, John S.; Beese, Allison M.; Bourell, David L.
Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less
Increasing component functionality via multi-process additive manufacturing
NASA Astrophysics Data System (ADS)
Coronel, Jose L.; Fehr, Katherine H.; Kelly, Dominic D.; Espalin, David; Wicker, Ryan B.
2017-05-01
Additively manufactured components, although extensively customizable, are often limited in functionality. Multi-process additive manufacturing (AM) grants the ability to increase the functionality of components via subtractive manufacturing, wire embedding, foil embedding and pick and place. These processes are scalable to include several platforms ranging from desktop to large area printers. The Multi3D System is highlighted, possessing the capability to perform the above mentioned processes, all while transferring a fabricated component with a robotic arm. Work was conducted to fabricate a patent inspired, printed missile seeker. The seeker demonstrated the advantage of multi-process AM via introduction of the pick and place process. Wire embedding was also explored, with the successful interconnect of two layers of embedded wires in different planes. A final demonstration of a printed contour bracket, served to show the reduction of surface roughness on a printed part is 87.5% when subtractive manufacturing is implemented in tandem with AM. Functionality of the components on all the cases was improved. Results included optical components embedded within the printed housing, wires embedded with interconnection, and reduced surface roughness. These results highlight the improved functionality of components through multi-process AM, specifically through work conducted with the Multi3D System.
Towards automatic planning for manufacturing generative processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
CALTON,TERRI L.
2000-05-24
Generative process planning describes methods process engineers use to modify manufacturing/process plans after designs are complete. A completed design may be the result from the introduction of a new product based on an old design, an assembly upgrade, or modified product designs used for a family of similar products. An engineer designs an assembly and then creates plans capturing manufacturing processes, including assembly sequences, component joining methods, part costs, labor costs, etc. When new products originate as a result of an upgrade, component geometry may change, and/or additional components and subassemblies may be added to or are omitted from themore » original design. As a result process engineers are forced to create new plans. This is further complicated by the fact that the process engineer is forced to manually generate these plans for each product upgrade. To generate new assembly plans for product upgrades, engineers must manually re-specify the manufacturing plan selection criteria and re-run the planners. To remedy this problem, special-purpose assembly planning algorithms have been developed to automatically recognize design modifications and automatically apply previously defined manufacturing plan selection criteria and constraints.« less
Carpenter, John S.; Beese, Allison M.; Bourell, David L.; ...
2015-06-26
Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less
Oh, Ching Mien; Guo, Qiyun; Wan Sia Heng, Paul; Chan, Lai Wah
2014-07-01
In any manufacturing process, the success of producing an end product with the desired properties and yield depends on a range of factors that include the equipment, process and formulation variables. It is the interest of manufacturers and researchers to understand each manufacturing process better and ascertain the effects of various manufacturing-associated factors on the properties of the end product. Unless the manufacturing process is well understood, it would be difficult to set realistic limits for the process variables and raw material specifications to ensure consistently high-quality and reproducible end products. Over the years, spray congealing has been used to produce particulates by the food and pharmaceutical industries. The latter have used this technology to develop specialized drug delivery systems. In this review, basic principles as well as advantages and disadvantages of the spray congealing process will be covered. Recent developments in spray congealing equipment, process variables and formulation variables such as the matrix material, encapsulated material and additives will also be discussed. Innovative equipment designs and formulations for spray congealing have emerged. Judicious choice of atomizers, polymers and additives is the key to achieve the desired properties of the microparticles for drug delivery.
21 CFR 210.1 - Status of current good manufacturing practice regulations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Status of current good manufacturing practice... SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE IN MANUFACTURING, PROCESSING, PACKING, OR HOLDING OF DRUGS; GENERAL § 210.1 Status of current good manufacturing practice regulations...
Code of Federal Regulations, 2010 CFR
2010-04-01
... other controlled or noncontrolled substances in finished form, (i) The name of the substance; (ii) The... manufactured; (E) The quantity used in quality control; (F) The quantity lost during manufacturing and the... controlled substances used in the manufacturing process; (vi) The quantity used to manufacture other...
NASA Astrophysics Data System (ADS)
Zielinski, Jonas; Mindt, Hans-Wilfried; Düchting, Jan; Schleifenbaum, Johannes Henrich; Megahed, Mustafa
2017-12-01
Powder bed fusion additive manufacturing of titanium alloys is an interesting manufacturing route for many applications requiring high material strength combined with geometric complexity. Managing powder bed fusion challenges, including porosity, surface finish, distortions and residual stresses of as-built material, is the key to bringing the advantages of this process to production main stream. This paper discusses the application of experimental and numerical analysis towards optimizing the manufacturing process of a demonstration component. Powder characterization including assessment of the reusability, assessment of material consolidation and process window optimization is pursued prior to applying the identified optima to study the distortion and residual stresses of the demonstrator. Comparisons of numerical predictions with measurements show good correlations along the complete numerical chain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saifee, T.; Konnerth, A. III
1991-11-01
Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction.more » The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.« less
CIM's bridge from CADD to CAM: Data management requirements for manufacturing engineering
NASA Technical Reports Server (NTRS)
Ford, S. J.
1984-01-01
Manufacturing engineering represents the crossroads of technical data management in a Computer Integrated Manufacturing (CIM) environment. Process planning, numerical control programming and tool design are the key functions which translate information from as engineered to as assembled. In order to transition data from engineering to manufacturing, it is necessary to introduce a series of product interpretations which contain an interim introduction of technical parameters. The current automation of the product definition and the production process places manufacturing engineering in the center of CAD/CAM with the responsibility of communicating design data to the factory floor via a manufacturing model of the data. A close look at data management requirements for manufacturing engineering is necessary in order to establish the overall specifications for CADD output, CAM input, and CIM integration. The functions and issues associated with the orderly evolution of computer aided engineering and manufacturing are examined.
News: Good chemical manufacturing process criteria
This news column covers topics relating to manufacturing criteria, machine to machine technology, novel process windows, green chemistry indices, business resilience, immobilized enzymes, and Bt crops.
NASA Technical Reports Server (NTRS)
Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo
1989-01-01
The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.
Engineering aspects of rate-related processes in food manufacturing.
Adachi, Shuji
2015-01-01
Many rate-related phenomena occur in food manufacturing processes. This review addresses four of them, all of which are topics that the author has studied in order to design food manufacturing processes that are favorable from the standpoint of food engineering. They include chromatographic separation through continuous separation with a simulated moving adsorber, lipid oxidation kinetics in emulsions and microencapsulated systems, kinetic analysis and extraction in subcritical water, and water migration in pasta.
Application of Contact Mode AFM to Manufacturing Processes
NASA Astrophysics Data System (ADS)
Giordano, Michael A.; Schmid, Steven R.
A review of the application of contact mode atomic force microscopy (AFM) to manufacturing processes is presented. A brief introduction to common experimental techniques including hardness, scratch, and wear testing is presented, with a discussion of challenges in the extension of manufacturing scale investigations to the AFM. Differences between the macro- and nanoscales tests are discussed, including indentation size effects and their importance in the simulation of processes such as grinding. The basics of lubrication theory are presented and friction force microscopy is introduced as a method of investigating metal forming lubrication on the nano- and microscales that directly simulates tooling/workpiece asperity interactions. These concepts are followed by a discussion of their application to macroscale industrial manufacturing processes and direct correlations are made.
Method for distributed agent-based non-expert simulation of manufacturing process behavior
Ivezic, Nenad; Potok, Thomas E.
2004-11-30
A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.
Continuous Flow in Labour-Intensive Manufacturing Process
NASA Astrophysics Data System (ADS)
Pacheco Eng., Jhonny; Carbajal MSc., Eduardo; Stoll-Ing., Cesar, Dr.
2017-06-01
A continuous-flow manufacturing represents the peak of standard production, and usually it means high production in a strict line production. Furthermore, low-tech industry demands high labour-intensive, in this context the efficient of the line production is tied at the job shop organization. Labour-intensive manufacturing processes are a common characteristic for developing countries. This research aims to propose a methodology for production planning in order to fulfilment a variable monthly production quota. The main idea is to use a clock as orchestra director in order to synchronize the rate time (takt time) of customer demand with the manufacturing time. In this way, the study is able to propose a stark reduction of stock in process, over-processing, and unnecessary variability.
System of error detection in the manufacture of garments using artificial vision
NASA Astrophysics Data System (ADS)
Moreno, J. J.; Aguila, A.; Partida, E.; Martinez, C. L.; Morales, O.; Tejeida, R.
2017-12-01
A computer vision system is implemented to detect errors in the cutting stage within the manufacturing process of garments in the textile industry. It provides solution to errors within the process that cannot be easily detected by any employee, in addition to significantly increase the speed of quality review. In the textile industry as in many others, quality control is required in manufactured products and this has been carried out manually by means of visual inspection by employees over the years. For this reason, the objective of this project is to design a quality control system using computer vision to identify errors in the cutting stage within the garment manufacturing process to increase the productivity of textile processes by reducing costs.
Freeze-drying of lactic acid bacteria.
Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie
2015-01-01
Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.
NASA Astrophysics Data System (ADS)
Semenov, K. N.; Charykov, N. A.; Postnov, V. N.; Sharoyko, V. V.; Murin, I. V.
2016-01-01
This review is the first attempt to integrate the available data on all types of phase equilibria (solubility, extraction and sorption) in systems containing light fullerenes (C60 and C70). In the case of solubility diagrams, the following types of phase equilibria are considered: individual fullerene (C60 or C70)-solvent under polythermal and polybaric conditions; C60-C70-solvent, individual fullerene-solvent(1)-solvent(2), as well as multicomponent systems comprising a single fullerene or an industrial mixture of fullerenes and vegetable oils, animal fats or essential oils under polythermal conditions. All published experimental data on the extraction equilibria in C60-C70-liquid phase(1)-liquid phase(2) systems are described systematically and the sorption characteristics of various materials towards light fullerenes are estimated. The possibility of application of these experimental data for development of pre-chromatographic and chromatographic methods for separation of fullerene mixtures and application of fullerenes as nanomodifiers are described. The bibliography includes 87 references.
NASA Astrophysics Data System (ADS)
Irham Anas, Mohd; Khalid, Amir; Hakim Zulkifli, Fathul; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin
2017-10-01
Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant grease for use in diesel engines. The objective of this research is investigation the effects of the variant injection pressure on ignition delay and emission for different biodiesel using rapid compression machine. Rapid Compression Machine (RCM) is used to simulate a single compression stroke of an internal combustion engine as a real engine. Four types of biodiesel which are waste cooking oil, crude palm oil, algae and jatropha were tested at injection pressure of 80 MPa, 90 MPa and 130 MPa under constant ambient temperature at 950 K. Increased in injection pressure resulted shorter ignition delay proven by WCO5 which decreased from 1.3 ms at 80 MPa to 0.7 ms at 130 MPa. Meanwhile, emission for CO2 increased due to better fuel atomization for fuel-air mixture formation lead to completed combustion.
Reuse of spent bleaching earth by polymerisation of residual organics.
Beshara, Abdelhamid; Cheeseman, Christopher R
2014-10-01
Spent bleaching earth (SBE) is a waste generated by the edible oil industry that currently has limited options for beneficial reuse. In excess of ∼2 million tonnes per year of SBE is generated world-wide with major quantities available in the middle-east where significant volumes of edible oils are produced. Low pressure compaction followed by heat treatment at 150°C causes polymerisation of the residual organic components in SBE and this produces monolithic samples with high unconfined compressive strengths (54MPa). SBE can therefore be used to manufacture novel clay blocks for use in construction that are bonded by polymerised vegetable oil. This represents a new, innovative and resource efficient application for SBE. In this research, commercial SBE has been characterised and the effects of key processing variables (temperature and compaction pressure) on the compressive strength, porosity and density of the SBE clay blocks are reported and the mechanisms responsible for strength development are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Talib, Norfazillah; Rahim, Erween Abd.; Nasir, Ramdziah Md.
2017-11-01
The used of metalworking fluids (MWFs) from petroleum-based oil during machining process contributed negative impact to the humans and environment. Therefore, bio-based oil from vegetable oil was recently explored as an alternative solution to petroleum-based oil to implement sustainable manufacturing process. In this study, modified jatropha oil (MJO5) with and without hexagonal boron nitride (hBN) particles were evaluated through friction and wear test and orthogonal cutting performance in comparison with synthetic ester (SE). MJO5 were mixed with hBN particles at various concentrations (i.e. 0.05, 0.1 and 0.5wt.%). Experimental results showed that the addition of 0.05wt.% of hBN particles in MJO5 (MJO5a) provided lowest coefficient of friction (COF) and smallest wear scar diameter (WSD). MJO5a has the best anti-friction ability by reducing the cutting force and cutting temperature which related to the formation of thinner chips and small tool-chip contact length. MJO5a is the best substitute to SE as sustainable MWFs in the machining operation in regards to the environmental and health concern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulsh, M.; Wheeler, D.; Protopappas, P.
The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study usingmore » a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.« less
Holistic Context-Sensitivity for Run-Time Optimization of Flexible Manufacturing Systems.
Scholze, Sebastian; Barata, Jose; Stokic, Dragan
2017-02-24
Highly flexible manufacturing systems require continuous run-time (self-) optimization of processes with respect to diverse parameters, e.g., efficiency, availability, energy consumption etc. A promising approach for achieving (self-) optimization in manufacturing systems is the usage of the context sensitivity approach based on data streaming from high amount of sensors and other data sources. Cyber-physical systems play an important role as sources of information to achieve context sensitivity. Cyber-physical systems can be seen as complex intelligent sensors providing data needed to identify the current context under which the manufacturing system is operating. In this paper, it is demonstrated how context sensitivity can be used to realize a holistic solution for (self-) optimization of discrete flexible manufacturing systems, by making use of cyber-physical systems integrated in manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning algorithms, is proposed aiming at a various manufacturing systems. The new solution encompasses run-time context extractor and optimizer. Based on the self-learning module both context extraction and optimizer are continuously learning and improving their performance. The solution is following Service Oriented Architecture principles. The generic solution is developed and then applied to two very different manufacturing processes.
Holistic Context-Sensitivity for Run-Time Optimization of Flexible Manufacturing Systems
Scholze, Sebastian; Barata, Jose; Stokic, Dragan
2017-01-01
Highly flexible manufacturing systems require continuous run-time (self-) optimization of processes with respect to diverse parameters, e.g., efficiency, availability, energy consumption etc. A promising approach for achieving (self-) optimization in manufacturing systems is the usage of the context sensitivity approach based on data streaming from high amount of sensors and other data sources. Cyber-physical systems play an important role as sources of information to achieve context sensitivity. Cyber-physical systems can be seen as complex intelligent sensors providing data needed to identify the current context under which the manufacturing system is operating. In this paper, it is demonstrated how context sensitivity can be used to realize a holistic solution for (self-) optimization of discrete flexible manufacturing systems, by making use of cyber-physical systems integrated in manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning algorithms, is proposed aiming at a various manufacturing systems. The new solution encompasses run-time context extractor and optimizer. Based on the self-learning module both context extraction and optimizer are continuously learning and improving their performance. The solution is following Service Oriented Architecture principles. The generic solution is developed and then applied to two very different manufacturing processes. PMID:28245564
Intelligent Processing Equipment Projects at DLA
NASA Technical Reports Server (NTRS)
Obrien, Donald F.
1992-01-01
The Defense Logistics Agency is successfully incorporating Intelligent Processing Equipment (IPE) into each of its Manufacturing Technology thrust areas. Several IPE applications are addressed in the manufacturing of two 'soldier support' items: combat rations and military apparel. In combat rations, in-line sensors for food processing are being developed or modified from other industries. In addition, many process controls are being automated to achieve better quality and to gain higher use (soldier) acceptance. IPE applications in military apparel include: in-process quality controls for identification of sewing defects, use of robots in the manufacture of shirt collars, and automated handling of garments for pressing.
Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements
NASA Technical Reports Server (NTRS)
Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.
1979-01-01
Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware.
Intelligent processing equipment projects at DLA
NASA Astrophysics Data System (ADS)
Obrien, Donald F.
1992-04-01
The Defense Logistics Agency is successfully incorporating Intelligent Processing Equipment (IPE) into each of its Manufacturing Technology thrust areas. Several IPE applications are addressed in the manufacturing of two 'soldier support' items: combat rations and military apparel. In combat rations, in-line sensors for food processing are being developed or modified from other industries. In addition, many process controls are being automated to achieve better quality and to gain higher use (soldier) acceptance. IPE applications in military apparel include: in-process quality controls for identification of sewing defects, use of robots in the manufacture of shirt collars, and automated handling of garments for pressing.
21 CFR 211.103 - Calculation of yield.
Code of Federal Regulations, 2011 CFR
2011-04-01
...: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and Process Controls... at the conclusion of each appropriate phase of manufacturing, processing, packaging, or holding of...
21 CFR 211.103 - Calculation of yield.
Code of Federal Regulations, 2010 CFR
2010-04-01
...: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and Process Controls... at the conclusion of each appropriate phase of manufacturing, processing, packaging, or holding of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... INSPECTION Standards Definitions § 29.6043 Tobacco. Tobacco in its unmanufactured forms as it appears between... manufacturing process. Conditioning, sweating, and stemming are not regarded as manufacturing processes. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... INSPECTION Standards Definitions § 29.6043 Tobacco. Tobacco in its unmanufactured forms as it appears between... manufacturing process. Conditioning, sweating, and stemming are not regarded as manufacturing processes. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... INSPECTION Regulations Definitions § 29.23 Tobacco. Tobacco in its unmanufactured forms as it appears between... manufacturing process. Conditioning, sweating, and stemming are not regarded as manufacturing processes. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... INSPECTION Standards Definitions § 29.6043 Tobacco. Tobacco in its unmanufactured forms as it appears between... manufacturing process. Conditioning, sweating, and stemming are not regarded as manufacturing processes. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... INSPECTION Regulations Definitions § 29.23 Tobacco. Tobacco in its unmanufactured forms as it appears between... manufacturing process. Conditioning, sweating, and stemming are not regarded as manufacturing processes. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... INSPECTION Standards Definitions § 29.6043 Tobacco. Tobacco in its unmanufactured forms as it appears between... manufacturing process. Conditioning, sweating, and stemming are not regarded as manufacturing processes. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... INSPECTION Regulations Definitions § 29.23 Tobacco. Tobacco in its unmanufactured forms as it appears between... manufacturing process. Conditioning, sweating, and stemming are not regarded as manufacturing processes. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... INSPECTION Regulations Definitions § 29.23 Tobacco. Tobacco in its unmanufactured forms as it appears between... manufacturing process. Conditioning, sweating, and stemming are not regarded as manufacturing processes. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... INSPECTION Standards Definitions § 29.6043 Tobacco. Tobacco in its unmanufactured forms as it appears between... manufacturing process. Conditioning, sweating, and stemming are not regarded as manufacturing processes. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... INSPECTION Regulations Definitions § 29.23 Tobacco. Tobacco in its unmanufactured forms as it appears between... manufacturing process. Conditioning, sweating, and stemming are not regarded as manufacturing processes. ...
Integrated control system for electron beam processes
NASA Astrophysics Data System (ADS)
Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.
2018-03-01
The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.
Optimization of the Manufacturing Process of Conical Shell Structures Using Prepreg Laminatees
NASA Astrophysics Data System (ADS)
Khakimova, Regina; Zimmermann, Rolf; Burau, Florian; Siebert, Marc; Arbelo, Mariano; Castro, Saullo; Degenhardt, Richard
2014-06-01
The design and manufacture of an unstiffened composite conical structure which is a scaled-down version of the Ariane 5 Midlife Evolution Equipment Bay Structure is presented. For such benchmarking structures the fiber orientation error is critical and then the manufacturing process becomes a big challenge. The paper therefore is focused on the implementation of a tailoring study and on the manufacturing process. The conical structure will be tested to validate a new design approach.This study contributes to the European Union (EU) project DESICOS, whose aim is to develop less conservative design guidelines for imperfection sensitive thin-walled structures.
NASA Astrophysics Data System (ADS)
AlShamsi, Meera R.
2016-10-01
Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as governmental entities and municipalities.
Cost analysis of advanced turbine blade manufacturing processes
NASA Technical Reports Server (NTRS)
Barth, C. F.; Blake, D. E.; Stelson, T. S.
1977-01-01
A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.
Roll-to-Roll Advanced Materials Manufacturing DOE Lab Consortium - FY16 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, Claus; Wood, III, David L.; Krumdick, Gregory
2016-12-01
A DOE laboratory consortium comprised of ORNL, ANL, NREL and LBNL, coordinating with Kodak’s Eastman Business Park (Kodak) and other selected industry partners, was formed to address enhancing battery electrode performance and R2R manufacturing challenges. The objective of the FY 2016 seed project was to develop a materials genome synthesis process amenable to R2R manufacturing and to provide modeling, simulation, processing, and manufacturing techniques that demonstrate the feasibility of process controls and scale-up potential for improved battery electrodes. The research efforts were to predict and measure changes and results in electrode morphology and performance based on process condition changes; tomore » evaluate mixed, active, particle size deposition and drying for novel electrode materials; and to model various process condition changes and the resulting morphology and electrode performance.« less
NASA Technical Reports Server (NTRS)
Carruth, Ralph
2008-01-01
There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.
NASA Astrophysics Data System (ADS)
Iwamura, Koji; Kuwahara, Shinya; Tanimizu, Yoshitaka; Sugimura, Nobuhiro
Recently, new distributed architectures of manufacturing systems are proposed, aiming at realizing more flexible control structures of the manufacturing systems. Many researches have been carried out to deal with the distributed architectures for planning and control of the manufacturing systems. However, the human operators have not yet been discussed for the autonomous components of the distributed manufacturing systems. A real-time scheduling method is proposed, in this research, to select suitable combinations of the human operators, the resources and the jobs for the manufacturing processes. The proposed scheduling method consists of following three steps. In the first step, the human operators select their favorite manufacturing processes which they will carry out in the next time period, based on their preferences. In the second step, the machine tools and the jobs select suitable combinations for the next machining processes. In the third step, the automated guided vehicles and the jobs select suitable combinations for the next transportation processes. The second and third steps are carried out by using the utility value based method and the dispatching rule-based method proposed in the previous researches. Some case studies have been carried out to verify the effectiveness of the proposed method.
Importance of vegetation distribution for future carbon balance
NASA Astrophysics Data System (ADS)
Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B.
2015-12-01
Projections of future terrestrial carbon uptake vary greatly between simulations. Net primary production (NPP), wild fires, vegetation dynamics (including biome shifts) and soil decomposition constitute the main processes governing the response of the terrestrial carbon cycle in a changing climate. While primary production and soil respiration are relatively well studied and implemented in all global ecosystem models used to project the future land sink of CO2, vegetation dynamics are less studied and not always represented in global models. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality and the associated turnover and proven skill in predicting vegetation distribution and succession. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the CMIP5 ensemble under RCP8.5 radiative forcing at year 2085. We exchanged carbon cycle processes between these 13 simulations and investigate the changes predicted by the emulator. This method allowed us to partition the entire ensemble carbon uptake uncertainty into individual processes. We found that NPP, vegetation dynamics (including biome shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33% respectively of uncertainties in modeled global C-uptake. Uncertainty due to vegetation dynamics was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by shifts in vegetation distribution, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.
Automotive Manufacturing Processes. Volume III - Casting and Forging Processes
DOT National Transportation Integrated Search
1981-02-01
Extensive material substitution and resizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pro...
Launching the dialogue: Safety and innovation as partners for success in advanced manufacturing.
Geraci, C L; Tinkle, S S; Brenner, S A; Hodson, L L; Pomeroy-Carter, C A; Neu-Baker, N
2018-06-01
Emerging and novel technologies, materials, and information integrated into increasingly automated and networked manufacturing processes or into traditional manufacturing settings are enhancing the efficiency and productivity of manufacturing. Globally, there is a move toward a new era in manufacturing that is characterized by: (1) the ability to create and deliver more complex designs of products; (2) the creation and use of materials with new properties that meet a design need; (3) the employment of new technologies, such as additive and digital techniques that improve on conventional manufacturing processes; and (4) a compression of the time from initial design concept to the creation of a final product. Globally, this movement has many names, but "advanced manufacturing" has become the shorthand for this complex integration of material and technology elements that enable new ways to manufacture existing products, as well as new products emerging from new technologies and new design methods. As the breadth of activities associated with advanced manufacturing suggests, there is no single advanced manufacturing industry. Instead, aspects of advanced manufacturing can be identified across a diverse set of business sectors that use manufacturing technologies, ranging from the semiconductors and electronics to the automotive and pharmaceutical industries. The breadth and diversity of advanced manufacturing may change the occupational and environmental risk profile, challenge the basic elements of comprehensive health and safety (material, process, worker, environment, product, and general public health and safety), and provide an opportunity for development and dissemination of occupational and environmental health and safety (OEHS) guidance and best practices. It is unknown how much the risk profile of different elements of OEHS will change, thus requiring an evolution of health and safety practices. These changes may be accomplished most effectively through multi-disciplinary, multi-sector, public-private dialogue that identifies issues and offers solutions.
Thermodynamic analysis of resources used in manufacturing processes.
Gutowski, Timothy G; Branham, Matthew S; Dahmus, Jeffrey B; Jones, Alissa J; Thiriez, Alexandre
2009-03-01
In this study we use a thermodynamic framework to characterize the material and energy resources used in manufacturing processes. The analysis and data span a wide range of processes from "conventional" processes such as machining, casting, and injection molding, to the so-called "advanced machining" processes such as electrical discharge machining and abrasive waterjet machining, and to the vapor-phase processes used in semiconductor and nanomaterials fabrication. In all, 20 processes are analyzed. The results show that the intensity of materials and energy used per unit of mass of material processed (measured either as specific energy or exergy) has increased by at least 6 orders of magnitude over the past several decades. The increase of material/energy intensity use has been primarily a consequence of the introduction of new manufacturing processes, rather than changes in traditional technologies. This phenomenon has been driven by the desire for precise small-scale devices and product features and enabled by stable and declining material and energy prices over this period. We illustrate the relevance of thermodynamics (including exergy analysis) for all processes in spite of the fact that long-lasting focus in manufacturing has been on product quality--not necessarily energy/material conversion efficiency. We promote the use of thermodynamics tools for analysis of manufacturing processes within the context of rapidly increasing relevance of sustainable human enterprises. We confirm that exergy analysis can be used to identify where resources are lost in these processes, which is the first step in proposing and/or redesigning new more efficient processes.
Additive manufacturing: Toward holistic design
Jared, Bradley H.; Aguilo, Miguel A.; Beghini, Lauren L.; ...
2017-03-18
Here, additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.
Determination of Process Parameters for High-Density, Ti-6Al-4V Parts Using Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamath, C.
In our earlier work, we described an approach for determining the process parameters that re- sult in high-density parts manufactured using the additive-manufacturing process of selective laser melting (SLM). Our approach, which combines simple simulations and experiments, was demon- strated using 316L stainless steel. We have also used the approach successfully for several other materials. This short note summarizes the results of our work in determining process parameters for Ti-6Al-4V using a Concept Laser M2 system.
NASA Astrophysics Data System (ADS)
Zelazny, A. L.; Walsh, K. F.; Deegan, J. P.; Bundschuh, B.; Patton, E. K.
2015-05-01
The demand for infrared optical elements, particularly those made of chalcogenide materials, is rapidly increasing as thermal imaging becomes affordable to the consumer. The use of these materials in conjunction with established lens manufacturing techniques presents unique challenges relative to the cost sensitive nature of this new market. We explore the process from design to manufacture, and discuss the technical challenges involved. Additionally, facets of the development process including manufacturing logistics, packaging, supply chain management, and qualification are discussed.
Noe, G.B.; Shroder, John F.
2013-01-01
Hydrogeomorphic, vegetative, and biogeochemical processes interact in floodplains resulting in great complexity that provides opportunities to better understand linkages among physical and biological processes in ecosystems. Floodplains and their associated river systems are structured by four-dimensional gradients of hydrogeomorphology: longitudinal, lateral, vertical, and temporal components. These four dimensions create dynamic hydrologic and geomorphologic mosaics that have a large imprint on the vegetation and nutrient biogeochemistry of floodplains. Plant physiology, population dynamics, community structure, and productivity are all very responsive to floodplain hydrogeomorphology. The strength of this relationship between vegetation and hydrogeomorphology is evident in the use of vegetation as an indicator of hydrogeomorphic processes. However, vegetation also influences hydrogeomorphology by modifying hydraulics and sediment entrainment and deposition that typically stabilize geomorphic patterns. Nitrogen and phosphorus biogeochemistry commonly influence plant productivity and community composition, although productivity is not limited by nutrient availability in all floodplains. Conversely, vegetation influences nutrient biogeochemistry through direct uptake and storage as well as production of organic matter that regulates microbial biogeochemical processes. The biogeochemistries of nitrogen and phosphorus cycling are very sensitive to spatial and temporal variation in hydrogeomorphology, in particular floodplain wetness and sedimentation. The least-studied interaction is the direct effect of biogeochemistry on hydrogeomorphology, but the control of nutrient availability over organic matter decomposition and thus soil permeability and elevation is likely important. Biogeochemistry also has the more documented but indirect control of hydrogeomorphology through regulation of plant biomass. In summary, the defining characteristics of floodplain ecosystems are determined by the many interactions among physical and biological processes. Conservation and restoration of the valuable ecosystem services that floodplains provide depend on improved understanding and predictive models of interactive system controls and behavior.
Noe, G.B.
2013-01-01
Hydrogeomorphic, vegetative, and biogeochemical processes interact in floodplains resulting in great complexity that provides opportunities to better understand linkages among physical and biological processes in ecosystems. Floodplains and their associated river systems are structured by four dimensional gradients of hydrogeomorphology: longitudinal, lateral, vertical, and temporal components. These four dimensions create dynamic hydrologic and geomorphologic mosaics that have a large imprint on the vegetation and nutrient biogeochemistry of floodplains. Plant physiology, population dynamics, community structure, and productivity are all very responsive to floodplain hydrogeomorphology. The strength of this relationship between vegetation and hydrogeomorphology is evident in the use of vegetation as an indicator of hydrogeomorphic processes. However, vegetation also influences hydrogeomorphology by modifying hydraulics and sediment entrainment and deposition that typically stabilize geomorphic patterns. Nitrogen and phosphorus biogeochemistry commonly influence plant productivity and community composition, although productivity is not limited by nutrient availability in all floodplains. Conversely, vegetation influences nutrient biogeochemistry through direct uptake and storage as well as production of organic matter that regulates microbial biogeochemical processes. The biogeochemistries of nitrogen and phosphorus cycling are very sensitive to spatial and temporal variation in hydrogeomorphology, in particular floodplain wetness and sedimentation. The least studied interaction is the direct effect of biogeochemistry on hydrogeomorphology, but the control of nutrient availability over organic matter decomposition and thus soil permeability and elevation is likely important. Biogeochemistry also has the more documented but indirect control of hydrogeomorphology through regulation of plant biomass. In summary, the defining characteristics of floodplain ecosystems are determined by the many interactions among physical and biological processes. Conservation and restoration of the valuable ecosystem services that floodplains provide depends on improved understanding and predictive models of interactive system controls and behavior.
Mining manufacturing data for discovery of high productivity process characteristics.
Charaniya, Salim; Le, Huong; Rangwala, Huzefa; Mills, Keri; Johnson, Kevin; Karypis, George; Hu, Wei-Shou
2010-06-01
Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables over a large number of production runs are archived in the data warehouse. This vast amount of data is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production robustness. Cell culture process data from 108 'trains' comprising production as well as inoculum bioreactors from Genentech's manufacturing facility were investigated. Each run constitutes over one-hundred on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-based support vector regression algorithm was used to integrate all the process parameters and develop predictive models for a key cell culture performance parameter. The model was also used to identify and rank process parameters according to their relevance in predicting process outcome. Evaluation of cell culture stage-specific models indicates that production performance can be reliably predicted days prior to harvest. Strong associations between several temporal parameters at various manufacturing stages and final process outcome were uncovered. This model-based data mining represents an important step forward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this methodology on the manufacturing floor can facilitate a real-time decision making process and thereby improve the robustness of large scale bioprocesses. 2010 Elsevier B.V. All rights reserved.