Sample records for vegetation canopy structure

  1. Effects of vegetation canopy structure on remotely sensed canopy temperatures. [inferring plant water stress and yield

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1979-01-01

    The effects of vegetation canopy structure on thermal infrared sensor response must be understood before vegetation surface temperatures of canopies with low percent ground cover can be accurately inferred. The response of a sensor is a function of vegetation geometric structure, the vertical surface temperature distribution of the canopy components, and sensor view angle. Large deviations between the nadir sensor effective radiant temperature (ERT) and vegetation ERT for a soybean canopy were observed throughout the growing season. The nadir sensor ERT of a soybean canopy with 35 percent ground cover deviated from the vegetation ERT by as much as 11 C during the mid-day. These deviations were quantitatively explained as a function of canopy structure and soil temperature. Remote sensing techniques which determine the vegetation canopy temperature(s) from the sensor response need to be studied.

  2. Coherence Effects in L-Band Active and Passive Remote Sensing of Quasi-Periodic Corn Canopies

    NASA Technical Reports Server (NTRS)

    Utku, Cuneyt; Lang, Roger H.

    2011-01-01

    Due to their highly random nature, vegetation canopies can be modeled using the incoherent transport theory for active and passive remote sensing applications. Agricultural vegetation canopies however are generally more structured than natural vegetation. The inherent row structure in agricultural canopies induces coherence effects disregarded by the transport theory. The objective of this study is to demonstrate, via Monte-Carlo simulations, these coherence effects on L-band scattering and thermal emission from corn canopies consisting of only stalks.

  3. Wind erosion in semiarid landscapes: Predictive models and remote sensing methods for the influence of vegetation

    NASA Technical Reports Server (NTRS)

    Musick, H. Brad

    1993-01-01

    The objectives of this research are: to develop and test predictive relations for the quantitative influence of vegetation canopy structure on wind erosion of semiarid rangeland soils, and to develop remote sensing methods for measuring the canopy structural parameters that determine sheltering against wind erosion. The influence of canopy structure on wind erosion will be investigated by means of wind-tunnel and field experiments using structural variables identified by the wind-tunnel and field experiments using model roughness elements to simulate plant canopies. The canopy structural variables identified by the wind-tunnel and field experiments as important in determining vegetative sheltering against wind erosion will then be measured at a number of naturally vegetated field sites and compared with estimates of these variables derived from analysis of remotely sensed data.

  4. Canopy BRF simulation of forest with different crown shape and height in larger scale based on Radiosity method

    NASA Astrophysics Data System (ADS)

    Song, Jinling; Qu, Yonghua; Wang, Jindi; Wan, Huawei; Liu, Xiaoqing

    2007-06-01

    Radiosity method is based on the computer simulation of 3D real structures of vegetations, such as leaves, branches and stems, which are composed by many facets. Using this method we can simulate the canopy reflectance and its bidirectional distribution of the vegetation canopy in visible and NIR regions. But with vegetations are more complex, more facets to compose them, so large memory and lots of time to calculate view factors are required, which are the choke points of using Radiosity method to calculate canopy BRF of lager scale vegetation scenes. We derived a new method to solve the problem, and the main idea is to abstract vegetation crown shapes and to simplify their structures, which can lessen the number of facets. The facets are given optical properties according to the reflectance, transmission and absorption of the real structure canopy. Based on the above work, we can simulate the canopy BRF of the mix scenes with different species vegetation in the large scale. In this study, taking broadleaf trees as an example, based on their structure characteristics, we abstracted their crowns as ellipsoid shells, and simulated the canopy BRF in visible and NIR regions of the large scale scene with different crown shape and different height ellipsoids. Form this study, we can conclude: LAI, LAD the probability gap, the sunlit and shaded surfaces are more important parameter to simulate the simplified vegetation canopy BRF. And the Radiosity method can apply us canopy BRF data in any conditions for our research.

  5. Modelisation de l'architecture des forets pour ameliorer la teledetection des attributs forestiers

    NASA Astrophysics Data System (ADS)

    Cote, Jean-Francois

    The quality of indirect measurements of canopy structure, from in situ and satellite remote sensing, is based on knowledge of vegetation canopy architecture. Technological advances in ground-based, airborne or satellite remote sensing can now significantly improve the effectiveness of measurement programs on forest resources. The structure of vegetation canopy describes the position, orientation, size and shape of elements of the canopy. The complexity of the canopy in forest environments greatly limits our ability to characterize forest structural attributes. Architectural models have been developed to help the interpretation of canopy structural measurements by remote sensing. Recently, the terrestrial LiDAR systems, or TLiDAR (Terrestrial Light Detection and Ranging), are used to gather information on the structure of individual trees or forest stands. The TLiDAR allows the extraction of 3D structural information under the canopy at the centimetre scale. The methodology proposed in my Ph.D. thesis is a strategy to overcome the weakness in the structural sampling of vegetation cover. The main objective of the Ph.D. is to develop an architectural model of vegetation canopy, called L-Architect (LiDAR data to vegetation Architecture), and to focus on the ability to document forest sites and to get information on canopy structure from remote sensing tools. Specifically, L-Architect reconstructs the architecture of individual conifer trees from TLiDAR data. Quantitative evaluation of L-Architect consisted to investigate (i) the structural consistency of the reconstructed trees and (ii) the radiative coherence by the inclusion of reconstructed trees in a 3D radiative transfer model. Then, a methodology was developed to quasi-automatically reconstruct the structure of individual trees from an optimization algorithm using TLiDAR data and allometric relationships. L-Architect thus provides an explicit link between the range measurements of TLiDAR and structural attributes of individual trees. L-Architect has finally been applied to model the architecture of forest canopy for better characterization of vertical and horizontal structure with airborne LiDAR data. This project provides a mean to answer requests of detailed canopy architectural data, difficult to obtain, to reproduce a variety of forest covers. Because of the importance of architectural models, L-Architect provides a significant contribution for improving the capacity of parameters' inversion in vegetation cover for optical and lidar remote sensing. Mots-cles: modelisation architecturale, lidar terrestre, couvert forestier, parametres structuraux, teledetection.

  6. Diurnal variations in maize and soybean vegetation indices from continuous measurements of ground-based spectral reflectance

    NASA Astrophysics Data System (ADS)

    Arkebauer, T. J.; Walter-Shea, E. A.

    2017-12-01

    Vegetation indices, based on canopy spectral reflectance, are widely used to infer physical and biological characteristics of vegetation. Understanding the changes in remotely sensed signals as vegetation responds to its changing environment is essential for full assessment of canopy structure and function. Canopy-level reflectance has been measured at Nebraska AmeriFlux sites US-Ne1, US-Ne2 and US-Ne3 for most years since flux measurements were initiated in 2001. Tower-mounted spectral sensors provided 10-minute averaged reflectance (in PAR and NIR spectral regions) every half hour through the growing season for maize and soybean. Canopy reflectance varied over diurnal and seasonal time periods which led to variations in vegetation indices. One source of variation is due to the interaction of incident solar radiant energy with canopy structure (e.g., reflectance varies with changes in solar zenith angle and direct beam fraction, vegetative fraction, and leaf angle distribution). Another source of variation results from changes in canopy function (e.g., fluctuations in gross primary production and invocation of photoprotective mechanisms with plant stress). We present here a series of diurnal "patterns" of vegetation indices (including Normalized Difference Vegetation Index and Chlorophyll Index) for maize and soybean under mostly clear sky conditions. We demonstrate that diurnal patterns change as the LAI of the canopy changes through the course of the growing season in a somewhat predictable pattern from plant emergence (low vegetative cover) through peak green LAI (full vegetation cover). However, there are changes in the diurnal pattern that we have yet to fully understand; this variation in pattern may indicate variation in canopy function. Initially, we have explored the pattern changes qualitatively and are currently developing more quantitative approaches.

  7. Effect of vegetative canopy architecture on vertical transport of massless particles

    USDA-ARS?s Scientific Manuscript database

    A series of large-eddy simulations were performed to examine the effect of canopy architecture on particle dispersion. A heterogeneous canopy geometry was simulated that consists of a set of infinitely repeating vegetation rows. Simulations in which row structure was approximately resolved were comp...

  8. Influence of vegetation structure on lidar-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions.

    PubMed

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available.

  9. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    PubMed Central

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  10. A Numerical Study of Atmospheric Perturbations Induced by Heat From a Wildland Fire: Sensitivity to Vertical Canopy Structure and Heat Source Strength

    NASA Astrophysics Data System (ADS)

    Kiefer, Michael T.; Zhong, Shiyuan; Heilman, Warren E.; Charney, Joseph J.; Bian, Xindi

    2018-03-01

    An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is utilized in a series of idealized numerical experiments to investigate the influence of vertical canopy structure on the atmospheric response to a stationary sensible heat flux at the ground ("fire heat flux"), broadly consistent in magnitude with the sensible heat flux from a low-intensity surface fire. Five vertical canopy structures are combined with five fire heat flux magnitudes to yield a matrix of 25 simulations. Analyses of the fire-heat-flux-perturbed u component of the wind, vertical velocity, kinetic energy, and temperature show that the spatial pattern and magnitude of the perturbations are sensitive to vertical canopy structure. Both vertical velocity and kinetic energy exhibit an increasing trend with increasing fire heat flux that is stronger for cases with some amount of overstory vegetation than cases with exclusively understory vegetation. A weaker trend in cases with exclusively understory vegetation indicates a damping of the atmospheric response to the sensible heat from a surface fire when vegetation is most concentrated near the surface. More generally, the results presented in this study suggest that canopy morphology should be considered when applying the results of a fire-atmosphere interaction study conducted in one type of forest to other forests with different canopy structures.

  11. Response of rocky invertebrate diversity, structure and function to the vertical layering of vegetation

    NASA Astrophysics Data System (ADS)

    Bustamante, María; Tajadura, Javier; Gorostiaga, José María; Saiz-Salinas, José Ignacio

    2014-06-01

    Macroalgae comprise a prominent part of the rocky benthos where many invertebrates develop, and are believed to be undergoing severe declines worldwide. In order to investigate how the vegetation structure (crustose, basal and canopy layers) contributes to the diversity, structure and function of benthic invertebrates, a total of 31 subtidal transects were sampled along the northeast Atlantic coast of Spain. Significant positive relationships were found between the canopy layer and faunal abundance, taxonomic diversity and functional group diversity. Canopy forming algae were also related to epiphytic invertebrates, medium size forms, colonial strategy and suspensivores. By contrast, basal algae showed negative relationships with all variables tested except for detritivores. Multivariate multiple regression analyses (DISTLM) point to crustose as well as canopy layers as the best link between seaweeds and invertebrate assemblage structure. A close relationship was found between taxonomic and functional diversities. In general, low levels of taxonomic redundancy were detected for functional groups correlated with vegetation structure. A conceptual model based on the results is proposed, describing distinct stages of invertebrate assemblages in relation to the vertical structure of vegetation.

  12. Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest

    USGS Publications Warehouse

    Thompson, C.; Beringer, J.; Chapin, F. S.; McGuire, A.D.

    2004-01-01

    Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.

  13. Characterization and classification of vegetation canopy structure and distribution within the Great Smoky Mountains National Park using LiDAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Jitendra; HargroveJr., William Walter; Norman, Steven P

    Vegetation canopy structure is a critically important habit characteristic for many threatened and endangered birds and other animal species, and it is key information needed by forest and wildlife managers for monitoring and managing forest resources, conservation planning and fostering biodiversity. Advances in Light Detection and Ranging (LiDAR) technologies have enabled remote sensing-based studies of vegetation canopies by capturing three-dimensional structures, yielding information not available in two-dimensional images of the landscape pro- vided by traditional multi-spectral remote sensing platforms. However, the large volume data sets produced by airborne LiDAR instruments pose a significant computational challenge, requiring algorithms to identify andmore » analyze patterns of interest buried within LiDAR point clouds in a computationally efficient manner, utilizing state-of-art computing infrastructure. We developed and applied a computationally efficient approach to analyze a large volume of LiDAR data and to characterize and map the vegetation canopy structures for 139,859 hectares (540 sq. miles) in the Great Smoky Mountains National Park. This study helps improve our understanding of the distribution of vegetation and animal habitats in this extremely diverse ecosystem.« less

  14. Development and applications of the LANDFIRE forest structure layers

    Treesearch

    Chris Toney; Birgit Peterson; Don Long; Russ Parsons; Greg Cohn

    2012-01-01

    The LANDFIRE program is developing 2010 maps of vegetation and wildland fuel attributes for the United States at 30-meter resolution. Currently available vegetation layers include ca. 2001 and 2008 forest canopy cover and canopy height derived from Landsat and Forest Inventory and Analysis (FIA) plot measurements. The LANDFIRE canopy cover layer for the conterminous...

  15. Forest structure affects trophic linkages: How silvicultural disturbance impacts bats and their insect prey

    USGS Publications Warehouse

    Dodd, L.E.; Lacki, M.J.; Britzke, E.R.; Buehler, D.A.; Keyser, P.D.; Larkin, J.L.; Rodewald, A.D.; Wigley, T.B.; Wood, P.B.; Rieske, L.K.

    2012-01-01

    Vertebrate insectivores such as bats are a pervasive top-down force on prey populations in forest ecosystems. Conservation focusing on forest-dwelling bats requires understanding of community-level interactions between these predators and their insect prey. Our study assessed bat activity and insect occurrence (abundance and diversity) across a gradient of forest disturbance and structure (silvicultural treatments) in the Central Appalachian region of North America. We conducted acoustic surveys of bat echolocation concurrent with insect surveys using blacklight and malaise traps over 2 years. Predator activity, prey occurrence and prey biomass varied seasonally and across the region. The number of bat echolocation pulses was positively related with forest disturbance, whereas prey demonstrated varied trends. Lepidopteran abundance was negatively related with disturbance, while dipteran abundance and diversity was positively related with disturbance. Coleoptera were unaffected. Neither bat nor insect response variables differed between plot interiors and edges. Correlations between bat activity and vegetative structure reflected differences in foraging behavior among ensembles. Activity of myotine bats was correlated with variables describing sub-canopy vegetation, whereas activity of lasiurine bats was more closely correlated with canopy-level vegetation. Lepidopteran abundance was correlated with variables describing canopy and sub-canopy vegetation, whereas coleopteran and dipteran occurrence were more closely correlated with canopy-level vegetative structure. Our study demonstrates regional variation in bat activity and prey occurrence across a forested disturbance gradient. Land management and conservation efforts should consider the importance of vegetation structure and plant species richness to sustain forest-dwelling bats and their insect prey.

  16. Percent canopy cover and stand structure statistics from the Forest Vegetation Simulator

    Treesearch

    Nicholas L. Crookston; Albert R. Stage

    1999-01-01

    Estimates of percent canopy cover generated by the Forest Vegetation Simulator (FVS) are corrected for crown overlap using an equation presented in this paper. A comparison of the new cover estimate to some others is provided. The cover estimate is one of several describing stand structure. The structure descriptors also include major species, ranges of diameters, tree...

  17. Effects of corn stalk orientation and water content on passive microwave sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Blanchard, B. J.; Wang, J. R.; Gould, W. I.; Jackson, T. J.

    1984-01-01

    A field experiment was conducted utilizing artificial arrangements of plant components during the summer of 1982 to examine the effects of corn canopy structure and plant water content on microwave emission. Truck-mounted microwave radiometers at C (5 GHz) and L (1.4 GHz) band sensed vertically and horizontally polarized radiation concurrent with ground observations of soil moisture and vegetation parameters. Results indicate that the orientation of cut stalks and the distribution of their dielectric properties through the canopy layer can influence the microwave emission measured from a vegetation/soil scene. The magnitude of this effect varies with polarization and frequency and with the amount of water in the plant, disappearing at low levels of vegetation water content. Although many of the canopy structures and orientations studied in this experiment are somewhat artificial, they serve to improve understanding of microwave energy interactions within a vegetation canopy and to aid in the development of appropriate physically based vegetation models.

  18. Vegetation change detection and quantification: linking Landsat imagery and LIDAR data

    USGS Publications Warehouse

    Peterson, Birgit E.; Nelson, Kurtis J.

    2009-01-01

    Measurements of the horizontal and vertical structure of vegetation are helpful for detecting and monitoring change or disturbance on the landscape. Lidar has a unique ability to capture the three-dimensional structure of vegetation canopies. In this preliminary study, we present the results of a series of exploratory data analyses that tested our assumptions about the links between the structural data obtainable from lidar and the change detection products derived from Landsat imagery. Our study area is located in the Sierra National Forest in the Sierra Nevada Mountains of California and covers a wide range of vegetation types. The lidar data used in this study were collected by the Laser Vegetation Imaging System (LVIS) (Blair et al., 1999). LVIS is a largefootprint lidar system optimized to measure canopy structure characteristics. A series of Landsat scenes from 1984 through 2008 was collected for the study area (Path 42, Row 34) and processed to generate maps of disturbance. The preliminary results described here indicate that even simple metrics of height can be useful in assessing changes in structure brought about by disturbance in forest canopies. For example, canopy height values for 2008 were higher on average than those measured for 1999 in undisturbed forest, whereas this trend is not clearly observable for the disturbed forest patches.

  19. Spatial fuel data products of the LANDFIRE Project

    USGS Publications Warehouse

    Reeves, M.C.; Ryan, K.C.; Rollins, M.G.; Thompson, T.G.

    2009-01-01

    The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50 states. Here we describe development of the LANDFIRE wildland fuels data layers for the conterminous 48 states: surface fire behavior fuel models, canopy bulk density, canopy base height, canopy cover, and canopy height. Surface fire behavior fuel models are mapped by developing crosswalks to vegetation structure and composition created by LANDFIRE. Canopy fuels are mapped using regression trees relating field-referenced estimates of canopy base height and canopy bulk density to satellite imagery, biophysical gradients and vegetation structure and composition data. Here we focus on the methods and data used to create the fuel data products, discuss problems encountered with the data, provide an accuracy assessment, demonstrate recent use of the data during the 2007 fire season, and discuss ideas for updating, maintaining and improving LANDFIRE fuel data products.

  20. Organized turbulent motions in a hedgerow vineyard: effect of evolving canopy structure

    NASA Astrophysics Data System (ADS)

    Vendrame, Nadia; Tezza, Luca; Tha Paw U, Kyaw; Pitacco, Andrea

    2017-04-01

    Vegetation-atmosphere exchanges are determined by functional and structural properties of the plants together with environmental forcing. However, a fundamental aspect is the interaction of the canopy with the lower atmosphere. The vegetation deeply alters the composition and physical properties of the air flow, exchanging energy, matter and momentum with it. These processes take place in the bottom part of the atmospheric boundary layer where turbulence is the main mechanism transporting within-canopy air towards the mid- and upper atmospheric boundary layer and vice versa. Canopy turbulence is highly influenced by vegetation drag elements, determining the vertical profile of turbulent moments within the canopy. Canopies organized in rows, like vineyards, show peculiar turbulent transport dynamics. In addition, the morphological structure (phenology) of the vineyard is greatly variable seasonally, shifting from an empty canopy during vine dormancy to dense foliage in summer. The understanding of the canopy ventilation regime is related to several practical applications in vineyard management. For example, within-canopy turbulent motion is very important to predict small particles dispersion, like fungal spores, and minimize infection studying the effect on leaf wetness duration. Our study aims to follow the continuous evolution of turbulence characteristics and canopy structure during the growing season of a hedgerow vineyard, from bud break to fully developed canopy. The field experiment was conducted in a flat extensive vineyard in North-Eastern Italy, using a vertical array of five synchronous sonic anemometers within and above the canopy. Turbulent flow organization was greatly influenced by canopy structure. Turbulent coherent structures involved in momentum transport have been investigated using the classical quadrant analysis and a novel approach to identify dominant temporal scales. Momentum transport in the canopy was dominated by downward gusts showing increasing importance throughout the growing season. At the same time, transport intermittency increased with developing leaf density. The contribution by interaction terms, acting opposite to downward momentum flux, increased in the lower canopy. The analysis of event time scales revealed that momentum transport in the vineyard was dominated by sweeps of 2-4 s duration and ejections of 4-6 s duration, which can be summed to estimate an average duration of dominating coherent structures in the order of 6-10 s. The evolution of canopy morphology did not have any clear influence on structure duration.

  1. Understanding patterns of vegetation structure and distribution across Great Smoky Mountains National Park using LiDAR and meteorology data

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Hargrove, W. W.; Norman, S. P.; Hoffman, F. M.

    2017-12-01

    Great Smoky Mountains National Park (GSMNP) in Tennessee is a biodiversity hotspot and home to a large number of plant, animal and bird species. Driven by gradients of climate (ex. temperature, precipitation regimes), topography (ex. elevation, slope, aspect), geology (ex. soil types, textures, depth), hydrology (ex. drainage, moisture availability) etc. GSMNP offers a diverse composition and distribution of vegetation which in turn supports an array of wildlife. Understanding the vegetation canopy structure is critical to understand, monitor and manage the complex forest ecosystems like the Great Smoky Mountain National Park (GSMNP). Vegetation canopies not only help understand the vegetation, but are also a critically important habitat characteristics of many threatened and endangered animal and bird species that GSMNP is home to. Using airborne Light Detection and Ranging (LiDAR) we characterize the three-dimensional structure of the vegetation. LiDAR based analysis gives detailed insight in the canopy structure (overstory and understory) and its spatial variability within and across forest types. Vegetation structure and spatial distribution show strong correlation with climate, topographic, and edaphic variables and our multivariate analysis not just mines rich and large LiDAR data but presents ecological insights and data for vegetation within the park that can be useful to forest managers in their management and conservation efforts.

  2. Evaluating a small footprint, waveform-resolving lidar over coastal vegetation communities

    USGS Publications Warehouse

    Nayegandhl, A.; Brock, J.C.; Wright, C.W.; O'Connell, M. J.

    2006-01-01

    NASA's Experimental Advanced Airborne Research Lidar (EAARL) is a raster-scanning, waveform-resolving, green-wavelength (532 nm) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor records the time history of the return waveform within a small footprint (20 cm diameter) for each laser pulse, enabling characterization of vegetation canopy structure and "bare earth" topography under a variety of vegetation types. A collection of individual waveforms combined within a synthesized large footprint was used to define three metrics: canopy height (CH), canopy reflection ratio (CRR), and height of median energy (HOME). Bare Earth Elevation (BEE) metric was derived using the individual small-footprint waveforms. All four metrics were tested for reproducibility, which resulted in an average of 95 percent correspondence within two standard deviations of the mean. CH and BEE values were also tested for accuracy using ground-truth data. The results presented in this paper show that combining several individual small-footprint laser pulses to define a composite "large-footprint" waveform is a possible method to depict the vertical structure of a vegetation canopy. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  3. The stochastic Beer-Lambert-Bouguer law for discontinuous vegetation canopies

    NASA Astrophysics Data System (ADS)

    Shabanov, N.; Gastellu-Etchegorry, J.-P.

    2018-07-01

    The 3D distribution of canopy foliage affects the radiation regime and retrievals of canopy biophysical parameters. The gap fraction is one primary indicator of a canopy structure. Historically the Beer-Lambert-Bouguer law and the linear mixture model have served as a basis for multiple technologies for retrievals of the gap (or vegetation) fraction and Leaf Area Index (LAI). The Beer-Lambert-Bouguer law is a form of the Radiative Transfer (RT) equation for homogeneous canopies, which was later adjusted for a correlation between fitoelements using concept of the clumping index. The Stochastic Radiative Transfer (SRT) approach has been developed specifically for heterogeneous canopies, however the approach lacks a proper model of the vegetation fraction. This study is focused on the implementation of the stochastic version of the Beer-Lambert-Bouguer law for heterogeneous canopies, featuring the following principles: 1) two mechanisms perform photon transport- transmission through the turbid medium of foliage crowns and direct streaming through canopy gaps, 2) the radiation field is influenced by a canopy structure (quantified by the statistical moments of a canopy structure) and a foliage density (quantified by the gap fraction as a function of LAI), 3) the notions of canopy transmittance and gap fraction are distinct. The derived stochastic Beer-Lambert-Bouguer law is consistent with the Geometrical Optical and Radiative Transfer (GORT) derivations. Analytical and numerical analysis of the stochastic Beer-Lambert-Bouguer law presented in this study provides the basis to reformulate widely used technologies for retrievals of the gap fraction and LAI from ground and satellite radiation measurements.

  4. The effects of vegetation and soil hydraulic properties on passive microwave sensing of soil moisture: Data report for the 1982 fiels experiments

    NASA Technical Reports Server (NTRS)

    Oneill, P.; Jackson, T.; Blanchard, B. J.; Vandenhoek, R.; Gould, W.; Wang, J.; Glazar, W.; Mcmurtrey, J., III

    1983-01-01

    Field experiments to (1) study the biomass and geometrical structure properties of vegetation canopies to determine their impact on microwave emission data, and (2) to verify whether time series microwave data can be related to soil hydrologic properties for use in soil type classification. Truck mounted radiometers at 1.4 GHz and 5 GHz were used to obtain microwave brightness temperatures of bare vegetated test plots under different conditions of soil wetness, plant water content and canopy structure. Observations of soil moisture, soil temperature, vegetation biomass and other soil and canopy parameters were made concurrently with the microwave measurements. The experimental design and data collection procedures for both experiments are documented and the reduced data are presented in tabular form.

  5. Diurnal variations of vegetation canopy structure

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Kirchner, J. A.

    1983-01-01

    The significance and magnitude of diurnal variations of vegetation canopy structure are reviewed. Diurnal leaf inclination-azimuth angle distributions of a soybean and cotton canopy were documented using a simple measurement technique. The precision of the measurements was on the order of + or -5 deg for the inclination and + or -14 deg for the azimuth. The experimental results and a review of the literature showed that this distribution can vary significantly on a diurnal basis due to vegetation type, heliotropic leaf movement, environmental conditions, and vegetation stress. The study also showed that it is erroneous to treat two separate distributions of azimuth and inclination angles rather than one three-dimensional distribution of leaf orientation. The latter distribution needs to be routinely collected in studies which document variations of diurnal spectral reflectance with changes in solar zenith angle.

  6. Quantifying vegetation distribution and structure using high resolution drone-based structure-from-motion photogrammetry

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Okin, G.

    2017-12-01

    Vegetation is one of the most important driving factors of different ecosystem processes in drylands. The structure of vegetation controls the spatial distribution of moisture and heat in the canopy and the surrounding area. Also, the structure of vegetation influences both airflow and boundary layer resistance above the land surface. Multispectral satellite remote sensing has been widely used to monitor vegetation coverage and its change; however, it can only capture 2D images, which do not contain the vertical information of vegetation. In situ observation uses different methods to measure the structure of vegetation, and their results are accurate; however, these methods are laborious and time-consuming, and susceptible to undersampling in spatial heterogeneity. Drylands are sparsely covered by short plants, which allows the drone fly at a relatively low height to obtain ultra-high resolution images. Structure-from-motion (SfM) is a photogrammetric method that was proved to produce 3D model based on 2D images. Drone-based remote sensing can obtain the multiangle images for one object, which can be used to constructed 3D models of vegetation in drylands. Using these images detected by the drone, the orthomosaics and digital surface model (DSM) can be built. In this study, the drone-based remote sensing was conducted in Jornada Basin, New Mexico, in the spring of 2016 and 2017, and three derived vegetation parameters (i.e., canopy size, bare soil gap size, and plant height) were compared with those obtained with field measurement. The correlation coefficient of canopy size, bare soil gap size, and plant height between drone images and field data are 0.91, 0.96, and 0.84, respectively. The two-year averaged root-mean-square error (RMSE) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.61 m, 1.21 m, and 0.25 cm, respectively. The two-year averaged measure error (ME) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.02 m, -0.03, and -0.1 m, respectively. These results indicate a good agreement between drone-based remote sensing and field measurement.

  7. Characterization and classification of vegetation canopy structure and distribution within the Great Smoky Mountains National Park using LiDAR

    Treesearch

    Jitendra Kumar; Jon Weiner; William W. Hargrove; Steve Norman; Forrest M. Hoffman; Doug Newcomb

    2016-01-01

    Vegetation canopy structure is a critically important habitat characteristic for many threatened and endangered birds and other animal species, and it is key information needed by forest and wildlife managers for monitoring and managing forest resources, conservation planning and fostering biodiversity. Advances in Light Detection and Ranging (LiDAR) technologies have...

  8. Developing a global mixed-canopy, height-variable vegetation structure dataset for estimating global vegetation albedo and biomass in the NASA Ent Terrestrial Biosphere Model and GISS GCM

    NASA Astrophysics Data System (ADS)

    Montes, C.; Kiang, N. Y.; Yang, W.; Ni-Meister, W.; Schaaf, C.; Aleinov, I. D.; Jonas, J.; Zhao, F. A.; Yao, T.; Wang, Z.; Sun, Q.

    2015-12-01

    Processes determining biosphere-atmosphere coupling are strongly influenced by vegetation structure. Thus, ecosystem carbon sequestration and evapotranspiration affecting global carbon and water balances will depend upon the spatial extent of vegetation, its vertical structure, and its physiological variability. To represent this globally, Dynamic Global Vegetation Models (DGVMs) coupled to General Circulation Models (GCMs) make use of satellite and/or model-based vegetation classifications often composed by homogeneous communities. This work aims at developing a new Global Vegetation Structure Dataset (GVSD) by incorporating varying vegetation heights for mixed plant communities to be used as input to the Ent Terrestrial Biosphere Model (TBM), the DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM. Information sources include the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014) along with the Global Data Sets of Vegetation Leaf Area Index (LAI)3g (Zhu et al. 2013). Further PFT partitioning is performed according to a climate classification utilizing the Climate Research Unit (CRU) and the NOAA Global Precipitation Climatology Centre (GPCC) data. Final products are a GVSD consisting of mixed plant communities (e.g. mixed forests, savannas, mixed PFTs) following the Ecosystem Demography model (Moorcroft et al., 2001) approach represented by multi-cohort community patches at the sub-grid level of the GCM, which are ensembles of identical individuals whose differences are represented by PFTs, canopy height, density and vegetation structure sensitivity to allometric parameters. To assess the sensitivity of the GISS GCM to vegetation structure, we produce a range of estimates of Ent TBM biomass and plant densities by varying allometric specifications. Ultimately, this GVSD will serve as a template for community data sets, and be used as boundary conditions to the Ent TBM for prediction of canopy albedo in the Analytical Clumped Two-Stream canopy radiative transfer scheme, biomass, primary productivity, respiration, and GISS GCM climate.

  9. Incorporating Plant Phenology Dynamics in a Biophysical Canopy Model

    NASA Technical Reports Server (NTRS)

    Barata, Raquel A.; Drewry, Darren

    2012-01-01

    The Multi-Layer Canopy Model (MLCan) is a vegetation model created to capture plant responses to environmental change. Themodel vertically resolves carbon uptake, water vapor and energy exchange at each canopy level by coupling photosynthesis, stomatal conductance and leaf energy balance. The model is forced by incoming shortwave and longwave radiation, as well as near-surface meteorological conditions. The original formulation of MLCan utilized canopy structural traits derived from observations. This project aims to incorporate a plant phenology scheme within MLCan allowing these structural traits to vary dynamically. In the plant phenology scheme implemented here, plant growth is dependent on environmental conditions such as air temperature and soil moisture. The scheme includes functionality that models plant germination, growth, and senescence. These growth stages dictate the variation in six different vegetative carbon pools: storage, leaves, stem, coarse roots, fine roots, and reproductive. The magnitudes of these carbon pools determine land surface parameters such as leaf area index, canopy height, rooting depth and root water uptake capacity. Coupling this phenology scheme with MLCan allows for a more flexible representation of the structure and function of vegetation as it responds to changing environmental conditions.

  10. Characterization of Canopy Layering in Forested Ecosystems Using Full Waveform Lidar

    NASA Technical Reports Server (NTRS)

    Whitehurst, Amanda S.; Swatantran, Anu; Blair, J. Bryan; Hofton, Michelle A.; Dubayah, Ralph

    2013-01-01

    Canopy structure, the vertical distribution of canopy material, is an important element of forest ecosystem dynamics and habitat preference. Although vertical stratification, or "canopy layering," is a basic characterization of canopy structure for research and forest management, it is difficult to quantify at landscape scales. In this paper we describe canopy structure and develop methodologies to map forest vertical stratification in a mixed temperate forest using full-waveform lidar. Two definitions-one categorical and one continuous-are used to map canopy layering over Hubbard Brook Experimental Forest, New Hampshire with lidar data collected in 2009 by NASA's Laser Vegetation Imaging Sensor (LVIS). The two resulting canopy layering datasets describe variation of canopy layering throughout the forest and show that layering varies with terrain elevation and canopy height. This information should provide increased understanding of vertical structure variability and aid habitat characterization and other forest management activities.

  11. Interpreting vegetation reflectance measurements as a function of solar zenith angle

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Smith, J. A.; Ranson, K. J.

    1979-01-01

    Spectral hemispherical-conical reflectances of a nadir looking sensor were taken throughout the day for a lodgepole pine and two grass canopies. Mathematical simulations of both spectral hemispherical-conical and bi-hemispherical reflectances were performed for two theoretical canopies of contrasting geometric structure. These results and comparisons with literature studies showed a great amount of variability of vegetation canopy reflectances as a function of solar zenith angle. Explanations for this variability are discussed and recommendations for further measurements are proposed.

  12. The extension of a uniform canopy reflectance model to include row effects

    NASA Technical Reports Server (NTRS)

    Suits, G. H. (Principal Investigator)

    1981-01-01

    The effect of row structure is assumed to be caused by the variation in density of vegetation across rows rather than to a profile in canopy height. The calculation of crop reflectance using vegetation density modulation across rows follows a parallel procedure to that for a uniform canopy. Predictions using the row model for wheat show that the effect of changes in sun to row azimuth are greatest in Landsat Band 5 (red band) and can result in underestimation of crop vigor.

  13. Directional Canopy Emissivity Estimation Based on Spectral Invariants

    NASA Astrophysics Data System (ADS)

    Guo, M.; Cao, B.; Ren, H.; Yongming, D.; Peng, J.; Fan, W.

    2017-12-01

    Land surface emissivity is a crucial parameter for estimating land surface temperature from remote sensing data and also plays an important role in the physical process of surface energy and water balance from local to global scales. To our knowledge, the emissivity varies with surface type and cover. As for the vegetation, its canopy emissivity is dependent on vegetation types, viewing zenith angle and structure that changes in different growing stages. Lots of previous studies have focused on the emissivity model, but few of them are analytic and suited to different canopy structures. In this paper, a new physical analytic model is proposed to estimate the directional emissivity of homogenous vegetation canopy based on spectral invariants. The initial model counts the directional absorption in six parts: the direct absorption of the canopy and the soil, the absorption of the canopy and soil after a single scattering and after multiple scattering within the canopy-soil system. In order to analytically estimate the emissivity, the pathways of photons absorbed in the canopy-soil system are traced using the re-collision probability in Fig.1. After sensitive analysis on the above six absorptions, the initial complicated model was further simplified as a fixed mathematic expression to estimate the directional emissivity for vegetation canopy. The model was compared with the 4SAIL model, FRA97 model, FRA02 model and DART model in Fig.2, and the results showed that the FRA02 model is significantly underestimated while the FRA97 model is a little underestimated, on basis of the new model. On the contrary, the emissivity difference between the new model with the 4SAIL model and DART model was found to be less than 0.002. In general, since the new model has the advantages of mathematic expression with accurate results and clear physical meaning, the model is promising to be extended to simulate the directional emissivity for the discrete canopy in further study.

  14. Discriminating Canopy Structural Types from Optical Properties using AVIRIS Data in the Sierra National Forest in Central California

    NASA Astrophysics Data System (ADS)

    Huesca Martinez, M.; Garcia, M.; Roth, K. L.; Casas, A.; Ustin, S.

    2015-12-01

    There is a well-established need within the remote sensing community for improved estimation of canopy structure and understanding of its influence on the retrieval of leaf biochemical properties. The aim of this project was to evaluate the estimation of structural properties directly from hyperspectral data, with the broader goal that these might be used to constrain retrievals of canopy chemistry. We used NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to discriminate different canopy structural types, defined in terms of biomass, canopy height and vegetation complexity, and compared them to estimates of these properties measured by LiDAR data. We tested a large number of optical metrics, including single narrow band reflectance and 1st derivative, sub-pixel cover fractions, narrow-band indices, spectral absorption features, and Principal Component Analysis components. Canopy structural types were identified and classified from different forest types by integrating structural traits measured by optical metrics using the Random Forest (RF) classifier. The classification accuracy was above 70% in most of the vegetation scenarios. The best overall accuracy was achieved for hardwood forest (>80% accuracy) and the lowest accuracy was found in mixed forest (~70% accuracy). Furthermore, similarly high accuracy was found when the RF classifier was applied to a spatially independent dataset, showing significant portability for the method used. Results show that all spectral regions played a role in canopy structure assessment, thus the whole spectrum is required. Furthermore, optical metrics derived from AVIRIS proved to be a powerful technique for structural attribute mapping. This research illustrates the potential for using optical properties to distinguish several canopy structural types in different forest types, and these may be used to constrain quantitative measurements of absorbing properties in future research.

  15. Relationships among vegetation structure, canopy composition, and avian richness patterns across an aspen-conifer forest gradient

    Treesearch

    Charles E. Swift; Kerri T. Vierling; Andrew T. Hudak; Lee A. Vierling

    2017-01-01

    Ecologists have a long-term interest in understanding the relative influence of vegetation composition and vegetation structure on avian diversity. LiDAR remote sensing is useful in studying local patterns of avian diversity because it characterizes fine-scale vegetation structure across broad extents. We used LiDAR, aerial and satellite imagery, and avian field data...

  16. Approximating Reflectance and Transmittance of Vegetation Using Multiple Spectral Invariants

    NASA Astrophysics Data System (ADS)

    Mottus, M.

    2011-12-01

    Canopy spectral invariants, eigenvalues of the radiative transfer equation and photon recollision probability are some of the new theoretical tools that have been applied in remote sensing of vegetation and atmosphere. The theoretical approach based on spectral invariants, informally also referred to as the p-theory, owns its attractivity to several factors. Firstly, it provides a rapid and physically-based way of describing canopy scattering. Secondly, the p-theory aims at parameterizing canopy structure in reflectance models using a simple and intuitive concept which can be applied at various structural levels, from shoot to tree crown. The theory has already been applied at scales from the molecular level to forest stands. The most important shortcoming of the p-theory lies in its inability to predict the directionality of scattering. The theory is currently based on only one physical parameter, the photon recollision probability p. It is evident that one parameter cannot contain enough information to reasonably predict the observed complex reflectance patterns produced by natural vegetation canopies. Without estimating scattering directionality, however, the theory cannot be compared with even the most simple (and well-tested) two-stream vegetation reflectance models. In this study, we evaluate the possibility to use additional parameters to fit the measured reflectance and transmittance of a vegetation stand. As a first step, the parameters are applied to separate canopy scattering into reflectance and transmittance. New parameters are introduced following the general approach of eigenvector expansion. Thus, the new parameters are coined higher-order spectral invariants. Calculation of higher-order invariants is based on separating first-order scattering from total scattering. Thus, the method explicitly accounts for different view geometries with different fractions of visible sunlit canopy (e.g., hot-spot). It additionally allows to produce different irradiation levels on leaf surfaces for direct and diffuse incidence, thus (in theory) allowing more accurate calculation of potential photosynthesis rates. Similarly to the p-theory, the use of multiple spectral invariants facilitates easy parametrization of canopy structure and scaling between different structural levels (leaf-shoot-stand). Spectral invariant-based remote sensing approaches are well suited for relatively large pixels even when no detailed ground truth information is available. In a case study, the theory of multiple spectral invariants was applied to measured canopy scattering. Spectral reflectance and transmittance measurements were carried out in gray alder (Alnus incana) plantation at Tartu Observatory, Estonia, in August 2006. The equations produced by the theory of spectral invariants were fitted to measured radiation fluxes. Preliminary results indicate that quantities with invariant-like behavior may indeed be used to approximate canopy scattering directionality.

  17. Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro.

    PubMed

    Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus

    2015-01-01

    In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866-4550 m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.

  18. Prediction of senescent rangeland canopy structural attributes with airborne hyperspectral imagery

    USDA-ARS?s Scientific Manuscript database

    Canopy structural and chemical data are needed for senescent, mixed-grass prairie landscapes in autumn, yet models driven by image data are lacking for rangelands dominated by non-photosynthetically active vegetation (NPV). Here, we report how aerial hyperspectral imagery might be modeled to predic...

  19. Simulation of ICESat-2 canopy height retrievals for different ecosystems

    NASA Astrophysics Data System (ADS)

    Neuenschwander, A. L.

    2016-12-01

    Slated for launch in late 2017 (or early 2018), the ICESat-2 satellite will provide a global distribution of geodetic measurements from a space-based laser altimeter of both the terrain surface and relative canopy heights which will provide a significant benefit to society through a variety of applications ranging from improved global digital terrain models to producing distribution of above ground vegetation structure. The ATLAS instrument designed for ICESat-2, will utilize a different technology than what is found on most laser mapping systems. The photon counting technology of the ATLAS instrument onboard ICESat-2 will record the arrival time associated with a single photon detection. That detection can occur anywhere within the vertical distribution of the reflected signal, that is, anywhere within the vertical distribution of the canopy. This uncertainty of where the photon will be returned from within the vegetation layer is referred to as the vertical sampling error. Preliminary simulation studies to estimate vertical sampling error have been conducted for several ecosystems including woodland savanna, montane conifers, temperate hardwoods, tropical forest, and boreal forest. The results from these simulations indicate that the canopy heights reported on the ATL08 data product will underestimate the top canopy height in the range of 1 - 4 m. Although simulation results indicate the ICESat-2 will underestimate top canopy height, there is, however, a strong correlation between ICESat-2 heights and relative canopy height metrics (e.g. RH75, RH90). In tropical forest, simulation results indicate the ICESat-2 height correlates strongly with RH90. Similarly, in temperate broadleaf forest, the simulated ICESat-2 heights were also strongly correlated with RH90. In boreal forest, the simulated ICESat-2 heights are strongly correlated with RH75 heights. It is hypothesized that the correlations between simulated ICESat-2 heights and canopy height metrics are a function of both canopy cover and vegetation physiology (e.g. leaf size/shape) which contributes to the horizontal and vertical structure of the vegetation.

  20. Comprehensive Understanding for Vegetated Scene Radiance Relationships

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Deering, D. W.

    1984-01-01

    The improvement of our fundamental understanding of the dynamics of directional scattering properties of vegetation canopies through analysis of field data and model simulation data is discussed. Directional reflectance distributions spanning the entire existance hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Some structural and optical measurements were taken. Field data show unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends are proposed based on scattering properties of soil and vegetation. Soil exhibited a strong backscattering peak toward the Sun. Complete vegetation exhibited a bowl distribution with the minimum reflectance near nadir. Incomplete vegetation canopies show shifting of the minimum reflectance off of nadir in the forward scattering direction because both the scattering properties or the vegetation and soil are observed.

  1. The Effect of Stem- and Canopy-Scale Turbulence on Sediment Dynamics within Submerged Vegetation.

    NASA Astrophysics Data System (ADS)

    Tinoco, R. O.; San Juan Blanco, J. E.; Prada, A. F.

    2017-12-01

    Stem- and canopy-scale turbulence generated by submerged patches of vegetation plays a paramount role on sediment transport within aquatic ecosystems such as wetlands, marshes, mangrove forests, and coastal regions, as dense patches dampen velocities and mean bed stresses within the plants, while also increasing turbulence intensity through stem-scale wakes and canopy-scale eddies. To explore the interactions between such processes, laboratory experiments are conducted using rigid cylinders placed in a staggered configuration as vegetation elements, embedded on a non-cohesive sediment bed in a racetrack flume. Quantitative imaging is used to characterize the flow field and the associated suspended sediment concentration throughout the water column at different submergence ratios, defined as the ratio between water depth, H, and plant height, h, to investigate the role of canopy-scale eddies formed at the top of the canopy, and their interaction with near-bed flow structures, on sediment dynamics. Turbulent kinetic energy, turbulent intensity, and Reynolds stresses are quantified within and above the array to clearly identify the contributions from bed generated turbulence and vegetation generated turbulence, at both stem- and canopy-scale, as submergence ratio increases from emergent, H/h=1, to fully submerged, H/h=5, conditions. The experimental results are compared with transport models to highlight the need for a multi-scale approach to represent flow-vegetation-sediment interactions.

  2. Examining the canopy interception at a forest field site using cosmic-ray neutron detection

    NASA Astrophysics Data System (ADS)

    Andreasen, M.; Looms, M.; Christiansen, J. R.; Sonnenborg, T. O.; Stisen, S.; Jensen, K. H.

    2017-12-01

    Canopy interception, the amount of precipitation captured by the surface of plants and trees, is a key component of the water cycle as it constrains the water flux to the ground below vegetation. Forests have especially high interception capacities and therefore the interception loss often forms a considerable part of the total evapotranspiration. The canopy interception capacity is dependent on the size and structure of the vegetation, and the interception loss can vary substantial in time and space. Measuring the canopy interception loss directly is challenging and current methodologies only represent small areas and rely on indirect approaches. Improving methods to estimate canopy interception loss directly will forward the basic understanding of how vegetation structure interacts with the water cycle and hence prediction of evapotranspiration. The intensity of low-energy neutrons produced by cosmic-rays, measured above the ground surface, is sensitive to the hydrogen content in the upper decimeters of the ground and hence the soil moisture content from a radius of hundreds of meters in the horizontal direction. In order to advance the cosmic-ray neutron (CRN) soil moisture method and extend the application of the CRN method more research has recently focused on the signal of other hydrogen pools on the neutron intensity (e.g., vegetation and canopy interception). A recent study, based on neutron transport modeling, found that the ground level thermal neutron intensity (energy < 1 eV), and as a consequence also the thermal-to-epithermal neutron (T/E) ratio (epithermal energy > 1 eV), increased with increasing canopy interception. In this study, we test whether CRN measurements can be used to provide a direct measure of the canopy interception. Four sets of CR2000/B systems were installed below the canopy in an oak forest stand in Denmark. Each system holds a bare (primarily measuring thermal neutrons) and a moderated detector (primarily measuring epithermal neutrons). The measured T/E ratios are compared to independent canopy interception measurements, obtained from throughfall and precipitation measurements. Furthermore, T/E ratios are related to measurements from leaf wetness sensors, CRN soil moisture estimates, and the biomass density in the canopy derived from a mobile terrestrial laser scanner.

  3. Large-eddy simulation of slope flow over and within a vegetation canopy

    NASA Astrophysics Data System (ADS)

    Li, W.; Katul, G. G.; Parlange, M. B.; Giometto, M. G.

    2017-12-01

    Large-eddy simulation is used to characterize the turbulent structure of katabatic flows interacting with vegetation canopies in the absence of rotation. Numerical experiments are conducted first considering homogeneous surface forcing over an infinite planar slope, resembling the settings of the classic Prandtl one-dimensional slope flow model. A series of homogeneous plant canopies are accounted for using a spatially-distributed drag and buoyancy-induced forces, both function of the canopy leaf-area density parameter. The current study provides a new perspective on the problem of canopy flows, whose numerical studies have to-date mostly focused on pressure-driven atmospheric boundary-layer flow settings or on complex topography but without buoyancy. The dependence of the solution to the grid stencil, subgrid-scale model, and domain size will be analyzed, to assess the quality and reliability of the proposed results. A sensitivity analysis will then be conducted to test the dependence of mean flow and turbulence to the model parameters. Results will be contrasted with those from corresponding runs with no vegetation canopy.

  4. Ecohydrological Responses of Dense Canopies to Environmental Variability Part 1: Interplay Between Vertical Structure and Photosynthetic Pathway

    USDA-ARS?s Scientific Manuscript database

    Vegetation acclimation to changing climate, in particular elevated atmospheric concentrations of carbon dioxide (CO2), has been observed to include modifications to the biochemical and eco physiological functioning of leaves and the structural components of the canopy. These responses have the poten...

  5. Radiation transfer in plant canopies - Transmission of direct solar radiation and the role of leaf orientation

    NASA Technical Reports Server (NTRS)

    Verstraete, Michel M.

    1987-01-01

    Understanding the details of the interaction between the radiation field and plant structures is important climatically because of the influence of vegetation on the surface water and energy balance, but also biologically, since solar radiation provides the energy necessary for photosynthesis. The problem is complex because of the extreme variety of vegetation forms in space and time, as well as within and across plant species. This one-dimensional vertical multilayer model describes the transfer of direct solar radiation through a leaf canopy, accounting explicitly for the vertical inhomogeneities of a plant stand and leaf orientation, as well as heliotropic plant behavior. This model reproduces observational results on homogeneous canopies, but it is also well adapted to describe vertically inhomogeneous canopies. Some of the implications of leaf orientation and plant structure as far as light collection is concerned are briefly reviewed.

  6. Advanced NASA Earth Science Mission Concept for Vegetation 3D Structure, Biomass and Disturbance

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon

    2007-01-01

    Carbon in forest canopies represents about 85% of the total carbon in the Earth's aboveground biomass (Olson et al., 1983). A major source of uncertainty in global carbon budgets derives from large errors in the current estimates of these carbon stocks (IPCC, 2001). The magnitudes and distributions of terrestrial carbon storage along with changes in sources and sinks for atmospheric C02 due to land use change remain the most significant uncertainties in Earth's carbon budget. These uncertainties severely limit accurate terrestrial carbon accounting; our ability to evaluate terrestrial carbon management schemes; and the veracity of atmospheric C02 projections in response to further fossil fuel combustion and other human activities. Measurements of vegetation three-dimensional (3D) structural characteristics over the Earth's land surface are needed to estimate biomass and carbon stocks and to quantify biomass recovery following disturbance. These measurements include vegetation height, the vertical profile of canopy elements (i.e., leaves, stems, branches), andlor the volume scattering of canopy elements. They are critical for reducing uncertainties in the global carbon budget. Disturbance by natural phenomena, such as fire or wind, as well as by human activities, such as forest harvest, and subsequent recovery, complicate the quantification of carbon storage and release. The resulting spatial and temporal heterogeneity of terrestrial biomass and carbon in vegetation make it very difficult to estimate terrestrial carbon stocks and quantify their dynamics. Vegetation height profiles and disturbance recovery patterns are also required to assess ecosystem health and characterize habitat. The three-dimensional structure of vegetation provides habitats for many species and is a control on biodiversity. Canopy height and structure influence habitat use and specialization, two fundamental processes that modify species richness and abundance across ecosystems. Accurate and consistent 3D measurements of forest structure at the landscape scale are needed for assessing impacts to animal habitats and biodiversity following disturbance.

  7. A methodology for investigating interdependencies between measured throughfall, meteorological variables and canopy structure on a small catchment.

    NASA Astrophysics Data System (ADS)

    Maurer, Thomas; Gustavos Trujillo Siliézar, Carlos; Oeser, Anne; Pohle, Ina; Hinz, Christoph

    2016-04-01

    In evolving initial landscapes, vegetation development depends on a variety of feedback effects. One of the less understood feedback loops is the interaction between throughfall and plant canopy development. The amount of throughfall is governed by the characteristics of the vegetation canopy, whereas vegetation pattern evolution may in turn depend on the spatio-temporal distribution of throughfall. Meteorological factors that may influence throughfall, while at the same time interacting with the canopy, are e.g. wind speed, wind direction and rainfall intensity. Our objective is to investigate how throughfall, vegetation canopy and meteorological variables interact in an exemplary eco-hydrological system in its initial development phase, in which the canopy is very heterogeneous and rapidly changing. For that purpose, we developed a methodological approach combining field methods, raster image analysis and multivariate statistics. The research area for this study is the Hühnerwasser ('Chicken Creek') catchment in Lower Lusatia, Brandenburg, Germany, where after eight years of succession, the spatial distribution of plant species is highly heterogeneous, leading to increasingly differentiated throughfall patterns. The constructed 6-ha catchment offers ideal conditions for our study due to the rapidly changing vegetation structure and the availability of complementary monitoring data. Throughfall data were obtained by 50 tipping bucket rain gauges arranged in two transects and connected via a wireless sensor network that cover the predominant vegetation types on the catchment (locust copses, dense sallow thorn bushes and reeds, base herbaceous and medium-rise small-reed vegetation, and open areas covered by moss and lichens). The spatial configuration of the vegetation canopy for each measurement site was described via digital image analysis of hemispheric photographs of the canopy using the ArcGIS Spatial Analyst, GapLight and ImageJ software. Meteorological data from two on-site weather stations (wind direction, wind speed, air temperature, air humidity, insolation, soil temperature, precipitation) were provided by the 'Research Platform Chicken Creek' (https://www.tu-cottbus.de/projekte/en/oekosysteme/startseite.html). Data were combined and multivariate statistical analysis (PCA, cluster analysis, regression trees) were conducted using the R-software to i) obtain statistical indices describing the relevant characteristics of the data and ii) to identify the determining factors for throughfall intensity. The methodology is currently tested and results will be presented. Preliminary evaluation of the image analysis approach showed only marginal, systematic deviation of results for the different software tools applied, which makes the developed workflow a viable tool for canopy characterization. Results from this study will have a broad spectrum of possible applications, for instance the development / calibration of rainfall interception models, the incorporation into eco-hydrological models, or to test the fault tolerance of wireless rainfall sensor networks.

  8. Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro

    PubMed Central

    Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus

    2015-01-01

    In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies. PMID:26406985

  9. Mapping Vegetation Structure in Kakadu National Park: An AIRSAR and GIS Application in Conservation

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Sisk, Thomas D.; Hampton, Haydee; Milne, Anthony K.

    1999-01-01

    Airborne Synthetic Aperture Radar (AIRSAR) data were used to map vegetation structure in Kakadu National Park Australia as part of the PACRIM project. SAR data were co-registered with Landsat TM, aerial photos, and map data in a geographic information system for a small test area consisting of mangrove, floodplain grasslands, lowland tropical evergreen forest and upland mixed deciduous and evergreen tropical forest near the South Alligator River. Landsat (Thematic Mapper) TM very clearly showed the floristic composition and burn scars from the previous years fires and the AIRSAR data provided a profile of vegetation structure. Extensive field data on vegetation species composition and structure were collected across a series of transects in cooperation with a survey of avifauna in an effort to link the habitat edge structure with bird species responses. A test site was found that contained two types of habitat edges: 1) A structure specific edge - characterized by the appearance of a very strong structural change in the forest canopy occurring in the absence of a substantial turnover in floristics. 2) Floristic edge - a sharp transition in vegetation genetic composition with a mixed set of structural changes. Specific polarization combinations were selected that were highly correlated to a set of desired structural parameters found in the field data. Classification routines were employed to group radar pixels into 3 structural classes based on: the Surface Area to Volume ratio (SA/V) of the stems, the SA/V of the branches, and the leaf area index of the canopy. Separate canopy structure maps were then entered into the GIS and bird responses were observed relative to the classes and their boundaries. Follow-on work will consist of extending this approach to neighboring areas, generating structure maps, predicting bird responses across the edges, and make accuracy assessments.

  10. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone

    Treesearch

    David W. Peterson; Peter B. Reich

    2008-01-01

    Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species...

  11. Full-waveform, Laser Altimeter Measurements of Vegetation Vertical Structure and Sub-canopy Topography in Support of the North American Carbon Program

    NASA Technical Reports Server (NTRS)

    Blair, B.; Hofton, M.; Rabine, D.; Padden, P.; Rhoads, J.

    2004-01-01

    Full-waveform, scanning laser altimeters (i.e. lidar) provide a unique and precise view of the vertical and horizontal structure of vegetation across wide swaths. These unique laser altimeters systems are able to simultaneously image sub-canopy topography and the vertical structure of any overlying vegetation. These data reveal the true 3-D distribution of vegetation in leaf-on conditions enabling important biophysical parameters such as canopy height and aboveground biomass to be estimated with unprecedented accuracy. An airborne lidar mission was conducted in the summer of 2003 in support of preliminary studies for the North America Carbon Program. NASA's Laser Vegetation Imaging Sensor (LVIS) was used to image approximately 2,000 sq km in Maine, New Hampshire, Massachusetts and Maryland. Areas with available ground and other data were included (e.g., experimental forests, FLUXNET sites) in order to facilitate numerous bio- and geophysical investigations. Data collected included ground elevation and canopy height measurements for each laser footprint, as well as the vertical distribution of intercepted surfaces (i.e. the return waveform). Data are currently available at the LVIS website (http://lvis.gsfc.nasa.gov/). Further details of the mission, including the lidar system technology, the locations of the mapped areas, and examples of the numerous data products that can be derived from the return waveform data products are available on the website and will be presented. Future applications including potential fusion with other remote sensing data sets and a spaceborne implementation of wide-swath, full-waveform imaging lidar will also be discussed.

  12. Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?

    PubMed

    Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan

    2016-12-01

    Fire plays an important role in structuring vegetation in fire-prone regions worldwide. Progress has been made towards documenting the effects of individual fire events and fire regimes on vegetation structure; less is known of how different fire history attributes (e.g., time since fire, fire frequency) interact to affect vegetation. Using the temperate eucalypt foothill forests of southeastern Australia as a case study system, we examine two hypotheses about such interactions: (1) post-fire vegetation succession (e.g., time-since-fire effects) is influenced by other fire regime attributes and (2) the severity of the most recent fire overrides the effect of preceding fires on vegetation structure. Empirical data on vegetation structure were collected from 540 sites distributed across central and eastern Victoria, Australia. Linear mixed models were used to examine these hypotheses and determine the relative influence of fire and environmental attributes on vegetation structure. Fire history measures, particularly time since fire, affected several vegetation attributes including ground and canopy strata; others such as low and sub-canopy vegetation were more strongly influenced by environmental characteristics like rainfall. There was little support for the hypothesis that post-fire succession is influenced by fire history attributes other than time since fire; only canopy regeneration was influenced by another variable (fire type, representing severity). Our capacity to detect an overriding effect of the severity of the most recent fire was limited by a consistently weak effect of preceding fires on vegetation structure. Overall, results suggest the primary way that fire affects vegetation structure in foothill forests is via attributes of the most recent fire, both its severity and time since its occurrence; other attributes of fire regimes (e.g., fire interval, frequency) have less influence. The strong effect of environmental drivers, such as rainfall and topography, on many structural features show that foothill forest vegetation is also influenced by factors outside human control. While fire is amenable to human management, results suggest that at broad scales, structural attributes of these forests are relatively resilient to the effects of current fire regimes. Nonetheless, the potential for more frequent severe fires at short intervals, associated with a changing climate and/or fire management, warrant further consideration. © 2016 by the Ecological Society of America.

  13. Wind erosion in semiarid landscapes: Predictive models and remote sensing methods for the influence of vegetation

    NASA Technical Reports Server (NTRS)

    Musick, H. Brad; Truman, C. Randall; Trujillo, Steven M.

    1992-01-01

    Wind erosion in semi-arid regions is a significant problem for which the sheltering effect of rangeland vegetation is poorly understood. Individual plants may be considered as porous roughness elements which absorb or redistribute the wind's momentum. The saltation threshold is the minimum wind velocity at which soil movement begins. The dependence of the saltation threshold on geometrical parameters of a uniform roughness array was studied in a wind tunnel. Both solid and porous elements were used to determine relationships between canopy structure and the threshold velocity for soil transport. The development of a predictive relation for the influence of vegetation canopy structure on wind erosion of soil is discussed.

  14. Impact of 3D Canopy Structure on Remote Sensing Vegetation Index and Solar Induced Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Berry, J. A.; Jing, L.; Qinhuo, L.

    2017-12-01

    Terrestrial ecosystem plays a critical role in removing CO2 from atmosphere by photosynthesis. Remote sensing provides a possible way to monitor the Gross Primary Production (GPP) at the global scale. Vegetation Indices (VI), e.g., NDVI and NIRv, and Solar Induced Fluorescence (SIF) have been widely used as a proxy for GPP, while the impact of 3D canopy structure on VI and SIF has not be comprehensively studied yet. In this research, firstly, a unified radiative transfer model for visible/near-infrared reflectance and solar induced chlorophyll fluorescence has been developed based on recollision probability and directional escape probability. Then, the impact of view angles, solar angles, weather conditions, leaf area index, and multi-layer leaf angle distribution (LAD) on VI and SIF has been studied. Results suggest that canopy structure plays a critical role in distorting pixel-scale remote sensing signal from leaf-scale scattering. In thin canopy, LAD affects both of the remote sensing estimated GPP and real GPP, while in dense canopy, SIF variations are mainly due to canopy structure, instead of just due to physiology. At the microscale, leaf angle reflects the plant strategy to light on the photosynthesis efficiency, and at the macroscale, a priori knowledge of leaf angle distribution for specific species can improve the global GPP estimation by remote sensing.

  15. Simulation of Canopy CO2/H2O Fluxes for a Rubber (Hevea Brasiliensis) Plantation in Central Cambodia: The Effect of the Regular Spacing of Planted Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumagai, Tomo'omi; Mudd, Ryan; Miyazawa, Yoshiyuki

    We developed a soil-vegetation-atmosphere transfer (SVAT) model applicable to simulating CO2 and H2O fluxes from the canopies of rubber plantations, which are characterized by distinct canopy clumping produced by regular spacing of plantation trees. Rubber (Hevea brasiliensis Müll. Arg.) plantations, which are rapidly expanding into both climatically optimal and sub-optimal environments throughout mainland Southeast Asia, potentially change the partitioning of water, energy, and carbon at multiple scales, compared with traditional land covers it is replacing. Describing the biosphere-atmosphere exchange in rubber plantations via SVAT modeling is therefore essential to understanding the impacts on environmental processes. The regular spacing of plantationmore » trees creates a peculiar canopy structure that is not well represented in most SVAT models, which generally assumes a non-uniform spacing of vegetation. Herein we develop a SVAT model applicable to rubber plantation and an evaluation method for its canopy structure, and examine how the peculiar canopy structure of rubber plantations affects canopy CO2 and H2O exchanges. Model results are compared with measurements collected at a field site in central Cambodia. Our findings suggest that it is crucial to account for intensive canopy clumping in order to reproduce observed rubber plantation fluxes. These results suggest a potentially optimal spacing of rubber trees to produce high productivity and water use efficiency.« less

  16. Ecohydrological implications of aeolian sediment trapping by sparse vegetation in drylands

    USGS Publications Warehouse

    Gonzales, Howell B.; Ravi, Sujith; Li, Junran; Sankey, Joel B.

    2018-01-01

    Aeolian processes are important drivers of ecosystem dynamics in drylands, and important feedbacks exist among aeolian – hydrological processes and vegetation. The trapping of wind-borne sediments by vegetation may result in changes in soil properties beneath the vegetation, which, in turn, can alter hydrological and biogeochemical processes. Despite the relevance of aeolian transport to ecosystem dynamics, the interactions between aeolian transport and vegetation in shaping dryland landscapes where sediment distribution is altered by relatively rapid changes in vegetation composition such as shrub encroachment, is not well understood. Here, we used a computational fluid dynamics (CFD) modeling framework to investigate the sediment trapping efficiencies of vegetation canopies commonly found in a shrub-grass ecotone in the Chihuahuan Desert (New Mexico, USA) and related the results to spatial heterogeneity in soil texture and infiltration measured in the field. A CFD open-source software package was used to simulate aeolian sediment movement through three-dimensional architectural depictions of Creosote shrub (Larrea tridentata) and Black Grama grass (Bouteloua eriopoda) vegetation types. The vegetation structures were created using a computer-aided design software (Blender), with inherent canopy porosities, which were derived using LIDAR (Light Detection and Ranging) measurements of plant canopies. Results show that considerable heterogeneity in infiltration and soil grain size distribution exist between the microsites, with higher infiltration and coarser soil texture under shrubs. Numerical simulations also indicate that the differential trapping of canopies might contribute to the observed heterogeneity in soil texture. In the early stages of encroachment, the shrub canopies, by trapping coarser particles more efficiently, might maintain higher infiltration rates leading to faster development of the microsites (among other factors) with enhanced ecological productivity, which might provide positive feedbacks to shrub encroachment.

  17. Mathematical Structure of Electromagnetic Terrain Feature Canopy Models.

    DTIC Science & Technology

    1982-11-01

    problems in this formulation is how to introduce canopy abstraction and how to project the foliage area index. Suits -- - "-7 U -16- (1972...extinction coefficient of light through vegetation canopy will determine how the beam will be depleted with depth. The intensity of light reaching the...describe how lations of the canopy reflectance problem are being at- layer i responds to flux incident from below. The flux tempted, most notably by Verhoef

  18. Lidar Altimeter Measurements of Canopy Structure: Methods and Validation for Closed Canopy, Broadleaf Forests

    NASA Technical Reports Server (NTRS)

    Harding, D. J.; Lefsky, M. A.; Parker, G. G.; Blair, J. B.

    1999-01-01

    Lidar altimeter observations of vegetated landscapes provide a time-resolved measure of laser pulse backscatter energy from canopy surfaces and the underlying ground. Airborne lidar altimeter data was acquired using the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) for a successional sequence of four, closed-canopy, deciduous forest stands in eastern Maryland. The four stands were selected so as to include a range of canopy structures of importance to forest ecosystem function, including variation in the height and roughness of the outer-most canopy surface and the vertical organization of canopy stories and gaps. The character of the SLICER backscatter signal is described and a method is developed that accounts for occlusion of the laser energy by canopy surfaces, transforming the backscatter signal to a canopy height profile (CHP) that quantitatively represents the relative vertical distribution of canopy surface area. The transformation applies an increased weighting to the backscatter amplitude as a function of closure through the canopy and assumes a horizontally random distribution of the canopy components. SLICER CHPs, averaged over areas of overlap where lidar ground tracks intersect, are shown to be highly reproducible. CHP transects across the four stands reveal spatial variations in vegetation, at the scale of the individual 10 m diameter laser footprints, within and between stands. Averaged SLICER CHPs are compared to analogous height profile results derived from ground-based sightings to plant intercepts measured on plots within the four stands. Tbe plots were located on the segments of the lidar ground tracks from which averaged SLICER CHPs were derived, and the ground observations were acquired within two weeks of the SLICER data acquisition to minimize temporal change. The differences in canopy structure between the four stands is similarly described by the SLICER and ground-based CHP results, however a Chi-square test of similarity documents differences that are statistically significant. The differences are discussed in terms of measurement properties that define the smoothness of the resulting CHPs and Lidar Altimeter Measurements of Canopy Structure - Harding et al. canopy properties that may vertically bias the CHP representations of canopy structure. The statistical differences are most likely due to the more noisy character of the ground-based CHPs, especially high in the canopy where ground-based sightings are rare resulting in an underestimate of canopy surface area and height, and to departures from the assumption of horizontal randomness which bias the CHPs toward the observer (upward for SLICER and downward for ground-based CHPs). The results demonstrate that the SLICER observations reliably provide a measure of canopy structure that reveals ecologically interesting structural variations such as those characterizing a successional sequence of closed-canopy, broadleaf forest stands.

  19. Assessment of canopy chlorophyll content retrieval in maize and soybean: Implications of hysteresis on the development of generic algorithms

    DOE PAGES

    Peng, Yi; Nguy-Robertson, Anthony; Arkebauer, Timothy; ...

    2017-03-02

    Here, canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in threemore » irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm re-parameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2.« less

  20. Assessment of canopy chlorophyll content retrieval in maize and soybean: Implications of hysteresis on the development of generic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yi; Nguy-Robertson, Anthony; Arkebauer, Timothy

    Here, canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in threemore » irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm re-parameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2.« less

  1. Mapping forest canopy gaps using air-photo interpretation and ground surveys

    USGS Publications Warehouse

    Fox, T.J.; Knutson, M.G.; Hines, R.K.

    2000-01-01

    Canopy gaps are important structural components of forested habitats for many wildlife species. Recent improvements in the spatial accuracy of geographic information system tools facilitate accurate mapping of small canopy features such as gaps. We compared canopy-gap maps generated using ground survey methods with those derived from air-photo interpretation. We found that maps created from high-resolution air photos were more accurate than those created from ground surveys. Errors of omission were 25.6% for the ground-survey method and 4.7% for the air-photo method. One variable of inter est in songbird research is the distance from nests to gap edges. Distances from real and simulated nests to gap edges were longer using the ground-survey maps versus the air-photo maps, indicating that gap omission could potentially bias the assessment of spatial relationships. If research or management goals require location and size of canopy gaps and specific information about vegetation structure, we recommend a 2-fold approach. First, canopy gaps can be located and the perimeters defined using 1:15,000-scale or larger aerial photographs and the methods we describe. Mapped gaps can then be field-surveyed to obtain detailed vegetation data.

  2. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision and hobbyist unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Dandois, J. P.; Ellis, E. C.

    2013-12-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing system enabling routine and inexpensive aerial 3D measurements of canopy structure and spectral attributes, with properties similar to those of LIDAR, but with RGB (red-green-blue) spectral attributes for each point, enabling high frequency observations within a single growing season. This 'Ecosynth' methodology applies photogrammetric ''Structure from Motion'' computer vision algorithms to large sets of highly overlapping low altitude (< 130 m) aerial photographs acquired using off-the-shelf digital cameras mounted on an inexpensive (< USD$4000), lightweight (< 2 kg), hobbyist-grade unmanned aerial system (UAS). Ecosynth 3D point clouds with densities of 30 - 67 points m-2 were produced using commercial computer vision software from digital photographs acquired repeatedly by UAS over three 6.25 ha (250 m x 250 m) Temperate Deciduous forest sites in Maryland USA. Ecosynth canopy height maps (CHMs) were strong predictors of field-measured tree heights (R2 0.63 to 0.84) and were highly correlated with a LIDAR CHM (R 0.87) acquired 4 days earlier, though Ecosynth-based estimates of aboveground biomass densities included significant errors (31 - 36% of field-based estimates). Repeated scanning of a 0.25 ha forested area at six different times across a 16 month period revealed ecologically significant dynamics in canopy color at different heights and a structural shift upward in canopy density, as demonstrated by changes in vertical height profiles of point density and relative RGB brightness. Changes in canopy relative greenness were highly correlated (R2 = 0.88) with MODIS NDVI time series for the same area and vertical differences in canopy color revealed the early green up of the dominant canopy species, Liriodendron tulipifera, strong evidence that Ecosynth time series measurements capture vegetation structural and spectral dynamics at the spatial scale of individual trees. Observing canopy phenology in 3D at high temporal resolutions represents a breakthrough in forest ecology. Inexpensive user-deployed technologies for multispectral 3D scanning of vegetation at landscape scales (< 1 km2) heralds a new era of participatory remote sensing by field ecologists, community foresters and the interested public.

  3. Canopy structural complexity influences forest canopy reflectance: linking terrestrial lidar with Landsat observations

    NASA Astrophysics Data System (ADS)

    Hardiman, B. S.; Atkins, J.; Dahlin, K.; Fahey, R. T.; Gough, C. M.

    2016-12-01

    Canopy physical structure - leaf quantity and arrangement - strongly affects light interception and distribution. As such, canopy physical structure is a key driver of forest carbon (C) dynamics. Terrestrial lidar systems (TLS) provide spatially explicit, quantitative characterizations of canopy physical structure at scales commensurate with plot-scale C cycling processes. As an example, previous TLS-based studies established that light use efficiency is positively correlated with canopy physical structure, influencing the trajectory of net primary production throughout forest development. Linking TLS measurements of canopy structure to multispectral satellite observations of forest canopies may enable scaling of ecosystem C cycling processes from leaves to continents. We will report on our study relating a suite of canopy structural metrics to well-established remotely sensed measurements (NDVI, EVI, albedo, tasseled cap indices, etc.) which are indicative of important forest characteristics (leaf area, canopy nitrogen, light interception, etc.). We used Landsat data, which provides observations at 30m resolution, a scale comparable to that of TLS. TLS data were acquired during 2009-2016 from forest sites throughout Eastern North America, comprised primarily of NEON and Ameriflux sites. Canopy physical structure data were compared with contemporaneous growing-season Landsat data. Metrics of canopy physical structure are expected to covary with forest composition and dominant PFT, likely influencing interaction strength between TLS and Landsat canopy metrics. More structurally complex canopies (those with more heterogeneous distributions of leaf area) are expected to have lower albedo, suggesting greater canopy light absorption (higher fAPAR) than simpler canopies. We expect that vegetation indices (NDVI, EVI) will increase with TLS metrics of spatial heterogeneity, and not simply quantity, of leaves, supporting our hypothesis that canopy light absorption is dependent on both leaf quantity and arrangement. Relating satellite observations of canopy properties to TLS metrics of canopy physical structure represents an important advance for modelling canopy energy balance and forest C cycling processes at large spatial scales.

  4. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data.

    PubMed

    Nie, Sheng; Wang, Cheng; Xi, Xiaohuan; Luo, Shezhou; Li, Guoyuan; Tian, Jinyan; Wang, Hongtao

    2018-05-14

    The upcoming space-borne LiDAR satellite Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in 2018. Different from the waveform LiDAR system onboard the ICESat, ICESat-2 will use a micro-pulse photon-counting LiDAR system. Thus new data processing algorithms are required to retrieve vegetation canopy height from photon-counting LiDAR data. The objective of this paper is to develop and validate an automated approach for better estimating vegetation canopy height. The new proposed method consists of three key steps: 1) filtering out the noise photons by an effective noise removal algorithm based on localized statistical analysis; 2) separating ground returns from canopy returns using an iterative photon classification algorithm, and then determining ground surface; 3) generating canopy-top surface and calculating vegetation canopy height based on canopy-top and ground surfaces. This automatic vegetation height estimation approach was tested to the simulated ICESat-2 data produced from Sigma Space LiDAR data and Multiple Altimeter Beam Experimental LiDAR (MABEL) data, and the retrieved vegetation canopy heights were validated by canopy height models (CHMs) derived from airborne discrete-return LiDAR data. Results indicated that the estimated vegetation canopy heights have a relatively strong correlation with the reference vegetation heights derived from airborne discrete-return LiDAR data (R 2 and RMSE values ranging from 0.639 to 0.810 and 4.08 m to 4.56 m respectively). This means our new proposed approach is appropriate for retrieving vegetation canopy height from micro-pulse photon-counting LiDAR data.

  5. Developing a global mixed-canopy, height-variable vegetation structure dataset for estimating global vegetation albedo by a clumped canopy radiative transfer scheme in the NASA Ent Terrestrial Biosphere Model and GISS GCM

    NASA Astrophysics Data System (ADS)

    Montes, Carlo; Kiang, Nancy Y.; Ni-Meister, Wenge; Yang, Wenze; Schaaf, Crystal; Aleinov, Igor; Jonas, Jeffrey A.; Zhao, Feng; Yao, Tian; Wang, Zhuosen; Sun, Qingsong; Carrer, Dominique

    2016-04-01

    Processes determining biosphere-atmosphere coupling are strongly influenced by vegetation structure. Thus, ecosystem carbon sequestration and evapotranspiration affecting global carbon and water balances will depend upon the spatial extent of vegetation, its vertical structure, and its physiological variability. To represent this globally, Dynamic Global Vegetation Models (DGVMs) coupled to General Circulation Models (GCMs) make use of satellite and/or model-based vegetation classifications often composed by homogeneous communities. This work aims at developing a new Global Vegetation Structure Dataset (GVSD) by incorporating varying vegetation heights for mixed plant communities to be used as boundary conditions to the Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010) incorporated into the NASA Ent Terrestrial Biosphere Model (TBM), the DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM. Information sources about land surface and vegetation characteristics obtained from a number of earth observation platforms and algorithms include the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), along with vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three widely used Leaf Area Index (LAI) products are compared as input to the GVSD and ACTS forcing in terms of vegetation albedo: Global Data Sets of Vegetation (LAI)3g (Zhu et al. 2013), Beijing Normal University LAI (Yuan et al., 2011), and MODIS MOD15A2H product (Yang et al., 2006). Further PFT partitioning is performed according to a climate classification utilizing the Climate Research Unit (CRU; Harris et al., 2013) and the NOAA Global Precipitation Climatology Centre (GPCC; Scheider et al., 2014) data. Final products are a GVSD consisting of mixed plant communities (e.g. mixed forests, savannas, mixed PFTs) following the Ecosystem Demography model (Moorcroft et al., 2001) approach represented by multi-cohort community patches at the sub-grid level of the GCM, which are ensembles of identical individuals whose differences are represented by PFTs, canopy height, density and vegetation structure sensitivity to allometric parameters. The performance of the Ent TBM in estimating VIS-NIR vegetation albedo by the new GVSD and ACTS is assessed first by comparison against the previous GISS GCM vegetation classification and prescribed Lambertian albedoes of Matthews (1984), and secondly, against MODIS global estimations and FLUXNET site-scale observations. Ultimately, this GVSD will serve as a template for community data sets, and be used as boundary conditions to the Ent TBM for prediction of biomass, carbon balances and GISS GCM climate.

  6. Spatial patterns in the effects of fire on savanna vegetation three-dimensional structure.

    PubMed

    Levick, Shaun R; Asner, Gregory P; Smit, Izak P J

    2012-12-01

    Spatial variability in the effects of fire on savanna vegetation structure is seldom considered in ecology, despite the inherent heterogeneity of savanna landscapes. Much has been learned about the effects of fire on vegetation structure from long-term field experiments, but these are often of limited spatial extent and do not encompass different hillslope catena elements. We mapped vegetation three-dimensional (3-D) structure over 21 000 ha in nine savanna landscapes (six on granite, three on basalt), each with contrasting long-term fire histories (higher and lower fire frequency), as defined from a combination of satellite imagery and 67 years of management records. Higher fire frequency areas contained less woody canopy cover than their lower fire frequency counterparts in all landscapes, and woody cover reduction increased linearly with increasing difference in fire frequency (r2 = 0.58, P = 0.004). Vegetation height displayed a more heterogeneous response to difference in fire frequency, with taller canopies present in the higher fire frequency areas of the wetter sites. Vegetation 3-D structural differences between areas of higher and lower fire frequency differed between geological substrates and varied spatially across hillslopes. Fire had the greatest relative impact on vegetation structure on nutrient-rich basalt substrates, and it imparted different structural responses upon vegetation in upland, midslope, and lowland topographic positions. These results highlight the complexity of fire vegetation relationships in savanna systems, and they suggest that underlying landscape heterogeneity needs more explicit incorporation into fire management policies.

  7. Assimilation of Leaf and Canopy Spectroscopic Data to Improve the Representation of Vegetation Dynamics in Terrestrial Ecosystem Models

    NASA Astrophysics Data System (ADS)

    Serbin, S. P.; Dietze, M.; Desai, A. R.; LeBauer, D.; Viskari, T.; Kooper, R.; McHenry, K. G.; Townsend, P. A.

    2013-12-01

    The ability to seamlessly integrate information on vegetation structure and function across a continuum of scales, from field to satellite observations, greatly enhances our ability to understand how terrestrial vegetation-atmosphere interactions change over time and in response to disturbances. In particular, terrestrial ecosystem models require detailed information on ecosystem states and canopy properties in order to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere as well as address the vulnerability of ecosystems to environmental and other perturbations. Over the last several decades the amount of available data to constrain ecological predictions has increased substantially, resulting in a progressively data-rich era for global change research. In particular remote sensing data, specifically optical data (leaf and canopy), offers the potential for an important and direct data constraint on ecosystem model projections of C and energy fluxes. Here we highlight the utility of coupling information provided through the Ecosystem Spectral Information System (EcoSIS) with complex process models through the Predictive Ecosystem Analyzer (PEcAn; http://www.pecanproject.org/) eco-informatics framework as a means to improve the description of canopy optical properties, vegetation composition, and modeled radiation balance. We also present this an efficient approach for understanding and correcting implicit assumptions and model structural deficiencies. We first illustrate the challenges and issues in adequately characterizing ecosystem fluxes with the Ecosystem Demography model (ED2, Medvigy et al., 2009) due to improper parameterization of leaf and canopy properties, as well as assumptions describing radiative transfer within the canopy. ED2 is especially relevant to these efforts because it contains a sophisticated structure for scaling ecological processes across a range of spatial scales: from the tree-level (demography, physiology) to the distribution of stands across a landscape, which allows for the direct use of remotely sensed data at the appropriate spatial scale. A sensitivity analysis is employed within PEcAn to illustrate the influence of ED2 parameterizations on modeled C and energy fluxes for a northern temperate forest ecosystem as an example of the need for more detailed information on leaf and canopy optical properties. We then demonstrate a data assimilation approach to synthesize spectral data contained within EcoSIS in order to update model parameterizations across key vegetation plant functional types, as well as a means to update vegetation state information (i.e. composition, LAI) and improve the description of radiation transfer through model structural updates. A better understanding of the radiation balance of ecosystems will improve regional and global scale C and energy balance projections.

  8. Primary and Secondary Controls on Measurements of Forest Height Using Large-Footprint Lidar at the Hubbard Brook LTER

    NASA Technical Reports Server (NTRS)

    Knox, Robert G.; Blair, J. Bryan; Schwarz, Paul A.; Hofton, Michelle A.; Dubayah, Ralph; Smith, David E. (Technical Monitor)

    2000-01-01

    On September 26, 1999, we mapped canopy structure over 90% of the Hubbard Brook Experimental Forest in White Mountain National Forest, New Hampshire, using the Laser Vegetation Imaging Sensor (LVIS). This airborne instrument was configured to emulate data expected from the Vegetation Canopy Lidar (VCL) space mission. We compared above ground heights of the tallest surfaces detected by lidar with average forest canopy heights estimated from tree-based measurements in or near 346 0.05 ha plots (made in autumn of 1997 and 1998). Vegetation heights had by far the predominant influence on lidar top heights, but with this large data set we were able to measure two significant secondary effects: those of steepness or slope of the underlying terrain and of tree crown form. The size of the slope effect was intermediate between that expected from models of homogeneous canopy layers and for solitary tree crowns. The first detected surfaces were also proportionately taller for plots with more basal area in broad leaved northern hardwoods than for mostly coniferous plots. We expected this because of the contrast between the shapes of cumulative distributions of surface area for elliptical or hemi-elliptical tree crowns and those for conical crowns. Correcting for these secondary effects, when appropriate data are available for calibration, may improve vegetation structure estimates in regional studies using VCL or similar lidar data sources.

  9. A test of the optimality approach to modelling canopy properties and CO2 uptake by natural vegetation.

    PubMed

    Schymanski, Stanislaus J; Roderick, Michael L; Sivapalan, Murugesu; Hutley, Lindsay B; Beringer, Jason

    2007-12-01

    Photosynthesis provides plants with their main building material, carbohydrates, and with the energy necessary to thrive and prosper in their environment. We expect, therefore, that natural vegetation would evolve optimally to maximize its net carbon profit (NCP), the difference between carbon acquired by photosynthesis and carbon spent on maintenance of the organs involved in its uptake. We modelled N(CP) for an optimal vegetation for a site in the wet-dry tropics of north Australia based on this hypothesis and on an ecophysiological gas exchange and photosynthesis model, and compared the modelled CO2 fluxes and canopy properties with observations from the site. The comparison gives insights into theoretical and real controls on gas exchange and canopy structure, and supports the optimality approach for the modelling of gas exchange of natural vegetation. The main advantage of the optimality approach we adopt is that no assumptions about the particular vegetation of a site are required, making it a very powerful tool for predicting vegetation response to long-term climate or land use change.

  10. Variation of directional reflectance factors with structural changes of a developing alfalfa canopy

    NASA Technical Reports Server (NTRS)

    Kirchner, J. A.; Kimes, D. S.; Mcmurtrey, J. E., III

    1982-01-01

    Directional reflectance factors of an alfalfa canopy were determined and related to canopy structure, agronomic variables, and irradiance conditions at four periods during a cutting cycle. Nadir and off-nadir reflectance factors decreased with increasing biomass in Thematic Mapper band 3(0.63-0.69 micrometer) and increased with increasing biomass in band 4(0.76-0.90 micrometer). The sensor view angle had less impact on perceived reflectance as the alfalfa progressed from an erectophile canopy of stems after harvest to a near planophile canopy of leaves at maturity. Studies of directional reflectance are needed for testing and upgrading vegetation canopy models and to aid in the complex interpretation problems presented by aircraft scanners and pointable satellites where illumination and viewing geometries may vary widely. Distinct changes in the patterns of radiance observed by a sensor as structural and biomass changes occur are keys to monitoring the growth and condition of crops.

  11. a New Effective way on Vegetation Mornitoring Using Multi-Spectral Canopy LIDAR

    NASA Astrophysics Data System (ADS)

    Bo, Z.; Wei, G.; Shuo, S.; Shalei, S.; Yingying, M.

    2012-07-01

    Airborne Laser Scanning (ALS) has been a well-established tool for the measurement of surface topography as well as for the estimation of biophysical canopy variables, such as tree height and vegetation density. By combining GPS and INS together, ALS could acquire surface information effectively in getting the mass production of DEM and DOM. However, up to now most approaches are built upon single-wavelength Lidar system, which could only provide structure information of the vegetation canopy, the intensity information was rarely used to monitor vegetation growing state as its limitation on spectral characteristics. On the other hand, positive multi/hyper-spectral imaging instruments highly rely on the effects of weather, shadow and the background noise etc. The attempts to fuse single-wavelength Lidar data with multi/hyper-spectral data also been effected this way. Thus, a concept for a multi-wavelength, active canopy Lidar has been tested in this paper. The proposed instrument takes measurement at two vegetation-sensitive bands separately at 556 nm and 780 nm, which, according to the correlation analysis between the wavelengths and biochemical content with plenty of ground ASD reflectance dataset, showed a high correlation coefficient on the chlorophyll concentration as well as nitrogen content. The instrumentation of the multi-wavelength canopy Lidar employs low power, solid and semiconductor laser diodes as its laser source and the receiver consists of two channels, one for 556 nm back-scatter signal and the other for 780 nm. The system calibration has also been done by using a standard white board. Multi-wavelength back-scatter signals were collected from a scene consists of stones, healthy broad-leaf trees and unhealthy trees that suffer from disease(part of its leaves were yellow). It is shown that the multi-wavelength canopy Lidar could not only capture the structure information, but also could pick up the spectral characteristics. A further test of three dimensional reconstruction and SVM based classification were also done and the results showed that the spatial resolution could be as high as 5 mm and the accuracy of classification on those three features (woody/un-woody, healthy/unhealthy) reached to 86%. Therefore, the multi-wavelength canopy Lidar shows its potential capability on vegetation monitoring in a new effective way.

  12. The influence of current speed and vegetation density on flow structure in two macrotidal eelgrass canopies

    USGS Publications Warehouse

    Lacy, Jessica R.; Wyllie-Echeverria, Sandy

    2011-01-01

    The influence of eelgrass (Zostera marina) on near-bed currents, turbulence, and drag was investigated at three sites in two eelgrass canopies of differing density and at one unvegetated site in the San Juan archipelago of Puget Sound, Washington, USA. Eelgrass blade length exceeded 1 m. Velocity profiles up to 1.5 m above the sea floor were collected over a spring-neap tidal cycle with a downward-looking pulse-coherent acoustic Doppler profiler above the canopies and two acoustic Doppler velocimeters within the canopies. The eelgrass attenuated currents by a minimum of 40%, and by more than 70% at the most densely vegetated site. Attenuation decreased with increasing current speed. The data were compared to the shear-layer model of vegetated flows and the displaced logarithmic model. Velocity profiles outside the meadows were logarithmic. Within the canopies, most profiles were consistent with the shear-layer model, with a logarithmic layer above the canopy. However, at the less-dense sites, when currents were strong, shear at the sea floor and above the canopy was significant relative to shear at the top of the canopy, and the velocity profiles more closely resembled those in a rough-wall boundary layer. Turbulence was strong at the canopy top and decreased with height. Friction velocity at the canopy top was 1.5–2 times greater than at the unvegetated, sandy site. The coefficient of drag CD on the overlying flow derived from the logarithmic velocity profile above the canopy, was 3–8 times greater than at the unvegetated site (0.01–0.023 vs. 2.9 × 10−3).

  13. Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport

    USGS Publications Warehouse

    Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.

    2013-01-01

    The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.

  14. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest.

    PubMed

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D; Magnusson, William E

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone.

  15. Algorithm for retrieving vegetative canopy and leaf parameters from multi- and hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Borel, Christoph

    2009-05-01

    In recent years hyper-spectral data has been used to retrieve information about vegetative canopies such as leaf area index and canopy water content. For the environmental scientist these two parameters are valuable, but there is potentially more information to be gained as high spatial resolution data becomes available. We developed an Amoeba (Nelder-Mead or Simplex) based program to invert a vegetative canopy radiosity model coupled with a leaf (PROSPECT5) reflectance model and modeled for the background reflectance (e.g. soil, water, leaf litter) to a measured reflectance spectrum. The PROSPECT5 leaf model has five parameters: leaf structure parameter Nstru, chlorophyll a+b concentration Cab, carotenoids content Car, equivalent water thickness Cw and dry matter content Cm. The canopy model has two parameters: total leaf area index (LAI) and number of layers. The background reflectance model is either a single reflectance spectrum from a spectral library() derived from a bare area pixel on an image or a linear mixture of soil spectra. We summarize the radiosity model of a layered canopy and give references to the leaf/needle models. The method is then tested on simulated and measured data. We investigate the uniqueness, limitations and accuracy of the retrieved parameters on canopy parameters (low, medium and high leaf area index) spectral resolution (32 to 211 band hyperspectral), sensor noise and initial conditions.

  16. Spectrodirectional Investigation of a Geometric-Optical Canopy Reflectance Model by Laboratory Simulation

    NASA Astrophysics Data System (ADS)

    Stanford, Adam Christopher

    Canopy reflectance models (CRMs) can accurately estimate vegetation canopy biophysical-structural information such as Leaf Area Index (LAI) inexpensively using satellite imagery. The strict physical basis which geometric-optical CRMs employ to mathematically link canopy bidirectional reflectance and structure allows for the tangible replication of a CRM's geometric abstraction of a canopy in the laboratory, enabling robust CRM validation studies. To this end, the ULGS-2 goniometer was used to obtain multiangle, hyperspectral (Spectrodirectional) measurements of a specially-designed tangible physical model forest, developed based upon the Geometric-Optical Mutual Shadowing (GOMS) CRM, at three different canopy cover densities. GOMS forward-modelled reflectance values had high levels of agreement with ULGS-2 measurements, with obtained reflectance RMSE values ranging from 0.03% to 0.1%. Canopy structure modelled via GOMS Multiple-Forward-Mode (MFM) inversion had varying levels of success. The methods developed in this thesis can potentially be extended to more complex CRMs through the implementation of 3D printing.

  17. Allometric constraints to inversion of canopy structure from remote sensing

    NASA Astrophysics Data System (ADS)

    Wolf, A.; Berry, J. A.; Asner, G. P.

    2008-12-01

    Canopy radiative transfer models employ a large number of vegetation architectural and leaf biochemical attributes. Studies of leaf biochemistry show a wide array of chemical and spectral diversity that suggests that several leaf biochemical constituents can be independently retrieved from multi-spectral remotely sensed imagery. In contrast, attempts to exploit multi-angle imagery to retrieve canopy structure only succeed in finding two or three of the many unknown canopy arhitectural attributes. We examine a database of over 5000 destructive tree harvests from Eurasia to show that allometry - the covariation of plant form across a broad range of plant size and canopy density - restricts the architectural diversity of plant canopies into a single composite variable ranging from young canopies with many short trees with small crowns to older canopies with fewer trees and larger crowns. Moreover, these architectural attributes are closely linked to biomass via allometric constraints such as the "self-thinning law". We use the measured variance and covariance of plant canopy architecture in these stands to drive the radiative transfer model DISORD, which employs the Li-Strahler geometric optics model. This correlations introduced in the Monte Carlo study are used to determine which attributes of canopy architecture lead to important variation that can be observed by multi-angle or multi-spectral satellite observations, using the sun-view geometry characteristic of MODIS observations in different biomes located at different latitude bands. We conclude that although multi-angle/multi-spectral remote sensing is only sensitive to some of the many unknown canopy attributes that ecologists would wish to know, the strong allometric covariation between these attributes and others permits a large number of inferrences, such as forest biomass, that will be meaningful next-generation vegetation products useful for data assimilation.

  18. A radiosity model for heterogeneous canopies in remote sensing

    NASA Astrophysics Data System (ADS)

    GarcíA-Haro, F. J.; Gilabert, M. A.; Meliá, J.

    1999-05-01

    A radiosity model has been developed to compute bidirectional reflectance from a heterogeneous canopy approximated by an arbitrary configuration of plants or clumps of vegetation, placed on the ground surface in a prescribed manner. Plants are treated as porous cylinders formed by aggregations of layers of leaves. This model explicitly computes solar radiation leaving each individual surface, taking into account multiple scattering processes between leaves and soil, and occlusion of neighboring plants. Canopy structural parameters adopted in this study have served to simplify the computation of the geometric factors of the radiosity equation, and thus this model has enabled us to simulate multispectral images of vegetation scenes. Simulated images have shown to be valuable approximations of satellite data, and then a sensitivity analysis to the dominant parameters of discontinuous canopies (plant density, leaf area index (LAI), leaf angle distribution (LAD), plant dimensions, soil optical properties, etc.) and scene (sun/ view angles and atmospheric conditions) has been undertaken. The radiosity model has let us gain a deep insight into the radiative regime inside the canopy, showing it to be governed by occlusion of incoming irradiance, multiple scattering of radiation between canopy elements and interception of upward radiance by leaves. Results have indicated that unlike leaf distribution, other structural parameters such as LAI, LAD, and plant dimensions have a strong influence on canopy reflectance. In addition, concepts have been developed that are useful to understand the reflectance behavior of the canopy, such as an effective LAI related to leaf inclination.

  19. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest.

    PubMed

    Yang, Hualei; Yang, Xi; Heskel, Mary; Sun, Shucun; Tang, Jianwu

    2017-04-28

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporal resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). We found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.

  20. A specific PFT and sub-canopy structure for simulating oil palm in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Knohl, A.; Roupsard, O.; Bernoux, M.; LE Maire, G.; Panferov, O.; Kotowska, M.; Meijide, A.

    2015-12-01

    Towards an effort to quantify the effects of rainforests to oil palm conversion on land-atmosphere carbon, water and energy fluxes, a specific plant functional type (PFT) and sub-canopy structure are developed for simulating oil palm within the Community Land Model (CLM4.5). Current global land surface models only simulate annual crops beside natural vegetation. In this study, a multilayer oil palm subroutine is developed in CLM4.5 for simulating oil palm's phenology and carbon and nitrogen allocation. The oil palm has monopodial morphology and sequential phenology of around 40 stacked phytomers, each carrying a large leaf and a fruit bunch, forming a natural multilayer canopy. A sub-canopy phenological and physiological parameterization is thus introduced, so that multiple phytomer components develop simultaneously but according to their different phenological steps (growth, yield and senescence) at different canopy layers. This specific multilayer structure was proved useful for simulating canopy development in terms of leaf area index (LAI) and fruit yield in terms of carbon and nitrogen outputs in Jambi, Sumatra (Fan et al. 2015). The study supports that species-specific traits, such as palm's monopodial morphology and sequential phenology, are necessary representations in terrestrial biosphere models in order to accurately simulate vegetation dynamics and feedbacks to climate. Further, oil palm's multilayer structure allows adding all canopy-level calculations of radiation, photosynthesis, stomatal conductance and respiration, beside phenology, also to the sub-canopy level, so as to eliminate scale mismatch problem among different processes. A series of adaptations are made to the CLM model. Initial results show that the adapted multilayer radiative transfer scheme and the explicit represention of oil palm's canopy structure improve on simulating photosynthesis-light response curve. The explicit photosynthesis and dynamic leaf nitrogen calculations per canopy layer also enhance simulated CO2 flux when compared to eddy covariance flux data. More investigations on energy and water fluxes and nitrogen balance are being conducted. These new schemes would hopefully promote the understanding of climatic effects of the tropical land use transformation system.

  1. A mathematical characterization of vegetation effect on microwave remote sensing from the Earth

    NASA Technical Reports Server (NTRS)

    Choe, Y.; Tsang, L.

    1983-01-01

    In passive microwave remote sensing of the earth, a theoretical model that utilizes the radiative transfer equations was developed to account for the volume scattering effects of the vegetation canopy. Vegetation canopies such as alfalfa, sorghum, and corn are simulated by a layer of ellipsoidal scatterers and cylindrical structures. The ellipsoidal scatterers represent the leaves of vegetation and are randomly positioned and oriented. The orientation of ellipsoids is characterized by a probability density function of Eulerian angles of rotation. The cylindrical structures represent the stalks of vegetation and their radii are assumed to be much smaller than their lengths. The underlying soil is represented by a half-space medium with a homogeneous permittivity and uniform temperature profile. The radiative transfer quations are solved by a numerical method using a Gaussian quadrature formula to compute both the vertical and horizontal polarized brightness temperature as a function of observation angle. The theory was applied to the interpretation of experimental data obtained from sorghum covered fields near College Station, Texas.

  2. Imaging Laser Altimetry in the Amazon: Mapping Large Areas of Topography, Vegetation Height and Structure, and Biomass

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Nelson, B.; dosSantos, J.; Valeriano, D.; Houghton, R.; Hofton, M.; Lutchke, S.; Sun, Q.

    2002-01-01

    A flight mission of NASA GSFC's Laser Vegetation Imaging Sensor (LVIS) is planned for June-August 2003 in the Amazon region of Brazil. The goal of this flight mission is to map the vegetation height and structure and ground topography of a large area of the Amazon. This data will be used to produce maps of true ground topography, vegetation height, and estimated above-ground biomass and for comparison with and potential calibration of Synthetic Aperture Radar (SAR) data. Approximately 15,000 sq. km covering various regions of the Amazon will be mapped. The LVIS sensor has the unique ability to accurately sense the ground topography beneath even the densest of forest canopies. This is achieved by using a high signal-to-noise laser altimeter to detect the very weak reflection from the ground that is available only through small gaps in between leaves and between tree canopies. Often the amount of ground signal is 1% or less of the total returned echo. Once the ground elevation is identified, that is used as the reference surface from which we measure the vertical height and structure of the vegetation. Test data over tropical forests have shown excellent correlation between LVIS measurements and biomass, basal area, stem density, ground topography, and canopy height. Examples of laser altimetry data over forests and the relationships to biophysical parameters will be shown. Also, recent advances in the LVIS instrument will be discussed.

  3. Vegetation composition and structure in two hemlock stands threatened by the hemlock woolly adelgid

    Treesearch

    John J. Battles; Natalie Cleavitt; Timothy J. Fahey; Richard A. Evans

    2000-01-01

    We quantified the vegetation composition and structure of two hemlock (Tsuga canadensis) ravines in the Delaware Water Gap National Recreation Area threatened by the hemlock woolly adelgid (Adelges tsugae). Hemlock accounted for more than 50% of the canopy basal area (ravine mean = 52.3 m² ha-1) and...

  4. Turbulent mixing and fluid transport within Florida Bay seagrass meadows

    NASA Astrophysics Data System (ADS)

    Hansen, Jennifer C. R.; Reidenbach, Matthew A.

    2017-10-01

    Seagrasses serve an important function in the ecology of Florida Bay, providing critical nursery habitat and a food source for a variety of organisms. They also create significant benthic structure that induces drag, altering local hydrodynamics that can influence mixing and nutrient dynamics. Thalassia testudinum seagrass meadows were investigated to determine how shoot density and morphometrics alter local wave conditions, the generation of turbulence, and fluid exchange above and within the canopy. Sparsely vegetated and densely vegetated meadows were monitored, with shoot densities of 259 ± 26 and 484 ± 78 shoots m-2, respectively. The temporal and spatial structure of velocity and turbulence were measured using acoustic Doppler velocimeters and an in situ particle image velocimetry (PIV) system positioned both above and within the seagrass canopy. The retention of fluid within the canopy was determined by examining e-folding times calculated from the concentration curves of dye plumes released within the seagrass canopy. Results show that a shear layer with an inflection point develops at the top of the seagrass canopy, which generates instabilities that impart turbulence into the seagrass meadow. Compared to the overlying water column, turbulence was enhanced within the sparse canopy due to flow interaction with the seagrass blades, but reduced within the dense canopy. Wave generated oscillatory motion penetrated deeper into the canopy than unidirectional currents, enhancing fluid exchange. Both shoot density and the relative magnitude of wave- versus current-driven flow conditions were found to be important controls on turbulent exchange of water masses across the canopy-water interface.

  5. Assessing the Performance of LVIS Waveform Lidar Topography and Canopy Structure Measurements in Gabon

    NASA Astrophysics Data System (ADS)

    Hofton, M. A.; Blair, J. B.; Rabine, D.; Brooks, C.; Cornejo, H.; Story, S.

    2016-12-01

    In February-March 2016, NASA's Land, Vegetation and Ice Sensor (LVIS) was used to image sub-canopy topography, canopy topography and structure at several sites in Gabon. Data were collected as part of the NASA and ESA Afrisar Campaign, a joint remote sensing mission involving multiple airborne and ground-based data collection activities that support the calibration and validation of future spaceborne missions, particularly GEDI, NISAR and BIOMASS, as well as other investigations. LVIS is a wide-swath, medium-footprint, waveform recording laser altimeter (lidar) sensor that can collect contiguous data within a 2 km-wide swath using 20m wide footprints from 10km altitude. For the Gabon deployment, the sensor was mounted in the NASA Langley King Air aircraft and flown at 8 km altitude over five, 70x15km-wide areas and along multiple country-wide transects. Data products include footprint-level canopy height, ground topography and canopy metrics, as well as vertically and horizontally-geolocated lidar return waveforms that enable end users to produce additional georeferenced data products as needed. We present a summary of the data products from the campaign, as well as a performance assessment of the ground and canopy structure data using available airborne and ground based data. Uses of the data include the simulation of GEDI-like data and the derivation of canopy height and profile metric algorithms for implementation in GEDI level2 products, as well as to improve our understanding of ground-finding errors in dense vegetation environments from waveform lidar.

  6. Simulation of Surface Energy Fluxes and Snow Interception Using a Higher Order Closure Multi-Layer Soil-Vegetation-Atmospheric Model: The Effect of Canopy Shape and Structure

    NASA Astrophysics Data System (ADS)

    McGowan, L. E.; Dahlke, H. E.; Paw U, K. T.

    2015-12-01

    Snow cover is a critical driver of the Earth's surface energy budget, climate change, and water resources. Variations in snow cover not only affect the energy budget of the land surface but also represent a major water supply source. In California, US estimates of snow depth, extent, and melt in the Sierra Nevada are critical to estimating the amount of water available for both California agriculture and urban users. However, accurate estimates of snow cover and snow melt processes in forested area still remain a challenge. Canopy structure influences the vertical and spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability in forested regions. In this study we use the Advanced Canopy-Atmosphere-Soil algorithm (ACASA), a multi-layer soil-vegetation-atmosphere numerical model, to simulate the effect of different snow-covered canopy structures on the energy budget, and temperature and other scalar profiles within different forest types in the Sierra Nevada, California. ACASA incorporates a higher order turbulence closure scheme which allows the detailed simulation of turbulent fluxes of heat and water vapor as well as the CO2 exchange of several layers within the canopy. As such ACASA can capture the counter gradient fluxes within canopies that may occur frequently, but are typically unaccounted for, in most snow hydrology models. Six different canopy types were modeled ranging from coniferous forests (e.g. most biomass near the ground) to top-heavy (e.g. most biomass near the top of the crown) deciduous forests to multi-layered forest canopies (e.g. mixture of young and mature trees). Preliminary results indicate that the canopy shape and structure associated with different canopy types fundamentally influence the vertical scalar profiles (including those of temperature, moisture, and wind speed) in the canopy and thus alter the interception and snow melt dynamics in forested land surfaces. The turbulent transport dynamics, including counter-gradient fluxes, and radiation features including land surface albedo, are discussed in the context of the snow energy balance.

  7. Understory vegetation mediates permafrost active layer dynamics and carbon dioxide fluxes in open-canopy larch forests of northeastern Siberia.

    PubMed

    Loranty, Michael M; Berner, Logan T; Taber, Eric D; Kropp, Heather; Natali, Susan M; Alexander, Heather D; Davydov, Sergey P; Zimov, Nikita S

    2018-01-01

    Arctic ecosystems are characterized by a broad range of plant functional types that are highly heterogeneous at small (~1-2 m) spatial scales. Climatic changes can impact vegetation distribution directly, and also indirectly via impacts on disturbance regimes. Consequent changes in vegetation structure and function have implications for surface energy dynamics that may alter permafrost thermal dynamics, and are therefore of interest in the context of permafrost related climate feedbacks. In this study we examine small-scale heterogeneity in soil thermal properties and ecosystem carbon and water fluxes associated with varying understory vegetation in open-canopy larch forests in northeastern Siberia. We found that lichen mats comprise 16% of understory vegetation cover on average in open canopy larch forests, and lichen abundance was inversely related to canopy cover. Relative to adjacent areas dominated by shrubs and moss, lichen mats had 2-3 times deeper permafrost thaw depths and surface soils warmer by 1-2°C in summer and less than 1°C in autumn. Despite deeper thaw depths, ecosystem respiration did not differ across vegetation types, indicating that autotrophic respiration likely dominates areas with shrubs and moss. Summertime net ecosystem exchange of CO2 was negative (i.e. net uptake) in areas with high shrub cover, while positive (i.e. net loss) in lichen mats and areas with less shrub cover. Our results highlight relationships between vegetation and soil thermal dynamics in permafrost ecosystems, and underscore the necessity of considering both vegetation and permafrost dynamics in shaping carbon cycling in permafrost ecosystems.

  8. Modeling Coherent Structures in Canopy Flows

    NASA Astrophysics Data System (ADS)

    Luhar, Mitul

    2017-11-01

    It is well known that flows over vegetation canopies are characterized by the presence of energetic coherent structures. Since the mean profile over dense canopies exhibits an inflection point, the emergence of such structures is often attributed to a Kelvin-Helmholtz instability. However, though stability analyses provide useful mechanistic insights into canopy flows, they are limited in their ability to generate predictions for spectra and coherent structure. The present effort seeks to address this limitation by extending the resolvent formulation (McKeon and Sharma, 2010, J. Fluid Mech.) to canopy flows. Under the resolvent formulation, the turbulent velocity field is expressed as a superposition of propagating modes, identified via a gain-based (singular value) decomposition of the Navier-Stokes equations. A key advantage of this approach is that it reconciles multiple mechanisms that lead to high amplification in turbulent flows, including modal instability, transient growth, and critical-layer phenomena. Further, individual high-gain modes can be combined to generate more complete models for coherent structure and velocity spectra. Preliminary resolvent-based model predictions for canopy flows agree well with existing experiments and simulations.

  9. Quantifying seasonal dynamics of canopy structure and function using inexpensive narrowband spectral radiometers

    NASA Astrophysics Data System (ADS)

    Vierling, L. A.; Garrity, S. R.; Campbell, G.; Coops, N. C.; Eitel, J.; Gamon, J. A.; Hilker, T.; Krofcheck, D. J.; Litvak, M. E.; Naupari, J. A.; Richardson, A. D.; Sonnentag, O.; van Leeuwen, M.

    2011-12-01

    Increasing the spatial and temporal density of automated environmental sensing networks is necessary to quantify shifts in plant structure (e.g., leaf area index) and function (e.g., photosynthesis). Improving detection sensitivity can facilitate a mechanistic understanding by better linking plant processes to environmental change. Spectral radiometer measurements can be highly useful for tracking plant structure and function from diurnal to seasonal time scales and calibrating and validating satellite- and aircraft-based spectral measurements. However, dense ground networks of such instruments are challenging to establish due to the cost and complexity of automated instrument deployment. We therefore developed simple to operate, lightweight and inexpensive narrowband (~10nm bandwidth) spectral instruments capable of continuously measuring four to six discrete bands that have proven capacity to describe key physiological processes and structural features of plant canopies. These bands are centered at 530, 570, 675, 800, 880, and 970 nm to enable calculation of the physiological reflectance index (PRI), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and water band index (WBI) collected above and within vegetation canopies. To date, measurements have been collected above grassland, semi-arid shrub steppe, piñon-juniper woodland, dense conifer forest, mixed deciduous-conifer forest, and cropland canopies, with additional measurements collected along vertical transects through a temperate conifer rainforest. Findings from this work indicate not only that key shifts in plant phenology, physiology, and structure can be captured using such instruments, but that the temporally dense nature of the measurements can help to disentangle heretofore unreported complexities of simultaneous phenological and structural change on canopy reflectance.

  10. Leaf Phenology of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements

    NASA Astrophysics Data System (ADS)

    Chavana-Bryant, C.; Gerard, F. F.; Malhi, Y.; Enquist, B. J.; Asner, G. P.

    2013-12-01

    The phenological dynamics of terrestrial ecosystems reflect the response of the Earth's biosphere to inter- and intra-annual dynamics of climatic and hydrological regimes. Some Dynamic Global Vegetation Models (GDVMs) have predicted that by 2050 the Amazon rainforest will begin to dieback (Cox et al. 2000, Nature) or that the ecosystem will become unsustainable (Salazar et al. 2007, GRL). One major component in DGVMs is the simulation of vegetation phenology, however, modelers are challenged with the estimation of tropical phenology which is highly complex. Current modeled phenology is based on observations of temperate vegetation and accurate representation of tropical phenology is long overdue. Remote sensing (RS) data are a key tool in monitoring vegetation dynamics at regional and global scales. Of the many RS techniques available, time-series analysis of vegetation indices (VIs) has become the most common approach in monitoring vegetation phenology (Samanta et al. 2010, GRL; Bradley et al. 2011, GCB). Our research focuses on investigating the influence that age related variation in the spectral reflectance and physiochemical properties of leaves may have on VIs of tropical canopies. In order to do this, we collected a unique leaf and canopy phenological dataset at two different Amazonian sites: Inselberg, French Guyana (FG) and Tambopata, Peru (PE). Hyperspectral reflectance measurements were collected from 4,102 individual leaves sampled to represent different leaf ages and vertical canopy positions (top, mid and low canopy) from 20 different canopy tree species (8 in FG and 12 in PE). These leaf spectra were complemented with 1) leaf physical measurements: fresh and dry weight, area and thickness, LMA and LWC and 2) leaf chemical measurements: %N, %C, %P, C:N and d13C. Canopy level observations included top-of-canopy reflectance measurements obtained using a multispectral 16-band radiometer, leaf demography (tot. number and age distribution) and branch structural measurements (space between leaves, min. and max. season's growth and diameter) of two 1m branches harvested from each canopy level. Both leaf and canopy-level observations where collected monthly when trees where not in flush and weekly during the period of leaf flushing. Here, we present our leaf spectral and physiochemical results. Results show 1) changes in leaf spectral and physiochemical properties related to leaf age, 2) the most significant changes in the leaves' spectrum during different stages in their life cycle, and 3) how leaf spectral changes are related to changes in the chemical and physical properties of the leaves as they progress through their life cycle. Future work will involve the incorporation of leaf and canopy observations into a light canopy interaction model to investigate the possibility that seasonal variation in VIs may be driven by leaf aging as well as by the shedding or appearance of new leaves.

  11. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest

    PubMed Central

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D.; Magnusson, William E.

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone. PMID:26066654

  12. A model for microwave emission from vegetation-covered fields

    NASA Technical Reports Server (NTRS)

    Mo, T.; Choudhury, B. J.; Schmugge, T. J.; Wang, J. R.; Jackson, T. J.

    1982-01-01

    The measured brightness temperatures over vegetation-covered fields are simulated by a radiative transfer model which treats the vegetation as a uniform canopy with a constant temperature, over a moist soil which emits polarized microwave radiation. The analytic formula for the microwave emission has four parameters: roughness height, polarization mixing factor, effective canopy optical thickness, and single scattering albedo. A good representation has been obtained with the model for both the horizontally and vertically polarized brightness temperatures at 1.4 and 5 GHz frequencies, over fields covered with grass, soybean and corn. A directly proportional relation is found between effective canopy optical thickness and the amount of water present in the vegetation canopy. The effective canopy single scattering albedo depends on vegetation type.

  13. Unsupervised classification of lidar-based vegetation structure metrics at Jean Lafitte National Historical Park and Preserve

    USGS Publications Warehouse

    Kranenburg, Christine J.; Palaseanu-Lovejoy, Monica; Nayegandhi, Amar; Brock, John; Woodman, Robert

    2012-01-01

    Traditional vegetation maps capture the horizontal distribution of various vegetation properties, for example, type, species and age/senescence, across a landscape. Ecologists have long known, however, that many important forest properties, for example, interior microclimate, carbon capacity, biomass and habitat suitability, are also dependent on the vertical arrangement of branches and leaves within tree canopies. The objective of this study was to use a digital elevation model (DEM) along with tree canopy-structure metrics derived from a lidar survey conducted using the Experimental Advanced Airborne Research Lidar (EAARL) to capture a three-dimensional view of vegetation communities in the Barataria Preserve unit of Jean Lafitte National Historical Park and Preserve, Louisiana. The EAARL instrument is a raster-scanning, full waveform-resolving, small-footprint, green-wavelength (532-nanometer) lidar system designed to map coastal bathymetry, topography and vegetation structure simultaneously. An unsupervised clustering procedure was then applied to the 3-dimensional-based metrics and DEM to produce a vegetation map based on the vertical structure of the park's vegetation, which includes a flotant marsh, scrub-shrub wetland, bottomland hardwood forest, and baldcypress-tupelo swamp forest. This study was completed in collaboration with the National Park Service Inventory and Monitoring Program's Gulf Coast Network. The methods presented herein are intended to be used as part of a cost-effective monitoring tool to capture change in park resources.

  14. Validating LiDAR Derived Estimates of Canopy Height, Structure and Fractional Cover in Riparian Areas: A Comparison of Leaf-on and Leaf-off LiDAR Data

    NASA Astrophysics Data System (ADS)

    Wasser, L. A.; Chasmer, L. E.; Taylor, A.; Day, R.

    2010-12-01

    Characterization of riparian buffers is integral to understanding the landscape scale impacts of disturbance on wildlife and aquatic ecosystems. Riparian buffers may be characterized using in situ plot sampling or via high resolution remote sensing. Field measurements are time-consuming and may not cover a broad range of ecosystem types. Further, spectral remote sensing methods introduce a compromise between spatial resolution (grain) and area extent. Airborne LiDAR can be used to continuously map and characterize riparian vegetation structure and composition due to the three-dimensional reflectance of laser pulses within and below the canopy, understory and at the ground surface. The distance between reflections (or ‘returns’) allows for detection of narrow buffer corridors at the landscape scale. There is a need to compare leaf-off and leaf-on surveyed LiDAR data with in situ measurements to assess accuracy in landscape scale analysis. These comparisons are particularly important considering increased availability of leaf-off surveyed LiDAR datasets. And given this increased availability, differences between leaf-on and leaf-off derived LiDAR metrics are largely unknown for riparian vegetation of varying composition and structure. This study compares the effectiveness of leaf-on and leaf-off LiDAR in characterizing riparian buffers of varying structure and composition as compared to field measurements. Field measurements were used to validate LiDAR derived metrics. Vegetation height, canopy cover, density and overstory and understory species composition were recorded in 80 random plots of varying vegetation type, density and structure within a Pennsylvania watershed (-77.841, 40.818). Plot data were compared with LiDAR data collected during leaf on and leaf off conditions to determine 1) accuracy of LiDAR derived metrics compared to field measures and 2) differences between leaf-on and leaf-off LiDAR metrics. Results illustrate that differences exist between metrics derived from leaf on and leaf-off surveyed LiDAR. There is greater variability between the two datasets within taller deciduous and mixed (conifer and deciduous) vegetation compared to shorter deciduous and mixed vegetation. Differences decrease as stand density increases for both mixed and deciduous forests. LiDAR derived canopy height is more sensitive to understory vegetation as stand density decreases making measurement of understory vegetation in the field important in the validation process. Finally, while leaf-on LiDAR is often preferred for vegetation analysis, results suggest that leaf-off LiDAR may be sufficient to categorize vegetation into height classes to be used for landscape scale habitat models.

  15. Modeling of vegetation canopy reflectance: Status, issues and recommended future strategy

    NASA Technical Reports Server (NTRS)

    Goel, N. S. (Editor)

    1982-01-01

    Various technical issues related to mapping of vegetative type, condition and stage of maturity, utilizing remotely sensed spectral data are reviewed. The existing knowledge base of models, especially of radiative properties of the vegetation canopy and atmosphere, is reviewed to establish the state of the art for addressing the problem of vegetation mapping. Activities to advance the state of the art are recommended. They include working on canopy reflectance and atmospheric scattering models, and field measurements of canopy reflectance as well as of canopy components. Leaf area index (LAI) and solar radiation interception (SRI) are identified as the two most important vegetation variables requiring further investigation. It is recommended that activities related to sensing them or understanding their relationships with measurable variables, should be encouraged and supported.

  16. The Cause of the Hot Spot in Vegetation Canopies and Soils: Shadow-Hiding Versus Coherent Backscatter

    NASA Technical Reports Server (NTRS)

    Hapke, Bruce; DiMucci, Dominick; Nelson, Robert; Smythe, William

    1996-01-01

    Two different mechanisms, shadow-hiding and coherent backscatter, can cause a hot spot, or opposition effect, in the bidirectional reflectance of vegetation and soils. Because the two mechanisms sample different properties, it is important to know which one is primarily responsible in a given medium. This question can be answered by measuring the bidirectional reflectance in circularly polarized light. If the results of the limited experiments reported here can be extrapolated to a wider range of materials, it appears that the primary cause of the hot spot in most vegetation canopies and in moist, clumpy soils is shadow-hiding. However, in vegetation with large numbers of wavelength-sized structures, such as mosses, and in dry, fine-grained soils, the hot spot is dominated by coherent backscatter.

  17. Effects of overstory retention, herbicides, and fertilization on sub-canopy vegetation structure and functional group composition in loblolly pine forests restored to longleaf pine

    Treesearch

    Benjamin O. Knapp; Joan L. Walker; G. Geoff Wang; Huifeng Hu; Robert N.  Addington

    2014-01-01

    The desirable structure of longleaf pine forests, which generally includes a relatively open canopy of pines, very few woody stems in the mid-story, and a well-developed, herbaceous ground layer, provides critical habitat for flora and fauna and contributes to ecosystem function. Current efforts to restore longleaf pine to upland sites dominated by second-growth...

  18. The feasibility of using a universal Random Forest model to map tree height across different locations and vegetation types

    NASA Astrophysics Data System (ADS)

    Su, Y.; Guo, Q.; Jin, S.; Gao, S.; Hu, T.; Liu, J.; Xue, B. L.

    2017-12-01

    Tree height is an important forest structure parameter for understanding forest ecosystem and improving the accuracy of global carbon stock quantification. Light detection and ranging (LiDAR) can provide accurate tree height measurements, but its use in large-scale tree height mapping is limited by the spatial availability. Random Forest (RF) has been one of the most commonly used algorithms for mapping large-scale tree height through the fusion of LiDAR and other remotely sensed datasets. However, how the variances in vegetation types, geolocations and spatial scales of different study sites influence the RF results is still a question that needs to be addressed. In this study, we selected 16 study sites across four vegetation types in United States (U.S.) fully covered by airborne LiDAR data, and the area of each site was 100 km2. The LiDAR-derived canopy height models (CHMs) were used as the ground truth to train the RF algorithm to predict canopy height from other remotely sensed variables, such as Landsat TM imagery, terrain information and climate surfaces. To address the abovementioned question, 22 models were run under different combinations of vegetation types, geolocations and spatial scales. The results show that the RF model trained at one specific location or vegetation type cannot be used to predict tree height in other locations or vegetation types. However, by training the RF model using samples from all locations and vegetation types, a universal model can be achieved for predicting canopy height across different locations and vegetation types. Moreover, the number of training samples and the targeted spatial resolution of the canopy height product have noticeable influence on the RF prediction accuracy.

  19. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest

    DOE PAGES

    Yang, Hualei; Yang, Xi; Heskel, Mary; ...

    2017-04-28

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporalmore » resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). Here we found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.« less

  20. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hualei; Yang, Xi; Heskel, Mary

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporalmore » resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). Here we found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.« less

  1. Microwave Dielectric and Propagation Properties of Vegetation Canopies

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator)

    1985-01-01

    A vegetation canopy is a highly inhomogeneous medium at microwave frequencies, and because the scattering elements (leaves, stalks, fruits, and branches) have a nonuniform distribution in orientation, the canopy is likely to exhibit nonisotropic attenuation properties. In some canopies, the stalk may contain the overwhelming majority of the plant's biomass, which suggests that an incident radar wave would be differentially attenuated by the canopy depending on the direction of the incident electric field relative to the stalks' orientation. The propagation properties of a vegetation canopy play a central role in modeling both the backscattering behavior observed by an imaging radar and the emission observed by a radiometer. These propagation properties are in turn governed by the dielectric properties and the size, shape, and slope distributions of the scatteres. In spite of the critical need for canopy propagation models and experimental data, very few investigations had been conducted (prior to this study) to determine the extinction properties of vegetation canopies, either by constituent type (leaves, stalks, etc.) or as a whole.

  2. Towards integration of GLAS data into a national fuels mapping program

    USGS Publications Warehouse

    Peterson, Birgit E.; Nelson, Kurtis; Wylie, Bruce

    2013-01-01

    vegetation structure and therefore enabled a broader wildland fire modeling capability. The results of this work underscore how GLAS data can be incorporated into LANDFIRE canopy structure and fuel mapping.

  3. Snow accumulation under various forest stand densities at Tenderfoot Creek Experimental Forest, Montana, USA

    Treesearch

    Chadwick A. Moore; Ward W. McCaughey

    1997-01-01

    Snow accumulation in forested watersheds is controlled by climate, elevation, topographic factors and vegetation structure. Conifers affect snow accumulation principally by intercepting snow with the canopy which may later be sublimated. Various tree, stand, species and canopy densities of a subalpine fir habitat (ALBANASC) in central Montana were studied to determine...

  4. Evaluating radiative transfer schemes treatment of vegetation canopy architecture in land surface models

    NASA Astrophysics Data System (ADS)

    Braghiere, Renato; Quaife, Tristan; Black, Emily

    2016-04-01

    Incoming shortwave radiation is the primary source of energy driving the majority of the Earth's climate system. The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most of biogeophysical processes, including leaf temperature changes and photosynthesis, and it is currently calculated by most of land surface schemes (LSS) of climate and/or numerical weather prediction models. The most commonly used radiative transfer scheme in LSS is the two-stream approximation, however it does not explicitly account for vegetation architectural effects on shortwave radiation partitioning. Detailed three-dimensional (3D) canopy radiative transfer schemes have been developed, but they are too computationally expensive to address large-scale related studies over long time periods. Using a straightforward one-dimensional (1D) parameterisation proposed by Pinty et al. (2006), we modified a two-stream radiative transfer scheme by including a simple function of Sun zenith angle, so-called "structure factor", which does not require an explicit description and understanding of the complex phenomena arising from the presence of vegetation heterogeneous architecture, and it guarantees accurate simulations of the radiative balance consistently with 3D representations. In order to evaluate the ability of the proposed parameterisation in accurately represent the radiative balance of more complex 3D schemes, a comparison between the modified two-stream approximation with the "structure factor" parameterisation and state-of-art 3D radiative transfer schemes was conducted, following a set of virtual scenarios described in the RAMI4PILPS experiment. These experiments have been evaluating the radiative balance of several models under perfectly controlled conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical of model comparisons with in-situ observations. The structure factor parameters were obtained for each canopy structure through the inversion against direct and diffuse fraction of absorbed photosynthetically active radiation (fAPAR), and albedo PAR. Overall, the modified two-stream approximation consistently showed a good agreement with the RAMI4PILPS reference values under direct and diffuse illumination conditions. It is an efficient and accurate tool to derive PAR absorptance and reflectance for scenarios with different canopy densities, leaf densities and soil background albedos, with especial attention to brighter backgrounds, i.e., snowy. The major difficulty of its applicability in the real world is to acquire the parameterisation parameters from in-situ observations. The derivation of parameters from Digital Hemispherical Photographs (DHP) is highly promising at forest stands scales. DHP provide a permanent record and are a valuable information source for position, size, density, and distribution of canopy gaps. The modified two-stream approximation parameters were derived from gap probability data extracted from DHP obtained in a woody savannah in California, USA. Values of fAPAR and albedo PAR were evaluated against a tree-based vegetation canopy model, MAESPA, which used airborne LiDAR data to define the individual-tree locations, and extract structural information such as tree height and crown diameter. The parameterisation improved the performance of a two-stream approximation by making it achieves comparable results to complex 3D model calculations under observed conditions.

  5. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA

    USGS Publications Warehouse

    Sankey, Temuulen T.; Donager, Jonathon; McVay, Jason L.; Sankey, Joel B.

    2017-01-01

    Forest vegetation classification and structure measurements are fundamental steps for planning, monitoring, and evaluating large-scale forest changes including restoration treatments. High spatial and spectral resolution remote sensing data are critically needed to classify vegetation and measure their 3-dimensional (3D) canopy structure at the level of individual species. Here we test high-resolution lidar, hyperspectral, and multispectral data collected from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone environment to represent a gradient of vegetation and topography in northern Arizona, U.S.A. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signatures, but different canopy sizes. The lidar data provides estimates of individual tree height (R2 = 0.90; RMSE = 2.3 m) and crown diameter (R2 = 0.72; RMSE = 0.71 m) as well as total tree canopy cover (R2 = 0.87; RMSE = 9.5%) and tree density (R2 = 0.77; RMSE = 0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22 and 50% and 1–3.5 trees/cell, respectively. The lidar data also produces highly accurate digital elevation model (DEM) (R2 = 0.92; RMSE = 0.75 m). In comparison, 3D data derived from the multispectral data via structure-from-motion produced lower correlations with field-measured variables, especially in dense and structurally complex forests. The lidar, hyperspectral, and multispectral sensors, and the methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring landscapes undergoing large-scale changes such as the forests in the southwestern U.S.A.

  6. Correcting the influence of vegetation on surface soil moisture indices by using hyperspectral artificial 3D-canopy models

    NASA Astrophysics Data System (ADS)

    Spengler, D.; Kuester, T.; Frick, A.; Scheffler, D.; Kaufmann, H.

    2013-10-01

    Surface soil moisture content is one of the key variables used for many applications especially in hydrology, meteorology and agriculture. Hyperspectral remote sensing provides effective methodologies for mapping soil moisture content over a broad area by different indices such as NSMI [1,2] and SMGM [3]. Both indices can achieve a high accuracy for non-vegetation influenced soil samples, but their accuracy is limited in case of the presence of vegetation. Since, the increase of the vegetation cover leads to non-linear variations of the indices. In this study a new methodology for moisture indices correcting the influence of vegetation is presented consisting of several processing steps. First, hyperspectral reflectance data are classified in terms of crop type and growth stage. Second, based on these parameters 3D plant models from a database used to simulate typical canopy reflectance considering variations in the canopy structure (e.g. plant density and distribution) and the soil moisture content for actual solar illumination and sensor viewing angles. Third, a vegetation correction function is developed, based on the calculated soil moisture indices and vegetation indices of the simulated canopy reflectance data. Finally this function is applied on hyperspectral image data. The method is tested on two hyperspectral image data sets of the AISA DUAL at the test site Fichtwald in Germany. The results show a significant improvements compared to solely use of NSMI index. Up to a vegetation cover of 75 % the correction function minimise the influences of vegetation cover significantly. If the vegetation is denser the method leads to inadequate quality to predict the soil moisture content. In summary it can be said that applying the method on weakly to moderately overgrown with vegetation locations enables a significant improvement in the quantification of soil moisture and thus greatly expands the scope of NSMI.

  7. Detecting Below-Ground Processes, Diversity, and Ecosystem Function in a Savanna Ecosystem Using Spectroscopy Across Different Vegetation Layers

    NASA Astrophysics Data System (ADS)

    Cavender-Bares, J.; Schweiger, A. K.; Madritch, M. D.; Gamon, J. A.; Hobbie, S. E.; Montgomery, R.; Townsend, P. A.

    2017-12-01

    Above-and below-ground plant traits are important for substrate input to the rhizosphere. The substrate composition of the rhizosphere, in turn, affects the diversity of soil organisms, influences soil biochemistry, and water content, and resource availability for plant growth. This has substantial consequences for ecosystem functions, such as above-ground productivity and stability. Above-ground plant chemical and structural traits can be linked to the characteristics of other plant organs, including roots. Airborne imaging spectroscopy has been successfully used to model and predict chemical and structural traits of the above-ground vegetation. However, remotely sensed images capture, almost exclusively, signals from the top of the canopy, providing limited direct information about understory vegetation. Here, we use a data set collected in a savanna ecosystem consisting of spectral measurements gathered at the leaf, the whole plant, and vegetation canopy level to test for hypothesized linkages between above- and below-ground processes that influence root biomass, soil biochemistry, and the diversity of the soil community. In this environment, consisting of herbaceous vegetation intermixed with shrubs and trees growing at variable densities, we investigate the contribution of different vegetation strata to soil characteristics and test the ability of imaging spectroscopy to detect these in plant communities with contrasting vertical structure.

  8. A plant canopy light absorption model with application to wheat

    NASA Technical Reports Server (NTRS)

    Chance, J. E.; Lemaster, E. W.

    1977-01-01

    From the light absorption model the absorption of light in the photosynthetically active region of the spectrum was calculated for a Penjamo wheat crop for several situations including: (1) the percent absorption of the incident radiation by a canopy having a four layer structure; (2) the percent absorption of light by the individual layers within a four layer canopy and by the underlying soil; (3) the percent absorption of light by each vegetative canopy layer for variable sun angle; and (4) the cumulative solar energy absorbed by the developing wheat canopy as it progresses from a single layer through its growth stages to a three layer canopy. This calculation was also presented as a function of the leaf area index.

  9. Canopy openings and white-tailed deer influence the understory vegetation in mixed oak woodlots

    Treesearch

    Todd W. Bowersox; Gerald L. Storm; Walter M. Tzilkowski

    1995-01-01

    Effects of canopy opening and white-tailed deer on ground level vegetation are being assessed in south-central Pennsylvania. Herbaceous plants and woody seedlings are being monitored in three unevenaged, mixed oak woodlots at Gettysburg National Military Park. Canopy opening levels on 0.20 ha treatment units were closed (~100% canopy), small (50-60% canopy) and large (...

  10. Vegetation canopy and physiological control of GPP decline during drought and heat wave

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Xiao, X.; Zhou, S.; McCarthy, H. R.; Ciais, P.; Luo, Y.

    2015-12-01

    Different vegetation indices derived from satellites were often used as a proxy of vegetation activity to monitor and evaluate the impacts of drought and heat wave on ecosystem carbon fluxes (gross primary production, respiration) through the production efficiency models (PEMs). However, photosynthesis is also regulated by a series of physiological processes which cannot be directly observed through satellites. In this study, we analyzed the response of drought and heat wave induced GPP and climate anomaly from 15 Euroflux sites and the corresponding vegetation indices from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. Correlation analysis suggests that the vegetation indices are more responsive to GPP variation in grasslands and open shrublands, but less responsive in forest ecosystems. Physiology control can be up to 20% of the total GPP during the drought period without changing the canopy structure. At temporal scale for each site, VPD and vegetation indices can be used to track the GPP for forest and non-forest, respectively. However, different stand characteristics should be taken into consideration for forest ecosystems. Based on the above findings, a conceptual model is built to illuminate the physiological and canopy control on the GPP during the drought period. Improvement for future PEMs should incorporate better indicators to deal with drought conditions for different ecosystems.

  11. Volumetric visualization of multiple-return LIDAR data: Using voxels

    USGS Publications Warehouse

    Stoker, Jason M.

    2009-01-01

    Elevation data are an important component in the visualization and analysis of geographic information. The creation and display of 3D models representing bare earth, vegetation, and surface structures have become a major focus of light detection and ranging (lidar) remote sensing research in the past few years. Lidar is an active sensor that records the distance, or range, of a laser usually fi red from an airplane, helicopter, or satellite. By converting the millions of 3D lidar returns from a system into bare ground, vegetation, or structural elevation information, extremely accurate, high-resolution elevation models can be derived and produced to visualize and quantify scenes in three dimensions. These data can be used to produce high-resolution bare-earth digital elevation models; quantitative estimates of vegetative features such as canopy height, canopy closure, and biomass; and models of urban areas such as building footprints and 3D city models.

  12. A terrestrial lidar assessment of climate change impacts on forest structure

    NASA Astrophysics Data System (ADS)

    van Aardt, J. A.; Kelbe, D.; Sacca, K.; Giardina, C. P.; Selmants, P. C.; Litton, C. M.; Asner, G. P.

    2016-12-01

    The projected impact of climate change on ecosystems has received much scientific attention, specifically related to geographical species shifts and carbon allocation. This study, however, was undertaken to assess the expected changes in tropical forest structure as a function of changing temperatures. Our study area is a constrained model ecological system and is located on the eastern flank of Mauna Kea Volcano, Hawaii, USA. Nine plots from this closed-canopy, tropical montane wet forest fall along an elevation-based 5.2°C mean annual temperature (MAT) gradient, where multiple other biotic and abiotic factors are held nearly constant. This MAT gradient has been used to assess subtle temperature effects on ecosystem functioning including carbon cycles, but less has been done on the effects of temperature on vegetation structure. We acquired vegetation structural data using a SICK-LMS151 terrestrial laser scanner (905 nm) for full 270x360° coverage. This Compact Biomass Lidar (CBL) was developed by Rochester Institute of Technology and the University of Massachusetts, Boston. Data for each plot along the temperature gradient were collected in a 20 m x 20 m configuration at a 5 m scan spacing. Initial challenges, related to the irregular radial scan pattern and registration of 25 scans per plot, were addressed in order to extract normalized vegetation density metrics and to mitigate occlusion effects, respectively. However, we believe that the CBL scans can be assessed independently, i.e., treating 25 scans/plot as a population sample. We derived height statistics, return density metrics, canopy rugosity, and higher-order metrics in order to describe the differences in vegetation structure, which ultimately will be tied to the elevation-induced temperature range. We hypothesized that, for this MAT gradient (i) vertical vegetation stratification; (ii) diameter distributions; and (iii) aboveground biomass will differ significantly, while more species-dependent canopy rugosity remain stable. Our results support these hypotheses, allowing for future studies of vegetation structural responses to static and dynamic climate drivers. The findings have implications for forest management, mitigation strategies to limit losses in carbon sequestration, and forest inventory in structurally complex forests.

  13. On the Relationship Between Hyperspectral Data and Foliar Nitrogen Content in Closed Canopy Forests

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Schull, M.; Lepine, L. C.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Latorre, P.; Myneni, R.; Kaufmann, R.

    2011-12-01

    The importance of nitrogen for terrestrial ecosystem carbon dynamics and its climate feedback has been well recognized by the ecological community. Interaction between carbon and nitrogen at leaf level is among the fundamental mechanisms that directly control the dynamics of terrestrial vegetation carbon. This process influences absorption and scattering of solar radiation by foliage, which in turn impacts radiation reflected by the vegetation and measured by satellite sensors. NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and ground based data on canopy structure and foliage nitrogen concentration acquired over six sites in Maine, New England, Florida, North Carolina and Washington were analyzed to assess the role of canopy structure, leaf optics and its biochemical constituents in the spectral variation of radiation reflected by the forest. The study sites represent closed canopy forests (LAI~5). Our results suggest: 1. Impact of canopy structure is so strong that it can significantly suppress the sensitivity of hyperspectral data to leaf optics. 2. Forest reflectance spectra in the interval [710, 790 nm] are required to obtain the fraction of the total leaf area that a "sensor sees" in a given direction. For closed canopy forests its retrieval does not require canopy reflectance models, suggesting that canopy reflectance spectra in this interval provide a direct estimate of the leaf area fraction. 3. The leaf area fraction fully explains variation in measured reflectance spectra due to variation in canopy structure. This variable is used to estimate the mean leaf scattering over foliage that the "sensor sees." For example the nadir-viewing AVIRIS sensor accumulates foliage optical properties over 25% of the total foliage area in needle leaf forest and about 50% in broadleaf forest. 4. Leaf surface properties have an impact on forest reflectivity, lowering its sensitivity to leaf absorbing pigments. 5. Variation in foliar nitrogen concentration can explain up to 55% of variation in AVIRIS spectra in the interval between 400 and 900 nm. The remaining factors could be due to (a) impact of leaf surface properties and/or (b) under-sampling of leaf optical properties due to the single view of the AVIRIS sensor. The theory of canopy spectral invariants underlies the separation of leaf scattering from the total canopy reflectance spectrum.

  14. Turbulent Structures in a Pine Forest with a Deep and Sparse Trunk Space: Stand and Edge Regions

    NASA Astrophysics Data System (ADS)

    Dupont, Sylvain; Irvine, Mark R.; Bonnefond, Jean-Marc; Lamaud, Eric; Brunet, Yves

    2012-05-01

    Forested landscapes often exhibit large spatial variability in vertical and horizontal foliage distributions. This variability may affect canopy-atmosphere exchanges through its action on the development of turbulent structures. Here we investigate in neutral stratification the turbulent structures encountered in a maritime pine forest characterized by a high, dense foliated layer associated with a deep and sparse trunk space. Both stand and edge regions are considered. In situ measurements and the results of large-eddy simulations are used and analyzed together. In stand conditions, far from the edge, canopy-top structures appear strongly damped by the dense crown layer. Turbulent wind fluctuations within the trunk space, where the momentum flux vanishes, are closely related to these canopy-top structures through pressure diffusion. Consequently, autocorrelation and spectral analyses are not quite appropriate to characterize the vertical scale of coherent structures in this type of canopy, as pressure diffusion enhances the actual scale of structures. At frequencies higher than those associated with canopy-top structures, wind fluctuations related to wake structures developing behind tree stems are observed within the trunk space. They manifest themselves in wind velocity spectra as secondary peaks in the inertial subrange region, confirming the hypothesis of spectral short-cuts in vegetation canopies. In the edge region specific turbulent structures develop just below the crown layer, in addition to canopy-top structures. They are generated by the wind shear induced by the sub-canopy wind jet that forms at the edge. These structures provide a momentum exchange mechanism similar to that observed at the canopy top but in the opposite direction and with a lower magnitude. They may develop as in plane mixing-layer flows, with some perturbations induced by canopy-top structures. Wake structures are also observed within the trunk space in the edge region.

  15. Deriving a light use efficiency estimation algorithm using in situ hyperspectral and eddy covariance measurements for a maize canopy in Northeast China.

    PubMed

    Zhang, Feng; Zhou, Guangsheng

    2017-07-01

    We estimated the light use efficiency ( LUE ) via vegetation canopy chlorophyll content ( CCC canopy ) based on in situ measurements of spectral reflectance, biophysical characteristics, ecosystem CO 2 fluxes and micrometeorological factors over a maize canopy in Northeast China. The results showed that among the common chlorophyll-related vegetation indices (VIs), CCC canopy had the most obviously exponential relationships with the red edge position (REP) ( R 2  = .97, p  <   .001) and normalized difference vegetation index (NDVI) ( R 2  = .91, p  <   .001). In a comparison of the indicating performances of NDVI, ratio vegetation index (RVI), wide dynamic range vegetation index (WDRVI), and 2-band enhanced vegetation index (EVI2) when estimating CCC canopy using all of the possible combinations of two separate wavelengths in the range 400-1300 nm, EVI2 [1214, 1259] and EVI2 [726, 1248] were better indicators, with R 2 values of .92 and .90 ( p  <   .001). Remotely monitoring LUE through estimating CCC canopy derived from field spectrometry data provided accurate prediction of midday gross primary productivity ( GPP ) in a rainfed maize agro-ecosystem ( R 2  = .95, p  <   .001). This study provides a new paradigm for monitoring vegetation GPP based on the combination of LUE models with plant physiological properties.

  16. The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography

    NASA Astrophysics Data System (ADS)

    Blair, J. Bryan; Rabine, David L.; Hofton, Michelle A.

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter, designed and developed at NASA's Goddard Space Flight Center (GSFC). LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25-m wide footprints. The entire time history of the outgoing and return pulses is digitised, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with dm accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 ns, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the US and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in year 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.

  17. [Effects of green space vegetation canopy pattern on the microclimate in residential quarters of Shenzhen City].

    PubMed

    Li, Ying-Han; Wang, Jun-Jian; Chen, Xue; Sun, Jian-Lin; Zeng, Hui

    2011-02-01

    Based on field survey and landscape pattern analysis, this paper studied the effects of green space vegetation canopy on the microclimate in three typical residential quarters in Shenzhen City. In each of the residential quarters, 22-26 points were chosen for meteorological observation; and around each of the observation points, a 20 m x 20 m quadrat was installed, with each quadrat divided into two different patches, one covered by vegetation canopy and the another no-covered. The patch density index (D(p)) and contagion index (CONTAG) in each quadrat were calculated to analyze the relationships between vegetation canopy pattern index and microclimate in each point. The results showed that the green space vegetation canopy pattern in Shenzhen had significant regulation effect on temperature and humidity. The cooling effect was mainly from the shading effect of vegetation, and also, correlated with vegetation quantity. The increase in the CONTAG of bare surface had obvious negative effects on the regulation effect of vegetation on microclimate. The regulation capability of green space vegetation on the temperature and humidity in residential quarters mainly came from tall arbor species.

  18. New datasets for quantifying snow-vegetation-atmosphere interactions in boreal birch and conifer forests

    NASA Astrophysics Data System (ADS)

    Reid, T. D.; Essery, R.; Rutter, N.; Huntley, B.; Baxter, R.; Holden, R.; King, M.; Hancock, S.; Carle, J.

    2012-12-01

    Boreal forests exert a strong influence on weather and climate by modifying the surface energy and radiation balance. However, global climate and numerical weather prediction models use forest parameter values from simple look-up tables or maps that are derived from limited satellite data, on large grid scales. In reality, Arctic landscapes are inherently heterogeneous, with highly variable land cover types and structures on a variety of spatial scales. There is value in collecting detailed field data for different areas of vegetation cover, to assess the accuracy of large-scale assumptions. To address these issues, a consortium of researchers funded by the UK's Natural Environment Research Council have collected extensive data on radiation, meteorology, snow cover and canopy structure at two contrasting Arctic forest sites. The chosen study sites were an area of boreal birch forest near Abisko, Sweden in March/April 2011 and mixed conifer forest at Sodankylä, Finland in March/April 2012. At both sites, arrays comprising ten shortwave pyranometers and four longwave pyrgeometers were deployed for periods of up to 50 days, under forest plots of varying canopy structures and densities. In addition, downwelling longwave irradiance and global and diffuse shortwave irradiances were recorded at nearby open sites representing the top-of-canopy conditions. Meteorological data were recorded at all sub-canopy and open sites using automatic weather stations. Over the same periods, tree skin temperatures were measured on selected trees using contact thermocouples, infrared thermocouples and thermal imagery. Canopy structure was accurately quantified through manual surveys, extensive hemispherical photography and terrestrial laser scans of every study plot. Sub-canopy snow depth and snow water equivalent were measured on fine-scale grids at each study plot. Regular site maintenance ensured a high quality dataset covering the important Arctic spring period. The data have several applications, for example in forest ecology, canopy radiative transfer models, snow hydrological modelling, and land surface schemes, for a variety of canopy types from sparse, leafless birch to dense pine and spruce. The work also allows the comparison of modern, highly detailed methods such as laser scanning and thermal imagery with older, well-established data collection methods. By combining these data with airborne and satellite remote sensing data, snow-vegetation-atmosphere interactions could be estimated over a wide area of the heterogeneous boreal landscape. This could improve estimates of crucial parameters such as land surface albedo on the grid scales required for global or regional weather and climate models.

  19. Global meta-analysis of leaf area index in wetlands indicates uncertainties in understanding of their ecosystem function

    NASA Astrophysics Data System (ADS)

    Dronova, I.; Taddeo, S.; Foster, K.

    2017-12-01

    Projecting ecosystem responses to global change relies on the accurate understanding of properties governing their functions in different environments. An important variable in models of ecosystem function is canopy leaf area index (LAI; leaf area per unit ground area) declared as one of the Essential Climate Variables in the Global Climate Observing System and extensively measured in terrestrial landscapes. However, wetlands have been largely under-represented in these efforts, which globally limits understanding of their contribution to carbon sequestration, climate regulation and resilience to natural and anthropogenic disturbances. This study provides a global synthesis of >350 wetland-specific LAI observations from 182 studies and compares LAI among wetland ecosystem and vegetation types, biomes and measurement approaches. Results indicate that most wetland types and even individual locations show a substantial local dispersion of LAI values (average coefficient of variation 65%) due to heterogeneity of environmental properties and vegetation composition. Such variation indicates that mean LAI values may not sufficiently represent complex wetland environments, and the use of this index in ecosystem function models needs to incorporate within-site variation in canopy properties. Mean LAI did not significantly differ between direct and indirect measurement methods on a pooled global sample; however, within some of the specific biomes and wetland types significant contrasts between these approaches were detected. These contrasts highlight unique aspects of wetland vegetation physiology and canopy structure affecting measurement principles that need to be considered in generalizing canopy properties in ecosystem models. Finally, efforts to assess wetland LAI using remote sensing strongly indicate the promise of this technology for cost-effective regional-scale modeling of canopy properties similar to terrestrial systems. However, such efforts urgently require more rigorous corrections for three-dimensional contributions of non-canopy material and non-vegetated surfaces to wetland canopy reflectance.

  20. [The research on bidirectional reflectance computer simulation of forest canopy at pixel scale].

    PubMed

    Song, Jin-Ling; Wang, Jin-Di; Shuai, Yan-Min; Xiao, Zhi-Qiang

    2009-08-01

    Computer simulation is based on computer graphics to generate the realistic 3D structure scene of vegetation, and to simulate the canopy regime using radiosity method. In the present paper, the authors expand the computer simulation model to simulate forest canopy bidirectional reflectance at pixel scale. But usually, the trees are complex structures, which are tall and have many branches. So there is almost a need for hundreds of thousands or even millions of facets to built up the realistic structure scene for the forest It is difficult for the radiosity method to compute so many facets. In order to make the radiosity method to simulate the forest scene at pixel scale, in the authors' research, the authors proposed one idea to simplify the structure of forest crowns, and abstract the crowns to ellipsoids. And based on the optical characteristics of the tree component and the characteristics of the internal energy transmission of photon in real crown, the authors valued the optical characteristics of ellipsoid surface facets. In the computer simulation of the forest, with the idea of geometrical optics model, the gap model is considered to get the forest canopy bidirectional reflectance at pixel scale. Comparing the computer simulation results with the GOMS model, and Multi-angle Imaging SpectroRadiometer (MISR) multi-angle remote sensing data, the simulation results are in agreement with the GOMS simulation result and MISR BRF. But there are also some problems to be solved. So the authors can conclude that the study has important value for the application of multi-angle remote sensing and the inversion of vegetation canopy structure parameters.

  1. Factors affecting the remotely sensed response of coniferous forest plantations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danson, F.M.; Curran, P.J.

    1993-01-01

    Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response ofmore » a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation.« less

  2. Vegetation burn severity mapping using Landsat-8 and WorldView-2

    USGS Publications Warehouse

    Wu, Zhuoting; Middleton, Barry R.; Hetzler, Robert; Vogel, John M.; Dye, Dennis G.

    2015-01-01

    We used remotely sensed data from the Landsat-8 and WorldView-2 satellites to estimate vegetation burn severity of the Creek Fire on the San Carlos Apache Reservation, where wildfire occurrences affect the Tribe's crucial livestock and logging industries. Accurate pre- and post-fire canopy maps at high (0.5-meter) resolution were created from World- View-2 data to generate canopy loss maps, and multiple indices from pre- and post-fire Landsat-8 images were used to evaluate vegetation burn severity. Normalized difference vegetation index based vegetation burn severity map had the highest correlation coefficients with canopy loss map from WorldView-2. Two distinct approaches - canopy loss mapping from WorldView-2 and spectral index differencing from Landsat-8 - agreed well with the field-based burn severity estimates and are both effective for vegetation burn severity mapping. Canopy loss maps created with WorldView-2 imagery add to a short list of accurate vegetation burn severity mapping techniques that can help guide effective management of forest resources on the San Carlos Apache Reservation, and the broader fire-prone regions of the Southwest.

  3. Full-Waveform, Wide-Swath Lidar Imaging of Forested and Urban Areas in Leaf-On Conditions: Development, Results and Future Direction

    NASA Astrophysics Data System (ADS)

    Blair, B.; Hofton, M.; Rabine, D.; Welch, W.; Ramos, L.; Padden, P.

    2003-12-01

    Full-Waveform lidar measurements provide unprecedented views of the vertical and horizontal structure of vegetation and the topography of the Earth's surface. Utilizing a high signal-to-noise ratio lidar system, larger than typical laser footprints (10-20 m), and the recorded time history of interaction between a short-duration (10 ns) pulse of laser light and the surface of the Earth, full-waveform lidar is able to simultaneously image sub-canopy topography as well as the vertical structure of any overlying vegetation. These data reveal the true 3-D vegetation structure in leaf-on conditions enabling important biophysical parameters such as above-ground biomass to be estimated with unprecedented accuracy. An airborne lidar mission was conducted July-August 2003 in support of the North America Carbon Program. NASA's Laser Vegetation Imaging Sensor (LVIS) was used to image approximately 2,000 sq. km in Maine, New Hampshire, Massachusetts and Maryland. Areas with available ground and other data were included (e.g., experimental forests, FLUXNET sites) in order to facilitate as many bio- and geophysical investigations as possible. Data collected included ground elevation and canopy height measurements for each laser footprint, as well as the vertical distribution of intercepted surfaces. Data will be publicly distributed within 6-12 months of collection. Further details of the mission, including the lidar system technology, the locations of the mapped areas, and examples of the numerous data products that can be derived from the return waveform data products will be presented. Future applications including detection of ground and vegetation canopy changes and a spaceborne implementation of wide-swath, full-waveform imaging lidar will also be discussed.

  4. Full-Waveform, Wide-Swath Lidar Imaging of Forested and Urban Areas in Leaf-On Conditions: Development, Results and Future Direction

    NASA Technical Reports Server (NTRS)

    Blair, James B.; Hofton, M.; Rabine, David; Welch, Wayne; Ramos, Luis; Padden, Phillip

    2003-01-01

    Full-Waveform lidar measurements provide unprecedented views of the vertical and horizontal structure of vegetation and the topography of the Earth s surface. Utilizing a high signal-to-noise ratio lidar system, larger than typical laser footprints (10-20 m), and the recorded time history of interaction between a short-duration (approx. 10 ns) pulse of laser light and the surface of the Earth, full-waveform lidar is able to simultaneously image sub-canopy topography as well as the vertical structure of any overlying vegetation. These data reveal the true 3-D vegetation structure in leaf-on conditions enabling important biophysical parameters such as above-ground biomass to be estimated with unprecedented accuracy. An airborne lidar mission was conducted July-August 2003 in support of the North America Carbon Program. NASA s Laser Vegetation Imaging Sensor (LVIS) was used to image approximately 2,000 km$^2$ in Maine, New Hampshire, Massachusetts and Maryland. Areas with available ground and other data were included (e.g., experimental forests, FLUXNET sites) in order to facilitate as many bio- and geophysical investigations as possible. Data collected included ground elevation and canopy height measurements for each laser footprint, as well as the vertical distribution of intercepted surfaces. Data will be publicly distributed within 6- 12 months of collection. Further details of the mission, including the lidar system technology, the locations of the mapped areas, and examples of the numerous data products that can be derived from the return waveform data products will be presented. Future applications including detection of ground and vegetation canopy changes and a spaceborne implementation of wide-swath, full-waveform imaging lidar will also be discussed.

  5. UAV hyperspectral and lidar data analysis for vegetation applications

    NASA Astrophysics Data System (ADS)

    Sankey, Temuulen; Sankey, Joel; Donager, Jonathon

    2017-04-01

    High spatial and spectral resolution remote sensing data are critically needed to classify forest vegetation and measure their structure at the level of individual species and canopies. Here we test high-resolution lidar and hyperspectral data from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone with a gradient of vegetation and topography in northern Arizona, USA. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signature, but different canopy sizes. The lidar data provides estimates of individual tree height (R2=0.90; RMSE=2.3m) and crown diameter (R2=0.72; RMSE=0.71m) as well as total tree canopy cover (R2=0.87; RMSE=9.5%) and tree density (R2=0.77; RMSE=0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22-50% and 1-3.5 trees/cell, respectively. The lidar data also produces high accuracy DEM (R2=0.95; RMSE=0.43m). The lidar and hyperspectral sensors and methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring ecosystem changes.

  6. Spatial patterns of ecohydrologic properties on a hillslope-alluvial fan transect, central New Mexico

    USGS Publications Warehouse

    Bedford, D.R.; Small, E.E.

    2008-01-01

    Spatial patterns of soil properties are linked to patchy vegetation in arid and semi-arid landscapes. The patterns of soil properties are generally assumed to be linked to the ecohydrological functioning of patchy dryland vegetation ecosystems. We studied the effects of vegetation canopy, its spatial pattern, and landforms on soil properties affecting overland flow and infiltration in shrublands at the Sevilleta National Wildlife Refuge/LTER in central New Mexico, USA. We studied the patterns of microtopography and saturated conductivity (Ksat), and generally found it to be affected by vegetation canopy and pattern, as well as landform type. On gently sloping alluvial fans, both microtopography and Ksat are high under vegetation canopy and decay with distance from plant center. On steeper hillslope landforms, only microtopography was significantly higher under vegetation canopy, while there was no significant difference in Ksat between vegetation and interspaces. Using geostatistics, we found that the spatial pattern of soil properties was determined by the spatial pattern of vegetation. Most importantly, the effects of vegetation were present in the unvegetated interspaces 2-4 times the extent of vegetation canopy, on the order of 2-3??m. Our results have implications for the understanding the ecohydrologic function of semi-arid ecosystems as well as the parameterization of hydrologic models. ?? 2007 Elsevier B.V. All rights reserved.

  7. Ecological optimality in water-limited natural soil-vegetation systems. I - Theory and hypothesis

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.

    1982-01-01

    The solution space of an approximate statistical-dynamic model of the average annual water balance is explored with respect to the hydrologic parameters of both soil and vegetation. Within the accuracy of this model it is shown that water-limited natural vegetation systems are in stable equilibrium with their climatic and pedologic environments when the canopy density and species act to minimize average water demand stress. Theory shows a climatic limit to this equilibrium above which it is hypothesized that ecological pressure is toward maximization of biomass productivity. It is further hypothesized that natural soil-vegetation systems will develop gradually and synergistically, through vegetation-induced changes in soil structure, toward a set of hydraulic soil properties for which the minimum stress canopy density of a given species is maximum in a given climate. Using these hypotheses, only the soil effective porosity need be known to determine the optimum soil and vegetation parameters in a given climate.

  8. Atmospheric optical depth effects on angular anisotropy of plant canopy reflectance

    NASA Technical Reports Server (NTRS)

    Deering, Donald W.; Eck, Thomas F.

    1987-01-01

    The effects of varying atmospheric aerosol optical depth on the bidirectional reflectance distribution of vegetation canopies is investigated. The reflectance distributions of two pasture grass canopies and one soya bean canopy under different sky irradiance distributions were measured, and the data were analyzed in the visible and IR spectral bands. It is observed that, for the pasture grass canopies, the change in reflectance is due to the percentage of shadowed area viewed by the sensor, and for the soya bean, the specular reflection effect and increased diffuse irradiance penetration into the canopy cause reflectance changes. It is detected that the reflectivity for the soya bean canopy on a hazy day is lower than on a clear day; however, the opposite change is observed for the pasture grass. It is also detected that the normalized difference vegetation index values differ under clear and hazy conditions for the same vegetation canopy conditions.

  9. Nest Records of Wreathed Hornbill (Rhyticeros undulates) in Gunung Gentong Station, Mount Ungaran Central Java

    NASA Astrophysics Data System (ADS)

    Rahayuningsih, M.; Kartijomo, NE; Retnaningsih, A.; Munir, M.; Dahlan, J.

    2017-04-01

    The remaining forest of Mount Ungaran, Central Javais the suitable habitat of Wreathed Hornbill (Rhyticeros undulatus), especially for a nesting site. The objective of the study was to analyse the nest record and characteristics of habitat around the nest, especially in Gunung Gentong station. The research was conducted from 2010-2016 using exploration method. The methodhabitat profile of the vertical structure tree canopy was taken by plot size 60 × 20 m. Measurements were taken to the standing of vegetation, canopy closure, the direction of the canopy, height canopy, a former branch of the vegetation height, and stem diameter. The Result of the study showed that Gunung Gentong is one of the research station that we have been recorded for nesting site on 2010-2015. Atotal of the nest record on Gunung Genting station was 10 nests. Estimate the elevation of nest location between 939-1240 AMSL. The tree species that used for nesting was Syzygium glabatrum, Syzygium antisepticum, Ceratoxylon formosum, and Ficus sp

  10. Synergy of VSWIR and LiDAR for Ecosystem Structure, Biomass, and Canopy Diversity

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Asner, Gregory P.

    2010-01-01

    This slide presentation reviews the use of Visible ShortWave InfraRed (VSWIR) Imaging Spectrometer and LiDAR to study ecosystem structure, biomass and canopy diversity. It is shown that the biophysical data from LiDAR and biochemical information from hyperspectral remote sensing provides complementary data for: (1) describing spatial patterns of vegetation and biodiversity, (2) characterizing relationships between ecosystem form and function, and (3) detecting natural and human induced change that affects the biogeochemical cycles.

  11. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1984-01-01

    The effect different wetland plant canopies have upon observed reflectance in Thematic Mapper bands is examined. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. Biomass estimates computed from spectral data were most similar to biomass estimates determined from harvest data when models developed for a specific canopy were used. Precise determination of regression coefficients for each canopy type and modeling changes in the coefficients with various combinations of canopy types are being tested. The multispectral band scanner vegetation index estimates are very similar to the vegetation index estimates.

  12. CLICK: The new USGS center for LIDAR information coordination and knowledge

    USGS Publications Warehouse

    Stoker, Jason M.; Greenlee, Susan K.; Gesch, Dean B.; Menig, Jordan C.

    2006-01-01

    Elevation data is rapidly becoming an important tool for the visualization and analysis of geographic information. The creation and display of three-dimensional models representing bare earth, vegetation, and structures have become major requirements for geographic research in the past few years. Light Detection and Ranging (lidar) has been increasingly accepted as an effective and accurate technology for acquiring high-resolution elevation data for bare earth, vegetation, and structures. Lidar is an active remote sensing system that records the distance, or range, of a laser fi red from an airborne or space borne platform such as an airplane, helicopter or satellite to objects or features on the Earth’s surface. By converting lidar data into bare ground topography and vegetation or structural morphologic information, extremely accurate, high-resolution elevation models can be derived to visualize and quantitatively represent scenes in three dimensions. In addition to high-resolution digital elevation models (Evans et al., 2001), other lidar-derived products include quantitative estimates of vegetative features such as canopy height, canopy closure, and biomass (Lefsky et al., 2002), and models of urban areas such as building footprints and three-dimensional city models (Maas, 2001).

  13. Comparing helicopter-borne profiling radar with airborne laser scanner data for forest structure estimation.

    NASA Astrophysics Data System (ADS)

    Piermattei, Livia; Hollaus, Markus; Pfeifer, Norbert; Chen, Yuwei; Karjalainen, Mika; Hakala, Teemu; Hyyppä, Juha; Wagner, Wolfgang

    2017-04-01

    Forests are complex ecosystems that show substantial variation with respect to climate, management regime, stand history, disturbance, and needs of local communities. The dynamic processes of growth and disturbance are reflected in the structural components of forests that include the canopy vertical structure and geometry (e.g. size, height, and form), tree position and species diversity. Current remote-sensing systems to measure forest structural attributes include passive optical sensors and active sensors. The technological capabilities of active remote sensing like the ability to penetrate the vegetation and provide information about its vertical structure has promoted an extensive use of LiDAR (Light Detection And Ranging) and radar (RAdio Detection And Ranging) system over the last 20 years. LiDAR measurements from aircraft (airborne laser scanning, ALS) currently represents the primary data source for three-dimensional information on forest vertical structure. Contrary, despite the potential of radar remote sensing, their use is not yet established in forest monitoring. In order to better understand the interaction of pulsed radar with the forest canopy, and to increase the feasibility of this system, the Finnish Geospatial Research Institute has developed a helicopter-borne profiling radar system, called TomoRadar. TomoRadar is capable of recording a canopy-penetrating profile of forests. To georeference the radar measurements the system was equipped with a global navigation satellite system and an inertial measurement unit with a centimeter level accuracy of the flight trajectory. The TomoRadar operates at Ku-band, (wave lengths λ 1.5cm) with two separated parabolic antennas providing co- and cross-polarization modes. The purpose of this work is to investigate the capability of the TomoRadar system, for estimating the forest vertical profile, terrain topography and tree height. We analysed 600 m TomoRadar crosspolarized (i.e. horizontal - vertical) profile, acquired in October 2016 over a boreal test site in Evo, Finland. The intensity of the reflected backscatter energy was used to measure the height canopy distribution within an individual footprint. As the intensity of the backscatter energy from the ground is exceeding the intensity from vegetation, the estimation of canopy height and the forest structure were based on i) a threshold between canopy and ground and ii) a peak analysis of the backscattering profile. ALS data collected simultaneously was used to validate the TomoRadar results (i.e. canopy height) and to obtain elevation ground truth. The first results show a high agreement between ALS and TomoRadar derived canopy heights. The derived knowledge about the energy distribution within the canopy height profile leads to an increased understanding of the interactions between the radar signal and the forest canopy and will support optimization of future radar systems with respect to forest structure observation.

  14. Using Remote Sensing Technologies to Quantify the Effects of Beech Bark Disease on the Structure, Composition, and Function of a Late-Successional Forest

    NASA Astrophysics Data System (ADS)

    Stuart-Haëntjens, E. J.; Ricart, R. D.; Fahey, R. T.; Fotis, A. T.; Gough, C. M.

    2016-12-01

    Ecological theory maintains that as forests age, the rate at which carbon (C) is stored declines because C released through organic matter decomposition offsets declining C sequestration in new vegetative growth. Recent observational studies are challenging this long-held hypothesis, with limited evidence suggesting higher-than-expected rates in late-successional forests could be, counterintuitively, tied to canopy structural changes associated with low intensity tree mortality. As forests age, canopy structural complexity may increase when old trees die and form upper canopy gaps that release subcanopy vegetation. This provides one explanation for observations of sustained high production in old forests. Recent studies have found that this increased structural complexity and resource-use efficiency maintain C storage in mid-successional deciduous forests; whether a similar mechanism extends to late-successional forests is unknown. We will present how a slow, moderate disturbance affects the structure and C sequestration of late-successional forests. Our study site is a forest recently infected by Beech Bark Disease (BBD), which will result in the eventual mortality of American beech trees in this late successional forest in Northern Michigan, at the University of Michigan Biological Station. American Beech, Hemlock, Sugar Maple, and White Pine dominate the landscape, with American Beech making up 30% of the canopy trees on average. At the plot scale American Beech is distributed heterogeneously, comprising 1% to 60% of total plot basal area, making it possible to examine the interplay between disturbance severity, canopy structural change, and primary production resilience in this forest. Within each of the 13 plots, species and stem diameter were collected in 1992, 1994, 2014, and 2016, with future remeasurements planned. We will discuss how ground-based lidar coupled with airborne spectral (IR and RGB) imagery are being used to track canopy BBD-related structural changes over time and space, and to link structural changes with late-successional primary production. Our hypothesis is that, up to a presently unknown disturbance threshold, moderate disturbance from BBD sustains primary production in this late successional forest by partially, but not fully, rewinding ecological succession.

  15. Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR

    USGS Publications Warehouse

    Sankey, Joel B.; Munson, Seth M.; Webb, Robert H.; Wallace, Cynthia S.A.; Duran, Cesar M.

    2015-01-01

    Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  16. Reflectance of a vegetation canopy using the Adding method

    NASA Technical Reports Server (NTRS)

    Cooper, K.; Smith, J. A.; Pitts, D.

    1982-01-01

    A modified vegetation reflectance model based on the Adding method is presented as a means to measure the interaction of shortwave radiation within a vegetation canopy. The canopy is conceptualized with reflecting and transmitting leaf facets, with the leaf orientations described by a leaf slope distribution, thereby yielding scattering matrices for canopy layers. The model predictions, when compared with ground-truth measurements, show good agreement except at visible wavelengths, where overestimations are observed. Conditions under which the model satisfies the reciprocity theorem are defined. Extension of the model by including azimuth is indicated.

  17. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds

    PubMed Central

    Vaughn, Nicholas R.; Asner, Gregory P.; Smit, Izak P. J.; Riddel, Edward S.

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50–450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques. PMID:26660502

  18. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    PubMed

    Vaughn, Nicholas R; Asner, Gregory P; Smit, Izak P J; Riddel, Edward S

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  19. Reducing the uncertainty in the projection of the terrestrial carbon cycle by fusing models with remote sensing data

    NASA Astrophysics Data System (ADS)

    Serbin, S.; Shiklomanov, A. N.; Viskari, T.; Desai, A. R.; Townsend, P. A.; Dietze, M.

    2015-12-01

    Modeling global change requires accurate representation of terrestrial carbon (C), energy and water fluxes. In particular, capturing the properties of vegetation canopies that describe the radiation regime are a key focus for global change research because the properties related to radiation utilization and penetration within plant canopies provide an important constraint on terrestrial ecosystem productivity, as well as the fluxes of water and energy from vegetation to the atmosphere. As such, optical remote sensing observations present an important, and as yet relatively untapped, source of observations that can be used to inform modeling activities. In particular, high-spectral resolution optical data at the leaf and canopy scales offers the potential for an important and direct data constraint on the parameterization and structure of the radiative transfer model (RTM) scheme within ecosystem models across diverse vegetation types, disturbance and management histories. In this presentation we highlight ongoing work to integrate optical remote sensing observations, specifically leaf and imaging spectroscopy (IS) data across a range of forest ecosystems, into complex ecosystem process models within an efficient computational assimilation framework as a means to improve the description of canopy optical properties, vegetation composition, and modeled radiation balance. Our work leverages the Predictive Ecosystem Analyzer (PEcAn; http://www.pecanproject.org/) ecoinformatics toolbox together with a RTM module designed for efficient assimilation of leaf and IS observations to inform vegetation optical properties as well as associated plant traits. Ultimately, an improved understanding of the radiation balance of ecosystems will provide a better constraint on model projections of energy balance, vegetation composition, and carbon pools and fluxes thus allowing for a better diagnosis of the vulnerability of terrestrial ecosystems in response to global change.

  20. Vegetation and Ecological Characteristics of Mixed-Conifer and Red Fir Forests at the Teakettle Experimental Forest

    Treesearch

    Malcolm North; Brian Oakley; Jiquan Chen; Heather Erickson; Andrew Gray; Antonio Izzo; Dale Johnson; Siyan Ma; Jim Marra; Marc Meyer; Kathryn Purcell; Tom Rambo; Dave Rizzo; Brent Roath; Tim Schowalter

    2002-01-01

    Detailed analysis of mixed-conifer and red fir forests were made from extensive, large vegetation sampling, systematically conducted throughout the Teakettle Experimental Forest. Mixed conifer is characterized by distinct patch conditions of closed-canopy tree clusters, persistent gaps and shrub thickets. This heterogeneous spatial structure provides contrasting...

  1. Canopy structural complexity predicts forest canopy light absorption at continental scales

    NASA Astrophysics Data System (ADS)

    Atkins, J. W.; Fahey, R. T.; Hardiman, B. S.; Gough, C. M.

    2017-12-01

    Understanding how the physical structure of forest canopies influence light acquisition is a long-standing area of inquiry fundamental to advancing understanding of many areas of the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure employed in earth system models are often limited to leaf area index (LAI)—a measure of the quantity of leaves in the canopy. However, more novel multi-dimensional measures of canopy structural complexity (CSC) that describe the arrangement of vegetation are now possible because of technological advances, and may improve modeled estimates of canopy light absorption. During 2016 and 2017, we surveyed forests at sites from across the eastern, southern, and midwestern United States using portable canopy LiDAR (PCL). This survey included 14 National Ecological Observation Network (NEON), Long-Term Ecological Research Network (LTER,) Ameriflux, and University affiliated sites. Our findings show that a composite model including CSC parameters and LAI explains 96.8% of the variance in light acquisition, measured as the fraction of photosynthetically absorbed radiation (fPAR) at the continental scale, and improvement of 12% over an LAI only model. Under high light sky conditions, measures of CSC are more strongly coupled with light acquisition than under low light, possibly because light scattering partially decouples CSC from canopy light absorption under low, predominately diffuse light conditions. We conclude that scalable estimates of CSC metrics may improve continent-wide estimates of canopy light absorption and, therefore, carbon uptake, with implications for remote sensing and earth system modeling.

  2. Aeolian Sediment Trapping Efficiencies of Sparse Vegetation and its Ecohydrological Consequences in Drylands

    NASA Astrophysics Data System (ADS)

    Gonzales, H. B.; Ravi, S.; Li, J. J.; Sankey, J. B.

    2016-12-01

    Hydrological and aeolian processes control the redistribution of soil and nutrients in arid and semi arid environments thereby contributing to the formation of heterogeneous patchy landscapes with nutrient-rich resource islands surrounded by nutrient depleted bare soil patches. The differential trapping of soil particles by vegetation canopies may result in textural changes beneath the vegetation, which, in turn, can alter the hydrological processes such as infiltration and runoff. We conducted infiltration experiments and soil grain size analysis of several shrub (Larrea tridentate) and grass (Bouteloua eriopoda) microsites and in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate heterogeneity in soil texture and infiltration patterns under grass and shrub microsites. We assessed the trapping effectiveness of vegetation canopies using a novel computational fluid dynamics (CFD) approach. An open-source software (OpenFOAM) was used to validate the data gathered from particle size distribution (PSD) analysis of soil within the shrub and grass microsites and their porosities (91% for shrub and 68% for grass) determined using terrestrial LiDAR surveys. Three-dimensional architectures of the shrub and grass were created using an open-source computer-aided design (CAD) software (Blender). The readily available solvers within the OpenFOAM architecture were modified to test the validity and optimize input parameters in assessing trapping efficiencies of sparse vegetation against aeolian sediment flux. The results from the numerical simulations explained the observed textual changes under grass and shrub canopies and highlighted the role of sediment trapping by canopies in structuring patch-scale hydrological processes.

  3. Building a global hotspot ecology with Triana data

    NASA Astrophysics Data System (ADS)

    Gerstl, Siegfried A. W.

    1999-12-01

    Triana is an Earth remote sensing satellite to be located at the distant Langrange Point L-1, the gravity-neutral point between the Earth and the Sun. It will provide continuous fill disk images of the entire sunlit side of the Earth with 8 km pixel resolution. The primary remote sensing instrument on Triana is a calibrated multispectral imager with 10 spectral channels in the UV, VIS, and NIR between 317 and 870 nm (reflected solar radiation). Due to its unique location at the Lagrange L-1 point, in the direct line-of-sight between Earth and Sun, Triana will view the Earth always in and near the solar retro-reflection direction which is also known as the hotspot direction. The canopy hotspot effect has rich information content for vegetation characterization, especially indications of canopy structure and vegetation health and stress situations. Primary vegetation-related data are the hotspot angular width W, and a hotspot factor C that quantifies the magnitude of the hotspot effect. Both quantities are related to the structural parameters of canopy height, foliage size, shape, and leaf area index (LAI). The continuous observations by Triana will allow us to establish time-series of these ecological parameters for all land biomes by longitude, latitude, and wavelength, that form the basis data set for a new global hotspot land vegetation ecology. The hotspot factor C will allow the determination of the enhanced radiant flux reflected from the Earth into space due to the hotspot effect. The hotspot flux enhancement due to the vegetation hotspot effect is estimated to account for about 1% of the entire Earth radiative energy balance.

  4. Modeling the directional reflectance from complete homogeneous vegetation canopies with various leaf-orientation distributions

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1984-01-01

    The directional-reflectance distributions of radiant flux from homogeneous vegetation canopies with greater than 90 percent ground cover are analyzed with a radiative-transfer model. The model assumes that the leaves consist of small finite planes with Lambertian properties. Four theoretical canopies with different leaf-orientation distributions were studied: erectophile, spherical, planophile, and heliotropic canopies. The directional-reflectance distributions from the model closely resemble reflectance distributions measured in the field. The physical scattering mechanisms operating in the model explain the variations observed in the reflectance distributions as a function of leaf-orientation distribution, solar zenith angle, and leaf transmittance and reflectance. The simulated reflectance distribution show unique characteristics for each canopy. The basic understanding of the physical scattering properties of the different canopy geometries gained in this study provide a basis for developing techniques to infer leaf-orientation distributions of vegetation canopies from directional remote-sensing measurements.

  5. What Does a Multilayer Canopy Model Tell Us About Our Current Understanding of Snow-Canopy Unloading?

    NASA Astrophysics Data System (ADS)

    McGowan, L. E.; Paw U, K. T.; Dahlke, H. E.

    2017-12-01

    In the Western U.S., future water resources depend on the forested mountain snowpack. The variations in and estimates of forest mountain snow volume are vital to projecting annual water availability; yet, snow forest processes are not fully known. Most snow models calculate snow-canopy unloading based on time, temperature, Leaf Area Index (LAI), and/or wind speed. While models crudely consider the canopy shape via LAI, current models typically do not consider the vertical canopy structure or varied energetics within multiple canopy layers. Vertical canopy structure influences the spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability. Within the canopy both the snowpack and energetic exposures to the snowpack (wind, shortwave and longwave radiation, turbulent heat fluxes etc.) vary widely in the vertical. The water and energy balance in each layer is dependent on all other layers. For example, increased snow canopy content in the top of the canopy will reduce available shortwave radiation at the bottom and snow unloading in a mid-layer can cascade and remove snow from all the lower layers. We examined vertical interactions and structures of the forest canopy on the impact of unloading utilizing the Advanced Canopy-Atmosphere-Soil-Algorithm (ACASA), a multilayer soil-vegetation-atmosphere numerical model based on higher-order closure of turbulence equations. Our results demonstrate how a multilayer model can be used to elucidate the physical processes of snow unloading, and could help researchers better parameterize unloading in snow-hydrology models.

  6. Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape.

    PubMed

    Glenn, Edward P; Huete, Alfredo R; Nagler, Pamela L; Nelson, Stephen G

    2008-03-28

    Vegetation indices (VIs) are among the oldest tools in remote sensing studies. Although many variations exist, most of them ratio the reflection of light in the red and NIR sections of the spectrum to separate the landscape into water, soil, and vegetation. Theoretical analyses and field studies have shown that VIs are near-linearly related to photosynthetically active radiation absorbed by a plant canopy, and therefore to light-dependent physiological processes, such as photosynthesis, occurring in the upper canopy. Practical studies have used time-series VIs to measure primary production and evapotranspiration, but these are limited in accuracy to that of the data used in ground truthing or calibrating the models used. VIs are also used to estimate a wide variety of other canopy attributes that are used in Soil-Vegetation-Atmosphere Transfer (SVAT), Surface Energy Balance (SEB), and Global Climate Models (GCM). These attributes include fractional vegetation cover, leaf area index, roughness lengths for turbulent transfer, emissivity and albedo. However, VIs often exhibit only moderate, non-linear relationships to these canopy attributes, compromising the accuracy of the models. We use case studies to illustrate the use and misuse of VIs, and argue for using VIs most simply as a measurement of canopy light absorption rather than as a surrogate for detailed features of canopy architecture. Used this way, VIs are compatible with "Big Leaf" SVAT and GCMs that assume that canopy carbon and moisture fluxes have the same relative response to the environment as any single leaf, simplifying the task of modeling complex landscapes.

  7. Turbulent water vapor exchanges and two source energy balance model estimated fluxes of heterogeneous vineyard canopies

    NASA Astrophysics Data System (ADS)

    Los, S.; Hipps, L.; Alfieri, J. G.; Prueger, J. H.; Kustas, W. P.

    2017-12-01

    Agriculture in semi-arid regions is globally facing increasing stress on water resources. Hence, knowledge of water used in irrigated crops is essential for water resource management. However, quantifying spatial and temporal distribution of evapotranspiration (ET) has proven difficult because of the inherent complexities involved. Understanding of the complex biophysical relationships that govern ET is incomplete, particularly for heterogeneous vegetation. The USDA-ARS is developing a remotely-sensed ET modeling system that utilizes a two-source energy balance (TSEB) model capable of simulating turbulent water and energy exchange from measurements of radiometric land surface temperature. The modeling system has been tested over a number of vegetated surfaces and is currently being validated for vineyard sites in the Central Valley of California through the Grape Remote sensing Atmospheric Profiling & Evapotranspiration eXperiment (GRAPEX). The highly variable, elevated canopy structure and semi-arid climatic conditions of these sites give the opportunity to gain knowledge of both turbulent exchange processes and the TSEB model's ability to simulate turbulent fluxes for heterogeneous vegetation. Analyzed are fast-response (20 Hz) 3-D velocity, temperature, and humidity measurements gathered over 4 years at two vineyard sites. These data were collected at a height of 5 m, within the surface layer but above the canopy, and at 1.5 m, below the canopy top. Power spectra and cross-spectra are used to study behavior of turbulent water vapor exchanges and coupling between the canopy layer and surface layer under various atmospheric conditions. Frequent light winds and unstable daytime conditions, combined with the complicated canopy structure, often induce intermittent and episodic turbulence transport. This resulted in a modal behavior alternating between periods of more continuous canopy venting and periods where water vapor fluxes are dominated by transient, low frequency events. Aerodynamic resistances derived by the TSEB model are examined, and modeled fluxes of water and energy are compared to measured values for various conditions. Efforts to characterize periods of intermittent behavior are presented and particular attention to model performance is given to these intermittent periods.

  8. Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning

    USGS Publications Warehouse

    Anderson, Kyle E.; Glenn, Nancy F.; Spaete, Lucas P.; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan; Derryberry, DeWayne R.

    2018-01-01

    Terrestrial laser scanning (TLS) has been shown to enable an efficient, precise, and non-destructive inventory of vegetation structure at ranges up to hundreds of meters. We developed a method that leverages TLS collections with machine learning techniques to model and map canopy cover and biomass of several classes of short-stature vegetation across large plots. We collected high-definition TLS scans of 26 1-ha plots in desert grasslands and big sagebrush shrublands in southwest Idaho, USA. We used the Random Forests machine learning algorithm to develop decision tree models predicting the biomass and canopy cover of several vegetation classes from statistical descriptors of the aboveground heights of TLS points. Manual measurements of vegetation characteristics collected within each plot served as training and validation data. Models based on five or fewer TLS descriptors of vegetation heights were developed to predict the canopy cover fraction of shrubs (R2 = 0.77, RMSE = 7%), annual grasses (R2 = 0.70, RMSE = 21%), perennial grasses (R2 = 0.36, RMSE = 12%), forbs (R2 = 0.52, RMSE = 6%), bare earth or litter (R2 = 0.49, RMSE = 19%), and the biomass of shrubs (R2 = 0.71, RMSE = 175 g) and herbaceous vegetation (R2 = 0.61, RMSE = 99 g) (all values reported are out-of-bag). Our models explained much of the variability between predictions and manual measurements, and yet we expect that future applications could produce even better results by reducing some of the methodological sources of error that we encountered. Our work demonstrates how TLS can be used efficiently to extend manual measurement of vegetation characteristics from small to large plots in grasslands and shrublands, with potential application to other similarly structured ecosystems. Our method shows that vegetation structural characteristics can be modeled without classifying and delineating individual plants, a challenging and time-consuming step common in previous methods applying TLS to vegetation inventory. Improving application of TLS to studies of shrub-steppe ecosystems will serve immediate management needs by enhancing vegetation inventories, environmental modeling studies, and the ability to train broader datasets collected from air and space.

  9. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types

    PubMed Central

    Niinemets, Ülo; Keenan, Trevor F.; Hallik, Lea

    2018-01-01

    Summary Extensive within-canopy light gradients importantly affect photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitatively separating the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they fundamentally differ in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. In contrast, species with slow leaf turnover exhibit a passive AA acclimation response primarily determined by acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types and solves an old enigma of the role of mass- vs. area-based traits in vegetation acclimation. PMID:25318596

  10. Estimating canopy bulk density and canopy base height for conifer stands in the interior Western United States using the Forest Vegetation Simulator Fire and Fuels Extension.

    Treesearch

    Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain

    2017-01-01

    The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...

  11. Evaluating the performance of land surface model ORCHIDEE-CAN v1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme

    NASA Astrophysics Data System (ADS)

    Chen, Yiying; Ryder, James; Bastrikov, Vladislav; McGrath, Matthew J.; Naudts, Kim; Otto, Juliane; Ottlé, Catherine; Peylin, Philippe; Polcher, Jan; Valade, Aude; Black, Andrew; Elbers, Jan A.; Moors, Eddy; Foken, Thomas; van Gorsel, Eva; Haverd, Vanessa; Heinesch, Bernard; Tiedemann, Frank; Knohl, Alexander; Launiainen, Samuli; Loustau, Denis; Ogée, Jérôme; Vessala, Timo; Luyssaert, Sebastiaan

    2016-09-01

    Canopy structure is one of the most important vegetation characteristics for land-atmosphere interactions, as it determines the energy and scalar exchanges between the land surface and the overlying air mass. In this study we evaluated the performance of a newly developed multi-layer energy budget in the ORCHIDEE-CAN v1.0 land surface model (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy), which simulates canopy structure and can be coupled to an atmospheric model using an implicit coupling procedure. We aim to provide a set of acceptable parameter values for a range of forest types. Top-canopy and sub-canopy flux observations from eight sites were collected in order to conduct this evaluation. The sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad-leaved and evergreen needle-leaved forest with a maximum leaf area index (LAI; all-sided) ranging from 3.5 to 7.0. The parametrization approach proposed in this study was based on three selected physical processes - namely the diffusion, advection, and turbulent mixing within the canopy. Short-term sub-canopy observations and long-term surface fluxes were used to calibrate the parameters in the sub-canopy radiation, turbulence, and resistance modules with an automatic tuning process. The multi-layer model was found to capture the dynamics of sub-canopy turbulence, temperature, and energy fluxes. The performance of the new multi-layer model was further compared against the existing single-layer model. Although the multi-layer model simulation results showed few or no improvements to both the nighttime energy balance and energy partitioning during winter compared with a single-layer model simulation, the increased model complexity does provide a more detailed description of the canopy micrometeorology of various forest types. The multi-layer model links to potential future environmental and ecological studies such as the assessment of in-canopy species vulnerability to climate change, the climate effects of disturbance intensities and frequencies, and the consequences of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem.

  12. Mapping forest height in Alaska using GLAS, Landsat composites, and airborne LiDAR

    USGS Publications Warehouse

    Peterson, Birgit; Nelson, Kurtis

    2014-01-01

    Vegetation structure, including forest canopy height, is an important input variable to fire behavior modeling systems for simulating wildfire behavior. As such, forest canopy height is one of a nationwide suite of products generated by the LANDFIRE program. In the past, LANDFIRE has relied on a combination of field observations and Landsat imagery to develop existing vegetation structure products. The paucity of field data in the remote Alaskan forests has led to a very simple forest canopy height classification for the original LANDFIRE forest height map. To better meet the needs of data users and refine the map legend, LANDFIRE incorporated ICESat Geoscience Laser Altimeter System (GLAS) data into the updating process when developing the LANDFIRE 2010 product. The high latitude of this region enabled dense coverage of discrete GLAS samples, from which forest height was calculated. Different methods for deriving height from the GLAS waveform data were applied, including an attempt to correct for slope. These methods were then evaluated and integrated into the final map according to predefined criteria. The resulting map of forest canopy height includes more height classes than the original map, thereby better depicting the heterogeneity of the landscape, and provides seamless data for fire behavior analysts and other users of LANDFIRE data.

  13. Soybean canopy reflectance modeling data sets

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Biehl, L. L.; Daughtry, C. S. T.

    1984-01-01

    Numerous mathematical models of the interaction of radiation with vegetation canopies have been developed over the last two decades. However, data with which to exercise and validate these models are scarce. During three days in the summer of 1980, experiments are conducted with the objective of gaining insight about the effects of solar illumination and view angles on soybean canopy reflectance. In concert with these experiment, extensive measurements of the soybean canopies are obtained. This document is a compilation of the bidirectional reflectance factors, agronomic, characteristics, canopy geometry, and leaf, stem, and pod optical properties of the soybean canopies. These data sets should be suitable for use with most vegetation canopy reflectance models.

  14. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1984-01-01

    The effect different wetland plant canopies have upon observed reflectance in Thematic Mapper bands is studied. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. The spectral biomass estimate of a broadleaf canopy is most similar to the harvest biomass estimate when a broadleaf canopy radiance model is used. All major wetland vegetation species can be identified through TM imagery. Simple regression models are developed equating the vegetation index and the infrared index with biomass. The spectral radiance index largely agreed with harvest biomass estimates.

  15. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.

    PubMed

    Sweet, Shannan K; Asmus, Ashley; Rich, Matthew E; Wingfield, John; Gough, Laura; Boelman, Natalie T

    2015-04-01

    The physical and biological responses to rapid arctic warming are proving acute, and as such, there is a need to monitor, understand, and predict ecological responses over large spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) acquired from airborne and satellite sensors addresses this need, as it is widely used as a tool for detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests that it may be similarly applied to characterizing primary and secondary consumer communities. Here, we develop empirical models to predict canopy arthropod biomass with canopy-level measurements of the NDVI both across and within distinct tundra vegetation communities over four growing seasons in the Arctic Foothills region of the Brooks Range, Alaska, USA. When canopy arthropod biomass is predicted with the NDVI across all four growing seasons, our overall model that includes all four vegetation communities explains 63% of the variance in canopy arthropod biomass, whereas our models specific to each of the four vegetation communities explain 74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% (dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based study suggests that measurements of the NDVI made from air- and spaceborne sensors may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional scales.

  16. Comparison of Aerial and Terrestrial Remote Sensing Techniques for Quantifying Forest Canopy Structural Complexity and Estimating Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Fahey, R. T.; Tallant, J.; Gough, C. M.; Hardiman, B. S.; Atkins, J.; Scheuermann, C. M.

    2016-12-01

    Canopy structure can be an important driver of forest ecosystem functioning - affecting factors such as radiative transfer and light use efficiency, and consequently net primary production (NPP). Both above- (aerial) and below-canopy (terrestrial) remote sensing techniques are used to assess canopy structure and each has advantages and disadvantages. Aerial techniques can cover large geographical areas and provide detailed information on canopy surface and canopy height, but are generally unable to quantitatively assess interior canopy structure. Terrestrial methods provide high resolution information on interior canopy structure and can be cost-effectively repeated, but are limited to very small footprints. Although these methods are often utilized to derive similar metrics (e.g., rugosity, LAI) and to address equivalent ecological questions and relationships (e.g., link between LAI and productivity), rarely are inter-comparisons made between techniques. Our objective is to compare methods for deriving canopy structural complexity (CSC) metrics and to assess the capacity of commonly available aerial remote sensing products (and combinations) to match terrestrially-sensed data. We also assess the potential to combine CSC metrics with image-based analysis to predict plot-based NPP measurements in forests of different ages and different levels of complexity. We use combinations of data from drone-based imagery (RGB, NIR, Red Edge), aerial LiDAR (commonly available medium-density leaf-off), terrestrial scanning LiDAR, portable canopy LiDAR, and a permanent plot network - all collected at the University of Michigan Biological Station. Our results will highlight the potential for deriving functionally meaningful CSC metrics from aerial imagery, LiDAR, and combinations of data sources. We will also present results of modeling focused on predicting plot-level NPP from combinations of image-based vegetation indices (e.g., NDVI, EVI) with LiDAR- or image-derived metrics of CSC (e.g., rugosity, porosity), canopy density, (e.g., LAI), and forest structure (e.g., canopy height). This work builds toward future efforts that will use other data combinations, such as those available at NEON sites, and could be used to inform and test popular ecosystem models (e.g., ED2) incorporating structure.

  17. Bayesian estimation of seasonal course of canopy leaf area index from hyperspectral satellite data

    NASA Astrophysics Data System (ADS)

    Varvia, Petri; Rautiainen, Miina; Seppänen, Aku

    2018-03-01

    In this paper, Bayesian inversion of a physically-based forest reflectance model is investigated to estimate of boreal forest canopy leaf area index (LAI) from EO-1 Hyperion hyperspectral data. The data consist of multiple forest stands with different species compositions and structures, imaged in three phases of the growing season. The Bayesian estimates of canopy LAI are compared to reference estimates based on a spectral vegetation index. The forest reflectance model contains also other unknown variables in addition to LAI, for example leaf single scattering albedo and understory reflectance. In the Bayesian approach, these variables are estimated simultaneously with LAI. The feasibility and seasonal variation of these estimates is also examined. Credible intervals for the estimates are also calculated and evaluated. The results show that the Bayesian inversion approach is significantly better than using a comparable spectral vegetation index regression.

  18. Simulating Carbon Flux Dynamics with the Product of PAR Absorbed by Chlorophyll (fAPARchl)

    NASA Astrophysics Data System (ADS)

    Yao, T.; Zhang, Q.

    2016-12-01

    A common way to estimate the gross primary production (GPP) is to use the fraction of photosynthetically radiation (PAR) absorbed by vegetation (FPAR). However, only the PAR absorbed by chlorophyll of the canopy, not the PAR absorbed by the foliage or by the entire canopy, is used for photosynthesis. MODIS fAPARchl product, which refers to the fraction of PAR absorbed by chlorophyll of the canopy, is derived from Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance by using an advanced leaf-canopy-soil-water-snow coupled radiative transfer model PROSAIL4. PROSAIL4 can retrieve surface water cover fraction, snow cover fraction, and physiologically active canopy chemistry components (chlorophyll concentration and water content), fraction of photosynthetically active radiation (PAR) absorbed by a canopy (fAPARcanopy), fraction of PAR absorbed by photosynthetic vegetation (PV) component (mainly chlorophyll) throughout the canopy (fAPARPV, i.e., fAPARchl) and fraction of PAR absorbed by non-photosynthetic vegetation (NPV) component of the canopy (fAPARNPV). We have successfully retrieved these vegetation parameters for selected areas with PROSAIL4 and the MODIS images, or simulated spectrally MODIS-like images. In this study, the product of PAR absorbed by chlorophyll (fAPARchl) has been used to simulate carbon flux over different kinds of vegetation types. The results show that MODIS fAPARchl product has the ability to better characterize phenology than current phenology model in the Community Land Model and it also will likely be able to increase the accuracy of carbon fluxes simulations.

  19. Accuracy assessment of percent canopy cover, cover type, and size class

    Treesearch

    H. T. Schreuder; S. Bain; R. C. Czaplewski

    2003-01-01

    Truth for vegetation cover percent and type is obtained from very large-scale photography (VLSP), stand structure as measured by size classes, and vegetation types from a combination of VLSP and ground sampling. We recommend using the Kappa statistic with bootstrap confidence intervals for overall accuracy, and similarly bootstrap confidence intervals for percent...

  20. Characterization of the horizontal structure of the tropical forest canopy using object-based LiDAR and multispectral image analysis

    NASA Astrophysics Data System (ADS)

    Dupuy, Stéphane; Lainé, Gérard; Tassin, Jacques; Sarrailh, Jean-Michel

    2013-12-01

    This article's goal is to explore the benefits of using Digital Surface Model (DSM) and Digital Terrain Model (DTM) derived from LiDAR acquisitions for characterizing the horizontal structure of different facies in forested areas (primary forests vs. secondary forests) within the framework of an object-oriented classification. The area under study is the island of Mayotte in the western Indian Ocean. The LiDAR data were the data originally acquired by an airborne small-footprint discrete-return LiDAR for the "Litto3D" coastline mapping project. They were used to create a Digital Elevation Model (DEM) at a spatial resolution of 1 m and a Digital Canopy Model (DCM) using median filtering. The use of two successive segmentations at different scales allowed us to adjust the segmentation parameters to the local structure of the landscape and of the cover. Working in object-oriented mode with LiDAR allowed us to discriminate six vegetation classes based on canopy height and horizontal heterogeneity. This heterogeneity was assessed using a texture index calculated from the height-transition co-occurrence matrix. Overall accuracy exceeds 90%. The resulting product is the first vegetation map of Mayotte which emphasizes the structure over the composition.

  1. The shifting nature of vegetation controls on peak snowpack with varying slope and aspect

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Harpold, A. A.; Broxton, P. D.; Brooks, P. D.

    2012-12-01

    The controls on peak seasonal snowpack are known to shift between forested and open environments as well as with slope and aspect. Peak snowpack is predicted well by interception models under uniformly dense canopy, while topography, wind and radiation are strong predictors in open areas. However, many basins have complex mosaics of forest canopy and small gaps, where snowpack controls involve complex interactions among climate, topography and forest structure. In this presentation we use a new fully distributed tree-scale model to investigate vegetation controls on snowpack for a range of slope and aspect, and we evaluate the energy balance in forest canopy and gap environments. The model is informed by airborne LiDAR and ground-based observations of climate, vegetation and snowpack. It represents interception, snow distribution by wind, latent and sensible heat fluxes, and radiative fluxes above and below the canopy at a grid scale of 1 m square on an hourly time step. First, the model is minimally calibrated using continuous records of snow depth and snow water equivalent (SWE). Next, the model is evaluated using distributed observations at peak accumulation. Finally, the domain is synthetically altered to introduce ranges of slope and aspect. Northerly aspects accumulate greater peak SWE than southerly aspects (e.g. 275 mm vs. 250 mm at a slope of 28 %) but show lower spatial variability (e. g. CV = 0.14 vs. CV = 0.17 at slope of 28 %). On northerly aspects, most of the snowpack remains shaded by vegetation, whereas on southerly aspects the northern portions of gaps and southern forest edges receive direct insolation during late winter. This difference in net radiation makes peak SWE in forest gaps and adjacent forest edges more sensitive to topography than SWE in areas under dense canopy. Tree-scale modeling of snow dynamics over synthetic terrain offers extensive possibilities to test interactions among vegetation and topographic controls.

  2. Energy budgets and resistances to energy transport in sparsely vegetated rangeland

    USGS Publications Warehouse

    Nichols, W.D.

    1992-01-01

    Partitioning available energy between plants and bare soil in sparsely vegetated rangelands will allow hydrologists and others to gain a greater understanding of water use by native vegetation, especially phreatophytes. Standard methods of conducting energy budget studies result in measurements of latent and sensible heat fluxes above the plant canopy which therefore include the energy fluxes from both the canopy and the soil. One-dimensional theoretical numerical models have been proposed recently for the partitioning of energy in sparse crops. Bowen ratio and other micrometeorological data collected over phreatophytes growing in areas of shallow ground water in central Nevada were used to evaluate the feasibility of using these models, which are based on surface and within-canopy aerodynamic resistances, to determine heat and water vapor transport in sparsely vegetated rangelands. The models appear to provide reasonably good estimates of sensible heat flux from the soil and latent heat flux from the canopy. Estimates of latent heat flux from the soil were less satisfactory. Sensible heat flux from the canopy was not well predicted by the present resistance formulations. Also, estimates of total above-canopy fluxes were not satisfactory when using a single value for above-canopy bulk aerodynamic resistance. ?? 1992.

  3. Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape

    PubMed Central

    Glenn, Edward P.; Huete, Alfredo R.; Nagler, Pamela L.; Nelson, Stephen G.

    2008-01-01

    Vegetation indices (VIs) are among the oldest tools in remote sensing studies. Although many variations exist, most of them ratio the reflection of light in the red and NIR sections of the spectrum to separate the landscape into water, soil, and vegetation. Theoretical analyses and field studies have shown that VIs are near-linearly related to photosynthetically active radiation absorbed by a plant canopy, and therefore to light-dependent physiological processes, such as photosynthesis, occurring in the upper canopy. Practical studies have used time-series VIs to measure primary production and evapotranspiration, but these are limited in accuracy to that of the data used in ground truthing or calibrating the models used. VIs are also used to estimate a wide variety of other canopy attributes that are used in Soil-Vegetation-Atmosphere Transfer (SVAT), Surface Energy Balance (SEB), and Global Climate Models (GCM). These attributes include fractional vegetation cover, leaf area index, roughness lengths for turbulent transfer, emissivity and albedo. However, VIs often exhibit only moderate, non-linear relationships to these canopy attributes, compromising the accuracy of the models. We use case studies to illustrate the use and misuse of VIs, and argue for using VIs most simply as a measurement of canopy light absorption rather than as a surrogate for detailed features of canopy architecture. Used this way, VIs are compatible with “Big Leaf” SVAT and GCMs that assume that canopy carbon and moisture fluxes have the same relative response to the environment as any single leaf, simplifying the task of modeling complex landscapes. PMID:27879814

  4. Forest structure analysis combining laser scanning with digital airborne photogrammetry

    NASA Astrophysics Data System (ADS)

    Lissak, Candide; Onda, Yuichi; Kato, Hiroaki

    2017-04-01

    The interest of Light Detection and Ranging (LiDAR) for vegetation structure analysis has been demonstrated in several research context. Indeed, airborne or ground Lidar surveys can provide detailed three-dimensional data of the forest structure from understorey forest to the canopy. To characterize at different timescale the vegetation components in dense cedar forests we can combine several sources point clouds from Lidar survey and photogrammetry data. For our study, Terrestrial Laser Scanning (TLS-Leica ScanStation C10 processed with Cyclone software) have been lead in three forest areas (≈ 200m2 each zone) mainly composed of japanese cedar (Japonica cryptomeria), in the region of Fukushima (Japan). The study areas are characterized by various vegetation densities. For the 3 areas, Terrestrial laser scanning has been performed from several location points and several heights. Various floors shootings (ground, 4m, 6m and 18m high) were able with the use of a several meters high tower implanted to study the canopy evolution following the Fukushima Daiishi nuclear power plant accident. The combination of all scanners provides a very dense 3D point cloud of ground and canopy structure (average 300 000 000 points). For the Tochigi forest area, a first test of a low-cost Unmanned Aerial Vehicle (UAV) photogrammetry has been lead and calibrated by ground GPS measurements to determine the coordinates of points. TLS combined to UAV photogrammetry make it possible to obtain information on vertical and horizontal structure of the Tochigi forest. This combination of technologies will allow the forest structure mapping, morphometry analysis and the assessment of biomass volume evolution from multi-temporal point clouds. In our research, we used a low-cost UAV 3 Advanced (200 m2 cover, 1300 pictures...). Data processing were performed using PotoScan Pro software to obtain a very dense point clouds to combine to TLS data set. This low-cost UAV photogrammetry data has been successfully used to derive information on the canopy cover. The purpose of this poster is to present the usability of combined remote sensing methods for forest structure analysis and 3D model reconstitution for a trend analysis of the forest changes.

  5. Soil heterogeneity in Mojave Desert shrublands: Biotic and abiotic processes

    NASA Astrophysics Data System (ADS)

    Caldwell, Todd G.; Young, Michael H.; McDonald, Eric V.; Zhu, Jianting

    2012-09-01

    Geological and ecological processes play critical roles in the evolution of desert piedmonts. Feedback between fast cyclic biotic and slow cumulative pedogenic processes on arid alluvial fan systems results in a heterogeneous landscape of interspace and canopy microsites. Defining the spatial extent between these processes will allow a better connection to ecosystem service and climate change. We use a soil chronosequence in the Mojave Desert and high spatial resolution infiltrometer measurements along transects radiating from canopies of perennial shrubs to assess the extent of biotic and abiotic processes and the heterogeneity of soil properties in arid shrublands. Results showed higher saturated conductivity under vegetation regardless of surface age, but it was more conspicuous on older, developed soils. At proximal locations to the shrub, bulk density, soil structure grade, silt, and clay content significantly increased radially from the canopy, while sand and organic material decreased. Soil properties at distal locations 2-5 times the canopy radius had no significant spatial correlation. The extent of the biotic influence of the shrub was 1.34 ± 0.32 times the canopy radius. Hydraulic properties were weakly correlated in space, but 75% of the variance could be attributed to sand content, soil structure grade, mean-particle diameter, and soil organic material, none of which are exclusively biotic or abiotic. The fast cyclic biotic processes occurring under vegetation are clearly overprinted on slow cumulative abiotic processes, resulting in the deterministic variability observed at the plant scale.

  6. Forest-atmosphere BVOC exchange in diverse and structurally complex canopies: 1-D modeling of a mid-successional forest in northern Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Alexander M.; Cheng, Susan J.; Ashworth, Kirsti

    Foliar emissions of biogenic volatile organic compounds (BVOC)dimportant precursors of tropospheric ozone and secondary organic aerosolsdvary widely by vegetation type. Modeling studies to date typi-cally represent the canopy as a single dominant tree type or a blend of tree types, yet many forests are diverse with trees of varying height. To assess the sensitivity of biogenic emissions to tree height vari-ation, we compare two 1-D canopy model simulations in which BVOC emission potentials are homo-geneous or heterogeneous with canopy depth. The heterogeneous canopy emulates the mid-successional forest at the University of Michigan Biological Station (UMBS). In this case, high-isoprene-emitting fo-liagemore » (e.g., aspen and oak) is constrained to the upper canopy, where higher sunlight availability increases the light-dependent isoprene emission, leading to 34% more isoprene and its oxidation products as compared to the homogeneous simulation. Isoprene declines from aspen mortality are 10% larger when heterogeneity is considered. Overall, our results highlight the importance of adequately representing complexities of forest canopy structure when simulating light-dependent BVOC emissions and chemistry.« less

  7. Feasibility of using LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.

    1985-01-01

    Research activities conducted from February 1, 1985 to July 31, 1985 and preliminary conclusions regarding research objectives are summarized. The objective is to determine the feasibility of using LANDSAT data to estimate effective hydraulic properties of soils. The general approach is to apply the climatic-climax hypothesis (Ealgeson, 1982) to natural water-limited vegetation systems using canopy cover estimated from LANDSAT data. Natural water-limited systems typically consist of inhomogeneous vegetation canopies interspersed with bare soils. The ground resolution associated with one pixel from LANDSAT MSS (or TM) data is generally greater than the scale of the plant canopy or canopy clusters. Thus a method for resolving percent canopy cover at a subpixel level must be established before the Eagleson hypothesis can be tested. Two formulations are proposed which extend existing methods of analyzing mixed pixels to naturally vegetated landscapes. The first method involves use of the normalized vegetation index. The second approach is a physical model based on radiative transfer principles. Both methods are to be analyzed for their feasibility on selected sites.

  8. Development of a New Model for Accurate Prediction of Cloud Water Deposition on Vegetation

    NASA Astrophysics Data System (ADS)

    Katata, G.; Nagai, H.; Wrzesinsky, T.; Klemm, O.; Eugster, W.; Burkard, R.

    2006-12-01

    Scarcity of water resources in arid and semi-arid areas is of great concern in the light of population growth and food shortages. Several experiments focusing on cloud (fog) water deposition on the land surface suggest that cloud water plays an important role in water resource in such regions. A one-dimensional vegetation model including the process of cloud water deposition on vegetation has been developed to better predict cloud water deposition on the vegetation. New schemes to calculate capture efficiency of leaf, cloud droplet size distribution, and gravitational flux of cloud water were incorporated in the model. Model calculations were compared with the data acquired at the Norway spruce forest at the Waldstein site, Germany. High performance of the model was confirmed by comparisons of calculated net radiation, sensible and latent heat, and cloud water fluxes over the forest with measurements. The present model provided a better prediction of measured turbulent and gravitational fluxes of cloud water over the canopy than the Lovett model, which is a commonly used cloud water deposition model. Detailed calculations of evapotranspiration and of turbulent exchange of heat and water vapor within the canopy and the modifications are necessary for accurate prediction of cloud water deposition. Numerical experiments to examine the dependence of cloud water deposition on the vegetation species (coniferous and broad-leaved trees, flat and cylindrical grasses) and structures (Leaf Area Index (LAI) and canopy height) are performed using the presented model. The results indicate that the differences of leaf shape and size have a large impact on cloud water deposition. Cloud water deposition also varies with the growth of vegetation and seasonal change of LAI. We found that the coniferous trees whose height and LAI are 24 m and 2.0 m2m-2, respectively, produce the largest amount of cloud water deposition in all combinations of vegetation species and structures in the experiments.

  9. Linking vegetation structure, function and physiology through spectroscopic remote sensing

    NASA Astrophysics Data System (ADS)

    Serbin, S.; Singh, A.; Couture, J. J.; Shiklomanov, A. N.; Rogers, A.; Desai, A. R.; Kruger, E. L.; Townsend, P. A.

    2015-12-01

    Terrestrial ecosystem process models require detailed information on ecosystem states and canopy properties to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere and assess the vulnerability of ecosystems to perturbations. Current models fail to adequately capture the magnitude, spatial variation, and seasonality of terrestrial C uptake and storage, leading to significant uncertainties in the size and fate of the terrestrial C sink. By and large, these parameter and process uncertainties arise from inadequate spatial and temporal representation of plant traits, vegetation structure, and functioning. With increases in computational power and changes to model architecture and approaches, it is now possible for models to leverage detailed, data rich and spatially explicit descriptions of ecosystems to inform parameter distributions and trait tradeoffs. In this regard, spectroscopy and imaging spectroscopy data have been shown to be invaluable observational datasets to capture broad-scale spatial and, eventually, temporal dynamics in important vegetation properties. We illustrate the linkage of plant traits and spectral observations to supply key data constraints for model parameterization. These constraints can come either in the form of the raw spectroscopic data (reflectance, absorbtance) or physiological traits derived from spectroscopy. In this presentation we highlight our ongoing work to build ecological scaling relationships between critical vegetation characteristics and optical properties across diverse and complex canopies, including temperate broadleaf and conifer forests, Mediterranean vegetation, Arctic systems, and agriculture. We focus on work at the leaf, stand, and landscape scales, illustrating the importance of capturing the underlying variability in a range of parameters (including vertical variation within canopies) to enable more efficient scaling of traits related to functional diversity of ecosystems.

  10. Attribution and Characterisation of Sclerophyll Forested Landscapes Over Large Areas

    NASA Astrophysics Data System (ADS)

    Jones, Simon; Soto-Berelov, Mariela; Suarez, Lola; Wilkes, Phil; Woodgate, Will; Haywood, Andrew

    2016-06-01

    This paper presents a methodology for the attribution and characterisation of Sclerophyll forested landscapes over large areas. First we define a set of woody vegetation data primitives (e.g. canopy cover, leaf area index (LAI), bole density, canopy height), which are then scaled-up using multiple remote sensing data sources to characterise and extract landscape woody vegetation features. The advantage of this approach is that vegetation landscape features can be described from composites of these data primitives. The proposed data primitives act as building blocks for the re-creation of past woody characterisation schemes as well as allowing for re-compilation to support present and future policy and management and decision making needs. Three main research sites were attributed; representative of different sclerophyll woody vegetated systems (Box Iron-bark forest; Mountain Ash forest; Mixed Species foothills forest). High resolution hyperspectral and full waveform LiDAR data was acquired over the three research sites. At the same time, land management agencies (Victorian Department of Environment, Land Water and Planning) and researchers (RMIT, CRC for Spatial Information and CSIRO) conducted fieldwork to collect structural and functional measurements of vegetation, using traditional forest mensuration transects and plots, terrestrial lidar scanning and high temporal resolution in-situ autonomous laser (VegNet) scanners. Results are presented of: 1) inter-comparisons of LAI estimations made using ground based hemispherical photography, LAI 2200 PCA, CI-110 and terrestrial and airborne laser scanners; 2) canopy height and vertical canopy complexity derived from airborne LiDAR validated using ground observations; and, 3) time-series characterisation of land cover features. 1. Accuracy targets for remotely sensed LAI products to match within ground based estimates are ± 0.5 LAI or a 20% maximum (CEOS/GCOS) with new aspirational targets of 5%). In this research we conducted a total of 67 ground-based method-to-method pairwise comparisons across 11 plots in five sites, incorporating the previously mentioned LAI methods. Out of the 67 comparisons, 29 had an RMSE ≥ 0.5 LAIe. This has important implications for the validation of remotely sensed products since ground based techniques themselves exhibit LAI variations greater than internationally recommended guidelines for satellite product accuracies. 2. Two methods of canopy height derivation are proposed and tested over a large area (4 Million Ha). 99th percentile maximum height achieved a RMSE of 6.6%, whilst 95th percentile dominant height a RMSE = 10.3%. Vertical canopy complexity (i.e. the number of forest layers of strata) was calculated as the local maxima of vegetation density within the LiDAR canopy profile and determined using a cubic spline smoothing of Pgap. This was then validated against in-situ and LiDAR observations of canopy strata with an RMSE 0.39 canopy layers. 3. Preliminary results are presented of landcover characterisation using LandTrendr analysis of Landsat LEDAPS data. kNN is then used to link these features to a dense network of 800 field plots sites.

  11. The Impact of Atmospheric Aerosols on the Fraction of absorbed Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Veroustraete, Frank

    2010-05-01

    Aerosol pollution attracts a growing interest from atmospheric scientists with regard to their impact on health, the global climate and vegetation stress. A hypothesis, less investigated, is whether atmospheric aerosol interactions in the solar radiation field affect the amount of radiation absorbed by vegetation canopies and hence terrestrial vegetation productivity. Typically, aerosols affect vegetation canopy radiation absorption efficiency by altering the physical characteristics of solar radiation incoming on for example a forest canopy. It has been illustrated, that increasing mixing ratio's of atmospheric particulate matter lead to a higher fraction of diffuse sunlight as opposed to direct sunlight. It can be demonstrated, based on the application of atmospheric (MODTRAN) and leaf/canopy radiative transfer (LIBERTY/SPRINT) models, that radiation absorption efficiency in the PAR band of Picea like forests increases with increasing levels of diffuse radiation. It can be documented - on a theoretical basis - as well, that increasing aerosol loads in the atmosphere, induce and increased canopy PAR absorption efficiency. In this paper it is suggested, that atmospheric aerosols have to be taken into account when estimating vegetation gross primary productivity (GPP). The results suggest that Northern hemisphere vegetation CO2 uptake magnitude may increase with increasing atmospheric aerosol loads. Many climate impact scenario's related to vegetation productivity estimates, do not take this phenomenon into account. Boldly speaking, the results suggest a larger sink function for terrestrial vegetation than generally accepted. Keywords: Aerosols, vegetation, fAPAR, CO2 uptake, diffuse radiation.

  12. Direct Scaling of Leaf-Resolving Biophysical Models from Leaves to Canopies

    NASA Astrophysics Data System (ADS)

    Bailey, B.; Mahaffee, W.; Hernandez Ochoa, M.

    2017-12-01

    Recent advances in the development of biophysical models and high-performance computing have enabled rapid increases in the level of detail that can be represented by simulations of plant systems. However, increasingly detailed models typically require increasingly detailed inputs, which can be a challenge to accurately specify. In this work, we explore the use of terrestrial LiDAR scanning data to accurately specify geometric inputs for high-resolution biophysical models that enables direct up-scaling of leaf-level biophysical processes. Terrestrial LiDAR scans generate "clouds" of millions of points that map out the geometric structure of the area of interest. However, points alone are often not particularly useful in generating geometric model inputs, as additional data processing techniques are required to provide necessary information regarding vegetation structure. A new method was developed that directly reconstructs as many leaves as possible that are in view of the LiDAR instrument, and uses a statistical backfilling technique to ensure that the overall leaf area and orientation distribution matches that of the actual vegetation being measured. This detailed structural data is used to provide inputs for leaf-resolving models of radiation, microclimate, evapotranspiration, and photosynthesis. Model complexity is afforded by utilizing graphics processing units (GPUs), which allows for simulations that resolve scales ranging from leaves to canopies. The model system was used to explore how heterogeneity in canopy architecture at various scales affects scaling of biophysical processes from leaves to canopies.

  13. Application of the two-source energy balance model to partition evapotranspiration in an arid wine vineyard

    NASA Astrophysics Data System (ADS)

    Kool, Dilia; Kustas, William P.; Agam, Nurit

    2016-04-01

    The partitioning of evapotranspiration (ET) into transpiration (T), a productive water use, and soil water evaporation (E), which is generally considered a water loss, is highly relevant to agriculture in the light of increasing desertification and water scarcity. This task is challenged by the complexity of soil and plant interactions, coupled with changes in atmospheric and soil water content conditions. Many of the processes controlling water/energy exchange are not adequately modeled. The two-source energy balance model (TSEB) was evaluated and adapted for independent E and T estimations in an isolated drip-irrigated wine vineyard in the arid Negev desert. The TSEB model estimates ET by computing vegetation and soil energy fluxes using remotely sensed composite surface temperature, local weather data (solar radiation, air temperature and humidity, and wind speed), and vegetation metrics (row spacing, canopy height and width, and leaf area). The soil and vegetation energy fluxes are computed numerically using a system of temperature gradient and resistance equations; where soil and canopy temperatures are derived from the composite surface temperature. For estimation of ET, the TSEB model has been shown to perform well for various agricultural crops under a wide range of environmental conditions, but validation of T and E fluxes is limited to one study in a well-watered cotton crop. Extending the TSEB approach to water-limited vineyards demands careful consideration regarding how the complex canopy structure of vineyards will influence the accuracy of the partitioning between E and T. Data for evaluation of the TSEB model were collected over a season (bud break till harvest). Composite, canopy, and soil surface temperatures were measured using infrared thermometers. The composite vegetation and soil surface energy fluxes were assessed using independent measurements of net radiation, and soil, sensible and latent heat flux. The below canopy energy balance was assessed at the dry midrow position as well as the wet irrigated position directly underneath the vine row, where net radiation and soil heat flux were measured, sensible heat flux was computed indirectly, and E was calculated as the residual. While the below canopy energy balance approach used in this study allowed continuous assessment of E at daily intervals, instantaneous E fluxes could not be assessed due to vertical variability in shading below the canopy. Seasonal partitioning indicated that total E amounted to 9-11% of ET. Initial evaluation of the TSEB model indicated that discrepancies between modeled and measured fluxes can largely be attributed to net radiation partitioning. In addition, large diurnal variation at the soil surface requires adaptation of the soil heat flux formulations. Improved estimation of energy fluxes by accounting for the relatively complex canopy structure of vineyards will be highlighted.

  14. The Use of Sun Elevation Angle for Stereogrammetric Boreal Forest Height in Open Canopies

    NASA Technical Reports Server (NTRS)

    Montesano, Paul M.; Neigh, Christopher; Sun, Guoqing; Duncanson, Laura Innice; Van Den Hoek, Jamon; Ranson, Kenneth Jon

    2017-01-01

    Stereogrammetry applied to globally available high resolution spaceborne imagery (HRSI; less than 5 m spatial resolution) yields fine-scaled digital surface models (DSMs) of elevation. These DSMs may represent elevations that range from the ground to the vegetation canopy surface, are produced from stereoscopic image pairs (stereo pairs) that have a variety of acquisition characteristics, and have been coupled with lidar data of forest structure and ground surface elevation to examine forest height. This work explores surface elevations from HRSI DSMs derived from two types of acquisitions in open canopy forests. We (1) apply an automated mass-production stereogrammetry workflow to along-track HRSI stereo pairs, (2) identify multiple spatially coincident DSMs whose stereo pairs were acquired under different solar geometry, (3) vertically co-register these DSMs using coincident spaceborne lidar footprints (from ICESat-GLAS) as reference, and(4) examine differences in surface elevations between the reference lidar and the co-registered HRSI DSMs associated with two general types of acquisitions (DSM types) from different sun elevation angles. We find that these DSM types, distinguished by sun elevation angle at the time of stereo pair acquisition, are associated with different surface elevations estimated from automated stereogrammetry in open canopy forests. For DSM values with corresponding reference ground surface elevation from spaceborne lidar footprints in open canopy northern Siberian Larix forests with slopes less than10, our results show that HRSI DSM acquired with sun elevation angles greater than 35deg and less than 25deg (during snow-free conditions) produced characteristic and consistently distinct distributions of elevation differences from reference lidar. The former include DSMs of near-ground surfaces with root mean square errors less than 0.68 m relative to lidar. The latter, particularly those with angles less than 10deg, show distributions with larger differences from lidar that are associated with open canopy forests whose vegetation surface elevations are captured. Terrain aspect did not have a strong effect on the distribution of vegetation surfaces. Using the two DSM types together, the distribution of DSM-differenced heights in forests (6.0 m, sigma = 1.4 m) was consistent with the distribution of plot-level mean tree heights (6.5m, sigma = 1.2 m). We conclude that the variation in sun elevation angle at time of stereo pair acquisition can create illumination conditions conducive for capturing elevations of surfaces either near the ground or associated with vegetation canopy. Knowledge of HRSI acquisition solar geometry and snow cover can be used to understand and combine stereogrammetric surface elevation estimates to co-register rand difference overlapping DSMs, providing a means to map forest height at fine scales, resolving the vertical structure of groups of trees from spaceborne platforms in open canopy forests.

  15. Scaling up semi-arid grassland biochemical content from the leaf to the canopy level: challenges and opportunities.

    PubMed

    He, Yuhong; Mui, Amy

    2010-01-01

    Remote sensing imagery is being used intensively to estimate the biochemical content of vegetation (e.g., chlorophyll, nitrogen, and lignin) at the leaf level. As a result of our need for vegetation biochemical information and our increasing ability to obtain canopy spectral data, a few techniques have been explored to scale leaf-level biochemical content to the canopy level for forests and crops. However, due to the contribution of non-green materials (i.e., standing dead litter, rock, and bare soil) from canopy spectra in semi-arid grasslands, it is difficult to obtain information about grassland biochemical content from remote sensing data at the canopy level. This paper summarizes available methods used to scale biochemical information from the leaf level to the canopy level and groups these methods into three categories: direct extrapolation, canopy-integrated approach, and inversion of physical models. As for semi-arid heterogeneous grasslands, we conclude that all methods are useful, but none are ideal. It is recommended that future research should explore a systematic upscaling framework which combines spatial pattern analysis, canopy-integrated approach, and modeling methods to retrieve vegetation biochemical content at the canopy level.

  16. Selection of forest canopy gaps by male Cerulean Warblers in West Virginia

    USGS Publications Warehouse

    Perkins, Kelly A.; Wood, Petra Bohall

    2014-01-01

    Forest openings, or canopy gaps, are an important resource for many forest songbirds, such as Cerulean Warblers (Setophaga cerulea). We examined canopy gap selection by this declining species to determine if male Cerulean Warblers selected particular sizes, vegetative heights, or types of gaps. We tested whether these parameters differed among territories, territory core areas, and randomly-placed sample plots. We used enhanced territory mapping techniques (burst sampling) to define habitat use within the territory. Canopy gap densities were higher within core areas of territories than within territories or random plots, indicating that Cerulean Warblers selected habitat within their territories with the highest gap densities. Selection of regenerating gaps with woody vegetation >12 m within the gap, and canopy heights >24 m surrounding the gap, occurred within territory core areas. These findings differed between two sites indicating that gap selection may vary based on forest structure. Differences were also found regarding the placement of territories with respect to gaps. Larger gaps, such as wildlife food plots, were located on the periphery of territories more often than other types and sizes of gaps, while smaller gaps, such as treefalls, were located within territory boundaries more often than expected. The creations of smaller canopy gaps, <100 m2, within dense stands are likely compatible with forest management for this species.

  17. Remote sensing of canopy nitrogen at regional scale in Mediterranean forests using the spaceborne MERIS Terrestrial Chlorophyll Index

    NASA Astrophysics Data System (ADS)

    Loozen, Yasmina; Rebel, Karin T.; Karssenberg, Derek; Wassen, Martin J.; Sardans, Jordi; Peñuelas, Josep; De Jong, Steven M.

    2018-05-01

    Canopy nitrogen (N) concentration and content are linked to several vegetation processes. Therefore, canopy N concentration is a state variable in global vegetation models with coupled carbon (C) and N cycles. While there are ample C data available to constrain the models, widespread N data are lacking. Remotely sensed vegetation indices have been used to detect canopy N concentration and canopy N content at the local scale in grasslands and forests. Vegetation indices could be a valuable tool to detect canopy N concentration and canopy N content at larger scale. In this paper, we conducted a regional case-study analysis to investigate the relationship between the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) time series from European Space Agency (ESA) Envisat satellite at 1 km spatial resolution and both canopy N concentration (%N) and canopy N content (N g m-2, of ground area) from a Mediterranean forest inventory in the region of Catalonia, in the northeast of Spain. The relationships between the datasets were studied after resampling both datasets to lower spatial resolutions (20, 15, 10 and 5 km) and at the original spatial resolution of 1 km. The results at higher spatial resolution (1 km) yielded significant log-linear relationships between MTCI and both canopy N concentration and content: r2 = 0.32 and r2 = 0.17, respectively. We also investigated these relationships per plant functional type. While the relationship between MTCI and canopy N concentration was strongest for deciduous broadleaf and mixed plots (r2 = 0.24 and r2 = 0.44, respectively), the relationship between MTCI and canopy N content was strongest for evergreen needleleaf trees (r2 = 0.19). At the species level, canopy N concentration was strongly related to MTCI for European beech plots (r2 = 0.69). These results present a new perspective on the application of MTCI time series for canopy N detection.

  18. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorman, Christopher, E.; Bowen, Liessa T.; Kilgo, John, C.

    2012-03-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and fall migration). Foliage arthropod densities were greatest in the forest understory in all four seasons, but understory vegetation density was greatest in gaps. Foliage-gleaning bird abundance was positively associated with foliage-dwelling arthropods during the breeding (F = 18.5, P < 0.001) and post-breeding periods (F = 9.4,more » P = 0.004), and negatively associated with foliage-dwelling arthropods during fall migration (F = 5.4, P = 0.03). Relationships between birds and arthropods were inconsistent, but the arthropod prey base seemed to be least important during migratory periods. Conversely, bird captures were positively correlated with understory vegetation density during all four periods (P < 0.001). Our study suggests high bird abundance associated with canopy gaps during the non-breeding period resulted less from high arthropod food resource availability than from complex understory and midstory vegetation structure.« less

  19. Fast matrix treatment of 3-D radiative transfer in vegetation canopies: SPARTACUS-Vegetation 1.1

    NASA Astrophysics Data System (ADS)

    Hogan, Robin J.; Quaife, Tristan; Braghiere, Renato

    2018-01-01

    A fast scheme is described to compute the 3-D interaction of solar radiation with vegetation canopies. The canopy is split in the horizontal plane into one clear region and one or more vegetated regions, and the two-stream equations are used for each, but with additional terms representing lateral exchange of radiation between regions that are proportional to the area of the interface between them. The resulting coupled set of ordinary differential equations is solved using the matrix-exponential method. The scheme is compared to solar Monte Carlo calculations for idealized scenes from the RAMI4PILPS intercomparison project, for open forest canopies and shrublands both with and without snow on the ground. Agreement is good in both the visible and infrared: for the cases compared, the root-mean-squared difference in reflectance, transmittance and canopy absorptance is 0.020, 0.038 and 0.033, respectively. The technique has potential application to weather and climate modelling.

  20. The influence of apical and basal defoliation on the canopy structure and biochemical composition of Vitis vinifera cv. Shiraz grapes and wine

    NASA Astrophysics Data System (ADS)

    Zhang, Pangzhen; Wu, Xiwen; Needs, Sonja; Liu, Di; Fuentes, Sigfredo; Howell, Kate

    2017-07-01

    Defoliation is a commonly used viticultural technique to balance the ratio between grapevine vegetation and fruit. Defoliation is conducted around the fruit zone to reduce the leaf photosynthetic area, and to increase sunlight exposure of grape bunches. Apical leaf removal is not commonly practiced, and therefore its influence on canopy structure and resultant wine aroma is not well studied. This study quantified the influences of apical and basal defoliation on canopy structure parameters using canopy cover photography and computer vision algorithms. The influence of canopy structure changes on the chemical compositions of grapes and wines was investigated over two vintages (2010-11 and 2015-16) in Yarra Valley, Australia. The Shiraz grapevines were subjected to five different treatments: no leaf removal (Ctrl); basal (TB) and apical (TD) leaf removal at veraison and intermediate ripeness, respectively. Basal leaf removal significantly reduced the leaf area index and foliage cover and increased canopy porosity, while apical leaf removal had limited influences on canopy parameters. However, the latter tended to result in lower alcohol level in the finished wine. Statistically significant increases in pH and decreases in TA was observed in shaded grapes, while no significant changes in the color profile and volatile compounds of the resultant wine were found. These results suggest that apical leaf removal is an effective method to reduce wine alcohol concentration with minimal influences on wine composition.

  1. Remote sensing investigations of wetland biomass and productivity for global biosystems research

    NASA Technical Reports Server (NTRS)

    Klemas, V.

    1986-01-01

    The relationship between spectral radiance and plant canopy biomass was studied in wetlands. Spectroradiometer data was gathered on Thematic Mapper wavebands 3, 4, and 5, and correlated with canopy and edaphic factors determined by harvesting. The relationship between spectral radiance and plant canopy biomass for major salt and brackish canopy types was determined. Algorithms were developed for biomass measurement in mangrove swamps. The influence of latitudinal variability in canopy structure on biomass assessment of selected plants was investigated. Brackish marsh biomass estimates were obtained from low altitude aircraft and compared with ground measurements. Annual net aerial primary productivity estimates computed from spectral radiance data were compiled for a Spartina alterniflora marsh. Spectral radiance data were expressed as vegetation or infrared index values. Biomass estimates computed from models were in close agreement with biomass estimates determined from harvests.

  2. the Role of Species, Structure, and Biochemical Traits in the Spatial Distribution of a Woodland Community

    NASA Astrophysics Data System (ADS)

    Adeline, K.; Ustin, S.; Roth, K. L.; Huesca Martinez, M.; Schaaf, C.; Baldocchi, D. D.; Gastellu-Etchegorry, J. P.

    2015-12-01

    The assessment of canopy biochemical diversity is critical for monitoring ecological and physiological functioning and for mapping vegetation change dynamics in relation to environmental resources. For example in oak woodland savannas, these dynamics are mainly driven by water constraints. Inversion using radiative transfer theory is one method for estimating canopy biochemistry. However, this approach generally only considers relatively simple scenarios to model the canopy due to the difficulty in encompassing stand heterogeneity with spatial and temporal consistency. In this research, we compared 3 modeling strategies for estimating canopy biochemistry variables (i.e. chlorophyll, carotenoids, water, dry matter) by coupling of the PROSPECT (leaf level) and DART (canopy level) models : i) a simple forest representation made of ellipsoid trees, and two representations taking into account the tree species and structural composition, and the landscape spatial pattern, using (ii) geometric tree crown shapes and iii) detailed tree crown and wood structure retrieved from terrestrial lidar acquisitions. AVIRIS 18m remote sensing data are up-scaled to simulate HyspIRI 30m images. Both spatial resolutions are validated by measurements acquired during 2013-2014 field campaigns (cover/tree inventory, LAI, leaf sampling, optical measures). The results outline the trade-off between accurate and abstract canopy modeling for inversion purposes and may provide perspectives to assess the impact of the California drought with multi-temporal monitoring of canopy biochemistry traits.

  3. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types.

    PubMed

    Niinemets, Ülo; Keenan, Trevor F; Hallik, Lea

    2015-02-01

    Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Can a Satellite-Derived Estimate of the Fraction of PAR Absorbed by Chlorophyll (FAPAR(sub chl)) Improve Predictions of Light-Use Efficiency and Ecosystem Photosynthesis for a Boreal Aspen Forest?

    NASA Technical Reports Server (NTRS)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Margolis, Hank A.; Drolet, Guillaume G.; Barr, Alan A.; Black, T. Andrew

    2009-01-01

    Gross primary production (GPP) is a key terrestrial ecophysiological process that links atmospheric composition and vegetation processes. Study of GPP is important to global carbon cycles and global warming. One of the most important of these processes, plant photosynthesis, requires solar radiation in the 0.4-0.7 micron range (also known as photosynthetically active radiation or PAR), water, carbon dioxide (CO2), and nutrients. A vegetation canopy is composed primarily of photosynthetically active vegetation (PAV) and non-photosynthetic vegetation (NPV; e.g., senescent foliage, branches and stems). A green leaf is composed of chlorophyll and various proportions of nonphotosynthetic components (e.g., other pigments in the leaf, primary/secondary/tertiary veins, and cell walls). The fraction of PAR absorbed by whole vegetation canopy (FAPAR(sub canopy)) has been widely used in satellite-based Production Efficiency Models to estimate GPP (as a product of FAPAR(sub canopy)x PAR x LUE(sub canopy), where LUE(sub canopy) is light use efficiency at canopy level). However, only the PAR absorbed by chlorophyll (a product of FAPAR(sub chl) x PAR) is used for photosynthesis. Therefore, remote sensing driven biogeochemical models that use FAPAR(sub chl) in estimating GPP (as a product of FAPAR(sub chl x PAR x LUE(sub chl) are more likely to be consistent with plant photosynthesis processes.

  5. Nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates of typical desert vegetation in western China.

    PubMed

    Ji, Cuicui; Jia, Yonghong; Gao, Zhihai; Wei, Huaidong; Li, Xiaosong

    2017-01-01

    Desert vegetation plays significant roles in securing the ecological integrity of oasis ecosystems in western China. Timely monitoring of photosynthetic/non-photosynthetic desert vegetation cover is necessary to guide management practices on land desertification and research into the mechanisms driving vegetation recession. In this study, nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates are investigated through comparing the performance of linear and nonlinear spectral mixture models with different endmembers applied to field spectral measurements of two types of typical desert vegetation, namely, Nitraria shrubs and Haloxylon. The main results were as follows. (1) The correct selection of endmembers is important for improving the accuracy of vegetation cover estimates, and in particular, shadow endmembers cannot be neglected. (2) For both the Nitraria shrubs and Haloxylon, the Kernel-based Nonlinear Spectral Mixture Model (KNSMM) with nonlinear parameters was the best unmixing model. In consideration of the computational complexity and accuracy requirements, the Linear Spectral Mixture Model (LSMM) could be adopted for Nitraria shrubs plots, but this will result in significant errors for the Haloxylon plots since the nonlinear spectral mixture effects were more obvious for this vegetation type. (3) The vegetation canopy structure (planophile or erectophile) determines the strength of the nonlinear spectral mixture effects. Therefore, no matter for Nitraria shrubs or Haloxylon, the non-linear spectral mixing effects between the photosynthetic / non-photosynthetic vegetation and the bare soil do exist, and its strength is dependent on the three-dimensional structure of the vegetation canopy. The choice of linear or nonlinear spectral mixture models is up to the consideration of computational complexity and the accuracy requirement.

  6. Nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates of typical desert vegetation in western China

    PubMed Central

    Jia, Yonghong; Gao, Zhihai; Wei, Huaidong

    2017-01-01

    Desert vegetation plays significant roles in securing the ecological integrity of oasis ecosystems in western China. Timely monitoring of photosynthetic/non-photosynthetic desert vegetation cover is necessary to guide management practices on land desertification and research into the mechanisms driving vegetation recession. In this study, nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates are investigated through comparing the performance of linear and nonlinear spectral mixture models with different endmembers applied to field spectral measurements of two types of typical desert vegetation, namely, Nitraria shrubs and Haloxylon. The main results were as follows. (1) The correct selection of endmembers is important for improving the accuracy of vegetation cover estimates, and in particular, shadow endmembers cannot be neglected. (2) For both the Nitraria shrubs and Haloxylon, the Kernel-based Nonlinear Spectral Mixture Model (KNSMM) with nonlinear parameters was the best unmixing model. In consideration of the computational complexity and accuracy requirements, the Linear Spectral Mixture Model (LSMM) could be adopted for Nitraria shrubs plots, but this will result in significant errors for the Haloxylon plots since the nonlinear spectral mixture effects were more obvious for this vegetation type. (3) The vegetation canopy structure (planophile or erectophile) determines the strength of the nonlinear spectral mixture effects. Therefore, no matter for Nitraria shrubs or Haloxylon, the non-linear spectral mixing effects between the photosynthetic / non-photosynthetic vegetation and the bare soil do exist, and its strength is dependent on the three-dimensional structure of the vegetation canopy. The choice of linear or nonlinear spectral mixture models is up to the consideration of computational complexity and the accuracy requirement. PMID:29240777

  7. Queensland Seasons

    Atmospheric Science Data Center

    2016-05-27

    ... are in turn influenced by vegetation structure, terrain and soil type, and by the different solar illumination conditions on the two dates. ... wavelenths is strongly scattered between the leaf layers of the dense canopies, and the influence of shadows between the tree ...

  8. A test of the Suits vegetative-canopy reflectance model with LARS soybean-canopy reflectance data

    NASA Technical Reports Server (NTRS)

    Chance, J. E.; Lemaster, E. W.

    1985-01-01

    The Suits vegetative-canopy reflectance model is tested with an extensive set of field reflectance measurements made by the Laboratory for Application of Remote Sensing (LARS) for soybean canopies. The model is tested for the full hemisphere of observer directions as well as the nadir direction. The results show moderate agreement for the visible channels of the Landsat MSS and poor agreement in the near-infrared channel of Landsat MSS. An analysis of errors is given.

  9. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.

  10. Aboveground Biomass and Dynamics of Forest Attributes using LiDAR Data and Vegetation Model

    NASA Astrophysics Data System (ADS)

    V V L, P. A.

    2015-12-01

    In recent years, biomass estimation for tropical forests has received much attention because of the fact that regional biomass is considered to be a critical input to climate change. Biomass almost determines the potential carbon emission that could be released to the atmosphere due to deforestation or conservation to non-forest land use. Thus, accurate biomass estimation is necessary for better understating of deforestation impacts on global warming and environmental degradation. In this context, forest stand height inclusion in biomass estimation plays a major role in reducing the uncertainty in the estimation of biomass. The improvement in the accuracy in biomass shall also help in meeting the MRV objectives of REDD+. Along with the precise estimate of biomass, it is also important to emphasize the role of vegetation models that will most likely become an important tool for assessing the effects of climate change on potential vegetation dynamics and terrestrial carbon storage and for managing terrestrial ecosystem sustainability. Remote sensing is an efficient way to estimate forest parameters in large area, especially at regional scale where field data is limited. LIDAR (Light Detection And Ranging) provides accurate information on the vertical structure of forests. We estimated average tree canopy heights and AGB from GLAS waveform parameters by using a multi-regression linear model in forested area of Madhya Pradesh (area-3,08,245 km2), India. The derived heights from ICESat-GLAS were correlated with field measured tree canopy heights for 60 plots. Results have shown a significant correlation of R2= 74% for top canopy heights and R2= 57% for stand biomass. The total biomass estimation 320.17 Mt and canopy heights are generated by using random forest algorithm. These canopy heights and biomass maps were used in vegetation models to predict the changes biophysical/physiological characteristics of forest according to the changing climate. In our study we have used Dynamic Global Vegetation Model to understand the possible vegetation dynamics in the event of climate change. The vegetation represents a biogeographic regime. Simulations were carried out for 70 years time period. The model produced leaf area index and biomass for each plant functional type and biome for each grid in that region.

  11. Utilizing In Situ Directional Hyperspectral Measurements to Validate Bio-Indicator Simulations for a Corn Crop Canopy

    NASA Technical Reports Server (NTRS)

    Cheng, Yen-Ben; Middleton, Elizabeth M.; Huemmrich, Karl F.; Zhang, Qingyuan; Campbell, Petya K. E.; Corp, Lawrence A.; Russ, Andrew L.; Kustas, William P.

    2010-01-01

    Two radiative transfer canopy models, SAIL and the two-layer Markov-Chain Canopy Reflectance Model (MCRM), were coupled with in situ leaf optical properties to simulate canopy-level spectral band ratio vegetation indices with the focus on the photochemical reflectance index in a cornfield. In situ hyperspectral measurements were made at both leaf and canopy levels. Leaf optical properties were obtained from both sunlit and shaded leaves. Canopy reflectance was acquired for eight different relative azimuth angles (psi) at three different view zenith angles (Theta (sub v)), and later used to validate model outputs. Field observations of photochemical reflectance index (PRI) for sunlit leaves exhibited lower values than shaded leaves, indicating higher light stress. Canopy PRI expressed obvious sensitivity to viewing geometry, as a function of both Theta (sub v) and psi . Overall, simulations from MCRM exhibited better agreements with in situ values than SAIL. When using only sunlit leaves as input, the MCRM-simulated PRI values showed satisfactory correlation and RMSE, as compared to in situ values. However, the performance of the MCRM model was significantly improved after defining a lower canopy layer comprised of shaded leaves beneath the upper sunlit leaf layer. Four other widely used band ratio vegetation indices were also studied and compared with the PRI results. MCRM simulations were able to generate satisfactory simulations for these other four indices when using only sunlit leaves as input; but unlike PRI, adding shaded leaves did not improve the performance of MCRM. These results support the hypothesis that the PRI is sensitive to physiological dynamics while the others detect static factors related to canopy structure. Sensitivity analysis was performed on MCRM in order to better understand the effects of structure related parameters on the PRI simulations. Leaf area index (LAI) showed the most significant impact on MCRM-simulated PRI among the parameters studied. This research shows the importance of hyperspectral and narrow band sensor studies, and especially the necessity of including the green wavelengths (e.g., 531 nm) on satellites proposing to monitor carbon dynamics of terrestrial ecosystems.

  12. Characterizing Olive Grove Canopies by Means of Ground-Based Hemispherical Photography and Spaceborne RADAR Data

    PubMed Central

    Molina, Iñigo; Morillo, Carmen; García-Meléndez, Eduardo; Guadalupe, Rafael; Roman, Maria Isabel

    2011-01-01

    One of the main strengths of active microwave remote sensing, in relation to frequency, is its capacity to penetrate vegetation canopies and reach the ground surface, so that information can be drawn about the vegetation and hydrological properties of the soil surface. All this information is gathered in the so called backscattering coefficient (σ0). The subject of this research have been olive groves canopies, where which types of canopy biophysical variables can be derived by a specific optical sensor and then integrated into microwave scattering models has been investigated. This has been undertaken by means of hemispherical photographs and gap fraction procedures. Then, variables such as effective and true Leaf Area Indices have been estimated. Then, in order to characterize this kind of vegetation canopy, two models based on Radiative Transfer theory have been applied and analyzed. First, a generalized two layer geometry model made up of homogeneous layers of soil and vegetation has been considered. Then, a modified version of the Xu and Steven Water Cloud Model has been assessed integrating the canopy biophysical variables derived by the suggested optical procedure. The backscattering coefficients at various polarized channels have been acquired from RADARSAT 2 (C-band), with 38.5° incidence angle at the scene center. For the soil simulation, the best results have been reached using a Dubois scattering model and the VV polarized channel (r2 = 0.88). In turn, when effective LAI (LAIeff) has been taken into account, the parameters of the scattering canopy model are better estimated (r2 = 0.89). Additionally, an inversion procedure of the vegetation microwave model with the adjusted parameters has been undertaken, where the biophysical values of the canopy retrieved by this methodology fit properly with field measured values. PMID:22164028

  13. A Robust Gold Deconvolution Approach for LiDAR Waveform Data Processing to Characterize Vegetation Structure

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.; Sheridan, R.; Ku, N. W.

    2014-12-01

    Increasing attention has been paid in the remote sensing community to the next generation Light Detection and Ranging (lidar) waveform data systems for extracting information on topography and the vertical structure of vegetation. However, processing waveform lidar data raises some challenges compared to analyzing discrete return data. The overall goal of this study was to present a robust de-convolution algorithm- Gold algorithm used to de-convolve waveforms in a lidar dataset acquired within a 60 x 60m study area located in the Harvard Forest in Massachusetts. The waveform lidar data was collected by the National Ecological Observatory Network (NEON). Specific objectives were to: (1) explore advantages and limitations of various waveform processing techniques to derive topography and canopy height information; (2) develop and implement a novel de-convolution algorithm, the Gold algorithm, to extract elevation and canopy metrics; and (3) compare results and assess accuracy. We modeled lidar waveforms with a mixture of Gaussian functions using the Non-least squares (NLS) algorithm implemented in R and derived a Digital Terrain Model (DTM) and canopy height. We compared our waveform-derived topography and canopy height measurements using the Gold de-convolution algorithm to results using the Richardson-Lucy algorithm. Our findings show that the Gold algorithm performed better than the Richardson-Lucy algorithm in terms of recovering the hidden echoes and detecting false echoes for generating a DTM, which indicates that the Gold algorithm could potentially be applied to processing of waveform lidar data to derive information on terrain elevation and canopy characteristics.

  14. Groundlayer vegetation gradients across oak woodland canopy gaps

    USGS Publications Warehouse

    Pavlovic, N.B.; Grundel, R.; Sluis, W.

    2006-01-01

    Frequency of groundlayer plants was measured across oak woodland canopy gaps at three sites in northwest Indiana to examine how vegetation varied with gap size, direction along the gap edge, and microhabitat. Microhabitats were defined as under the canopy adjacent to the gap, along the gap edge, and within the gap. Gap-sites consisted of gaps plus adjacent tree canopy. Gaps were classified as small (16 ± 1 m2), medium (97 ± 8), and large (310 ± 32). Neither richness nor diversity differed among microhabitats, gap sizes, or edges. Similarity between microhabitats wthin a gap-site increased as the distance between plots decreased and as the difference in PAR decreased, the latter explaining twice the variation in percent dissimilarity compared to Mg concentration, A horizon depth, and litter cover. Diervilla lonicera, Frageria virginiana, Helianthus divaricatus, Polygonatum pubescens, Quercus velutina, Smilacena stellata, and Tradescantia ohiensis decreased, whileTephrosia virginiana and legumes increased in frequency, from canopy to gap, and C4 grasses peaked at the gap edge, independent of gap size. Additional species frequency varied across the microhabitat gradient within specific sites. Sorghastrum nutans was three times more frequent in gaps at large sites than elsewhere. The vegetation in medium-sized gap-sites was more variable than within small and large gap-sites, suggesting greater environmental heterogeneity at that scale. Within gap-sites, vegetation was more heterogeneous within edges and canopies than in gaps. Edges were more similar in composition to gaps than to canopy groundlayer within gap-sites. Few species varied significantly in frequency around the gap edge. The oak woodland groundlayer on sandy substrates can be characterized as a mosaic of forb dominated vegetation that varies across light gradients associated with canopy gaps, transitioning to islands of grassland vegetation when gaps exceed 160 m2.

  15. Effect of canopy architectural variation on transpiration and thermoregulation

    NASA Astrophysics Data System (ADS)

    Linn, R.; Banerjee, T.

    2017-12-01

    One of the major scientific questions identified by the NGEE - Tropics campaign is the effect of disturbances such as forest fires, vegetation thinning and land use change on carbon, water and energy fluxes. Answers to such questions can help develop effective forest management strategies and shape policies to mitigate damages under natural and anthropogenic climate change. The absence of horizontal and vertical variation of forest canopy structure in current models is a major source of uncertainty in answering these questions. The current work addresses this issue through a bottom up process based modeling approach to systematically investigate the effect of forest canopy architectural variation on plant physiological response as well as canopy level fluxes. A plant biophysics formulation is used which is based on the following principles: (1) a model for the biochemical demand for CO2 as prescribed by photosynthesis models. This model can differentiate between photosynthesis under light-limited and nutrient-limited scenarios. (2) A Fickian mass transfer model including transfer through the laminar boundary layer on leaves that may be subjected to forced or free convection depending upon the mean velocity and the radiation load; (3) an optimal leaf water use strategy that maximizes net carbon gain for a given transpiration rate to describe the stomatal aperture variation; (4) a leaf-level energy balance to accommodate evaporative cooling. Such leaf level processes are coupled to solutions of atmospheric flow through vegetation canopies. In the first test case, different scenarios of top heavy and bottom heavy (vertical) foliage distributions are investigated within a one-dimensional framework where no horizontal heterogeneity of canopy structure is considered. In another test case, different spatial distributions (both horizontal and vertical) of canopy geometry (land use) are considered, where flow solutions using large eddy simulations (LES) are coupled to the aforementioned leaf level physiological model. The systematic differences observed across these simulated scenarios provide a clear insight of disturbance effects of forest-atmosphere interaction.

  16. Continental Scale Vegetation Structure Mapping Using Field Calibrated Landsat, ALOS Palsar And GLAS ICESat

    NASA Astrophysics Data System (ADS)

    Scarth, P.; Phinn, S. R.; Armston, J.; Lucas, R.

    2015-12-01

    Vertical plant profiles are important descriptors of canopy structure and are used to inform models of biomass, biodiversity and fire risk. In Australia, an approach has been developed to produce large area maps of vertical plant profiles by extrapolating waveform lidar estimates of vertical plant profiles from ICESat/GLAS using large area segmentation of ALOS PALSAR and Landsat satellite image products. The main assumption of this approach is that the vegetation height profiles are consistent across the segments defined from ALOS PALSAR and Landsat image products. More than 1500 field sites were used to develop an index of fractional cover using Landsat data. A time series of the green fraction was used to calculate the persistent green fraction continuously across the landscape. This was fused with ALOS PALSAR L-band Fine Beam Dual polarisation 25m data and used to segment the Australian landscapes. K-means clustering then grouped the segments with similar cover and backscatter into approximately 1000 clusters. Where GLAS-ICESat footprints intersected these clusters, canopy profiles were extracted and aggregated to produce a mean vertical vegetation profile for each cluster that was used to derive mean canopy and understorey height, depth and density. Due to the large number of returns, these retrievals are near continuous across the landscape, enabling them to be used for inventory and modelling applications. To validate this product, a radiative transfer model was adapted to map directional gap probability from airborne waveform lidar datasets to retrieve vertical plant profiles Comparison over several test sites show excellent agreement and work is underway to extend the analysis to improve national biomass mapping. The integration of the three datasets provide options for future operational monitoring of structure and AGB across large areas for quantifying carbon dynamics, structural change and biodiversity.

  17. Habitat use by elk (cervus elaphus) within structural stages of a managed forest of the northcentral United States

    Treesearch

    Mark A. Rumble; R. Scott Gamo

    2011-01-01

    Timber management is the most prominent land management activity in the Black Hills National Forest in the northcentral United States. Management units are stands 4-32 ha in size and are described using a hierarchal vegetative description including vegetation type, size class (age), and overstory canopy cover. For the most part, these stands are relatively homogeneous...

  18. Characterising Vegetation Structural and Functional Differences Across Australian Ecosystems From a Network of Terrestrial Laser Scanning Survey Sites and Airborne and Satellite Image Archives

    NASA Astrophysics Data System (ADS)

    Phinn, S. R.; Armston, J.; Scarth, P.; Johansen, K.; Schaefer, M.; Suarez, L.; Soto-Berelov, M.; Muir, J.; Woodgate, W.; Jones, S.; Held, A. A.

    2015-12-01

    Vegetation structural information is critical for environmental monitoring, management and compliance assessment. In this context we refer to vegetation structural properties as vertical, horizontal and volumetric dimensions, including: canopy height; amount and distribution of vegetation by height; foliage projective cover (FPC); leaf area index (LAI); and above ground biomass. Our aim was to determine if there were significant differences between vegetation structural properties across 11 ecosystem types in Australia as measured by terrestrial laser scanner (TLS) structure metrics. The ecosystems sampled included: mesophyll vineforest, wet-dry tropical savannah, mallee woodland, subtropical eucalypt forest, mulga woodland/grassland, wet eucalypt forest, dry eucalypt forest, tall and wet eucalypt forest, and desert grassland/shrublands. Canopy height, plant area-height profiles and LAI were calculated from consistently processed TLS data using Australia's Terrestrial Ecosystem Research Network's (TERN) Supersites by the TERN AusCover remote sensing field teams from 2012-2015. The Supersites were sampled using standardised field protocols within a core set of 1 ha plots as part of a 5 km x 5 km uniform area using a RIEGL-VZ400 waveform recording TLS. Four to seven scans were completed per plot, with one centre point and then at 25 m away from the centre point along transect lines at 0o, 60o and 240o. Individual foliage profiles were sensitive to spatial variation in the distribution of plant materials. Significant differences were visible between each of the vegetation communities assessed when aggregated to plot and ecosystem type scales. Several of the communities exhibited simple profiles with either grass and shrubs (e.g. desert grassland) or grass and trees (e.g. mallee woodland). Others had multiple vegetation forms at different heights, contributing to the profile (e.g. wet eucalypt forest). The TLS data provide significantly more detail about the relative vertical and horizontal distribution of plant materials. TLS data are providing a step change in satellite image based vegetation mapping, and refining our knowledge of vegetation structure and its phenological variability. Open access plot scale TLS measurements are available through the TERN Auscover data portal.

  19. Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2018-04-01

    As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater growing season temporal variability, and reduced levels of soil moisture, whilst projected decreasing summer precipitation may alter the feedbacks between soil moisture and vegetation water use and increase growing season soil moisture deficits.

  20. Effects of vegetation canopy on the radar backscattering coefficient

    NASA Technical Reports Server (NTRS)

    Mo, T.; Blanchard, B. J.; Schmugge, T. J.

    1983-01-01

    Airborne L- and C-band scatterometer data, taken over both vegetation-covered and bare fields, were systematically analyzed and theoretically reproduced, using a recently developed model for calculating radar backscattering coefficients of rough soil surfaces. The results show that the model can reproduce the observed angular variations of radar backscattering coefficient quite well via a least-squares fit method. Best fits to the data provide estimates of the statistical properties of the surface roughness, which is characterized by two parameters: the standard deviation of surface height, and the surface correlation length. In addition, the processes of vegetation attenuation and volume scattering require two canopy parameters, the canopy optical thickness and a volume scattering factor. Canopy parameter values for individual vegetation types, including alfalfa, milo and corn, were also determined from the best-fit results. The uncertainties in the scatterometer data were also explored.

  1. Investigation into the role of canopy structure traits and plant functional types in modulating the correlation between canopy nitrogen and reflectance in a temperate forest in northeast China

    NASA Astrophysics Data System (ADS)

    Yu, Quanzhou; Wang, Shaoqiang; Zhou, Lei

    2017-10-01

    A precise estimate of canopy leaf nitrogen concentration (CNC, based on dry mass) is important for researching the carbon assimilation capability of forest ecosystems. Hyperspectral remote sensing technology has been applied to estimate regional CNC, which can adjust forest photosynthetic capacity and carbon uptake. However, the relationship between forest CNC and canopy spectral reflectance as well as its mechanism is still poorly understood. Using measured CNC, canopy structure and species composition data, four vegetation indices (VIs), and near-infrared reflectance (NIR) derived from EO-1 Hyperion imagery, we investigated the role of canopy structure traits and plant functional types (PFTs) in modulating the correlation between CNC and canopy reflectance in a temperate forest in northeast China. A plot-scale forest structure indicator, named broad foliar dominance index (BFDI), was introduced to provide forest canopy structure and coniferous and broadleaf species composition. Then, we revealed the response of forest canopy reflectance spectrum to BFDI and CNC. Our results showed that leaf area index had no significant effect on NIR (P>0.05) but indicated that there was a significant correlation (R2=0.76, P<0.0001) between CNC and BFDI. NIR had a more significant correlation with BFDI than with CNC for all PFTs, but it had no obvious correlation with CNC for single PFT. Partial correlation analysis showed that four VIs had better correlations with BFDI than with CNC. When the effect of BFDI was removed, the partial correlation between CNC and NIR was insignificant (R=0.273, P>0.05). On the contrary, removing the CNC effect, the partial correlation between BFDI and NIR was positively significant (R=0.69, P<0.0001). These findings proved that canopy structure and coniferous and broadleaf species composition had a greater influence on the remote sensing signal than canopy nitrogen concentration. The functional convergence of plant traits resulted in the relation of CNC and canopy structure and determined the positive correlation between CNC and NIR. We maintain that the repeatable relationship between CNC and NIR can be used in the remote sensing retrieval of CNC during various forest types. Nevertheless, the relationship cannot be considered as a feasible approach of CNC estimation for a single PFT.

  2. Under-canopy snow accumulation and ablation measured with airborne scanning LiDAR altimetry and in-situ instrumental measurements, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Kirchner, P. B.; Bales, R. C.; Musselman, K. N.; Molotch, N. P.

    2012-12-01

    We investigated the influence of canopy on snow accumulation and melt in a mountain forest using paired snow on and snow off scanning LiDAR altimetry, synoptic measurement campaigns and in-situ time series data of snow depth, SWE, and radiation collected from the Kaweah River watershed, Sierra Nevada, California. Our analysis of forest cover classified by dominant species and 1 m2 grided mean under canopy snow accumulation calculated from airborne scanning LiDAR, demonstrate distinct relationships between forest class and under-canopy snow depth. The five forest types were selected from carefully prepared 1 m vegetation classifications and named for their dominant tree species, Giant Sequoia, Jeffrey Pine, White Fir, Red Fir, Sierra Lodgepole, Western White Pine, and Foxtail Pine. Sufficient LiDAR returns for calculating mean snow depth per m2 were available for 31 - 44% of the canopy covered area and demonstrate a reduction in snow depth of 12 - 24% from adjacent open areas. The coefficient of variation in snow depth under canopies ranged from 0.2 - 0.42 and generally decreased as elevation increased. Our analysis of snow density snows no statistical significance between snow under canopies and in the open at higher elevations with a weak significance for snow under canopies at lower elevations. Incident radiation measurements made at 15 minute intervals under forest canopies show an input of up to 150 w/m2 of thermal radiation from vegetation to the snow surface on forest plots. Snow accumulated on the mid to high elevation forested slopes of the Sierra Nevada represents the majority of winter snow storage. However snow estimates in forested environments demonstrate a high level of uncertainty due to the limited number of in-situ observations and the inability of most remote sensing platforms to retrieve reflectance under dense vegetation. Snow under forest canopies is strongly mediated by forest cover and decoupled from the processes that dictate accumulation and ablation of snow in open locations, where almost all precipitation and meteorlogic measurements concerning snow are made. Snow accumulation is intercepted by vegetation until it accumulates to a depth equal to or greater than the height of the vegetation, is reduced by the amount of sublimation or evaporation occurring while on the canopy and is redistributed beneath the canopy at a different density or as liquid water. Ablation processes are dictated by the energy environment surrounding vegetation where sensible heat is mediated by shading of short wave radiation.

  3. Quantifying interception associated with new urban vegetation canopies

    NASA Astrophysics Data System (ADS)

    Yerk, W.; Montalto, F. A.

    2013-12-01

    Interception of precipitation by vegetation canopies has long been recognized as an important component of the hydrologic cycle, though most research has been in closed or sparse canopy forests. Much less work has been published on interception by urban vegetation, and especially associated with the low growing shrubs commonly installed in green infrastructure program. To inform urban watershed model with vegetation-specific interception data, a field experiment was designed to directly measure canopy throughfall associated with two shrub species commonly included in urban greening programs. Data was collected at a high (e.g. five second) sampling frequency. A non-parametric Kruskal-Wallis test performed on data collected between August and October of 2012 demonstrated statistically significant (p= 0.0011) differences in recorded throughfall between two species (94% for Itea virginica, 86% for Cornus sericea). Additionally, the results suggested that the relationship of throughfall to rainfall intensity varied by species. For Itea, the ratio of throughfall to precipitation intensity was close to 1:1. However, for Cornus, the throughfall rate was on average slower (or 0.85 of the precipitation intensity). An improved and expanded set-up installed in 2013 added two additional species (Prunus laurocerasus and Hydrangea quercifolia). The 2013 results confirm interspecies differences in both throughfall amount, and in the relationship of throughfall rate to precipitation intensity. The results are discussed with respect to droplet splashing and enhanced evaporation within the canopy. Both years' findings suggest that the quantity of water intercepted by vegetation canopies exceeds the canopy storage capacity, as assumed in many conventional hydrologic models.

  4. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. [Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Nemani, Ramakrishna R.; Running, Steven W.

    1989-01-01

    Infrared surface temperatures from satellite sensors have been used to infer evaporation and soil moisture distribution over large areas. However, surface energy partitioning to latent versus sensible heat changes with surface vegetation cover and water availability. The hypothesis that the relationship between surface temperature and canopy density is sensitivite to seasonal changes in canopy resistance of conifer forests is presently tested. Surface temperature and canopy density were computed for a 20 x 25 km forested region in Montana, from the NOAA/AVHRR for 8 days during the summer of 1985. A forest ecosystem model, FOREST-BGC, simulated canopy resistance for the same period. For all eight days, surface temperatures had high association with canopy density, measured as Normalized Difference Vegetation Index, implying that latent heat exchange is the major cause of spatial variations in surface radiant tmeperatures.

  5. Surface energy exchanges along a tundra-forest transition and feedbacks to climate

    USGS Publications Warehouse

    Beringer, J.; Chapin, F. S.; Thompson, Catharine Copass; McGuire, A.D.

    2005-01-01

    Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All rights reserved.

  6. Evaluation of one dimensional analytical models for vegetation canopies

    NASA Technical Reports Server (NTRS)

    Goel, Narendra S.; Kuusk, Andres

    1992-01-01

    The SAIL model for one-dimensional homogeneous vegetation canopies has been modified to include the specular reflectance and hot spot effects. This modified model and the Nilson-Kuusk model are evaluated by comparing the reflectances given by them against those given by a radiosity-based computer model, Diana, for a set of canopies, characterized by different leaf area index (LAI) and leaf angle distribution (LAD). It is shown that for homogeneous canopies, the analytical models are generally quite accurate in the visible region, but not in the infrared region. For architecturally realistic heterogeneous canopies of the type found in nature, these models fall short. These shortcomings are quantified.

  7. Effective Tree Scattering at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; ONeill, Peggy E.; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.

    2011-01-01

    For routine microwave Soil Moisture (SM) retrieval through vegetation, the tau-omega [1] model [zero-order Radiative Transfer (RT) solution] is attractive due to its simplicity and eases of inversion and implementation. It is the model used in baseline retrieval algorithms for several planned microwave space missions, such as ESA's Soil Moisture Ocean Salinity (SMOS) mission (launched November 2009) and NASA's Soil Moisture Active Passive (SMAP) mission (to be launched 2014/2015) [2 and 3]. These approaches are adapted for vegetated landscapes with effective vegetation parameters tau and omega by fitting experimental data or simulation outputs of a multiple scattering model [4-7]. The model has been validated over grasslands, agricultural crops, and generally light to moderate vegetation. As the density of vegetation increases, sensitivity to the underlying SM begins to degrade significantly and errors in the retrieved SM increase accordingly. The zero-order model also loses its validity when dense vegetation (i.e. forest, mature corn, etc.) includes scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. The tau-omega model (when applied over moderately to densely vegetated landscapes) will need modification (in terms of form or effective parameterization) to enable accurate characterization of vegetation parameters with respect to specific tree types, anisotropic canopy structure, presence of leaves and/or understory. More scattering terms (at least up to first-order at L-band) should be included in the RT solutions for forest canopies [8]. Although not really suitable to forests, a zero-order tau-omega model might be applied to such vegetation canopies with large scatterers, but that equivalent or effective parameters would have to be used [4]. This requires that the effective values (vegetation opacity and single scattering albedo) need to be evaluated (compared) with theoretical definitions of these parameters. In a recent study [9], effective vegetation opacity of coniferous trees was compared with two independent estimates of the same parameter. First, a zero-order RT model was fitted to multiangular microwave emissivity data in a least-square sense to provide effective vegetation optical depth as done in spaceborne retrieval algorithms. Second, a ratio between radar backscatter measurements with a corner reflector under trees and in an open area was calculated to obtain measured tree propagation characteristics. Finally, the theoretical propagation constant was determined by forward scattering theorem using detailed measurements of size/angle distributions and dielectric constants of the tree constituents (trunk, branches, and needles). Results indicated that the effective attenuation values are smaller than but of similar magnitude to both the theoretical and measured values. This study will complement the previous work [9] and will focus on characterization of effective scattering albedo by assuming that effective vegetation opacity is same as theoretical opacity. The resultant effective albedo will not be the albedo of single forest canopy element anymore, but it becomes a global parameter, which depends on all the processes taking place within the canopy including multiple scattering as described.

  8. Scaling estimates of vegetation structure in Amazonian tropical forests using multi-angle MODIS observations

    PubMed Central

    de Moura, Yhasmin Mendes; Hilker, Thomas; Goncalves, Fabio Guimarães; Galvão, Lênio Soares; dos Santos, João Roberto; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valéria

    2018-01-01

    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r2= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52≤ r2≤ 0.61; p<0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (σ0) from SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon. PMID:29618964

  9. Stomatal conductance, canopy temperature, and leaf area index estimation using remote sensing and OBIA techniques

    Treesearch

    S. Panda; D.M. Amatya; G. Hoogenboom

    2014-01-01

    Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted...

  10. Simulations of Seasonal and Latitudinal Variations in Leaf Inclination Angle Distribution: Implications for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.

    2013-01-01

    The leaf inclination angle distribution (LAD) is an important characteristic of vegetation canopy structure affecting light interception within the canopy. However, LADs are difficult and time consuming to measure. To examine possible global patterns of LAD and their implications in remote sensing, a model was developed to predict leaf angles within canopies. Canopies were simulated using the SAIL radiative transfer model combined with a simple photosynthesis model. This model calculated leaf inclination angles for horizontal layers of leaves within the canopy by choosing the leaf inclination angle that maximized production over a day in each layer. LADs were calculated for five latitude bands for spring and summer solar declinations. Three distinct LAD types emerged: tropical, boreal, and an intermediate temperate distribution. In tropical LAD, the upper layers have a leaf angle around 35 with the lower layers having horizontal inclination angles. While the boreal LAD has vertical leaf inclination angles throughout the canopy. The latitude bands where each LAD type occurred changed with the seasons. The different LADs affected the fraction of absorbed photosynthetically active radiation (fAPAR) and Normalized Difference Vegetation Index (NDVI) with similar relationships between fAPAR and leaf area index (LAI), but different relationships between NDVI and LAI for the different LAD types. These differences resulted in significantly different relationships between NDVI and fAPAR for each LAD type. Since leaf inclination angles affect light interception, variations in LAD also affect the estimation of leaf area based on transmittance of light or lidar returns.

  11. Compliance of secondary production and eco-exergy as indicators of benthic macroinvertebrates assemblages' response to canopy cover conditions in Neotropical headwater streams.

    PubMed

    Linares, Marden Seabra; Callisto, Marcos; Marques, João Carlos

    2018-02-01

    Riparian vegetation cover influences benthic assemblages structure and functioning in headwater streams, as it regulates light availability and autochthonous primary production in these ecosystems.Secondary production, diversity, and exergy-based indicators were applied in capturing how riparian cover influences the structure and functioning of benthic macroinvertebrate assemblages in tropical headwater streams. Four hypotheses were tested: (1) open canopy will determine the occurrence of higher diversity in benthic macroinvertebrate assemblages; (2) streams with open canopy will exhibit more complex benthic macroinvertebrate communities (in terms of information embedded in the organisms' biomass); (3) in streams with open canopy benthic macroinvertebrate assemblages will be more efficient in using the available resources to build structure, which will be reflected by higher eco-exergy values; (4) benthic assemblages in streams with open canopy will exhibit more secondary productivity. We selected eight non-impacted headwater streams, four shaded and four with open canopy, all located in the Neotropical savannah (Cerrado) of southeastern Brazil. Open canopy streams consistently exhibited significantly higher eco-exergy and instant secondary production values, exemplifying that these streams may support more complex and productive benthic macroinvertebrate assemblages. Nevertheless, diversity indices and specific eco-exergy were not significantly different in shaded and open canopy streams. Since all the studied streams were selected for being considered as non-impacted, this suggests that the potential represented by more available food resources was not used to build a more complex dissipative structure. These results illustrate the role and importance of the canopy cover characteristics on the structure and functioning of benthic macroinvertebrate assemblages in tropical headwater streams, while autochthonous production appears to play a crucial role as food source for benthic macroinvertebrates. This study also highlights the possible application of thermodynamic based indicators as tools to guide environmental managers in developing and implementing policies in the neotropical savannah. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Modeling the bidirectional reflectance distribution function of mixed finite plant canopies and soil

    NASA Technical Reports Server (NTRS)

    Schluessel, G.; Dickinson, R. E.; Privette, J. L.; Emery, W. J.; Kokaly, R.

    1994-01-01

    An analytical model of the bidirectional reflectance for optically semi-infinite plant canopies has been extended to describe the reflectance of finite depth canopies contributions from the underlying soil. The model depends on 10 independent parameters describing vegetation and soil optical and structural properties. The model is inverted with a nonlinear minimization routine using directional reflectance data for lawn (leaf area index (LAI) is equal to 9.9), soybeans (LAI, 2.9) and simulated reflectance data (LAI, 1.0) from a numerical bidirectional reflectance distribution function (BRDF) model (Myneni et al., 1988). While the ten-parameter model results in relatively low rms differences for the BRDF, most of the retrieved parameters exhibit poor stability. The most stable parameter was the single-scattering albedo of the vegetation. Canopy albedo could be derived with an accuracy of less than 5% relative error in the visible and less than 1% in the near-infrared. Sensitivity were performed to determine which of the 10 parameters were most important and to assess the effects of Gaussian noise on the parameter retrievals. Out of the 10 parameters, three were identified which described most of the BRDF variability. At low LAI values the most influential parameters were the single-scattering albedos (both soil and vegetation) and LAI, while at higher LAI values (greater than 2.5) these shifted to the two scattering phase function parameters for vegetation and the single-scattering albedo of the vegetation. The three-parameter model, formed by fixing the seven least significant parameters, gave higher rms values but was less sensitive to noise in the BRDF than the full ten-parameter model. A full hemispherical reflectance data set for lawn was then interpolated to yield BRDF values corresponding to advanced very high resolution radiometer (AVHRR) scan geometries collected over a period of nine days. The resulting parameters and BRDFs are similar to those for the full sampling geometry, suggesting that the limited geometry of AVHRR measurements might be used to reliably retrieve BRDF and canopy albedo with this model.

  13. Habitat diversity in uneven-aged northern hardwood stands: a case study

    Treesearch

    Laura S. Kenefic; Ralph D. Nyland

    2000-01-01

    Habitat characteristics were quantified in an empirically balanced uneven-aged northern hardwood stand in central New York. Canopy structure, wildlife trees, downed woody material, low cover, and richness and abundance of understory vegetation were assessed. High vertical structural diversity and low horizontal patchiness were associated with the single-tree selection...

  14. Retrieval of canopy moisture content for dynamic fire risk assessment using simulated MODIS bands

    NASA Astrophysics Data System (ADS)

    Maffei, Carmine; Leone, Antonio P.; Meoli, Giuseppe; Calabrò, Gaetano; Menenti, Massimo

    2007-10-01

    Forest fires are one of the major environmental hazards in Mediterranean Europe. Biomass burning reduces carbon fixation in terrestrial vegetation, while soil erosion increases in burned areas. For these reasons, more sophisticated prevention tools are needed by local authorities to forecast fire danger, allowing a sound allocation of intervention resources. Various factors contribute to the quantification of fire hazard, and among them vegetation moisture is the one that dictates vegetation susceptibility to fire ignition and propagation. Many authors have demonstrated the role of remote sensing in the assessment of vegetation equivalent water thickness (EWT), which is defined as the weight of liquid water per unit of leaf surface. However, fire models rely on the fuel moisture content (FMC) as a measure of vegetation moisture. FMC is defined as the ratio of the weight of the liquid water in a leaf over the weight of dry matter, and its retrieval from remote sensing measurements might be problematic, since it is calculated from two biophysical properties that independently affect vegetation reflectance spectrum. The aim of this research is to evaluate the potential of the Moderate Resolution Imaging Spectrometer (MODIS) in retrieving both EWT and FMC from top of the canopy reflectance. The PROSPECT radiative transfer code was used to simulate leaf reflectance and transmittance as a function of leaf properties, and the SAILH model was adopted to simulate the top of the canopy reflectance. A number of moisture spectral indexes have been calculated, based on MODIS bands, and their performance in predicting EWT and FMC has been evaluated. Results showed that traditional moisture spectral indexes can accurately predict EWT but not FMC. However, it has been found that it is possible to take advantage of the multiple MODIS short-wave infrared (SWIR) channels to improve the retrieval accuracy of FMC (r2 = 0.73). The effects of canopy structural properties on MODIS estimates of FMC have been evaluated, and it has been found that the limiting factor is leaf area index (LAI). The best results are recorded for LAI>2 (r2 = 0.83), while acceptable results (r2 = 0.58) can still be achieved for lower vegetation cover density.

  15. Impact of small-scale vegetation structure on tephra layer preservation

    PubMed Central

    Cutler, Nick A.; Shears, Olivia M.; Streeter, Richard T.; Dugmore, Andrew J.

    2016-01-01

    The factors that influence tephra layer taphonomy are poorly understood, but vegetation cover is likely to play a role in the preservation of terrestrial tephra deposits. The impact of vegetation on tephra layer preservation is important because: 1) the morphology of tephra layers could record key characteristics of past land surfaces and 2) vegetation-driven variability in tephra thickness could affect attempts to infer eruption and dispersion parameters. We investigated small- (metre-) scale interactions between vegetation and a thin (<10 cm), recent tephra layer. We conducted surveys of vegetation structure and tephra thickness at two locations which received a similar tephra deposit, but had contrasting vegetation cover (moss vs shrub). The tephra layer was thicker and less variable under shrub cover. Vegetation structure and layer thickness were correlated on the moss site but not under shrub cover, where the canopy reduced the influence of understory vegetation on layer morphology. Our results show that vegetation structure can influence tephra layer thickness on both small and medium (site) scales. These findings suggest that some tephra layers may carry a signal of past vegetation cover. They also have implications for the sampling effort required to reliably estimate the parameters of initial deposits. PMID:27845415

  16. Light Use Efficiency and Photochemical Reflectance Index: do we have a common basis defining them? Implications for productivity estimation (Invited)

    NASA Astrophysics Data System (ADS)

    Gitelson, A. A.; Gamon, J. A.

    2013-12-01

    There are at least three commonly used definitions of photosynthetic Light Use Efficiency (LUE) based on: (a) incident radiation (LUEinc); (b) total absorbed light (LUEtotal); and (c) radiation absorbed by photosynthetically active vegetation (LUEps). Consequently, LUE values reported do not have a common basis, bringing confusion and limiting the utility of reported LUE values for comparative analyses. Not surprisingly, the value of LUE reported in literature varies by a factor of three. Similarly, the Photochemical Reflectance Index (PRI) has different operational definitions, resulting in a wide range of reported values for comparable conditions. The objectives of this paper are to investigate (a) temporal behavior of each definition of LUE; and (b) factors affecting PRI, often used as a surrogate of LUE at leaf and canopy levels. We focused on annual and winter-deciduous vegetation where total chlorophyll content is closely tied to the seasonal dynamics of GPP. In these conditions, LUEinc is closely related to total plant chlorophyll (Chl) content. LUEtotal oscillates around a constant value during the vegetative stage, depending mainly on plant physiological status, PAR composition and magnitude, while in reproductive and senescence stages it relates closely to Chl content. LUEps may vary 2- to 3-fold during the growing season with no clear seasonal pattern, and does not seem to be related to any biophysical characteristic studied; rather, it depends on the physiological status of vegetation, PAR composition and magnitude as well as air temperature and soil moisture. At the leaf level, PRI depends greatly on pigment content and composition and relates closely to the ratio of Chl to carotenoid content. At the canopy and stand levels, both total plant Chl content and green LAI are responsible for more than 95% of PRI variation, demonstrating that PRI is confounded by pigment pool sizes and canopy structure in these conditions. Importantly, the close relationship between PRI, Chl, and green LAI varies with canopy growth stage. PRI relates to LUEinc over the whole growing season and to LUEtotal in reproductive and senescence stages. For estimating seasonal vegetation productivity, we recommend the establishment of standard LUE definitions and PRI applications that explicitly consider canopy structure and pigmentation. In cases where total chlorophyll content is closely tied to the seasonal dynamics of GPP, before using PRI as a proxy of LUEps one needs to accurately subtract the effect of Chl and LAI.

  17. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-05-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to quantify the carbon contained in the vegetation, although this calculation contains due to the heterogeneity of the forest landscape structural uncertainties which restrict future applications to spatial averages of about one hectare in size. The uncertainties in AGB for a given canopy height are here 20-40% (95% confidence level) corresponding to a standard deviation of less than ±10%. This uncertainty on the 1 ha-scale is much smaller than in the analysis of 0.04 ha-scale data. At this small scale (0.04 ha) AGB can only be calculated out of canopy height with an uncertainty which is at least of the magnitude of the signal itself due to the natural spatial heterogeneity of these forests.

  18. Tree Death Leading To Ecosystem Renewal? Forecasting Carbon Storage As Eastern Forests Age

    NASA Astrophysics Data System (ADS)

    Curtis, P.; Gough, C. M.; Bohrer, G.; Nadelhoffer, K. J.; Ivanov, V. Y.

    2013-12-01

    The future trajectory of North American carbon (C) stocks remains uncertain as a subset of maturing trees die in mixed deciduous forests of the U.S. Midwest and East transitioning from early to middle and late succession. We are studying disturbance-structure-function relationships of aging forests in northern Michigan using long-term ecological and meteorological C cycling studies, a large-scale disturbance experiment, a 200-year forest chronosequence, and flux comparisons across three tower sites. We find that ecosystem responses to mortality are characterized by several processes that affect structure-function relationships and alter the way ecosystem functioning interacts with meteorological forcing. We subjected 39 ha of forest to moderate experimental disturbance, similar to that of age-related or climatically induced tree mortality. We found that the mortality of a third of all canopy trees minimally altered the balance between forest C uptake and release, as growth-limiting light and nitrogen resources were rapidly reallocated from dead and dying trees to undisturbed trees. Although disturbance-induced mortality increased soil N mineralization rates, nitrification, and denitrification, N exports from soils remained low. Upper canopy gap formation and a rise in structural complexity allowed increased photosynthetic contribution of sub-canopy vegetation to compensate for the death of canopy dominant trees. However, we found large differences between the transpirational response of maples and oaks to VPD and soil moisture, which led to relative declines in maple transpiration post-disturbance. These hydrologic differences may affect a species' ability to compete for resources following such a disturbance. Changes to canopy structure had a relatively small effect on roughness length and the turbulence forcing of fluxes from the canopy. We currently are studying how tree mortality driven changes in canopy structure affects within-canopy resource distribution and subsequent changes in leaf morphological, physiological and biochemical traits, how disturbance severity relates to the magnitude of C storage resilience, the impacts of clouds and aerosols on surface diffuse light and how they interact with canopy structure to modify C uptake, and how these processes change overall C assimilation given different forest age and disturbance histories. Along a conceptual continuum from structural to functional attributes, our results show that leaf area distribution and its heterogeneity, canopy light, water and nutrient use efficiency, canopy roughness length and turbulent mixing of canopy air, and the coupling between soil moisture and canopy density, all change with successional and disturbance processes and affect ecosystem C fluxes. Patchy mortality and related increases in structural complexity could, against expectations, enhance the C storage of some forests. Our finding that increases in canopy structural complexity improve resource-use efficiency provides a mechanism for maintaining high rates of C storage in aging forests.

  19. Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies

    NASA Technical Reports Server (NTRS)

    Myneni, R. B.; Ganapol, B. D.; Asrar, G.

    1992-01-01

    The problem of remote sensing the canopy photosynthetic and stomatal conductance efficiencies is investigated with the aid of one- and three-dimensional radiative transfer methods coupled to a semi-empirical mechanistic model of leaf photosynthesis and stomatal conductance. Desertlike vegetation is modeled as clumps of leaves randomly distributed on a bright dry soil with partial ground cover. Normalized difference vegetation index (NDVI), canopy photosynthetic (Ep), and stomatal efficiencies (Es) are calculated for various geometrical, optical, and illumination conditions. The contribution of various radiative fluxes to estimates of Ep is evaluated and the magnitude of errors in bulk canopy formulation of problem parameters are quantified. The nature and sensitivity of the relationship between Ep and Es to NDVI is investigated, and an algorithm is proposed for use in operational remote sensing.

  20. Relationship of attenuation in a vegetation canopy to physical parameters of the canopy

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Levine, D. M.

    1993-01-01

    A discrete scatter model is employed to compute the radiometric response (i.e. emissivity) of a layer of vegetation over a homogeneous ground. This was done to gain insight into empirical formulas for the emissivity which have recently appeared in the literature and which indicate that the attenuation through the canopy is proportional to the water content of the vegetation and inversely proportional to wavelength raised to a power around unity. The analytical result assumes that the vegetation can be modeled by a sparse layer of discrete, randomly oriented particles (leaves, stalks, etc.). The attenuation is given by the effective wave number of the layer obtained from the solution for the mean wave using the effective field approximation. By using the Ulaby-El Rayes formula to relate the dielectric constant of the vegetation to its water content, it can be shown that the attenuation is proportional to water content. The analytical form offers insight into the dependence of the empirical parameters on other variables of the canopy, including plant geometry (i.e. shape and orientation of the leaves and stalks of which the vegetation is comprised), frequency of the measurement and even the physical temperature of the vegetation. Solutions are presented for some special cases including layers consisting of cylinders (stalks) and disks (leaves).

  1. Modeling the backscattering and transmission properties of vegetation canopies

    NASA Technical Reports Server (NTRS)

    Allen, C. T.; Ulaby, F. T.

    1984-01-01

    Experimental measurements of canopy attenuation at 10.2 GHz (X-band) for canopies of wheat and soybeans, experimental observations of the effect upon the microwave backscattering coefficient (sigma) of free water in a vegetation canopy, and experimental measurements of sigma (10.2 GHz, 50 deg, VV and VH polarization) of 30 agricultural fields over the growing season of each crop are discussed. The measurements of the canopy attenuation through wheat independently determined the attenuation resulting from the wheat heads and that from the stalks. An experiment conducted to simulate the effects of rain or dew on sigma showed that sigma increases by about 3 dB as a result of spraying a vegetation canopy with water. The temporal observations of sigma for the 30 agricultural fields (10 each of wheat, corn, and soybeans) indicated fields of the same crop type exhibits similar temporal patterns. Models previously reported were tested using these multitemporal sigma data, and a new model for each crop type was developed and tested. The new models proved to be superior to the previous ones.

  2. Using Airborne LIDAR Data to Determine Old vs. Young Cottonwood Trees in the Riparian Corridor of the San Pedro River

    NASA Astrophysics Data System (ADS)

    Farid, A.; Goodrich, D.; Sartori, M.; Sorooshian, S.

    2003-12-01

    Quantification of vegetation patterns and properties is needed to determine their role in the landscape and to develop management plans to conserve natural resources. Vegetation patterns can be mapped from the ground, or by using aerial photography or satellite imagery. However, quantifying the physical properties of vegetation patterns with ground-based or remote sensing technology is difficult, time consuming, and often costly. Digital data from an airborne lidar (light detecting and ranging) instrument offers an alternative method for quantifying vegetation properties and patterns. Using lidar, a study was conducted in the San Pedro National Riparian Conservation Area in an attempt to differentiate young and old Cottonwood trees in southeastern Arizona as young and old cottonwoods have significantly different water use per unit area of canopy. The lidar data was acquired in June 2003, using Optech's ALTM (Airborne Laser Terrain Mapper), during flyovers conducted at an altitude of 750 m. It has been demonstrated that the height of old and young cottonwood canopies can be measured by using lidar. Canopy heights measured with the lidar show a good degree of correlation with ground-based measurements. Methodologically, the first step required is to differentiate old from young cottonwood canopies by the differences in canopy height obtained from lidar data. In addition to vegetation heights, spatial patterns of crown area, canopy cover, and intensity of return laser pulse are measured for both old and young cottonwood trees with the lidar data. The second stage of this study demonstrates that these other parameters of old and young cottonwood trees, when extrapolated from lidar, are significantly different. This study indicates the potential of airborne lidar data to distinguish between different ages of cottonwood forest canopy for large areas quickly and quantitatively.

  3. Integration of ALS and TLS for calibration and validation of LAI profiles from large footprint lidar

    NASA Astrophysics Data System (ADS)

    Armston, J.; Tang, H.; Hancock, S.; Hofton, M. A.; Dubayah, R.; Duncanson, L.; Fatoyinbo, T. E.; Blair, J. B.; Disney, M.

    2016-12-01

    The Global Ecosystem Dynamics Investigation (GEDI) is designed to provide measurements of forest vertical structure and above-ground biomass density (AGBD) over tropical and temperate regions. The GEDI is a multi-beam waveform lidar that will acquire transects of forest canopy vertical profiles in conditions of up to 99% canopy cover. These are used to produce a number of canopy height and profile metrics to model habitat suitability and AGBD. These metrics include vertical leaf area index (LAI) profiles, which require some pre-launch refinement of large-footprint waveform processing methods for separating canopy and ground returns and estimation of their reflectance. Previous research developments in modelling canopy gap probability to derive canopy and ground reflectance from waveforms have primarily used data from small-footprint instruments, however development of a generalized spatial model with uncertainty will be useful for interpreting and modelling waveforms from large-footprint instruments such as the NASA Land Vegetation and Ice Sensor (LVIS) with a view to implementation for GEDI. Here we present an analysis of waveform lidar data from the NASA Land Vegetation and Ice Sensor (LVIS), which were acquired in Gabon in February 2016 to support the NASA/ESA AfriSAR campaign. AfriSAR presents a unique opportunity to test refined methods for retrieval of LAI profiles in high above-ground biomass rainforests (up to 600 Mg/ha) with dense canopies (>90% cover), where the greatest uncertainty exists. Airborne and Terrestrial Laser Scanning data (TLS) were also collected, enabling quantification of algorithm performance in plots of dense canopy cover. Refinement of canopy gap probability and LAI profile modelling from large-footprint lidar was based on solving for canopy and ground reflectance parameters spatially by penalized least-squares. The sensitivities of retrieved cover and LAI profiles to variation in canopy and ground reflectance showed improvement compared to assuming a constant ratio. We evaluated the use of spatially proximate simple waveforms to interpret more complex waveforms with poor separation of canopy and ground returns. This work has direct implications for GEDI algorithm refinement.

  4. Seasonal albedo of an urban/rural landscape from satellite observations

    NASA Technical Reports Server (NTRS)

    Brest, Christopher L.

    1987-01-01

    Using data from 27 calibrated Landsat observations of the Hartford, Connecticut area, the spatial distribution and seasonal variation of surface reflectance and albedo were examined. Mean values of visible reflectance, near-IR reflectance, and albedo are presented (for both snow-free and snow-cover observations) according to 14 land use/land cover categories. A diversity of albedo values was found to exist in this type of environment, associated with land cover. Many land-cover categories display a seasonal dependence, with intracategory seasonal differences being of comparable magnitude to intercategory differences. Key factors in determining albedo (and its seasonal dynamics) are the presence or absence of vegetation and the canopy structure. Snow-cover/snow-free differences range from a few percent (for urban land covers) to over 40 percent (for low-canopy vegetation).

  5. Use of vegetation indices to estimate intercepted solar radiation and net carbon dioxide exchange of a grass canopy

    NASA Technical Reports Server (NTRS)

    Bartlett, David S.; Whiting, Gary J.; Hartman, Jean M.

    1989-01-01

    Results are presented from field experiments relating spectral reflectance to intercepted photosynthetically active radiation (PAR) and net CO2 exchange in a natural canopy composed of the marsh cordgrass (Spartina alterniflora). Reflectance measurements made by a hand-held radiometer with Landsat TM spectral wavebands are used to compute remote sensing indices such as the normalized difference vegetation index. Consideration is given to the impact of standing dead canopy material on the relationship between intercepted PAR and spectral vegetation indices and the impact of changes in photosynthetic efficiency on the relationship between vegetation indices and CO2 exchange rates. The results suggest that quantitative remote assessment of photosynthesis and net gas exchange in natural vegetation is feasible, especially if the analysis incorporates information on biological responses to environmental variables.

  6. Assessing and Adapting LiDAR-Derived Pit-Free Canopy Height Model Algorithm for Sites with Varying Vegetation Structure

    NASA Astrophysics Data System (ADS)

    Scholl, V.; Hulslander, D.; Goulden, T.; Wasser, L. A.

    2015-12-01

    Spatial and temporal monitoring of vegetation structure is important to the ecological community. Airborne Light Detection and Ranging (LiDAR) systems are used to efficiently survey large forested areas. From LiDAR data, three-dimensional models of forests called canopy height models (CHMs) are generated and used to estimate tree height. A common problem associated with CHMs is data pits, where LiDAR pulses penetrate the top of the canopy, leading to an underestimation of vegetation height. The National Ecological Observatory Network (NEON) currently implements an algorithm to reduce data pit frequency, which requires two height threshold parameters, increment size and range ceiling. CHMs are produced at a series of height increments up to a height range ceiling and combined to produce a CHM with reduced pits (referred to as a "pit-free" CHM). The current implementation uses static values for the height increment and ceiling (5 and 15 meters, respectively). To facilitate the generation of accurate pit-free CHMs across diverse NEON sites with varying vegetation structure, the impacts of adjusting the height threshold parameters were investigated through development of an algorithm which dynamically selects the height increment and ceiling. A series of pit-free CHMs were generated using three height range ceilings and four height increment values for three ecologically different sites. Height threshold parameters were found to change CHM-derived tree heights up to 36% compared to original CHMs. The extent of the parameters' influence on modelled tree heights was greater than expected, which will be considered during future CHM data product development at NEON. (A) Aerial image of Harvard National Forest, (B) standard CHM containing pits, appearing as black speckles, (C) a pit-free CHM created with the static algorithm implementation, and (D) a pit-free CHM created through varying the height threshold ceiling up to 82 m and the increment to 1 m.

  7. Agricultural resources investigations in northern Italy and southern France (Agreste Project)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The author has identified the following significant results. The vegetation structure of rice was investigated and interpreted in dynamic terms as a significant factor governing the distribution of solar energy thoughout the canopy and therefore conditions the final yield. Radiometric characteristics of rice culture were described for various stages of development in relation to the vegetation structure in an attempt to establish correlations between data of total biomass and of grain yield. Qualitative classification results were encouraging although the discrimination achieved was far from complete.

  8. Functional traits and structural controls on the relationship between photosynthetic CO2 uptake and sun-induced fluorescence in a Mediterranean grassland under different nutrient availability

    NASA Astrophysics Data System (ADS)

    Migliavacca, Mirco

    2016-04-01

    Recent studies have shown how human induced nitrogen (N) and phosphorous (P) imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. Hyperspectral information can be used to directly infer nutrient-induced variation in structural and functional changes of vegetation under different nutrient availability. However, several uncertainties still hamper the direct link between photosynthetic CO2 uptake (gross primary productivity, GPP) and hyperspectral reflectance. Sun-induced fluorescence (SIF) provides a new non-invasive measurement approach that has the potential to quantify dynamic changes in light use efficiency and photosynthetic CO2 uptake. In this contribution we will present an experiment conducted in a Mediterranean grassland, where 16 plots of 8x8 meters were manipulated by adding nutrient (N, P, and NP). Almost simultaneous estimates of canopy scale GPP and SIF were conducted with transparent transient-state canopy chambers and high resolution spectrometers, respectively. We investigated the response of GPP and SIF to different nutrient availability and plant stoichiometry. The second objective was to identify how structural (LAI, leaf angle distribution, and biodiversity) and canopy biochemical properties (e.g. N and chlorophyll content - Chl) control the functional relationship between GPP and SIF. To test the different hypotheses the SCOPE radiative transfer model was used. We ran a factorial experiment with SCOPE to disentangle the main drivers (structure vs biochemistry) of the relationship GPP-SIF. The results showed significant differences in GPP values between N and without N addition plots. We also found that vegetation indices sensitive to pigment variations and physiology (such as photochemical reflectance index PRI) and SIF showed differences between different treatments. SCOPE showed very good agreement with the observed data (R2=0.71). The observed variability in SIF was mainly related to changes in functional traits of the vegetation (changes in N and P content and Chl). However, beside changes in functional traits, changes in canopy structure (and in particular variation in plant forms abundance after fertilization) controlled the GPP-SIF relationship. According to these results, plant N/P stoichiometry and structure should be considered when modelling GPP assuming a linear relationship with SIF at grasslands sites.

  9. The Effect of Incident Light Polarization on Vegetation Bidirectional Reflectance Factor

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Thome, Kurt; Ranson, Kurtis J.; King, Michael D.; Butler, James J.

    2010-01-01

    The Laboratory-based Bidirectional Reflectance Factor (BRF) polarization study of vegetation is presented in this paper. The BRF was measured using a short-arc Xenon lamp/monochromator assembly producing an incoherent, tunable light source with a well-defined spectral bandpass at visible and near-infrared wavelengths of interest at 470 nm and 870 nm and coherent light source at 1.656 microns. All vegetation samples were measured using P and S linearly polarized incident light over a range of incident and scatter angles. By comparing these results, we quantitatively examine how the BRF of the samples depends on the polarization of the incident light. The differences are significant, depend strongly on the incident and scatter angles, and can be as high as 120% at 67 deg incident and 470nm. The global nature of Earth's processes requires consistent long-term calibration of all instruments involved in data retrieval. The BRF defines the reflection characteristics of Earth surface. It provides the reflectance of a target in a specific direction as a function of illumination and viewing geometry. The BRF is a function of wavelength and reflects the structural and optical properties of the surface. Various space and airborne radiometric and imaging remote sensing instruments are used in the remote sensing characterization of vegetation canopies and soils, oceans, or especially large pollution sources. The satellite data is validated through comparison with airborne, ground-based and laboratory-based data in an effort to fully understand the vegetation canopy reflectance, The Sun's light is assumed to be unpolarized at the top of the atmosphere; however it becomes polarized to some degree due to atmospheric effects by the time it reaches the vegetation canopy. Although there are numerous atmospheric correction models, laboratory data is needed for model verification and improvement.

  10. Canopy reflectance, photosynthesis, and transpiration. III - A reanalysis using improved leaf models and a new canopy integration scheme

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Berry, J. A.; Collatz, G. J.; Field, C. B.; Hall, F. G.

    1992-01-01

    The theoretical analyses of Sellers (1985, 1987), which linked canopy spectral reflectance properties to (unstressed) photosynthetic rates and conductances, are critically reviewed and significant shortcomings are identified. These are addressed in this article principally through the incorporation of a more sophisticated and realistic treatment of leaf physiological processes within a new canopy integration scheme. The results indicate that area-averaged spectral vegetation indices, as obtained from coarse resolution satellite sensors, may give good estimates of the area-integrals of photosynthesis and conductance even for spatially heterogenous (though physiologically uniform) vegetation covers.

  11. The Role of Vegetation Response to Elevated CO2 in Modifying Land-Atmosphere Feedback Across the Central United States Agro-Ecosystem

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Kumar, P.; Sivapalan, M.; Long, S.; Liang, X.

    2009-05-01

    Recent local-scale observational studies have demonstrated significant modifications to the partitioning of incident energy by two key mid-west agricultural species, soy and corn, as ambient atmospheric CO2 concentrations are experimentally augmented to projected future levels. The uptake of CO2 by soy, which utilizes the C3 photosynthetic pathway, has likewise been observed to significantly increase under elevated growth CO2 concentrations. Changes to the sensible and latent heat exchanges between the land surface and the atmospheric boundary layer (ABL) across large portions of the mid-western US has the potential to affect ABL growth and composition, and consequently feed-back to the near-surface environment (air temperature and vapor content) experienced by the vegetation. Here we present a simulation analysis that examines the changes in land-atmosphere feedbacks associated with projected increases in ambient CO2 concentrations over extended soy/corn agricultural areas characteristic of the US mid-west. The model canopies are partitioned into several layers, allowing for resolution of the shortwave and longwave radiation regimes that drive photosynthesis, stomatal conductance and leaf energy balance in each layer, along with the canopy microclimate. The canopy component of the model is coupled to a multi-layer soil-root model that computes soil moisture and heat transport and root water uptake. Model skill in capturing the sub-diurnal variability in canopy-atmosphere exchange is evaluated through multi-year records of canopy-top eddy covariance CO2, water vapor and heat fluxes collected at the Bondville (Illinois) FluxNet site. An evaluation of the ability of the model to simulate observed changes in energy balance components (canopy temperature, net radiation and soil heat flux) under elevated CO2 concentrations projected for 2050 (550 ppm) is made using observations collected at the SoyFACE Free Air Carbon Enrichment (FACE) experimental facilities located in central Illinois, by incorporating observed acclimations in leaf biochemsitry and canopy structure. The simulation control volume is then extended by coupling the canopy models to a simple model of daytime mixed-layer (ML) growth and composition, ie. air temperature and vapor content. Through this coupled canopy-ABL model we quantify the impact of elevated CO2 and vegetation acclimation on ML growth, temperature and vapor content and the consequent feedbacks to the land surface by way of the near-surface environment experienced by the vegetation. Particular focus is placed on the role of short-term drought, and possible changes in land cover composition between soy, a C3 crop, and corn, a more water-use efficient C4 crop, on modulating the strength of these CO2-induced feedbacks.

  12. Development Considerations for the ICESat-2 ATL18 Terrain and Canopy Global Gridded Product

    NASA Astrophysics Data System (ADS)

    Pitts, K. L.; Neuenschwander, A. L.

    2016-12-01

    The ICESat-2 mission, expected to launch in late 2017 or early 2018, will provide estimates of terrain and canopy heights along the satellite ground track which will provide a significant benefit to society through a variety of applications ranging from improved global digital terrain models to mapping the distribution of above ground vegetation structure. Shortly after launch of ICESat-2, the Global Ecosystem Dynamics Investigation (GEDI) mission will be placed on the International Space Station (ISS) and will also derive terrain and canopy heights using laser altimetry for latitudes covered by the ISS. NASA's GEDI mission is designed to capture forest structure in densely covered regions over a period of 12-18 months. This study will present the factors required to produce a global gridded product that fuses information from both ICESat-2 and GEDI. The gridded values from ICESat-2 will be calculated from the along-track geodetic measurements of the terrain and relative canopy heights (ATL08), but considerations must be made on how best to combine ICESat-2 terrain and canopy height estimates with GEDI terrain and canopy height estimates. In particular, factors such as phenology, spatial and temporal resolution, surface interpolation methods, and error propagation are presented.

  13. Mangrove vegetation structure in Southeast Brazil from phased array L-band synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    de Souza Pereira, Francisca Rocha; Kampel, Milton; Cunha-Lignon, Marilia

    2016-07-01

    The potential use of phased array type L-band synthetic aperture radar (PALSAR) data for discriminating distinct physiographic mangrove types with different forest structure developments in a subtropical mangrove forest located in Cananéia on the Southern coast of São Paulo, Brazil, is investigated. The basin and fringe physiographic types and the structural development of mangrove vegetation were identified with the application of the Kruskal-Wallis statistical test to the SAR backscatter values of 10 incoherent attributes. The best results to separate basin to fringe types were obtained using copolarized HH, cross-polarized HV, and the biomass index (BMI). Mangrove structural parameters were also estimated using multiple linear regressions. BMI and canopy structure index were used as explanatory variables for canopy height, mean height, and mean diameter at breast height regression models, with significant R2=0.69, 0.73, and 0.67, respectively. The current study indicates that SAR L-band images can be used as a tool to discriminate physiographic types and to characterize mangrove forests. The results are relevant considering the crescent availability of freely distributed SAR images that can be more utilized for analysis, monitoring, and conservation of the mangrove ecosystem.

  14. The ecological services of plant communities in parks for climate control and recreation-A case study in Shanghai, China.

    PubMed

    Li, Zhigang; Chen, Dan; Cai, Shize; Che, Shengquan

    2018-01-01

    Mitigating extreme heat in urban areas is beneficial and sometimes critical to human health. Thriving plant communities in community parks play an important role in mitigating extreme heat through providing cooling effect, while inevitably affecting how people perceive the benefits of using community parks for recreation. Thus, the impacts of plant communities on the thermal environment should be quantified to determine the optimal structure of the plant community. The goal would be to harmonize the functions of improving the thermal environment with the preferences people have related to the recreational benefits of plant communities with various levels of vegetation density. In this paper, the correlations between the structural characteristics of plant communities and their function in mitigating the thermal environment were investigated on calm summer days in Xincheng Central Park, Minhang District, Shanghai, China. In addition to analyzing the plant communities present and their effects on the park microclimate, a questionnaire was employed to determine the plant community preferences of recreational park users. The results showed that plant communities could reduce the air temperature by 1.23-2.42 °C and increase the relative humidity by 2.4-4.2% during the daytime. The microclimate conditions in plant communities with varying vegetation densities were significantly different. The canopy density and leaf area index primarily controlled the temperature reduction, while the canopy density and total canopy cover ratio primarily controlled the increase in humidity; meanwhile, these correlations varied at different times of the day. Moreover, most of the park users preferred a moderately dense plant community which met their environmental perceptions for recreation in parks. Age or education level variables of park users would also predict preferences for different plant community densities. Ultimately, one plant community pattern with appropriate canopy density (60%), leaf area index (≥3) and canopy cover ratio (total 0.80-1.20, with 0.6-0.75 for trees and 0.20-0.45 for shrubs/woodland area) was recommended, which would harmonize the functions of the mitigation of the thermal environment with most people's perception of a desirable vegetation density.

  15. The ecological services of plant communities in parks for climate control and recreation—A case study in Shanghai, China

    PubMed Central

    Li, Zhigang; Chen, Dan; Cai, Shize; Che, Shengquan

    2018-01-01

    Mitigating extreme heat in urban areas is beneficial and sometimes critical to human health. Thriving plant communities in community parks play an important role in mitigating extreme heat through providing cooling effect, while inevitably affecting how people perceive the benefits of using community parks for recreation. Thus, the impacts of plant communities on the thermal environment should be quantified to determine the optimal structure of the plant community. The goal would be to harmonize the functions of improving the thermal environment with the preferences people have related to the recreational benefits of plant communities with various levels of vegetation density. In this paper, the correlations between the structural characteristics of plant communities and their function in mitigating the thermal environment were investigated on calm summer days in Xincheng Central Park, Minhang District, Shanghai, China. In addition to analyzing the plant communities present and their effects on the park microclimate, a questionnaire was employed to determine the plant community preferences of recreational park users. The results showed that plant communities could reduce the air temperature by 1.23–2.42 °C and increase the relative humidity by 2.4–4.2% during the daytime. The microclimate conditions in plant communities with varying vegetation densities were significantly different. The canopy density and leaf area index primarily controlled the temperature reduction, while the canopy density and total canopy cover ratio primarily controlled the increase in humidity; meanwhile, these correlations varied at different times of the day. Moreover, most of the park users preferred a moderately dense plant community which met their environmental perceptions for recreation in parks. Age or education level variables of park users would also predict preferences for different plant community densities. Ultimately, one plant community pattern with appropriate canopy density (60%), leaf area index (≥3) and canopy cover ratio (total 0.80–1.20, with 0.6–0.75 for trees and 0.20–0.45 for shrubs/woodland area) was recommended, which would harmonize the functions of the mitigation of the thermal environment with most people’s perception of a desirable vegetation density. PMID:29694401

  16. The effects of vegetation cover on the radar and radiometric sensitivity to soil moisture

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Dobson, M. C.; Brunfeldt, D. R.; Razani, M.

    1982-01-01

    The measured effects of vegetation canopies on radar and radiometric sensitivity to soil moisture are compared to emission and scattering models. The models are found to predict accurately the measured emission and backscattering for various crop canopies at frequencies between 1.4 and 5.0 GHz, especially at theta equal to or less than 30 deg. Vegetation loss factors, L(theta), increase with frequency and are found to be dependent upon canopy type and water content. In addition, the radiometric power absorption coefficient of a mature corn canopy is 1.75 times that calculated for the radar. Comparison of an L-band radiometer with a C-band radar shows the two systems to be complementary in terms of accurate soil moisture sensing over the extreme range of naturally occurring soil moisture conditions.

  17. Detecting air pollution stress in southern California vegetation using Landsat Thematic Mapper band data

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    Landsat Thematic Mapper (TM) and aircraft-borne Thematic Mapper simulator (TMS) data were collected over two areas of natural vegetation in southern California exposed to gradients of pollutant dose, particularly in photochemical oxidants: the coastal sage scrub of the Santa Monica Mountains in the Los Angeles basin, and the yellow pine forests in the southern Sierra Nevada. In both situations, natural variations in canopy closure, with subsequent exposure of understory elements (e.g.,rock or soil, chaparral, grasses, and herbs), were sufficient to cause changes in spectral variation that could obscure differences due to visible foliar injury symptoms observed in the field. TM or TMS data are therefore more likely to be successful in distinguishing pollution injury from background variation when homogeneous communities with closed canopies are subjected to more severe pollution-induced structural and/or compositional change. The present study helps to define the threshold level of vegetative injury detectable by TM data.

  18. Utility of a thermal-based two-source energy balance model for estimating surface fluxes over complex landscapes

    USDA-ARS?s Scientific Manuscript database

    Many landscapes are comprised of a variety of vegetation types with different canopy structure, rooting depth, physiological characteristics, including response to environmental stressors, etc. Even in agricultural regions, different management practices, including crop rotations, irrigation schedu...

  19. Vegetation canopy structure from NASA EOS multiangle imaging

    USDA-ARS?s Scientific Manuscript database

    We used red band bidirectional reflectance data from the NASA Multiangle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) mapped onto a 250 m grid in a multiangle approach to obtain estimates of woody plant fractional cover and crown height through adjus...

  20. Wheat growth monitoring with radar vegetation indices

    USDA-ARS?s Scientific Manuscript database

    Microwave remote sensing can help in the monitoring of crop growth. Many experiments have been carried out to investigate the sensitivity of microwave sensors to crop growth parameters. These have clearly shown that canopy structure and water content can greatly affect the measurements. For agricult...

  1. Heat transfer to and from vegetated surfaces - An analytical method for the bulk exchange coefficients

    NASA Technical Reports Server (NTRS)

    Massman, William J.

    1987-01-01

    The semianalytical model outlined in a previous study (Massman, 1987) to describe momentum exchange between the atmosphere and vegetated surfaces is extended to include the exchange of heat. The methods employed are based on one-dimensional turbulent diffusivities, and use analytical solutions to the steady-state diffusion equation. The model is used to assess the influence that the canopy foliage structure and density, the wind profile structure within the canopy, and the shelter factor can have upon the inverse surface Stanton number (kB exp -1), as well as to explore the consequences of introducing a scalar displacement height which can be different from the momentum displacement height. In general, the triangular foliage area density function gives results which agree more closely with observations than that for constant foliage area density. The intended application of this work is for parameterizing the bulk aerodynamic resistances for heat and momentum exchange for use within large-scale models of plant-atmosphere exchanges.

  2. The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Rascher, Uwe; Corp, Lawrence A.; Huemmrich, K. Fred; Cook, Bruce D.; Noormets, Asko; Schickling, Anke; Pinto, Francisco; Alonso, Luis; Damm, Alexander; hide

    2017-01-01

    The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence, canopy temperature, and tower fluxes from data collected at four times of day over two consecutive autumn days across an age class chronosequence. Both the red fluorescence (F685) and far-red fluorescence (F740) radiances had highest values at mid-day, but their fluorescence yields exhibited different diurnal responses across LP age classes. The diurnal trends for F685 varied with forest canopy temperature difference (canopy minus air), having a stronger daily amplitude change for young vs. old canopies. The Photochemical Reflectance Index (PRI) was positively correlated with this temperature variable over the diurnal cycle. Tower measurements from mature loblolly stand showed the red/far-red fluorescence ratio was linearly related to canopy light use efficiency (LUE) over the diurnal cycle, but performed even better for the combined morning/afternoon (without midday) observations. This study demonstrates the importance of diurnal observations for interpretation of fluorescence dynamics, the need for red fluorescence to understand canopy physiological processes, and the benefits of combining fluorescence, reflectance, and structure information to clarify canopy function versus structure characteristics for a coniferous forest.

  3. Global remote sensing of water-chlorophyll ratio in terrestrial plant leaves.

    PubMed

    Kushida, Keiji

    2012-10-01

    I evaluated the use of global remote sensing techniques for estimating plant leaf chlorophyll a + b (C(ab); μg cm(-2)) and water (C(w); mg cm(-2)) concentrations as well as the ratio of C(w)/C(ab) with the PROSAIL model under possible distributions for leaf and soil spectra, leaf area index (LAI), canopy geometric structure, and leaf size. First, I estimated LAI from the normalized difference vegetation index. I found that, at LAI values <2, C(ab), C(w), and C(w)/C(ab) could not be reliably estimated. At LAI values >2, C(ab) and C(w) could be estimated for only restricted ranges of the canopy structure; however, the ratio of C(w)/C(ab) could be reliably estimated for a variety of possible canopy structures with coefficients of determination (R(2)) ranging from 0.56 to 0.90. The remote estimation of the C(w)/C(ab) ratio from satellites offers information on plant condition at a global scale.

  4. Ecological optimality in water-limited natural soil-vegetation systems. II - Tests and applications

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Tellers, T. E.

    1982-01-01

    The long-term optimal climatic climax soil-vegetation system is defined for several climates according to previous hypotheses in terms of two free parameters, effective porosity and plant water use coefficient. The free parameters are chosen by matching the predicted and observed average annual water yield. The resulting climax soil and vegetation properties are tested by comparison with independent observations of canopy density and average annual surface runoff. The climax properties are shown also to satisfy a previous hypothesis for short-term optimization of canopy density and water use coefficient. Using these hypotheses, a relationship between average evapotranspiration and optimum vegetation canopy density is derived and is compared with additional field observations. An algorithm is suggested by which the climax soil and vegetation properties can be calculated given only the climate parameters and the soil effective porosity. Sensitivity of the climax properties to the effective porosity is explored.

  5. Scaling Estimates of Vegetation Structure in Amazonian Tropical Forests Using Multi-Angle MODIS Observations

    NASA Technical Reports Server (NTRS)

    Mendes De Moura, Yhasmin; Hilker, Thomas; Goncalves, Fabio Guimaraes; Galvao, Lenio Soares; Roberto dos Santos, Joao; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valeria

    2016-01-01

    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r(exp 2)= 0.54, RMSE= 0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy(0.52 less than or equal to r(exp 2) less than or equal to 0.61; p less than 0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (sigma(sup 0)) from SeaWinds/QuikSCAT presented an r(exp 2) of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon.

  6. Are tree ontogenetic structure and allometric relationship independent of vegetation formation type? A case study with Cordia oncocalyx in the Brazilian caatinga

    NASA Astrophysics Data System (ADS)

    Silveira, Andréa P.; Martins, Fernando R.; Araújo, Francisca S.

    2012-08-01

    In temperate and tropical rainforests, ontogenetic structure and allometry during tree ontogeny are often associated with light gradients. Light is not considered a limiting resource in deciduous thorny woodland (DTW), but establishment and growth occur during a short rainy period, when the canopy is fully leaved and light in the understory may be modified. Our aim was to investigate whether the light gradient in DTW and the biomechanical limitations of tree growth would be enough to produce an ontogenetic structure and allometric growth similar to rainforest canopy trees. We investigated the ontogenetic stages and diameter-height relationship of Cordia oncocalyx (Boraginaceae), a dominant canopy tree of the DTW of semiarid northeastern Brazil. We tagged, measured and classified the ontogenetic stages of 2.895 individuals in a 1 ha area (5°6'58.1″S and 40°52'19.4″W). In the rainy season only 4.7% of the light falling on the canopy reached the ground. Initial ontogenetic stages, mainly infant (50.9%) and seedling (42.1%), were predominant in the population, with the remaining 7% distributed among juvenile, immature, virginile and reproductive. The ontogenetic structure was similar to that of rainforest tree species, but the population formed both permanent seed and infant banks in response to long dry periods and erratic rainy spells. Like many other Boraginaceae tree species in tropical rainforests, C. oncocalyx has a Prévost architectural model, but allometric growth was quite different from rainforest trees. C. oncocalyx invested slightly more in diameter at first, then in height and finally invested greatly in diameter and attained an asymptotic height. The continued high investment in diameter growth at late stages and the asymptotic height point to low tree density and more frequent xylem embolism as the main drivers of tree allometric shape in DTW. This indicates that tree ontogenetic structure and allometric relationships depend on vegetation formation type.

  7. Retrieving topsoil moisture using RADARSAT-2 data, a novel approach applied at the east of the Netherlands

    NASA Astrophysics Data System (ADS)

    Eweys, Omar Ali; Elwan, Abeer A.; Borham, Taha I.

    2017-12-01

    This manuscript proposes an approach for estimating soil moisture content over corn fields using C-band SAR data acquired by RADARSAT-2 satellite. An image based approach is employed to remove the vegetation contribution to the satellite signals. In particular, the absolute difference between like and cross polarized signals (ADLC) is employed for segmenting the canopy growth cycle into tiny stages. Each stage is represented by a Cumulative Distribution Function (CDF) of the like polarized signals. For periods of bare soils and vegetation cover, CDFs are compared and the vegetation contribution is quantified. The portion which represent the soil contributions (σHHsoil°) to the satellite signals; are employed for inversely running Oh model and the water cloud model for estimating soil moisture, canopy water content and canopy height respectively. The proposed approach shows satisfactory performance where high correlation of determination (R2) is detected between the field observations and the corresponding retrieved soil moisture, canopy water content and canopy height (R2 = 0.64, 0.97 and 0.98 respectively). Soil moisture retrieval is associated with root mean square error (RMSE) of 0.03 m3 m-3 while estimating canopy water content and canopy height have RMSE of 0.38 kg m-2 and 0.166 m respectively.

  8. Got Point Clouds: Characterizing Canopy Structure With Active and Passive Sensors

    NASA Astrophysics Data System (ADS)

    Popescu, S. C.; Malambo, L.; Sheridan, R.; Putman, E.; Murray, S.; Rooney, W.; Rajan, N.

    2016-12-01

    Unmanned Aerial Systems (UAS) provide the means to acquire highly customized aerial data at local scale with a multitude of sensors. UAS allow us to obtain affordably repeated observations of canopy structure for agricultural and natural resources applications by using passive optical sensors, such as cameras and photogrammetric techniques, and active sensors, such as lidar (Light Detection and Ranging). The objectives of this presentation are to: (1) offer a brief overview of UAS used for agriculture and natural resources studies, (2) describe experiences in conducting agriculture phenotyping and forest vegetation measurements, and (3) give details on the methodology developed for image and lidar data processing for characterizing the three dimensional structure of plant canopies. The UAS types used for this purpose included rotary platforms, such as quadcopters, hexacopters, and octocopters, with a payload capacity of up to 19 lbs. The sensors that collected data over two crop seasons include multispectral cameras in the visible color spectrum and near infrared, and UAS-lidar. For ground reference data we used terrestrial lidar scanners and field measurements. Results comparing UAS and terrestrial measurements show high correlation and open new areas of scientific investigation of crop canopies previously not possible with affordable techniques.

  9. Forest Canopy Processes in a Regional Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Makar, Paul; Staebler, Ralf; Akingunola, Ayodeji; Zhang, Junhua; McLinden, Chris; Kharol, Shailesh; Moran, Michael; Robichaud, Alain; Zhang, Leiming; Stroud, Craig; Pabla, Balbir; Cheung, Philip

    2016-04-01

    Forest canopies have typically been absent or highly parameterized in regional chemical transport models. Some forest-related processes are often considered - for example, biogenic emissions from the forests are included as a flux lower boundary condition on vertical diffusion, as is deposition to vegetation. However, real forest canopies comprise a much more complicated set of processes, at scales below the "transport model-resolved scale" of vertical levels usually employed in regional transport models. Advective and diffusive transport within the forest canopy typically scale with the height of the canopy, and the former process tends to dominate over the latter. Emissions of biogenic hydrocarbons arise from the foliage, which may be located tens of metres above the surface, while emissions of biogenic nitric oxide from decaying plant matter are located at the surface - in contrast to the surface flux boundary condition usually employed in chemical transport models. Deposition, similarly, is usually parameterized as a flux boundary condition, but may be differentiated between fluxes to vegetation and fluxes to the surface when the canopy scale is considered. The chemical environment also changes within forest canopies: shading, temperature, and relativity humidity changes with height within the canopy may influence chemical reaction rates. These processes have been observed in a host of measurement studies, and have been simulated using site-specific one-dimensional forest canopy models. Their influence on regional scale chemistry has been unknown, until now. In this work, we describe the results of the first attempt to include complex canopy processes within a regional chemical transport model (GEM-MACH). The original model core was subdivided into "canopy" and "non-canopy" subdomains. In the former, three additional near-surface layers based on spatially and seasonally varying satellite-derived canopy height and leaf area index were added to the original model structure. Process methodology for deposition, biogenic emissions, shading, vertical diffusion, advection, chemical reactive environment and particle microphysics were modified to account for expected conditions within the forest canopy and the additional layers. The revised and original models were compared for a 10km resolution domain covering North America, for a one-month duration simulation. The canopy processes were found to have a very significant impact on model results. We will present a comparison to network observations which suggests that forest canopy processes may account for previously unexplained local and regional biases in model ozone predictions noted in GEM-MACH and other models. The impact of the canopy processes on NO2, PM2.5, and SO2 performance will also be presented and discussed.

  10. Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data

    Treesearch

    Xiangming Xiao; Qingyuan Zhang; David Hollinger; John Aber; Berrien, III Moore

    2005-01-01

    Forest canopies are composed of photosynthetically active vegetation (PAV, chloroplasts) and nonphotosynthetic vegetation (NPV, e.g., cell wall, vein, branch). The fraction of photosynthetically active radiation (PAR) absorbed by the canopy (FAPAR) should be partitioned into FAPARPAV and FAPARNPV. Gross primary production (...

  11. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU; Yueh, Herng-Aung

    1990-01-01

    The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The vegetation canopy is modeled as an anisotropic random medium containing nonspherical scatterers with preferred alignment. The underlying medium is considered as a homogeneous half space. The scattering effect of the vegetation canopy are characterized by 3-D correlation functions with variances and correlation lengths respectively corresponding to the fluctuation strengths and the physical geometries of the scatterers. The strong fluctuation theory is used to calculate the anisotropic effective permittivity tensor of the random medium and the distorted Born approximation is then applied to obtain the covariance matrix which describes the fully polarimetric scattering properties of the vegetation field. This model accounts for all the interaction processes between the boundaries and the scatterers and includes all the coherent effects due to wave propagation in different directions such as the constructive and destructive interferences. For a vegetation canopy with low attenuation, the boundary between the vegetation and the underlying medium can give rise to significant coherent effects.

  12. Empirical test of the spectral invariants theory using imaging spectroscopy data from a coniferous forest

    NASA Astrophysics Data System (ADS)

    Lukeš, Petr; Rautiainen, Miina; Stenberg, Pauline; Malenovský, Zbyněk

    2011-08-01

    The spectral invariants theory presents an alternative approach for modeling canopy scattering in remote sensing applications. The theory is particularly appealing in the case of coniferous forests, which typically display grouped structures and require computationally intensive calculation to account for the geometric arrangement of their canopies. However, the validity of the spectral invariants theory should be tested with empirical data sets from different vegetation types. In this paper, we evaluate a method to retrieve two canopy spectral invariants, the recollision probability and the escape factor, for a coniferous forest using imaging spectroscopy data from multiangular CHRIS PROBA and NADIR-view AISA Eagle sensors. Our results indicated that in coniferous canopies the spectral invariants theory performs well in the near infrared spectral range. In the visible range, on the other hand, the spectral invariants theory may not be useful. Secondly, our study suggested that retrieval of the escape factor could be used as a new method to describe the BRDF of a canopy.

  13. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    NASA Astrophysics Data System (ADS)

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; Wu, Jin; Saleska, Scott; do Amaral, Cibele Hummel; Nelson, Bruce Walker; Lopes, Aline Pontes; Wiedeman, Kenia K.; Prohaska, Neill; de Oliveira, Raimundo Cosme; Machado, Carolyne Bueno; Aragão, Luiz E. O. C.

    2017-09-01

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this study, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, three vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3-5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. While the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.

  14. Enhanced canopy fuel mapping by integrating lidar data

    USGS Publications Warehouse

    Peterson, Birgit E.; Nelson, Kurtis J.

    2016-10-03

    BackgroundThe Wildfire Sciences Team at the U.S. Geological Survey’s Earth Resources Observation and Science Center produces vegetation type, vegetation structure, and fuel products for the United States, primarily through the Landscape Fire and Resource Management Planning Tools (LANDFIRE) program. LANDFIRE products are used across disciplines for a variety of applications. The LANDFIRE data retain their currency and relevancy through periodic updating or remapping. These updating and remapping efforts provide opportunities to improve the LANDFIRE product suite by incorporating data from other sources. Light detection and ranging (lidar) is uniquely suitable for gathering information on vegetation structure and spatial arrangement because it can collect data in three dimensions. The Wildfire Sciences Team has several completed and ongoing studies focused on integrating lidar into vegetation and fuels mapping.

  15. The influence of roadside solid and vegetation barriers on near-road air quality

    NASA Astrophysics Data System (ADS)

    Ghasemian, Masoud; Amini, Seyedmorteza; Princevac, Marko

    2017-12-01

    The current study evaluates the influence of roadside solid and vegetation barriers on the near-road air quality. Reynolds Averaged Navier-Stokes (RANS) technique coupled with the k - ε realizable turbulence model is utilized to investigate the flow pattern and pollutant concentration. A scalar transport equation is solved for a tracer gas to represent the roadway pollutant emissions. In addition, a broad range of turbulent Schmidt numbers are tested to calibrate the scalar transport equation. Three main scenarios including flat terrain, solid barrier, and vegetative barrier are studied. To validate numerical methodology, predicted pollutant concentration is compared with published wind tunnel data. Results show that the solid barrier induces an updraft motion and lofts the vehicle emission plume. Therefore, the ground-level pollutant concentration decreases compared to the flat terrain. For the vegetation barrier, different sub-scenarios with different vegetation densities ranging from approximately flat terrain to nearly solid barrier are examined. Dense canopies act in a similar manner as a solid barrier and mitigate the pollutant concentration through vertical mixing. On the other hand, the high porosity vegetation barriers reduce the wind speed and lead to a higher pollutant concentration. As the vegetation density increases, i.e. the barrier porosity decreases, the recirculation zone behind the canopy becomes larger and moves toward the canopy. The dense plant canopy with LAD = 3.33m-2m3 can improve the near-road air quality by 10% and high porosity canopy with LAD = 1m-2m3 deteriorates near-road air quality by 15%. The results of this study can be implemented as green infrastructure design strategies by urban planners and forestry organizations.

  16. Variability in snowpack accumulation and ablation associated with mountain pine beetle infestation in western forests

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.

    2010-12-01

    Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and ablation as a function of vegetation, topography and fine-scale climate variability, with preliminary results presented at the meeting.

  17. Forest edges: Effects on vegetation, environmental gradients and local avian communities in the Sierra Juarez, Oaxaca, Mexico

    NASA Astrophysics Data System (ADS)

    Burcsu, Theresa Katherine

    Edge effects are among the most serious threats to forest integrity because as global forest cover decreases overall, forest edge influence increases proportionally, driving habitat change and loss. Edge effects occur at the division between adjacent habitat types. Our understanding of edge effects comes mainly from tropical wet, temperate and boreal forests. Because forest structure in moisture-limited forests differs from wetter forest types, edge dynamics are likely to differ as well. Moreover, dry forests in the tropics have been nearly eliminated or exist only as forest fragments, making edge influence an important conservation and management concern for remaining dry forests. This study addresses this gap in the edge influence knowledge by examining created, regenerating edges associated with forest management in a seasonally dry pine-oak forest of Oaxaca, creating a new data point in edge effects research. In this study I used Landsat TM imagery and a modified semivariance analysis to estimate the distance of edge influence for vegetation. I also used field methods to characterize forest structure and estimate edge influence on canopy and subcanopy vegetation. To finalize the project I extended the study to bird assemblages to identify responses and habitat preferences to local-scale changes associated with regenerating edges created by group-selection timber harvest. Remote sensing analysis estimated that the distance of edge influence was 30-90 m from the edge. Vegetation analysis suggested that edge effects were weak relative to wetter forest types and that remote sensing data did not provide an estimate that was directly applicable to field-measured vegetative edge effects. The bird assemblages likewise responded weakly to habitat change associated with edge effect. Open canopy structure, simple vertical stratigraphy, and topographic variation create forest conditions in which small openings do not create a high contrast to undisturbed forest. Thus, in this seasonally dry, open forest, vegetation and bird communities respond less to small openings than they do in wetter, more closed-canopy forests. Management practices and historical land-use interact and interfere with the detectability of edge influence in our study area. These results support hypotheses proposed for open forest types and suggest that patterns in edge influence in wet forest types may not be applicable to dry sites.

  18. Characterization of ASTER GDEM Elevation Data over Vegetated Area Compared with Lidar Data

    NASA Technical Reports Server (NTRS)

    Ni, Wenjian; Sun, Guoqing; Ranson, Kenneth J.

    2013-01-01

    Current researches based on areal or spaceborne stereo images with very high resolutions (less than 1 meter) have demonstrated that it is possible to derive vegetation height from stereo images. The second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) is a state-of-the-art global elevation data-set developed by stereo images. However, the resolution of ASTER stereo images (15 meters) is much coarser than areal stereo images, and the ASTER GDEM is compiled products from stereo images acquired over 10 years. The forest disturbances as well as forest growth are inevitable in 10 years time span. In this study, the features of ASTER GDEM over vegetated areas under both flat and mountainous conditions were investigated by comparisons with lidar data. The factors possibly affecting the extraction of vegetation canopy height considered include (1) co-registration of DEMs; (2) spatial resolution of digital elevation models (DEMs); (3) spatial vegetation structure; and (4) terrain slope. The results show that accurate co-registration between ASTER GDEM and the National Elevation Dataset (NED) is necessary over mountainous areas. The correlation between ASTER GDEM minus NED and vegetation canopy height is improved from 0.328 to 0.43 by degrading resolutions from 1 arc-second to 5 arc-seconds and further improved to 0.6 if only homogenous vegetated areas were considered.

  19. Quantifying spatial patterns in the Yakama Nation Tribal Forest and Okanogan-Wenatchee National Forest to assess forest health

    NASA Astrophysics Data System (ADS)

    Wilder, T. F.

    2013-05-01

    Over the past century western United States have experienced drastic anthropogenic land use change from practices such as agriculture, fire exclusion, and timber harvesting. These changes have complex social, cultural, economic, and ecological interactions and consequences. This research studied landscapes patterns of watersheds with similar LANDFIRE potential vegetation in the Southern Washington Cascades physiographic province, within the Yakama Nation Tribal Forest (YTF) and Okanogan-Wenatchee National Forest, Naches Ranger District (NRD). In the selected watersheds, vegetation-mapping units were delineated and populated based on physiognomy of homogeneous areas of vegetative composition and structure using high-resolution aerial photos. Cover types and structural classes were derived from the raw, photo-interpreted vegetation attributes for individual vegetation mapping units and served as individual and composite response variables to quantify and assess spatial patterns and forest health conditions between the two ownerships. Structural classes in both the NRD and YTF were spatially clustered (Z-score 3.1, p-value 0.01; Z-score 2.3, p-value 0.02, respectively), however, ownership and logging type both explained a significant amount of variance in structural class composition. Based on FRAGSTATS landscape metrics, structural classes in the NRD displayed greater clustering and fragmentation with lower interspersion relative to the YTF. The NRD landscape was comprised of 47.4% understory reinitiation structural class type and associated high FRAGASTAT class metrics demonstrated high aggregation with moderate interspersion. Stem exclusion open canopy displayed the greatest dispersal of structural class types throughout the NRD, but adjacencies were correlated to other class types. In the YTF, stem exclusion open canopy comprised 37.7% of the landscape and displayed a high degree of aggregation and interspersion about clusters throughout the YTF. Composite cover type-structural class spatial autocorrelation was clustered in the NRD (Z-score 5.1, p-value 0.01), while the YTF exhibited a random spatial pattern. After accounting for location effects, logging type was the most significant factor explaining variation in composite cover-structure composition. FRAGSTATS landscape metrics identified composite cover-structure classes in the NRD displayed greater aggregation and fragmentation with lower interspersion relative to the YTF. The NRD landscape was comprised of 30.5% Pinus ponderosa-understory reinitiation and associated class metrics demonstrated a high degree of aggregation and fragmentation with low interspersion. Pinus ponderosa-stem exclusion open canopy comprised 24.6% of the YTF landscape and associated class metrics displayed moderate aggregation and fragmentation with high interspersion. A discussion integrating the results and existing relevant literature was indited to assess management regime influences on landscape patterns and, in turn, forest health attributes. This dialog is in provision of enhancing collaboration to optimize forest-health restoration activities across ownerships throughout the study area.

  20. Taking a systems approach to ecological systems

    USGS Publications Warehouse

    Grace, James B.

    2015-01-01

    Increasingly, there is interest in a systems-level understanding of ecological problems, which requires the evaluation of more complex, causal hypotheses. In this issue of the Journal of Vegetation Science, Soliveres et al. use structural equation modeling to test a causal network hypothesis about how tree canopies affect understorey communities. Historical analysis suggests structural equation modeling has been under-utilized in ecology.

  1. Changes in Mauna Kea Dry Forest Structure 2000-2014

    USGS Publications Warehouse

    Banko, Paul C.; Brinck, Kevin W.

    2014-01-01

    Changes in the structure of the subalpine vegetation of Palila Critical Habitat on the southwestern slope of Mauna Kea Volcano, Hawai‘i, were analyzed using 12 metrics of change in māmane (Sophora chrysophylla) and naio (Myoporum sandwicense) trees surveyed on plots in 2000 and 2014. These two dominant species were analyzed separately, and changes in their structure indicated changes in the forest’s health. There was a significant increase in māmane minimum crown height (indicating a higher ungulate “browse line”), canopy area, canopy volume, percentage of trees with ungulate damage, and percentage of dead trees. No significant changes were observed in māmane maximum crown height, proportion of plots with trees, sapling density, proportion of plots with saplings, or the height distribution of trees. The only significant positive change was for māmane tree density. Significantly negative changes were observed for naio minimum crown height, tree height, canopy area, canopy volume, and percentage of dead trees. No significant changes were observed in naio tree density, proportion of plots with trees, proportion of plots with saplings, or percentage of trees with ungulate damage. Significantly positive changes were observed in naio sapling density and the height distribution of trees. There was also a significant increase in the proportion of māmane vs. naio trees in the survey area. The survey methods did not allow us to distinguish among potential factors driving these changes for metrics other than the percentage of trees with ungulate damage. Continued ungulate browsing and prolonged drought are likely the factors contributing most to the observed changes in vegetation, but tree disease or insect infestation of māmane, or naio, and competition from alien grasses and other weeds could also be causing or exacerbating the impacts to the forest. Although māmane tree density has increased since 2000, this study also demonstrates that efforts by managers to remove sheep (Ovis spp.) from Palila Critical Habitat have not overcome the ability of sheep to continue to damage māmane trees and impede restoration of the vegetation.

  2. Remote sensing of temperate coniferous forest lead area index - The influence of canopy closure, understory vegetation and background reflectance

    NASA Technical Reports Server (NTRS)

    Spanner, Michael A.; Pierce, Lars L.; Running, Steven W.; Peterson, David L.

    1990-01-01

    Consideration is given to the effects of canopy closure, understory vegetation, and background reflectance on the relationship between Landsat TM data and the leaf area index (LAI) of temperate coniferous forests in the western U.S. A methodology for correcting TM data for atmospheric conditions and sun-surface-sensor geometry is discussed. Strong inverse curvilinear relationships were found between coniferous forest LAI and TM bands 3 and 5. It is suggested that these inverse relationships are due to increased reflectance of understory vegetation and background in open stands of lower LAI and decreased reflectance of the overstory in closed canopy stands with higher LAI.

  3. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-08-01

    The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI) and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb) with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size). The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91%) if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60%) between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot (PSP) data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques such as LIDAR and radar interferometry have the potential to quantify the carbon contained in the vegetation, although this calculation contains due to the heterogeneity of the forest landscape structural uncertainties which restrict future applications to spatial averages of about one hectare in size. The uncertainties in AGB for a given canopy height are here 20-40% (95% confidence level) corresponding to a standard deviation of less than ± 10%. This uncertainty on the 1 ha-scale is much smaller than in the analysis of 0.04 ha-scale data. At this small scale (0.04 ha) AGB can only be calculated out of canopy height with an uncertainty which is at least of the magnitude of the signal itself due to the natural spatial heterogeneity of these forests.

  4. The Photochemical Reflectance Index from Directional Cornfield Reflectances: Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Cheng, Yen-Ben; Middleton, Elizabeth M.; Zhang, Qingyuan; Corp, Lawrence A.; Dandois, Jonathan; Kustas, William P.

    2012-01-01

    The two-layer Markov chain Analytical Canopy Reflectance Model (ACRM) was linked with in situ hyperspectral leaf optical properties to simulate the Photochemical Reflectance Index (PRI) for a corn crop canopy at three different growth stages. This is an extended study after a successful demonstration of PRI simulations for a cornfield previously conducted at an early vegetative growth stage. Consistent with previous in situ studies, sunlit leaves exhibited lower PRI values than shaded leaves. Since sunlit (shaded) foliage dominates the canopy in the reflectance hotspot (coldspot), the canopy PRI derived from field hyperspectral observations displayed sensitivity to both view zenith angle and relative azimuth angle at all growth stages. Consequently, sunlit and shaded canopy sectors were most differentiated when viewed along the azimuth matching the solar principal plane. These directional PRI responses associated with sunlit/shaded foliage were successfully reproduced by the ACRM. As before, the simulated PRI values from the current study were closer to in situ values when both sunlit and shaded leaves were utilized as model input data in a two-layer mode, instead of a one-layer mode with sunlit leaves only. Model performance as judged by correlation between in situ and simulated values was strongest for the mature corn crop (r = 0.87, RMSE = 0.0048), followed by the early vegetative stage (r = 0.78; RMSE = 0.0051) and the early senescent stage (r = 0.65; RMSE = 0.0104). Since the benefit of including shaded leaves in the scheme varied across different growth stages, a further analysis was conducted to investigate how variable fractions of sunlit/shaded leaves affect the canopy PRI values expected for a cornfield, with implications for 20 remote sensing monitoring options. Simulations of the sunlit to shaded canopy ratio near 50/50 +/- 10 (e.g., 60/40) matching field observations at all growth stages were examined. Our results suggest in the importance of the sunlit/shaded fraction and canopy structure in understanding and interpreting PRI.

  5. [Crop geometry identification based on inversion of semiempirical BRDF models].

    PubMed

    Huang, Wen-jiang; Wang, Jin-di; Mu, Xi-han; Wang, Ji-hua; Liu, Liang-yun; Liu, Qiang; Niu, Zheng

    2007-10-01

    Investigations have been made on identification of erective and horizontal varieties by bidirectional canopy reflected spectrum and semi-empirical bidirectional reflectance distribution function (BRDF) models. The qualitative effect of leaf area index (LAI) and average leaf angle (ALA) on crop canopy reflected spectrum was studied. The structure parameter sensitive index (SPEI) based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso), was defined in the present study for crop geometry identification. However, the weights associated with the kernels of semi-empirical BRDF model do not have a direct relationship with measurable biophysical parameters. Therefore, efforts have focused on trying to find the relation between these semi-empirical BRDF kernel weights and various vegetation structures. SPEI was proved to be more sensitive to identify crop geometry structures than structural scattering index (SSI) and normalized difference f-index (NDFI), SPEI could be used to distinguish erective and horizontal geometry varieties. So, it is feasible to identify horizontal and erective varieties of wheat by bidirectional canopy reflected spectrum.

  6. Remote measurement of canopy reflectance shows the effects of elevated carbon dioxide and ozone on the structure and functioning of soybeans in a field setting.

    NASA Astrophysics Data System (ADS)

    Gray, S.; Dermody, O.; Delucia, E.

    2006-12-01

    By altering physiological processes and modifying canopy structure, elevated atmospheric CO2 and O3 directly and indirectly change the productivity of agroecosystems. Remote sensing of canopy reflectance can be used to monitor physiological and structural changes in an ecosystem over a growing season. To examine effects of changing tropospheric chemistry on water content, chlorophyll content, and changes in leaf area index (LAI), Free-Air Concentration Enrichment (FACE) technology was used to expose large plots of soybean (Glycine max) to elevated atmospheric CO2, elevated O3 (1.5 x ambient), and combined elevated CO2 and O3. The following indices were calculated from weekly measurements of reflectance: water index (WI), photochemical reflectance index (PRI), chlorophyll index, near-infrared/ red (NIR/red), and normalized difference vegetation index (NDVI). NIR/red and LAI were strongly correlated throughout the growth season; however NDVI and LAI were highly correlated only up to LAI of 3. Exposure to elevated CO2 accelerated early-season canopy development and delayed late-season senescence. Growth in elevated O3 had the opposite effect. Additionally, elevated CO2 compensated for negative effects of O3 when the canopy was exposed to both gases simultaneously. Reflectance indices revealed several physiological and structural responses of this agroecosystem to tropospheric change, and ultimately that elevated CO2 and O3 significantly affected this system's productivity and period for carbon gain.

  7. Hyperspectral Remote Sensing of Foliar Nitrogen Content

    NASA Technical Reports Server (NTRS)

    Knyazikhin, Yuri; Schull, Mitchell A.; Stenberg, Pauline; Moettus, Matti; Rautiainen, Miina; Yang, Yan; Marshak, Alexander; Carmona, Pedro Latorre; Kaufmann, Robert K.; Lewis, Philip; hide

    2013-01-01

    A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact - it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.

  8. Repeat, Low Altitude Measurements of Vegetation Status and Biomass Using Manned Aerial and UAS Imagery in a Piñon-Juniper Woodland

    NASA Astrophysics Data System (ADS)

    Krofcheck, D. J.; Lippitt, C.; Loerch, A.; Litvak, M. E.

    2015-12-01

    Measuring the above ground biomass of vegetation is a critical component of any ecological monitoring campaign. Traditionally, biomass of vegetation was measured with allometric-based approach. However, it is also time-consuming, labor-intensive, and extremely expensive to conduct over large scales and consequently is cost-prohibitive at the landscape scale. Furthermore, in semi-arid ecosystems characterized by vegetation with inconsistent growth morphologies (e.g., piñon-juniper woodlands), even ground-based conventional allometric approaches are often challenging to execute consistently across individuals and through time, increasing the difficulty of the required measurements and consequently the accuracy of the resulting products. To constrain the uncertainty associated with these campaigns, and to expand the extent of our measurement capability, we made repeat measurements of vegetation biomass in a semi-arid piñon-juniper woodland using structure-from-motion (SfM) techniques. We used high-spatial resolution overlapping aerial images and high-accuracy ground control points collected from both manned aircraft and multi-rotor UAS platforms, to generate digital surface model (DSM) for our experimental region. We extracted high-precision canopy volumes from the DSM and compared these to the vegetation allometric data, s to generate high precision canopy volume models. We used these models to predict the drivers of allometric equations for Pinus edulis and Juniperous monosperma (canopy height, diameter at breast height, and root collar diameter). Using this approach, we successfully accounted for the carbon stocks in standing live and standing dead vegetation across a 9 ha region, which contained 12.6 Mg / ha of standing dead biomass, with good agreement to our field plots. Here we present the initial results from an object oriented workflow which aims to automate the biomass estimation process of tree crown delineation and volume calculation, and partition standing biomass into live and dead pools, in a change detection context.

  9. [Estimation of vegetation canopy water content using Hyperion hyperspectral data].

    PubMed

    Song, Xiao-Ning; Ma, Jian-Wei; Li, Xiao-Tao; Leng, Pei; Zhou, Fang-Cheng; Li, Shuang

    2013-10-01

    Vegetation canopy water content (VCWC) has widespread utility in agriculture, ecology and hydrology. Based on the PROSAIL model, a novel model for quantitative inversion of vegetation canopy water content using Hyperion hyperspectral data was explored. Firstly, characteristics of vegetation canopy reflection were investigated with the PROSAIL radiative transfer model, and it was showed that the first derivative at the right slope (980 - 1 070 nm) of the 970 nm water absorption feature (D98-1 070) was closely related to VCWC, and determination coefficient reached to 0.96. Then, bands 983, 993, 1 003, 1 013, 1 023, 1 033, 1 043, 1 053 and 1 063 nm of Hyperion data were selected to calculate D980-1 070, and VCWC was estimated using the proposed method. Finally, the retrieval result was verified using field measured data in Yingke oasis of the Heihe basin. It indicated that the mean relative error was 12.5%, RMSE was within 0.1 kg x m(-2) and the proposed model was practical and reliable. This study provides a more efficient way for obtaining VCWC of large area.

  10. Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass

    USGS Publications Warehouse

    Glenn, Nancy F.; Neuenschwander, Amy; Vierling, Lee A.; Spaete, Lucas; Li, Aihua; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan

    2016-01-01

    To estimate the potential synergies of OLI and ICESat-2 we used simulated ICESat-2 photon data to predict vegetation structure. In a shrubland environment with a vegetation mean height of 1 m and mean vegetation cover of 33%, vegetation photons are able to explain nearly 50% of the variance in vegetation height. These results, and those from a comparison site, suggest that a lower detection threshold of ICESat-2 may be in the range of 30% canopy cover and roughly 1 m height in comparable dryland environments and these detection thresholds could be used to combine future ICESat-2 photon data with OLI spectral data for improved vegetation structure. Overall, the synergistic use of Landsat 8 and ICESat-2 may improve estimates of above-ground biomass and carbon storage in drylands that meet these minimum thresholds, increasing our ability to monitor drylands for fuel loading and the potential to sequester carbon.

  11. Ecophysiological Remote Sensing of Leaf-Canopy Photosynthetic Characteristics in a Cool-Temperate Deciduous Forest in Japan

    NASA Astrophysics Data System (ADS)

    Noda, H. M.; Muraoka, H.

    2014-12-01

    Satellite remote sensing of structure and function of canopy is crucial to detect temporal and spatial distributions of forest ecosystems dynamics in changing environments. The spectral reflectance of the canopy is determined by optical properties (spectral reflectance and transmittance) of single leaves and their spatial arrangements in the canopy. The optical properties of leaves reflect their pigments contents and anatomical structures. Thus detailed information and understandings of the consequence between ecophysiological traits and optical properties from single leaf to canopy level are essential for remote sensing of canopy ecophysiology. To develop the ecophysiological remote sensing of forest canopy, we have been promoting multiple and cross-scale measurements in "Takayama site" belonging to AsiaFlux and JaLTER networks, located in a cool-temperate deciduous broadleaf forest on a mountainous landscape in Japan. In this forest, in situ measurement of canopy spectral reflectance has been conducted continuously by a spectroradiometer as part of the "Phenological Eyes Network (PEN)" since 2004. To analyze the canopy spectral reflectance from leaf ecophysiological viewpoints, leaf mass per area, nitrogen content, chlorophyll contents, photosynthetic capacities and the optical properties have been measured for dominant canopy tree species Quercus crispla and Betula ermanii throughout the seasons for multiple years.Photosynthetic capacity was largely correlated with chlorophyll contents throughout the growing season in both Q. crispla and B. ermanii. In these leaves, the reflectance at "red edge" (710 nm) changed by corresponding to the changes of chlorophyll contents throughout the seasons. Our canopy-level examination showed that vegetation indices obtained by red edge reflectance have linear relationship with leaf chlorophyll contents and photosynthetic capacity. Finally we apply this knowledge to the Rapid Eye satellite imagery around Takayama site to scale-up the leaf-level findings to canopy and landscape levels on a mountainous landscape.

  12. Automated integration of lidar into the LANDFIRE product suite

    USGS Publications Warehouse

    Peterson, Birgit; Nelson, Kurtis; Seielstad, Carl; Stoker, Jason M.; Jolly, W. Matt; Parsons, Russell

    2015-01-01

    Accurate information about three-dimensional canopy structure and wildland fuel across the landscape is necessary for fire behaviour modelling system predictions. Remotely sensed data are invaluable for assessing these canopy characteristics over large areas; lidar data, in particular, are uniquely suited for quantifying three-dimensional canopy structure. Although lidar data are increasingly available, they have rarely been applied to wildland fuels mapping efforts, mostly due to two issues. First, the Landscape Fire and Resource Planning Tools (LANDFIRE) program, which has become the default source of large-scale fire behaviour modelling inputs for the US, does not currently incorporate lidar data into the vegetation and fuel mapping process because spatially continuous lidar data are not available at the national scale. Second, while lidar data are available for many land management units across the US, these data are underutilized for fire behaviour applications. This is partly due to a lack of local personnel trained to process and analyse lidar data. This investigation addresses these issues by developing the Creating Hybrid Structure from LANDFIRE/lidar Combinations (CHISLIC) tool. CHISLIC allows individuals to automatically generate a suite of vegetation structure and wildland fuel parameters from lidar data and infuse them into existing LANDFIRE data sets. CHISLIC will become available for wider distribution to the public through a partnership with the U.S. Forest Service’s Wildland Fire Assessment System (WFAS) and may be incorporated into the Wildland Fire Decision Support System (WFDSS) with additional design and testing. WFAS and WFDSS are the primary systems used to support tactical and strategic wildland fire management decisions.

  13. Wavelength-dependent ability of solar-induced chlorophyll fluorescence to estimate GPP

    NASA Astrophysics Data System (ADS)

    Liu, L.

    2017-12-01

    Recent studies have demonstrated that solar-induced chlorophyll fluorescence (SIF) can offer a new way for directly estimating the terrestrial gross primary production (GPP). In this paper, the wavelength-dependent ability of SIF to estimate GPP was investigated using both simulations by SCOPE model (Soil Canopy Observation, Photochemistry and Energy fluxes) and observations at the canopy level. Firstly, the response of the remotely sensed SIF at the canopy level to the absorbed photosynthetically active radiation (APAR ) was investigated. Both the simulations and observations confirm a linear relationship between canopy SIF and APAR, while it is species-specific and affected by biochemical components and canopy structure. The ratio of SIF to APAR varies greatly for different vegetation types, which is significant larger for canopy with horizontal structure than it with vertical structure. At red band, the ratio also decreases noticeable when chlorophyll content increases. Then, the performance of SIF to estimate GPP was investigated using diurnal observations of winter wheat at different grow stages. The results showed that the diurnal GPP could be robustly estimated from the SIF spectra for winter wheat at each growth stage, while the correlation weakened greatly at red band if all the observations made at different growth stages or all simulations with different LAI values were pooled together - a situation which did not occur at the far-red band. Finally, the SIF-based GPP models derived from the 2016 observations on winter wheat were well validated using the dataset from 2015, which give better performance for SIF at far-red band than that at red band. Therefore, it is very important to correct for reabsorption and scattering of the SIF radiative transfer from the photosystem to the canopy level before the remotely sensed SIF is linked to the GPP, especially at red band.

  14. Role of Vegetation and Mulch in Mitigating the Effects of Raindrop Impact on Runoff and Infiltration from Urban Vegetated Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Alizadehtazi, B.; Montalto, F. A.

    2013-12-01

    Rain drop impact causes soil crust formation which, in turn, reduces infiltration rates and increases runoff, contributing to soil erosion, downstream flooding and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. This impulse breaks larger soil aggregates into smaller particles and disperses soil from its original position. The displaced soil particles self-stratify, with finer particles at the top forming the crust. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Very little research has sought to quantify the effect that canopies and mulch can have on this phenomenon. This presentation presents preliminary findings from ongoing study conducted using rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to discuss green infrastructure facility maintenance and design strategies, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.

  15. Quantifying the influence of deep soil moisture on ecosystem albedo: The role of vegetation

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Zulia Mayari; Papuga, Shirley Anne; Swetish, Jessica Blaine; van Leeuwen, Willem Jan Dirk; Szutu, Daphne; Hartfield, Kyle

    2014-05-01

    As changes in precipitation dynamics continue to alter the water availability in dryland ecosystems, understanding the feedbacks between the vegetation and the hydrologic cycle and their influence on the climate system is critically important. We designed a field campaign to examine the influence of two-layer soil moisture control on bare and canopy albedo dynamics in a semiarid shrubland ecosystem. We conducted this campaign during 2011 and 2012 within the tower footprint of the Santa Rita Creosote Ameriflux site. Albedo field measurements fell into one of four Cases within a two-layer soil moisture framework based on permutations of whether the shallow and deep soil layers were wet or dry. Using these Cases, we identified differences in how shallow and deep soil moisture influence canopy and bare albedo. Then, by varying the number of canopy and bare patches within a gridded framework, we explore the influence of vegetation and soil moisture on ecosystem albedo. Our results highlight the importance of deep soil moisture in land surface-atmosphere interactions through its influence on aboveground vegetation characteristics. For instance, we show how green-up of the vegetation is triggered by deep soil moisture, and link deep soil moisture to a decrease in canopy albedo. Understanding relationships between vegetation and deep soil moisture will provide important insights into feedbacks between the hydrologic cycle and the climate system.

  16. The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model

    NASA Astrophysics Data System (ADS)

    Cammalleri, C.; Anderson, M. C.; Ciraolo, G.; Durso, G.; Kustas, W. P.; La Loggia, G.; Minacapilli, M.

    2010-12-01

    For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can strongly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977), Massman (1987) and Lalic et al. (2003). The in-canopy wind profile formulations are applied to the thermal-based two-source energy balance (TSEB) model developed by Norman et al. (1995) and modified by Kustas and Norman (1999). High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy) comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters needed to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlights the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical range of canopy properties encountered in these agricultural areas. It is found that differences among the models in wind just above the soil surface are most significant under sparse and medium fractional cover conditions (15-50%). The TSEB model heat flux estimates are compared with micro-meteorological measurements from a small aperture scintillometer and an eddy covariance tower collected over an olive orchard characterized by moderate fractional vegetation cover (≍35%) and relatively tall crop (≍3.5 m). TSEB fluxes for the 7 image acquisition dates generated using both the Massman and Goudriaan in-canopy wind profile formulations give close agreement with measured fluxes, while the Lalic et al. equations yield poor results. The Massman wind profile scheme slightly outperforms that of Goudriaan, but it requires an additional parameter accounting for the roughness sub-layer of the underlying vegetative surface. The analysis also suggests that within-canopy wind profile model discrepancies become important, in terms of impact on modelled sensible heat flux, only for sparse canopies with moderate vegetation coverage.

  17. Using ALS and MODIS data to evaluate degradation in different forests types over the Xingu basin - Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Moura, Y.; Aragão, L. E.; Galvão, L. S.; Dalagnol, R.; Lyapustin, A.; Santos, E. G.; Espirito-Santo, F.

    2017-12-01

    Degradation of Amazon rainforests represents a vital threat to carbon storage, climate regulation and biodiversity; however its effect on tropical ecosystems is largely unknown. In this study we evaluate the effects of forest degradation on forest structure and functioning over the Xingu Basin in the Brazilian Amazon. The vegetation types in the area is dominated by Open Ombrophilous Forest (Asc), Semi-decidiuous Forest (Fse) and Dense Ombrophilous Forest (Dse). We used Airborne Laser Scanning (ALS) data together with time series of optical remote sensing images from the Moderate Resolution Imaging Spectroradiometer (MODIS) bi-directional corrected using the Multi-Angle Implementation for Atmospheric Correction (MAIAC). We derive time-series (2008 to 2016) of the Enhanced Vegetation Index (EVI) and Green-Red Normalized Difference (GRND) to analyze the dynamics of degraded areas with related changes in canopy structure and greenness values, respectively. Airborne ALS measurements showed the largest tree heights in the Dse class with values up to 40m tall. Asc and Fse vegetation types reached up to 30m and 25m in height, respectively. Differences in canopy structure were also evident from the analysis of canopy volume models (CVMs). Asc showed higher proportion of sunlit, as expected for open forest types. Fse showed gaps predominantly in lower height levels, and a higher overall proportion of shaded crown. Full canopy closure was reached at about15 m height for both Asc and Dse, and at about 20 m height for Fse. We also used a base map of degraded areas (available from Imazon - Instituto do Homen e Meio Ambiente da Amazônia) to follow these regions throughout time using EVI and GRND from MODIS. All three forest types displayed seasonal cycles. Notable differences in amplitude were detected during the periods when degradation occurred and both indexes showed a decrease in their response. However, there were marked differences in timing and amplitude depending on forest type. These responses were influenced by the spatial resolution of 1km of the MODIS images, limited the ability to observe small degraded regions. In conclusion, ASL together with optical remote sensing used in a straight multi-scale approach may contribute to understand the impacts of degradation in the structure and functioning of tropical forest.

  18. A brief description of the simple biosphere model (SiB)

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Mintz, Y.; Sud, Y. C.

    1986-01-01

    A biosphere model for calculating the transfer of energy, mass, and momentum between the atmosphere and the vegetated surface of the Earth was designed for atmospheric general circulation models. An upper vegetation layer represents the perennial canopy of trees or shrubs, a lower layer represents the annual ground cover of grasses and other herbacious species. The local coverage of each vegetation layer may be fractional or complete but as the individual vegetation elements are considered to be evenly spaced, their root systems are assumed to extend uniformly throughout the entire grid-area. The biosphere has seven prognostic physical-state variables: two temperatures (one for the canopy and one for the ground cover and soil surface); two interception water stores (one for the canopy and one for the ground cover); and three soil moisture stores (two of which can be reached by the vegetation root systems and one underlying recharge layer into and out of which moisture is transferred only by hydraulic diffusion).

  19. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    NASA Astrophysics Data System (ADS)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences of plant phenolics and terpenes relative to dominant leaf biochemistry (water, chlorophyll, protein/nitrogen, cellulose, and lignin).

  20. Utility of an image-based canopy reflectance modeling tool for remote estimation and LAI and leaf chlorophyll content at regional scales

    USDA-ARS?s Scientific Manuscript database

    Radiance data recorded by remote sensors function as a unique source for monitoring the terrestrial biosphere and vegetation dynamics at a range of spatial and temporal scales. A key challenge is to relate the remote sensing signal to critical variables describing land surface vegetation canopies su...

  1. An empirical InSAR-optical fusion approach to mapping vegetation canopy height

    Treesearch

    Wayne S. Walker; Josef M. Kellndorfer; Elizabeth LaPoint; Michael Hoppus; James Westfall

    2007-01-01

    Exploiting synergies afforded by a host of recently available national-scale data sets derived from interferometric synthetic aperture radar (InSAR) and passive optical remote sensing, this paper describes the development of a novel empirical approach for the provision of regional- to continental-scale estimates of vegetation canopy height. Supported by data from the...

  2. Investigation of Techniques for Inventorying Forested Regions. Volume 1: Reflectance Modeling and Empirical Multispectral Analysis of Forest Canopy Components

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. G.; Malila, W. A.

    1977-01-01

    The author has identified the following significant results. Effects of vegetation density on overall canopy reflectance differed dramatically, depending on spectral band, base material, and vegetation type. For example, reflectance changes caused by variations in vegetation density were hardly apparant for a simulated burned surface in LANDSAT band 5, while large changes occurred in band 7. When increasing densities of tree overstory were placed over understories, intermediate to dense overstories effectively masked the understories and dominated the spectral signatures. Dramatic changes in reflectance occurred for canopies placed on a number of varying topographic positions. Such changes were seen to result in the spectral overlap of some nonforested with densely forested situations.

  3. Remote Estimation of Vegetation Fraction and Yield in Oilseed Rape with Unmanned Aerial Vehicle Data

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Fang, S.; Liu, K.; Gong, Y.

    2017-12-01

    This study developed an approach for remote estimation of Vegetation Fraction (VF) and yield in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV) when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI) vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate Flower Fraction (FF) in oilseed rape. Based on FF estimates, rape yield can be estimated using canopy reflectance data. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with estimation error below 6% and predict yield with estimation error below 20%.

  4. Canopy reflectance, photosynthesis, and transpiration. II - The role of biophysics in the linearity of their interdependence

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.

    1987-01-01

    The ability of satellite sensor systems to estimate area-averaged canopy photosynthetic and transpirative properties is evaluated. The near linear relationship between the simple ratio (SR) and normalized difference (ND) and the surface biophysical properties of canopy photosynthetically active radiation (PAR) absorption, photosynthesis, and bulk stomatal resistance is studied. The models utilized to illustrate the processes of canopy reflectance, photosynthesis, and resistance are described. The dependence of SR, the absorbed fraction of PAR, and canopy photosynthesis and resistance on total leaf area index is analyzed. It is noted that the SR and ND vegetation indices and vegetation-dependent qualities are near-linearly related due to the proportion of leaf scattering coefficient in visible and near IR wavelength regions. The data reveal that satellite sensor systems are useful for the estimation of photosynthesis and transpirative properties.

  5. Directional infrared temperature and emissivity of vegetation: Measurements and models

    NASA Technical Reports Server (NTRS)

    Norman, J. M.; Castello, S.; Balick, L. K.

    1994-01-01

    Directional thermal radiance from vegetation depends on many factors, including the architecture of the plant canopy, thermal irradiance, emissivity of the foliage and soil, view angle, slope, and the kinetic temperature distribution within the vegetation-soil system. A one dimensional model, which includes the influence of topography, indicates that thermal emissivity of vegetation canopies may remain constant with view angle, or emissivity may increase or decrease as view angle from nadir increases. Typically, variations of emissivity with view angle are less than 0.01. As view angle increases away from nadir, directional infrared canopy temperature usually decreases but may remain nearly constant or even increase. Variations in directional temperature with view angle may be 5C or more. Model predictions of directional emissivity are compared with field measurements in corn canopies and over a bare soil using a method that requires two infrared thermometers, one sensitive to the 8 to 14 micrometer wavelength band and a second to the 14 to 22 micrometer band. After correction for CO2 absorption by the atmosphere, a directional canopy emissivity can be obtained as a function of view angle in the 8 to 14 micrometer band to an accuracy of about 0.005. Modeled and measured canopy emissivities for corn varied slightly with view angle (0.990 at nadir and 0.982 at 75 deg view zenith angle) and did not appear to vary significantly with view angle for the bare soil. Canopy emissivity is generally nearer to unity than leaf emissivity may vary by 0.02 with wavelength even though leaf emissivity. High spectral resolution, canopy thermal emissivity may vary by 0.02 with wavelength even though leaf emissivity may vary by 0.07. The one dimensional model provides reasonably accurate predictions of infrared temperature and can be used to study the dependence of infrared temperature on various plant, soil, and environmental factors.

  6. Characterization of vertical mixing in oscillatory vegetated flows

    NASA Astrophysics Data System (ADS)

    Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.

    2016-02-01

    Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy-flow interactions.

  7. Prospects for quantifying structure, floristic composition and species richness of tropical forests

    USGS Publications Warehouse

    Gillespie, T.W.; Brock, J.; Wright, C.W.

    2004-01-01

    Airborne spectral and light detection and ranging (lidar) sensors have been used to quantify biophysical characteristics of tropical forests. Lidar sensors have provided high-resolution data on forest height, canopy topography, volume, and gap size; and provided estimates on number of strata in a forest, successional status of forests, and above-ground biomass. Spectral sensors have provided data on vegetation types, foliar biochemistry content of forest canopies, tree and canopy phenology, and spectral signatures for selected tree species. A number of advances are theoretically possible with individual and combined spectral and lidar sensors for the study of forest structure, floristic composition and species richness. Delineating individual canopies of over-storey trees with small footprint lidar and discrimination of tree architectural types with waveform distributions is possible and would provide scientists with a new method to study tropical forest structure. Combined spectral and lidar data can be used to identify selected tree species and identify the successional status of tropical forest fragments in order to rank forest patches by levels of species richness. It should be possible in the near future to quantify selected patterns of tropical forests at a higher resolution than can currently be undertaken in the field or from space. ?? 2004 Taylor and Francis Ltd.

  8. Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops.

    PubMed

    Gitelson, Anatoly A; Peng, Yi; Viña, Andrés; Arkebauer, Timothy; Schepers, James S

    2016-08-20

    One of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize). Given that they have different photosynthetic pathways (C3 vs. C4), leaf structures (dicot vs. monocot) and canopy architectures (a heliotrophic leaf angle distribution vs. a spherical leaf angle distribution), they cover a large spectrum of biophysical conditions. Our results show that chlorophyll efficiency in primary productivity is highly variable and responds to various physiological and phenological conditions, and water availability. Since Chl is accessible through non-destructive, remotely sensed techniques, the use of chlorophyll efficiency for modeling and monitoring plant optimization patterns is practical at different scales (e.g., leaf, canopy) and under widely-varying environmental conditions. Through this analysis, we directly related a functional characteristic, gross primary production with a structural characteristic, canopy chlorophyll content. Understanding the efficiency of the structural characteristic is of great interest as it allows explaining functional components of the plant system. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Air Parcel Residence Times within Tropical Forest Canopies and Implications for Reactive Gases

    NASA Astrophysics Data System (ADS)

    Gerken, T.; Chamecki, M.; Fuentes, J. D.

    2014-12-01

    The Amazon rainforest is the world's largest natural emitter of reactive trace gases. Due to its dense vegetation (leaf area index > 4), turbulence fluctuations are highly attenuated deep inside the canopy. However, strong coherent eddies that penetrate the upper portion of the canopy can be very effective in transporting gases. Sweeps and ejections act in the order of seconds and transport air parcels into or out of the canopy. The effects of coherent structures on the air parcel residence times and associated chemical processing of reactive gases remain largely unquantified in tropical forests. We combine canopy resolving Large-Eddy Simulation (LES) and field observations in the Brazilian Amazon to study residence times of air parcels in the rainforest as a function of canopy structure and height (h). Good agreement is obtained between simulated and observed turbulence statistics within and above the forest. Coherent structure properties obtained from quadrant analysis are also well reproduced. A Lagrangian particle tracking algorithm is used to quantify the distribution of residence times of air parcels "released" at different heights. Canopy residence times were determined from the particle trajectories. The resulting probability density function (PDF) strongly depended on the particle release height (z). For particles released in the upper canopy (at z/h=0.75) the most frequent residence times were in the order of 30s, with 50% of all particles ejected from the canopy after ~2 minutes. The mean residence time was close to 5 minutes, indicating a very skewed PDF. At z/h=0.25 the PDF was more evenly distributed with its median and mean in the order of ~10 minutes. Due to sweeps, both simulations had a non- negligible fraction of particles transported deep into the canopy, thus increasing greatly their residence times. As the reaction timescales of many biogenic volatile organic compounds (BVOC) are in the order of seconds to minutes, significant chemical processing can take place before particles are transported out of the canopy. This result highlights the importance of coherent motions on the capability of BVOC to escape the canopy space. Hence, it is important to consider the real distribution of residence times, highlighting the need for accurate canopy representation in LES models.

  10. Flow over Canopies with Complex Morphologies

    NASA Astrophysics Data System (ADS)

    Rubol, S.; Ling, B.; Battiato, I.

    2017-12-01

    Quantifying and predicting how submerged vegetation affects the velocity profile of riverine systems is crucial in ecohydraulics to properly assess the water quality and ecological functions or rivers. The state of the art includes a plethora of models to study the flow and transport over submerged canopies. However, most of them are validated against data collected in flume experiments with rigid cylinders. With the objective of investigating the capability of a simple analytical solution for vegetated flow to reproduce and predict the velocity profile of complex shaped flexible canopies, we use the flow model proposed by Battiato and Rubol [WRR 2013] as the analytical approximation of the mean velocity profile above and within the canopy layer. This model has the advantages (i) to threat the canopy layer as a porous medium, whose geometrical properties are associated with macroscopic effective permeability and (ii) to use input parameters that can be estimated by remote sensing techniques, such us the heights of the water level and the canopy. The analytical expressions for the average velocity profile and the discharge are tested against data collected across a wide range of canopy morphologies commonly encountered in riverine systems, such as grasses, woody vegetation and bushes. Results indicate good agreement between the analytical expressions and the data for both simple and complex plant geometry shapes. The rescaled low submergence velocities in the canopy layer followed the same scaling found in arrays of rigid cylinders. In addition, for the dataset analyzed, the Darcy friction factor scaled with the inverse of the bulk Reynolds number multiplied by the ratio of the fluid to turbulent viscosity.

  11. [Canopy interception characteristics of main vegetation types in Liupan Mountains of China].

    PubMed

    Xu, Li-hong; Shi, Zhong-jie; Wang, Yan-hui; Xiong, Wei; Yu, Peng-tao

    2010-10-01

    Based on field observation and modeling analysis, this paper studied the canopy interception, interception capacity, and some parameters for interception modeling of main forest types in Liupan Mountains of China. For the test main forest types, the ratio of their canopy interception to precipitation ranged from 8.59% to 17.94%, throughfall was more than 80%, and stemflow ranged from 0.23% to 3.10%. The canopy interception capacity was 0.78-1.88 mm, among which, leaf interception capacity was 0.62-1.63 mm, and stem interception capacity was 0.13-0.29 mm. Conifer forest had a higher canopy interception capacity than broad-leaved forest. The modified model considering the change of leaf area index, which was used in this paper, had a higher simulating precision than the interception model used before. The simulation results for Betula albo-sinensis forest, Pinus armandii forest, Prunus shrub, and Quercus liaotungensis-Tilia paucicostata forest were good, but those for Quercus liaotungensis forest, Pinus tabulaeformis forest, and Acer tetramerum and Euonymus sanguineus shrub were bad, which might be related to the differences in canopy structure, leaf area index, and precipitation characteristics.

  12. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.

    PubMed

    Jiang, Yu; Li, Changying; Paterson, Andrew H; Sun, Shangpeng; Xu, Rui; Robertson, Jon

    2017-01-01

    Plant canopy structure can strongly affect crop functions such as yield and stress tolerance, and canopy size is an important aspect of canopy structure. Manual assessment of canopy size is laborious and imprecise, and cannot measure multi-dimensional traits such as projected leaf area and canopy volume. Field-based high throughput phenotyping systems with imaging capabilities can rapidly acquire data about plants in field conditions, making it possible to quantify and monitor plant canopy development. The goal of this study was to develop a 3D imaging approach to quantitatively analyze cotton canopy development in field conditions. A cotton field was planted with 128 plots, including four genotypes of 32 plots each. The field was scanned by GPhenoVision (a customized field-based high throughput phenotyping system) to acquire color and depth images with GPS information in 2016 covering two growth stages: canopy development, and flowering and boll development. A data processing pipeline was developed, consisting of three steps: plot point cloud reconstruction, plant canopy segmentation, and trait extraction. Plot point clouds were reconstructed using color and depth images with GPS information. In colorized point clouds, vegetation was segmented from the background using an excess-green (ExG) color filter, and cotton canopies were further separated from weeds based on height, size, and position information. Static morphological traits were extracted on each day, including univariate traits (maximum and mean canopy height and width, projected canopy area, and concave and convex volumes) and a multivariate trait (cumulative height profile). Growth rates were calculated for univariate static traits, quantifying canopy growth and development. Linear regressions were performed between the traits and fiber yield to identify the best traits and measurement time for yield prediction. The results showed that fiber yield was correlated with static traits after the canopy development stage ( R 2 = 0.35-0.71) and growth rates in early canopy development stages ( R 2 = 0.29-0.52). Multi-dimensional traits (e.g., projected canopy area and volume) outperformed one-dimensional traits, and the multivariate trait (cumulative height profile) outperformed univariate traits. The proposed approach would be useful for identification of quantitative trait loci (QTLs) controlling canopy size in genetics/genomics studies or for fiber yield prediction in breeding programs and production environments.

  13. EPIC-Simulated and MODIS-Derived Leaf Area Index (LAI) Comparisons Across mMltiple Spatial Scales RSAD Oral Poster based session

    EPA Science Inventory

    Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric cond...

  14. An assessment of fisher (Pekania pennanti) tolerance to forest management intensity on the landscape

    Treesearch

    William J. Zielinski; Craig M. Thompson; Kathryn L. Purcell; James D. Garner

    2013-01-01

    Forest restoration intended to reduce the overabundance of dense vegetation can be at odds with wildlife habitat conservation, particularly for species of wildlife that are strongly associated with structurally diverse forests with dense canopies. The fisher (Pekania pennanti), a mesopredator that occurs in mid-elevation forests of the southern...

  15. Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    2014-03-01

    Plant phenology, a sensitive indicator of climate change, influences vegetation-atmosphere interactions by changing the carbon and water cycles from local to global scales. Camera-based phenological observations of the color changes of the vegetation canopy throughout the growing season have become popular in recent years. However, the linkages between camera phenological metrics and leaf biochemical, biophysical, and spectral properties are elusive. We measured key leaf properties including chlorophyll concentration and leaf reflectance on a weekly basis from June to November 2011 in a white oak forest on the island of Martha's Vineyard, Massachusetts, USA. Concurrently, we used a digital camera to automatically acquire daily pictures of the tree canopies. We found that there was a mismatch between the camera-based phenological metric for the canopy greenness (green chromatic coordinate, gcc) and the total chlorophyll and carotenoids concentration and leaf mass per area during late spring/early summer. The seasonal peak of gcc is approximately 20 days earlier than the peak of the total chlorophyll concentration. During the fall, both canopy and leaf redness were significantly correlated with the vegetation index for anthocyanin concentration, opening a new window to quantify vegetation senescence remotely. Satellite- and camera-based vegetation indices agreed well, suggesting that camera-based observations can be used as the ground validation for satellites. Using the high-temporal resolution dataset of leaf biochemical, biophysical, and spectral properties, our results show the strengths and potential uncertainties to use canopy color as the proxy of ecosystem functioning.

  16. [Yeast diversity in Bulnesia retama and Larrea divaricata canopies and associated soils].

    PubMed

    Toro, M E; Oro, N P; Vega, A D; Maturano, Y P; Nally, M C; Fernandez, E; Pucheta, E; Vázquez, F

    2005-01-01

    Bush like vegetation dominates arid environments, and there is nutrients accumulation under shrub canopies and relatively unfertile soils between vegetal patches areas. Plants are one of the most common habitats for yeasts. There are many reports about yeasts inhabiting different plant components. Nevertheless, there are no reports about yeasts associated with Zygophyllaceae, an important shrub family of the Argentinean Province of Monte. The objective of this work was to analyzed yeast biodiversity of Bulnesia retama and Larrea divaricata canopies and associated soils, at Medanos Grandes of Caucete, San Juan, Argentina. Eighty seven (87) isolated yeasts were identified. From B. retama canopy and associated soil was observed a larger taxonomical diversity respect to L. divaricata. Nine (9) and ten (10) species were isolated from canopy and associated soil of B. retama, respectively. From L. divaricata canopy were 4 species and 3 species from its associated soil isolated. Identified genera were: Candida, Debaryomyces, Dekkera, Saccharomyces, Torulaspora, Sporidiobolus and Pichia. Fourteen (14) species were found at all microenvironments.

  17. Assessment of the relationship between chlorophyll fluorescence and photosynthesis across scales from measurements and simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Guanter, L.; Berry, J. A.; Tol, C. V. D.

    2016-12-01

    Solar-induced chlorophyll fluorescence (SIF) is a novel optical tool for assessment of terrestrial photosynthesis (GPP). Recent work have shown the strong link between GPP and satellite retrievals of SIF at broad scales. However, critical gaps remain between short term small-scale mechanistic understanding and seasonal global observations. In this presentation, we provide a model-based analysis of the relationship between SIF and GPP across scales for diverse vegetation types and a range of meteorological conditions, with the ultimate focus on reproducing the environmental conditions during remote sensing measurements. The coupled fluorescence-photosynthesis model SCOPE is used to simulate GPP and SIF at the both leaf and canopy levels for 13 flux sites. Analyses were conducted to investigate the effects of temporal scaling, canopy structure, overpass time, and spectral domain on the relationship between SIF and GPP. The simulated SIF is highly non-linear with GPP at the leaf level and instantaneous time scale and tends to linearize when scaling to the canopy level and daily to seasonal scales. These relationships are consistent across a wide range of vegetation types. The relationship between SIF and GPP is primarily driven by absorbed photosynthetically active radiation (APAR), especially at the seasonal scale, although the photosynthetic efficiency also contributes to strengthen the link between them. The linearization of their relationship from leaf to canopy and averaging over time is because the overall conditions of the canopy fall within the range of the linear responses of GPP and SIF to light and the photosynthetic capacity. Our results further show that the top-of-canopy relationships between simulated SIF and GPP have similar linearity regardless of whether we used the morning or midday satellite overpass times. These findings are confirmed by field measurements. In addition, the simulated red SIF at 685 nm has a similar relationship with GPP as that of far-red SIF at 740 nm at the canopy level.

  18. Influence of Canopy Density on Ground Vegetation in a Bottomland Hardwood Forest

    Treesearch

    Sarah E. Billups

    1999-01-01

    We investigated the influence of canopy density on ground vegetation in naturally formed gap and non-gap habitats (environments) in a blackwater river floodplain. Tree seedlings were more important (relatively more abundant) in the non-gap habitat, and grass was more important in the gap habitat, but there were elevation x habitat interactions. Also, there was an...

  19. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this paper, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, threemore » vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3–5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. Finally, while the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.« less

  20. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    DOE PAGES

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; ...

    2017-09-01

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this paper, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, threemore » vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3–5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. Finally, while the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.« less

  1. Insectivorous bats respond to vegetation complexity in urban green spaces.

    PubMed

    Suarez-Rubio, Marcela; Ille, Christina; Bruckner, Alexander

    2018-03-01

    Structural complexity is known to determine habitat quality for insectivorous bats, but how bats respond to habitat complexity in highly modified areas such as urban green spaces has been little explored. Furthermore, it is uncertain whether a recently developed measure of structural complexity is as effective as field-based surveys when applied to urban environments. We assessed whether image-derived structural complexity (MIG) was as/more effective than field-based descriptors in this environment and evaluated the response of insectivorous bats to structural complexity in urban green spaces. Bat activity and species richness were assessed with ultrasonic devices at 180 locations within green spaces in Vienna, Austria. Vegetation complexity was assessed using 17 field-based descriptors and by calculating the mean information gain (MIG) using digital images. Total bat activity and species richness decreased with increasing structural complexity of canopy cover, suggesting maneuverability and echolocation (sensorial) challenges for bat species using the canopy for flight and foraging. The negative response of functional groups to increased complexity was stronger for open-space foragers than for edge-space foragers. Nyctalus noctula , a species foraging in open space, showed a negative response to structural complexity, whereas Pipistrellus pygmaeus , an edge-space forager, was positively influenced by the number of trees. Our results show that MIG is a useful, time- and cost-effective tool to measure habitat complexity that complemented field-based descriptors. Response of insectivorous bats to structural complexity was group- and species-specific, which highlights the need for manifold management strategies (e.g., increasing or reinstating the extent of ground vegetation cover) to fulfill different species' requirements and to conserve insectivorous bats in urban green spaces.

  2. Electrical resistivity surveys to understand vegetation-water interlinkages in a northern latitude headwater catchment

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Dick, J.; Tetzlaff, D.; Bradford, J.

    2016-12-01

    The role of vegetation on the partitioning of precipitation, and the subsequent storage and release of water within the landscape is poorly understood. In particular, the relationship between vegetation and soil moisture is complex and reciprocal. The role of soil moisture as the primary source of water to plants may affect vegetation distribution. In turn, the structure of vegetation canopies may regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in the inputs, together with complex patterns of water uptake from highly distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Here, we present a study combining 3D and 2D ERT surveys with soil moisture measurements in a 3.2km upland catchment in the Scottish Highlands to understand influences of different vegetation types on spatio-temporal dynamics in soil moisture. The study focussed on one year of fortnightly ERT surveys to investigate plant-soil-water interactions within the root zone in podzolic soils. Locations were selected in both forest stands of 15m high Scots pine (Pinus sylvestris) and non-forest locations dominated by heather (Calluna vulgaris) shrubs (<0.5m high). These dominant species are typical of forest and non-forest vegetation communities in the Scottish Highlands. Results showed differences in the soil moisture dynamics under the different vegetation types, with heterogeneous patterns in the forested site mainly correlated with canopy cover and mirroring interception losses, with pronounced wetting cycles of the soil surrounding the bole of trees as a consequence of stem flow. Temporal variability in the forested site was greater, probably due to the interception, and increased evapotranspiration losses relative to the heather site, with drying typically being focussed on the areas around the trees, and reflecting the amount of water uptake. Moisture changes in the heather site were fairly heterogeneous are related to micro-topographic affects, lower interception ( 30% compared with 45%) and a smaller microclimatic effect of the canopy which serves to create greater fluctuations in soil moisture. Our results confirm the value in using geophysics to spatially elucidate subsurface plant-soil-water interactions.

  3. Mapping Vegetation Community Types in a Highly-Disturbed Landscape: Integrating Hiearchical Object-Based Image Analysis with Digital Surface Models

    NASA Astrophysics Data System (ADS)

    Snavely, Rachel A.

    Focusing on the semi-arid and highly disturbed landscape of San Clemente Island, California, this research tests the effectiveness of incorporating a hierarchal object-based image analysis (OBIA) approach with high-spatial resolution imagery and light detection and range (LiDAR) derived canopy height surfaces for mapping vegetation communities. The study is part of a large-scale research effort conducted by researchers at San Diego State University's (SDSU) Center for Earth Systems Analysis Research (CESAR) and Soil Ecology and Restoration Group (SERG), to develop an updated vegetation community map which will support both conservation and management decisions on Naval Auxiliary Landing Field (NALF) San Clemente Island. Trimble's eCognition Developer software was used to develop and generate vegetation community maps for two study sites, with and without vegetation height data as input. Overall and class-specific accuracies were calculated and compared across the two classifications. The highest overall accuracy (approximately 80%) was observed with the classification integrating airborne visible and near infrared imagery having very high spatial resolution with a LiDAR derived canopy height model. Accuracies for individual vegetation classes differed between both classification methods, but were highest when incorporating the LiDAR digital surface data. The addition of a canopy height model, however, yielded little difference in classification accuracies for areas of very dense shrub cover. Overall, the results show the utility of the OBIA approach for mapping vegetation with high spatial resolution imagery, and emphasizes the advantage of both multi-scale analysis and digital surface data for accuracy characterizing highly disturbed landscapes. The integrated imagery and digital canopy height model approach presented both advantages and limitations, which have to be considered prior to its operational use in mapping vegetation communities.

  4. A First-Order Radiative Transfer Model for Microwave Radiometry of Forest Canopies at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; Lang, Roger H.; O'Neill, Peggy E.; Joseph, Alicia T.; Jackson, Thomas J.; Cosh, Michael H.

    2011-01-01

    In this study, a first-order radiative transfer (RT) model is developed to more accurately account for vegetation canopy scattering by modifying the basic Tau-Omega model (the zero-order RT solution). In order to optimally utilize microwave radiometric data in soil moisture (SM) retrievals over vegetated landscapes, a quantitative understanding of the relationship between scattering mechanisms within vegetation canopies and the microwave brightness temperature is desirable. The first-order RT model is used to investigate this relationship and to perform a physical analysis of the scattered and emitted radiation from vegetated terrain. This model is based on an iterative solution (successive orders of scattering) of the RT equations up to the first order. This formulation adds a new scattering term to the . model. The additional term represents emission by particles (vegetation components) in the vegetation layer and emission by the ground that is scattered once by particles in the layer. The model is tested against 1.4-GHz brightness temperature measurements acquired over deciduous trees by a truck-mounted microwave instrument system called ComRAD in 2007. The model predictions are in good agreement with the data, and they give quantitative understanding for the influence of first-order scattering within the canopy on the brightness temperature. The model results show that the scattering term is significant for trees and modifications are necessary to the . model when applied to dense vegetation. Numerical simulations also indicate that the scattering term has a negligible dependence on SM and is mainly a function of the incidence angle and polarization of the microwave observation. Index Terms Emission,microwave radiometry, scattering, soil, vegetation.

  5. Further tests of plant canopy reflectance models and investigation of non-Lambertian properties of plant canopies

    NASA Technical Reports Server (NTRS)

    Lemaster, E. W.

    1975-01-01

    The experimental bidirectional reflectance of cotton is presented and compared to the Suits vegetation model. Some wheat reflectance data are presented for a Mexican dwarf wheat. The general results are that the exchange of source position and detector position gives the same reflectance measurement if the irradiance is purely specular. This agrees with Suites. The reflectance versus sun angle and reflectance versus detector angle do not agree with the Suits predictions. There is qualitative agreement between the Suits model and reflectance versus wavelength, but quantitative agreement has not been observed. Reflectance of a vegetation canopy with detector azimuth shows a change of 10 to 40% for even sun angles near zenith, so it seems advisable to include azimuthal angles into models of vegetation.

  6. Radar remote sensing for crop classification and canopy condition assessment: Ground-data documentation

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Jung, B.; Gillespie, K.; Hemmat, M.; Aslam, A.; Brunfeldt, D.; Dobson, M. C.

    1983-01-01

    A vegetation and soil-moisture experiment was conducted in order to examine the microwave emission and backscattering from vegetation canopies and soils. The data-acquisition methodology used in conjunction with the mobile radar scatterometer (MRS) systems is described and associated ground-truth data are documented. Test fields were located in the Kansas River floodplain north of Lawrence, Kansas. Ten fields each of wheat, corn, and soybeans were monitored over the greater part of their growing seasons. The tabulated data summarize measurements made by the sensor systems and represent target characteristics. Target parameters describing the vegetation and soil characteristics include plant moisture, density, height, and growth stage, as well as soil moisture and soil-bulk density. Complete listings of pertinent crop-canopy and soil measurements are given.

  7. Characterization, validation and intercomparison of clumping index maps from POLDER, MODIS, and MISR satellite data over reference sites

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; He, Liming; Chen, Jing; Govind, Ajit; Sprintsin, Michael; Ryu, Youngryel; Arndt, Stefan; Hocking, Darren; Wardlaw, Timothy; Kuusk, Joel; Oliphant, Andrew; Korhonen, Lauri; Fang, Hongliang; Matteucci, Giorgio; Longdoz, Bernard; Raabe, Kairi

    2015-04-01

    Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m in particular can provide good quality clumping index estimates at pertinent scales for modeling local carbon and energy fluxes.

  8. Characterization, Validation and Intercomparison of Clumping Index Maps from POLDER, MODIS, and MISR Satellite Data Over Reference Sites

    NASA Astrophysics Data System (ADS)

    Pisek, J.; He, L.; Chen, J. M.; Govind, A.; Sprintsin, M.; Ryu, Y.; Arndt, S. K.; Hocking, D.; Wardlaw, T.; Kuusk, J.; Oliphant, A. J.; Korhonen, L.; Fang, H.; Matteucci, G.; Longdoz, B.; Raabe, K.

    2015-12-01

    Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m resolution in particular can provide good quality clumping index estimates at pertinent scales for modeling local carbon and energy fluxes.

  9. Effects of soil and canopy characteristics on microwave backscattering of vegetation

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Ranson, K. J.

    1991-01-01

    A frequency modulated continuous wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck and backscatter coefficients of corn were acquired as functions of polarizations, view angles, and row directions. As phytomass and green leaf area index increased, the backscatter also increased. Near anthesis when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level. C-band backscatter data could provide information to monitor vegetation at large view zenith angles.

  10. A Theoretically Consistent Framework for Modelling Lagrangian Particle Deposition in Plant Canopies

    NASA Astrophysics Data System (ADS)

    Bailey, Brian N.; Stoll, Rob; Pardyjak, Eric R.

    2018-06-01

    We present a theoretically consistent framework for modelling Lagrangian particle deposition in plant canopies. The primary focus is on describing the probability of particles encountering canopy elements (i.e., potential deposition), and provides a consistent means for including the effects of imperfect deposition through any appropriate sub-model for deposition efficiency. Some aspects of the framework draw upon an analogy to radiation propagation through a turbid medium with which to develop model theory. The present method is compared against one of the most commonly used heuristic Lagrangian frameworks, namely that originally developed by Legg and Powell (Agricultural Meteorology, 1979, Vol. 20, 47-67), which is shown to be theoretically inconsistent. A recommendation is made to discontinue the use of this heuristic approach in favour of the theoretically consistent framework developed herein, which is no more difficult to apply under equivalent assumptions. The proposed framework has the additional advantage that it can be applied to arbitrary canopy geometries given readily measurable parameters describing vegetation structure.

  11. The Biomass mission: a step forward in quantifying forest biomass and structure

    NASA Astrophysics Data System (ADS)

    LE Toan, T.

    2015-12-01

    The primary aim of the ESA BIOMASS mission is to determine, for the first time and in a consistent manner, the global distribution of above-ground forest biomass (AGB) in order to provide greatly improved quantification of the size and distribution of the terrestrial carbon pool, and improved estimates of terrestrial carbon fluxes. Specifically, BIOMASS will measure forest carbon stock, as well as forest height, from data provided by a single satellite giving a biomass map covering tropical, temperate and boreal forests at a resolution of around 200 m every 6 months throughout the five years of the mission. BIOMASS will use a long wavelength SAR (P-band) providing three mutually supporting measurement techniques, namely polarimetric SAR (PolSAR), polarimetric interferometric SAR (PolInSAR) and tomographic SAR (TomoSAR). The combination of these techniques will significantly reduce the uncertainties in biomass retrievals by yielding complementary information on biomass properties. Horizontal mapping: For a forest canopy, the P-band radar waves penetrate deep into the canopy, and their interaction with the structure of the forest will be exploited to map above ground biomass (AGB), as demonstrated from airborne data for temperate, boreal forests and tropical forest. Height mapping: By repeat revisits to the same location, the PolInSAR measurements will be used to estimate the height of scattering in the forest canopy. The long wavelength used by BIOMASS is crucial for the temporal coherence to be preserved over much longer timescales than at L-band, for example. 3D mapping: The P-band frequency used by BIOMASS is low enough to ensure penetration through the entire canopy, even in dense tropical forests. As a consequence, resolution of the vertical structure of the forest will be possible using tomographic methods from the multi-baseline acquisitions. This is the concept of SAR tomography, which will be implemented in the BIOMASS mission. The improvement in the quantification of the vegetation structure, will have an important impact in many aspects of ecosystem function, such as carbon cycling and biodiversity. For example, areas of forest loss or degradation and areas of growth or recovery, can be determined by the vegetation structure and its temporal change.

  12. Habitat selection by owls in a seasonal semi-deciduous forest in southern Brazil.

    PubMed

    Menq, W; Anjos, L

    2015-11-01

    This paper tested the hypothesis that the structural components of vegetation have impact over the distribution of owl species in a fragment of a semi-deciduous seasonal forest. This paper also determined which vegetation variables contributed to the spatial distribution of owl species. It was developed in the Perobas Biological Reserve (PBR) between September and December 2011. To conduct the owl census, a playback technique was applied at hearing points distributed to cover different vegetation types in the study area. A total of 56 individual owls of six species were recorded: Tropical Screech-Owl (Megascops choliba), Black-capped Screech-Owl (Megascops atricapilla), Tawny-browed Owl (Pulsatrix koeniswaldiana), Ferruginous Pygmy-Owl (Glaucidium brasilianum), Mottled Owl (Strix virgata) and Stygian Owl (Asio stygius). The results suggest that the variables of vegetation structure have impact on the occurrence of owls. The canopy height, the presence of hollow trees, fallen trees and glades are the most important structural components influencing owl distribution in the sampled area.

  13. Modeling the Interaction of Radiation Between Vegetation and the Seasonal Snowcover

    NASA Astrophysics Data System (ADS)

    Tribbeck, M. J.; Gurney, R. J.; Morris, E. M.; Pearson, D.

    2001-12-01

    Prediction of meltwater runoff is crucial to communities where the seasonal snowpack is the major water supply. Water is itself a vital resource and it carries nutrients both in solution and in suspension. Simulation of snowpack depletion at a point in open areas has previously been shown to produce accurate results using physically based models such as SNTHERM. However, the radiation balance is more complex under a forest canopy as radiation is scattered and absorbed by canopy elements. This can alter the timing and magnitude of snowpack runoff substantially. The interaction of radiation between a forest canopy and its underlying snowcover is modeled by the coupling of a physically based snow model and an optical and thermal radiation canopy model. The snow model, which is based on SNTHERM (Jordan, 1991), is a discrete, multi-layer, one-dimensional mass and energy budget model for snow and is formulated with an adaptive grid system that compresses with the compacting snowpack and allows retention of snowpack stratigraphy. The vegetation canopy model approximates the canopy as a series of discrete, randomly orientated elements that scatter and absorb optical and thermal radiation. Multiple scattering of radiation between canopy and snow surface is modeled to conserve energy. The coupled model SNOWCAN differs from other vegetation-snow models such as GORT or SNOBAL as it models the albedo feedback mechanism. This is important as the albedo both affects and is affected by (through grain growth) the radiation balance. SNOWCAN is driven by standard atmospheric variables (including incident solar and thermal radiation) measured outside of the canopy and simulates snowpack properties such as temperature and density profiles as well as the sub-canopy radiation balance. The coupled snow and vegetation energy budget model was used to simulate snow depth at an old jack pine site during the 1994 BOREAS campaign. Measured and simulated snow depth showed good agreement throughout the accumulation and ablation periods, yielding an r2 correlation coefficient of 0.94. The snowpack development was also simulated at a point site within a fir stand in Reynolds Creek Experimental Watershed, Idaho, USA for the water year 2000-2001. A sensitivity analysis was carried out and comparisons were made with field observations of snowpack properties and sub-canopy radiation data for model validation.

  14. LASER ALTIMETER CANOPY HEIGHT PROFILES: METHODS AND VALIDATION FOR CLOSED-CANOPY, BROADLEAF FORESTS. (R828309)

    EPA Science Inventory

    Abstract

    Waveform-recording laser altimeter observations of vegetated landscapes provide a time-resolved measure of laser pulse backscatter energy from canopy surfaces and the underlying ground. Airborne laser altimeter waveform data was acquired using the Scanning Lid...

  15. The canopy camera

    Treesearch

    Harry E. Brown

    1962-01-01

    The canopy camera is a device of new design that takes wide-angle, overhead photographs of vegetation canopies, cloud cover, topographic horizons, and similar subjects. Since the entire hemisphere is photographed in a single exposure, the resulting photograph is circular, with the horizon forming the perimeter and the zenith the center. Photographs of this type provide...

  16. Contrasting germination responses to vegetative canopies experienced in pre- vs. post-dispersal environments

    PubMed Central

    Leverett, Lindsay D.; Auge, Gabriela A.; Bali, Aman; Donohue, Kathleen

    2016-01-01

    Background Seeds adjust their germination based on conditions experienced before and after dispersal. Post-dispersal cues are expected to be more accurate predictors of offspring environments, and thus offspring success, than pre-dispersal cues. Therefore, germination responses to conditions experienced during seed maturation may be expected to be superseded by responses to conditions experienced during seed imbibition. In taxa of disturbed habitats, neighbours frequently reduce the performance of germinants. This leads to the hypotheses that a vegetative canopy will reduce germination in such taxa, and that a vegetative canopy experienced during seed imbibition will over-ride germination responses to a canopy experienced during seed maturation, since it is a more proximal cue of immediate competition. These hypotheses were tested here in Arabidopsis thaliana. Methods Seeds were matured under a simulated canopy (green filter) or white light. Fresh (dormant) seeds were imbibed in the dark, white light or canopy at two temperatures (10 or 22 °C), and germination proportions were recorded. Germination was also recorded in after-ripened (less dormant) seeds that were induced into secondary dormancy and imbibed in the dark at each temperature, either with or without brief exposure to red and far-red light. Key Results Unexpectedly, a maturation canopy expanded the conditions that elicited germination, even as seeds lost and regained dormancy. In contrast, an imbibition canopy impeded or had no effect on germination. Maturation under a canopy did not modify germination responses to red and far-red light. Seed maturation under a canopy masked genetic variation in germination. Conclusions The results challenge the hypothesis that offspring will respond more strongly to their own environment than to that of their parents. The observed relaxation of germination requirements caused by a maturation canopy could be maladaptive for offspring by disrupting germination responses to light cues after dispersal. Alternatively, reduced germination requirements could be adaptive by allowing seeds to germinate faster and reduce competition in later stages even though competition is not yet present in the seedling environment. The masking of genetic variation by maturation under a canopy, moreover, could impede evolutionary responses to selection on germination. PMID:27551028

  17. Marine Riparian Vegetation Communities of Puget Sound

    DTIC Science & Technology

    2007-02-01

    species . In areas of frequent disturbance, early successional trees , such as red alder and maple, dominated coastal forests. Douglas fir is currently...sea level to the mountain tops), forest types are broken into zones, represented by the dominant canopy ( tree ) species , or cli- max community, with...Within each zone, there is also vertical stratification of vegetation types, including dominant canopy tree species , understory trees and shrubs, and

  18. The relationship between Gross Primary Productivity and Sun-Induced Fluorescence in a nutrient manipulated Mediterranean grassland is controlled primarily by canopy structure

    NASA Astrophysics Data System (ADS)

    Migliavacca, Mirco

    2017-04-01

    Recent studies have shown how human induced N/P imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. Hyperspectral information can be used to directly infer nutrient-induces variation in structural and functional changes of vegetation under different nutrient availability. Among those, sun-induced fluorescence in the far-red region provides a new non-invasive measurement approach that has the potential to quantify dynamic changes in light-use efficiency and photosynthetic carbon dioxide uptake (Gross Primary Production, GPP). However, the mechanistic link between GPP and sun-induced fluorescence under different environmental conditions is not completely understood. In this contribution we investigated the structural and functional factors controlling the emission of SIF at 760 nm in a Mediterranean grassland with different levels of nutrient availability (Nitrogen (N), Phosphorous (P), and Nitrogen and Phosphorous (NP)). We showed how nutrient-induced changes in canopy structure (i.e. changes in plant forms abundance that influence leaf inclination distribution function, LIDF) and functional traits (e.g. nitrogen content per dry mass of leaves, N%, Chlorophyll ab concentration - Cab, and maximum carboxylation capacity, Vcmax) affected the observed relationship between SIF and GPP. Simultaneous measurements of canopy scale GPP and SIF were conducted with transparent transient-state canopy chambers and narrow-band spectrometers, respectively. To disentangle the main drivers of the GPP-SIF relationship we performed a factorial modeling exercise with the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) model. We conclude that the addition of nutrients imposed a change in the abundance of different plant forms and biochemistry of the canopy. This lead to changes in canopy structure (leaf area index, leaf inclinaton distribution function LIDF parameters) and functional traits (N%, P%, Cab and Vcmax) that eventually controlled the spatial patterns of SIF. Changes in LIDF mainly control the GPP-SIF relationship, with a secondary control of Cab and Vcmax. In order to exploit SIF data to model GPP at global/regional scale canopy structural variability, plant community, and plant functional traits are important confounding factors that have to be considered to correct the plant-functional type specific relationship between sun-induced fluorescence and GPP.

  19. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds

    NASA Astrophysics Data System (ADS)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2017-08-01

    Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.

  20. The measurement of mangrove characteristics in southwest Florida using SPOT multispectral data

    NASA Technical Reports Server (NTRS)

    Jensen, John R.; Lin, Hongyue; Yang, Xinghe; Ramsey, Elijah, III; Davis, Bruce A.; Thoemke, Chris W.

    1991-01-01

    An intensive in situ sampling program near Marco Island, Florida during 19-23 October 1988 collected information on mangrove type, maximum canopy height, and percent canopy closure. These data were correlated with selected vegetation index information derived from analysis of SPOT multispectral (XS) data obtained on 21 October 1988. The Normalized Difference (ND) vegetation index information was the most highly correlated index with percent canopy closure (r = 0.91). Percent canopy closure information can be used as a surrogate for mangrove density which is of great value when predicting which parts of the mangrove ecosystem are at greatest risk after an oil spill occurs. Such information is very valuable when constructing oil spill Environmental Sensitivity Index (ESI) Maps for tropical regions of the world.

  1. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above-ground biomass. The proposed methods are validated against independent in situ measurements for a variety of crops including winter wheat, rice, corn, and soy beans. Our results demonstrate the suitability of the approach to estimate biomass with an error smaller than 15%.

  2. Evidence of compounded disturbance effects on vegetation recovery following high-severity wildfire and spruce beetle outbreak

    Treesearch

    Amanda R. Carlson; Jason S. Sibold; Timothy J. Assal; Jose F. Negron

    2017-01-01

    Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have...

  3. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps

    Treesearch

    Christopher E. Moorman; Liessa T. Woen; John C. Kilgo; James L. Hanula; Scott Horn; Michael D. Ulyshen

    2012-01-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and...

  4. Composition, biomass and structure of mangroves within the Zambezi River Delta

    Treesearch

    Carl C. Trettin; Christina E. Stringer; Stan Zarnoch

    2015-01-01

    We used a stratified random sampling design to inventory the mangrove vegetation within the Zambezi River Delta, Mozambique, to provide a basis for estimating biomass pools. We used canopy height, derived from remote sensing data, to stratify the inventory area, and then applied a spatial decision support system to objectively allocate sample plots among five...

  5. Incorporating remotely sensed tree canopy cover data into broad scale assessments of wildlife habitat distribution and conservation

    Treesearch

    Sebastian Martinuzzi; Lee A. Vierling; William A. Gould; Kerri T. Vierling; Andrew T. Hudak

    2009-01-01

    Remote sensing provides critical information for broad scale assessments of wildlife habitat distribution and conservation. However, such efforts have been typically unable to incorporate information about vegetation structure, a variable important for explaining the distribution of many wildlife species. We evaluated the consequences of incorporating remotely sensed...

  6. Estimation of photosynthetic capacity using MODIS polarization: 1988 proposal to NASA Headquarters

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern C.

    1992-01-01

    The remote sensing community has clearly identified the utility of NDVI (normalized difference vegetation index) and SR (simple ratio) and other vegetation indices for estimating such metrics of landscape ecology as green foliar biomass, photosynthetic capacity, and net primary production. Both theoretical and empirical investigations have established cause and effect relationships between the photosynthetic process in plant canopies and these combinations of remotely sensed data. Yet it has also been established that the relationships exhibit considerable variability that appears to be ecosystem-dependent and may represent a source of ecologically important information. The overall hypothesis of this proposal is that the ecosystem-dependent variability in the various vegetation indices is in part attributable to the effects of specular reflection. The polarization channels on MODIS provide the potential to estimate this specularly reflected light and allow the modification of the vegetation indices to better measure the photosynthetic process in plant canopies. In addition, these polarization channels potentially provide additional ecologically important information about the plant canopy.

  7. Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    NASA Technical Reports Server (NTRS)

    Eagleson, Peter S.; Jasinski, Michael F.

    1988-01-01

    This work focuses on the characterization of natural, spatially variable, semivegetated landscapes using a linear, stochastic, canopy-soil reflectance model. A first application of the model was the investigation of the effects of subpixel and regional variability of scenes on the shape and structure of red-infrared scattergrams. Additionally, the model was used to investigate the inverse problem, the estimation of subpixel vegetation cover, given only the scattergrams of simulated satellite scale multispectral scenes. The major aspects of that work, including recent field investigations, are summarized.

  8. Estimating the relationship between urban 3D morphology and land surface temperature using airborne LiDAR and Landsat-8 Thermal Infrared Sensor data

    NASA Astrophysics Data System (ADS)

    Lee, J. H.

    2015-12-01

    Urban forests are known for mitigating the urban heat island effect and heat-related health issues by reducing air and surface temperature. Beyond the amount of the canopy area, however, little is known what kind of spatial patterns and structures of urban forests best contributes to reducing temperatures and mitigating the urban heat effects. Previous studies attempted to find the relationship between the land surface temperature and various indicators of vegetation abundance using remote sensed data but the majority of those studies relied on two dimensional area based metrics, such as tree canopy cover, impervious surface area, and Normalized Differential Vegetation Index, etc. This study investigates the relationship between the three-dimensional spatial structure of urban forests and urban surface temperature focusing on vertical variance. We use a Landsat-8 Thermal Infrared Sensor image (acquired on July 24, 2014) to estimate the land surface temperature of the City of Sacramento, CA. We extract the height and volume of urban features (both vegetation and non-vegetation) using airborne LiDAR (Light Detection and Ranging) and high spatial resolution aerial imagery. Using regression analysis, we apply empirical approach to find the relationship between the land surface temperature and different sets of variables, which describe spatial patterns and structures of various urban features including trees. Our analysis demonstrates that incorporating vertical variance parameters improve the accuracy of the model. The results of the study suggest urban tree planting is an effective and viable solution to mitigate urban heat by increasing the variance of urban surface as well as evaporative cooling effect.

  9. Effective Albedo of Vegetated Terrain at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.

    2011-01-01

    This paper derives an explicit expression for an effective albedo of vegetated terrain from the zero- and multiple- order radiative transfer (RT) model comparison. The formulation establishes a direct physical link between the effective vegetation parameterization and the theoretical description of absorption and scattering within the canopy. The paper will present an evaluation of the derived albedo for corn canopies with data taken during an experiment at Alabama A&M Winfield A. Thomas Agricultural Research Station near Huntsville, Alabama in June, 1998. The test site consisted of two 50-m x 60-m plots - one with a bare surface and the other with grass cover - and four 30-m x 50-m plots of corn at different planting densities. One corn field was planted at a full density of 9.5 plants/sq m while the others were planted at 1/3, 1/2 and 2/3 of the full density. The fields were observed with a truck-mounted L-band radiometer at incident angle of 15 degree for the period of two weeks. Soil moisture (SM) changed daily due to irrigation and natural rainfall. Variations in gravimetric SM from 18 % to 34 % were seen during this period. Ground truth data, including careful characterization of the corn size and orientation statistics, and its dielectric, was also collected and used to simulate the effective albedo for the vegetation. The single-scattering albedo is defined as the fractional power scattered from individual vegetation constituents with respect to canopy extinction. It represents single-scattering properties of vegetation elements only, and is independent of ground properties. The values of the albedo get higher when there is dense vegetation (i.e. forest, mature corn, etc.) with scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. This large albedo leads to a reduction in brightness temperature in the zero-order RT solution (known as tau-omega model). Higher-order multiple-scattering RT solutions are required for proper representation of scattering within vegetation. In this paper, an expression for an effective albedo for the whole canopy including the ground is derived for use in the zero-order RT model-based SM retrieval. This effective albedo takes into account of all the processes taking place within the canopy, including multiple-scattering. This new formulation will be presented and its importance for microwave SM retrieval will be evaluated for corn canopies in conjunction with the detailed ground truth data obtained during the experiment at Alabama in 1998. Emphasis will be placed on examining how the radiometer response to SM is modified by the corn canopy scattering under different field conditions. A semi-empirical parameterization of the effective albedo will be investigated through analysis of SM and vegetation water content effects on the effective albedo.

  10. Light distribution in plant canopies: A comparison between 1-D multi-layer modeling approach and 3-D ray tracing

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Yiwen, X.; Ellis, A.; Christensen, A.; Borkiewic, K.; Cox, D.; Hart, J.; Long, S.; Marshall-Colon, A.

    2016-12-01

    The distribution of absorbed solar radiation in the photosynthetically active region wavelength (PAR) within plant canopies plays a critical role in determining photosynthetic carbon uptake and its associated transpiration. The vertical distribution of leaf area, leaf angles, leaf absorptivity and reflectivity within the canopy, affect the distribution of PAR absorbed throughout the canopy. While the upper canopy sunlit leaves absorb most of the incoming PAR and hence contribute most towards total canopy carbon uptake, the lower canopy shaded leaves which receive mostly lower intensity diffuse PAR make significant contributions towards plant carbon uptake. Most detailed vegetation models use a 1-D vertical multi-layer approach to model the sunlight and shaded canopy leaf fractions, and quantify the direct and diffuse radiation absorbed by the respective leaf fractions. However, this approach is only applicable under canopy closure conditions, and furthermore it fails to accurately capture the effects of diurnally varying leaf angle distributions in some plant canopies. Here, we show by using a 3-D ray tracing model which uses an explicit 3-D canopy structure that enforces no conditions about canopy closure, that the effects of diurnal variation of canopy leaf angle distributions better match with observed data. Our comparative analysis performed on soybean crop canopies between 3-D ray tracing model and the multi-layer model shows that the distribution of absorbed direct PAR is not exponential while, the distribution of absorbed diffuse PAR radiation within plant canopies is exponential. These results show the multi-layer model to significantly over-predict canopy PAR absorbed, and in turn significantly overestimate photosynthetic carbon uptake by up to 13% and canopy transpiration by 7% under mid-day sun conditions as verified through our canopy chamber experiments. Our results indicate that current detailed 1-D multi-layer canopy radiation attenuation models significantly over predict canopy radiation absorption and its associated canopy photosynthetic and transpiration fluxes, and use of a 3-D ray tracing model provides more realistic predictions of leaf canopy integrated fluxes of carbon and water.

  11. A First-Order Radiative Transfer Model for Microwave Radiometry of Forest Canopies at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; Lang, Roger H.; O'Neill, Peggy E.; Joseph, Alicia T.; Jackson, Thomas J.; Cosh, Michael H.

    2010-01-01

    In this study, a new first-order radiative transfer (RT) model is developed to more accurately account for vegetation canopy scattering by modifying the basic r-co model (the zero-order RT solution). In order to optimally utilize microwave radiometric data in soil moisture (SM) retrievals over moderately to densely vegetated landscapes, a quantitative understanding of the relationship between scattering mechanisms within vegetation canopies and the microwave brightness temperature is desirable. A first-order RT model is used to investigate this relationship and to perform a physical analysis of the scattered and emitted radiation from vegetated terrain. The new model is based on an iterative solution (successive orders of scattering) of the RT equations up to the first order. This formulation adds a new scattering term to the i-w model. The additional term represents emission by particles (vegetation components) in the vegetation layer and emission by the ground that is scattered once by particles in the layer. The new model is tested against 1.4 GHz brightness temperature measurements acquired over deciduous trees by a truck-mounted microwave instrument system called ComRAD in 2007. The model predictions are in good agreement with the data and they give quantitative understanding for the influence of first-order scattering within the canopy on the brightness temperature. The model results show that the scattering term is significant for trees and modifications are necessary to the T-w model when applied to dense vegetation. Numerical simulations also indicate that the scattering term has a negligible dependence on SM and is mainly a function of the angle and polarization of the microwave observation.

  12. A simple hypothesis of how leaf and canopy-level transpiration and assimilation respond to elevated CO2 reveals distinct response patterns between disturbed and undisturbed vegetation

    NASA Astrophysics Data System (ADS)

    Donohue, Randall J.; Roderick, Michael L.; McVicar, Tim R.; Yang, Yuting

    2017-01-01

    Elevated CO2 increases leaf-level water-use efficiency (ω) almost universally. How canopy-level transpiration and assimilation fluxes respond to increased ω is currently unclear. We present a simple, resource-availability-based hypothesis of how equilibrium (or mature) leaf and canopy transpiration and assimilation rates, along with leaf area index (L), respond to elevated CO2. We quantify this hypothesis in the form of a model and test it against observations from eight Free Air CO2 Enrichment sites that span a wide range of resource availabilities. Sites were grouped according to vegetation disturbance status. We find the model adequately accounts for the responses of undisturbed vegetation (R2 = 0.73, 11% error) but cannot account for the responses of disturbed vegetation (R2 = 0.47, 17% error). At undisturbed sites, the responses of L and of leaf and canopy transpiration vary predictably (7% error) with resource availability, whereas the leaf assimilation response is less predictable. In contrast, the L and transpiration flux responses at the disturbed (mostly forested) sites are highly variable and are not strongly related to resource availability. Initial analyses suggest that they are more strongly related to regrowth age than to resource availability. We conclude that (i) our CO2 response hypothesis is valid for capturing the responses of undisturbed vegetation only, (ii) that the responses of disturbed vegetation are distinctly different from undisturbed vegetation, and (iii) that these differences need to be accounted for when predicting the effects of elevated CO2 on land surface processes generally, and on leaf area and water fluxes in particular.

  13. Evaluating Canopy Spectral Reflectance Vegetation Indices to Estimate Nitrogen Use Traits in Hard Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat nitrogen use efficiency must be improved to reduce the need for nitrogen (N) fertilizers. This study was conducted to determine if measurement of canopy spectral reflectance (CSR) could be used to non-destructively and indirectly select wheat genotypes with improved nitrogen use traits. Canopy...

  14. Utilizing in situ Directional Hyperpectral Measurements to Validate Bio-Indicator Simulations for a Corn Crop Canaopy

    USDA-ARS?s Scientific Manuscript database

    Two radiative transfer canopy models, SAIL and the Markov-Chain Canopy Reflectance Model (MRCM), were coupled with in situ leaf optical properties to simulate canopy-level spectral band ratio vegetation indices with the focus on the Photochemical Reflectance Index (PRI) in a cornfield. In situ hyper...

  15. Nest site selection by diamond-backed terrapins (Malaclemys terrapin) on a Mid-Atlantic Barrier Island

    USGS Publications Warehouse

    Mitchell, Joseph C.; Walls, Susan C.

    2013-01-01

    We scored 48 Malaclemys terrapin nests destroyed by raccoons on Fisherman Island, Virginia, for the presence or absence of tree canopy, shrub canopy, no canopy, bare sand, grass cover, and herbaceous cover. Significantly more nests than expected were found in the open with no vegetation cover and observed distances of predator-destroyed nests from the edge of the nearest habitat island of woody vegetation were significantly different from a normal distribution; most were placed near the island margin. Our results underscore the need to understand the influence of predator search behavior on terrapin nest survival in different habitat types.

  16. Thirty-two years of change in an old-growth Ohio beech-maple forest.

    PubMed

    Runkle, James R

    2013-05-01

    Old-growth forests dominated by understory-tolerant tree species are among forest types most likely to be in equilibrium. However, documentation of the degree to which they are in equilibrium over decades-long time periods is lacking. Changes in climate, pathogens, and land use all are likely to impact stand characteristics and species composition, even in these forests. Here, 32 years of vegetation changes in an old-growth beech (Fagus grandifolia)-sugar maple (Acer saccharum) forest in Hueston Woods, southwest Ohio, USA, are summarized. These changes involve canopy composition and structure, turnover in snags, and development of vegetation in treefall gaps. Stand basal area and canopy density have changed little in 32 years. However, beech has decreased in canopy importance (49% to 32%) while sugar maple has increased (32% to 47%). Annual mortality was about 1.3% throughout the study period. Mortality rates increased with stem size, but the fraction of larger stems increased due to ingrowth from smaller size classes. Beech was represented by more very large stems than small canopy stems: over time, death of those larger stems with inadequate replacement has caused the decrease in beech importance. Sugar maple was represented by more small canopy stems whose growth has increased its importance. The changes in beech and sugar maple relative importance are hypothesized to be due to forest fragmentation mostly from the early 1800s with some possible additional effects associated with the formation of the state park. Snag densities (12-16 snags/ha) and formation rates (1-3 snags.ha(-1).yr(-1)) remained consistent. The treefall gaps previously studied are closing, with a few, large stems remaining. Death of gap border trees occurs consistently enough to favor species able to combine growth in gaps and survival in the understory.

  17. Variation in photosynthetic and nonphotosynthetic vegetation along edaphic and compositional gradients in northwestern Amazonia

    NASA Astrophysics Data System (ADS)

    Higgins, M. A.; Asner, G. P.; Perez, E.; Elespuru, N.; Alonso, A.

    2014-03-01

    Tropical forests vary substantially in aboveground properties such as canopy height, canopy structure, and plant species composition, corresponding to underlying variations in soils and geology. Forest properties are often difficult to detect and map in the field, however, due to the remoteness and inaccessibility of these forests. Spectral mixture analysis of Landsat imagery allows mapping of photosynthetic and nonphotosynthetic vegetation quantities (PV and NPV), corresponding to biophysical properties such as canopy openness, forest productivity, and disturbance. Spectral unmixing has been used for applications ranging from deforestation monitoring to identifying burn scars from past fires, but little is known about variations in PV and NPV in intact rainforest. Here we use spectral unmixing of Landsat imagery to map PV and NPV in northern Amazonia, and to test their relationship to soils and plant species composition. To do this we sampled 117 sites crossing a geological boundary in northwestern Amazonia for soil cation concentrations and plant species composition. We then used the Carnegie Landsat Analysis System to map PV and NPV for these sites from multiple dates of Landsat imagery. We found that soil cation concentrations and plant species composition consistently explain a majority of the variation in remotely sensed PV and NPV values. After combining PV and NPV into a single variable (PV-NPV), we determined that the influence of soil properties on canopy properties was inseparable from the influence of plant species composition. In all cases, patterns in PV and NPV corresponded to underlying geological patterns. Our findings suggest that geology and soils regulate canopy PV and NPV values in intact tropical forest, possibly through changes in plant species composition.

  18. Variation in photosynthetic and nonphotosynthetic vegetation along edaphic and compositional gradients in northwestern Amazonia

    NASA Astrophysics Data System (ADS)

    Higgins, M. A.; Asner, G. P.; Perez, E.; Elespuru, N.; Alonso, A.

    2014-07-01

    Tropical forests vary substantially in aboveground properties such as canopy height, canopy structure, and plant species composition, corresponding to underlying variations in soils and geology. Forest properties are often difficult to detect and map in the field, however, due to the remoteness and inaccessibility of these forests. Spectral mixture analysis of Landsat imagery allows mapping of photosynthetic and nonphotosynthetic vegetation quantities (PV and NPV), corresponding to biophysical properties such as canopy openness, forest productivity, and disturbance. Spectral unmixing has been used for applications ranging from deforestation monitoring to identifying burn scars from past fires, but little is known about variations in PV and NPV in intact rainforests. Here we use spectral unmixing of Landsat imagery to map PV and NPV in northern Amazonia, and to test their relationship to soils and plant species composition. To do this we sampled 117 sites crossing a geological boundary in northwestern Amazonia for soil cation concentrations and plant species composition. We then used the Carnegie Landsat Analysis System to map PV and NPV for these sites from multiple dates of Landsat imagery. We found that soil cation concentrations and plant species composition consistently explain a majority of the variation in remotely sensed PV and NPV values. After combining PV and NPV into a single variable (PV-NPV), we determined that the influence of soil properties on canopy properties was inseparable from the influence of plant species composition. In all cases, patterns in PV and NPV corresponded to underlying geological patterns. Our findings suggest that geology and soils regulate canopy PV and NPV values in intact tropical forests, possibly through changes in plant species composition.

  19. Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Fagherazzi, S.; Nardin, W.; Woodcock, C. E.; Locatelli, S.; Rulli, M. C.; Pasquarella, V. J.

    2016-02-01

    Mangrove forests dominate many tropical coastlines and are one of the most bio-diverse and productive environments on Earth. However, little is known of the large scale dynamics of mangrove canopies and how they colonize intertidal areas. Here we focus on a fringe mangrove forest located in the Mekong delta, Vietnam, a fast prograding shoreline where mangroves are encroaching tidal flats. The spatial and temporal evolution of the mangrove canopy is studied using a time series of Landsat images spanning two decades as well as Shuttle Radar Topography Mission (SRTM) elevation data. Our results show that fast mangrove expansion is followed by an increase in Normalized Difference Vegetation Index (NDVI) in the newly established canopy. We observe two different dynamics of the mangrove fringe: near the mouth of the rivers where the fringe boundary is linear the canopy expands uniformly on the tidal flats with a high colonization rate and high NDVI values. Far from the river mouths the fringe boundary is highly irregular and mangroves expansion in characterized by sparse vegetated patches displaying low NDVI values. We conclude that high NDVI values and a regular vegetation-water interface are indicative of stable mangrove canopies undergoing expansion, and therefore of resilient coastlines. In the Mekong delta these area are more likely located near a river mouth.

  20. Sun and Shade leaves, SIF, and Photosynthetic Capacity

    NASA Astrophysics Data System (ADS)

    Berry, J. A.; Badgley, G.

    2016-12-01

    Recent advances in retrieval of solar induced chlorophyll fluorescence (SIF) have opened up new possibilities for remote sensing of canopy physiology and structure. To date most of the emphasis has been placed on SIF as an indicator of stress and photosynthetic capacity. However, it is clear that canopy structure can also have an influence. To this point, simulations of SIF in land surface models tend to under predict observed variation in SIF. Also, large, systematic differences in SIF from different canopy types seem to correlate well with the photosynthetic capacity of these canopies. SIF emissions from pampered crops can be several-fold that from evergreen, needle-leaf forests. Yet, these may have similar vegetation indices and absorb a similar fraction of incident PAR. SIF photons produced in a conifer canopy do have a lower probability of escaping its dense, clumped foliage. However, this does not explain the correlated differences in photosynthetic rate and SIF. It is useful, in this regard, to consider the separate contributions of sun and shade leaves to the SIF emitted by a canopy. Sun leaves tend to be displayed to intercept the direct solar beam, and these highly illuminated leaves are often visible from above the canopy. Sun leaves produce more SIF and a large fraction of it escapes. Therefore, the intensity of SIF may be a sensitive indicator of the partitioning of absorbed PAR to sun and shade leaves. Many models account tor the different photosynthetic capacity of sun and shade leaves in calculating canopy responses. However, the fraction of leaves in each category is usually parameterized by an assumed leaf angle distribution (e.g. spherical). In reality, the sun/shade fraction can vary over a wide range, and it has been difficult to measure. SIF and possibly near-IR reflectance of canopies can be used to specify this key parameter with obvious importance to understanding photosynthetic rate.

  1. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.

    PubMed

    Stevens-Rumann, Camille; Morgan, Penelope

    2016-09-01

    Most models project warmer and drier climates that will contribute to larger and more frequent wildfires. However, it remains unknown how repeated wildfires alter post-fire successional patterns and forest structure. Here, we test the hypothesis that the number of wildfires, as well as the order and severity of wildfire events interact to alter forest structure and vegetation recovery and implications for vegetation management. In 2014, we examined forest structure, composition, and tree regeneration in stands that burned 1-18 yr before a subsequent 2007 wildfire. Three important findings emerged: (1) Repeatedly burned forests had 15% less woody surface fuels and 31% lower tree seedling densities compared with forests that only experienced one recent wildfire. These repeatedly burned areas are recovering differently than sites burned once, which may lead to alternative ecosystem structure. (2) Order of burn severity (high followed by low severity compared with low followed by high severity) did influence forest characteristics. When low burn severity followed high, forests had 60% lower canopy closure and total basal area with 92% fewer tree seedlings than when high burn severity followed low. (3) Time between fires had no effect on most variables measured following the second fire except large woody fuels, canopy closure and tree seedling density. We conclude that repeatedly burned areas meet many vegetation management objectives of reduced fuel loads and moderate tree seedling densities. These differences in forest structure, composition, and tree regeneration have implications not only for the trajectories of these forests, but may reduce fire intensity and burn severity of subsequent wildfires and may be used in conjunction with future fire suppression tactics. © 2016 by the Ecological Society of America.

  2. A laser technique for characterizing the geometry of plant canopies

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Silva, L. F.; Bauer, M. E.

    1977-01-01

    The interception of solar power by the canopy is investigated as a function of solar zenith angle (time), component of the canopy, and depth into the canopy. The projected foliage area, cumulative leaf area, and view factors within the canopy are examined as a function of the same parameters. Two systems are proposed that are capable of describing the geometrical aspects of a vegetative canopy and of operation in an automatic mode. Either system would provide sufficient data to yield a numerical map of the foliage area in the canopy. Both systems would involve the collection of large data sets in a short time period using minimal manpower.

  3. The reflection for dense plant canopies from the one-angle radiative transfer equation

    NASA Technical Reports Server (NTRS)

    Ganapol, B. D.; Lawless, James G. (Technical Monitor)

    1994-01-01

    An essential component of remote sensing of vegetation canopies from satellites is fundamental understanding. Since passive remote is driven by photons, the modeling of photon interactions with vegetation is a basic building block in that understanding. Several such photon transport models have been developed during the past two decades and continue to be developed. Different approaches have been followed including monte carlo, radiosity methods, geometric shadowing, and radiative transfer. In general, each approach has application for canopies with specific attributes. This presentation concerns the application of radiative transfer to dense vegetation canopies in which the soil does not participate. The approach taken here is novel in that a consistent theory for photon transport for non-rotationally invariant leaf scattering is developed in a canopy with a general leaf angle distribution (LAD). The theory is limited to the one-angle approximation (azimuthally averaged radiance) and is based on Chandrasekhar's analytical theory. While such a model is admittedly only approximate, it does fulfill a unique function in our search for understanding. In particular, the model is simple in its construct yet contains the essential features of canopy architecture that are mainly responsible for observed responses. Thus, this model will not only be a predictive tool but also an educational one. The mathematical setting is the radiative transfer equation in a dense (semiinfinite) canopy. The leaf scattering phase function is assumed to be Lambertian with different reflectance and transmittance. In addition, abaxial and adaxial differentiation is allowed which effectively destroys optical reciprocity. The analytical solution for the canopy BRDF is obtained by manipulation of the integral transport equation (a la Chandrasekhar) for a general LAD. With discretization of the. leaf angle, the resulting set of integral equations are solved iteratively including an acceleration procedure when the single scatter albedo is near one (in the NIR). Results will be compared to the LARS soybean canopy radiances as well as to broadleaf results from a recent Ames experiment.

  4. Rapid Characterisation of Vegetation Structure to Predict Refugia and Climate Change Impacts across a Global Biodiversity Hotspot

    PubMed Central

    Schut, Antonius G. T.; Wardell-Johnson, Grant W.; Yates, Colin J.; Keppel, Gunnar; Baran, Ireneusz; Franklin, Steven E.; Hopper, Stephen D.; Van Niel, Kimberley P.; Mucina, Ladislav; Byrne, Margaret

    2014-01-01

    Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs) provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic Region (SWAFR). However, poor characterization of GOs limits the capacity of conservation planning for refugia under climate change. A novel means for the rapid identification of potential refugia is presented, based on the assessment of local-scale environment and vegetation structure in a wider region. This approach was tested on GOs across the SWAFR. Airborne discrete return Light Detection And Ranging (LiDAR) data and Red Green and Blue (RGB) imagery were acquired. Vertical vegetation profiles were used to derive 54 structural classes. Structural vegetation types were described in three areas for supervised classification of a further 13 GOs across the region. Habitat descriptions based on 494 vegetation plots on and around these GOs were used to quantify relationships between environmental variables, ground cover and canopy height. The vegetation surrounding GOs is strongly related to structural vegetation types (Kappa = 0.8) and to its spatial context. Water gaining sites around GOs are characterized by taller and denser vegetation in all areas. The strong relationship between rainfall, soil-depth, and vegetation structure (R2 of 0.8–0.9) allowed comparisons of vegetation structure between current and future climate. Significant shifts in vegetation structural types were predicted and mapped for future climates. Water gaining areas below granite outcrops were identified as important putative refugia. A reduction in rainfall may be offset by the occurrence of deeper soil elsewhere on the outcrop. However, climate change interactions with fire and water table declines may render our conclusions conservative. The LiDAR-based mapping approach presented enables the integration of site-based biotic assessment with structural vegetation types for the rapid delineation and prioritization of key refugia. PMID:24416149

  5. Rapid characterisation of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot.

    PubMed

    Schut, Antonius G T; Wardell-Johnson, Grant W; Yates, Colin J; Keppel, Gunnar; Baran, Ireneusz; Franklin, Steven E; Hopper, Stephen D; Van Niel, Kimberley P; Mucina, Ladislav; Byrne, Margaret

    2014-01-01

    Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs) provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic Region (SWAFR). However, poor characterization of GOs limits the capacity of conservation planning for refugia under climate change. A novel means for the rapid identification of potential refugia is presented, based on the assessment of local-scale environment and vegetation structure in a wider region. This approach was tested on GOs across the SWAFR. Airborne discrete return Light Detection And Ranging (LiDAR) data and Red Green and Blue (RGB) imagery were acquired. Vertical vegetation profiles were used to derive 54 structural classes. Structural vegetation types were described in three areas for supervised classification of a further 13 GOs across the region. Habitat descriptions based on 494 vegetation plots on and around these GOs were used to quantify relationships between environmental variables, ground cover and canopy height. The vegetation surrounding GOs is strongly related to structural vegetation types (Kappa = 0.8) and to its spatial context. Water gaining sites around GOs are characterized by taller and denser vegetation in all areas. The strong relationship between rainfall, soil-depth, and vegetation structure (R(2) of 0.8-0.9) allowed comparisons of vegetation structure between current and future climate. Significant shifts in vegetation structural types were predicted and mapped for future climates. Water gaining areas below granite outcrops were identified as important putative refugia. A reduction in rainfall may be offset by the occurrence of deeper soil elsewhere on the outcrop. However, climate change interactions with fire and water table declines may render our conclusions conservative. The LiDAR-based mapping approach presented enables the integration of site-based biotic assessment with structural vegetation types for the rapid delineation and prioritization of key refugia.

  6. Vegetation survey of knapweed on the Yakima Training Center - 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downs, J.L.; Cadoret, N.A.; Rickard, W.H.

    1994-04-01

    This report summarizes and discusses the results of a vegetation survey conducted in 1992 on a portion of the Yakima Training Center (YTC). Pacific Northwest Laboratory (PNL) conducted this survey and a similar survey in 1991 for the U.S. Department of the Army. The objectives of the survey were to evaluate the impact of the herbicide picloram on forbs where aerial applications of picloram were made in 1988, 1989, and 1991 to control knapweed infestations. Forbs are of special interest because they are an important part of the spring and summer diet of the western sage grouse, which is amore » U.S. Fish and Wildlife Service candidate species for the threatened and endangered list. We also conducted a limited evaluation of the effectiveness of the spray program in controlling the spread of knapweed. Percent plant canopy cover and number of forbs were measured on 120 transacts on the herbicide-treated and untreated control areas. Herbicide treatment in 1991 resulted in a significant reduction in knapweed based on percent cover and density. The treatment areas also all had lower percent canopy cover of perennial forbs and fewer perennial forbs compared to control areas. Canopy cover of shrubs and annual, biennial, and perennial forbs measured on the YTC increased between the 1991 and 1992 survey, which may indicate a recovery of these vegetation types after disturbance. These increases also could reflect the mild 1992 winter and superior growing conditions in the spring of 1992. We recommend that these vegetation transacts continue to be monitored for an additional growing season to evaluate (1) whether knapweed increases to its previous abundance in the 1991 herbicide-treated area, (2) the efficacy of herbicide application on transacts along roadways, and (3) the increase in invasive annuals in herbicide-treated areas and the possible effects on community vegetation structure and sage grouse habitat.« less

  7. The impact of in-canopy wind profile formulations on heat flux estimation using the remote sensing-based two-source model for an open orchard canopy in southern Italy

    NASA Astrophysics Data System (ADS)

    Cammalleri, C.; Anderson, M. C.; Ciraolo, G.; D'Urso, G.; Kustas, W. P.; La Loggia, G.; Minacapilli, M.

    2010-07-01

    For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can highly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977), Massman (1987) and Lalic et al. (2003). The in-canopy wind profile formulations are applied to the thermal-based Two-Source Energy Balance (TSEB) model developed by Norman et al. (1995) and modified by Kustas and Norman (1999). High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy) comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters need to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlight the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical canopy properties range of these agricultural area. It is found that differences in wind just above surface among the models is most significant under sparse and medium fractional cover conditions (20-60%). The TSEB model heat flux estimates are compared with micrometeorological measurements from a small aperture scintillometer and an eddy covariance tower collected over an olive orchard characterized by moderate fractional vegetation cover (≈35%) and relatively tall crop height (≈3.5 m). TSEB fluxes for the 7 image acquisition dates generated using both the Massman and Goudriaan in-canopy wind profile formulations give close agreement with measured fluxes, while the Lalic et al. equations yield poor results. The Massman wind profile scheme slightly outperforms that of Goudriaan, but it requires an additional parameter describing the roughness of the underlying vegetative surface. This parameter is not directly obtainable using remote sensing, hence this study suggests that the Goudriaan formulation for landscape applications is most suitable when detailed site-specific information regarding canopy architecture is unavailable.

  8. Patterns of vegetation in the Owens Valley, California

    NASA Technical Reports Server (NTRS)

    Ustin, S. L.; Rock, B. N.; Woodward, R. A.

    1986-01-01

    Spectral characteristics of semi-arid shrub communities were examined using Airborne Imaging Spectrometer (AIS) data collected in the tree mode on 23 May 1985. Mesic sites with relatively high vegetation density and distinct zonation patterns exhibited greater spectral signature variations than sites with more xeric shrub communities. Spectral signature patterns were not directly related to vegetation density or physiognomy, although spatial maps derived from an 8-channel maximum likelihood classification were supported by photo-interpreted surface features. In AIS data, the principal detected effect of shrub vegetation on the alluvial fans is to lower reflectance across the spectrum. These results are similar to those reported during a period of minimal physiological activity in autumn, indicating that shadows cast by vegetation canopies are an important element of soil-vegetation interaction under conditions of relatively low canopy cover.

  9. Fire-induced changes in boreal forest canopy volume and soil organic matter from multi-temporal airborne lidar

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Cook, B.; Andersen, H. E.; Babcock, C. R.; Morton, D. C.

    2016-12-01

    Fire in boreal forests initiates a cascade of biogeochemical and biophysical processes. Over typical fire return intervals, net radiative forcing from boreal forest fires depends on the offsetting impacts of greenhouse gas emissions and post-fire changes in land surface albedo. Whether boreal forest fires warm or cool the climate over these multi-decadal intervals depends on the magnitude of fire emissions and the time scales of decomposition, albedo changes, and forest regrowth. Our understanding of vegetation and surface organic matter (SOM) changes from boreal forest fires is shaped by field measurements and moderate resolution remote sensing data. Intensive field plot measurements offer detailed data on overstory, understory, and SOM changes from fire, but sparse plot data can be difficult to extend across the heterogeneous boreal forest landscape. Conversely, satellite measurements of burn severity are spatially extensive but only provide proxy measures of fire effects. In this research, we seek to bridge the scale gap between existing intensive and extensive methods using a combination of airborne lidar data and time series of Landsat data to evaluate pre- and post-fire conditions across Alaska's Kenai Peninsula. Lidar-based estimates of pre-fire stand structure and composition were essential to characterize the loss of canopy volume from fires between 2001 and 2014, quantify transitions from live to dead standing carbon pools, and isolate vegetation recovery following fire over 1 to 13 year time scales. Results from this study demonstrate the utility of lidar for estimating pre-fire structure and species composition at the scale of individual tree crowns. Multi-temporal airborne lidar data also provide essential insights regarding the heterogeneity of canopy and SOM losses at a sub-Landsat pixel scale. Fire effects are forest-structure and species dependent with variable temporal lags in carbon release due to delayed mortality (>5 years post fire) and standing dead trees. Establishing the spatial and temporal scales of canopy structural change will aid in constraining estimates of net radiative forcing from both carbon release and albedo in the years following fire.

  10. Canopy and physiological controls of GPP during drought and heat wave

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Xiao, Xiangming; Zhou, Sha; Ciais, Philippe; McCarthy, Heather; Luo, Yiqi

    2016-04-01

    Vegetation indices (VIs) derived from satellite reflectance measurements are often used as proxies of canopy activity to evaluate the impacts of drought and heat wave on gross primary production (GPP) through production efficiency models. However, GPP is also regulated by physiological processes that cannot be directly detected using reflectance measurements. This study analyzes the co-limitation of canopy and plant physiology (represented by VIs and climate anomalies, respectively) on GPP during the 2003 European summer drought and heat wave for 15 Euroflux sites. During the entire drought period, spatial pattern of GPP anomalies can be quantified by relative changes in VIs. We also find that GPP sensitivity to relative canopy changes is higher for nonforest ecosystems (1.81 ± 0.32%GPP/%enhanced vegetation index), while GPP sensitivity to physiological changes is higher for forest ecosystems (-0.18 ± 0.05 g C m-2 d-1/hPa). A conceptual model is further built to better illustrate the canopy and physiological controls on GPP during drought periods.

  11. Photosynthesis and stomatal conductance related to reflectance on the canopy scale

    NASA Technical Reports Server (NTRS)

    Verma, S. B.; Sellers, P. J.; Walthall, C. L.; Hall, F. G.; Kim, J.; Goetz, S. J.

    1993-01-01

    Field measurements of carbon dioxide and water vapor fluxes were analyzed in conjunction with reflectances obtained from a helicopter-mounted Modular Multiband Radiometer at a grassland study site during the First International Satellite Land Surface Climatology Project Field Experiment. These measurements are representative of the canopy scale and were made over a range of meteorological and soil moisture conditions during different stages in the annual life cycle of the prairie vegetation, and thus provide a good basis for investigating hpotheses/relationships potentially useful in remote sensing applications. We tested the hypothesis (Sellers, 1987) that the simple ratio vegetation index should be near-linearly related to the derivatives of the unstressed canopy stomatal conductance and the unstressed canopy photosynthesis with respect to photosynthetically active radiation. Even though there is some scatter in our data, the results seem to support this hypothesis.

  12. Ecohydrological optimality in the Northeast China Transect

    NASA Astrophysics Data System (ADS)

    Cong, Zhentao; Li, Qinshu; Mo, Kangle; Zhang, Lexin; Shen, Hong

    2017-05-01

    The Northeast China Transect (NECT) is one of the International Geosphere-Biosphere Program (IGBP) terrestrial transects, where there is a significant precipitation gradient from east to west, as well as a vegetation transition of forest-grassland-desert. It is remarkable to understand vegetation distribution and dynamics under climate change in this transect. We take canopy cover (M), derived from Normalized Difference Vegetation Index (NDVI), as an index to describe the properties of vegetation distribution and dynamics in the NECT. In Eagleson's ecohydrological optimality theory, the optimal canopy cover (M*) is determined by the trade-off between water supply depending on water balance and water demand depending on canopy transpiration. We apply Eagleson's ecohydrological optimality method in the NECT based on data from 2000 to 2013 to get M*, which is compared with M from NDVI to further discuss the sensitivity of M* to vegetation properties and climate factors. The result indicates that the average M* fits the actual M well (for forest, M* = 0.822 while M = 0.826; for grassland, M* = 0.353 while M = 0.352; the correlation coefficient between M and M* is 0.81). Results of water balance also match the field-measured data in the references. The sensitivity analyses show that M* decreases with the increase of leaf area index (LAI), stem fraction and temperature, while it increases with the increase of leaf angle and precipitation amount. Eagleson's ecohydrological optimality method offers a quantitative way to understand the impacts of climate change on canopy cover and provides guidelines for ecorestoration projects.

  13. 3D Reconstruction and Approximation of Vegetation Geometry for Modeling of Within-canopy Flows

    NASA Astrophysics Data System (ADS)

    Henderson, S. M.; Lynn, K.; Lienard, J.; Strigul, N.; Mullarney, J. C.; Norris, B. K.; Bryan, K. R.

    2016-02-01

    Aquatic vegetation can shelter coastlines from waves and currents, sometimes resulting in accretion of fine sediments. We developed a photogrammetric technique for estimating the key geometric vegetation parameters that are required for modeling of within-canopy flows. Accurate estimates of vegetation geometry and density are essential to refine hydrodynamic models, but accurate, convenient, and time-efficient methodologies for measuring complex canopy geometries have been lacking. The novel approach presented here builds on recent progress in photogrammetry and computer vision. We analyzed the geometry of aerial mangrove roots, called pneumatophores, in Vietnam's Mekong River Delta. Although comparatively thin, pneumatophores are more numerous than mangrove trunks, and thus influence near bed flow and sediment transport. Quadrats (1 m2) were placed at low tide among pneumatophores. Roots were counted and measured for height and diameter. Photos were taken from multiple angles around each quadrat. Relative camera locations and orientations were estimated from key features identified in multiple images using open-source software (VisualSfM). Next, a dense 3D point cloud was produced. Finally, algorithms were developed for automated estimation of pneumatophore geometry from the 3D point cloud. We found good agreement between hand-measured and photogrammetric estimates of key geometric parameters, including mean stem diameter, total number of stems, and frontal area density. These methods can reduce time spent measuring in the field, thereby enabling future studies to refine models of water flows and sediment transport within heterogenous vegetation canopies.

  14. Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy

    DOE PAGES

    Serbin, Shawn P.; Singh, Aditya; Desai, Ankur R.; ...

    2015-06-11

    To date, the utility of ecosystem and Earth system models (EESMs) has been limited by poor spatial and temporal representation of critical input parameters. For example, EESMs often rely on leaf-scale or literature-derived estimates for a key determinant of canopy photosynthesis, the maximum velocity of RuBP carboxylation (Vcmax, μmol m –2 s –1). Our recent work (Ainsworth et al., 2014; Serbin et al., 2012) showed that reflectance spectroscopy could be used to estimate Vcmax at the leaf level. Here, we present evidence that imaging spectroscopy data can be used to simultaneously predict Vcmax and its sensitivity to temperature (E V)more » at the canopy scale. In 2013 and 2014, high-altitude Airborne Visible/Infrared Imaging Spectroscopy (AVIRIS) imagery and contemporaneous ground-based assessments of canopy structure and leaf photosynthesis were acquired across an array of monospecific agroecosystems in central and southern California, USA. A partial least-squares regression (PLSR) modeling approach was employed to characterize the pixel-level variation in canopy V cmax (at a standardized canopy temperature of 30 °C) and E V, based on visible and shortwave infrared AVIRIS spectra (414–2447 nm). Our approach yielded parsimonious models with strong predictive capability for Vcmax (at 30 °C) and E V (R 2 of withheld data = 0.94 and 0.92, respectively), both of which varied substantially in the field (≥ 1.7 fold) across the sampled crop types. The models were applied to additional AVIRIS imagery to generate maps of V cmax and E V, as well as their uncertainties, for agricultural landscapes in California. The spatial patterns exhibited in the maps were consistent with our in-situ observations. As a result, these findings highlight the considerable promise of airborne and, by implication, space-borne imaging spectroscopy, such as the proposed HyspIRI mission, to map spatial and temporal variation in key drivers of photosynthetic metabolism in terrestrial vegetation.« less

  15. Estimating tropical forest structure using LIDAR AND X-BAND INSAR

    NASA Astrophysics Data System (ADS)

    Palace, M. W.; Treuhaft, R. N.; Keller, M. M.; Sullivan, F.; Roberto dos Santos, J.; Goncalves, F. G.; Shimbo, J.; Neumann, M.; Madsen, S. N.; Hensley, S.

    2013-12-01

    Tropical forests are considered the most structurally complex of all forests and are experiencing rapid change due to anthropogenic and climatic factors. The high carbon stocks and fluxes make understanding tropical forests highly important to both regional and global studies involving ecosystems and climate. Large and remote areas in the tropics are prime targets for the use of remotely sensed data. Radar and lidar have previously been used to estimate forest structure, with an emphasis on biomass. These two remote sensing methods have the potential to yield much more information about forest structure, specifically through the use of X-band radar and waveform lidar data. We examined forest structure using both field-based and remotely sensed data in the Tapajos National Forest, Para, Brazil. We measured multiple structural parameters for about 70 plots in the field within a 25 x 15 km area that have TanDEM-X single-pass horizontally and vertically polarized radar interferometric data. High resolution airborne lidar were collected over a 22 sq km portion of the same area, within which 33 plots were co-located. Preliminary analyses suggest that X-band interferometric coherence decreases by about a factor of 2 (from 0.95 to 0.45) with increasing field-measured vertical extent (average heights of 7-25 m) and biomass (10-430 Mg/ha) for a vertical wavelength of 39 m, further suggesting, as has been observed at C-band, that interferometric synthetic aperture radar (InSAR) is substantially more sensitive to forest structure/biomass than SAR. Unlike InSAR coherence versus biomass, SAR power at X-band versus biomass shows no trend. Moreover, airborne lidar coherence at the same vertical wavenumbers as InSAR is also shown to decrease as a function of biomass, as well. Although the lidar coherence decrease is about 15% more than the InSAR, implying that lidar penetrates more than InSAR, these preliminary results suggest that X-band InSAR may be useful for structure and biomass estimation over large spatial scales not attainable with airborne lidar. In this study, we employed a set of less commonly used lidar metrics that we consider analogous to field-based measurements, such as the number of canopy maxima, measures of canopy vegetation distribution diversity and evenness (entropy), and estimates of gap fraction. We incorporated these metrics, as well as lidar coherence metrics pulled from discrete Fourier transforms of pseudowaveforms, and hypothetical stand characteristics of best-fit synthetic vegetation profiles into multiple regression analysis of forest biometric properties. Among simple and complex measures of forest structure, ranging from tree density, diameter at breast height, and various canopy geometry parameters, we found strong relationships with lidar canopy vegetation profile parameters. We suggest that the sole use of lidar height is limited in understanding biomass in a forest with little variation across the landscape and that there are many parameters that may be gleaned by lidar data that inform on forest biometric properties.

  16. Monitoring flooding and vegetation on seasonally inundated floodplains with multifrequency polarimetric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Hess, Laura Lorraine

    The ability of synthetic aperture radar to detect flooding and vegetation structure was evaluated for three seasonally inundated floodplain sites supporting a broad variety of wetland and upland vegetation types: two reaches of the Solimoes floodplain in the central Amazon, and the Magela Creek floodplain in Northern Territory, Australia. For each site, C- and L-band polarimetric Shuttle Imaging Radar-C (SIR-C) data was obtained at both high- and low-water stages. Inundation status and vegetation structure were documented simultaneous with the SIR-C acquisitions using low-altitude videography and ground measurements. SIR-C images were classified into cover states defined by vegetation physiognomy and presence of standing water, using a decision-tree model with backscattering coefficients at HH, VV, and HV polarizations as input variables. Classification accuracy was assessed using user's accuracy, producer's accuracy, and kappa coefficient for a test population of pixels. At all sites, both C- and L-band were necessary to accurately classify cover types with two dates. HH polarization was most. useful for distinguishing flooded from non-flooded vegetation (C-HH for macrophyte versus pasture, L-HH for flooded versus non-flooded forest), and cross-polarized L-band data provided the best separation between woody and non-woody vegetation. Increases in L-HH backscattering due to flooding were on the order of 3--4 dB for closed-canopy varzea and igapo forest, and 4--7 dB, for open Melaleuca woodland. The broad range of physiognomies and stand structures found in both herbaceous and woody wetland communities, combined with the variation in the amount of emergent canopy caused by water level fluctuations and phenologic changes, resulted in a large range in backscattering characteristics of wetland communities both within and between sites. High accuracies cannot be achieved for these communities using single-date, single-band, single-polarization data, particularly in the case of distinguishing flooded macrophyte from non-flooded forest vegetation. However, the large changes in backscattering caused by flooding make it possible to achieve good accuracies (>85%) using multi-temporal data. Where river stage records are available, SAR-based maps of inundation status on a series of dates can be linked to long-term stage data to define wetland habitat types based on flooding regime and low-water vegetation cover.

  17. Reimplementation of the Biome-BGC model to simulate successional change.

    PubMed

    Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E; Thornton, Peter E

    2005-04-01

    Biogeochemical process models are increasingly employed to simulate current and future forest dynamics, but most simulate only a single canopy type. This limitation means that mixed stands, canopy succession and understory dynamics cannot be modeled, severe handicaps in many forests. The goals of this study were to develop a version of Biome-BGC that supported multiple, interacting vegetation types, and to assess its performance and limitations by comparing modeled results to published data from a 150-year boreal black spruce (Picea mariana (Mill.) BSP) chronosequence in northern Manitoba, Canada. Model data structures and logic were modified to support an arbitrary number of interacting vegetation types; an explicit height calculation was necessary to prioritize radiation and precipitation interception. Two vegetation types, evergreen needle-leaf and deciduous broadleaf, were modeled based on site-specific meteorological and physiological data. The new version of Biome-BGC reliably simulated observed changes in leaf area, net primary production and carbon stocks, and should be useful for modeling the dynamics of mixed-species stands and ecological succession. We discuss the strengths and limitations of Biome-BGC for this application, and note areas in which further work is necessary for reliable simulation of boreal biogeochemical cycling at a landscape scale.

  18. Identifying functional groups for response to disturbance in an abandoned pasture

    NASA Astrophysics Data System (ADS)

    Lavorel, Sandra; Touzard, Blaise; Lebreton, Jean-Dominique; Clément, Bernard

    1998-06-01

    In an abandoned pasture in Brittany, we compared artificial small-scale disturbances to natural disturbances by wild boar and undisturbed vegetation. We developed a multivariate statistical approach which analyses how species biological attributes explain the response of community composition to disturbances. This technique, which reconciles the inductive and deductive approaches for functional classifications, identifies groups of species with similar responses to disturbance and characterizes their biological profiles. After 5 months of recolonization, artificial disturbances had a greater species richness than undisturbed vegetation as a result of recruitment of new species without the exclusion of pre-existing matrix species. Species morphology, described by canopy structure, canopy height and lateral spread, explained a large part (16 %) of community response to disturbance. Regeneration strategies, described by life history, seed mass, dispersal agent, dormancy and the existence of vegetative multiplication, explained a smaller part of community response to disturbance (8 %). Artificial disturbances were characterized by therophyte and compact rosettes with moderately dormant seeds, including a number of Asteraceae and other early successional species. Natural disturbances were colonized by leafy guerrilla species without seed dormancy. Few species were tightly related to undisturbed vegetation and were essentially grasses with a phalanx rosette morphology. The functional classification obtained is consistent with the classification of the community into fugitives, regenerators and persistors. These groups are structured according to Grubb's model for temperate grasslands, with regenerators and persistors in the matrix and fugitives taking advantage of gaps open by small-scale disturbances. The conjunction of functional diversity and species diversity within functional groups is the key to resilience to disturbance, an important ecosystem function.

  19. Relations between surface conductance and spectral vegetation indices at intermediate (100 m sq to 15 km sq) length scales

    NASA Technical Reports Server (NTRS)

    Sellers, Piers J.; Heiser, Mark D.; Hall, Forrest G.

    1992-01-01

    The relationship between surface conductance and spectral vegetation indices is investigated utilizing the FIFE data set, principally the surface flux station data and images from the TM instrument. It is found that the unstressed canopy conductance for a given site for a given day is near-linearly related to the incident PAR flux. Estimates of unstressed canopy conductance were acquired via a model inversion that separated the soil and vegetation contributions to evapotranspiration and made adjustments for the effects of vapor pressure deficit and soil moisture stress.

  20. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    USGS Publications Warehouse

    Kokaly, Raymond F.; Skidmore, Andrew K

    2015-01-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic C-H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences of plant phenolics and terpenes relative to dominant leaf biochemistry (water, chlorophyll, protein/nitrogen, cellulose, and lignin).

  1. Modeling Stand-Scale Patterns in Evapotranspiration and Soil Moisture in a Heterogeneous Plant Canopy: A Coupled Subsurface-Land Surface Approach

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; Gou, S.; Ferguson, I. M.; Maxwell, R. M.

    2011-12-01

    Savanna ecosystems present a well-known modeling challenge; understory grasses and overstory woody vegetation combine to form an open, heterogeneous canopy that creates strong spatial differences in soil moisture and evapotranspiration rates. In this analysis, we used ParFlow.CLM to create a stand-scale model of the Tonzi Ranch oak savanna, based on extensive topography, vegetation, soil, and hydrogeology data collected at the site. Measurements included canopy distribution and ground surface elevation from airborne Lidar, depth to groundwater from deep piezometers, soil and rock hydraulic conductivity, and leaf area index. We then compared the results to the site's long-term data records of radiative flux partitioning, obtained using the eddy-covariance method, and soil moisture, collected via a distributed network of capacitance probes. In order to obtain good agreement between the measured and modeled values, we identified several necessary modifications to the current CLM parameterization. These changes included the addition of a "winter grass" type and the alteration of the root structure and water stress functions to accommodate uptake of groundwater by deep roots. Finally, we compared variograms of site parameters and response variables and performed a scaling analysis relating ET and soil moisture variance to sampling size.

  2. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1993-01-01

    Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  3. Evaluation of the photochemical reflectance index in AVIRIS imagery

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Roberts, Dar A.; Green, Robert O.

    1995-01-01

    In this paper, we evaluate the potential for extracting the 'photochemical reflectance index' (PRI; previously called the 'physiological reflectance index') from AVIRIS data. This index, which is derived from narrow-band reflectance at 531 and 570 nm, has proven to be a useful indicator of photosynthetic function at the leaf and canopy scales. At the leaf level, PRI varies with photosynthetic capacity, radiation-use efficiency, and vegetation type (unpublished data). This finding is consistent with the hypothesis that vegetation types exhibiting chronically reduced photosynthesis during periods of stress (e.g. drought-tolerant evergreens) invest proportionally more in photoprotective processes than vegetation with high photosynthetic capacity (e.g. crops or deciduous perennials). Vertical transects in tropical and boreal forest canopies have indicated declines in PRI associated with downregulation of photosynthesis at the canopy tops under sunny, dry midday conditions (unpublished data). This reduced PRI in upper canopy levels provides a further basis for examining this signal with the 'view from above' afforded by aircraft overflights. Although many factors could confound interpretation of a subtle physiological signal at the landscape scale, we conducted a preliminary examination of PRI extracted from existing, AVIRIS imagery of Stanford University's Jasper Ridge Biological Preserve obtained on the June 2nd, 1992, overflight. The goal was to use the hyperspectral capabilities of AVIRIS to evaluate the potential of this index for obtaining useful physiological data at the landscape scale. The expectation based on leaf- and canopy-level studies was that regions containing vegetation of reduced photosynthetic capacity (e.g. chaparral or evergreen woodland) would exhibit lower PRI values than regions of high capacity (e.g. deciduous woodland).

  4. Variation of MODIS reflectance and vegetation indices with viewing geometry and soybean development.

    PubMed

    Breunig, Fábio M; Galvão, Lênio S; Formaggio, Antônio R; Epiphanio, José C N

    2012-06-01

    Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI(1640) and NDWI(2120)) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.

  5. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

    Treesearch

    Veronika Leitold; Michael Keller; Douglas C Morton; Bruce D Cook; Yosio E Shimabukuro

    2015-01-01

    Background: Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas...

  6. NEON: the first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure

    Treesearch

    Thomas U. Kampe; Brian R. Johnson; Michele Kuester; Michael Keller

    2010-01-01

    The National Ecological Observatory Network (NEON) is an ecological observation platform for discovering, understanding and forecasting the impacts of climate change, land use change, and invasive species on continental-scale ecology. NEON will operate for 30 years and gather long-term data on ecological response changes and on feedbacks with the geosphere, hydrosphere...

  7. Response of reptile and amphibian communities to the reintroduction of fire in an oak/hickory forest

    Treesearch

    Steven J. Hromada; Christopher A.F. Howey; Matthew B. Dickinson; Roger W. Perry; Willem M. Roosenburg; C.M. Gienger

    2018-01-01

    Fire can have diverse effects on ecosystems, including direct effects through injury and mortality and indirect effects through changes to available resources within the environment. Changes in vegetation structure such as a decrease in canopy cover or an increase in herbaceous cover from prescribed fire can increase availability of preferred microhabitats for some...

  8. The Flora Mission for Ecosystem Composition, Disturbance and Productivity

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Knox, Robert G.; Green, Robert O.; Ungar, Stephen G.

    2005-01-01

    Global land use and climate variability alter ecosystem conditions - including structure, function, and biological diversity - at a pace that requires unambiguous observations from satellite vantage points. Current global measurements are limited to general land cover, some disturbances, vegetation leaf area index, and canopy energy absorption. Flora is a pathfinding mission that provides new measurements of ecosystem structure, function, and diversity to understand the spatial and temporal dynamics of human and natural disturbances, and the biogeochemical and physiological responses of ecosystems to disturbance. The mission relies upon high-fidelity imaging spectroscopy to deliver full optical spectrum measurements (400-2500 nm) of the global land surface on a monthly time step at 45 meter spatial resolution for three years. The Flora measurement objectives are: (i) fractional cover of biological materials, (ii) canopy water content, (iii) vegetation pigments and light-use efficiency, (iv) plant functional types, (v) fire fuel load and fuel moisture content, and (vi) disturbance occurrence, type and intensity. These measurements are made using a multi-parameter, spectroscopic analysis approach afforded by observation of the full optical spectrum. Combining these measurements, along with additional observations from multispectral sensors, Flora will far advance global studies and models of ecosystem dynamics and change.

  9. The Role of Vegetation and Mulch in Mitigating the Impact of Raindrops on Soils in Urban Vegetated Green Infrastructure Systems

    NASA Astrophysics Data System (ADS)

    Alizadehtazi, B.; Montalto, F. A.; Sjoblom, K.

    2014-12-01

    Raindrop impulses applied to soils can break up larger soil aggregates into smaller particles, dispersing them from their original position. The displaced particles can self-stratify, with finer particles at the top forming a crust. Occurrence of this phenomenon reduces the infiltration rate and increases runoff, contributing to downstream flooding, soil erosion, and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Within this context, this presentation presents preliminary laboratory work conducted using a rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to develop recommendations regarding surface treatment in green infrastructure (GI) system designs, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.

  10. Temperature responses of carbon monoxide and hydrogen uptake by vegetated and unvegetated volcanic cinders

    PubMed Central

    King, Caitlin E; King, Gary M

    2012-01-01

    Ecosystem succession on a large deposit of volcanic cinders emplaced on Kilauea Volcano in 1959 has resulted in a mosaic of closed-canopy forested patches and contiguous unvegetated patches. Unvegetated and unshaded surface cinders (Bare) experience substantial diurnal temperature oscillations ranging from moderate (16 °C) to extreme (55 °C) conditions. The surface material of adjacent vegetated patches (Canopy) experiences much smaller fluctuations (14–25 °C) due to shading. To determine whether surface material from these sites showed adaptations by carbon monoxide (CO) and hydrogen (H2) consumption to changes in ambient temperature regimes accompanying succession, we measured responses of CO and H2 uptake to short-term variations in temperature and long-term incubations at elevated temperature. Based on its broader temperature optimum and lower activation energy, Canopy H2 uptake was less sensitive than Bare H2 uptake to temperature changes. In contrast, Bare and Canopy CO uptake responded similarly to temperature during short-term incubations, indicating no differences in temperature sensitivity. However, during extended incubations at 55 °C, CO uptake increased for Canopy but not Bare material, which indicated that the former was capable of thermal adaptation. H2 uptake for material from both sites was completely inhibited at 55 °C throughout extended incubations. These results indicated that plant development during succession did not elicit differences in short-term temperature responses for Bare and Canopy CO uptake, in spite of previously reported differences in CO oxidizer community composition, and differences in average daily and extreme temperatures. Differences associated with vegetation due to succession did, however, lead to a notable capacity for thermophilic CO uptake by Canopy but not Bare material. PMID:22258097

  11. Experimental canopy removal enhances diversity of vernal pond amphibians.

    PubMed

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have implications for the connection between current wetland management practices and the goals of wetland stewardship and conservation of wetland-dependent species.

  12. Temperature responses of carbon monoxide and hydrogen uptake by vegetated and unvegetated volcanic cinders.

    PubMed

    King, Caitlin E; King, Gary M

    2012-08-01

    Ecosystem succession on a large deposit of volcanic cinders emplaced on Kilauea Volcano in 1959 has resulted in a mosaic of closed-canopy forested patches and contiguous unvegetated patches. Unvegetated and unshaded surface cinders (Bare) experience substantial diurnal temperature oscillations ranging from moderate (16 °C) to extreme (55 °C) conditions. The surface material of adjacent vegetated patches (Canopy) experiences much smaller fluctuations (14-25 °C) due to shading. To determine whether surface material from these sites showed adaptations by carbon monoxide (CO) and hydrogen (H(2)) consumption to changes in ambient temperature regimes accompanying succession, we measured responses of CO and H(2) uptake to short-term variations in temperature and long-term incubations at elevated temperature. Based on its broader temperature optimum and lower activation energy, Canopy H(2) uptake was less sensitive than Bare H(2) uptake to temperature changes. In contrast, Bare and Canopy CO uptake responded similarly to temperature during short-term incubations, indicating no differences in temperature sensitivity. However, during extended incubations at 55 °C, CO uptake increased for Canopy but not Bare material, which indicated that the former was capable of thermal adaptation. H(2) uptake for material from both sites was completely inhibited at 55 °C throughout extended incubations. These results indicated that plant development during succession did not elicit differences in short-term temperature responses for Bare and Canopy CO uptake, in spite of previously reported differences in CO oxidizer community composition, and differences in average daily and extreme temperatures. Differences associated with vegetation due to succession did, however, lead to a notable capacity for thermophilic CO uptake by Canopy but not Bare material.

  13. Contrasting germination responses to vegetative canopies experienced in pre- vs. post-dispersal environments.

    PubMed

    Leverett, Lindsay D; Auge, Gabriela A; Bali, Aman; Donohue, Kathleen

    2016-11-01

    Seeds adjust their germination based on conditions experienced before and after dispersal. Post-dispersal cues are expected to be more accurate predictors of offspring environments, and thus offspring success, than pre-dispersal cues. Therefore, germination responses to conditions experienced during seed maturation may be expected to be superseded by responses to conditions experienced during seed imbibition. In taxa of disturbed habitats, neighbours frequently reduce the performance of germinants. This leads to the hypotheses that a vegetative canopy will reduce germination in such taxa, and that a vegetative canopy experienced during seed imbibition will over-ride germination responses to a canopy experienced during seed maturation, since it is a more proximal cue of immediate competition. These hypotheses were tested here in Arabidopsis thaliana METHODS: Seeds were matured under a simulated canopy (green filter) or white light. Fresh (dormant) seeds were imbibed in the dark, white light or canopy at two temperatures (10 or 22 °C), and germination proportions were recorded. Germination was also recorded in after-ripened (less dormant) seeds that were induced into secondary dormancy and imbibed in the dark at each temperature, either with or without brief exposure to red and far-red light. Unexpectedly, a maturation canopy expanded the conditions that elicited germination, even as seeds lost and regained dormancy. In contrast, an imbibition canopy impeded or had no effect on germination. Maturation under a canopy did not modify germination responses to red and far-red light. Seed maturation under a canopy masked genetic variation in germination. The results challenge the hypothesis that offspring will respond more strongly to their own environment than to that of their parents. The observed relaxation of germination requirements caused by a maturation canopy could be maladaptive for offspring by disrupting germination responses to light cues after dispersal. Alternatively, reduced germination requirements could be adaptive by allowing seeds to germinate faster and reduce competition in later stages even though competition is not yet present in the seedling environment. The masking of genetic variation by maturation under a canopy, moreover, could impede evolutionary responses to selection on germination. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania.

    PubMed

    Shirima, Deo D; Pfeifer, Marion; Platts, Philip J; Totland, Ørjan; Moe, Stein R

    2015-01-01

    We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental gradients and disturbance in African forests and woodlands.

  15. The interactive effects of fire and diversity on short-term responses of ecosystem processes in experimental mediterranean grasslands.

    PubMed

    Dimitrakopoulos, Panayiotis G; Siamantziouras, Akis-Stavros D; Galanidis, Alexandros; Mprezetou, Irene; Troumbis, Andreas Y

    2006-06-01

    We conducted a field experiment using constructed communities to test whether species richness contributed to the maintenance of ecosystem processes under fire disturbance. We studied the effects of diversity components (i.e., species richness and species composition) upon productivity, structural traits of vegetation, decomposition rates, and soil nutrients between burnt and unburnt experimental Mediterranean grassland communities. Our results demonstrated that fire and species richness had interactive effects on aboveground biomass production and canopy structure components. Fire increased biomass production of the highest-richness communities. The effects of fire on aboveground biomass production at different levels of species richness were derived from changes in both vertical and horizontal canopy structure of the communities. The most species-rich communities appeared to be more resistant to fire in relation to species-poor ones, due to both compositional and richness effects. Interactive effects of fire and species richness were not important for belowground processes. Decomposition rates increased with species richness, related in part to increased levels of canopy structure traits. Fire increased soil nutrients and long-term decomposition rate. Our results provide evidence that composition within richness levels had often larger effects on the stability of aboveground ecosystem processes in the face of fire disturbance than species richness per se.

  16. Detecting forest canopy change due to insect activity using Landsat MSS

    NASA Technical Reports Server (NTRS)

    Nelson, R. F.

    1983-01-01

    Multitemporal Landsat multispectral scanner data were analyzed to test various computer-aided analysis techniques for detecting significant forest canopy alteration. Three data transformations - differencing, ratioing, and a vegetative index difference - were tested to determine which best delineated gypsy moth defoliation. Response surface analyses were conducted to determine optimal threshold levels for the individual transformed bands and band combinations. Results indicate that, of the three transformations investigated, a vegetative index difference (VID) transformation most accurately delineates forest canopy change. Band 5 (0.6 to 0.7 micron ratioed data did nearly as well. However, other single bands and band combinations did not improve upon the band 5 ratio and VID results.

  17. Parametrizing Evaporative Resistance for Heterogeneous Sparse Canopies through Novel Wind Tunnel Experimentation

    NASA Astrophysics Data System (ADS)

    Sloan, B.; Ebtehaj, A. M.; Guala, M.

    2017-12-01

    The understanding of heat and water vapor transfer from the land surface to the atmosphere by evapotranspiration (ET) is crucial for predicting the hydrologic water balance and climate forecasts used in water resources decision-making. However, the complex distribution of vegetation, soil and atmospheric conditions makes large-scale prognosis of evaporative fluxes difficult. Current ET models, such as Penman-Monteith and flux-gradient methods, are challenging to apply at the microscale due to ambiguity in determining resistance factors to momentum, heat and vapor transport for realistic landscapes. Recent research has made progress in modifying Monin-Obukhov similarity theory for dense plant canopies as well as providing clearer description of diffusive controls on evaporation at a smooth soil surface, which both aid in calculating more accurate resistance parameters. However, in nature, surfaces typically tend to be aerodynamically rough and vegetation is a mixture of sparse and dense canopies in non-uniform configurations. The goal of our work is to parameterize the resistances to evaporation based on spatial distributions of sparse plant canopies using novel wind tunnel experimentation at the St. Anthony Falls Laboratory (SAFL). The state-of-the-art SAFL wind tunnel was updated with a retractable soil box test section (shown in Figure 1), complete with a high-resolution scale and soil moisture/temperature sensors for recording evaporative fluxes and drying fronts. The existing capabilities of the tunnel were used to create incoming non-neutral stability conditions and measure 2-D velocity fields as well as momentum and heat flux profiles through PIV and hotwire anemometry, respectively. Model trees (h = 5 cm) were placed in structured and random configurations based on a probabilistic spacing that was derived from aerial imagery. The novel wind tunnel dataset provides the surface energy budget, turbulence statistics and spatial soil moisture data under varying atmospheric stability for each sparse canopy configuration. We will share initial data results and progress toward the development of new parametrizations that can account for the evolution of a canopy roughness sublayer on the momentum, heat and vapor resistance terms as a function of a stochastic representation of canopy spacing.

  18. Influence of a forest canopy on velocity and temperature profiles under synoptic conditions

    NASA Astrophysics Data System (ADS)

    Pattantyus, A.; Hocut, C. M.; Wang, Y.; Creegan, E.; Krishnamurthy, R.; Otarola-Bust, S.; Leo, L. S.; Fernando, H. J. S.

    2017-12-01

    Numerous field campaigns have found the importance of surface conditions on boundary layer evolution. Specifically, soil properties were found to control surface fluxes of heat, moisture, and momentum that significantly modulated the atmospheric boundary layer (ABL) over flat and sparsely vegetated surfaces. There have been increasing numbers of studies related to canopy impacts on the boundary layer, such as CHATS, however few canopy studies over complex terrain have been performed with limited instrumentation. The recent Perdigão campaign greatly augmented the previous datasets available by instrumenting a unique, parallel ridge mountain in Perdigão, Portugal in unprecedented spatial and temporal resolution using traditional mast mounted sensors, instrumented aerial platforms, and remote sensing instrumentation. To aid the canopy studies, the Army Research Laboratory deployed sonic anemometers within the canopy transecting the ridges perpendicularly and placed five additional heavily instrumented meteorological masts on the northeast facing slope to investigate detailed slope flows. At each of these towers, there was an average of six levels of temperature, relative humidity, and wind sensors located above & below the canopy height which allowed a detailed study of the sub-canopy layer. In addition to the towers, two scanning Doppler LiDARs were oriented such that they performed synchronized dual Doppler virtual tower scans, extending from the canopy interface to several hundred meters above. Synoptically forced periods were analyzed to examine: the ABL structure of temperature, moisture, wind, and turbulent kinetic energy. Of particular interest are the shear layer at the canopy interface, recirculation events, as well as ejection and sweep events within the canopy and how these modify surface fluxes along the slopes.

  19. Spectral Unmixing of Vegetation, Soil and Dry Carbon in Arid Regions: Comparing Multispectral and Hyperspectral Observations

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Heidebrecht, Kathleen B.

    2001-01-01

    Remote sensing of vegetation cover and condition is critically needed to understand the impacts of land use and climate variability in and and semi-arid regions. However, remote sensing of vegetation change in these environments is difficult for several reasons. First, individual plant canopies are typically small and do not reach the spatial scale of typical Landsat-like satellite image pixels. Second, the phenological status and subsequent dry carbon (or non-photosynthetic) fraction of plant canopies varies dramatically in both space and time throughout and and semi-arid regions. Detection of only the 'green' part of the vegetation using a metric such as the normalized difference vegetation index (NDVI) thus yields limited information on the presence and condition of plants in these ecosystems. Monitoring of both photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) is needed to understand a range of ecosystem characteristics including vegetation presence, cover and abundance, physiological and biogeochemical functioning, drought severity, fire fuel load, disturbance events and recovery from disturbance.

  20. Directional radiative transfer by SCOPE, SLC and DART using laser scan derived structural forest parameters

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; Gastellu-Etchegorry, Jean Philippe; van der Tol, Christiaan; Verhoef, Wout; Vekerdy, Zoltan; Su, Zhongbo

    2017-04-01

    Accurate estimation of the radiative transfer (RT) over vegetation is the corner stone of agricultural and hydrological remote sensing applications. Present remote sensing sensors mostly use traditional optical, thermal and microwave observations. However with these traditional observations characterization of the light efficiency and photosynthetic rate can only be accomplished indirectly. A promising new method of observing these processes is by using the fluorescent emitted radiation. This approach was recently highlighted due to the selection of the FLEX sensor as a future Earth Explorer by the European Space agency (ESA). Several modelling activities have been undertaken to better understand the technical feasibilities of this sensor. Within these studies, the SCOPE model has been chosen as the baseline algorithm. This model combines a detailed RT description of the canopy, using a discrete version of the SAIL model, with a description of photosynthetic processes (by use of the Farquhar/Ball-Berry model). Consequently, this model is capable of simulating simultaneously the biophysical processes and jointly the fluorescent, optical and thermal RT. The SAIL model however is a 1D RT model and consequently provides higher uncertainties with increasing vegetation structures. The main objective of this research is to investigate the limitations of the RT model component of the SCOPE model over complex canopies. In particular the aim of this research is to evaluate the validity for increasingly structural complex canopies', on the bidirectional reflectance distribution functions (BRDF) of these canopies. This was accomplished by evaluating the simulated outgoing radiation from SCOPE/SAIL against simulations of the DART 3D RT model. In total nine different scenarios were simulated with the DART RTM with increasing structural complexity, ranging from the simple 'Plot' scenario to the highly complex 'Multiple Crown' scenario. The canopy parameters are retrieved from a terrestrial laser scan of the Speulderbos in the Netherlands. The comparison between DART and SCOPE/SLC models showed a good match for the simple scenarios. Calculated rMSDs showed lower than 7.5% errors for crown coverage values lower than 0.87, with the Near-Hotspot viewing angles found to be the largest contributor to this deviation. For more complex scenarios (using Multiple Crowns), the comparison between SCOPE and DART showed mixed results. Good results were obtained for crown coverage values of 0.93, with rMSD (6.77% and 5.96%), lower than the defined threshold value, except near hotspot. For scenarios with crown coverages lower than 0.93 the rMSD were too large to validate the use of SCOPE model. When considering the Soil Leaf Canopy (SLC) model, an improved version of SAIL that considers the canopy clumping, better results were obtained for these complex scenarios, with good agreement for medium crown coverage values (0.93 and 0.87) with rMSD (6.33% and 5.99; 6.66% and 7.12%). This indicates that the radiative transfer model within SCOPE might be upgraded in the future.

  1. Estimation of the fraction of absorbed photosynthetically active radiation (fPAR) in maize canopies using LiDAR data and hyperspectral imagery.

    PubMed

    Qin, Haiming; Wang, Cheng; Zhao, Kaiguang; Xi, Xiaohuan

    2018-01-01

    Accurate estimation of the fraction of absorbed photosynthetically active radiation (fPAR) for maize canopies are important for maize growth monitoring and yield estimation. The goal of this study is to explore the potential of using airborne LiDAR and hyperspectral data to better estimate maize fPAR. This study focuses on estimating maize fPAR from (1) height and coverage metrics derived from airborne LiDAR point cloud data; (2) vegetation indices derived from hyperspectral imagery; and (3) a combination of these metrics. Pearson correlation analyses were conducted to evaluate the relationships among LiDAR metrics, hyperspectral metrics, and field-measured fPAR values. Then, multiple linear regression (MLR) models were developed using these metrics. Results showed that (1) LiDAR height and coverage metrics provided good explanatory power (i.e., R2 = 0.81); (2) hyperspectral vegetation indices provided moderate interpretability (i.e., R2 = 0.50); and (3) the combination of LiDAR metrics and hyperspectral metrics improved the LiDAR model (i.e., R2 = 0.88). These results indicate that LiDAR model seems to offer a reliable method for estimating maize fPAR at a high spatial resolution and it can be used for farmland management. Combining LiDAR and hyperspectral metrics led to better performance of maize fPAR estimation than LiDAR or hyperspectral metrics alone, which means that maize fPAR retrieval can benefit from the complementary nature of LiDAR-detected canopy structure characteristics and hyperspectral-captured vegetation spectral information.

  2. Analysis and Mapping of Vegetation and Habitat for the Sheldon National Wildlife Refuge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagestad, Jerry D.

    The Lakeview, Oregon, office of the U.S. Fish and Wildlife Service (USFWS) contracted Pacific Northwest National Laboratory to classify vegetation communities on Sheldon National Wildlife Refuge in northeastern Nevada. The objective of the mapping project was to provide USFWS refuge biologists and planners with detailed vegetation and habitat information that can be referenced to make better decisions regarding wildlife resources, fuels and fire risk, and land management. This letter report describes the datasets and methods used to develop vegetation cover type and shrub canopy cover maps for the Sheldon National Wildlife Refuge. The two map products described in this reportmore » are (1) a vegetation cover classification that provides updated information on the vegetation associations occurring on the refuge and (2) a map of shrub canopy cover based on high-resolution images and field data.« less

  3. What controls stemflow? A LiDAR-based investigation of individual tree canopy structure, neighborhood conditions, and meteorological factors

    NASA Astrophysics Data System (ADS)

    Yankine, S. A.; Van Stan, J. T., II; Mesta, D. C.; Côté, J. F.; Hildebrandt, A.; Friesen, J.; Maldonado, G.

    2017-12-01

    Stemflow is a pointed hydrologic flux at the base of tree stems that has been linked to a host of biogeochemical processes in vegetated landscapes. Much work has been done to examine controls over stemflow water yield, finding three major factors: individual tree canopy structure, meteorological variables, and neighborhood conditions. However, the authors are unaware of any study to directly quantify all factors using a combination of terrestrial LiDAR and micrometeorological monitoring methods. This study directly quantifies individual Pinus palustris tree canopy characteristics (trunk volume and angle, branch volume and angle from 1st-to-3rd order, bark roughness, and height), 10-m radius neighborhood properties (number of trees, mean diameter and height, mean distance from study tree, and canopy overlap), and above-canopy storm conditions (magnitude, intensity, mean/max wind speed, and vapor pressure deficit) directly at the site. Stemflow production was 1% of rainfall, ranging from 0.3-59 L per storm from individual trees. Preliminary findings from storms (5-176 mm in magnitude) indicate that all individual tree characteristics, besides bark roughness, have little influence on stemflow generation. Bark roughness altered stemflow generation by affecting trunk water storage (0.1-0.7 mm) and wet trunk evaporation rates (0.005-0.03 mm/h). The strongest influence over stemflow generation from individual trees was the interaction between neighborhood characteristics and meteorological conditions (primarily rainfall amount and, secondarily, rainfall intensity).

  4. Estimation of vegetation cover at subpixel resolution using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Eagleson, Peter S.

    1986-01-01

    The present report summarizes the various approaches relevant to estimating canopy cover at subpixel resolution. The approaches are based on physical models of radiative transfer in non-homogeneous canopies and on empirical methods. The effects of vegetation shadows and topography are examined. Simple versions of the model are tested, using the Taos, New Mexico Study Area database. Emphasis has been placed on using relatively simple models requiring only one or two bands. Although most methods require some degree of ground truth, a two-band method is investigated whereby the percent cover can be estimated without ground truth by examining the limits of the data space. Future work is proposed which will incorporate additional surface parameters into the canopy cover algorithm, such as topography, leaf area, or shadows. The method involves deriving a probability density function for the percent canopy cover based on the joint probability density function of the observed radiances.

  5. Assessing Structure and Condition of Temperate And Tropical Forests: Fusion of Terrestrial Lidar and Airborne Multi-Angle and Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Saenz, Edward J.

    Forests provide vital ecosystem functions and services that maintain the integrity of our natural and human environment. Understanding the structural components of forests (extent, tree density, heights of multi-story canopies, biomass, etc.) provides necessary information to preserve ecosystem services. Increasingly, remote sensing resources have been used to map and monitor forests globally. However, traditional satellite and airborne multi-angle imagery only provide information about the top of the canopy and little about the forest structure and understory. In this research, we investigative the use of rapidly evolving lidar technology, and how the fusion of aerial and terrestrial lidar data can be utilized to better characterize forest stand information. We further apply a novel terrestrial lidar methodology to characterize a Hemlock Woolly Adelgid infestation in Harvard Forest, Massachusetts, and adapt a dynamic terrestrial lidar sampling scheme to identify key structural vegetation profiles of tropical rainforests in La Selva, Costa Rica.

  6. Hydrological networks and associated topographic variation as templates for the spatial organization of tropical forest vegetation.

    PubMed

    Detto, Matteo; Muller-Landau, Helene C; Mascaro, Joseph; Asner, Gregory P

    2013-01-01

    An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated topographic structure across spatial scales of 10-1000 m using high-resolution maps of LiDAR-derived mean canopy profile height (MCH) and elevation for 4930 ha of tropical forest in central Panama. MCH was strongly associated with the hydrological network: canopy height was highest in areas of positive convexity (valleys, depressions) close to channels draining 1 ha or more. Average MCH declined strongly with decreasing convexity (transition to ridges, hilltops) and increasing distance from the nearest channel. Spectral analysis, performed with wavelet decomposition, showed that the variance in MCH had fractal similarity at scales of ∼30-600 m, and was strongly associated with variation in elevation, with peak correlations at scales of ∼250 m. Whereas previous studies of topographic correlates of tropical forest structure conducted analyses at just one or a few spatial grains, our study found that correlations were strongly scale-dependent. Multi-scale analyses of correlations of MCH with slope, aspect, curvature, and Laplacian convexity found that MCH was most strongly related to convexity measured at scales of 20-300 m, a topographic variable that is a good proxy for position with respect to the hydrological network. Overall, our results support the idea that, even in these mesic forests, hydrological networks and associated topographical variation serve as templates upon which vegetation is organized over specific ranges of scales. These findings constitute an important step towards a mechanistic understanding of these patterns, and can guide upscaling and downscaling.

  7. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth

    Treesearch

    Susan L. Brantley; William H. McDowell; William E. Dietrich; Timothy S. White; Praveen Kumar; Suzanne P. Anderson; Jon Chorover; Kathleen Ann Lohse; Roger C. Bales; Daniel D. Richter; Gordon Grant; Jérôme Gaillardet

    2017-01-01

    The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earth’s...

  8. The hot spot of vegetation canopies

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga B.; Kanemasu, Edward T.

    1988-01-01

    A conventional radiometer is used to identify the hot spot (the peak in reflected radiation in the retrosolar direction) of vegetation. A multiwavelength-band radiometer collected radiances on fully grown dense wheat and maize canopies on several clear sunny days. It is noted that the hot spot is difficult to detect in the near IR wavelengths because the shadows are much darker. In general, the retrosolar brightness is found to be higher for smaller sun polar angles than for larger angles.

  9. Correcting the relationship between PRI and shadow fraction for the blue sky effect

    NASA Astrophysics Data System (ADS)

    Mõttus, Matti

    2016-04-01

    The Photochemical Reflectance Index (PRI) is defined as the normalized difference ratio of leaf reflectance at two specific wavelengths in the green spectral region. Its value depends on the status of leaf carotenoid content, and especially that of the xanthophyll cycle pigments. Due to the dependence on the xanthophyll cycle, when the photosynthetic apparatus of green leaves is close to the saturation limit, their PRI becomes dependent on light conditions. Therefore, by measuring the PRI of leaves in the same canopy under different local irradiance conditions on a sunny day, it should be possible to determine the saturation level of the leaves. In turn, this gives information on the light use efficiency (LUE) of the vegetation canopy. The average light conditions of visible foliage elements are often quantified with the shadow fraction -- the fraction of visible foliage not lit by direct sunlight. The dependence of PRI on the shadow fraction has been used to remotely measure canopy LUE on clear days. Variations in shadow fraction have been achieved with multiangular measurement. However, besides photosynthetic downregulation, the dependence of canopy PRI on shadow fraction is affected by the blue sky radiation caused by scattering in the atmosphere. To quantify this effect on remotely sensed PRI, we present the underlying definitions relating leaf and canopy PRI and perform the required calculations for typical midsummer conditions in Central Finland. We demonstrate that the effect of blue sky radiation on the variation of PRI with canopy shadow fraction is similar in shape and magnitude to that of LUE variations reported in literature. Next, we propose a new method to assess these PRI variations in structured vegetation. We investiagate this blue sky effect on the PRI -- shadow fraction relationship with high spatial (60 cm) and spectral (9.8 nm) resolution airborne imaging spectroscopy data from Hyytiälä, Finland. We evaluate the spectral irradiance in different locations inside the canopy and calculate a correction term for the canopy PRI estimates defined using top-of-canopy irradiances. We determine the maximum value of the correction term by sampling the most sunlit and shaded road surface locations adjacent to tree crowns. Results indicate that under the particular illumination-view geometry, irradiance variations decreased the canopy PRI by as much as 0.06. The correction depended only slightly on atmospheric correction parameters. Other than the blue sky effect, PRI showed no correlation with the shadow fraction, indicating a lack of down-regulation at the time of measurement.

  10. The impact of in-canopy wind attenuation formulations onheat flux estimation using the remote sensing-based two-source model for an open orchard canopy in southern Italy

    USDA-ARS?s Scientific Manuscript database

    For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a “two-sou...

  11. Height and Biomass of Mangroves in Africa from ICEsat/GLAS and SRTM

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola E.; Simard, Marc

    2012-01-01

    The accurate quantification of forest 3-D structure is of great importance for studies of the global carbon cycle and biodiversity. These studies are especially relevant in Africa, where deforestation rates are high and the lack of background data is great. Mangrove forests are ecologically significant and it is important to measure mangrove canopy heights and biomass. The objectives of this study are to estimate: 1. The total area, 2. Canopy height distributions and 3. Aboveground biomass of mangrove forests in Africa. To derive mangrove 3-D structure and biomass maps, we used a combination of mangrove maps derived from Landsat ETM+, LiDAR canopy height estimates from ICEsat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. More specifically, we extracted mangrove forest areas on the SRTM DEM using Landsat based landcover maps. The LiDAR (Light Detection and Ranging) measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the Interferometric Synthetic Aperture Radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate above ground biomass (AGB) from the canopy height product. The total mangrove area of Africa was estimated to be 25 960 square kilometers with 83% accuracy. The largest mangrove areas and greatest total biomass was 29 found in Nigeria covering 8 573 km2 with 132 x10(exp 6) Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error also includes the impact of using sensors with different resolutions and geolocation error which make comparison between measurements sensitive to canopy heterogeneities. This study provides the first systematic estimates of mangrove area, height and biomass in Africa. Our results showed that the combination of ICEsat/GLAS and SRTM data is well suited for vegetation 3-D mapping on a continental scale.

  12. Testing Land-Vegetation retrieval algorithms for the ICESat-2 mission

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.

    2017-12-01

    The upcoming spaceborne satellite, the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), will provide topography and canopy profiles at the global scale using photon counting LiDAR. To prepare for the mission launch, the aim of this research is to develop a framework for retrieving ground and canopy height in different forest types and noise levels using two ICESat-2 testbed sensor data: MABEL (Multiple Altimeter Beam Experimental Lidar) data and simulated ICESat-2 data. The first step of the framework is to reduce as many noise photons as possible through grid statistical methods and cluster analysis. Subsequently, we employed the overlapping moving windows and estimated quantile heights in each window to characterize the possible ground and canopy top using the filtered photons. Both MABEL and simulated ICESat-2 data generated satisfactory results with reasonable accuracy, while the results of simulated ICESat-2 data were better than that of MABEL data with smaller root mean square errors (RMSEs). For example, the RMSEs of canopy top identification in various vegetation using simulated ICESat-2 data were less than 3.78 m comparing to 6.48 m for the MABE data. It is anticipated that the methodology will advance data processing of the ICESat-2 mission and expand potential applications of ICESat-2 data once available such as mapping vegetation canopy heights.

  13. Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical property

    NASA Technical Reports Server (NTRS)

    Baret, Frederic; Vanderbilt, Vern C.; Steven, Michael D.; Jacquemoud, Stephane

    1993-01-01

    The spectral variation of canopy reflectance is mostly governed by the absorption properties of the elements, hence the leaves, since their intrinsic scattering properties show very little spectral variation. The relationship between canopy reflectance and leaf reflectance measured at the red edge over sugar beet canopies was used to simulate canopy reflectance from leaf reflectance spectra measured over the whole spectral domain. The results show that the spectral analogies found allows accurate reconstruction of canopy reflectance spectra. Explicit assumptions about the very low spectral variation of leaf intrinsic scattering properties are thus indirectly justified. The sensitivity of canopy reflectance (rho(sub c)) to leaf optical properties can then be investigated from concurrent spectral variations of canopy (delta rho(sub c)/delta lambda) and leaf reflectance (delta rho(sub l)/delta lambda): (delta rho(sub c))/(delta rho(sub l)) = ((delta rho(sub c))/(delta lambda) ((delta rho( sub l))/(delta lambda))(sup -1)). This expression is strictly valid only when the optical properties of the soil background or the other vegetation elements such as bark are either spectrally flat or do not contribute significantly to canopy reflectance. Simulations using the SAIL and PROSPECT models demonstrate that the sensitivity of canopy reflectance to leaf reflectance is significant for large vegetation cover fractions in spectral domains where absorption is low. In these conditions, multiple, scattering enhances the leaf absorption features by a factor that can be greater than 2.0. To override the limitations of the SAIL model for the description of the canopy architecture, we tested the previous findings on experimental data. Concurrent canopy and leaf reflectance spectra were measured for a range of sugar beet canopies. The results show good agreement with the theoretical findings. Conclusions are drawn about the applicability of these findings, with particular attention to the potential detectability of leaf biochemical composition from canopy reflectance sensed from space.

  14. Controls on vegetation structure in Southwestern ponderosa pine forests, 1941 and 2004.

    PubMed

    Bakker, Jonathan D; Moore, Margaret M

    2007-09-01

    Long-term studies can broaden our ecological understanding and are particularly important when examining contingent effects that involve changes to dominance by long-lived species. Such a change occurred during the last century in Southwestern (USA) ponderosa pine (Pinus ponderosa) forests. We used five livestock grazing exclosures established in 1912 to quantify vegetation structure in 1941 and 2004. Our objectives were to (1) assess the effects of historical livestock grazing on overstory structure and age distribution, (2) assess the effects of recent livestock grazing and overstory on understory vegetation, and (3) quantify and explain changes in understory vegetation between 1941 and 2004. In 1941, canopy cover of tree regeneration was significantly higher inside exclosures. In 2004, total tree canopy cover was twice as high, density was three times higher, trees were smaller, and total basal area was 40% higher inside exclosures. Understory species density, herbaceous plant density, and herbaceous cover were negatively correlated with overstory vegetation in both years. Most understory variables did not differ between grazing treatments in 1941 but were lower inside exclosures in 2004. Differences between grazing treatments disappeared once overstory effects were accounted for, indicating that they were due to the differential overstory response to historical livestock grazing practices. Between 1941 and 2004, species density declined by 34%, herbaceous plant density by 37%, shrub cover by 69%, total herbaceous cover by 59%, graminoid cover by 39%, and forb cover by 82%. However, these variables did not differ between grazing treatments or years once overstory effects were accounted for, indicating that the declines were driven by the increased dominance of the overstory during this period. Our results demonstrate that historical livestock grazing practices are an aspect of land-use history that can affect ecosystem development. Grazing history must be considered when extrapolating results from one site to another. In addition, the understory vegetation was more strongly controlled by the ponderosa pine overstory than by recent livestock grazing or by temporal dynamics, indicating that overstory effects must be accounted for when examining understory responses in this ecosystem.

  15. Satellites observed widespread greening of Earth and increase of woody biomass

    NASA Astrophysics Data System (ADS)

    Chen, C.; Park, T.; Myneni, R.; Xu, L.; Saatchi, S. S.; Liu, Y.; Knyazikhin, Y.

    2017-12-01

    Global terrestrial vegetation is an important modulator of the planetary climate system that alters Earth's hydrology, atmosphere and energy circulations through biophysical and biochemical processes. Yet the internal structural change of the vegetation is not well understood. Leaf area index (LAI), unlike radiometric parameters (e.g. NDVI), is a well-defined and ground-measurable biophysical variable, which can better represent the greenness of vegetation. We evaluate 17-year (2000-2016) satellite-derived LAI from two MODIS sensors onboard Terra and Aqua. Results show that the global annual-averaged LAI has an increasing trend at 0.036 m2m-2 per decade (2.3% per decade). The widespread greening takes up 32.5% of the vegetated area, while only 5.2% of such exhibits browning. We further investigate the biome- and regional-specific patterns of the evolution of LAI: 1) Croplands (0.062 m2m-2 per decade) and forests (0.044 m2m-2 per decade) are the paramount contributors of the greening; 2) Temperate vegetation (0.052 m2m-2 per decade) greening outperform other regions, followed by high-latitude vegetation (0.031 m2m-2 per decade), and tropical vegetation (0.025 m2m-2 per decade) at the minimum. Two independent satellite-observed datasets from multiple bandwidths (optical, thermal and microwave) provide evidence that this large-scale LAI trend is mainly owing to the spatiotemporal transition of woody biomass and the change of canopy structure. The greening (browning) at the global scale is concordant with the increase (decrease) of tree cover and vegetation optical depth (VOD), while little correlation is found for herbaceous biomass (i.e. non-tree cover). The observed greening and expansion of woody biomass will lead to a smaller land surface diurnal temperature range (DTR) due to the increase of a) the evapotranspiration, b) the water storage (higher the specific heat capacity) and c) the aerodynamic resistance (vertical mixture) of the canopy. a) and c) can augment daytime cooling, while b) and c) can boost nighttime warming. We find, consistently, the MODIS observed land surface DTR decreases over greening regions, and increases over browning regions.

  16. Environmental Response of Small Urban Parks in Context of Dhaka City

    NASA Astrophysics Data System (ADS)

    Tabassum, S.

    2018-01-01

    Urban green spaces are essential element of urban life which, due to their structure and multi functionality, can play an exemplary role in the vitality and quality of urban life. Urban Parks are not only used as active recreational and leisure areas for its citizens but also an important catalyst for community development and enhancement. These spaces in the city act like its lungs and play a critical role in supporting the ecological and environmental system. In the dense urban areas, even Small Parks (less than one acre in size) can also contribute a lot to improve environmental quality of city life. In a populated city where it is difficult to incorporate large Public Parks, these small green area can complement large Public Park system. Accordingly the study is concerned to evaluate the environmental performances of Small Parks on the built environments of urban Dhaka. The analysis identifies that Small Parks has strong environmental impact, the intensity of which depends on the type and quality of its vegetation, its design parameters, connectivity and of course on surrounding urban morphology. And it is confirmed that park with more canopy tree is suitable for our environment and therefore a good combination of vegetation (wide canopy trees at periphery, medium canopy trees beside internal walkway and small canopy tree, shrub and grass cover elsewhere) are recommended for better environmental performance of Small Parks. The research will be an approach to find the ways and means to restore the Small Parks of Dhaka city to ensure the livability of the city and enhance the quality of city image.

  17. Relationships between canopy greenness and CO2 dynamics of a Mediterranean deciduous forest assessed with webcam imagery and MODIS vegetation indices

    NASA Astrophysics Data System (ADS)

    Balzarolo, M.; Papale, D.; Richardson, A. D.

    2009-04-01

    Phenological observations of foliar development and senescence are needed to understand the relationship between canopy properties and seasonal productivity dynamics (e.g., carbon uptake) of terrestrial ecosystems. Traditional phenological ground observations based on a visual observation of different vegetation growth phases (from first leaf opening, to first leaf flowering, full bloom until senescence) are laborious and typically limited to observations on just a few individual subjects. On the contrary, remote sensing techniques appear to offer the potential for assessing long-term variability in primary productivity at a global scale (Field et al., 1993). Recent studies have shown that biochemical and biophysical canopy properties can be measured with a quantifiable uncertainty that can be incorporated in the land-biosphere models (Ustin et al., 2004a; Ollinger et al 2008). Canopy greenness can be quantified by the use of vegetation indices (VIs) as, for example, Normalized Difference Vegetation Index (NDVI, Rouse et al., 1974; Deering, 1978), but a disadvantage of this approach is that there are uncertainties associated with these indices (due to the spatial and temporal resolution of the data), and the interpretation of a specific VI value, in the context of on-the-ground phenology, is not clear. Improved ground-based datasets are needed to validate and improve remotely-sensed phenological indices. Continuous monitoring of vegetation canopies with digital webcams (Richardson et al. 2007) may offer a direct link between phenological changes in canopy state and what is "seen" by satellite sensors. The general objective of this study is to analyze the relationship between biosphere-atmosphere CO2 exchange (measured by eddy covariance) and phenological canopy status, or greenness, of a Mediterranean deciduous broadleaf forest in central Italy (Roccarespampani, 42°24' N, 11°55' E). Canopy greenness is quantify using two different approaches: from digital webcam images, using indices derived from red, green and blue (RGB) color channel brightness (RGBi, after Richardson et al. 2007) and with VIs (e.g. NDVI, SR, MSR, GRDI, NCI, CI and SLAVI) derived from MODIS surface reflectance data (MOD09A1). Since MOD09A1 reflectance data represent the maximum surface reflectance of each band for a consecutive 8-day period, webcam imagery, as fluxes data, acquired whit half-hourly temporal resolution have been time averaged on 8 day period. Evaluation of performance of RGBi-VIs, RGBi-CO2flux and MODIS-CO2flux relationships were performed by linear regression analyses using the classical least squares (LS) statistical technique. Among all calculated vegetation indexes, GRDI (Green Red Difference Index: Gitelson et al., 2002) and SLAVI (Specific Leaf Area Vegetation Index: Lymburner et al., 2000) showed best linear fit with webcam RGBi greenness. SLAVI was also one of the vegetation indices best correlated with mean daily CO2 flux (R2=0.79). Finally, the relationship between RGBi and CO2 flux had a R2 of 0.67. Concluding, both webcam and MODIS greenness indices offer potential for assessing seasonal variation in the productivity of terrestrial ecosystems. Future work will focus on reducing the uncertainties inherent in these approaches, and integrating field observations of phenology into this study.

  18. (abstract) Studies of Interferometric Penetration into Vegetation Canopies using Multifrequency Interferometry Data at JPL

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Rodriguez, Ernesto; Truhafft, Bob; van Zyl, Jakob; Rosen, Paul; Werner, Charles; Madsen, Sren; Chapin, Elaine

    1997-01-01

    Radar interferometric observations both from spaceborne and airborne platforms have been used to generate accurate topographic maps, measure milimeter level displacements from earthquakes and volcanoes, and for making land cover classification and land cover change maps. Interferometric observations have two basic measurements, interferometric phase, which depends upon the path difference between the two antennas and the correlation. One of the key questions concerning interferometric observations of vegetated regions is where in the canopy does the interferometric phase measure the height. Results for two methods of extracting tree heights and other vegetation parameters based upon the amount of volumetric decorrelation will be presented.

  19. Determination of the Sources of Radar Scattering

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Zoughi, R.

    1984-01-01

    Fine-resolution radar backscattering measurements were proposed to determine the backscattering sources in various vegetation canopies and surface targets. The results were then used to improve the existing theoretical models of terrain scattering, and also to enhance understanding of the radar signal observed by an imaging radar over a vegetated area. Various experiments were performed on targets such as corn, milo, soybeans, grass, asphalt pavements, soil and concrete walkways. Due to the lack of available references on measurements of this type, the obtained results will be used primarily as a foundation or future experiments. The constituent backscattering characteristics of the vegetation canopies was also examined.

  20. Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar

    PubMed Central

    Casalegno, Stefano; Anderson, Karen; Cox, Daniel T. C.; Hancock, Steven; Gaston, Kevin J.

    2017-01-01

    The movements of organisms and the resultant flows of ecosystem services are strongly shaped by landscape connectivity. Studies of urban ecosystems have relied on two-dimensional (2D) measures of greenspace structure to calculate connectivity. It is now possible to explore three-dimensional (3D) connectivity in urban vegetation using waveform lidar technology that measures the full 3D structure of the canopy. Making use of this technology, here we evaluate urban greenspace 3D connectivity, taking into account the full vertical stratification of the vegetation. Using three towns in southern England, UK, all with varying greenspace structures, we describe and compare the structural and functional connectivity using both traditional 2D greenspace models and waveform lidar-generated vegetation strata (namely, grass, shrubs and trees). Measures of connectivity derived from 3D greenspace are lower than those derived from 2D models, as the latter assumes that all vertical vegetation strata are connected, which is rarely true. Fragmented landscapes that have more complex 3D vegetation showed greater functional connectivity and we found highest 2D to 3D functional connectivity biases for short dispersal capacities of organisms (6 m to 16 m). These findings are particularly pertinent in urban systems where the distribution of greenspace is critical for delivery of ecosystem services. PMID:28382936

  1. Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar

    NASA Astrophysics Data System (ADS)

    Casalegno, Stefano; Anderson, Karen; Cox, Daniel T. C.; Hancock, Steven; Gaston, Kevin J.

    2017-04-01

    The movements of organisms and the resultant flows of ecosystem services are strongly shaped by landscape connectivity. Studies of urban ecosystems have relied on two-dimensional (2D) measures of greenspace structure to calculate connectivity. It is now possible to explore three-dimensional (3D) connectivity in urban vegetation using waveform lidar technology that measures the full 3D structure of the canopy. Making use of this technology, here we evaluate urban greenspace 3D connectivity, taking into account the full vertical stratification of the vegetation. Using three towns in southern England, UK, all with varying greenspace structures, we describe and compare the structural and functional connectivity using both traditional 2D greenspace models and waveform lidar-generated vegetation strata (namely, grass, shrubs and trees). Measures of connectivity derived from 3D greenspace are lower than those derived from 2D models, as the latter assumes that all vertical vegetation strata are connected, which is rarely true. Fragmented landscapes that have more complex 3D vegetation showed greater functional connectivity and we found highest 2D to 3D functional connectivity biases for short dispersal capacities of organisms (6 m to 16 m). These findings are particularly pertinent in urban systems where the distribution of greenspace is critical for delivery of ecosystem services.

  2. Foraging and nesting habitat of breeding male northern goshawks in the laurentian mixed forest province, Minnesota

    USGS Publications Warehouse

    Boal, C.W.; Andersen, D.E.; Kennedy, P.L.

    2005-01-01

    We used radiotelemetry to examine foraging habitat preferences of 17 breeding, male northern goshawks (Accipiter gentilis) in Minnesota from 1998-2000. We assessed habitat preference using radio relocation points and 50-m radius buffers of radio relocation points. Our data suggested that foraging male goshawks used early-successional upland conifer stands (???25 yrs old), early-successional upland deciduous stands (???50 yrs old), late-successional upland conifer stands (???50 yrs old), and late-successional upland deciduous stands (???50 yrs old) more frequently than expected based on the abundance of these vegetation types in the landscape. The 2 most available stand types, early-successional upland deciduous (<25 yrs old) and all ages of late-successional lowland conifer stands, were used less than expected by foraging goshawks. Late-successional lowland deciduous stands (???50 yrs old) were used in proportion to availability. Although analysis of relocation points suggested early-successional upland deciduous stands (25-49 yrs old) and late-successional upland conifer stands (???50 yrs old) were used in proportion to availability, analysis of buffers around relocation points indicated that these stand types were also used more than expected by foraging goshawks. Regardless of vegetation community type, stands used by goshawks were structurally similar with high canopy and understory stem densities, high canopy closure, substantial shrub cover, and large amounts of woody debris. Nest stands consisted of taller and larger diameter canopy trees and fewer understory trees than foraging stands, but stands were otherwise similar in structural features, suggesting goshawks used similar stands for nesting and foraging but that they tended to select the most mature stands for nesting. A commonality among nesting and foraging stands was the presence of open spaces between the canopy and understory foliage, and between understory and shrub layer foliage. In our study area, these spaces may have served as relatively unobstructed flight paths where foraging and nesting stands possessed stem densities at the upper end of that reported for goshawk habitat.

  3. Forest structure of oak plantations after silvicultural treatment to enhance habitat for wildlife

    USGS Publications Warehouse

    Twedt, Daniel J.; Phillip, Cherrie-Lee P.; Guilfoyle, Michael P.; Wilson, R. Randy; Schweitzer, Callie Jo; Clatterbuck, Wayne K.; Oswalt, Christopher M.

    2016-01-01

    During the past 30 years, thousands of hectares of oak-dominated bottomland hardwood plantations have been planted on agricultural fields in the Mississippi Alluvial Valley. Many of these plantations now have closed canopies and sparse understories. Silvicultural treatments could create a more heterogeneous forest structure, with canopy gaps and increased understory vegetation for wildlife. Lack of volume sufficient for commercial harvest in hardwood plantations has impeded treatments, but demand for woody biomass for energy production may provide a viable means to introduce disturbance beneficial for wildlife. We assessed forest structure in response to prescribed pre-commercial perturbations in hardwood plantations resulting from silvicultural treatments: 1) row thinning by felling every fourth planted row; 2) multiple patch cuts with canopy gaps of <1 0.25 – 2 ha; and 3) tree removal on intersecting corridors diagonal to planted rows. These 3 treatments, and an untreated control, were applied to oak plantations (20 - 30 years post-planting) on three National Wildlife Refuges (Cache River, AR; Grand Cote, LA; and Yazoo, MS) during summer 2010. We sampled habitat using fixed-radius plots in 2009 (pre-treatment) and in 2012 (post-treatment) at random locations. Retained basal area was least in diagonal corridor treatments but had greater variance in patch-cut treatments. All treatments increased canopy openness and the volume of coarse woody debris. Occurrence of birds using early successional habitats was greater on sites treated with patch cuts and diagonal intersections. Canopy openings on row-thinned stands are being filled by lateral crown growth of retained trees whereas patch cut and diagonal intersection gaps appear likely to be filled by regenerating saplings.

  4. Canopy Height and Vertical Structure from Multibaseline Polarimetric InSAR: First Results of the 2016 NASA/ESA AfriSAR Campaign

    NASA Astrophysics Data System (ADS)

    Lavalle, M.; Hensley, S.; Lou, Y.; Saatchi, S. S.; Pinto, N.; Simard, M.; Fatoyinbo, T. E.; Duncanson, L.; Dubayah, R.; Hofton, M. A.; Blair, J. B.; Armston, J.

    2016-12-01

    In this paper we explore the derivation of canopy height and vertical structure from polarimetric-interferometric SAR (PolInSAR) data collected during the 2016 AfriSAR campaign in Gabon. AfriSAR is a joint effort between NASA and ESA to acquire multi-baseline L- and P-band radar data, lidar data and field data over tropical forests and savannah sites to support calibration, validation and algorithm development in preparation for the NISAR, GEDI and BIOMASS missions. Here we focus on the L-band UAVSAR dataset acquired over the Lope National Park in Central Gabon to demonstrate mapping of canopy height and vertical structure using PolInSAR and tomographic techniques. The Lope site features a natural gradient of forest biomass from the forest-savanna boundary (< 100 Mg/ha) to dense undisturbed humid tropical forests (> 400 Mg/ha). Our dataset includes 9 long-baseline, full-polarimetric UAVSAR acquisitions along with field and lidar data from the Laser Vegetation Ice Sensor (LVIS). We first present a brief theoretical background of the PolInSAR and tomographic techniques. We then show the results of our PolInSAR algorithms to create maps of canopy height generated via inversion of the random-volume-over-ground (RVOG) and random-motion-over-ground (RVoG) models. In our approach multiple interferometric baselines are merged incoherently to maximize the interferometric sensitivity over a broad range of tree heights. Finally we show how traditional tomographic algorithms are used for the retrieval of the full vertical canopy profile. We compare our results from the different PolInSAR/tomographic algorithms to validation data derived from lidar and field data.

  5. Intercomparison of clumping index estimates from POLDER, MODIS, and MISR satellite data over reference sites

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Govind, Ajit; Arndt, Stefan K.; Hocking, Darren; Wardlaw, Timothy J.; Fang, Hongliang; Matteucci, Giorgio; Longdoz, Bernard

    2015-03-01

    Clumping index is the measure of foliage grouping relative to a random distribution of leaves in space. It is a key structural parameter of plant canopies that influences canopy radiation regimes and controls canopy photosynthesis and other land-atmosphere interactions. The Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ˜6 km resolution and the Bidirectional Reflectance Distribution Function (BRDF) product from Moderate Resolution Imaging Spectroradiometer (MODIS) at 500 m resolution. Most recently the algorithm was also applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this study for the first time we characterized and compared the three products over a set of sites representing diverse biomes and different canopy structures. The products were also directly validated with both in-situ vertical profiles and available seasonal trajectories of clumping index over several sites. We demonstrated that the vertical distribution of foliage and especially the effect of understory need to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements responded to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can propagate into the foliage clumping maps. Our results indicate that MODIS data and MISR data, with 275 m in particular, can provide good quality clumping index estimates at spatial scales pertinent for modeling local carbon and energy fluxes.

  6. Green Infrastructure Increases Biogeochemical Responsiveness, Vegetation Growth and Decreases Runoff in a Semi-Arid City, Tucson, AZ, USA

    NASA Astrophysics Data System (ADS)

    Meixner, T.; Papuga, S. A.; Luketich, A. M.; Rockhill, T.; Gallo, E. L.; Anderson, J.; Salgado, L.; Pope, K.; Gupta, N.; Korgaonkar, Y.; Guertin, D. P.

    2017-12-01

    Green Infrastructure (GI) is often viewed as a mechanism to minimize the effects of urbanization on hydrology, water quality, and other ecosystem services (including the urban heat island). Quantifying the effects of GI requires field measurements of the dimensions of biogeochemical, ecosystem, and hydrologic function that we expect GI to impact. Here we investigated the effect of GI features in Tucson, Arizona which has a low intensity winter precipitation regime and a high intensity summer regime. We focused on understanding the effect of GI on soil hydraulic and biogeochemical properties as well as the effect on vegetation and canopy temperature. Our results demonstrate profound changes in biogeochemical and hydrologic properties and vegetation growth between GI systems and nearby control sites. In terms of hydrologic properties GI soils had increased water holding capacity and hydraulic conductivity. GI soils also have higher total carbon, total nitrogen, and organic matter in general than control soils. Furthermore, we tested the sampled soils (control and GI) for differences in biogeochemical response upon wetting. GI soils had larger respiration responses indicating greater biogeochemical activity overall. Long-term Lidar surveys were used to investigate the differential canopy growth of GI systems versus control sites. The results of this analysis indicate that while a significant amount of time is needed to observe differences in canopy growth GI features due increase tree size and thus likely impact street scale ambient temperatures. Additionally monitoring of transpiration, soil moisture, and canopy temperature demonstrates that GI features increase vegetation growth and transpiration and reduce canopy temperatures. These biogeochemical and ecohydrologic results indicate that GI can increase the biogeochemical processing of soils and increase tree growth and thus reduce urban ambient temperatures.

  7. Moving on from rigid plant stoichiometry: Optimal canopy nitrogen allocation within a novel land surface model

    NASA Astrophysics Data System (ADS)

    Caldararu, S.; Kern, M.; Engel, J.; Zaehle, S.

    2016-12-01

    Despite recent advances in global vegetation models, we still lack the capacity to predict observed vegetation responses to experimental environmental changes such as elevated CO2, increased temperature or nutrient additions. In particular for elevated CO2 (FACE) experiments, studies have shown that this is related in part to the models' inability to represent plastic changes in nutrient use and biomass allocation. We present a newly developed vegetation model which aims to overcome these problems by including optimality processes to describe nitrogen (N) and carbon allocation within the plant. We represent nitrogen allocation to the canopy and within the canopy between photosynthetic components as an optimal processes which aims to maximize net primary production (NPP) of the plant. We also represent biomass investment into aboveground and belowground components (root nitrogen uptake , biological N fixation) as an optimal process that maximizes plant growth by considering plant carbon and nutrient demands as well as acquisition costs. The model can now represent plastic changes in canopy N content and chlorophyll and Rubisco concentrations as well as in belowground allocation both on seasonal and inter-annual time scales. Specifically, we show that under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry would predicts a quick onset of N limitation. In general, our model aims to include physiologically-based plant processes and avoid arbitrarily imposed parameters and thresholds in order to improve our predictive capability of vegetation responses under changing environmental conditions.

  8. Remote sensing of vegetation structure using computer vision

    NASA Astrophysics Data System (ADS)

    Dandois, Jonathan P.

    High-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology---allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal conditions under which forest structure measurements should be obtained with UAS-SFM remote sensing. Ultimately remote sensing of vegetation by computer vision offers the potential to provide an 'ecologist's eye view', capturing not only canopy 3D and spectral properties, but also seeing the trees in the forest and the leaves on the trees.

  9. Effects of vegetation structure on soil carbon, nutrients and greenhouse gas exchange in a savannah ecosystem of Mount Kilimanjaro Region

    NASA Astrophysics Data System (ADS)

    Becker, J.

    2015-12-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. The canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine spatial trends and changes of soil parameters and relate their variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass C and N, Natural δ13C, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as root biomass and -density, soil temperature and soil water content. Concentrations and stocks of C and N fractions, CEC and K+ decreased up to 50% outside the crown covered area. Microbial C:N ratio and CO2 efflux was about 30% higher outside the crown. This indicates N limitation and low C use efficiency in soil outside the crown area. We conclude that the spatial structure of aboveground biomass in savanna ecosystems leads to a spatial variance in nutrient limitation. Therefore, the capability of a savanna ecosystem to act as a C sink is directly and indirectly dependent on the vegetation structure.

  10. Ground based remote sensing and physiological measurements provide novel insights into canopy photosynthetic optimization in arctic shrubs

    NASA Astrophysics Data System (ADS)

    Magney, T. S.; Griffin, K. L.; Boelman, N.; Eitel, J.; Greaves, H.; Prager, C.; Logan, B.; Oliver, R.; Fortin, L.; Vierling, L. A.

    2014-12-01

    Because changes in vegetation structure and function in the Arctic are rapid and highly dynamic phenomena, efforts to understand the C balance of the tundra require repeatable, objective, and accurate remote sensing methods for estimating aboveground C pools and fluxes over large areas. A key challenge addressing the modelling of aboveground C is to utilize process-level information from fine-scale studies. Utilizing information obtained from high resolution remote sensing systems could help to better understand the C source/sink strength of the tundra, which will in part depend on changes in photosynthesis resulting from the partitioning of photosynthetic machinery within and among deciduous shrub canopies. Terrestrial LiDAR and passive hyperspectral remote sensing measurements offer an effective, repeatable, and scalable method to understand photosynthetic performance and partitioning at the canopy scale previously unexplored in arctic systems. Using a 3-D shrub canopy model derived from LiDAR, we quantified the light regime of leaves within shrub canopies to gain a better understanding of how light interception varies in response to the Arctic's complex radiation regime. This information was then coupled with pigment sampling (i.e., xanthophylls, and Chl a/b) to evaluate the optimization of foliage photosynthetic capacity within shrub canopies due to light availability. In addition, a lab experiment was performed to validate evidence of canopy level optimization via gradients of light intensity and leaf light environment. For this, hyperspectral reflectance (photochemical reflectance index (PRI)), and solar induced fluorescence (SIF)) was collected in conjunction with destructive pigment samples (xanthophylls) and chlorophyll fluorescence measurements in both sunlit and shaded canopy positions.

  11. Microwave propagation constant for a vegetation canopy with vertical stalks

    NASA Technical Reports Server (NTRS)

    Ulaby, Fawwaz T.; Tavakoli, Ahad; Senior, Thomas B. A.

    1987-01-01

    An equivalent-medium model is developed to relate the propagation constant gamma, associated with propagation of the mean field through a vegetation canopy, to the geometrical and dielectric parameters of the canopy constituents. The model is intended for media containing vertical cylinders, representing the stalks, and randomly oriented disks, representing the leaves. The formulation accounts for both absorption and scattering by the cylinders, but uses a quasi-static approximation with respect to the leaves. The model was found to be in good agreement with experimental results at 1.62 and 4.75 GHz, but underestimates the extinction loss at 10.2 GHz. The experimental component of the study included measurements of the attenuation loss for horizontally polarized and vertically polarized waves transmitted through a fully grown corn canopy, and of the phase difference between the two transmitted waves. The measurements were made at incidence angles of 20, 40, 60, and 90 deg relative to normal incidence. The major conclusion of this study is that the proposed model is suitable for corn-like canopies, provided the leaves are smaller than lambda in size.

  12. Forest canopy growth dynamic modeling based on remote sensing prodcuts and meteorological data in Daxing'anling of Northeast China

    NASA Astrophysics Data System (ADS)

    Wu, Qiaoli; Song, Jinling; Wang, Jindi; Xiao, Zhiqiang

    2014-11-01

    Leaf Area Index (LAI) is an important biophysical variable for vegetation. Compared with vegetation indexes like NDVI and EVI, LAI is more capable of monitoring forest canopy growth quantitatively. GLASS LAI is a spatially complete and temporally continuous product derived from AVHRR and MODIS reflectance data. In this paper, we present the approach to build dynamic LAI growth models for young and mature Larix gmelinii forest in north Daxing'anling in Inner Mongolia of China using the Dynamic Harmonic Regression (DHR) model and Double Logistic (D-L) model respectively, based on the time series extracted from multi-temporal GLASS LAI data. Meanwhile we used the dynamic threshold method to attract the key phenological phases of Larix gmelinii forest from the simulated time series. Then, through the relationship analysis between phenological phases and the meteorological factors, we found that the annual peak LAI and the annual maximum temperature have a good correlation coefficient. The results indicate this forest canopy growth dynamic model to be very effective in predicting forest canopy LAI growth and extracting forest canopy LAI growth dynamic.

  13. Distinguishing the vegetation dynamics induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI: A cross-border study on the Mongolian Plateau.

    PubMed

    Zhou, Xiang; Yamaguchi, Yasushi; Arjasakusuma, Sanjiwana

    2018-03-01

    Distinguishing the vegetation dynamics induced by anthropogenic factors and identifying the major drivers can provide crucial information for designing actionable and practical countermeasures to restore degraded grassland ecosystems. Based on the residual trend (RESTREND) method, this study distinguished the vegetation dynamics induced by anthropogenic factors from the effects of climate variability on the Mongolian Plateau during 1993-2012 using vegetation optical depth (VOD) and normalized difference vegetation index (NDVI), which measure vegetation water content in aboveground biomass and chlorophyll abundance in canopy cover respectively; afterwards, the major drivers within different agricultural zones and socio-institutional periods were identified by integrating agricultural statistics with statistical analysis techniques. The results showed that grasslands in Mongolia and the grazing zone of Inner Mongolia Autonomous Region (IMAR), China underwent a significant human-induced decrease in aboveground biomass during 1993-2012 and 1993-2000 respectively, which was attributable to the rapid growth of livestock densities stimulated by livestock privatization and market factors; by contrast, grasslands in these two regions did not experience a concurrent human-induced reduction in canopy greenness. Besides, the results indicated that grasslands in the grazing zone of IMAR underwent a significant human-induced increase in aboveground biomass since 2000, which was attributable to the reduced grazing pressure induced by China's ecological restoration programs; concurrently, grasslands in this region also experienced a remarkable increase in canopy greenness, however, this increase was found not directly caused by the decreased stocking densities. Furthermore, the results revealed that the farming and semi-grazing/farming zone of IMAR underwent a significant human-induced increase in both aboveground biomass and canopy greenness since 2000, which was attributable to the intensified grain production stimulated by market factors, open grazing regulation and confined feeding popularization. These findings suggest that China's grassland restoration practice has important implications for Mongolia to reverse the severe and continuous grassland degradation in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Assessment of the biophysical characteristics of rangeland community using scatterometer and optical measurements

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Asrar, Ghassem; Myneni, Ranga; Martin, Robert, Jr.; Burnett, R. Bruce

    1987-01-01

    Research activities for the following study areas are summarized: single scattering of parallel direct and axially symmetric diffuse solar radiation in vegetative canopies; the use of successive orders of scattering approximations (SOSA) for treating multiple scattering in a plant canopy; reflectance of a soybean canopy using the SOSA method; and C-band scatterometer measurements of the Konza tallgrass prairie.

  15. Method and apparatus for measuring solar radiation in a vegetative canopy

    DOEpatents

    Gutschick, V.P.; Barron, M.H.; Waechter, D.A.; Wolf, M.A.

    1985-04-30

    An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.

  16. Method and apparatus for measuring solar radiation in a vegetative canopy

    DOEpatents

    Gutschick, Vincent P.; Barron, Michael H.; Waechter, David A.; Wolf, Michael A.

    1987-01-01

    An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.

  17. Scattering and emission from inhomogeneous vegetation canopy and alien target beneath by using three-dimensional vector radiative transfer (3D-VRT) equation

    NASA Astrophysics Data System (ADS)

    Jin, Ya-Qiu; Liang, Zichang

    2005-05-01

    To solve the 3D-VRT equation for the model of spatially inhomogeneous scatter media, the finite enclosure of the scatter media is geometrically divided, in both vertical z and transversal (x,y) directions, to form very thin multi-boxes. The zeroth order emission, first-order Mueller matrix of each thin box and an iterative approach of high-order radiative transfer are applied to derive high-order scattering and emission of whole inhomogeneous scatter media. Numerical results of polarized brightness temperature at microwave frequency and under different radiometer resolutions from inhomogeneous scatter model such as vegetation canopy and alien target beneath canopy are simulated and discussed.

  18. The influence of canopy shading of snow on effective albedo in forested environments

    NASA Astrophysics Data System (ADS)

    Webster, C.; Jonas, T.

    2017-12-01

    The overlap of highly reflective snow and absorbent forested areas creates strong heterogeneity in the effective surface albedo compared to forest-free areas. Current errors in calculations of effective forest snow albedo arise due to uncertainties in how models should treat masking of snow by vegetation but improvement of local and large scale models is currently limited by a lack of measurements that demonstrate both spatial and temporal variability over forests. We present above-canopy measurements of winter-time effective forest snow albedo using up- and down-looking radiometers mounted on an octocopter UAV for a total of fifteen flights on eight different days. Ground-view fractions across the flight path were between 0.12 and 0.81. Correlations between effective albedo and both ground-view fraction and canopy height were statistically significant during 14 out of 15 flights, but varied between flights due to solar angle and snow cover. Measured effective albedo across the flight path differed by up to 0.33 during snow-on canopy conditions. A comparison between maximum interception and no interception showed effective albedo varied by up 0.17, which was the same variation between effective albedo during high (46°) and low (23°) solar elevation angles. Temporal and spatial variations in effective albedo caused by canopy shading of the snow surface are therefore as important as temporal variations caused by interception of snow by the canopy. Calculation of effective albedo over forested areas therefore requires careful consideration of canopy height, canopy coverage, solar angle and interception load. The results of this study should be used to inform snow albedo and canopy structure parametrisations in local and larger scale land surface models.

  19. On the spatial coherence of temperature within and above a vineyard under drainage conditions

    NASA Astrophysics Data System (ADS)

    Everard, K.; Giometto, M. G.; Christen, A.; Oldroyd, H. J.; Parlange, M. B.

    2017-12-01

    We show that turbulent exchange within vineyards under nighttime drainage conditions is controlled by large-scale coherent structures arising from a mixing-layer type instability at the canopy top, h. A combination of measurements and large-eddy simulations (LESs) are here used to characterize the onset and development of such structures as a function of the approaching wind angle over an organized canopy during drainage flows. Measurements were carried out over a west-facing 7° vineyard slope near Oliver, BC, Canada in the Okanagan Valley between July 5 and July 22, 2016. The vineyard canopy had an average height of h = 2.3 m, with parallel rows oriented in the local downslope direction (i.e. east-west). The set-up consisted of an array of five vertically arranged ultrasonic anemometers at z/h = 0.19, 0.39, 0.65, 1.02, and 2.06, and a 2-D grid of 40 fine-wire thermocouples arranged at the same heights as the ultrasonic anemometer array on 8 separate masts extending in the upslope direction at locations up to x/h = 13.91 from the flux tower. To complement observations, pressure-driven open-channel flow LESs are performed over a regular domain where vegetation is accounted for via a space dependent drag force. The drainage flow regime is emulated via a tuned pressure-gradient forcing, and different approaching wind angles are considered. Linear stability analyses show that the most unstable mode at the canopy top strongly depends on the approaching wind angle. Space-lagged correlations from measurements show that the lifetime of such eddies within the canopy also depends on the approaching wind direction, with longer lifetimes observed when wind angles are directed along the vine-rows. LESs are compared with measured quantities to ensure matching, and then used to investigate in detail the influence of the above-canopy wind vectors on eddy lifetimes. The impact of the observed coherent structures on momentum and heat exchange coefficients are also discussed.

  20. Removing forest canopy cover restores a reptile assemblage.

    PubMed

    Pike, David A; Webb, Jonathan K; Shine, Richard

    2011-01-01

    Humans are rapidly altering natural systems, leading to changes in the distribution and abundance of species. However, so many changes are occurring simultaneously (e.g., climate change, habitat fragmentation) that it is difficult to determine the cause of population fluctuations from correlational studies. We used a manipulative field experiment to determine whether forest canopy cover directly influences reptile assemblages on rock outcrops in southeastern Australia. Our experimental design consisted of three types of rock outcrops: (1) shady sites in which overgrown vegetation was manually removed (n = 25); (2) overgrown controls (n = 30); and (3) sun-exposed controls (n = 20). Following canopy removal, we monitored reptile responses over 30 months. Canopy removal increased reptile species richness, the proportion of shelter sites used by reptiles, and relative abundances of five species that prefer sun-exposed habitats. Our manipulation also decreased the abundances of two shade-tolerant species. Canopy cover thus directly influences this reptile assemblage, with the effects of canopy removal being dependent on each species' habitat preferences (i.e., selection or avoidance of sun-exposed habitat). Our study suggests that increases in canopy cover can cause declines of open-habitat specialists, as previously suggested by correlative studies from a wide range of taxa. Given that reptile colonization of manipulated outcrops occurred rapidly, artificially opening the canopy in ecologically informed ways could help to conserve imperiled species with patchy distributions and low vagility that are threatened by vegetation overgrowth. One such species is Australia's most endangered snake, the broadheaded snake (Hoplocephalus bungaroides).

  1. Evaluation of airborne lidar data to predict vegetation Presence/Absence

    USGS Publications Warehouse

    Palaseanu-Lovejoy, M.; Nayegandhi, A.; Brock, J.; Woodman, R.; Wright, C.W.

    2009-01-01

    This study evaluates the capabilities of the Experimental Advanced Airborne Research Lidar (EAARL) in delineating vegetation assemblages in Jean Lafitte National Park, Louisiana. Five-meter-resolution grids of bare earth, canopy height, canopy-reflection ratio, and height of median energy were derived from EAARL data acquired in September 2006. Ground-truth data were collected along transects to assess species composition, canopy cover, and ground cover. To decide which model is more accurate, comparisons of general linear models and generalized additive models were conducted using conventional evaluation methods (i.e., sensitivity, specificity, Kappa statistics, and area under the curve) and two new indexes, net reclassification improvement and integrated discrimination improvement. Generalized additive models were superior to general linear models in modeling presence/absence in training vegetation categories, but no statistically significant differences between the two models were achieved in determining the classification accuracy at validation locations using conventional evaluation methods, although statistically significant improvements in net reclassifications were observed. ?? 2009 Coastal Education and Research Foundation.

  2. [Canopy interception of sub-alpine dark coniferous communities in western Sichuan, China].

    PubMed

    Lü, Yu-liang; Liu, Shi-rong; Sun, Peng-sen; Liu, Xing-liang; Zhang, Rui-pu

    2007-11-01

    Based on field measurements of throughfall and stemflow in combination with climatic data collected from the meteorological station adjacent to the studied sub-alpine dark coniferous forest in Wolong, Sichuan Province, canopy interception of sub-alpine dark coniferous forests was analyzed and modeled at both stand scale and catchment scale. The results showed that monthly interception rate of Fargesia nitida, Bashania fangiana--Abies faxoniana old-growth ranged from 33% Grass to 72%, with the average of 48%. In growing season, there was a linear or powerful or exponential relationship between rainfall and interception an. a negative exponential relationship between rainfall and interception rate. The mean maximum canopy interception by the vegetation in the catchment of in.44 km was 1.74 ment and the significant differences among the five communities occurred in the following sequence: Moss-Fargesia nitida, Bashan afanglana-A. faxoniana stand > Grass-F. nitida, B. fangiana-A. faxoniana stand > Moss-Rhododendron spp.-A. faxoniana stand > Grass-Rh. spp.-A. faxoniana stand > Rh. spp. shrub. In addition, a close linear relationship existed between leaf area index (LAI) and maximum canopy interception. The simulated value of canopy interception rate, maximum canopy interception rate and addition interception rate of the vegetation in the catchment were 39%, 25% and 14%, respectively. Simulation of the canopy interception model was better at the overall growing season scale, that the mean relative error was 9%-14%.

  3. Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.

    1987-01-01

    A two-stream approximation to the radiative-transfer equation is used to calculate the vegetation indices (simple ratio and normalized difference), the fraction of incident photosynthetically active radiation (PAR) absorbed by the canopy, and the daily mean canopy net photosynthesis under clear-sky conditions. The model calculations are tested against field observations over wheat, cotton, corn, and soybean. The relationships between the vegetation indices and radiation absorption or net photosynthesis are generally found to be curvilinear, and changes in the soil reflectance affected these relationships. The curvilinearity of the relationship between normalized differences and PAR absorption decreases as the magnitude of soil reflectance increases. The vegetation indices might provide the fractional radiation absorption with some a priori knowledge about soil reflectance. The relationship between the vegetation indices and net photosynthesis must be distinguished for C3 and C4 crops. Effects of spatial heterogeneity are discussed.

  4. EFFECTS OF EELGRASS ZOSTRA MARINA CANOPIES ON FLOW AND TRANSPORT

    EPA Science Inventory

    Ecological effects of the interaction between submerged aquatic vegetation and currents depend on the plants and their associated organisms as well as the large-scale transport of dissolved and suspended constituents near the canopy. Mathematical models for airflow within plant c...

  5. Lidar remote sensing of savanna biophysical attributes

    NASA Astrophysics Data System (ADS)

    Gwenzi, David

    Although savanna ecosystems cover approximately 20 % of the terrestrial land surface and can have productivity equal to some closed forests, their role in the global carbon cycle is poorly understood. This study explored the applicability of a past spaceborne Lidar mission and the potential of future missions to estimate canopy height and carbon storage in these biomes. The research used data from two Oak savannas in California, USA: the Tejon Ranch Conservancy in Kern County and the Tonzi Ranch in Santa Clara County. In the first paper we used non-parametric regression techniques to estimate canopy height from waveform parameters derived from the Ice Cloud and land Elevation Satellite's Geoscience Laser Altimeter System (ICESat-GLAS) data. Merely adopting the methods derived for forests did not produce adequate results but the modeling was significantly improved by incorporating canopy cover information and interaction terms to address the high structural heterogeneity inherent to savannas. Paper 2 explored the relationship between canopy height and aboveground biomass. To accomplish this we developed generalized models using the classical least squares regression modeling approach to relate canopy height to above ground woody biomass and then employed Hierarchical Bayesian Analysis (HBA) to explore the implications of using generalized instead of species composition-specific models. Models that incorporated canopy cover proxies performed better than those that did not. Although the model parameters indicated interspecific variability, the distribution of the posterior densities of the differences between composition level and global level parameter values showed a high support for the use of global parameters, suggesting that these canopy height-biomass models are universally (large scale) applicable. As the spatial coverage of spaceborne lidar will remain limited for the immediate future, our objective in paper 3 was to explore the best means of extrapolating plot level biomass into wall-to-wall maps that provide more ecological information. We evaluated the utility of three spatial modeling approaches to address this problem: deterministic methods, geostatistical methods and an image segmentation approach. Overall, the mean pixel biomass estimated by the 3 approaches did not differ significantly but the output maps showed marked differences in the estimation precision and ability of each model to mimic the primary variable's trend across the landscape. The results emphasized the need for future satellite lidar missions to consider increasing the sampling intensity across track so that biomass observations are made and characterized at the scale at which they vary. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA Goddard to simulate ICESat-2 data. We segmented each transect into different block sizes and calculated canopy top and mean ground elevation based on the structure of the histogram of the block's aggregated photons. Our algorithm was able to compute canopy height and generate visually meaningful vegetation profiles at MABEL's signal and noise levels but a simulation of the expected performance of ICESat-2 by adjusting MABEL data's detected number of signal and noise photons to that predicted using ATLAS instrument model design cases indicated that signal photons will be substantially lower. The lower data resolution reduces canopy height estimation precision especially in areas of low density vegetation cover. Given the clear difficulties in processing simulated ATLAS data, it appears unlikely that it will provide the kind of data required for mapping of the biophysical properties of savanna vegetation. Rather, resources are better concentrated on preparing for the Global Ecosystem Dynamics Investigation (GEDI) mission, a waveform lidar mission scheduled to launch by the end of this decade. In addition to the full waveform technique, GEDI will collect data from 25 m diameter contiguous footprints with a high across track density, a requirement that we identified as critically necessary in paper 3. (Abstract shortened by UMI.).

  6. Spectral Bio-indicator Simulations for Tracking Photosynthetic Activities in a Corn Field

    NASA Technical Reports Server (NTRS)

    Cheng, Yen-Ben; Middleton, Elizabeth M.; Huemmrich, K. Fred; Zhang, Qingyuan; Corp, Lawrence; Campbell, Petya; Kustas, William

    2011-01-01

    Accurate assessment of vegetation canopy optical properties plays a critical role in monitoring natural and managed ecosystems under environmental changes. In this context, radiative transfer (RT) models simulating vegetation canopy reflectance have been demonstrated to be a powerful tool for understanding and estimating spectral bio-indicators. In this study, two narrow band spectroradiometers were utilized to acquire observations over corn canopies for two summers. These in situ spectral data were then used to validate a two-layer Markov chain-based canopy reflectance model for simulating the Photochemical Reflectance Index (PRI), which has been widely used in recent vegetation photosynthetic light use efficiency (LUE) studies. The in situ PRI derived from narrow band hyperspectral reflectance exhibited clear responses to: 1) viewing geometry which affects the asset of light environment; and 2) seasonal variation corresponding to the growth stage. The RT model (ACRM) successfully simulated the responses to the variable viewing geometry. The best simulations were obtained when the model was set to run in the two layer mode using the sunlit leaves as the upper layer and shaded leaves as the lower layer. Simulated PRI values yielded much better correlations to in situ observations when the cornfield was dominated by green foliage during the early growth, vegetative and reproductive stages (r = 0.78 to 0.86) than in the later senescent stage (r = 0.65). Further sensitivity analyses were conducted to show the important influences of leaf area index (LAI) and the sunlit/shaded ratio on PRI observations.

  7. Monitoring tree health with a dual-wavelength terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Hancock, S.

    2013-12-01

    Steven Hancock1, Rachel Gaulton1, Mark Danson2 1School of Civil Engineering and Geosciences, Newcastle University, UK, steven.hancock@ncl.ac.uk, rachel.gaulton@ncl.ac.uk 2 School of Environment and Life Sciences, University of Salford, UK, F.M.Danson@salford.ac.uk Forests are a vital part of the Earth's carbon cycle and drive interactions between the land and atmosphere. Accurate and repeatable measurement of forests is essential for understanding the Earth system. Terrestrial laser scanning can be a powerful tool for characterising forests. However, there are a number of issues that have yet to be resolved. Commercial laser scanners are optimised for measuring buildings and other hard targets. Vegetation canopies are complex and porous, confounding standard interpretation techniques. Commercial systems struggle with partial hits and cannot distinguish leaf from wood (Danson et al 2007). A new generation of terrestrial laser scanners, optimised for vegetation measurement, are in development. The Salford Advanced Laser Canopy Analyser (SALCA, Gaulton et al 2013) aims to overcome these issues using full-waveform analysis and two wavelengths (1064 nm and 1545 nm), allowing the characterisation of a porous canopy, the identification of leaf and wood and derivation of information on leaf biochemistry. Gaulton et al (2013) showed that SALCA is capable of measuring the Equivalent Water Thickness (EWT) of individual leaves in laboratory conditions. In this study, the method was applied to complete tree canopies. A controlled experiment simulating a small 'forest' of potted broadleaved (Tilia cordata) and coniferous trees (Pinus nigra) was established and groups subjected to different moisture stresses over a one month period. Trees were repeatedly scanned by SALCA and regular measurements were made of leaf EWT, stomatal conductance, chlorophyll content, spectral properties (using an ASD field spectroradiometer) and, for a limited number of trees, leaf area (by destructive harvesting). Trees were arranged so that some were clearly visible to the scanner and could be analysed individually (a best case scenario) whilst others were grouped to form a denser, more realistic canopy (a worse case scenario). A method was developed to simultaneously extract canopy structure (leaf area, tree height and clumping) and leaf biochemistry (EWT) from the laser scanner data. These results were compared to ground to assess their accuracy. References Danson, F. M., Hetherington D., Morsdorf F., Koetz B., Allgower B., 2007. Forest canopy gap fraction from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 4, 157-160. Gaulton R., Danson F. M., Ramirez F. A., Gunawan O., 2013. The potential of dual-wavelength laser scanning for estimating vegetation moisture content. Remote Sensing of Environment, 132, 32-39.

  8. Canopy reflectance modelling of semiarid vegetation

    NASA Technical Reports Server (NTRS)

    Franklin, Janet

    1994-01-01

    Three different types of remote sensing algorithms for estimating vegetation amount and other land surface biophysical parameters were tested for semiarid environments. These included statistical linear models, the Li-Strahler geometric-optical canopy model, and linear spectral mixture analysis. The two study areas were the National Science Foundation's Jornada Long Term Ecological Research site near Las Cruces, NM, in the northern Chihuahuan desert, and the HAPEX-Sahel site near Niamey, Niger, in West Africa, comprising semiarid rangeland and subtropical crop land. The statistical approach (simple and multiple regression) resulted in high correlations between SPOT satellite spectral reflectance and shrub and grass cover, although these correlations varied with the spatial scale of aggregation of the measurements. The Li-Strahler model produced estimated of shrub size and density for both study sites with large standard errors. In the Jornada, the estimates were accurate enough to be useful for characterizing structural differences among three shrub strata. In Niger, the range of shrub cover and size in short-fallow shrublands is so low that the necessity of spatially distributed estimation of shrub size and density is questionable. Spectral mixture analysis of multiscale, multitemporal, multispectral radiometer data and imagery for Niger showed a positive relationship between fractions of spectral endmembers and surface parameters of interest including soil cover, vegetation cover, and leaf area index.

  9. Satellite observed global variations in ecosystem-scale plant water storage

    NASA Astrophysics Data System (ADS)

    Tian, F.; Wigneron, J. P.; Brandt, M.; Fensholt, R.

    2017-12-01

    Plant water storage is a key component in ecohydrological processes and tightly coupled with global carbon and energy budgets. Field measurements of individual trees have revealed diurnal and seasonal variations in plant water storage across different tree species and sizes. However, global estimation of plant water storage is challenged by up-scaling from individual trees to an ecosystem scale. The L-band passive microwaves are sensitive to water stored in the stems, branches and leaves, with dependence on the vegetation structure. Thus, the L-band vegetation optical depth (L-VOD) parameter retrieved from satellite passive microwave observations can be used as a proxy for ecosystem-scale plant water storage. Here, we employ the recently developed SMOS (Soil Moisture and Ocean Salinity) L-VOD dataset to investigate spatial patterns in global plant water storage and its diurnal and seasonal variations. In addition, we compare the spatiotemporal patterns between plant water storage and canopy greenness (i.e., enhanced vegetation indices, EVI) to gain ecohydrological insights among different territorial biomes, including boreal forest and tropical woodland. Generally, seasonal dynamics of plant water storage is much smaller than canopy greenness, yet the temporal coupling of these two traits is totally different between boreal and tropical regions, which could be related to their strategies in plant water regulation.

  10. Ecological-site based assessments of wind and water erosion: informing management of accelerated soil erosion in rangelands

    NASA Astrophysics Data System (ADS)

    Webb, N.; Herrick, J.; Duniway, M.

    2013-12-01

    This work explores how soil erosion assessments can be structured in the context of ecological sites and site dynamics to inform systems for managing accelerated soil erosion. We evaluated wind and water erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Our results show that wind and water erosion can be highly variable within and among ecological sites. Plots in shrub-encroached and shrub-dominated states were consistently susceptible to both wind and water erosion. However, grassland plots and plots with a grass-succulent mix had a high indicated susceptibility to wind and water erosion respectively. Vegetation thresholds for controlling erosion are identified that transcend the ecological sites and their respective states. The thresholds define vegetation cover levels at which rapid (exponential) increases in erosion rates begin to occur, suggesting that erosion in the study ecosystem can be effectively controlled when bare ground cover is <20% of a site or total ground cover is >50%. Similarly, our results show that erosion can be controlled when the cover of canopy interspaces >50 cm in length reaches ~50%, the cover of canopy interspaces >100 cm in length reaches ~35% or the cover of canopy interspaces >150 cm in length reaches ~20%. This process-based understanding can be applied, along with knowledge of the differential sensitivity of vegetation states, to improve erosion management systems. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of sites to erosion. Land use impacts that are constrained within the natural variability of sites should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds and natural variability of ecological sites will enable improved identification of where and when accelerated soil erosion occurs and the development of practical management solutions.

  11. Measuring urban tree loss dynamics across residential landscapes.

    PubMed

    Ossola, Alessandro; Hopton, Matthew E

    2018-01-15

    The spatial arrangement of urban vegetation depends on urban morphology and socio-economic settings. Urban vegetation changes over time because of human management. Urban trees are removed due to hazard prevention or aesthetic preferences. Previous research attributed tree loss to decreases in canopy cover. However, this provides little information about location and structural characteristics of trees lost, as well as environmental and social factors affecting tree loss dynamics. This is particularly relevant in residential landscapes where access to residential parcels for field surveys is limited. We tested whether multi-temporal airborne LiDAR and multi-spectral imagery collected at a 5-year interval can be used to investigate urban tree loss dynamics across residential landscapes in Denver, CO and Milwaukee, WI, covering 400,705 residential parcels in 444 census tracts. Position and stem height of trees lost were extracted from canopy height models calculated as the difference between final (year 5) and initial (year 0) vegetation height derived from LiDAR. Multivariate regression models were used to predict number and height of tree stems lost in residential parcels in each census tract based on urban morphological and socio-economic variables. A total of 28,427 stems were lost from residential parcels in Denver and Milwaukee over 5years. Overall, 7% of residential parcels lost one stem, averaging 90.87 stems per km 2 . Average stem height was 10.16m, though trees lost in Denver were taller compared to Milwaukee. The number of stems lost was higher in neighborhoods with higher canopy cover and developed before the 1970s. However, socio-economic characteristics had little effect on tree loss dynamics. The study provides a simple method for measuring urban tree loss dynamics within and across entire cities, and represents a further step toward high resolution assessments of the three-dimensional change of urban vegetation at large spatial scales. Published by Elsevier B.V.

  12. A LAI inversion algorithm based on the unified model of canopy bidirectional reflectance distribution function for the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Ma, B.; Li, J.; Fan, W.; Ren, H.; Xu, X.

    2017-12-01

    Leaf area index (LAI) is one of the important parameters of vegetation canopy structure, which can represent the growth condition of vegetation effectively. The accuracy, availability and timeliness of LAI data can be improved greatly, which is of great importance to vegetation-related research, such as the study of atmospheric, land surface and hydrological processes to obtain LAI by remote sensing method. Heihe River Basin is the inland river basin in northwest China. There are various types of vegetation and all kinds of terrain conditions in the basin, so it is helpful for testing the accuracy of the model under the complex surface and evaluating the correctness of the model to study LAI in this area. On the other hand, located in west arid area of China, the ecological environment of Heihe Basin is fragile, LAI is an important parameter to represent the vegetation growth condition, and can help us understand the status of vegetation in the Heihe River Basin. Different from the previous LAI inversion models, the BRDF (bidirectional reflectance distribution function) unified model can be applied for both continuous vegetation and discrete vegetation, it is appropriate to the complex vegetation distribution. LAI is the key input parameter of the model. We establish the inversion algorithm that can exactly retrieve LAI using remote sensing image based on the unified model. First, we determine the vegetation type through the vegetation classification map to obtain the corresponding G function, leaf and surface reflectivity. Then, we need to determine the leaf area index (LAI), the aggregation index (ζ) and the sky scattered light ratio (β) range and the value of the interval, entering all the parameters into the model to calculate the corresponding reflectivity ρ and establish the lookup table of different vegetation. Finally, we can invert LAI on the basis of the established lookup table. The principle of inversion is least squares method. We have produced 1 km LAI products from 2000 to 2014, once every 8 days. The results show that the algorithm owns good stability and can effectively invert LAI in areas with very complex vegetation and terrain conditions.

  13. Potential effects of forest management on surface albedo

    NASA Astrophysics Data System (ADS)

    Otto, J.; Bréon, F.-M.; Schelhaas, M.-J.; Pinty, B.; Luyssaert, S.

    2012-04-01

    Currently 70% of the world's forests are managed and this figure is likely to rise due to population growth and increasing demand for wood based products. Forest management has been put forward by the Kyoto-Protocol as one of the key instruments in mitigating climate change. For temperate and boreal forests, the effects of forest management on the stand-level carbon balance are reasonably well understood, but the biophysical effects, for example through changes in the albedo, remain elusive. Following a modeling approach, we aim to quantify the variability in albedo that can be attributed to forest management through changes in canopy structure and density. The modelling approach chains three separate models: (1) a forest gap model to describe stand dynamics, (2) a Monte-Carlo model to estimate the probability density function of the optical path length of photons through the canopy and (3) a physically-based canopy transfer model to estimate the interaction between photons and leaves. The forest gap model provides, on a monthly time step the position, height, diameter, crown size and leaf area index of individual trees. The Monte-Carlo model computes from this the probability density function of the distance a photon travels through crown volumes to determine the direct light reaching the forest floor. This information is needed by the canopy transfer model to calculate the effective leaf area index - a quantity that allows it to correctly represent a 3D process with a 1D model. Outgoing radiation is calculated as the result of multiple processes involving the scattering due to the canopy layer and the forest floor. Finally, surface albedo is computed as the ratio between incident solar radiation and calculated outgoing radiation. The study used two time series representing thinning from below of a beech and a Scots pine forest. The results show a strong temporal evolution in albedo during stand establishment followed by a relatively stable albedo once the canopy is closed. During this period, albedo is affected for a short time by forest operations. The modelling approach allowed us to estimate the importance of ground vegetation in the stand albedo. Given that ground vegetation depends on the light reaching the forest floor, ground vegetation could act as a natural buffer to dampen changes in albedo, allowing the stand to maintain optimal leaf temperature. Consequently, accounting for only the carbon balance component of forest management ignores albedo impacts and is thus likely to yield biased estimates of the climate benefits of forest ecosystems.

  14. Global Forest Canopy Height Maps Validation and Calibration for The Potential of Forest Biomass Estimation in The Southern United States

    NASA Astrophysics Data System (ADS)

    Ku, N. W.; Popescu, S. C.

    2015-12-01

    In the past few years, three global forest canopy height maps have been released. Lefsky (2010) first utilized the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (ICESat) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate a global forest canopy height map in 2010. Simard et al. (2011) integrated GLAS data and other ancillary variables, such as MODIS, Shuttle Radar Topography Mission (STRM), and climatic data, to generate another global forest canopy height map in 2011. Los et al. (2012) also used GLAS data to create a vegetation height map in 2012.Several studies attempted to compare these global height maps to other sources of data., Bolton et al. (2013) concluded that Simard's forest canopy height map has strong agreement with airborne lidar derived heights. Los map is a coarse spatial resolution vegetation height map with a 0.5 decimal degrees horizontal resolution, around 50 km in the US, which is not feasible for the purpose of our research. Thus, Simard's global forest canopy height map is the primary map for this research study. The main objectives of this research were to validate and calibrate Simard's map with airborne lidar data and other ancillary variables in the southern United States. The airborne lidar data was collected between 2010 and 2012 from: (1) NASA LiDAR, Hyperspectral & Thermal Image (G-LiHT) program; (2) National Ecological Observatory Network's (NEON) prototype data sharing program; (3) NSF Open Topography Facility; and (4) the Department of Ecosystem Science and Management at Texas A&M University. The airborne lidar study areas also cover a wide variety of vegetation types across the southern US. The airborne lidar data is post-processed to generate lidar-derived metrics and assigned to four different classes of point cloud data. The four classes of point cloud data are the data with ground points, above 1 m, above 3 m, and above 5 m. The root mean square error (RMSE) and coefficient of determination (R2) are used for examining the discrepancies of the canopy heights between the airborne lidar-derived metrics and global forest canopy height map, and the regression and random forest approaches are used to calibrate the global forest canopy height map. In summary, the research shows a calibrated forest canopy height map of the southern US.

  15. Evaluation of an ARPS-based canopy flow modeling system for use in future operational smoke prediction efforts

    Treesearch

    M. T. Kiefer; S. Zhong; W. E. Heilman; J. J. Charney; X. Bian

    2013-01-01

    Efforts to develop a canopy flow modeling system based on the Advanced Regional Prediction System (ARPS) model are discussed. The standard version of ARPS is modified to account for the effect of drag forces on mean and turbulent flow through a vegetation canopy, via production and sink terms in the momentum and subgrid-scale turbulent kinetic energy (TKE) equations....

  16. Use of near infrared/red radiance ratios for estimating vegetation biomass and physiological status

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1977-01-01

    The application of photographic infrared/red (ir/red) reflectance or radiance ratios for the estimation of vegetation biomass and physiological status were investigated by analyzing in situ spectral reflectance data from experimental grass plots. Canopy biological samples were taken for total wet biomass, total dry biomass, leaf water content, dry green biomass, dry brown biomass, and total chlorophyll content at each sampling date. Integrated red and photographic infrared radiances were regressed against the various canopy or plot variables to determine the relative significance between the red, photographic infrared, and the ir/red ratio and the canopy variables. The ir/red ratio is sensitive to the photosynthetically active or green biomass, the rate of primary production, and actually measures the interaction between the green biomass and the rate of primary production within a given species type. The ir/red ratio resulted in improved regression significance over the red or the ir/radiances taken separately. Only slight differences were found between ir/red ratio, the ir-red difference, the vegetation index, and the transformed vegetation index. The asymptotic spectral radiance properties of the ir, red, ir/red ratio, and the various transformations were evaluated.

  17. Simulation Studies of Forest Structure using 3D Lidar and Radar Models

    NASA Technical Reports Server (NTRS)

    Sun, Guoqing; Ranson, K. Jon; Koetz, Benjamin; Liu, Dawei

    2007-01-01

    The use of lidars and radars to measure forest structure attributes such as height and biomass are being considered for future Earth Observation missions. Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield information about the vertical profile of the canopy. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and is useful for estimating biomass. Interferometric SAR (InSAR) has been shown to yield forest canopy height information. For example, the height of scattering phase retrieved from InSAR data is considered to be correlated with the three height and the spatial structure of the forest stand. There is much interest in exploiting these technologies separately and together to get important information for carbon cycle and ecosystem science. More detailed information of the electromagnetic radiation interactions within forest canopies is needed. And backscattering models can be of much utility here. As part of a NASA funded project to explore data fusion, a three-dimensional (3D) coherent radar backscattering model and a 3D lidar backscatter models were used to investigate the use of large footprint lidar, SAR and InSAR for characterizing realistic forest scenes. For this paper, we use stem maps and other forest measurements to develop a realistic spatial structure of a spruce-hemlock forest canopy found in Maine, USA. The radar and lidar models used measurements of the 3D forest scene as input and simulated the coherent radar backscattering signature and 1064nm energy backscatter, respectively. The relationships of backscatter derived forest structure were compared with field measurements. In addition, we also had detailed airborne lidar (Laser Imaging Vegetation Sensor, LVIS) data available over the stem map sites that was used to study the accuracies of tree height derived from modeled SAR backscatter and the scattering phase center retrieved from the simulated InSAR data will be compared with the height indices, or other structure parameters derived from the lidar data. These results will address the possible synergies between lidar and radar in data in terms of forest structural information.

  18. Inferring total canopy APAR from PAR bidirectional reflectances and vegetation indices in tallgrass prairie. [Absorbed Photosynthetically Active Radiation

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.

    1992-01-01

    The fraction of photosynthetically active radiation (PAR) absorbed by a vegetated canopy (APARc) or landscape (APARs) is a critical parameter in climate processes. A grassland study examined: 1) whether APARs can be estimated from PAR bidirectional exitance fractions; and 2) whether APARs is correlated with spectral vegetation indices (SVIs). Data were acquired with a high resolution continuous spectroradiometer at 4 sun angles on grassland sites. APARs was computed from the scattered surface PAR exitance fractions. The nadir APARs value was the most variable diurnally; it provided a good estimate of the average surface APARs at 95 percent. APARc was best represented by exitance factors between 30-60* forward.

  19. Shortwave infrared detection of vegetation

    NASA Technical Reports Server (NTRS)

    Goward, S. N. (Principal Investigator)

    1985-01-01

    The potential of short wave infrared (SWIR) measurements in vegetation discrimination is further substantiated through a discussion of field studies and an examination of the physical bases which cause SWIR measurements to vary with the vegetation type observed. The research reported herein supported the AGRISTARS program objective to incorporate TM measurements in the analysis of agricultural activity. Field measurements on corn and soybeans in Iowa were conducted, and the mean and variance of canopy reflectance were computed for each observation date. The Suits canopy reflectance model was used to evaluate possible explanations of the observed corn/soybeans reflectance patterns /39/. The SWIR measurements were shown to effectively discriminate corn and soybeans on the basis of leaf absorption properties.

  20. Advances in animal ecology from 3D ecosystem mapping with LiDAR

    NASA Astrophysics Data System (ADS)

    Davies, A.; Asner, G. P.

    2015-12-01

    The advent and recent advances of Light Detection and Ranging (LiDAR) have enabled accurate measurement of 3D ecosystem structure. Although the use of LiDAR data is widespread in vegetation science, it has only recently (< 14 years) been applied to animal ecology. Despite such recent application, LiDAR has enabled new insights in the field and revealed the fundamental importance of 3D ecosystem structure for animals. We reviewed the studies to date that have used LiDAR in animal ecology, synthesising the insights gained. Structural heterogeneity is most conducive to increased animal richness and abundance, and increased complexity of vertical vegetation structure is more positively influential than traditionally measured canopy cover, which produces mixed results. However, different taxonomic groups interact with a variety of 3D canopy traits and some groups with 3D topography. LiDAR technology can be applied to animal ecology studies in a wide variety of environments to answer an impressive array of questions. Drawing on case studies from vastly different groups, termites and lions, we further demonstrate the applicability of LiDAR and highlight new understanding, ranging from habitat preference to predator-prey interactions, that would not have been possible from studies restricted to field based methods. We conclude with discussion of how future studies will benefit by using LiDAR to consider 3D habitat effects in a wider variety of ecosystems and with more taxa to develop a better understanding of animal dynamics.

  1. Improving energy partitioning and the nighttime energy balance by implementation of a multi-layer energy budget in ORCHIDEE-CAN

    NASA Astrophysics Data System (ADS)

    Chen, Yiying; Ryder, James; Naudts, Kim; McGrath, Matthew J.; Otto, Juliane; Bastriko, Vladislav; Valade, Aude; Launiainen, Samuli; Ogée, Jérôme; Elbers, Jan A.; Foken, Thomas; Tiedemann, Frank; Heinesch, Bernard; Black, Andrew; Haverd, Vanessa; Loustau, Denis; Ottlé, Catherine; Peylin, Philippe; Polcher, Jan; Luyssaert, Sebastiaan

    2015-04-01

    Canopy structure is one of the most important vegetation characteristics for land-atmosphere interactions as it determines the energy and scalar exchanges between land surface and overlay air mass. In this study we evaluated the performance of a newly developed multi-layer energy budget (Ryder et al., 2014) in a land surface model, ORCHIDEE-CAN (Naudts et al., 2014), which simulates canopy structure and can be coupled to an atmospheric model using an implicit procedure. Furthermore, a vertical discrete drag parametrization scheme was also incorporated into this model, in order to obtain a better description of the sub-canopy wind profile simulation. Site level datasets, including the top-of-the-canopy and sub-canopy observations made available from eight flux observation sites, were collected in order to conduct this evaluation. The geo-location of the collected observation sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad leaved and evergreen needle leaved forest with maximum LAI ranging from 2.1 to 7.0. First, we used long-term top-of-the-canopy measurements to analyze the performance of the current one-layer energy budget in ORCHIDEE-CAN. Three major processes were identified for improvement through the implementation of a multi-layer energy budget: 1) night time radiation balance, 2) energy partitioning during winter and 3) prediction of the ground heat flux. Short-term sub-canopy observations were used to calibrate the parameters in sub-canopy radiation, turbulence and resistances modules with an automatic tuning process following the maximum gradient of the user-defined objective function. The multi-layer model is able to capture the dynamic of sub-canopy turbulence, temperature and energy fluxes with imposed LAI profile and optimized parameter set at a site level calibration. The simulation result shows the improvement both on the nighttime energy balance and energy partitioning during winter and presents a better Taylor skill score, compared to the result from single layer simulation. The importance of using the multi-layer energy budget in a land surface model for coupling to the atmospheric model will also be discussed in this presentation. Reference: Ryder, J., J. Polcher, P. Peylin, C. Ottlé, Y. Chen, E. Van Gorsel, V. Haverd, M. J. McGrath, K.Naudts, J. Otto, A. Valade, and S. Luyssaert, 2014. "A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations", Geosci. Model Dev. Discuss. 7, 8649-8701 Naudts, K. J. Ryder, M. J. McGrath, J. Otto, Y. Chen, A. Valade, V. Bellasen, G. Berhongaray, G. Bönisch, M. Campioli, J. Ghattas, T. De Groote, V. Haverd, J. Kattge, N. MacBean, F. Maignan, P. Merilä, J. Penuelas, P. Peylin, B. Pinty, H. Pretzsch, E. D. Schulze, D. Solyga, N. Vuichard, Y. Yan, and S. Luyssaert, 2014. "A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes", Geosci. Model Dev. Discuss. 7, 8565-8647

  2. Radiation transfer in plant canopies - Scattering of solar radiation and canopy reflectance

    NASA Technical Reports Server (NTRS)

    Verstraete, Michel M.

    1988-01-01

    The one-dimensional vertical model of radiation transfer in a plant canopy described by Verstraete (1987) is extended to account for the transfer of diffuse radiation. This improved model computes the absorption and scattering of both visible and near-infrared radiation in a multilayer canopy as a function of solar position and leaf orientation distribution. Multiple scattering is allowed, and the spectral reflectance of the vegetation stand is predicted. The results of the model are compared to those of other models and actual observations.

  3. Estimating scattered and absorbed radiation in plant canopies by remote sensing

    NASA Technical Reports Server (NTRS)

    Daughtry, G. S. T.; Ranson, K. J.

    1987-01-01

    Several research avenues are summarized. The relationships of canopy characteristics to multispectral reflectance factors of vegetation are reviewed. Several alternative approaches for incorporating spectrally derived information into plant models are discussed, using corn as the main example. A method is described and evaluated whereby a leaf area index is estimated from measurements of radiation transmitted through plant canopies, using soybeans as an example. Albedo of a big bluestem grass canopy is estimated from 60 directional reflectance factor measurements. Effects of estimating albedo with substantially smaller subsets of data are evaluated.

  4. Efficacy of landscape scale woodland and savanna restoration at multiple spatial and temporal scales

    USGS Publications Warehouse

    Pittman, H. Tyler; Krementz, David G.

    2016-01-01

    The loss of historic ecosystem conditions has led forest managers to implement woodland and savanna ecosystem restoration on a landscape scale (≥10,000 ha) in the Ozark Plateau of Arkansas. Managers are attempting to restore and conserve these ecosystems through the reintroduction of disturbance, mainly short-rotation early-growing-season prescribed fire. Short-rotation early-growing season prescribed fire in the Ozarks typically occurs immediately before bud-break, through bud-break, and before leaf-out, and fire events occur on a three-to five-year interval. We examined short-rotation early-growing season prescribed fire as a restoration tool on vegetation characteristics. We collected vegetation measurements at 70 locations annually from 2011 to 2012 in and around the White Rock Ecosystem Restoration Area (WRERA), Ozark-St. Francis National Forest, Arkansas, and used generalized linear models to investigate the impact and efficacy of prescribed fire on vegetation structure. We found the number of large shrubs (>5 cm base diameter) decreased and small shrubs (<5 cm ground diameter) increased with prescribed fire severity. We found that horizontal understory cover from ground level to 1 m in height increased with time-since-prescribed-fire and woody ground cover decreased with the number of prescribed fire treatments. Using LANDFIRE datasets at the landscape scale, we found that since the initiation of a short-rotation early-growing season prescribed fire management regime, forest canopy cover has not reverted to levels characteristic of woodlands and savannas or reached restoration objectives over large areas. Without greater reductions in forest canopy cover and increases in forest-canopy cover heterogeneity, advanced regeneration will be limited in success, and woodland and savanna conditions will not return soon or to the extent desired.

  5. [Study of hyperspectral polarized reflectance of vegetation canopy at nadir viewing direction].

    PubMed

    Lŭ, Yun-Feng

    2013-04-01

    In the present study, corn canopy is the objective. Firstly the polarization of corn canopy was analyzed based on polarization reflection mechanism; then, the polarization of canopy was measured in different growth period at nadir before heading. The result proved the theoretical derivation that the light reflected from corn canopy is polarized, and found that in the total reflection the polarization light accounts for up to 10%. This shows that polarization measurement provides auxiliary information for remote sensing, but also illustrates that the use of the polarization information retrieval of atmospheric parameters should be considered when the surface polarization affects on it.

  6. Retrieving Biome Types from Multi-angle Spectral Data

    NASA Astrophysics Data System (ADS)

    Schull, M. A.; Xu, L.; Latorre, P.; Samanta, A.; Myneni, R. B.; Knyazikhin, Y.

    2009-12-01

    Many studies have been conducted to demonstrate the ability of multi-angle spectral data to discriminate plant dominant species. Most have employed the use of empirically based techniques, which are site specific, requires some initial training based on characteristics of known leaf and/or canopy spectra and therefore may not be extendable to operational use or adapted to changing/unknown land cover. An ancillary objective of the MISR LAI/FPAR algorithm is classification of global vegetation into biome types. The algorithm is based on the 3D radiative transfer equation. Its performance suggests that is has valid LAI retrievals and correct biome identification in about 20% of the pixels. However with a probability of about 70%, uncertainties in LAI retrievals due to biome misclassification do not exceed uncertainties in the observations. In this poster we present an approach to improve reliability of the distribution of biomes and dominant species from multi angle spectral data. The radiative transfer theory of canopy spectral invariants underlies the approach, which facilitates parameterization of the canopy bidirectional reflectance factor in terms of the leaf spectrum and two spectrally invariant and structurally varying variables - recollision and directional escape probabilities. Theoretical and empirical analyses of ground and airborne data acquired by AVIRIS, AirMISR over two sites in New England and CHRIS/PROBA over BARAX site in Spain suggest that the canopy spectral invariants convey information about canopy structure at both the macro and micro scales. These properties allow for the natural separation of biome classes based on the location of points on the total escape probability vs the proportional escape ratio log-log plane.

  7. Sub-canopy evapotranspiration from floating vegetation and open water in a swamp forest

    USDA-ARS?s Scientific Manuscript database

    Among previous studies, there are large discrepancies in the difference between evapotranspiration from wetland vegetation and evaporation from open water. In this study, we investigate evapotranspiration differences between water and vegetation in a scenario that has otherwise not been extensively ...

  8. Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence.

    PubMed

    Cordon, Gabriela; Lagorio, M Gabriela; Paruelo, José M

    2016-07-20

    The relationship between the Photochemical Reflectance Index (PRI), Normalized Difference Vegetation Index (NDVI) and chlorophyll fluorescence along senescence was investigated in this work. Reflectance and radiance measurements were performed at canopy level in grass species presenting different photosynthetic metabolism: Avena sativa (C3) and Setaria italica (C4), at different stages of the natural senescence process. Sun induced-chlorophyll fluorescence at 760nm (SIF 760 ) and the apparent fluorescence yield (SIF 760 /a, with a=irradiance at time of measurement) were extracted from the radiance spectra of canopies using the Fraunhofer Line Discrimination-method. The photosynthetic parameters derived from Kautsky kinetics and pigment content were also calculated at leaf level. Whilst stand level NDVI patterns were related to changes in the structure of canopies and not in pigment content, stand level PRI patterns suggested changes both in terms of canopy and of pigment content in leaves. Both SIF 760 /a and Φ PSII decreased progressively along senescence in both species. A strong increment in NPQ was evident in A. sativa while in S. italica NPQ values were lower. Our most important finding was that two chlorophyll fluorescence signals, Φ PSII and SIF 760 /a, correlated with the canopy PRI values in the two grasses assessed, even when tissues at different ontogenic stages were present. Even though significant changes occurred in the Total Chlr/Car ratio along senescence in both studied species, significant correlations between PRI and chlorophyll fluorescence signals might indicate the usefulness of this reflectance index as a proxy of photosynthetic RUE, at least under the conditions of this study. The relationships between stand level PRI and the fluorescence estimators (Φ PSII and SIF 760 /a) were positive in both cases. Therefore, an increase in PRI values as in the fluorescence parameters would indicate higher RUE. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production.

    PubMed

    Gitelson, Anatoly A; Peng, Yi; Arkebauer, Timothy J; Suyker, Andrew E

    2015-04-01

    Vegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear observations over irrigated and rainfed contrasting C3 (soybean) and C4 (maize) crops having different physiology, leaf structure, and canopy architecture to establish the relationships between canopy GPP and radiation absorbed by vegetation and quantify LUE. Although multiple LUE definitions are reported in the literature, we used a definition of efficiency of light use by photosynthetically active "green" vegetation (LUE(green)) based on radiation absorbed by "green" photosynthetically active vegetation on a daily basis. We quantified, irreversible slowly changing seasonal (constitutive) and rapidly day-to-day changing (facultative) LUE(green), as well as sensitivity of LUE(green) to the magnitude of incident radiation and drought events. Large (2-3-fold) variation of daily LUE(green) over the course of a growing season that is governed by crop physiological and phenological status was observed. The day-to-day variations of LUE(green) oscillated with magnitude 10-15% around the seasonal LUE(green) trend and appeared to be closely related to day-to-day variations of magnitude and composition of incident radiation. Our results show the high variability of LUE(green) between C3 and C4 crop species (1.43 g C/MJ vs. 2.24 g C/MJ, respectively), as well as within single crop species (i.e., maize or soybean). This implies that assuming LUE(green) as a constant value in GPP models is not warranted for the crops studied, and brings unpredictable uncertainties of remote GPP estimation, which should be accounted for in LUE models. The uncertainty of GPP estimation due to facultative and constitutive changes in LUE(green) can be considered as a critical component of the total error budget in the context of remotely sensed based estimations of GPP. The quantitative framework of LUE(green) estimation presented here offers a way of characterizing LUE(green) in plants that can be used to assess their phenological and physiological status and vulnerability to drought under current and future climatic conditions and is essential for calibration and validation of globally applied LUE algorithms. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  11. Visualizing the ill-posedness of the inversion of a canopy radiative transfer model: A case study for Sentinel-2

    NASA Astrophysics Data System (ADS)

    Zurita-Milla, R.; Laurent, V. C. E.; van Gijsel, J. A. E.

    2015-12-01

    Monitoring biophysical and biochemical vegetation variables in space and time is key to understand the earth system. Operational approaches using remote sensing imagery rely on the inversion of radiative transfer models, which describe the interactions between light and vegetation canopies. The inversion required to estimate vegetation variables is, however, an ill-posed problem because of variable compensation effects that can cause different combinations of soil and canopy variables to yield extremely similar spectral responses. In this contribution, we present a novel approach to visualise the ill-posed problem using self-organizing maps (SOM), which are a type of unsupervised neural network. The approach is demonstrated with simulations for Sentinel-2 data (13 bands) made with the Soil-Leaf-Canopy (SLC) radiative transfer model. A look-up table of 100,000 entries was built by randomly sampling 14 SLC model input variables between their minimum and maximum allowed values while using both a dark and a bright soil. The Sentinel-2 spectral simulations were used to train a SOM of 200 × 125 neurons. The training projected similar spectral signatures onto either the same, or contiguous, neuron(s). Tracing back the inputs that generated each spectral signature, we created a 200 × 125 map for each of the SLC variables. The lack of spatial patterns and the variability in these maps indicate ill-posed situations, where similar spectral signatures correspond to different canopy variables. For Sentinel-2, our results showed that leaf area index, crown cover and leaf chlorophyll, water and brown pigment content are less confused in the inversion than variables with noisier maps like fraction of brown canopy area, leaf dry matter content and the PROSPECT mesophyll parameter. This study supports both educational and on-going research activities on inversion algorithms and might be useful to evaluate the uncertainties of retrieved canopy biophysical and biochemical state variables.

  12. Quantile equivalence to evaluate compliance with habitat management objectives

    USGS Publications Warehouse

    Cade, Brian S.; Johnson, Pamela R.

    2011-01-01

    Equivalence estimated with linear quantile regression was used to evaluate compliance with habitat management objectives at Arapaho National Wildlife Refuge based on monitoring data collected in upland (5,781 ha; n = 511 transects) and riparian and meadow (2,856 ha, n = 389 transects) habitats from 2005 to 2008. Quantiles were used because the management objectives specified proportions of the habitat area that needed to comply with vegetation criteria. The linear model was used to obtain estimates that were averaged across 4 y. The equivalence testing framework allowed us to interpret confidence intervals for estimated proportions with respect to intervals of vegetative criteria (equivalence regions) in either a liberal, benefit-of-doubt or conservative, fail-safe approach associated with minimizing alternative risks. Simple Boolean conditional arguments were used to combine the quantile equivalence results for individual vegetation components into a joint statement for the multivariable management objectives. For example, management objective 2A required at least 809 ha of upland habitat with a shrub composition ≥0.70 sagebrush (Artemisia spp.), 20–30% canopy cover of sagebrush ≥25 cm in height, ≥20% canopy cover of grasses, and ≥10% canopy cover of forbs on average over 4 y. Shrub composition and canopy cover of grass each were readily met on >3,000 ha under either conservative or liberal interpretations of sampling variability. However, there were only 809–1,214 ha (conservative to liberal) with ≥10% forb canopy cover and 405–1,098 ha with 20–30%canopy cover of sagebrush ≥25 cm in height. Only 91–180 ha of uplands simultaneously met criteria for all four components, primarily because canopy cover of sagebrush and forbs was inversely related when considered at the spatial scale (30 m) of a sample transect. We demonstrate how the quantile equivalence analyses also can help refine the numerical specification of habitat objectives and explore specification of spatial scales for objectives with respect to sampling scales used to evaluate those objectives.

  13. Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies

    NASA Technical Reports Server (NTRS)

    Norman, J. M. (Principal Investigator)

    1985-01-01

    The objective of this research is to develop a 3-dimensional radiative transfer model for predicting the bidirectional reflectance distribution function (BRDF) for heterogeneous vegetation canopies. The model (named BIGAR) considers the angular distribution of leaves, leaf area index, the location and size of individual subcanopies such as widely spaced rows or trees, spectral and directional properties of leaves, multiple scattering, solar position and sky condition, and characteristics of the soil. The model relates canopy biophysical attributes to down-looking radiation measurements for nadir and off-nadir viewing angles. Therefore, inversion of this model, which is difficult but practical should provide surface biophysical pattern; a fundamental goal of remote sensing. Such a model also will help to evaluate atmospheric limitations to satellite remote sensing by providing a good surface boundary condition for many different kinds of canopies. Furthermore, this model can relate estimates of nadir reflectance, which is approximated by most satellites, to hemispherical reflectance, which is necessary in the energy budget of vegetated surfaces.

  14. Electromagnetic wave scattering from a forest or vegetation canopy - Ongoing research at the University of Texas at Arlington

    NASA Technical Reports Server (NTRS)

    Karam, Mostafa A.; Amar, Faouzi; Fung, Adrian K.

    1993-01-01

    The Wave Scattering Research Center at the University of Texas at Arlington has developed a scattering model for forest or vegetation, based on the theory of electromagnetic-wave scattering in random media. The model generalizes the assumptions imposed by earlier models, and compares well with measurements from several forest canopies. This paper gives a description of the model. It also indicates how the model elements are integrated to obtain the scattering characteristics of different forest canopies. The scattering characteristics may be displayed in the form of polarimetric signatures, represented by like- and cross-polarized scattering coefficients, for an elliptically-polarized wave, or in the form of signal-distribution curves. Results illustrating both types of scattering characteristics are given.

  15. Spatiotemporal variability and modeling of the solar irradiance transmissivity through a boreal forest

    NASA Astrophysics Data System (ADS)

    Nadeau, D.; Isabelle, P. E.; Asselin, M. H.; Parent, A. C.; Jutras, S.; Anctil, F.

    2017-12-01

    Solar irradiance is the largest driver of land-surface exchanges of energy, water and trace gases. Its absorption by a forest canopy generates considerable sensible and latent heat fluxes as well as tree temperature changes. A fraction of the irradiance gets transmitted through the canopy and powers another layer of energy fluxes, which can reach substantial values. Transmitted radiation is also of particular relevance to understory vegetation photosynthesis, snowpack energetics and soil temperature dynamics. Boreal forest canopy transmissivity needs to be quantified to properly reproduce land-atmosphere interactions in the circumpolar boreal biome, but its high spatiotemporal variability makes it a challenging task. The objective of this study is to characterize the spatiotemporal variability in under-canopy radiation and to evaluate the performance of various models in representing plot-scale observations. The study site is located in Montmorency Forest (47°N, 71°W), in southern Quebec, Canada. The vegetation includes mostly juvenile balsam firs, up to 6 to 8 m tall. Since January 2016, a 15-m flux tower measures the four components of radiation, as well as other relevant fluxes and meteorological variables, on a ≈10° northeast-facing slope. In summer 2016, 20 portable weather stations were mounted in a 150 m x 200 m grid around the flux tower. These stations were equipped with silicon-cell pyranometers and provided measurements of downwelling irradiance at a height of 2 m. This setup allowed us to compute irradiance transmissivity and to assess its spatiotemporal variability at the site. First, we show that the average of daily incoming energy varies tremendously across the sites, from 1 MJ/m2 to nearly 9 MJ/m2, due to large variations in canopy structure over short distances. Using a regression tree analysis, we show that transmissivity mostly depends on sun elevation, diffuse fraction of radiation, sky and sun view fraction and wind speed above canopy. We finally show that a simple Beer's law, describing the attenuation of light through a semi-transparent medium, does remarkably well at predicting the plot-scale transmissivity when driven with satellite-based leaf area index values.

  16. Understory and small trees contribute importantly to stemflow of a lower montane cloud forest

    NASA Astrophysics Data System (ADS)

    González Martínez, T. M.; Wiliams-Linera, G.; Holwerda, F.

    2016-12-01

    Stemflow (Sf) measurements in rainforests and montane forests dominated by large trees rarely include the understory and small trees. In the present study, contributions of woody understory (> 1 m height and < 5 cm DBH), small trees (5 < DBH < 10 cm) and upper canopy trees (> 10 cm DBH) to overall Sf of a lower montane cloud forest in central Veracruz, Mexico, were quantified. Incident precipitation (P), Sf volume and vegetation structure were measured. Subsequently, stemflow funneling ratios (SFR) were calculated, and allometric relationships between tree basal area and Sf volume were used to scale up measurements from individual trees to the stand level. Additionally, two other common methods to calculate areal Sf were used for comparative purposes. Understory woody plants, small trees and upper canopy trees represented 96, 2 and 2 %, respectively, of the total density. Upper canopy trees had the lowest SFRs (1.6 ± 0.5 on average), while the lower understory (> 1 m and < 2 m height) had the highest (36.1 ± 6.4). Small trees and upper understory (> 2 m) presented similar SFRs (22.9 ± 5.4 and 20.2 ± 3.9, respectively). Different scaling methods yielded very similar results for all but the upper understory. Overall areal Sf during the study period was 19 mm (3.8 % of rainfall), to which the understory contributed 66.3 % (12.6 mm), small trees 12.6 % (2.4 mm) and upper canopy trees 21.1 % (4.0 mm). Our results suggest that woody understory vegetation and small trees can have an important role in Sf generation of tall humid tropical forests, provided that the density of plants in these groups is high enough.

  17. Landscape-level variation in forest structure and biogeochemistry across a substrate age gradient in Hawaii.

    PubMed

    Vitousek, Peter; Asner, Gregory P; Chadwick, Oliver A; Hotchkiss, Sara

    2009-11-01

    We compared forest canopy heights and nitrogen concentrations in long-term research sites and in 2 x 2 km landscapes surrounding these sites along a substrate age gradient in the Hawaiian Islands. Both remote airborne and ground-based measurements were used to characterize processes that control landscape-level variation in canopy properties. We integrated a waveform light detection and ranging (LiDAR) system, a high-resolution imaging spectrometer, and a global positioning system/inertial measurement unit to provide highly resolved images of ground topography, canopy heights, and canopy nitrogen concentrations (1) within a circle 50 m in radius focused on a long-term study site in the center of each landscape; (2) for the entire 2 x 2 km landscape regardless of land cover; and (3) after stratification, for our target cover class, native-dominated vegetation on constructional geomorphic surfaces throughout each landscape. Remote measurements at all scales yielded the same overall patterns as did ground-based measurements in the long-term sites. The two younger landscapes supported taller trees than did older landscapes, while the two intermediate-aged landscapes had higher canopy nitrogen (N) concentrations than did either young or old landscapes. However, aircraft-based analyses detected substantial variability in canopy characteristics on the landscape level, even within the target cover class. Canopy heights were more heterogeneous on the older landscapes, with coefficients of variation increasing from 23-41% to 69-78% with increasing substrate age. This increasing heterogeneity was associated with a larger patch size of canopy turnover and with dominance of most secondary successional stands by the mat-forming fern Dicranopteris linearis in the older landscapes.

  18. Status of Vegetation Classification in Redwood Ecosystems

    Treesearch

    Thomas M. Mahony; John D. Stuart

    2007-01-01

    Vegetation classifications, based primarily on physiognomic variability and canopy dominants and derived principally from remotely sensed imagery, have been completed for the entire redwood range (Eyre 1980, Fox 1989). However, systematic, quantitative, floristic-based vegetation classifications in old-growth redwood forests have not been completed for large portions...

  19. Application of Hyperspectral Vegetation Indices to Detect Variations in High Leaf Area Index Temperate Shrub Thicket Canopies

    DTIC Science & Technology

    2011-01-01

    sensing an attractive technique for estimating LAI. Many vegetation indices, such as Normalized Difference Vegetation Index ( NDVI ), tend to saturate at...little or no improvement over NDVI . Furthermore, indirect ground-sampling techniques often used to evaluate the potential of vegetation indices also...landscapes makes remote sensing an attractive technique for estimating LAI. Many vegetation indices, such as Normalized Difference Vegetation Index ( NDVI

  20. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  1. Evaluation of spatial, radiometric and spectral thematic mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V.

    1985-01-01

    The main emphasis of the research was to determine what effect different wetland plant canopies would have upon observed reflectance in Thematic Mapper bands. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. Biomass estimates computed from spectral data were most similar to biomass estimates determined from harvest data when models developed for a specific canopy were used. In other words, the spectral biomass estimate of a broadleaf canopy was most similar to the harvest biomass estimate when a broadleaf canopy radiance model was used. Work is continuing to more precisely determine regression coefficients for each canopy type and to model the change in the coefficients with various combinations of canopy types. Researchers suspect that textural and spatial considerations can be used to identify canopy types and improve biomass estimates from Thematic Mapper data.

  2. A multi-sensor lidar, multi-spectral and multi-angular approach for mapping canopy height in boreal forest regions

    USGS Publications Warehouse

    Selkowitz, David J.; Green, Gordon; Peterson, Birgit E.; Wylie, Bruce

    2012-01-01

    Spatially explicit representations of vegetation canopy height over large regions are necessary for a wide variety of inventory, monitoring, and modeling activities. Although airborne lidar data has been successfully used to develop vegetation canopy height maps in many regions, for vast, sparsely populated regions such as the boreal forest biome, airborne lidar is not widely available. An alternative approach to canopy height mapping in areas where airborne lidar data is limited is to use spaceborne lidar measurements in combination with multi-angular and multi-spectral remote sensing data to produce comprehensive canopy height maps for the entire region. This study uses spaceborne lidar data from the Geosciences Laser Altimeter System (GLAS) as training data for regression tree models that incorporate multi-angular and multi-spectral data from the Multi-Angle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging SpectroRadiometer (MODIS) to map vegetation canopy height across a 1,300,000 km2 swath of boreal forest in Interior Alaska. Results are compared to in situ height measurements as well as airborne lidar data. Although many of the GLAS-derived canopy height estimates are inaccurate, applying a series of filters incorporating both data associated with the GLAS shots as well as ancillary data such as land cover can identify the majority of height estimates with significant errors, resulting in a filtered dataset with much higher accuracy. Results from the regression tree models indicate that late winter MISR imagery acquired under snow-covered conditions is effective for mapping canopy heights ranging from 5 to 15 m, which includes the vast majority of forests in the region. It appears that neither MISR nor MODIS imagery acquired during the growing season is effective for canopy height mapping, although including summer multi-spectral MODIS data along with winter MISR imagery does appear to provide a slight increase in the accuracy of resulting height maps. The finding that winter, snow-covered MISR imagery can be used to map canopy height is important because clear sky days are nearly three times as common during the late winter period as during the growing season. The increased odds of acquiring cloud-free imagery during the target acquisition period make regularly updated forest height inventories for Interior Alaska much more feasible. A major advantage of the GLAS–MISR–MODIS canopy height mapping methodology described here is that this approach uses only data that is freely available worldwide, making the approach potentially applicable across the entire circumpolar boreal forest region.

  3. Usability of multiangular imaging spectroscopy data for analysis of vegetation canopy shadow fraction in boreal forest

    NASA Astrophysics Data System (ADS)

    Markiet, Vincent; Perheentupa, Viljami; Mõttus, Matti; Hernández-Clemente, Rocío

    2016-04-01

    Imaging spectroscopy is a remote sensing technology which records continuous spectral data at a very high (better than 10 nm) resolution. Such spectral images can be used to monitor, for example, the photosynthetic activity of vegetation. Photosynthetic activity is dependent on varying light conditions and varies within the canopy. To measure this variation we need very high spatial resolution data with resolution better than the dominating canopy element size (e.g., tree crown in a forest canopy). This is useful, e.g., for detecting photosynthetic downregulation and thus plant stress. Canopy illumination conditions are often quantified using the shadow fraction: the fraction of visible foliage which is not sunlit. Shadow fraction is known to depend on view angle (e.g., hot spot images have very low shadow fraction). Hence, multiple observation angles potentially increase the range of shadow fraction in the imagery in high spatial resolution imaging spectroscopy data. To investigate the potential of multi-angle imaging spectroscopy in investigating canopy processes which vary with shadow fraction, we obtained a unique multiangular airborne imaging spectroscopy data for the Hyytiälä forest research station located in Finland (61° 50'N, 24° 17'E) in July 2015. The main tree species are Norway spruce (Picea abies L. karst), Scots pine (Pinus sylvestris L.) and birch (Betula pubescens Ehrh., Betula pendula Roth). We used an airborne hyperspectral sensor AISA Eagle II (Specim - Spectral Imaging Ltd., Finland) mounted on a tilting platform. The tilting platform allowed us to measure at nadir and approximately 35 degrees off-nadir. The hyperspectral sensor has a 37.5 degrees field of view (FOV), 0.6m pixel size, 128 spectral bands with an average spectral bandwidth of 4.6nm and is sensitive in the 400-1000 nm spectral region. The airborne data was radiometrically, atmospherically and geometrically processed using the Parge and Atcor software (Re Se applications Schläpfer, Switzerland). However, even after meticulous geolocation, the canopy elements (needles) seen from the three view angles were different: at each overpass, different parts of the same crowns were observed. To overcome this, we used a 200m x 200m test site covered with pure pine stands. We assumed that for sunlit, shaded and understory spectral signatures are independent of viewing direction to the accuracy of a constant BRDF factor. Thus, we compared the spectral signatures for sunlit and shaded canopy and understory obtained for each view direction. We selected visually six hundred of the brightest and darkest canopy pixels. Next, we performed a minimum noise fraction (MNF) transformation, created a pixel purity index (PPI) and used Envi's n-D scatterplot to determine pure spectral signatures for the two classes. The pure endmembers for different view angles were compared to determine the BRDF factor and to analyze its spectral invariance. We demonstrate the compatibility of multi-angle data with high spatial resolution data. In principle, both carry similar information on structured (non-flat) targets thus as a vegetation canopy. Nevertheless, multiple view angles helped us to extend the range of shadow fraction in the images. Also, correct separation of shaded crown and shaded understory pixels remains a challenge.

  4. [Estimation and Visualization of Nitrogen Content in Citrus Canopy Based on Two Band Vegetation Index (TBVI)].

    PubMed

    Wang, Qiao-nan; Ye, Xu-jun; Li, Jin-meng; Xiao, Yu-zhao; He, Yong

    2015-03-01

    Nitrogen is a necessary and important element for the growth and development of fruit orchards. Timely, accurate and nondestructive monitoring of nitrogen status in fruit orchards would help maintain the fruit quality and efficient production of the orchard, and mitigate the pollution of water resources caused by excessive nitrogen fertilization. This study investigated the capability of hyperspectral imagery for estimating and visualizing the nitrogen content in citrus canopy. Hyperspectral images were obtained for leaf samples in laboratory as well as for the whole canopy in the field with ImSpector V10E (Spectral Imaging Ltd., Oulu, Finland). The spectral datas for each leaf sample were represented by the average spectral data extracted from the selected region of interest (ROI) in the hyperspectral images with the aid of ENVI software. The nitrogen content in each leaf sample was measured by the Dumas combustion method with the rapid N cube (Elementar Analytical, Germany). Simple correlation analysis and the two band vegetation index (TBVI) were then used to develop the spectra data-based nitrogen content prediction models. Results obtained through the formula calculation indicated that the model with the two band vegetation index (TBVI) based on the wavelengths 811 and 856 nm achieved the optimal estimation of nitrogen content in citrus leaves (R2 = 0.607 1). Furthermore, the canopy image for the identified TBVI was calculated, and the nitrogen content of the canopy was visualized by incorporating the model into the TBVI image. The tender leaves, middle-aged leaves and elder leaves showed distinct nitrogen status from highto low-levels in the canopy image. The results suggested the potential of hyperspectral imagery for the nondestructive detection and diagnosis of nitrogen status in citrus canopy in real time. Different from previous studies focused on nitrogen content prediction at leaf level, this study succeeded in predicting and visualizing the nutrient content of fruit trees at canopy level. This would provide valuable information for the implementation of individual tree-based fertilization schemes in precision orchard management practices.

  5. BOREAS TE-6 Multiband Vegetation Imager Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Kucharik, Christopher J.

    2000-01-01

    The BOREAS TE-6 team collected data in support of its efforts to examine the influence of vegetation and climate on the major carbon fluxes in boreal tree species. A newly developed ground-based canopy imaging system called an MVI was tested and used by the BOREAS TE-06 team to collect measurements of the canopy crap fraction (sky fraction), canopy gap-size distribution (size and frequency of gaps between foliage in canopy), branch architecture, and leaf angle distribution (fraction of leaf area in specific leaf inclination classes assuming azimuthal symmetry). Measurements of the canopy gap-size distribution are used to derive canopy clumping indices that can be used to adjust indirect LAI measurements made in nonrandom forests. These clumping factors will also help to describe the radiation penetration in clumped canopies more accurately by allowing for simple adjustments to Beer's law. Measurements of the above quantities were obtained at BOREAS NSA-OJP site in IFC-2 in 1994, at the SSA-OA in July 1995, and at the SSA-OBS and SSA-OA sites in IFC-2 in 1996. Modeling studies were also performed to further validate MVI measurements and to gain a more complete understanding of boreal forest canopy architecture. By using MVI measurements and Monte Carlo simulations, clumping indices as a function of zenith angle were derived for the three main boreal species studied during BOREAS. The analyzed data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  6. Influence of Crown Biomass Estimators and Distribution on Canopy Fuel Characteristics in Ponderosa Pine Stands of the Black Hills

    Treesearch

    Tara Keyser; Frederick Smith

    2009-01-01

    Two determinants of crown fire hazard are canopy bulk density (CBD) and canopy base height (CBH). The Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) is a model that predicts CBD and CBH. Currently, FFE-FVS accounts for neither geographic variation in tree allometries nor the nonuniform distribution of crown mass when one is estimating CBH and CBD...

  7. MODELING COUPLING OF EEL GRASS ZOSTRA MARINA AND WATER FLOW

    EPA Science Inventory

    Ecological effects caused by submerged aquatic vegetation not only depend on the plants and their morphology but also on the flow and transport patterns of dissolved and suspended constituents near the canopy. The height of the canopy is a major parameter in any quantitative an...

  8. How Well Do SiF And Other Vegetation Spectral Indices Track Temporal Variations of Canopy Photosynthesis in A Paddy Rice

    NASA Astrophysics Data System (ADS)

    Kaige, Y.; Ryu, Y.; Kimm, H.; Huang, Y.; Jiang, C.; Hwang, Y.; Kim, J.; Kang, M.

    2016-12-01

    Recent advancements in remote sensing of SiF opened new opportunities to directly estimate canopy photosynthesis at regional scales. Observing SiF at canopy scale in the field, however, is at very initial stage. In this study, we report SiF and hyperspectral reflectance (400-900 nm) data concurrently measured every 10 sec across the whole growing season in a paddy rice, South Korea. The study site experienced water management via irrigation and drainage and showed a peak LAI of 7. We test whether SiF and a range of different vegetation spectral indices (VIs) well capture half-hourly variations in canopy photosynthesis quantified from an eddy flux tower. During the growing season, we found that SiF showed tight linear relationship to APAR (r2=0.7), and moderate linear relationship to GPP (r2=0.5). Both NDVI, EVI and PRI showed logarithmic relationships to GPP (r2<0.5) and were all saturated at LAI>4. SiF showed linear relationship to GPP even at higher LAI. We conclude that SiF is a better index in predicting temporal variations in canopy photosynthesis than the other VIs in the paddy rice site.

  9. Modeling marbled murrelet (Brachyramphus marmoratus) habitat using LiDAR-derived canopy data

    USGS Publications Warehouse

    Hagar, Joan C.; Eskelson, Bianca N.I.; Haggerty, Patricia K.; Nelson, S. Kim; Vesely, David G.

    2014-01-01

    LiDAR (Light Detection And Ranging) is an emerging remote-sensing tool that can provide fine-scale data describing vertical complexity of vegetation relevant to species that are responsive to forest structure. We used LiDAR data to estimate occupancy probability for the federally threatened marbled murrelet (Brachyramphus marmoratus) in the Oregon Coast Range of the United States. Our goal was to address the need identified in the Recovery Plan for a more accurate estimate of the availability of nesting habitat by developing occupancy maps based on refined measures of nest-strand structure. We used murrelet occupancy data collected by the Bureau of Land Management Coos Bay District, and canopy metrics calculated from discrete return airborne LiDAR data, to fit a logistic regression model predicting the probability of occupancy. Our final model for stand-level occupancy included distance to coast, and 5 LiDAR-derived variables describing canopy structure. With an area under the curve value (AUC) of 0.74, this model had acceptable discrimination and fair agreement (Cohen's κ = 0.24), especially considering that all sites in our sample were regarded by managers as potential habitat. The LiDAR model provided better discrimination between occupied and unoccupied sites than did a model using variables derived from Gradient Nearest Neighbor maps that were previously reported as important predictors of murrelet occupancy (AUC = 0.64, κ = 0.12). We also evaluated LiDAR metrics at 11 known murrelet nest sites. Two LiDAR-derived variables accurately discriminated nest sites from random sites (average AUC = 0.91). LiDAR provided a means of quantifying 3-dimensional canopy structure with variables that are ecologically relevant to murrelet nesting habitat, and have not been as accurately quantified by other mensuration methods.

  10. Pre-outbreak forest conditions mediate the effects of spruce beetle outbreaks on fuels in subalpine forests of Colorado.

    PubMed

    Mietkiewicz, Nathan; Kulakowski, Dominik; Veblen, Thomas T

    2018-03-01

    Over the past 30 years, forest disturbances have increased in size, intensity, and frequency globally, and are predicted to continue increasing due to climate change, potentially relaxing the constraints of vegetation properties on disturbance regimes. However, the consequences of the potentially declining importance of vegetation in determining future disturbance regimes are not well understood. Historically, bark beetles preferentially attack older trees and stands in later stages of development. However, as climate warming intensifies outbreaks by promoting growth of beetle populations and compromising tree defenses, smaller diameter trees and stands in early stages of development now are being affected by outbreaks. To date, no study has considered how stand age and other pre-outbreak forest conditions mediate the effects of outbreaks on surface and aerial fuel arrangements. We collected fuels data across a chronosequence of post-outbreak sites affected by spruce beetle (SB) between the 1940s and the 2010s, stratified by young (<130 yr) and old (>130 yr) post-fire stands. Canopy and surface fuel loads were calculated for each tree and stand, and available crown fuel load, crown bulk density, and canopy bulk densities were estimated. Canopy bulk density and density of live canopy individuals were reduced in all stands affected by SB, though foliage loss was proportionally greater in old stands as compared to young stands. Fine surface fuel loads in young stands were three times greater shortly (<30 yr) following outbreak as compared to young stands not affected by outbreak, after which the abundance of fine surface fuels decreased to below endemic (i.e., non-outbreak) levels. In both young and old stands, the net effect of SB outbreaks during the 20th and 21st centuries reduced total canopy fuels and increased stand-scale spatial heterogeneity of canopy fuels following outbreak. Importantly, the decrease in canopy fuels following outbreaks was greater in young post-fire stands than in older stands, suggesting that SB outbreaks may more substantially reduce risk of active crown fire when they affect stands in earlier stages of development. The current study shows that the effects of SB outbreaks on forest structure and on fuel profiles are strongly contingent on pre-outbreak conditions as determined by pre-outbreak disturbance history. © 2018 by the Ecological Society of America.

  11. Canopy reflectance modeling in a tropical wooded grassland

    NASA Technical Reports Server (NTRS)

    Simonett, David; Franklin, Janet

    1986-01-01

    Geometric/optical canopy reflectance modeling and spatial/spectral pattern recognition is used to study the form and structure of savanna in West Africa. An invertible plant canopy reflectance model is tested for its ability to estimate the amount of woody vegetation from remotely sensed data in areas of sparsely wooded grassland. Dry woodlands and wooded grasslands, commonly referred to as savannas, are important ecologically and economically in Africa, and cover approximately forty percent of the continent by some estimates. The Sahel and Sudan savannas make up the important and sensitive transition zone between the tropical forests and the arid Sahara region. The depletion of woody cover, used for fodder and fuel in these regions, has become a very severe problem for the people living there. LANDSAT Thematic Mapper (TM) data is used to stratify woodland and wooded grassland into areas of relatively homogeneous canopy cover, and then an invertible forest canopy reflectance model is applied to estimate directly the height and spacing of the trees in the stands. Because height and spacing are proportional to biomass in some cases, a successful application of the segmentation/modeling techniques will allow direct estimation of tree biomass, as well as cover density, over significant areas of these valuable and sensitive ecosystems. The model being tested in sites in two different bioclimatic zones in Mali, West Africa, will be used for testing the canopy model. Sudanian zone crop/woodland test sites were located in the Region of Segou, Mali.

  12. [Estimating Winter Wheat Nitrogen Vertical Distribution Based on Bidirectional Canopy Reflected Spectrum].

    PubMed

    Yang, Shao-yuan; Huang, Wen-jiang; Liang, Dong; Uang, Lin-sheng; Yang, Gui-jun; Zhang, Gui-jan; Cai, Shu-Hong

    2015-07-01

    The vertical distribution of crop nitrogen is increased with plant height, timely and non-damaging measurement of crop nitrogen vertical distribution is critical for the crop production and quality, improving fertilizer utilization and reducing environmental impact. The objective of this study was to discuss the method of estimating winter wheat nitrogen vertical distribution by exploring bidirectional reflectance distribution function (BRDF) data using partial least square (PLS) algorithm. The canopy reflectance at nadir, +/-50 degrees and +/- 60 degrees; at nadir, +/- 30 degrees and +/- 40 degrees; and at nadir, +/- 20 degrees and +/- 30 degrees were selected to estimate foliage nitrogen density (FND) at upper layer, middle layer and bottom layer, respectively. Three PLS analysis models with FND as the dependent variable and vegetation indices at corresponding angles as the explicative variables were. established. The impact of soil reflectance and the canopy non-photosynthetic materials, was minimized by seven kinds of modifying vegetation indices with the ratio R700/R670. The estimated accuracy is significant raised at upper layer, middle layer and bottom layer in modeling experiment. Independent model verification selected the best three vegetation indices for further research. The research result showed that the modified Green normalized difference vegetation index (GNDVI) shows better performance than other vegetation indices at each layer, which means modified GNDVI could be used in estimating winter wheat nitrogen vertical distribution

  13. Particle removal by vegetation: comparison in a forest and a wetland.

    PubMed

    Liu, Jiakai; Zhai, Jiexiu; Zhu, Lijuan; Yang, Yilian; Liu, Jiatong; Zhang, Zhenming

    2017-01-01

    Vegetation collection is one of the most effective scavenging methods but relevant studies are limited. It can be described by some abstract parameters such as collection rates and deposition fluxes within the canopy. In order to estimate the dry deposition within the canopy of particular matters (PMs) in Beijing, a highly particle-polluted city, and reveal the PM pollution-removal abilities of plants in wetlands and forests, concentration and meteorological data were collected during the daytime in an artificial forest and a wetland in the Olympic Park in Beijing. The dry depositions within the canopy and vegetation collection rates were calculated by a well-developed model and validated by measured deposition fluxes in 11 random experiment days. The experiment year was divided into three plant growth stages based on canopy density, and the day was divided into four different times. Two heights, 10 and 1.5 m, were defined in the forest while in the wetland, 0.5 and 1.5 m were defined. The results showed that in Beijing, the most severe pollution by PMs occurs in the non-leaf stage (NS), and the full-leaf stage (FS) is the cleanest stage. In NS, namely winter, more fossil fuel was used for worms in Beijing and peripheral areas and this might be the reason for the serious pollution condition. Within the canopy, PM deposition fluxes in the wetland are more than those in the forest, but the vegetation collection rates of the forest are higher. The lower temperature conditions led to more dry deposition, and the larger canopy contributed to the higher collection rates. During the daytime, over the year, the deposition of PM 10 in three plant growth stages is NS ≥ half-leaf stages (HS) ≥ FS, whereas the deposition of PM 2.5 is NS ≥ FS ≥ HS, and during the daytime, the maximum deposition fluxes occur in 6:00-9:00 in the wetland while the minimum deposition values occur in 15:00-18:00. This phenomenon was related to the temporal variation of particle concentration.

  14. Retrieval of wheat growth parameters with radar vegetation indices

    USDA-ARS?s Scientific Manuscript database

    The Radar Vegetation Index (RVI) has a low sensitivity to changes in environmental conditions and has the potential as a tool to monitor the vegetation growth. In this study, we expand on previous research by investigating the radar response over a wheat canopy. RVI was computed using observations m...

  15. Evaluation of Vertical Lacunarity Profiles in Forested Areas Using Airborne Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Székely, B.; Kania, A.; Standovár, T.; Heilmeier, H.

    2016-06-01

    The horizontal variation and vertical layering of the vegetation are important properties of the canopy structure determining the habitat; three-dimensional (3D) distribution of objects (shrub layers, understory vegetation, etc.) is related to the environmental factors (e.g., illumination, visibility). It has been shown that gaps in forests, mosaic-like structures are essential to biodiversity; various methods have been introduced to quantify this property. As the distribution of gaps in the vegetation is a multi-scale phenomenon, in order to capture it in its entirety, scale-independent methods are preferred; one of these is the calculation of lacunarity. We used Airborne Laser Scanning point clouds measured over a forest plantation situated in a former floodplain. The flat topographic relief ensured that the tree growth is independent of the topographic effects. The tree pattern in the plantation crops provided various quasi-regular and irregular patterns, as well as various ages of the stands. The point clouds were voxelized and layers of voxels were considered as images for two-dimensional input. These images calculated for a certain vicinity of reference points were taken as images for the computation of lacunarity curves, providing a stack of lacunarity curves for each reference points. These sets of curves have been compared to reveal spatial changes of this property. As the dynamic range of the lacunarity values is very large, the natural logarithms of the values were considered. Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.

  16. Tracking forest canopy dynamics from an automated proximal hyperspectral monitoring system: linking remote sensing observations to leaf level photosynthetic processes

    NASA Astrophysics Data System (ADS)

    Woodgate, W.; van Gorsel, E.; Hughes, D.; Suarez, L.; Cabello-Leblic, A.; Held, A. A.; Norton, A.; Dempsey, R.

    2017-12-01

    To better understand the vegetation response to climate extremes we have developed a fully automated hyperspectral and thermal monitoring system installed on a flux tower at a mature Eucalypt forest site - Tumbarumba, Australia. The automated system bridges spatial, spectral and temporal scales between satellite and in situ observations. Here, we have been acquiring high resolution panoramic hyperspectral and thermal images of the forest canopy three times per day since mid-2014.A specific focus of the work to date has been linking light use efficiency (LUE) as measured by the flux tower to remote sensing observations from the leaf, to crown, to canopy scale. Specifically, targeted field campaigns were conducted in 2016 to establish the interrelationship between structure, function, and spectra. At the leaf level destructive sampling to quantify photosynthetic pigments was conducted to pick apart the mechanisms contributing to photosynthetic processes of non-photochemical quenching and the resultant changes in observed leaf spectra. At the crown level, Terrestrial Laser Scanning data was used to derive canopy structural information, enabling distance to crown and crown foliage density to be calculated to a fine degree of detail. This information is critical for correcting attenuation of the thermal signal from atmospheric transmission, and to distinguish the relative foliage-to-soil contribution to the thermal and hyperspectral imagery. Ancillary data streams from sap flow and dendrometer devices serve to link leaf, crown and canopy observations.Preliminary results of the leaf and crown level relationships between function and spectra will be discussed. We will demonstrate that operating in a tall canopy (40m) forest can lead to additional complexities. We have found the relationship strength between traditional remote sensing LUE proxies and photosynthetic proxies derived from pigments varies strongly with canopy height and pigment pool size. Additionally, the significance of the relationship between some leaf pigments and spectra hinged upon the inclusion of juvenile or unhealthy leaf samples, which were not representative of the canopy. This has implications for temporal scaling of remote sensing proxies from diurnal to seasonal time frames.

  17. Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Ryu, Y.; Ustin, S.; Baldocchi, D. D.

    2009-12-01

    B15: Remote Characterization of Vegetation Structure: Including Research to Inform the Planned NASA DESDynI and ESA BIOMASS Missions Title: Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations Hideki Kobayashi, Youngryel Ryu, Susan Ustin, and Dennis Baldocchi Abstract Accurate evaluations of radiation environments of visible, near infrared, and thermal infrared wavebands in forest canopies are important to estimate energy, water, and carbon fluxes. Californian oak woodlands are sparse and highly clumped so that radiation environments are extremely heterogeneous spatially. The heterogeneity of radiation environments also varies with wavebands which depend on scattering and emission properties. So far, most of modeling studies have been performed in one dimensional radiative transfer models with (or without) clumping effect in the forest canopies. While some studies have been performed by using three dimensional radiative transfer models, several issues are still unresolved. For example, some 3D models calculate the radiation field with individual tree basis, and radiation interactions among trees are not considered. This interaction could be important in the highly scattering waveband such as near infrared. The objective of this study is to quantify the radiation field in the oak woodland. We developed a three dimensional radiative transfer model, which includes the thermal waveband. Soil/canopy energy balances and canopy physiology models, CANOAK, are incorporated in the radiative transfer model to simulate the diurnal patterns of thermal radiation fields and canopy physiology. Airborne LiDAR and canopy gap data measured by the several methods (digital photographs and plant canopy analyzer) were used to constrain the forest structures such as tree positions, crown sizes and leaf area density. Modeling results were tested by a traversing radiometer system that measured incoming photosynthetically active radiation and net radiation at forest floor and spatial variations in canopy reflectances taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). In this study, we show how the model with available measurements can reproduce the spatially heterogeneous radiation environments in the oak woodland.

  18. Field- and Remote Sensing-based Structural Attributes Measured at Multiple Scales Influence the Relationship Between Nitrogen and Reflectance of Forest Canopies

    NASA Astrophysics Data System (ADS)

    Sullivan, F.; Ollinger, S. V.; Palace, M. W.; Ouimette, A.; Sanders-DeMott, R.; Lepine, L. C.

    2017-12-01

    The correlation between near-infrared reflectance and forest canopy nitrogen concentration has been demonstrated at varying scales using a range of optical sensors on airborne and satellite platforms. Although the mechanism underpinning the relationship is unclear, at its basis are biologically-driven functional relationships of multiple plant traits that affect canopy chemistry and structure. The link between near-infrared reflectance and canopy nitrogen has been hypothesized to be partially driven by covariation of canopy nitrogen with canopy structure. In this study, we used a combination of airborne LiDAR data and field measured leaf and canopy chemical and structural traits to explore interrelationships between canopy nitrogen, near-infrared reflectance, and canopy structure on plots at Bartlett Experimental Forest in the White Mountain National Forest, New Hampshire. Over each plot, we developed a 1-meter resolution canopy height profile and a 1-meter resolution canopy height model. From canopy height profiles and canopy height models, we calculated a set of metrics describing the plot-level variability, breadth, depth, and arrangement of LiDAR returns. This combination of metrics was used to describe both vertical and horizontal variation in structure. In addition, we developed and measured several field-based metrics of leaf and canopy structure at the plot scale by directly measuring the canopy or by weighting leaf-level metrics by species leaf area contribution. We assessed relationships between leaf and structural metrics, near-infrared reflectance and canopy nitrogen concentration using multiple linear regression and mixed effects modeling. Consistent with our hypothesis, we found moderately strong links between both near-infrared reflectance and canopy nitrogen concentration with LiDAR-derived structural metrics, and we additionally found that leaf-level metrics scaled to the plot level share an important role in canopy reflectance. We suggest that canopy structure has a governing role in canopy reflectance, reducing maximum potential reflectance as structural complexity increases, and therefore also influences the relationship between canopy nitrogen and NIR reflectance.

  19. Estimation of in-canopy flux distributions of reactive nitrogen and sulfur within a mixed hardwood forest in southern Appalachia

    EPA Science Inventory

    Estimating the source/sink distribution and vertical fluxes of air pollutants within and above forested canopies is critical for understanding biological, physical, and chemical processes influencing the soil-vegetation-atmosphere exchange. The vertical source-sink profiles of re...

  20. Restoration of temperate savannas and woodlands

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp

    2017-01-01

    Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...

  1. Countering misinformation concerning big sagebrush

    Treesearch

    Bruce L Welch; Craig Criddle

    2003-01-01

    This paper examines the scientific merits of eight axioms of range or vegetative management pertaining to big sagebrush. These axioms are: (1) Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) does not naturally exceed 10 percent canopy cover and mountain big sagebrush (A. t. ssp. vaseyana) does not naturally exceed 20 percent canopy...

  2. Sub-Pixel Mapping of Tree Canopy, Impervious Surfaces, and Cropland in the Laurentian Great Lakes Basin Using MODIS Time-Series Data

    EPA Science Inventory

    This research examined sub-pixel land-cover classification performance for tree canopy, impervious surface, and cropland in the Laurentian Great Lakes Basin (GLB) using both timeseries MODIS (MOderate Resolution Imaging Spectroradiometer) NDVI (Normalized Difference Vegetation In...

  3. Estimation of forest canopy nitrogen concentration. Chapter 15

    Treesearch

    Marie-Louise Smith; David Y. Hollinger; Scott Ollinger

    2008-01-01

    The ability to detect patterns of carbon assimilation by vegetation is a key component of the North American Carbon Program. Because photosynthetic potential is strongly related to biochemical constituents such as nitrogen and chlorophyll concentrations in foliage, the ability to incorporate canopy chemistry into landscape- to regional-scale carbon cycling research...

  4. LINKING IN SITU TIME SERIES FOREST CANOPY LAI AND PHENOLOGY METRICS WITH MODIS AND LANDSAT NDVI AND LAI PRODUCTS

    EPA Science Inventory

    The subject of this presentation is forest vegetation dynamics as observed by the TERRA spacecraft's Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper, and complimentary in situ time series measurements of forest canopy metrics related to Leaf Area...

  5. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients

    USDA-ARS?s Scientific Manuscript database

    Remotely sensed data such as spectral reflectance and infrared canopy temperature can be used to quantify crop canopy cover and/or crop water stress, often through the use of vegetation indices calculated from the near-infrared and red bands, and stress indices calculated from the thermal wavelength...

  6. Chlorophyll Fluorescence Emissions of Vegetation Canopies From High Resolution Field Reflectance Spectra

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Corp, L. A.; Daughtry, C. S. T.; Campbell, P. K. Entcheva

    2006-01-01

    A two-year experiment was performed on corn (Zea mays L.) crops under nitrogen (N) fertilization regimes to examine the use of hyperspectral canopy reflectance information for estimating chlorophyll fluorescence (ChlF) and vegetation production. Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll ChlF peaks centered at 685V10 nm and 735V5 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops, as part of an ongoing multi-year experiment at the USDA/Agriculture Research Service in Beltsville, MD. A spectroradiometer (ASD-FR Fieldspec Pro, Analytical Spectral Devices, Inc., Boulder, CO) was used to measure canopy radiances 1 m above plant canopies with a 22deg field of view and a 0deg nadir view zenith angle. Canopy and plant measurements were made at the R3 grain fill reproductive stage on 3-4 replicate N application plots provided seasonal inputs of 280, 140, 70, and 28 kg N/ha. Leaf level measurements were also made which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and N contents). Crop yields were determined at harvest. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrowband regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red S F ratio derived from these field reflectance spectra successfully discriminated foliar pigment levels (e.g., total chlorophyll, Chl) associated with N application rates in both corn crops. This canopy-level spectral ratio was also positively correlated to the foliar C/N ratio (r = 0.89, n = go), as was a leaf-level steady state fluorescence ratio (Fs/Chl, r = 0.92). The latter ratio was inversely correlated with crop grain yield (Kg 1 ha) (r = 0.9). This study has relevance to future passive satellite remote sensing approaches to monitoring C dynamics from space.

  7. Technological Advancement in Tower-Based Canopy Reflectance Monitoring: The AMSPEC-III System

    PubMed Central

    Tortini, Riccardo; Hilker, Thomas; Coops, Nicholas C.; Nesic, Zoran

    2015-01-01

    Understanding plant photosynthesis, or Gross Primary Production (GPP), is a crucial aspect of quantifying the terrestrial carbon cycle. Remote sensing approaches, in particular multi-angular spectroscopy, have proven successful for studying relationships between canopy-reflectance and plant-physiology processes, thus providing a mechanism to scale up. However, many different instrumentation designs exist and few cross-comparisons have been undertaken. This paper discusses the design evolution of the Automated Multiangular SPectro-radiometer for Estimation of Canopy reflectance (AMSPEC) series of instruments. Specifically, we assess the performance of the PP-Systems Unispec-DC and Ocean Optics JAZ-COMBO spectro-radiometers installed on an updated, tower-based AMSPEC-III system. We demonstrate the interoperability of these spectro-radiometers, and the results obtained suggest that JAZ-COMBO can successfully be used to substitute more expensive measurement units for detecting and investigating photosynthesis and canopy spectra. We demonstrate close correlations between JAZ-COMBO and Unispec-DC measured canopy radiance (0.75 ≤ R2 ≤ 0.85) and solar irradiance (0.95 ≤ R2 ≤ 0.96) over a three month time span. We also demonstrate close agreement between the bi-directional distribution functions obtained from each instrument. We conclude that cost effective alternatives may allow a network of AMSPEC-III systems to simultaneously monitor various vegetation types in different ecosystems. This will allow to scale and improve our understanding of the interactions between vegetation physiology and spectral characteristics, calibrate broad-scale observations to stand-level measurements, and ultimately lead to improved understanding of changing vegetation spectral features from satellite. PMID:26703602

  8. Technological Advancement in Tower-Based Canopy Reflectance Monitoring: The AMSPEC-III System.

    PubMed

    Tortini, Riccardo; Hilker, Thomas; Coops, Nicholas C; Nesic, Zoran

    2015-12-19

    Understanding plant photosynthesis, or Gross Primary Production (GPP), is a crucial aspect of quantifying the terrestrial carbon cycle. Remote sensing approaches, in particular multi-angular spectroscopy, have proven successful for studying relationships between canopy-reflectance and plant-physiology processes, thus providing a mechanism to scale up. However, many different instrumentation designs exist and few cross-comparisons have been undertaken. This paper discusses the design evolution of the Automated Multiangular SPectro-radiometer for Estimation of Canopy reflectance (AMSPEC) series of instruments. Specifically, we assess the performance of the PP-Systems Unispec-DC and Ocean Optics JAZ-COMBO spectro-radiometers installed on an updated, tower-based AMSPEC-III system. We demonstrate the interoperability of these spectro-radiometers, and the results obtained suggest that JAZ-COMBO can successfully be used to substitute more expensive measurement units for detecting and investigating photosynthesis and canopy spectra. We demonstrate close correlations between JAZ-COMBO and Unispec-DC measured canopy radiance (0.75 ≤ R² ≤ 0.85) and solar irradiance (0.95 ≤ R² ≤ 0.96) over a three month time span. We also demonstrate close agreement between the bi-directional distribution functions obtained from each instrument. We conclude that cost effective alternatives may allow a network of AMSPEC-III systems to simultaneously monitor various vegetation types in different ecosystems. This will allow to scale and improve our understanding of the interactions between vegetation physiology and spectral characteristics, calibrate broad-scale observations to stand-level measurements, and ultimately lead to improved understanding of changing vegetation spectral features from satellite.

  9. Effective Tree Scattering and Opacity at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.

    2011-01-01

    This paper investigates vegetation effects at L-band by using a first-order radiative transfer (RT) model and truck-based microwave measurements over natural conifer stands to assess the applicability of the tau-omega) model over trees. The tau-omega model is a zero-order RT solution that accounts for vegetation effects with effective vegetation parameters (vegetation opacity and single-scattering albedo), which represent the canopy as a whole. This approach inherently ignores multiple-scattering effects and, therefore, has a limited validity depending on the level of scattering within the canopy. The fact that the scattering from large forest components such as branches and trunks is significant at L-band requires that zero-order vegetation parameters be evaluated (compared) along with their theoretical definitions to provide a better understanding of these parameters in the retrieval algorithms as applied to trees. This paper compares the effective vegetation opacities, computed from multi-angular pine tree brightness temperature data, against the results of two independent approaches that provide theoretical and measured optical depths. These two techniques are based on forward scattering theory and radar corner reflector measurements, respectively. The results indicate that the effective vegetation opacity values are smaller than but of similar magnitude to both radar and theoretical estimates. The effective opacity of the zero-order model is thus set equal to the theoretical opacity and an explicit expression for the effective albedo is then obtained from the zero- and first- order RT model comparison. The resultant albedo is found to have a similar magnitude as the effective albedo value obtained from brightness temperature measurements. However, it is less than half of that estimated using the theoretical calculations (0.5 - 0.6 for tree canopies at L-band). This lower observed albedo balances the scattering darkening effect of the large theoretical albedo with a first-order multiple-scattering contribution. The retrieved effective albedo is different from theoretical definitions and not the albedo of single forest elements anymore, but it becomes a global parameter, which depends on all the processes taking place within the canopy, including multiple-scattering.

  10. Influence of Land Cover Heterogeneity, Land-Use Change and Management on the Regional Carbon Cycle in the Upper Midwest USA as Evaluated by High-Density Observations and a Dynamic Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Bolstad, P. V.; Moorcroft, P. R.; Davis, K. J.

    2005-12-01

    The interplay between land use change, forest management and land cover variability complicates the ability to characterize regional scale (10-1000 km) exchange of carbon dioxide between the land surface and atmosphere in heterogeneous landscapes. An attempt was made to observe and model these factors and their influence on the regional carbon cycle across the upper Midwest USA. A high density of eddy-covariance carbon flux, micrometeorology, carbon dioxide mixing ratio, stand-scale biometry and canopy component flux observations have been occurring in this area as part of the Chequamegon Ecosystem-Atmosphere Study. Observations limited to sampling only dominant stands and coarse-resolution biogeochemical models limited to biome-scale parameterization neither accurately capture the variability of carbon fluxes measured by the network of eddy covariance towers nor match the regional-scale carbon flux inferred from very tall tower eddy covariance measurements and multi-site upscaling. Analysis of plot level biometric data, U.S. Forest Service Forest Inventory Analysis data and high-resolution land cover data around the tall tower revealed significant variations in vegetation type, stand age, canopy stocking and structure. Wetlands, clearcuts and recent natural disturbances occur in characteristic small non-uniformly distributed patches that aggregate to form more than 30% of the landscape. The Ecosystem Demography model, a dynamic ecosystem model that incorporates vegetation heterogeneity, canopy structure, stand age, disturbance, land use change and forest management, was parameterized with regional biometric data and meteorology, historical records of land management and high-resolution satellite land cover maps. The model will be used to examine the significance of past land use change, natural disturbance history and current forest management in explaining landscape structure and regional carbon fluxes observed in the region today.

  11. A user-friendly means to scale from the biochemistry of photosynthesis to whole crop canopies and production in time and space - development of Java WIMOVAC.

    PubMed

    Song, Qingfeng; Chen, Dairui; Long, Stephen P; Zhu, Xin-Guang

    2017-01-01

    Windows Intuitive Model of Vegetation response to Atmosphere and Climate Change (WIMOVAC) has been used widely as a generic modular mechanistically rich model of plant production. It can predict the responses of leaf and canopy carbon balance, as well as production in different environmental conditions, in particular those relevant to global change. Here, we introduce an open source Java user-friendly version of WIMOVAC. This software is platform independent and can be easily downloaded to a laptop and used without any prior programming skills. In this article, we describe the structure, equations and user guide and illustrate some potential applications of WIMOVAC. © 2016 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  12. Yield prediction by analysis of multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Colwell, J. E.; Suits, G. H.

    1975-01-01

    A preliminary model describing the growth and grain yield of wheat was developed. The modeled growth characteristics of the wheat crop were used to compute wheat canopy reflectance using a model of vegetation canopy reflectance. The modeled reflectance characteristics were compared with the corresponding growth characteristics and grain yield in order to infer their relationships. It appears that periodic wheat canopy reflectance characteristics potentially derivable from earth satellites will be useful in forecasting wheat grain yield.

  13. Sensitivity of the normalized difference vegetation index to subpixel canopy cover, soil albedo, and pixel scale

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.

    1990-01-01

    An analytical framework is provided for examining the physically based behavior of the normalized difference vegetation index (NDVI) in terms of the variability in bulk subpixel landscape components and with respect to variations in pixel scales, within the context of the stochastic-geometric canopy reflectance model. Analysis focuses on regional scale variability in horizontal plant density and soil background reflectance distribution. Modeling is generalized to different plant geometries and solar angles through the use of the nondimensional solar-geometric similarity parameter. Results demonstrate that, for Poisson-distributed plants and for one deterministic distribution, NDVI increases with increasing subpixel fractional canopy amount, decreasing soil background reflectance, and increasing shadows, at least within the limitations of the geometric reflectance model. The NDVI of a pecan orchard and a juniper landscape is presented and discussed.

  14. Use of a digital camera to monitor the growth and nitrogen status of cotton.

    PubMed

    Jia, Biao; He, Haibing; Ma, Fuyu; Diao, Ming; Jiang, Guiying; Zheng, Zhong; Cui, Jin; Fan, Hua

    2014-01-01

    The main objective of this study was to develop a nondestructive method for monitoring cotton growth and N status using a digital camera. Digital images were taken of the cotton canopies between emergence and full bloom. The green and red values were extracted from the digital images and then used to calculate canopy cover. The values of canopy cover were closely correlated with the normalized difference vegetation index and the ratio vegetation index and were measured using a GreenSeeker handheld sensor. Models were calibrated to describe the relationship between canopy cover and three growth properties of the cotton crop (i.e., aboveground total N content, LAI, and aboveground biomass). There were close, exponential relationships between canopy cover and three growth properties. And the relationships for estimating cotton aboveground total N content were most precise, the coefficients of determination (R(2)) value was 0.978, and the root mean square error (RMSE) value was 1.479 g m(-2). Moreover, the models were validated in three fields of high-yield cotton. The result indicated that the best relationship between canopy cover and aboveground total N content had an R(2) value of 0.926 and an RMSE value of 1.631 g m(-2). In conclusion, as a near-ground remote assessment tool, digital cameras have good potential for monitoring cotton growth and N status.

  15. Spatial and Temporal Variabilities of Solar and Longwave Radiation Fluxes below a Coniferous Forest in the French Alps

    NASA Astrophysics Data System (ADS)

    Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.

    2017-12-01

    At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.

  16. Sensitivity analysis of a soil-vegetation-atmosphere transfer (SVAT) model parameterised for a British floodplain meadow

    NASA Astrophysics Data System (ADS)

    Morris, P. J.; Verhoef, A.; Van der Tol, C.; Macdonald, D.

    2011-12-01

    Rationale: Floodplain meadows are highly species-rich grassland ecosystems, unique in that their vegetation and soil structures have been shaped and maintained by ~1,000 yrs of traditional, low-intensity agricultural management. Widespread development on floodplains over the last two centuries has left few remaining examples of these once commonplace ecosystems and they are afforded high conservation value by British and European agencies. Increased incidences and severity of summer drought and winter flooding in Britain in recent years have placed floodplain plant communities under stress through altered soil moisture regimes. There is a clear need for improved management strategies if the last remaining British floodplain meadows are to be conserved under changing climates. Aim: As part of the Floodplain Underground Sensors Experiment (FUSE, a 3-year project funded by the Natural Environment Research Council) we aim to understand the environmental controls over soil-vegetation-atmosphere transfers (SVAT) of water, CO2 and energy at Yarnton Mead, a floodplain meadow in southern England. An existing model, SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes; van der Tol et al., 2009), uses remotely-sensed infrared radiance spectra to predict heat and water transfers between a vegetation canopy and the atmosphere. We intend to expand SCOPE by developing a more realistic, physically-based representation of water, gas and energy transfers between soil and vegetation. This improved understanding will eventually take the form of a new submodel within SCOPE, allowing more rigorous estimation of soil-canopy-atmosphere exchanges for the site using predominantly remotely-sensed data. In this context a number of existing SVAT models will be tested and compared to ensure that only reliable and robust underground model components will be coupled to SCOPE. Approach: For this study, we parameterised an existing and widely-used SVAT model (CoupModel; Jansson, 2011) for our study site and analysed the model's sensitivity to a comprehensive set of soil/plant biophysical processes and parameter values. Findings: The sensitivity analysis indicates those processes and parameters most important to soil-vegetation-atmosphere transfers at the site. We use the outcomes of the sensitivity analysis to indicate directly the desired structure of the new SCOPE submodel. In addition, existing soil-moisture, soil matric-potential and meteorological data for the site indicate that evapotranspiration is heavily water-limited during summer months, although soil moisture and soil matric-potential data alone provide very little explanation of the ratio of potential to actual evapotranspiration. A mechanistic representation of stomatal resistance and its response to short-term changes in meteorological conditions - independent of soil moisture status - will also likely improve SCOPE's predictions of heat and water transfers. Ultimately our work will contribute to improved understanding and management of floodplain meadows in Britain and elsewhere.

  17. A new tower-based hyperspectral system for the estimation of CO2 fluxes and biophysical parameters in a subalpine grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Vescovo, L.; Gianelle, D.; Marcolla, B.; Zaldei, A.; Sakowska, K.

    2013-12-01

    Linking optical remote sensing with carbon fluxes and biophysical parameters is critical to exploit spatial and temporal extensive information useful for validating model simulations at different scales. Proximal sensing is fundamental to quantify and understand the seasonal dynamics of ecosystems and to upscale the observations carried out at the ground level. In this study, we present the results from an ongoing research project at the FLUXNET eddy covariance site of Monte Bondone (Italy). The site is located at 1550 m a.s.l. on a mountain plateau in the Italian Alps (Viote del Monte Bondone). The area is managed as an extensively-managed meadow, cut once a year, and dominated by Nardus stricta and Festuca nigrescens. The climate of this area is sub-continental (warm and wet summer), with precipitation peaks in spring and autumn. A new hyperspectral system (WhiteRef Box, developed by Fondazione Edmund Mach in collaboration with the Institute of Biometeorology, CNR, Italy) based on the ASD FieldSpec spectrometer (spectral range 350-2500 nm, resolution ~3 nm at 700 nm) was designed to acquire continuous radiometric measurements. The system was installed on the eddy covariance tower at a height of 6 m, with a field of view of 25°. To obtain reflectance values, white panel radiance spectra and canopy radiance spectra were collected every 5 minutes between 10:00 a.m. and 1:00 p.m. (solar time) during the growing season of 2013. In addition, measurements of biophysical parameters such as above-ground biomass, fraction of Absorbed Photosynthetically Active Radiation (fAPAR), Plant Area Index, Canopy Chlorophyll Content, Canopy Water Content and Green Herbage Ratio were performed at weekly intervals within the spectrometer footprint (~5 m2). In this work, we present some preliminary results regarding the potential of spectral vegetation indices - based on VNIR and SWIR spectral bands- for capturing seasonal trends of CO2 fluxes as well as vegetation biophysical parameters dynamics. Spectral vegetation indices sensitive to chlorophyll content (such as Meris Terrestrial ChIorophyll Index, Vogelmann Indices) showed a good linear correlation with fAPAR, daily Gross Primary Production and chlorophyll content (R2> 0.8 for all the three variables). The SWIR-based Vegetation Indices (e.g. Normalised Difference Infrared Index, Moisture Stress Index) confirmed their ability to estimate Canopy Water Content. Most of the analyzed indices showed to be linearly related with Green Herbage Ratio (explaining more than 80% of variance). The Near Infrared Difference Index (Vescovo et al., 2012) confirmed his potential in predicting canopy structural parameters such as Plant Area Index and biomass (R2> 0.90).

  18. Towards a more detailed representation of the energy balance in a coupled land surface model

    NASA Astrophysics Data System (ADS)

    Ryder, J.; Polcher, J.; Luyssaert, S.

    2012-04-01

    Currently, the land-surface region sequesters 25% of global CO2 emissions. In addition to climate change, increasing atmospheric CO2 concentrations, fertilisation and nitrogen deposition, this sink is thought to be largely due to land management. When applied deliberately to enhance the terrestrial carbon sink strength, this land management may have unintended effects on the energy budget, potentially offsetting the radiative effect of carbon sequestration. As with other land surface models, the present release of ORCHIDEE (the land surface model of the IPSL Earth system model) has difficulties in reproducing consistently observed energy balances (Pitman et al., 2009; Jimenez et al., 2011; de Noblet-Ducoudré et al., 2011). Hence, the model must be improved to be better able to study the radiative effect of forest management and land use change. This observation serves as a starting point in this research - improving the level of detail in energy balance simulations of the surface layer. We here outline the structure of a new detailed and practical simulation of the energy budget that is currently under development within the surface model ORCHIDEE, and will be coupled to the atmospheric model LMDZ. The most detailed simulations of the surface layer energy budget are detailed iterative multi-layer canopy models, such as Ogeé et al. (2003), which are linked to specific measurement sites and do not interact with the atmosphere. In this current project, we aim to create a model that will implement the insights obtained in those previous studies and improve upon the present ORCHIDEE parameterisation, but will run stably and efficiently when coupled to an atmospheric model. This work involves a replacement of the existing allocation of 14 different types of vegetation within each surface tile (the 'Plant Functional Types') by a more granular scheme that can be modified to reflect changes in attributes such as vegetation density, leaf type, distribution (clumping factors), age and height of vegetation within the surface tile. There will be the implementation of more than one canopy vegetation layer to simulate the effects of scalar gradients within the canopy for determining, more accurately, the net sensible and latent heat fluxes that are passed to the atmosphere. The model will include representation of characteristics such as in-canopy transport, coupling with sensible heat flux from the soil, a multilayer radiation budget and stomatal resistance, and interaction with the bare soil flux within the canopy space (and also with snow pack). We present how the implicit coupling approach of Polcher et al. (1998) and Best et al. (2004) is to be extended to a multilayer scenario, present initial sensitivity studies and outline future testing scenarios and validation plans.

  19. Hyperion Studies Of Crop Stress In Mexico

    NASA Technical Reports Server (NTRS)

    Lobell, David B.; Asner, Gregory P.

    2004-01-01

    Satellite-based measurements of crop stress could provide much needed information for cropland management, especially in developing countries where other precision agriculture technologies are too expensive (Pierce and Nowak 1999; Robert 2002). For example, detection of areas that are nitrogen deficient or water stressed could guide fertilizer and water management decisions for all farmers within the swath of the satellite. Several approaches have been proposed to quantify canopy nutrient or water content based on spectral reflectance, most of which involve combinations of reflectance in the form of vegetation indices. While these indices are designed to maximize sensitivity to leaf chemistry, variations in other aspects of plant canopies may significantly impact remotely sensed reflectance. These confounding factors include variations in canopy structural properties (e.g., leaf area index, leaf angle distribution) as well as the extent of canopy cover, which determines the amount of exposed bare soil within a single pixel. In order to assess the utility of spectral indices for monitoring crop stress, it is therefore not only necessary to establish relationships at the leaf level, but also to test the relative importance of variations in other canopy attributes at the spatial scale of the remote sensing measurement. In this context, the relative importance of a given attribute will depend on (1) the sensitivity of the reflectance index to variation in the attribute and (2) the degree to which the attribute varies spatially and temporally.

  20. A Passive Microwave L-Band Boreal Forest Freeze/Thaw and Vegetation Phenology Study

    NASA Astrophysics Data System (ADS)

    Roy, A.; Sonnentag, O.; Pappas, C.; Mavrovic, A.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Lemay, J.; Helgason, W.; Barr, A.; Black, T. A.; Derksen, C.; Toose, P.

    2016-12-01

    The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitute an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. The effective retrieval of seasonal F/T state from L-Band radiometry was demonstrated using satellite mission. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the soil surface to the satellite signal remains challenging. Here we present initial results from a radiometer field campaign to improve our understanding of the L-Band derived boreal forest F/T signal and vegetation phenology. Two L-Band surface-based radiometers (SBR) are installed on a micrometeorological tower at the Southern Old Black Spruce site in central Saskatchewan over the 2016-2017 F/T season. One radiometer unit is installed on the flux tower so it views forest including all overstory and understory vegetation and the moss-covered ground surface. A second radiometer unit is installed within the boreal forest overstory, viewing the understory and the ground surface. The objectives of our study are (i) to disentangle the L-Band F/T signal contribution of boreal forest overstory from the understory and ground surface, (ii) to link the L-Band F/T signal to related boreal forest structural and functional characteristics, and (iii) to investigate the use of the L-Band signal to characterize boreal forest carbon, water and energy fluxes. The SBR observations above and within the forest canopy are used to retrieve the transmissivity (γ) and the scattering albedo (ω), two parameters that describe the emission of the forest canopy though the F/T season. These two forest parameters are compared with boreal forest structural and functional characteristics including eddy-covariance measurements of carbon dioxide, water and energy exchanges, sap flux density measurements of tree-level water dynamics, L-Band tree permittivity and temperature. The study will lead to improved monitoring of soil F/T and vegetation phenology at the boreal forest-scale from satellite L-Band observations.

Top