NASA Astrophysics Data System (ADS)
Dong, L.; Jiang, H.; Yang, L.
2018-04-01
Based on the Landsat images in 2006, 2011 and 2015, and the method of dimidiate pixel model, the Normalized Difference Vegetation Index (NDVI) and the vegetation coverage, this paper analyzes the spatio-temporal variation of vegetation coverage in Changchun, China from 2006 to 2015, and investigates the response of vegetation coverage change to natural and artificial factors. The research results show that in nearly 10 years, the vegetation coverage in Changchun dropped remarkably, and reached the minimum in 2011. Moreover, the decrease of maximum NDVI was significant, with a decrease of about 27.43 %, from 2006 to 2015. The vegetation coverage change in different regions of the research area was significantly different. Among them, the vegetation change in Changchun showed a little drop, and it decreased firstly and then increased slowly in Yushu, Nong'an and Dehui. In addition, the temperature and precipitation change, land reclamation all affect the vegetation coverage. In short, the study of vegetation coverage change contributes scientific and technical support to government and environmental protection department, so as to promote the coordinated development of ecology and economy.
Liu, Jun-Hui; Gao, Ji-Xi
2008-09-01
Based on the remote sensing images and the meteorological data in 1986 and 2000, and by using the model of extracting vegetation coverage, the spatiotemporal changes of vegetation coverage in the farming-pastoral ecotone of Northern China in 1986-2000 were studied, with the effects of climate and land use change on the changes analyzed. The results showed that in this ecotone, the area with lower vegetation coverage was increasing, while that with higher vegetation coverage was in adverse. The regions with increasing vegetation coverage were mainly in the east of northeast section, the west of north section, and the west of northwest section of the ecotone, while the vegetation coverage in the other sections was obviously degraded. The vegetation coverage were positively correlated with precipitation and aridity index, but negatively correlated with temperature. The change direction and extent of the vegetation coverage varied with land use types.
Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen
2010-03-01
The variations vegetation coverage is the result of conjunct effects of inner and outer energy of the earth, however, the human activity always makes the coverage of vegetation change a lot. Based on the monitoring data of chemistry of groundwater and the coverage of vegetation from 2002 to 2007 in the lower reaches of Tarim River, relations between vegetation coverage and groundwater chemistry were studied. It is found that vegetation coverage at Sector A was more than 80%, and decreased from sector to sector, the coverage of Sector I was less than 10%. At the same sector, samples near to water source owned high coverage index, and samples far away from the river had low coverage index. The variations of pH in groundwater expressed similar regulation to vegetation coverage, that is, Sectors near the water source had higher pH index comparing than those far away. Regression between groundwater quality and vegetation coverage disclosed that the coverage of Populus euphratica climbed up along with increase of pH in groundwater, change of Tamarix ramosissima coverage expressed an opposite trend to the Populus euphratica with the same environmental factors. This phenomenon can interpret spatial distribution of Populus euphratica and Tamarix ramosissima in lower reaches of the Tarim River.
NASA Astrophysics Data System (ADS)
Wang, Jinhua; Zhang, Ronggang; Sun, Juan
2018-02-01
Using artificial rainfall simulation method, 23 simulation experiments were carried out in water-wind erosion crisscross region in order to analyze the influence of vegetation coverage on runoff and sediment yield. The experimental plots are standard plots with a length of 20m, width of 5m and slope of 15 degrees. The simulation experiments were conducted in different vegetation coverage experimental plots based on three different rainfall intensities. According to the experimental observation data, the influence of vegetation coverage on runoff and infiltration was analyzed. Vegetation coverage has a significant impact on runoff, and the higher the vegetation coverage is, the smaller the runoff is. Under the condition of 0.6mm/min rainfall intensity, the runoff volume from the experimental plot with 18% vegetation coverage was 1.2 times of the runoff from the experimental with 30% vegetation coverage. What’s more, the difference of runoff is more obvious in higher rainfall intensity. If the rainfall intensity reaches 1.32mm/min, the runoff from the experimental plot with 11% vegetation coverage is about 2 times as large as the runoff from the experimental plot with 53%vegetation coverage. Under the condition of small rainfall intensity, the starting time of runoff in the experimental plot with higher vegetation coverage is later than that in the experimental plot with low vegetation coverage. However, under the condition of heavy rainfall intensity, there is no obvious difference in the beginning time of runoff. In addition, the higher the vegetation coverage is, the deeper the rainfall infiltration depth is.The results can provide reference for ecological construction carried out in wind erosion crisscross region with serious soil erosion.
NASA Astrophysics Data System (ADS)
Y Yang, M.; Wang, J.; Zhang, Q.
2017-07-01
Vegetation coverage is one of the most important indicators for ecological environment change, and is also an effective index for the assessment of land degradation and desertification. The dry-hot valley regions have sparse surface vegetation, and the spectral information about the vegetation in such regions usually has a weak representation in remote sensing, so there are considerable limitations for applying the commonly-used vegetation index method to calculate the vegetation coverage in the dry-hot valley regions. Therefore, in this paper, Alternating Angle Minimum (AAM) algorithm of deterministic model is adopted for selective endmember for pixel unmixing of MODIS image in order to extract the vegetation coverage, and accuracy test is carried out by the use of the Landsat TM image over the same period. As shown by the results, in the dry-hot valley regions with sparse vegetation, AAM model has a high unmixing accuracy, and the extracted vegetation coverage is close to the actual situation, so it is promising to apply the AAM model to the extraction of vegetation coverage in the dry-hot valley regions.
Chen, Jian-Jun; Yi, Shu-Hua; Qin, Yu; Wang, Xiao-Yun
2014-06-01
This paper retrieved the fractional vegetation cover of alpine grassland in the source region of the Shule River Basin based on Chinese environmental satellite (HJ-1A/1B) images and field data, and analyzed the response of the vegetation cover to topographic factors and types of frozen ground. The results showed that the vegetation coverage of this region was low with large spatial heterogeneity and high degree of dispersion. The landscape consisted mainly of non-vegetation surface types, eg. ice, snow, the bare rock gravel land and bare land. Slopes and aspects were the main limiting factors of vegetation distribution. The average vegetation coverage decreased with the increase of slope. The average vegetation coverage was the lowest on the sunny slope, and the highest on the shady slope. There were significant differences of vegetation coverage among different types of frozen ground. The distribution of vegetation coverage presented a reversed "U" curve trend by extremely stable permafrost, stable permafrost, sub-stable permafrost, transition permafrost, unstable permafrost and seasonal frost, and the average vegetation coverage was the highest in the sub-stable permafrost.
Wu, Jun-Jun; Gao, Zhi-Hai; Li, Zeng-Yuan; Wang, Hong-Yan; Pang, Yong; Sun, Bin; Li, Chang-Long; Li, Xu-Zhi; Zhang, Jiu-Xing
2014-03-01
In order to estimate the sparse vegetation information accurately in desertification region, taking southeast of Sunite Right Banner, Inner Mongolia, as the test site and Tiangong-1 hyperspectral image as the main data, sparse vegetation coverage and biomass were retrieved based on normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI), combined with the field investigation data. Then the advantages and disadvantages between them were compared. Firstly, the correlation between vegetation indexes and vegetation coverage under different bands combination was analyzed, as well as the biomass. Secondly, the best bands combination was determined when the maximum correlation coefficient turned up between vegetation indexes (VI) and vegetation parameters. It showed that the maximum correlation coefficient between vegetation parameters and NDVI could reach as high as 0.7, while that of SAVI could nearly reach 0.8. The center wavelength of red band in the best bands combination for NDVI was 630nm, and that of the near infrared (NIR) band was 910 nm. Whereas, when the center wavelength was 620 and 920 nm respectively, they were the best combination for SAVI. Finally, the linear regression models were established to retrieve vegetation coverage and biomass based on Tiangong-1 VIs. R2 of all models was more than 0.5, while that of the model based on SAVI was higher than that based on NDVI, especially, the R2 of vegetation coverage retrieve model based on SAVI was as high as 0.59. By intersection validation, the standard errors RMSE based on SAVI models were lower than that of the model based on NDVI. The results showed that the abundant spectral information of Tiangong-1 hyperspectral image can reflect the actual vegetaion condition effectively, and SAVI can estimate the sparse vegetation information more accurately than NDVI in desertification region.
1998-05-01
Coverage Probability with a Random Optimization Procedure: An Artificial Neural Network Approach by Biing T. Guan, George Z. Gertner, and Alan B...Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach 6. AUTHOR(S) Biing...coverage based on past coverage. Approach A literature survey was conducted to identify artificial neural network analysis techniques applicable for
NASA Astrophysics Data System (ADS)
Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun
2018-04-01
Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.
[Estimation of desert vegetation coverage based on multi-source remote sensing data].
Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui
2012-12-01
Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.
Coupling Analysis of Heat Island Effects, Vegetation Coverage and Urban Flood in Wuhan
NASA Astrophysics Data System (ADS)
Liu, Y.; Liu, Q.; Fan, W.; Wang, G.
2018-04-01
In this paper, satellite image, remote sensing technique and geographic information system technique are main technical bases. Spectral and other factors comprehensive analysis and visual interpretation are main methods. We use GF-1 and Landsat8 remote sensing satellite image of Wuhan as data source, and from which we extract vegetation distribution, urban heat island relative intensity distribution map and urban flood submergence range. Based on the extracted information, through spatial analysis and regression analysis, we find correlations among heat island effect, vegetation coverage and urban flood. The results show that there is a high degree of overlap between of urban heat island and urban flood. The area of urban heat island has buildings with little vegetation cover, which may be one of the reasons for the local heavy rainstorms. Furthermore, the urban heat island has a negative correlation with vegetation coverage, and the heat island effect can be alleviated by the vegetation to a certain extent. So it is easy to understand that the new industrial zones and commercial areas which under constructions distribute in the city, these land surfaces becoming bare or have low vegetation coverage, can form new heat islands easily.
NASA Astrophysics Data System (ADS)
Xiao, Jianyong; Bai, Xiaoyong; Zhou, Dequan; Qian, Qinghuan; Zeng, Cheng; Chen, Fei
2018-01-01
Vegetation coverage dynamics is affected by climatic, topography and human activities, which is an important indicator reflecting the regional ecological environment. Revealing the spatial-temporal characteristics of vegetation coverage is of great significance to the protection and management of ecological environment. Based on MODIS NDVI data and the Maximum Value Composites (MVC), we excluded soil spectrum interference to calculate Fractional Vegetation Coverage (FVC). Then the long-term FVC was used to calculate the spatial pattern and temporal variation of vegetation in Wujiang River Basin from 2000 to 2016 by using Trend analysis and Hurst index. The relationship between topography and spatial distribution of FVC was analyzed. The main conclusions are as follows: (1) The multi-annual mean vegetation coverage reveals a spatial distribution variation characteristic of low value in midstream and high level in other parts of the basin, owing a mean value of 0.6567. (2) From 2000 to 2016, the FVC of the Wujiang River Basin fluctuated between 0.6110 and 0.7380, and the overall growth rate of FVC was 0.0074/a. (3) The area of vegetation coverage tending to improve is more than that going to degrade in the future. Grass land, Arable land and Others improved significantly; karst rocky desertification comprehensive management project lead to persistent vegetation coverage improvement of Grass land, Arable land and Others. Residential land is covered with obviously degraded vegetation, resulting of urban sprawl; (4) The spatial distribution of FVC is positively correlated with TNI. Researches of spatial-temporal evolution of vegetation coverage have significant meaning for the ecological environment protection and management of the Wujiang River Basin.
NASA Astrophysics Data System (ADS)
A, Duo; Zhao, Wenji; Qu, Xinyuan; Jing, Ran; Xiong, Kai
2016-12-01
Global climate change has led to significant vegetation changes in the past half century. North China Plain, the most important grain production base of china, is undergoing a process of prominent warming and drying. The vegetation coverage, which is used to monitor vegetation change, can respond to climate change (temperature and precipitation). In this study, GIMMS (Global Inventory Modelling and Mapping Studies)-NDVI (Normalized Difference Vegetation Index) data, MODIS (Moderate-resolution Imaging Spectroradiometer) - NDVI data and climate data, during 1981-2013, were used to investigate the spatial distribution and changes of vegetation. The relationship between climate and vegetation on different spatial (agriculture, forest and grassland) and temporal (yearly, decadal and monthly) scales were also analyzed in North China Plain. (1) It was found that temperature exhibiting a slight increase trend (0.20 °C/10a, P < 0.01). This may be due to the disappearance of 0 °C isotherm, the rise of spring temperature. At the same time, precipitation showed a significant reduction trend (-1.75 mm/10a, P > 0.05). The climate mutation period was during 1991-1994. (2) Vegetation coverage slight increase was observed in the 55% of total study area, with a change rate of 0.00039/10a. Human activities may not only accelerate the changes of the vegetation coverage, but also c effect to the rate of these changes. (3) Overall, the correlation between the vegetation coverage and climatic factor is higher in monthly scale than yearly scale. The correlation analysis between vegetation coverage and climate changes showed that annual vegetation coverage was better correlatend with precipitation in grassland biome; but it showed a better correlated with temperature i the agriculture biome and forest biome. In addition, the vegetation coverage had sensitive time-effect respond to precipitation. (4) The vegetation coverage showed the same increasing trend before and after the climatic variations, but the rate of increase slowed down. From the vegetation coverage point of view, the grassland ecological zone had an obvious response to the climatic variations, but the agricultural ecological zones showed a significant response from the vegetation coverage change rate point of view. The effect of human activity in degradation region was higher than that in improvement area. But after the climate abruptly changing, the effect of human activity in improvement area was higher than that in degradation region, and the influence of human activity will continue in the future.
Assessment of Tibetan grassland degeneration via landscape analysis
NASA Astrophysics Data System (ADS)
Sun, Jian; Hou, Ge; Ma, Baibing; Zang, Wenqian
2017-04-01
Desertification as one of the most severity social-economic-environmental issues has been extensive researched, and the assessments of desertification can be implemented accurately and efficiently based on the landscape indicators of vegetation coverage. Consequently, we explored the relationships of the degeneration index of the grassland with climate factors (temperature and precipitation), and human disturbance factors (livestock quantity and animal husbandry output value) via a landscape assessment approach across Tibet. The results showed that the vegetation coverage presented an increase tendency in the central region of Tibet, but the adverse phenomenon was observed in the northwest region. Meanwhile, the correlation of vegetation coverage with precipitation presented as positive effect in most region of Tibet except some regions of the alpine steppe, and the positive correlation of vegetation coverage with temperature also was observed in the less northwest region of Tibet. In addition, we found that the livestock quantity play a key roles in regulating vegetation coverage of the central region. Furthermore, the landscape indexes [number of patches (NP), patch density (PD), contagion index (CONTAG), landscape shape index (LSI), aggregation index (AI)] of grasslands were analyzed, the results exposed that vegetation coverage (1%-20%) has the positive influences on CONTAG and AI, but negative affects LSI, PD and NP. Morreover, there are opposite correlations among vegetation coverage and landscape indexes when vegetation coverage is 21%-40%. We concluded that overgrazing is the main reason of grassland degradation in Tibet, especially the number of livestock aggravates the landscape fragmentation. The results highlighted the alpine grassland management in future.
Analysis on the Change of Vegetation Coverage in Qinghai Province from 2000 TO 2012
NASA Astrophysics Data System (ADS)
Wang, J.; Yan, Q.; Liu, Z.; Luo, C.
2013-07-01
Qinghai Province is one of the important provinces on the Qinghai-Tibet Plateau in China. Its unique alpine meadow ecosystem makes it become the most concentrated areas of biodiversity in high altitudes in the world. Researching the vegetation coverage and changes of Qinghai province can reflect effectively and timely processing of changes and problems of ecological quality in the region. This research will give a long time series monitoring of the vegetation coverage of Qinghai province based on maximum value composite (MVC) and S-G filtering algorithm using MODIS data of the year of 2000-2012, then analyze the change using coefficient of variability(CV) and trend line analysis. According to research, during the past 13 years, more than half of Qinghai Province's vegetation coverage is well, both the east and south have a high coverage, while the northwest is lower. The changing of vegetation coverage also has showed a steady and improving trend in 13 years. The largest area is slight improved area is about 29.08% of the total area, and the second largest area is significant improved area is about 21.09% of the total area. In this research can learn directly the vegetation coverage and changes of Qinghai province and provide reference and scientific basis for the protection and governance of ecological environment.
Spatial heterogeneity study of vegetation coverage at Heihe River Basin
NASA Astrophysics Data System (ADS)
Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei
2014-11-01
Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.
NASA Astrophysics Data System (ADS)
Yan, X.; Li, J.; Yang, Z.
2018-04-01
Chen Barag Banner is located in the typical farming-pastoral ecotone of Inner Mongolia, and it is also the core area of Hulunbuir steppe. Typical agricultural and pastoral staggered production mode so that the vegetation growth of the region not only determines the local ecological environment, and animal husbandry production, but also have a significant impact on the whole Hulunbuir ecological security and economic development. Therefore, it is necessary to monitor the change of vegetation in this area. Based on 17 MODIS Normalized Difference Vegetation Index (NDVI) images, the authors reconstructed the dynamic change characteristics of Fraction vegetation coverage (FVC) in Chen Barag Banner from 2000 to 2016. In this paper, first at all, Pixel Decomposition Models was introduced to inversion FVC, and the time series of vegetation coverage was reconstructed. Then we analyzed the temporal-spatial changes of FVC by employing transition matrix. Finally, through image analyzing and processing, the results showed that the vegetation coverage in the study area was influenced by effectors including climate, topography and human actives. In the past 17 years, the overall effect of vegetation coverage showed a downward trend of fluctuation. The average vegetation coverage decreased from 58.81 % in 2000 to 48.14 % in 2016, and the area of vegetation cover degradation accounts for 40.09 % of the total change area. Therefore, the overall degradation trend was obvious.
Miranda, L.E.; Pugh, L.L.
1997-01-01
Juvenile largemouth bass Micropterus salmoides were collected by electrofishing during October through March 1992-1994 from coves (???25 ha) covered with aquatic macrophytes over 1-65% of their area. Mean total length of juvenile largemouth bass was highest in coves with the least vegetated cover, but increase in mean length between October and March was highest in coves having near 20% vegetation coverage. Catch per unit effort decreased between October and March; decreases were least at vegetation coverages near 10-20%, highest at coverages of 5% or less, and intermediate at coverages of 30-65%. By March, these disparate decreases contributed to the formation of a dome-like relationship between vegetation coverage and catch per unit effort. Consumption of fish foods was highest when vegetation coverage was low, but decreased asymptotically as coverage increased; consumption of invertebrate foods increased at low coverage, peaked near 20-30% coverage, and decreased at higher coverage. We suggest that greater length increases and greater abundance at 10-25% vegetation coverage were stimulated by a favorable blend of food availability and cover. Our results support reports that maximum recruitment of largemouth bass occurs at intermediate levels of vegetation coverage, and we further suggests that such increased production is reinforced during winter, when survival, invertebrate consumption, and length increases are highest at intermediate levels of vegetation coverage.
Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0
NASA Astrophysics Data System (ADS)
Melton, J. R.; Arora, V. K.
2015-06-01
The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition, and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverages of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverages of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.
Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0
NASA Astrophysics Data System (ADS)
Melton, J. R.; Arora, V. K.
2016-01-01
The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM, which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs, which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverage of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large-scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverage of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.
NASA Astrophysics Data System (ADS)
Shrestha, Rudra K.; Arora, Vivek K.; Melton, Joe R.; Sushama, Laxmi
2017-10-01
The performance of the competition module of the CLASS-CTEM (Canadian Land Surface Scheme and Canadian Terrestrial Ecosystem Model) modelling framework is assessed at 1° spatial resolution over North America by comparing the simulated geographical distribution of its plant functional types (PFTs) with two observation-based estimates. The model successfully reproduces the broad geographical distribution of trees, grasses and bare ground although limitations remain. In particular, compared to the two observation-based estimates, the simulated fractional vegetation coverage is lower in the arid southwest North American region and higher in the Arctic region. The lower-than-observed simulated vegetation coverage in the southwest region is attributed to lack of representation of shrubs in the model and plausible errors in the observation-based data sets. The observation-based data indicate vegetation fractional coverage of more than 60 % in this arid region, despite only 200-300 mm of precipitation that the region receives annually, and observation-based leaf area index (LAI) values in the region are lower than one. The higher-than-observed vegetation fractional coverage in the Arctic is likely due to the lack of representation of moss and lichen PFTs and also likely because of inadequate representation of permafrost in the model as a result of which the C3 grass PFT performs overly well in the region. The model generally reproduces the broad spatial distribution and the total area covered by the two primary tree PFTs (needleleaf evergreen trees, NDL-EVG; and broadleaf cold deciduous trees, BDL-DCD-CLD) reasonably well. The simulated fractional coverage of tree PFTs increases after the 1960s in response to the CO2 fertilization effect and climate warming. Differences between observed and simulated PFT coverages highlight model limitations and suggest that the inclusion of shrubs, and moss and lichen PFTs, and an adequate representation of permafrost will help improve model performance.
NASA Astrophysics Data System (ADS)
Huang, J.; Chen, D.
2005-12-01
Vegetation water content (VWC) attracts great research interests in hydrology research in recent years. As an important parameter describing the horizontal expansion of vegetation, vegetation coverage is essential to implement soil effect correction for partially vegetated fields to estimate VWC accurately. Ground measurements of corn and soybeans in SMEX02 resulted in an identical expolinear relationship between vegetation coverage and leaf area index (LAI), which is used for vegetation coverage mapping. Results illustrated two parts of LAI growth quantitatively: the horizontal expansion of leaf coverage and the vertical accumulation of leaf layers. It is believed that the former part contributes significantly to LAI growth at initial vegetation growth stage and the latter is more dominant after vegetation coverage reaches a certain level. The Normalized Difference Water Index (NDWI) using short-wave infrared bands is convinced for its late saturation at high LAI values, in contrast to the Normalized Difference Vegetation Index (NDVI). NDWI is then utilized to estimate LAI, via another expolinear relationship, which is evidenced having vegetation species independency in study of corn and soybeans in SMEX02 sites. It is believed that the surface reflectance measured at satellites spectral bands are the mixed results of signals reflected from vegetation and bare soil, especially at partially vegetated fields. A simple linear mixture model utilizing vegetation coverage information is proposed to correct soil effect in such cases. Surface reflectance fractions for -rpure- vegetation are derived from the model. Comparing with ground measurements, empirical models using soil effect corrected vegetation indices to estimate VWC and dry biomass (DB) are generated. The study enhanced the in-depth understanding of the mechanisms how vegetation growth takes effect on satellites spectral reflectance with and without soil effect, which are particularly useful for modeling in hydrology, agriculture, forestry and meteorology etc.
Vegetation mapping of the Mond Protected Area of Bushehr Province (south-west Iran).
Mehrabian, Ahmadreza; Naqinezhad, Alireza; Mahiny, Abdolrassoul Salman; Mostafavi, Hossein; Liaghati, Homan; Kouchekzadeh, Mohsen
2009-03-01
Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced.
Zhou, Jinxing; Guo, Hongyan; Cui, Ming; Liu, Yuguo; Ning, Like; Tang, Fukai
2016-01-01
Over the past several decades, rocky desertification has led to severe ecological problems in karst areas in South China. After a rocky desertification treatment project was completed, the vegetation coverage changed greatly and, consequently, increased the ecology water consumption (approximately equal to the actual evapotranspiration) of the regional vegetation. Thus, it intensified the regional water stresses. This study explored the changes in the actual evapotranspiration (ETa) response to the vegetation coverage changes in the rocky desertification areas in South China based on the precipitation (P), potential evapotranspiration (ETp) and NDVI (the normalized difference vegetation index) datasets. The revised Bagrov model was used to simulate the actual evapotranspiration changes with the supposed increasing NDVI. The results indicated that the average NDVI value was lower when the rocky desertification was more severe. The ETa, evapotranspiration efficiency (ETa/ETp) and potential humidity (P/ETp) generally increased with the increasing NDVI. The sensitivity of the ETa response to vegetation coverage changes varied due to different precipitation conditions and different rocky desertification severities. The ETa was more sensitive under drought conditions. When a drought occurred, the ETa exhibited an average increase of 40~60 mm with the NDVI increasing of 0.1 in the rocky desertification areas. Among the 5 different severity categories of rocky desertification, the ETa values’ responses to NDVI changes were less sensitive in the severe rocky desertification areas but more sensitive in the extremely and potential rocky desertification areas. For example, with the NDVI increasing of 0.025, 0.05, 0.075, and 0.1, the corresponding ETa changes increased by an average of 2.64 mm, 10.62 mm, 19.19 mm, and 27.58 mm, respectively, in severe rocky desertification areas but by 4.94 mm, 14.99 mm, 26.80, and 37.13 mm, respectively, in extremely severe rocky desertification areas. Understanding the vegetation ecological water consumption response to the vegetation coverage changes is essential for the vegetation restoration and water stresses mitigation in rocky desertification areas. PMID:27798642
Wan, Long; Tong, Jing; Zhou, Jinxing; Guo, Hongyan; Cui, Ming; Liu, Yuguo; Ning, Like; Tang, Fukai
2016-01-01
Over the past several decades, rocky desertification has led to severe ecological problems in karst areas in South China. After a rocky desertification treatment project was completed, the vegetation coverage changed greatly and, consequently, increased the ecology water consumption (approximately equal to the actual evapotranspiration) of the regional vegetation. Thus, it intensified the regional water stresses. This study explored the changes in the actual evapotranspiration (ETa) response to the vegetation coverage changes in the rocky desertification areas in South China based on the precipitation (P), potential evapotranspiration (ETp) and NDVI (the normalized difference vegetation index) datasets. The revised Bagrov model was used to simulate the actual evapotranspiration changes with the supposed increasing NDVI. The results indicated that the average NDVI value was lower when the rocky desertification was more severe. The ETa, evapotranspiration efficiency (ETa/ETp) and potential humidity (P/ETp) generally increased with the increasing NDVI. The sensitivity of the ETa response to vegetation coverage changes varied due to different precipitation conditions and different rocky desertification severities. The ETa was more sensitive under drought conditions. When a drought occurred, the ETa exhibited an average increase of 40~60 mm with the NDVI increasing of 0.1 in the rocky desertification areas. Among the 5 different severity categories of rocky desertification, the ETa values' responses to NDVI changes were less sensitive in the severe rocky desertification areas but more sensitive in the extremely and potential rocky desertification areas. For example, with the NDVI increasing of 0.025, 0.05, 0.075, and 0.1, the corresponding ETa changes increased by an average of 2.64 mm, 10.62 mm, 19.19 mm, and 27.58 mm, respectively, in severe rocky desertification areas but by 4.94 mm, 14.99 mm, 26.80, and 37.13 mm, respectively, in extremely severe rocky desertification areas. Understanding the vegetation ecological water consumption response to the vegetation coverage changes is essential for the vegetation restoration and water stresses mitigation in rocky desertification areas.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Zhang, Peng; Hu, Yigang; Huang, Lei
2016-02-01
Despite the critical roles of plant species' diversity and biological soil crusts (BSCs) in arid and semi-arid ecosystems, the restoration of the diversity of herbaceous species and BSCs are rarely discussed during the process of vegetation restoration of anthropogenically damaged areas in these regions. In this study, the herbaceous plant species composition, along with the BSCs coverage and thicknesses, was investigated at six different re-vegetation type sites, and the natural vegetation site of the Heidaigou open pit coal mine in China's Inner Mongolia Autonomous Region was used as a reference. The highest total species richness (16), as well as the species richness (4.4), occurred in the Tree and Herbaceous vegetation type site. The species composition similarities between the restored sites and the reference site were shown to be very low, and ranged from 0.09 to 0.42. Also, among the restored sites, the similarities of the species were fairly high and similar, and ranged from 0.45 to 0.93. The density and height of the re-vegetated woody plants were significantly correlated with the indexes of the diversity of the species. The Shrub vegetation type site showed the greatest total coverage (80 %) of BSCs and algae crust coverage (48 %). The Shrub and Herbaceous type had the greatest thicknesses of BSCs, with as much as 3.06 mm observed, which was followed by 2.64 mm for the Shrub type. There was a significant correlation observed between the coverage of the total BSCs, and the total vegetation and herbaceous vegetation coverage, as well as between the algae crust coverage and the herbaceous vegetation coverage. It has been suggested that the re-vegetated dwarf woody plant species (such as shrubs and semi-shrubs) should be chosen for the optimal methods of the restoration of herbaceous species diversity at dumping sites, and these should be planted with low density. Furthermore, the effects of vegetation coverage on the colonization and development the BSCs should be considered in order to reconstruct the vegetation in disturbed environments, such as mine dumpsites in arid areas.
Wang, Hai-Mei; Li, Zheng-Hai; Wang, Zhen
2013-01-01
Based on the monthly temperature and precipitation data of 15 meteorological stations and the statistical data of livestock density in Xilinguole League in 1981-2007, and by using ArcGIS, this paper analyzed the spatial distribution of the climate aridity and livestock density in the League, and in combining with the ten-day data of the normalized difference vegetation index (NDVI) in 1981-2007, the driving factors of the vegetation cover change in the League were discussed. In the study period, there was a satisfactory linear regression relationship between the climate aridity and the vegetation coverage. The NDVI and the livestock density had a favorable binomial regression relationship. With the increase of NDVI, the livestock density increased first and decreased then. The vegetation coverage had a complex linear relationship with livestock density and climate aridity. The NDVI had a positive correlation with climate aridity, but a negative correlation with livestock density. Compared with livestock density, climate aridity had far greater effects on the NDVI.
NASA Astrophysics Data System (ADS)
Han, Ruimei; Zou, Youfeng; Ma, Chao; Liu, Pei
2014-11-01
Ordos area is the desert-wind erosion desertification steppe transition zone and the complex ecological zone. As the research area, Ordos City has the similar natural geographic environment to ShenDong coalfield. To research its ecological patterns and natural evolution law, it has instructive to reveal temporal and spatial changes of ecological environment with artificial disturbance in western mining. In this paper, a time series of AVHRR-NDVI(Normalized Difference Vegetation Index) data was used to monitor the change of vegetation temporal and spatial dynamics from 1981 to 2006 in Ordos City and ShenDong coalfield, where were as the research area. The MVC (Maximum Value Composites) method, average operation, linear regression, and gradation for NDVI change trend were used to obtained some results, as follows: ¬vegetation coverage had obvious characteristics with periodic change in research area for 26 years, and vegetation growth peak appeared on August, while the lowest appeared on January. The extreme values in Ordos City were 0.2351 and 0.1176, while they were 0.2657 and 0.1272 in ShenDong coalfield. The NDVI value fluctuation was a modest rise trend overall in research area. The extreme values were 0.3071 and 0.1861 in Ordos City, while they were 0.3454 and 0.1904 in ShenDong coalfield. In spatial distribution, slight improvement area and slight degradation area were accounting for 42.49% and 8.37% in Ordos City, while slight improvement area moderate improvement area were accounting for 70.59% and 29.41% in ShenDong coalfield. Above of results indicated there was less vegetation coverage in research area, which reflected the characteristics of fragile natural geographical environment. In addition, vegetation coverage was with a modest rise on the whole, which reflected the natural environment change.
Long-term of analysis of MODIS, NDVI and NDWI for the Mesopotamian Marshlands, Iraq.
NASA Astrophysics Data System (ADS)
Al barakat, R. H. R.; Lakshmi, V.
2016-12-01
The Mesopotamian marshlands are considered as a one of the most important wetlands in the world. During past decades, the marsh area has varied between 10,500 km² to 20,000 km² in flood seasons. These marshes are located in the Mesopotamain plain lying mostly within Southern Iraq and a portion of South western Iran, along Euphrates,Tigris and Shatt Al-Arab river which formed by the confluence of Tigris and Euphrates rivers. They are characterized by a good environment for various flora such as Phragmites australis and fauna. Through early 1990 to the present the marshes subjected to many changes such as water supply diversions that have dramatically impacted the ecosystem. By using a long-term values of the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS), between 2000 and 2016, we examined the annual changes during entire time series in both of the vegetation and water coverage in the three majar marshes; Al-Huwaizah marsh, the Central marshes and Al-Hammar marsh. The long-term has been divided into three periods (2000-2003, 2004-2008 and 2009-2016) based on ratios of coverage vegetation and water. The 1st period is characterized by low coverage in both vegetation and water due to human activities, which is represented by the construction of a large number of dams on the downstream of Tigris and Euphrates rivers during late 1980s until 2003. The 2nd period shows significantly increasing coverage of greater than 50% were the increases in the vegetation coverage of the original marsh areas. The 3rd period shows increases in the barren lands, while the water bodies and vegetation coverage are decreased. This variations are attributed to different effects. First, the marshes have received little water due to constructions of dams in the upstream countries, and they were completed during 3rd period 2009-2016. Second they occurred during a period of severe drought in the neighboring countries (upstream). Additional to that, this research aims to detect the environmental changes in the marshes by using multi-temporal and multi-spectral satellite images. The spatial resolution of the MODIS imagery is enhanced using Landsat data.
Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt
2015-01-01
Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and –51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water-conserving agricultural practices should be implemented as adaptive strategies to mitigate climate change. PMID:26237220
Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt
2015-01-01
Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water-conserving agricultural practices should be implemented as adaptive strategies to mitigate climate change.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Xue, Lianqing; Yang, Changbing; Chen, Xinfang; Zhang, Luochen; Wei, Guanghui
2018-01-01
The Tarim River (TR), as the longest inland river at an arid area in China, is a typical regions of vegetation variation research and plays a crucial role in the sustainable development of regional ecological environment. In this paper, the newest dataset of MODND1M NDVI, at a resolution of 500m, were applied to calculate vegetation index in growing season during the period 2000-2015. Using a vegetation coverage index, a trend line analysis, and the local spatial autocorrelation analysis, this paper investigated the landscape patterns and spatio-temporal variation of vegetation coverage at regional and pixel scales over mainstream of the Tarim River, Xinjiang. The results showed that (1) The bare land area on both sides of Tarim River appeared to have a fluctuated downward trend and there were two obvious valley values in 2005 and 2012. (2) Spatially, the vegetation coverage improved areas is mostly distributed in upstream and the degraded areas is mainly distributed in the left bank of midstream and the end of Tarim River during 2000-2005. (3) The local spatial auto-correlation analysis revealed that vegetation coverage was spatially positive autocorrelated and spatial concentrated. The high-high self-related areas are mainly distributed in upstream, where vegetation cover are relatively good, and the low-low self-related areas are mostly with lower vegetation cover in the lower reaches of Tarim River.
Coverage-dependent amplifiers of vegetation change on global water cycle dynamics
NASA Astrophysics Data System (ADS)
Feng, Huihui; Zou, Bin; Luo, Juhua
2017-07-01
The terrestrial water cycle describes the circulation of water worldwide from one store to another via repeated evapotranspiration (E) from land and precipitation (P) back to the surface. The cycle presents significant spatial variability, which is strongly affected by natural climate and anthropogenic influences. As one of the major anthropogenic influences, vegetation change unavoidably alters surface property and subsequent the terrestrial water cycle, while its contribution is yet difficult to isolate from the mixed influences. Here, we use satellite and in-situ datasets to identify the terrestrial water cycle dynamics in spatial detail and to evaluate the impact of vegetation change. Methodologically, the water cycle is identified by the indicator of difference between evapotranspiration and precipitation (E-P). Then the scalar form of the indicator's trend (ΔE + ΔP) is used for evaluating the dynamics of water cycle, with the positive value means acceleration and negative means deceleration. Then, the contributions of climate and vegetation change are isolated by the trajectory-based method. Our results indicate that 4 accelerating and 4 decelerating water cycles can be identified, affecting 42.11% of global land. The major water cycle type is characterized by non-changing precipitation and increasing evapotranspiration (PNO-EIN), which covers 20.88% of globally land. Vegetation change amplifies both accelerating and decelerating water cycles. It tends to intensify the trend of the decelerating water cycles, while climate change weakens the trend. In the accelerating water cycles, both vegetation and climate change present positive effect to intensify the trend. The effect of plant cover change varies with the coverage. In particular, vegetation change intensifies the water cycle in moderately vegetated regions (0.1 < NDVI < 0.6), but weakens the cycle in sparsely or highly vegetated regions (NDVI < 0.1 or 0.6 < NDVI < 0.8). In extremely vegetated regions (NDVI > 0.85), the water cycle is accelerated because of the significant increase of precipitation. We conclude that vegetation change acts as an amplifier for both accelerating and decelerating terrestrial water cycles, depending on the degree of vegetation coverage.
Man, Liang; Hasi, Eerdun; Zhang, Ping; Yan, Xu; Xia, Xian-Dong
2008-10-01
By using traditional sampling methods, the micro-communities of vegetations in fixed, semi-bare, and bare blowouts of Hulunbuir grassland were investigated, and the investigation data were statistical analyzed. The results showed that the vegetation coverage decreased in the order of fixed blowout, semi-bare blowout, and bare blowout, and was lower than that of the primary vegetation Form. Stipa grandis. Potentilla acaulis and Kengia squarrosa were the dominant species in fixed blowout, with the coverage being 5%; while P. acaulis and Carex sp. were the dominant species in semi-bare blowout, with the coverage being 2%. The dominant species in depositional areas of semi-bare blowout were P. acaulis, K. squarrosa, Agropyron cristatum, and Thymus mongolicus, and the coverage was 4%. The dominant species on the southwest slope of bare blowout was Agriophyllum pungens. The middle depositional area of bare blowout was also occupied by A. pungens (coverage 4.7%), and the edge of it was dominated by A. cristatum (coverage 2.7%), Carex sp. (coverage 2.6%), and T. mongolicus (coverage 1.7%) from the edge of the depositional area to primary grassland. The mean species importance value in fixed, semi-bare, and bare blowouts was 12.64%, 13.38%, and 20.08%, while that in the depositional area of semi-bare blowout and in the middle and edge of bare blowout was 12.55%, 40.18%, and 11.15%, respectively.
Zhang, Tianyi; Wang, Hesong
2015-01-01
We identified the spatiotemporal patterns of the Normalized Difference Vegetation Index (NDVI) for the years 1982–2008 in the desert areas of Northwest China and quantified the impacts of climate and non-climate factors on NDVI changes. The results indicate that although the mean NDVI has improved in 24.7% of the study region; 16.3% among the region has been stagnating in recent years and only 8.4% had a significantly increasing trend. Additionally, 45.3% of the region has maintained a stable trend over the study period and 30.0% has declined. A multiple regression model suggests that a wetter climate (quantified by the Palmer Drought Severity Index, PDSI) is associated with higher NDVI in most areas (18.1% of significance) but these historical changes in PDSI only caused an average improvement of approximately 0.4% over the study region. Contrasting the regression results under different trend patterns, no significant differences in PDSI impacts were detected among the four trend patterns. Therefore, we conclude that climate is not the primary driver for vegetative coverage in Northwest China. Future studies will be required to identify the impacts of specific non-climatic factors on vegetative coverage based on high-resolution data, which will be beneficial in creating an effective strategy to combat the recent desertification trend in China. PMID:25961563
[Green space vegetation quantity in workshop area of Wuhan Iron and Steel Company].
Chen, Fang; Zhou, Zhixiang; Wang, Pengcheng; Li, Haifang; Zhong, Yingfei
2006-04-01
Aimed at the complex community structure and higher fragmentation of urban green space, and based on the investigation of synusia structure and its coverage, this paper studied the vegetation quantity of ornamental green space in the workshop area of Wuhan Iron and Steel Company, with the help of GIS. The results showed that different life forms of ornamental plants in this area had a greater difference in their single leaf area and leaf area index (LAI), and the LAI was not only depended on single leaf area, but also governed by the shape of tree crown and the intensive degree of branches and leaves. The total vegetation quantity was 1 694.2 hm2, with the average LAI being 7.75, and the vegetation quantity of arbor-shrub-herb and arbor-shrub communities accounted for 79.7% and 92.3% of the total, respectively, reflecting that the green space structure was dominated by arbor species and by arbor-shrub-herb and arbor-shrub community types. Single layer-structured lawn had a less percentage, while the vegetation quantity of herb synusia accounted for 22.9% of the total, suggesting an afforestation characteristic of "making use of every bit of space" in the workshop area. The vegetation quantity of urban ornamental green space depended on the area of green space, its synusia structure, and the LAI and coverage of ornamental plants. In enlarging urban green space, ornamental plant species with high LAI should be selected, and community structure should be improved to have a higher vegetation quantity in urban area. To quantify the vegetation quantity of urban ornamental green space more accurately, synusia should be taken as the unit to measure the LAI of typical species, and the synusia structure and its coverage of different community types should be investigated with the help of remote sensing images and GIS.
NASA Technical Reports Server (NTRS)
Obrien, S. O. (Principal Investigator)
1980-01-01
The program, LACVIN, calculates vegetative indexes numbers on limited area coverage/high resolution picture transmission data for selected IJ grid sections. The IJ grid sections were previously extracted from the full resolution data tapes and stored on disk files.
Use of NDVI and land surface temperature for assessing vegetation health: merits and limitations
USDA-ARS?s Scientific Manuscript database
To date, most drought indices used in drought monitoring are based on precipitation and meteorological data collected on the ground from distributed monitoring networks. Few satellite-based drought indices are currently in production, although these afford better spatial and temporal coverage and r...
Competition between hardwood hammocks and mangroves
Sternberg, L.D.S.L.; Teh, S.Y.; Ewe, S.M.L.; Miralles-Wilhelm, F.; DeAngelis, D.L.
2007-01-01
The boundaries between mangroves and freshwater hammocks in coastal ecotones of South Florida are sharp. Further, previous studies indicate that there is a discontinuity in plant predawn water potentials, with woody plants either showing predawn water potentials reflecting exposure to saline water or exposure to freshwater. This abrupt concurrent change in community type and plant water status suggests that there might be feedback dynamics between vegetation and salinity. A model examining the salinity of the aerated zone of soil overlying a saline body of water, known as the vadose layer, as a function of precipitation, evaporation and plant water uptake is presented here. The model predicts that mixtures of saline and freshwater vegetative species represent unstable states. Depending on the initial vegetation composition, subsequent vegetative change will lead either to patches of mangrove coverage having a high salinity vadose zone or to freshwater hammock coverage having a low salinity vadose zone. Complete or nearly complete coverage by either freshwater or saltwater vegetation represents two stable steady-state points. This model can explain many of the previous observations of vegetation patterns in coastal South Florida as well as observations on the dynamics of vegetation shifts caused by sea level rise and climate change. ?? 2007 Springer Science+Business Media, LLC.
Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties
NASA Technical Reports Server (NTRS)
Huemmrich, Karl F.; Gamon, John; Tweedie, Craig; Campbell, Petya P. K.; Landis, David; Middleton, Elizabeth
2012-01-01
Climate change in tundra regions may alter vegetation species composition and ecosystem carbon balance. Remote sensing provides critical tools for monitoring these changes as optical signals provide a way to scale from plot measurements to regional patterns. Gas exchange measurements of pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK, show three significantly different values of light use efficiency (LUE) with values of 0.013+/-0.001, 0.0018+/-0.0002, and 0.0012 0.0001 mol C/mol absorbed quanta for vascular plants, mosses and lichens, respectively. Further, discriminant analysis of patch reflectance identifies five spectral bands that can separate each vegetation functional type as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. Patch-level statistical discriminant functions applied to in situ hyperspectral reflectance successfully unmixed cover fractions of the vegetation functional types. These functions, developed from the tram data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine regional variability in distribution of the vegetation functional types and from those distributions, the variability of LUE. Across the landscape, there was a fivefold variation in tundra LUE that was correlated to a spectral vegetation index developed to detect vegetation chlorophyll content.
Badel-Mogollón, Jaime; Rodríguez-Figueroa, Laura; Parra-Henao, Gabriel
2017-03-29
Due to the lack of information regarding biophysical and spatio-temporal conditions (hydrometheorologic and vegetal coverage density) in areas with Triatoma dimidiata in the Colombian departments of Santander and Boyacá, there is a need to elucidate the association patterns of these variables to determine the distribution and control of this species. To make a spatio-temporal analysis of biophysical variables related to the distribution of T. dimidiate observed in the northeast region of Colombia. We used the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) data bases registering vector presence and hydrometheorologic data. We studied the variables of environmental temperature, relative humidity, rainfall and vegetal coverage density at regional and local levels, and we conducted spatial geostatistic, descriptive statistical and Fourier temporal series analyses. Temperatures two meters above the ground and on covered surface ranged from 14,5°C to 18,8°C in the areas with the higher density of T. dimidiata. The environmental temperature fluctuated between 30 and 32°C. Vegetal coverage density and rainfall showed patterns of annual and biannual peaks. Relative humidity values fluctuated from 66,8 to 85,1%. Surface temperature and soil coverage were the variables that better explained the life cycle of T. dimidiata in the area. High relative humidity promoted the seek of shelters and an increase of the geographic distribution in the annual and biannual peaks of regional rainfall. The ecologic and anthropic conditions suggest that T. dimidiata is a highly resilient species.
Initial Validation of NDVI time seriesfrom AVHRR, VEGETATION, and MODIS
NASA Technical Reports Server (NTRS)
Morisette, Jeffrey T.; Pinzon, Jorge E.; Brown, Molly E.; Tucker, Jim; Justice, Christopher O.
2004-01-01
The paper will address Theme 7: Multi-sensor opportunities for VEGETATION. We present analysis of a long-term vegetation record derived from three moderate resolution sensors: AVHRR, VEGETATION, and MODIS. While empirically based manipulation can ensure agreement between the three data sets, there is a need to validate the series. This paper uses atmospherically corrected ETM+ data available over the EOS Land Validation Core Sites as an independent data set with which to compare the time series. We use ETM+ data from 15 globally distributed sites, 7 of which contain repeat coverage in time. These high-resolution data are compared to the values of each sensor by spatially aggregating the ETM+ to each specific sensors' spatial coverage. The aggregated ETM+ value provides a point estimate for a specific site on a specific date. The standard deviation of that point estimate is used to construct a confidence interval for that point estimate. The values from each moderate resolution sensor are then evaluated with respect to that confident interval. Result show that AVHRR, VEGETATION, and MODIS data can be combined to assess temporal uncertainties and address data continuity issues and that the atmospherically corrected ETM+ data provide an independent source with which to compare that record. The final product is a consistent time series climate record that links historical observations to current and future measurements.
[Relations of landslide and debris flow hazards to environmental factors].
Zhang, Guo-ping; Xu, Jing; Bi, Bao-gui
2009-03-01
To clarify the relations of landslide and debris flow hazards to environmental factors is of significance to the prediction and evaluation of landslide and debris flow hazards. Base on the latitudinal and longitudinal information of 18431 landslide and debris flow hazards in China, and the 1 km x 1 km grid data of elevation, elevation difference, slope, slope aspect, vegetation type, and vegetation coverage, this paper analyzed the relations of landslide and debris flow hazards in this country to above-mentioned environmental factors by the analysis method of frequency ratio. The results showed that the landslide and debris flow hazards in China more occurred in lower elevation areas of the first and second transitional zones. When the elevation difference within a 1 km x 1 km grid cell was about 300 m and the slope was around 30 degree, there was the greatest possibility of the occurrence of landslide and debris hazards. Mountain forest land and slope cropland were the two land types the hazards most easily occurred. The occurrence frequency of the hazards was the highest when the vegetation coverage was about 80%-90%.
Zong, Ning; Chai, Xi; Shi, Pei Li; Jiang, Jing; Niu, Ben; Zhang, Xian Zhou; He, Yong Tao
2016-12-01
Global climate warming and increasing nitrogen (N) deposition, as controversial global environmental issues, may distinctly affect the functions and processes of terrestrial ecosystems. It has been reported that the Qinghai-Tibet Plateau has been experiencing significant warming in recent decades, especially in winter. Previous studies have mainly focused on the effects of warming all the year round; however, few studies have tested the effects of winter warming. To investigate the effects of winter warming and N addition on plant community structure and species composition of alpine meadow, long-term N addition and simulated warming experiment was conducted in alpine meadow from 2010 in Damxung, northern Tibet. The experiment consisted of three warming patterns: Year-round warming (YW), winter warming (WW) and control (NW), crossed respectively with five N gradients: 0, 10, 20, 40, 80 kg N·hm -2 ·a -1 . From 2012 to 2014, both warming and N addition significantly affected the total coverage of plant community. Specifically, YW significantly decreased the total coverage of plant community. Without N addition, WW remarkably reduced the vegetation coverage. However, with N addition, the total vegetation coverage gradually increased with the increase of N level. Warming and N addition had different effects on plants from different functional groups. Warming significantly reduced the plant coverage of grasses and sedges, while N addition significantly enhanced the plant coverage of grasses. Regression analyses showed that the total coverage of plant community was positively related to soil water content in vigorous growth stages, indicating that the decrease in soil water content resulted from warming during dry seasons might be the main reason for the decline of total community coverage. As soil moisture in semi-arid alpine meadow is mainly regulated by rainfalls, our results indicated that changes in spatial and temporal patterns of rainfalls under the future climate change scenarios would dramatically influence the vegetation coverage and species composition. Additionally, the effects of increasing atmospheric N deposition on vegetation community might also depend on the change of rainfall patterns.
Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco
2014-12-10
The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments.
Zhang, Peng; Huang, Lei; Hu, Yi-gang; Zhao, Yang; Wu, Yong-chen
2016-02-01
Nitrogen limitation is common in terrestrial ecosystems, and it is particularly severe in damaged ecosystems in arid regions. Biological soil crusts (BSCs) , as a crucial component of recovered vegetation, play a vital role in nitrogen fixation during the ecological restoration processes of damaged ecosystems in arid and semi-arid regions. In this study, two dominant types of BSCs (i.e., cyanobacterial-algal crusts and moss crusts) that are widely distributed in the re-vegetated area of Heidaigou open pit coal mine were investigated. Samples were collected in the field and their nitrogenase activities (NA) were measured in the laboratory. The responses of NA to different hydro-thermal factors and the relationships between NA and herbs in addition to crust coverage were analyzed. The results indicated that BSCs under reconstructed vegetation at different succession stages, abandoned land and natural vegetation showed values of NA ranging from 9 to 150 µmol C2H4 . m-2 . h-1, and the NA value of algae crust (77 µmol C2H4 . m-2 . h-1) was markedly higher than that of moss crust (17 µmol C2H4 . m-2 . h-1). In the re-vegetated area, cyanobacterial-algal crust and moss crust under shrub-herb had higher NA values than those of crusts under arbor-shrnb and arbor-shrub-herb. The relationship between NA of the two BSCs and soil relative water content (10% - 100%) as well as culture temperature (5-45 °C) were of quadratic function. With elevated water content and cultural temperature, the NA values increased at the initial stage and then decreased, and reached the maximum value at 25 °C of cultural temperature and 60% or 80% of relative water content. The NA of cyanobacterial-algal crust had a significant quadratic function with herb coverage, as NA declined when herb coverage was higher than 20%. A significant negative correlation was observed between the NA of moss crusts and herb coverage. The NA values of the two types of BSCs had a significant positive correlation with crust coverage, since the NA was enhanced when the crust coverage was increased. We concluded that the different NA of the two BSCs in the re-vegetated area of Heidaigou open pit coal mine were caused by the composition of cryptograms. In addition, the differences of hydrothermal conditions and the composition of herb or crust coverage at different succession stages were also the contribution factors. Therefore, BSC construction and nitrogen fixation in re-vegetated areas is an important symbol for sustainable development in ecosystems.
NASA Astrophysics Data System (ADS)
Perdana, B. P.; Setiawan, Y.; Prasetyo, L. B.
2018-02-01
Recently, a highway development is required as a liaison between regions to support the economic development of the regions. Even the availability of highways give positive impacts, it also has negative impacts, especially related to the changes of vegetated lands. This study aims to determine the change of vegetation coverage in Jagorawi corridor Jakarta-Bogor during 37 years, and to analyze landscape patterns in the corridor based on distance factor from Jakarta to Bogor. In this study, we used a long-series of Landsat images taken by Landsat 2 MSS (1978), Landsat 5 TM (1988, 1995, and 2005) and Landsat 8 OLI/TIRS (2015). Analysis of landscape metrics was conducted through patch analysis approach to determine the change of landscape patterns in the Jagorawi corridor Jakarta-Bogor. Several parameters of landscape metrics used are Number of Patches (NumP), Mean Patch Size (MPS), Mean Shape Index (MSI), and Edge Density (ED). These parameters can be used to provide information of structural elements of landscape, composition and spatial distribution in the corridor. The results indicated that vegetation coverage in the Jagorawi corridor Jakarta-Bogor decreased about 48% for 35 years. Moreover, NumP value increased and decreasing of MPS value as a means of higher fragmentation level occurs with patch size become smaller. Meanwhile, The increase in ED parameters indicates that vegetated land is damaged annually. MSI parameter shows a decrease in every year which means land degradation on vegetated land. This indicates that the declining value of MSI will have an impact on land degradation.
NASA Astrophysics Data System (ADS)
Liu, W.; Ning, T.; Shen, H.; Li, Z.
2017-12-01
Vegetation, climate seasonality and topography are the main impact factors controlling the water and heat balance over a catchment, and they are usually empirically formulated into the controlling parameter in Budyko model. However, their interactions on different time scales have not been fully addressed. Taking 30 catchments in China's Loess Plateau as an example, on annual scale, vegetation coverage was found poorly correlated with climate seasonality index; therefore, they could be both parameterized into the Budyko model. On the long-term scale, vegetation coverage tended to have close relationships with topographic conditions and climate seasonality, which was confirmed by the multi-collinearity problems; in that sense, vegetation information could fit the controlling parameter exclusively. Identifying the dominant controlling factors over different time scales, this study simplified the empirical parameterization of the Budyko formula. Though the above relationships further investigation over the other regions/catchments.
Yang, Xu; You, Xue-Yi; Ji, Min; Nima, Ciren
2013-01-01
The effects of limiting factors such as rainfall intensity, rainfall duration, grass type and vegetation coverage on the stormwater runoff of urban green space was investigated in Tianjin. The prediction equation of stormwater runoff was established by the quantitative theory with the lab experimental data of soil columns. It was validated by three field experiments and the relative errors between predicted and measured stormwater runoff are 1.41, 1.52 and 7.35%, respectively. The results implied that the prediction equation could be used to forecast the stormwater runoff of urban green space. The results of range and variance analysis indicated the sequence order of limiting factors is rainfall intensity > grass type > rainfall duration > vegetation coverage. The least runoff of green land in the present study is the combination of rainfall intensity 60.0 mm/h, duration 60.0 min, grass Festuca arundinacea and vegetation coverage 90.0%. When the intensity and duration of rainfall are 60.0 mm/h and 90.0 min, the predicted volumetric runoff coefficient is 0.23 with Festuca arundinacea of 90.0% vegetation coverage. The present approach indicated that green space is an effective method to reduce stormwater runoff and the conclusions are mainly applicable to Tianjin and the semi-arid areas with main summer precipitation and long-time interval rainfalls.
Urban area thermal monitoring: Liepaja case study using satellite and aerial thermal data
NASA Astrophysics Data System (ADS)
Gulbe, Linda; Caune, Vairis; Korats, Gundars
2017-12-01
The aim of this study is to explore large (60 m/pixel) and small scale (individual building level) temperature distribution patterns from thermal remote sensing data and to conclude what kind of information could be extracted from thermal remote sensing on regular basis. Landsat program provides frequent large scale thermal images useful for analysis of city temperature patterns. During the study correlation between temperature patterns and vegetation content based on NDVI and building coverage based on OpenStreetMap data was studied. Landsat based temperature patterns were independent from the season, negatively correlated with vegetation content and positively correlated with building coverage. Small scale analysis included spatial and raster descriptor analysis for polygons corresponding to roofs of individual buildings for evaluating insulation of roofs. Remote sensing and spatial descriptors are poorly related to heat consumption data, however, thermal aerial data median and entropy can help to identify poorly insulated roofs. Automated quantitative roof analysis has high potential for acquiring city wide information about roof insulation, but quality is limited by reference data quality and information on building types, and roof materials would be crucial for further studies.
NASA Astrophysics Data System (ADS)
Silva, T. S. F.; Torres, R. S.; Morellato, P.
2017-12-01
Vegetation phenology is a key component of ecosystem function and biogeochemical cycling, and highly susceptible to climatic change. Phenological knowledge in the tropics is limited by lack of monitoring, traditionally done by laborious direct observation. Ground-based digital cameras can automate daily observations, but also offer limited spatial coverage. Imaging by low-cost Unmanned Aerial Systems (UAS) combines the fine resolution of ground-based methods with and unprecedented capability for spatial coverage, but challenges remain in producing color-consistent multitemporal images. We evaluated the applicability of multitemporal UAS imaging to monitor phenology in tropical altitudinal grasslands and forests, answering: 1) Can very-high resolution aerial photography from conventional digital cameras be used to reliably monitor vegetative and reproductive phenology? 2) How is UAS monitoring affected by changes in illumination and by sensor physical limitations? We flew imaging missions monthly from Feb-16 to Feb-17, using a UAS equipped with an RGB Canon SX260 camera. Flights were carried between 10am and 4pm, at 120-150m a.g.l., yielding 5-10cm spatial resolution. To compensate illumination changes caused by time of day, season and cloud cover, calibration was attempted using reference targets and empirical models, as well as color space transformations. For vegetative phenological monitoring, multitemporal response was severely affected by changes in illumination conditions, strongly confounding the phenological signal. These variations could not be adequately corrected through calibration due to sensor limitations. For reproductive phenology, the very-high resolution of the acquired imagery allowed discrimination of individual reproductive structures for some species, and its stark colorimetric differences to vegetative structures allowed detection of the reproductive timing on the HSV color space, despite illumination effects. We conclude that reliable vegetative phenology monitoring may exceed the capabilities of consumer cameras, but reproductive phenology can be successfully monitored for species with conspicuous reproductive structures. Further research is being conducted to improve calibration methods and information extraction through machine learning.
Soares, J J; da Silva, D W; Lima, M I
2003-08-01
A map of the native vegetation remaining in São Carlos County was built based on aerial images, satellite images, and field observations, and a projection of the probable original vegetation was made by checking it against soil and relief surveys. The existing vegetation is very fragmented and improverished, consisting predominantly of cerrados (savanna vegetation of various physiognomies), semideciduous and riparian forest, and regeneration areas. Araucaria angustifolia (Bertol.) Kuntze, found in patches inside the semideciduous forest beginning at a minimum altitude of 850 m, has practically disappeared. By evaluating areas on the map for different forms of vegetation, we obtained the following results for original coverage: 27% cerrado (sparsely arboreal and short-shrub savanna, and wet meadows); 16% cerradão (arboreal savanna); 55% semideciduous and riparian forests; and 2% forest with A. angustifolia. There are now 2% cerrados; 2.5% cerradão; 1% semideciduous forest and riparian forests; 1.5% regeneration areas; and 0% forest with A. angustifolia.
Rybicki, N.B.; Landwehr, J.M.
2007-01-01
We assessed species-specific coverage (km2) of a submerged aquatic vegetation (SAV) community in the fresh and upper oligohaline Potomac Estuary from 1985 to 2001 using a method combining field observations of species-proportional coverage data with congruent remotely sensed coverage and density (percent canopy cover) data. Biomass (estimated by density-weighted coverage) of individual species was calculated. Under improving water quality conditions, exotic SAV species did not displace native SAV; rather, the percent of natives increased over time. While coverage-based diversity did fluctuate and increased, richness-based community turnover rates were not significantly different from zero. SAV diversity was negatively related to nitrogen concentration. Differences in functional traits, such as reproductive potential, between the dominant native and exotic species may explain some interannual patterns in SAV. Biomass of native, as well as exotic, SAV species varied with factors affecting water column light attenuation. We also show a positive response by a higher trophic level, waterfowl, to SAV communities dominated by exotic SAV from 1959 to 2001. ?? 2007, by the American Society of Limnology and Oceanography, Inc.
AmeriFlux US-Cop Corral Pocket
Bowling, David [University of Utah
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Cop Corral Pocket. Site Description - The Corral Pocket site is located in a semi-arid grassland in southeastern Utah, just east of Canyonlands National park. For the greater part of the year, 38-80% of the ground is essentially bare. Vegetation is primarily native perennial C3/C4 grasses with annual ground converge ranging from 8-35%. Leaving the remaining 0-15% coverage to interspersed annual grasses, the remaining 0-15% coverage is occupied by annual grasses. 6-8 weeks during the late fall or winter, Livestock grazing is responsible for the majority of aboveground vegetation loss and subsequent high variability of ground coverage.
Zhang, Zengxin; Chang, Juan; Xu, Chong-Yu; Zhou, Yang; Wu, Yanhong; Chen, Xi; Jiang, Shanshan; Duan, Zheng
2018-09-01
Lakes and vegetation are important factors of the Earth's hydrological cycle and can be called an "indicator" of climate change. In this study, long-term changes of lakes' area and vegetation coverage in the Qinghai-Tibetan Plateau (QTP) and their relations to the climate change were analyzed by using Mann-Kendall method during the past 30years. Results showed that: 1) the lakes' area of the QTP increased significantly during the past 30years as a whole, and the increasing rates have been dramatically sped up since the year of 2000. Among them, the area of Ayakekumu Lake has the fastest growing rate of 51.35%, which increased from 618km 2 in the 1980s to 983km 2 in the 2010s; 2) overall, the Normalized Difference Vegetation Index (NDVI) increased in the QTP during the past 30years. Above 79% of the area in the QTP showed increasing trend of NDVI before the year of 2000; 3) the air temperature increased significantly, the precipitation increased slightly, and the pan evaporation decreased significantly during the past 30years. The lake area and vegetation coverage changes might be related to the climate change. The shifts in the temporal climate trend occurred around the year 2000 had led the lake area and vegetation coverage increasing. This study is of importance in further understanding the environmental changes under global warming over the QTP. Copyright © 2018 Elsevier B.V. All rights reserved.
Assessing alternative industrial fortification portfolios: a Bangladesh case study.
Fiedler, John L; Lividini, Keith; Guyondet, Christophe; Bermudez, Odilia I
2015-03-01
Approximately 1.2 million disability-adjusted life years (DALYs) are lost annually in Bangladesh due to deficiencies of vitamin A, iron, and zinc. To provide evidence on the coverage, costs, and cost-effectiveness of alternative fortification interventions to inform nutrition policy-making in Bangladesh. Combining the 2005 Bangladesh Household Income and Expenditure Survey with a Bangladesh food composition table, apparent intakes of energy, vitamin A, iron, and zinc, and the coverage and apparent consumption levels of fortifiable vegetable oil and wheat flour are estimated. Assuming that fortification levels are those established in official regulations, the costs and cost-effectiveness of the two vehicles are assessed independently and as a two-vehicle portfolio. Vegetable oil has a coverage rate of 76% and is estimated to reduce the prevalence of inadequate vitamin A intake from 83% to 64%. The coverage of wheat flour is high (65%), but the small quantities consumed result in small reductions in the prevalence of inadequate intakes: 1.5 percentage points for iron, less than 1 for zinc, and 2 for vitamin A, while reducing average Estimated Average Requirement (EAR) gaps by 8%, 9%, and 15%, respectively. The most cost-effective 10-micronutrient wheat flour formulation costs US $1.91 million annually, saving 129,212 DALYs at a unit cost of US $14.75. Fortifying vegetable oil would cost US $1.27 million annually, saving 406,877 DALYs at an average cost of US $3.25. Sensitivity analyses explore various permutations of the wheat flour formulation. Divisional variations in coverage, cost, and impact are examined. Vegetable oil fortification is the most cost-effective of the three portfolios analyzed, but all three are very cost-effective options for Bangladesh.
USDA-ARS?s Scientific Manuscript database
Watermelon (Citrullus lanatus var. lanatus) is an important vegetable fruit throughout the world. A high number of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers should provide large coverage of the watermelon genome and high phylogenetic resolution of germplasm acces...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guiling; Yu, Miao; Pal, Jeremy
This paper presents a regional climate system model RCM-CLM-CN-DV and its validation over Tropical Africa. The model development involves the initial coupling between the ICTP regional climate model RegCM4.3.4 (RCM) and the Community Land Model version 4 (CLM4) including models of carbon-nitrogen dynamics (CN) and vegetation dynamics (DV), and further improvements of the models. Model improvements derive from the new parameterization from CLM4.5 that addresses the well documented overestimation of gross primary production (GPP), a refinement of stress deciduous phenology scheme in CN that addresses a spurious LAI fluctuation for drought-deciduous plants, and the incorporation of a survival rule intomore » the DV model to prevent tropical broadleaf evergreens trees from growing in areas with a prolonged drought season. The impact of the modifications on model results is documented based on numerical experiments using various subcomponents of the model. The performance of the coupled model is then validated against observational data based on three configurations with increasing capacity: RCM-CLM with prescribed leaf area index and fractional coverage of different plant functional types (PFTs); RCM-CLM-CN with prescribed PFTs coverage but prognostic plant phenology; RCM-CLM-CN-DV in which both the plant phenology and PFTs coverage are simulated by the model. Results from these three models are compared against the FLUXNET up-scaled GPP and ET data, LAI and PFT coverages from remote sensing data including MODIS and GIMMS, University of Delaware precipitation and temperature data, and surface radiation data from MVIRI and SRB. Our results indicate that the models perform well in reproducing the physical climate and surface radiative budgets in the domain of interest. However, PFTs coverage is significantly underestimated by the model over arid and semi-arid regions of Tropical Africa, caused by an underestimation of LAI in these regions by the CN model that gets exacerbated through vegetation dynamics in RCM-CLM-CN-DV.« less
NASA Astrophysics Data System (ADS)
Keefe, Steffanie H.; Daniels, Joan S. (Thullen); Runkel, Robert L.; Wass, Roland D.; Stiles, Eric A.; Barber, Larry B.
2010-11-01
A series of tracer experiments were conducted biannually at the start and end of the vegetation growing season in a surface flow wastewater treatment wetland located near Phoenix, AZ. Tracer experiments were conducted prior to and following reconfiguration and replanting of a 1.2 ha treatment wetland from its original design of alternating shallow and deep zones to incorporate hummocks (shallow planting beds situated perpendicular to flow). Tracer test data were analyzed using analysis of moments and the one-dimensional transport with inflow and storage numerical model to evaluate the effects of the seasonal vegetation growth cycle and hummocks on solute transport. Following reconfiguration, vegetation coverage was relatively small, and minor changes in spatial distribution influenced wetland hydraulics. During start-up conditions, the wetland underwent an acclimation period characterized by small vegetation coverage and large transport cross-sectional areas. At the start of the growing season, new growth of emergent vegetation enhanced hydraulic performance. At the end of the growing season, senescing vegetation created short-circuiting. Wetland hydrodynamics were associated with high volumetric efficiencies and velocity heterogeneities. The hummock design resulted in breakthrough curves characterized by multiple secondary tracer peaks indicative of varied flow paths created by bottom topography.
Keefe, Steffanie H.; Daniels, Joan S.; Runkel, Robert L.; Wass, Roland D.; Stiles, Eric A.; Barber, Larry B.
2010-01-01
A series of tracer experiments were conducted biannually at the start and end of the vegetation growing season in a surface flow wastewater treatment wetland located near Phoenix, AZ. Tracer experiments were conducted prior to and following reconfiguration and replanting of a 1.2 ha treatment wetland from its original design of alternating shallow and deep zones to incorporate hummocks (shallow planting beds situated perpendicular to flow). Tracer test data were analyzed using analysis of moments and the one‐dimensional transport with inflow and storage numerical model to evaluate the effects of the seasonal vegetation growth cycle and hummocks on solute transport. Following reconfiguration, vegetation coverage was relatively small, and minor changes in spatial distribution influenced wetland hydraulics. During start‐up conditions, the wetland underwent an acclimation period characterized by small vegetation coverage and large transport cross‐sectional areas. At the start of the growing season, new growth of emergent vegetation enhanced hydraulic performance. At the end of the growing season, senescing vegetation created short‐circuiting. Wetland hydrodynamics were associated with high volumetric efficiencies and velocity heterogeneities. The hummock design resulted in breakthrough curves characterized by multiple secondary tracer peaks indicative of varied flow paths created by bottom topography.
Yang, Bin; Xue, Quan-hong; Chen, Zhan-quan; Guo, Zhi-ying; Zhang, Xiao-lu; Zhou, Yong-qiang; Xu, Ying-jun; Sun, De-fu
2008-08-01
In order to probe into the effects of artificial vegetation rehabilitation on soil actinomycetes, dilution plate and agar block methods were used to investigate the ecological distribution and antimicrobial effects of actinomycetes in sandy soil in Shazhuyu area of Qinghai after artificial vegetation restoration. The results showed that with the vegetation rehabilitation and the improvement of vegetation coverage on alpine sandy dry land, the quantity of soil actinomycetes increased significantly, being 145.4% higher in the grassland transferred from farmland than in sandy land. The quantity of soil Micromonospora in grassland transferred from farmland was about six times as much as that in sandy land. The average selection rate of antimicrobial actinomycetes was increased greatly, with the antimicrobial actinomycetes in the soil of grassland transferred from farmland, the antibacterial actinomycetes in the soil of natural grassland, and the pathogenic fungus resistant aetinomycetes in the soil of forestland being approximately 2, 3.2 and 1.5 times as much as those in the soil of sandy land, respectively. Vegetation coverage and soil nutrients had great influences on the quantities of actinomycetes and antimicrobial actinomycetes. The contents of soil organic matter and alkali-hydrolyzable nitrogen and the yield of fresh grasses had significant correlations with the quantities of actinomycetes (P < 0.01), and the content of soil organic matter and the yield of fresh grasses significantly correlated with the strain numbers of antimicrobial actinomycetes (P < 0.01). Furthermore, vegetation coverage and the contents of soil total nitrogen, total phosphorous, total potassium, total salt, and available potassium had significant correlations with the total quantities of actinomycetes, Streptomycetes, and Micromonospora (P < 0.05).
Historic macrophyte development in Par Pond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grace, J.B.
1985-08-01
Aerial photographs from 1975, 1980, and 1983 were examined to evaluate the changes that have occurred in the wetland vegetation of Par Pond, a reactor-cooling reservoir. Evaluation of the aerial photographs was based on comparisons with ground-level vegetation maps made during July 1984. Comparisons of photographs from August and December of 1983 revealed the main seasonal change in the aerial coverage of wetland vegetation to be the wintertime loss of non-persistent emergent species such as Nelumbo lutea and Nymphaea odorata. Comparisons between September 1980 and August 1983 revealed that the lakeward extent of non-persistent macrophytes has increased by an averagemore » of 8.2 m, though not all sites have changed equally. For persistent macrophytes (principally Typha), the average increase in lakeward extent between December 1975 and August 1983 was 3.48 m. The extensive development of wetland vegetation in Par Pond as well as the substantial spread of vegetation over only a few years time indicates the high suitability of this habitat for the growth of wetland plants.« less
Zhao, Chuanchuan; Yang, Ninggui; Wang, Zhen; Liu, Sili; Dong, Xu; Xin, Wenrong
2013-01-01
The information of slope and vegetation coverage of the monitoring region were extracted, based on DEM (Digital Evaluation Model) and Spot5 Satellite data images, and fishnet grid was generated using GIS (Geographic Information System) and RS (Remote Sensing) technique. Applying the information of slop and vegetation coverage layers into the corresponding space grid by using the function of zonal statistics and analysis, it can realize overlay analysis based on Standards for Classification and Gradation of Soil Erosion (SL190-2007), and obtains the map of soil erosion intensity of the monitoring region. Finally, according to Specifications for Assessment of Forest Ecosystem Services (LY/T1721-2008) and monitoring data of typical plot, the soil and water conservation value from cropland to forest was evaluated quantitatively in 2009. The results showed that the area, on and below the moderate level, was 93600 ha, taking up 50.03% of total conversion of farmland to forest area (185100 ha), which indicates a 14.64 million (t/a) of soil conversion, and a 1520 million Yuan for erosion control. The results of the study showed that the soil and water conservation was very effective.
Stow, D.; Daeschner, Scott; Hope, A.; Douglas, David C.; Petersen, A.; Myneni, Ranga B.; Zhou, L.; Oechel, W.
2003-01-01
The interannual variability and trend of above-ground photosynthetic activity of Arctic tundra vegetation in the 1990s is examined for the north slope region of Alaska, based on the seasonally integrated normalized difference vegetation index (SINDVI) derived from local area coverage (LAC) National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data. Smaller SINDVI values occurred during the three years (1992-1994) following the volcanic eruption of Mt Pinatubo. Even after implementing corrections for this stratospheric aerosol effect and adjusting for changes in radiometric calibration coefficients, an apparent increasing trend of SINDVI in the 1990s is evident for the entire north slope. The most pronounced increase was observed for the foothills physiographical province.
Characterization of Vegetation Change in a Sub-Arctic Mire using Remotely Sensed Imagery
NASA Astrophysics Data System (ADS)
DelGreco, J. L.; McArthur, K. J.; Palace, M. W.; Herrick, C.; Garnello, A.; Finnell, D.; McCalley, C. K.; Anderson, S. M.; Varner, R. K.
2015-12-01
Climate change is impacting northern ecosystems through the thawing of the permafrost, which has resulted in changes to plant communities and greenhouse gas emissions, such as carbon dioxide (CO2) and methane (CH4). These greenhouse gases are of concern due to their potential feedbacks which create a warmer climate, thus increasing permafrost thawing. Our study focuses on how vegetation type differs in areas that have been impacted by thawing permafrost at Stordalen Mire located in Abisko, Sweden. To estimate change in vegetation communities, field-based measurements combined with remotely sensed image data was used. 75 randomized square-meter plots were measured for vegetation composition and classified into one of five site-types, each representing a different stage of permafrost degradation. New high-resolution imagery (1 cm) was collected using Unmanned Aerial Vehicles (UAV) providing insight into the spatial patterning, characterizations, and changes of these communities. The UAV imagery was georectified using high precision GPS points collected across the mire. The imagery was then examined using a neural network analysis to estimate cover type across the mire. This 2015 cover type classification was then compared to previous UAV imagery taken on July 2014 to analyze changes in vegetation distribution as an indication of permafrost thaw. Hummock sites represent intact permafrost and have lost 21.5% coverage since 2014, while tall gramminoid sites, which indicate fully thawed sites, have increased coverage by 12.1%. A discriminate function analysis showed that site types can be differentiated based on species composition, thus showing that vegetation differs significantly across the thaw gradient. Using average flux rates of CH4 from each cover type reported previously, the percent of CH4 emitted over the mire was estimated for 2014 and 2015. Comparing both estimates, CH4 emissions increased with a flux change of 5604.5 g CH4/day. Our estimates of vegetation change may be used to parameterize simulation models and create future scenarios of how the vegetation cover will change in response to climate change. Data from this study will also help to explain how the ecology of the subarctic peatlands, now a carbon sink, may be on its way to changing into a source of carbon.
A new vegetation map of the western Seward Peninsula, Alaska, based on ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Anderson, J. H.; Belon, A. E. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A reconstituted, simulated color-infrared ERTS-1 image covering the western Seward Peninsula was prepared and it is used for identifying and mapping vegetation types by direct visual examination. The image, NASA ERTS E-1009-22095, was obtained approximately at 1110 hours, 165 degrees WMT on August 1, 1972. Seven major colors are identified. Four of these are matched with units on existing vegetation maps: bright red - shrub thicket; light gray-red - upland tundra; medium gray-red - coastal coastal wet tundra; gray - alpine barrens. The three colors having no map equivalents are tentatively interpreted as follows: pink - grassland tundra; dark gray-red - burn scars; light orange-red - senescent vegetation. A vegetation map, drawn by tracing on an acetate overlay of the image is presented. Significantly more information is depicted than on existing maps with regards to vegetation types and their areal distribution. Furthermore the preparation of the new map from ERTS-1 imagery required little time relative to conventional methods and extent of areal coverage.
Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties
NASA Technical Reports Server (NTRS)
Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.
2013-01-01
Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a fivefold variation in tundra LUE was observed. LUE calculated from the functional type cover fractions was also correlated to a spectral vegetation index developed to detect vegetation chlorophyll content. The concurrence of these alternate methods suggest that hyperspectral remote sensing can distinguish functionally distinct vegetation types and can be used to develop regional estimates of photosynthetic LUE in tundra landscapes.
NASA Astrophysics Data System (ADS)
Cuo, L.
2017-12-01
Desert is an area that receives less than 25 cm precipitation in cold climate or 50 cm precipitation in hot climate (Miller, 1961). Others defined true desert as a region having no recorded precipitation in 12 consecutive months (McGinnies et al., 1968). According to Koppen-Gieger climate classification system, if mean annual precipitation is less than 50% of the value A calculated by mean annual temperature times 20 plus 280 if 70% or more precipitation falls in April-September, the region has desert climate; if the mean annual precipitation is within 50%-100% of the value A, the region has semi-arid or steppe climate. On the Tibetan Plateau, the above definitions will result in no desert at all or the majority of the region falling into the category of desert which is not consistent with reality based on field exploration. In this study, the fractional vegetation coverage (FPC), precipitation, soil moisture and extreme wind days are used as indices to define areas of various degrees of desertification which produces much more realistic distribution of desert areas on the plateau. The Lund-Potsdam-Jena Dynamic Vegetation model (LPJ) is used to simulate vegetation growth, succession and vegetation properties such as FPC and soil moisture on the Tibetan Plateau. Gridded daily climate data are generated to drive the model and to analyze the status and changes of various deserts including light desert, medium desert, severe desert, extremely severe desert and desert proned area. The study will reveal the status and changes of possible driving factors of desertification, as well as various kinds of desert on the Tibetan Plateau during 1957-2015.
Tao, Zhengkai; Liu, Yang; Zhou, Meng; Chai, Xiaoli
2017-12-01
Landfill is known as a potential source of atmospheric Hg and an important component of the local or regional atmospheric Hg budget. This study investigated the gaseous elemental Hg surface-air fluxes under differing conditions at a typical municipal solid waste landfill site, highlighting the interactive effects of plant coverage and meteorological conditions. The results indicated that Hg fluxes exhibited a feature represented by diel variation. In particular, Hg deposition was observed under a condition of Kochia sieversiana coverage, whereas emission that occurred after K. sieversiana was removed. Hg emission was the dominant mode under conditions of Setaria viridis coverage and its removal; however, the average Hg emission flux with the S. viridis coverage was nearly four times lower than after its removal. These findings verified that the plant coverage should be a key factor influencing the Hg emission from landfills. In addition, Hg fluxes were correlated positively with solar radiation and air/soil temperature and correlated inversely with relative humidity under all conditions, except K. sieversiana coverage. This suggested that the interactive effects of meteorological conditions and plant coverage played a jointly significant role in the Hg emission from landfills. It was established that K. sieversiana can inhibit Hg emission efficiently, and therefore, it could potentially be suitable for use as a plant-based method to control Hg pollution from landfills.
NASA Astrophysics Data System (ADS)
Halmeenmäki, Elisa; Peltola, Olli; Haikarainen, Iikka; Ryhti, Kira; Rannik, Üllar; Pihlatie, Mari
2017-04-01
Methane (CH4) is an important and strong greenhouse gas of which atmospheric concentration is rising. While boreal forests are considered as an important sink of CH4 due to soil CH4 oxidation, the soils have also a capacity to emit CH4. Moreover, vegetation is shown to contribute to the ecosystem-atmosphere CH4 flux, and it has been estimated to be the least well known natural sources of CH4. In addition to well-known CH4 emissions from wetland plants, even boreal trees have been discovered to emit CH4. At the SMEAR (Station for Measuring Ecosystem-Atmosphere Relations) II station in Hyytiälä, southern Finland (61° 51' N, 24°17' E; 181 m asl), we have detected small CH4 emissions from above the canopy of a Scots pine (Pinus sylvestris) dominated forest. To assess the origin of the observed emissions, we conducted forest floor CH4 flux measurements with 54 soil chambers at the footprint area of the above canopy flux measurements during two growing seasons. In addition, we measured the soil volumetric water content (VWC) every time next to the forest floor chamber measurements, and estimated vegetation coverages inside the chambers. In order to model the forest floor CH4 flux at the whole footprint area, we combined lidar (light detection and ranging) data with the field measurements. To predict the soil water content and thus the potential CH4 flux, we used local elevation, slope, and ground return intensity (GRI), calculated from the lidar data (National Land Survey of Finland). We categorized the soil chambers into four classes based on the VWC so that the class with the highest VWC values includes all the soil chambers with a potential to emit CH4. Based on a statistically significant correlation between the VWC and the forest floor CH4 flux (r = 0.30, p < 0.001), we modelled the potential forest floor CH4 flux of the whole area. The results of the soil chamber measurements show a few areas of the forest floor with significant CH4 emissions. The modelled map of the potential CH4 flux is consistent with the measurements of the flux and the VWC, indicating that the wetter areas have potential for CH4 emissions, while the drier areas have potential for CH4 uptake. Preliminary results of the vegetation coverage show a positive correlation between the first year forest floor CH4 flux and the coverage of Sphagnum spp. mosses (r = 0.55, p < 0.001). Furthermore, we will include the vegetation coverage to the analysis, and compare the modelled forest floor CH4 flux with the measured above canopy flux. This ongoing research will give valuable information about the CH4 sources and dynamics in boreal forests.
SUBMERSED MACROPHYTE DISTRIBUTION AND FUNCTION IN THE TIDAL FRESHWATER HUDSON RIVER
In the tidal freshwater Hudson River submerged aquatic vegetation (SAV) occupies on average 6 percent of the river area with much greater coverage in the mid Hudson (Kingston-Hudson) and much lower areal coverage south of Hyde Park. The native water celery ( Vallisneria americana...
NASA Astrophysics Data System (ADS)
Zhao, Anzhou; Zhang, Anbing; Liu, Xianfeng; Cao, Sen
2018-04-01
Extreme drought, precipitation, and other extreme climatic events often have impacts on vegetation. Based on meteorological data from 52 stations in the Loess Plateau (LP) and a satellite-derived normalized difference vegetation index (NDVI) from the third-generation Global Inventory Modeling and Mapping Studies (GIMMS3g) dataset, this study investigated the relationship between vegetation change and climatic extremes from 1982 to 2013. Our results showed that the vegetation coverage increased significantly, with a linear rate of 0.025/10a ( P < 0.001) from 1982 to 2013. As for the spatial distribution, NDVI revealed an increasing trend from the northwest to the southeast, with about 61.79% of the LP exhibiting a significant increasing trend ( P < 0.05). Some temperature extreme indices, including TMAXmean, TMINmean, TN90p, TNx, TX90p, and TXx, increased significantly at rates of 0.77 mm/10a, 0.52 °C/10a, 0.62 °C/10a, 0.80 °C/10a, 5.16 days/10a, and 0.65 °C/10a, respectively. On the other hand, other extreme temperature indices including TX10p and TN10p decreased significantly at rates of -2.77 days/10a and 4.57 days/10a ( P < 0.01), respectively. Correlation analysis showed that only TMINmean had a significant relationship with NDVI at the yearly time scale ( P < 0.05). At the monthly time scale, vegetation coverage and different vegetation types responded significantly positively to precipitation and temperature extremes (TMAXmean, TMINmean, TNx, TNn, TXn, and TXx) ( P < 0.01). All of the precipitation extremes and temperature extremes exhibited significant positive relationships with NDVI during the spring and autumn ( P < 0.01). However, the relationship between NDVI and RX1day, TMAXmean, TXn, and TXx was insignificant in summer. Vegetation exhibited a significant negative relationship with precipitation extremes in winter ( P < 0.05). In terms of human activity, our results indicate a strong correlation between the cumulative afforestation area and NDVI in Yan'an and Yulin during 1998-2013, r = 0.859 and 0.85, n = 16, P < 0.001.
NASA Astrophysics Data System (ADS)
Luo, Qiu; Xin, Wu; Qiming, Xiong
2017-06-01
In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.
Characterization of subarctic vegetation using ground based remote sensing methods
NASA Astrophysics Data System (ADS)
Finnell, D.; Garnello, A.; Palace, M. W.; Sullivan, F.; Herrick, C.; Anderson, S. M.; Crill, P. M.; Varner, R. K.
2014-12-01
Stordalen mire is located at 68°21'N and 19°02'E in the Swedish subarctic. Climate monitoring has revealed a warming trend spanning the past 150 years affecting the mires ability to hold stable palsa/hummock mounds. The micro-topography of the landscape has begun to degrade into thaw ponds changing the vegetation cover from ombrothrophic to minerotrophic. Hummocks are ecologically important due to their ability to act as a carbon sinks. Thaw ponds and sphagnum rich transitional zones have been documented as sources of atmospheric CH4. An objective of this project is to determine if a high resolution three band camera (RGB) and a RGNIR camera could detect differences in vegetation over five different site types. Species composition was collected for 50 plots with ten repetitions for each site type: palsa/hummock, tall shrub, semi-wet, tall graminoid, and wet. Sites were differentiated based on dominating species and features consisting of open water presence, sphagnum spp. cover, graminoid spp. cover, or the presence of dry raised plateaus/mounds. A pole based camera mount was used to collect images at a height of ~2.44m from the ground. The images were cropped in post-processing to fit a one-square meter quadrat. Texture analysis was performed on all images, including entropy, lacunarity, and angular second momentum. Preliminary results suggested that site type influences the number of species present. The p-values for the ability to predict site type using a t-test range from <0.0001 to 0.0461. A stepwise discriminant analysis on site type vs. texture yielded a 10% misclassification rate. Through the use of a stepwise regression of texture variables, actual vs. predicted percent of vegetation coverage provided R squared values of 0.73, 0.71, 0.67, and 0.89 for C. bigelowii, R. chamaemorus, Sphagnum spp., and open water respectively. These data have provided some support to the notion that texture analyses can be used for classification of mire site types. Future work will involve scaling up from the 50 plots through the use of data collected from two unmanned aerial systems (UAS), as well as WorldView-2 satellite imagery collected during the years 2012-2014. Identification of methane flux regions will later be analyzed based on vegetation coverage to aid classification of increased emission zones within the mire.
NASA Astrophysics Data System (ADS)
Mischler, J. A.; Abdalati, W.; Hussein, K.; Townsend, A. R.
2013-12-01
The Kafue River is the longest river in Zambia and is a major tributary of the Zambezi River. It is a vital source of fish, transportation, drinking water, and hydropower for much of Zambia's population, over half of whom live in the Kafue River basin. Like many important water bodies in developing countries the Kafue and its ecosystems face pollution from industrial, mining, agricultural, and domestic/sewage discharge. The Kafue River forms a wide and shallow wetland (the Kafue Flats) during the rainy season (Nov. - Apr.) which serves as habitat for diverse groups of birds and mammals. In recent years the unprecedented emergence of invasive aquatic vegetation such as the water hyacinth (Eichhornia crassipes) and Salvinia molesta have choked the river, degrading its ability to provide adequate habitat to promote biodiversity, ecosystem services, and hydropower. In addition, these plants provide additional habitat for mosquitoes (vectors for malaria) and aquatic snails (vectors of schistosomiasis). Nutrient-rich effluents are widely believed to contribute to the proliferation and explosive growth of this floating aquatic vegetation. The general methods for managing these aquatic weeds have included mechanical and physical removal, herbicides, and bio-control agents which have had very little impact. However, as in neighboring Lake Victoria, total weed coverage has fluctuated dramatically from year to year making evaluation of the efficacy of management programs difficult. The objectives of this study were to (1) generate the first record of aquatic plant coverage for a section of the Kafue River which is immediately downstream of a sugar plantation (a major source of nitrogen and phosphorus to the river) and (2) determine if plant coverage is correlated with any major climatic (ENSO, temperature, rainfall) or management (introduction of bio-control agents) indices. We utilized remote sensing techniques in conjunction with Landsat 4-5 TM and Landsat 7 ETM imagery for the time range 1990 to 2013 to identify the extent of aquatic vegetation in the dry season for all years available within the time range using spectral data. We derived rainfall for the time period from TRMM data and temperature from MODIS LST data. Overall weed coverage tended to increase from 1990 to 2013. There was no significant correlation between rainfall (as measured by TRMM) and water hyacinth coverage. However there was a significant positive correlation between minimum October temperatures (the warmest month of the year) and weed coverage (exponential fit, R2 = 0.81). There was no indication that the release of bio-control agents reduced weed coverage. Water hyacinth is known to be sensitive to temperature, with cooler temperatures retarding growth. In the Kafue River, aquatic plant coverage varies mainly with October low temperatures indicating an overall control of temperature on weed coverage. Increasing low temperatures in the region would be expected to exacerbate problems associated with aquatic weeds.
NASA Astrophysics Data System (ADS)
Hu, Wenmin; Wang, Zhongcheng; Li, Chunhua; Zhao, Jin; Li, Yi
2018-02-01
Multi-source remote sensing data is rarely used for the comprehensive assessment of land ecologic environment quality. In this study, a digital environmental model was proposed with the inversion algorithm of land and environmental factors based on the multi-source remote sensing data, and a comprehensive index (Ecoindex) was applied to reconstruct and predict the land environment quality of the Dongting Lake Area to assess the effect of human activities on the environment. The main finding was that with the decrease of Grade I and Grade II quality had a decreasing tendency in the lake area, mostly in suburbs and wetlands. Atmospheric water vapour, land use intensity, surface temperature, vegetation coverage, and soil water content were the main driving factors. The cause of degradation was the interference of multi-factor combinations, which led to positive and negative environmental agglomeration effects. Positive agglomeration, such as increased rainfall and vegetation coverage and reduced land use intensity, could increase environmental quality, while negative agglomeration resulted in the opposite. Therefore, reasonable ecological restoration measures should be beneficial to limit the negative effects and decreasing tendency, improve the land ecological environment quality and provide references for macroscopic planning by the government.
Petrakis, Roy; van Leeuwen, Willem J.D.; Villarreal, Miguel; Tashjian, Paul; Dello Russo, Regina; Scott, Christopher A.
2017-01-01
Riparian ecosystems are valuable to the ecological and human communities that depend on them. Over the past century, they have been subject to shifting management practices to maximize human use and ecosystem services, creating a complex relationship between water policy, management, and the natural ecosystem. This has necessitated research on the spatial and temporal dynamics of riparian vegetation change. The San Acacia Reach of the Middle Rio Grande has experienced multiple management and river flow fluctuations, resulting in threats to its riparian and aquatic ecosystems. This research uses remote sensing data, GIS, a review of management decisions, and an assessment of climate to both quantify how riparian vegetation has been altered over time and provide interpretations of the relationships between riparian change and shifting climate and management objectives. This research focused on four management phases from 1935 to 2014, each highlighting different management practices and climate-driven river patterns, providing unique opportunities to observe a direct relationship between river management, climate, and riparian response. Overall, we believe that management practices coupled with reduced surface river-flows with limited overbank flooding influenced the compositional and spatial patterns of vegetation, including possibly increasing non-native vegetation coverage. However, recent restoration efforts have begun to reduce non-native vegetation coverage.
Comparative habitat ecology of Texas and masked bobwhites
Guthery, F.S.; King, N.M.; Nolte, K.R.; Kuvlesky, W.P.; DeStefano, S.; Gall, S.A.; Silvy, N.J.
2000-01-01
The habitat ecology of masked bobwhites (Colinus virginianus ridgwayi) is poorly understood, which hampers recovery efforts for this endangered bird. During 1994-96, we analyzed the habitat ecology of masked bobwhites in Sonora, Mexico, and Arizona, and compared these findings with the habitat ecology of Texas bobwhites (C. v. texanus) in southern Texas. Mean values for the quantity of low screening cover (<50 cm aboveground), operative temperature (??C), and exposure to aerial predators were relatively constant across regions (CV <14.2%), indicating these variables are important in adaptive habitat-use decisions by bobwhites. Bobwhites exhibited preference in all regions for higher canopy coverage of woody vegetation, lower exposure to aerial predators, and lower operative temperatures in comparison with randomly available conditions. The major habitat deficiencies for masked bobwhites were lack of woody and herbaceous cover, which led to high exposure to aerial predators in Sonora and Arizona. High operative temperatures at quail level were associated with the loss of ???24% of potential habitat space-time in Texas, Sonora, and Arizona. Management to improve habitat for masked bobwhites includes any practice that increases canopy coverage of woody vegetation, and height and coverage of herbaceous vegetation.
Chen, X.; Vierling, Lee; Rowell, E.; DeFelice, Tom
2004-01-01
Structural and functional analyses of ecosystems benefit when high accuracy vegetation coverages can be derived over large areas. In this study, we utilize IKONOS, Landsat 7 ETM+, and airborne scanning light detection and ranging (lidar) to quantify coniferous forest and understory grass coverages in a ponderosa pine (Pinus ponderosa) dominated ecosystem in the Black Hills of South Dakota. Linear spectral mixture analyses of IKONOS and ETM+ data were used to isolate spectral endmembers (bare soil, understory grass, and tree/shade) and calculate their subpixel fractional coverages. We then compared these endmember cover estimates to similar cover estimates derived from lidar data and field measures. The IKONOS-derived tree/shade fraction was significantly correlated with the field-measured canopy effective leaf area index (LAIe) (r2=0.55, p<0.001) and with the lidar-derived estimate of tree occurrence (r2=0.79, p<0.001). The enhanced vegetation index (EVI) calculated from IKONOS imagery showed a negative correlation with the field measured tree canopy effective LAI and lidar tree cover response (r2=0.30, r=−0.55 and r2=0.41, r=−0.64, respectively; p<0.001) and further analyses indicate a strong linear relationship between EVI and the IKONOS-derived grass fraction (r2=0.99, p<0.001). We also found that using EVI resulted in better agreement with the subpixel vegetation fractions in this ecosystem than using normalized difference of vegetation index (NDVI). Coarsening the IKONOS data to 30 m resolution imagery revealed a stronger relationship with lidar tree measures (r2=0.77, p<0.001) than at 4 m resolution (r2=0.58, p<0.001). Unmixed tree/shade fractions derived from 30 m resolution ETM+ imagery also showed a significant correlation with the lidar data (r2=0.66, p<0.001). These results demonstrate the power of using high resolution lidar data to validate spectral unmixing results of satellite imagery, and indicate that IKONOS data and Landsat 7 ETM+ data both can serve to make the important distinction between tree/shade coverage and exposed understory grass coverage during peak summertime greenness in a ponderosa pine forest ecosystem.
A sampling device for counting insect egg clusters and measuring vertical distribution of vegetation
Robert L. Talerico; Robert W., Jr. Wilson
1978-01-01
The use of a vertical sampling pole that delineates known volumes and position is illustrated and demonstrated for counting egg clusters of N. sertifer. The pole can also be used to estimate vertical and horizontal coverage, distribution or damage of vegetation or foliage.
Liu, Yang; Wu, Boran; Hao, Yongxia; Zhu, Wei; Li, Zhonggen; Chai, Xiaoli
2017-01-01
Mercury emission fluxes (MEFs) under different surface coverage conditions in a landfill were investigated in this study. The results show similar diel patterns of Hg emission flux under different coverage conditions, with peak fluxes occurring at midday and decreasing during night. We examined the effects of environmental factors on MEFs, such as the physiological characteristics of vegetation and meteorological conditions. The results suggest that growth of vegetation in the daytime facilitates the release of Hg in the anaerobic unit, while in the semi-aerobic unit, where vegetation had been removed, the higher mercury content of the cover soil prompted the photo-reduction pathway to become the main path of mercury release and increased MEFs. MEFs are positively correlated with solar radiation and air temperature, but negatively correlated with relative humidity. The correlation coefficients for MEFs with different environmental parameters indicate that in the anaerobic unit, solar radiation was the main influence on MEFs in September, while air temperature became the main determining factor in December. These observations suggest that the effects of meteorological conditions on the mercury release mechanism varies depending on the vegetation and soil pathways. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Wang, M. C.; Niu, X. F.; Chen, S. B.; Guo, P. J.; Yang, Q.; Wang, Z. J.
2014-03-01
Chlorophyll content, the most important pigment related to photosynthesis, is the key parameter for vegetation growth. The continuous spectrum characteristics of ground objects can be captured through hyperspectral remotely sensed data. In this study, based on the coniferous forest radiative transfer model, chlorophyll contents were inverted by use of hyperspectral CHRIS data in the coniferous forest coverage of Changbai Mountain Area. In addition, the sensitivity of LIBERTY model was analyzed. The experimental results validated that the reflectance simulation of different chlorophyll contents was coincided with that of the field measurement, and hyperspectral vegetation indices applied to the quantitative inversion of chlorophyll contents was feasible and accurate. This study presents a reasonable method of chlorophyll inversion for the coniferous forest, promotes the inversion precision, is of significance in coniferous forest monitoring.
NASA Astrophysics Data System (ADS)
Melton, Joe; Arora, Vivek
2015-04-01
The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the earth system modelling framework of the Canadian Centre for Climate Modelling and Analysis (CCCma). In its current framework, CTEM uses prescribed fractional coverage of plant functional types (PFTs) in each grid cell. In reality, vegetation cover is continually adjusting to changes in climate, atmospheric composition, and anthropogenic forcing, for example, through human-caused fires and CO2 fertilization. These changes in vegetation spatial patterns occur over timescales of years to centuries as tree migration is a slow process and vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM that includes a representation of competition between PFTs through a modified version of the Lotka-Volterra (L-V) predator-prey equations. The simulated areal extents of CTEM's seven non-crop PFTs are compared with available observation-based estimates, and simulations using unmodified L-V equations (similar to other models like TRIFFID), to demonstrate that the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. Differences remain, however, since representing the multitude of plant species with just seven non-crop PFTs only allows the large scale climatic controls on the distributions of PFTs to be captured. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model and the corresponding driving climate or the limited number of PFTs used to model the terrestrial ecosystem processes. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably with each other and observation-based estimates. These results illustrate that the parametrization of competition between PFTs in CTEM behaves in a reasonably realistic manner while the use of unmodified L-V equations results in unrealistic plant distributions.
NASA Astrophysics Data System (ADS)
Zhang, J.; Okin, G.
2017-12-01
Vegetation is one of the most important driving factors of different ecosystem processes in drylands. The structure of vegetation controls the spatial distribution of moisture and heat in the canopy and the surrounding area. Also, the structure of vegetation influences both airflow and boundary layer resistance above the land surface. Multispectral satellite remote sensing has been widely used to monitor vegetation coverage and its change; however, it can only capture 2D images, which do not contain the vertical information of vegetation. In situ observation uses different methods to measure the structure of vegetation, and their results are accurate; however, these methods are laborious and time-consuming, and susceptible to undersampling in spatial heterogeneity. Drylands are sparsely covered by short plants, which allows the drone fly at a relatively low height to obtain ultra-high resolution images. Structure-from-motion (SfM) is a photogrammetric method that was proved to produce 3D model based on 2D images. Drone-based remote sensing can obtain the multiangle images for one object, which can be used to constructed 3D models of vegetation in drylands. Using these images detected by the drone, the orthomosaics and digital surface model (DSM) can be built. In this study, the drone-based remote sensing was conducted in Jornada Basin, New Mexico, in the spring of 2016 and 2017, and three derived vegetation parameters (i.e., canopy size, bare soil gap size, and plant height) were compared with those obtained with field measurement. The correlation coefficient of canopy size, bare soil gap size, and plant height between drone images and field data are 0.91, 0.96, and 0.84, respectively. The two-year averaged root-mean-square error (RMSE) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.61 m, 1.21 m, and 0.25 cm, respectively. The two-year averaged measure error (ME) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.02 m, -0.03, and -0.1 m, respectively. These results indicate a good agreement between drone-based remote sensing and field measurement.
Taft, Oriane W; Haig, Susan M; Kiilsgaard, Chris
2004-05-01
Many of today's agricultural landscapes once held vast amounts of wetland habitat for waterbirds and other wildlife. Successful restoration of these landscapes relies on access to accurate maps of the wetlands that remain. We used C-band (5.6-cm-wavelength), HH-polarized radar remote sensing (RADARSAT) at a 38 degrees incidence angle (8-m resolution) to map the distribution of winter shorebird (Charadriiformes) habitat on agricultural lands in the Willamette Valley of western Oregon. We acquired imagery on three dates (10 December 1999, 27 January 2000, and 15 March 2000) and simultaneously collected ground reference data to classify radar signatures and evaluate map accuracy of four habitat classes: (1) wet with < or = 50% vegetation (considered optimal shorebird habitat), (2) wet with > 50% vegetation, (3) dry with < or = 50% vegetation, and (4) dry with > 50% vegetation. Overall accuracy varied from 45 to 60% among the three images, but the accuracy of focal class 1 was greater, ranging from 72 to 80%. Class 4 coverage was stable and dominated maps (40% of mapped study area) for all three dates, while coverage of class 3 decreased slightly throughout the study period. Among wet classes, class 1 was most abundant (about 30% coverage) in December and January, decreasing in March to approximately 15%. Conversely, class 2 increased dramatically from January to March, likely due to transition from class 1 as vegetation grew. This approach was successful in detecting optimal habitat for shorebirds on agricultural lands. For modest classification schemes, radar remote sensing is a valuable option for wetland mapping in areas where cloud cover is persistent.
Landscape scale vegetation-type conversion and fire hazard in the San Francisco bay area open spaces
Russell, W.H.; McBride, J.R.
2003-01-01
Successional pressures resulting from fire suppression and reduced grazing have resulted in vegetation-type conversion in the open spaces surrounding the urbanized areas of the San Francisco bay area. Coverage of various vegetation types were sampled on seven sites using a chronosequence of remote images in order to measure change over time. Results suggest a significant conversion of grassland to shrubland dominated by Baccharis pilularison five of the seven sites sampled. An increase in Pseudotsuga menziesii coverage was also measured on the sites where it was present. Increases fuel and fire hazard were determined through field sampling and use of the FARSITE fire area simulator. A significant increase in biomass resulting from succession of grass-dominated to shrub-dominated communities was evident. In addition, results from the FARSITE simulations indicated significantly higher fire-line intensity, and flame length associated with shrublands over all other vegetation types sampled. These results indicate that the replacement of grass dominated with shrub-dominated landscapes has increased the probability of high intensity fires. ?? 2003 Elsevier Science B.V. All rights reserved.
Bidlake, W.R.
2002-01-01
An investigation of evapotranspiration, vegetation quantity and composition, and depth to the water table below the land surface was made at three sites in two fallowed agricultural lots on the 15,800-hectare Tule Lake National Wildlife Refuge in northern California during the 2000 growing season. All three sites had been farmed during 1999, but were not irrigated since the 1999 growing season. Vegetation at the lot C1B and lot 6 stubble sites included weedy species and small grain plants. The lot 6 cover crop site supported a crop of cereal rye that had been planted during the previous winter. Percentage of coverage by live vegetation ranged from 0 to 43.2 percent at the lot C1B site, from approximately 0 to 63.2 percent at the lot 6 stubble site, and it was estimated to range from 0 to greater than 90 percent at the lot 6 cover crop site. Evapotranspiration was measured using the Bowen ratio energy balance technique and it was estimated using a model that was based on the Priestley-Taylor equation and a model that was based on reference evapotranspiration with grass as the reference crop. Total evapotranspiration during May to October varied little among the three evapotranspiration measurement sites, although the timing of evapotranspiration losses did vary among the sites. Total evapotranspiration from the lot C1B site was 426 millimeters, total evapotranspiration from the lot 6 stubble site was 444 millimeters, and total evapotranspiration from the lot 6 cover crop site was 435 millimeters. The months of May to July accounted for approximately 78 percent of the total evapotranspiration from the lot C1B site, approximately 63 percent of the evapotranspiration from the lot 6 stubble site, and approximately 86 percent of the total evapotranspiration from the lot 6 cover crop site. Estimated growing season precipitation accounted for 16 percent of the growing-season evapotranspiration at the lot C1B site and for 17 percent of the growing-season evapotranspiration at the lot 6 stubble and cover crop sites. The ratio of evapotranspiration rate to the reference evapotranspiration rate was strongly correlated with percentage of site coverage by vegetation at the lot C1B and lot 6 stubble sites (correlation coefficient = 0.95, sample size = 6), where percentage of site coverage was determined from quantitative vegetation surveys. It is concluded that evapotranspiration was mediated by the vegetation at all three sites, and that the differences in seasonal timing of evapotranspiration losses were caused by differences in timing of vegetation growth and development and senescence among the sites. Depth to the water table below the land surface at lot C1B ranged from 0.67 meters in early July to greater than 1.39 meters in late August. Depth to the water table at lot 6 ranged from 0.77 meter in late May to greater than 1.40 meters in late August.
Spatial fuel data products of the LANDFIRE Project
Reeves, M.C.; Ryan, K.C.; Rollins, M.G.; Thompson, T.G.
2009-01-01
The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50 states. Here we describe development of the LANDFIRE wildland fuels data layers for the conterminous 48 states: surface fire behavior fuel models, canopy bulk density, canopy base height, canopy cover, and canopy height. Surface fire behavior fuel models are mapped by developing crosswalks to vegetation structure and composition created by LANDFIRE. Canopy fuels are mapped using regression trees relating field-referenced estimates of canopy base height and canopy bulk density to satellite imagery, biophysical gradients and vegetation structure and composition data. Here we focus on the methods and data used to create the fuel data products, discuss problems encountered with the data, provide an accuracy assessment, demonstrate recent use of the data during the 2007 fire season, and discuss ideas for updating, maintaining and improving LANDFIRE fuel data products.
Evaluation and attribution of vegetation contribution to seasonal climate predictability
NASA Astrophysics Data System (ADS)
Catalano, Franco; Alessandri, Andrea; De Felice, Matteo
2015-04-01
The land surface model of EC-Earth has been modified to include dependence of vegetation densities on the Leaf Area Index (LAI), based on the Lambert-Beer formulation. Effective vegetation fractional coverage can now vary at seasonal and interannual time-scales and therefore affect biophysical parameters such as the surface roughness, albedo and soil field capacity. The modified model is used to perform a real predictability seasonal hindcast experiment. LAI is prescribed using a recent observational dataset based on the third generation GIMMS and MODIS satellite data. Hindcast setup is: 7 months forecast length, 2 start dates (1st May and 1st November), 10 members, 28 years (1982-2009). The effect of the realistic LAI prescribed from observation is evaluated with respect to a control experiment where LAI does not vary. Hindcast results demonstrate that a realistic representation of vegetation significantly improves the forecasts of temperature and precipitation. The sensitivity is particularly large for temperature during boreal winter over central North America and Central Asia. This may be attributed in particular to the effect of the high vegetation component on the snow cover. Summer forecasts are improved in particular for precipitation over Europe, Sahel, North America, West Russia and Nordeste. Correlation improvements depends on the links between targets (temperature and precipitation) and drivers (surface heat fluxes, albedo, soil moisture, evapotranspiration, moisture divergence) which varies from region to region.
NASA Astrophysics Data System (ADS)
Kanstinger, Philipp; Beher, Jutta; Grenzdörffer, Görres; Hammer, Cornelius; Huebert, Klaus B.; Stepputis, Daniel; Peck, Myron A.
2018-02-01
Coastal zones are productive areas of marine ecosystems which are also hotspots of anthropogenic activities causing habitat degradation. In the southwest Baltic Sea, eutrophication is thought to have caused the massive reduction in submerged macrophytes observed in recent decades. Here, we surveyed the submarine vegetation and examined locations of spawning of herring (Clupea harengus) in the Greifswalder Bodden, one of the most important reproductive habitats of the Western Baltic Spring Spawner herring stock (WBSS). This stock deposits eggs onto submerged vegetation and changes in macrophyte coverage are expected to influence the availability of reproductive habitat. Aerial, underwater video tows and SCUBA surveys conducted in spring 2009 revealed that only ∼7% of the lagoon was vegetated. Herring eggs were observed on 12 of 32 SCUBA transects, at depths between 0.2 and 5 m and were attached to a variety of spermatophyte and algae species but not to stones or mussels. A classification tree model indicated that spawning sites were strongly associated with the vegetation cover within a 100- and 500-m radius, implying that herring schools preferentially spawn on dense and large underwater meadows. Only ∼5% of the lagoon now falls into this vegetation category. Despite 20 years of efforts to reduce eutrophication, no increase in macroalgae and spermatophyte vegetation towards the historical level of 90% coverage in the area is apparent.
Management intensity and vegetation complexity affect web-building spiders and their prey.
Diehl, Eva; Mader, Viktoria L; Wolters, Volkmar; Birkhofer, Klaus
2013-10-01
Agricultural management and vegetation complexity affect arthropod diversity and may alter trophic interactions between predators and their prey. Web-building spiders are abundant generalist predators and important natural enemies of pests. We analyzed how management intensity (tillage, cutting of the vegetation, grazing by cattle, and synthetic and organic inputs) and vegetation complexity (plant species richness, vegetation height, coverage, and density) affect rarefied richness and composition of web-building spiders and their prey with respect to prey availability and aphid predation in 12 habitats, ranging from an uncut fallow to a conventionally managed maize field. Spiders and prey from webs were collected manually and the potential prey were quantified using sticky traps. The species richness of web-building spiders and the order richness of prey increased with plant diversity and vegetation coverage. Prey order richness was lower at tilled compared to no-till sites. Hemipterans (primarily aphids) were overrepresented, while dipterans, hymenopterans, and thysanopterans were underrepresented in webs compared to sticky traps. The per spider capture efficiency for aphids was higher at tilled than at no-till sites and decreased with vegetation complexity. After accounting for local densities, 1.8 times more aphids were captured at uncut compared to cut sites. Our results emphasize the functional role of web-building spiders in aphid predation, but suggest negative effects of cutting or harvesting. We conclude that reduced management intensity and increased vegetation complexity help to conserve local invertebrate diversity, and that web-building spiders at sites under low management intensity (e.g., semi-natural habitats) contribute to aphid suppression at the landscape scale.
Yan, Demin; Zhao, Fangying; Sun, Osbert Jianxin
2013-09-01
Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as "vegetation carpet", which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas.
Stang, Christoph; Wieczorek, Matthias Valentin; Noss, Christian; Lorke, Andreas; Scherr, Frank; Goerlitz, Gerhard; Schulz, Ralf
2014-07-01
Quantitative information on the processes leading to the retention of plant protection products (PPPs) in surface waters is not available, particularly for flow-through systems. The influence of aquatic vegetation on the hydraulic- and sorption-mediated mitigation processes of three PPPs (triflumuron, pencycuron, and penflufen; logKOW 3.3-4.9) in 45-m slow-flowing stream mesocosms was investigated. Peak reductions were 35-38% in an unvegetated stream mesocosm, 60-62% in a sparsely vegetated stream mesocosm (13% coverage with Elodea nuttallii), and in a similar range of 57-69% in a densely vegetated stream mesocosm (100% coverage). Between 89% and 93% of the measured total peak reductions in the sparsely vegetated stream can be explained by an increase of vegetation-induced dispersion (estimated with the one-dimensional solute transport model OTIS), while 7-11% of the peak reduction can be attributed to sorption processes. However, dispersion contributed only 59-71% of the peak reductions in the densely vegetated stream mesocosm, where 29% to 41% of the total peak reductions can be attributed to sorption processes. In the densely vegetated stream, 8-27% of the applied PPPs, depending on the logKOW values of the compounds, were temporarily retained by macrophytes. Increasing PPP recoveries in the aqueous phase were accompanied by a decrease of PPP concentrations in macrophytes indicating kinetic desorption over time. This is the first study to provide quantitative data on how the interaction of dispersion and sorption, driven by aquatic macrophytes, influences the mitigation of PPP concentrations in flowing vegetated stream systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Robert A. Slesak; Timothy B. Harrington; Stephen H. Schoenholtz
2010-01-01
Experimental treatments of logging-debris retention (0%, 40%, or 80% surface coverage) and competing vegetation control (initial or annual applications) were installed at two sites in the Pacific Northwest following clearcutting Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) stands to assess short term...
Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties
NASA Technical Reports Server (NTRS)
Huemmrich, Karl F.; Gamon, John; Tweedie, Craig; Campbell, Petya K.; Landis, David R.; Middleton, Elizabeth M.
2013-01-01
Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013+/-0.001, 0.0018+/-0.0002, and 0.0012+/-0.0001 mol C/mol absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals.
Regional to Global Biogenic Isoprene Emission Responses to Changes in Vegetation From 2000 to 2015
NASA Astrophysics Data System (ADS)
Chen, W. H.; Guenther, A. B.; Wang, X. M.; Chen, Y. H.; Gu, D. S.; Chang, M.; Zhou, S. Z.; Wu, L. L.; Zhang, Y. Q.
2018-04-01
Isoprene, a dominant biogenic volatile organic compound that is mainly emitted by trees, has a significant impact on the atmospheric chemistry. Regional to global changes in biogenic isoprene emission associated with vegetation variations between 2000 and 2015 were estimated using the MEGAN model with satellite land cover data for inputs in this study. The satellite data estimates of land cover changes were compared to results from previous investigators that have either conducted regional studies or have used lower resolution land cover data. The analysis indicates that tree coverage increases of >5% occurred in 13% of locations including in central China and Europe. In contrast, a decrease of >5% was observed in about 5% of locations, especially in tropical regions. The trends in global tree coverage from 2000 to 2015 resulted in a global isoprene emission decrease of only 1.5%, but there were significant regional variations. Obvious decreases in tree coverage in some tropical areas (e.g., Amazon Basin, Western Africa, Southeast Asia) resulted in a 10% reduction of regional isoprene emission due to agricultural expansion. Distinct increments of isoprene emission (5-10%) were mainly found in Northeast China and India and were associated with afforestation efforts. Deforestation and afforestation associated with managed plantations does not only affect the total forest coverage but also impacts average isoprene emission capacity, which can result in accelerated isoprene emission variations. Consequently, isoprene variation assessments are needed that not only account for changes in vegetation fractions but also consider the changes in plant species compositions of forests and other landscapes.
NASA Astrophysics Data System (ADS)
Obriejetan, M.; Florineth, F.; Rauch, H. P.
2012-04-01
As a consequence of land use change resulting in an increased number of slope protection constructions and with respect to effects associated with climate change like extremes in temperatures and temperature variations or increased frequency of heavy precipitation, adaptation strategies for sustainable erosion protection systems are needed which meet ecological compatibility and economical requirements. Therefore a wide range of different technical solutions respectively geotextiles and geotextile-related products (blankets, nettings, grids etc.) are available on the market differing considerably in function, material, durability and pricing. Manufacturers usually provide product-specific information pertaining to application field, functional range or (technical) installation features whereas vegetational aspects are frequently neglected while vegetation can contribute substantially to increased near-surface erosion protection respectively slope stability. Though, the success of sustainable erosion control is directly dependent on several vegetational aspects. Adequate development of a functional vegetation layer in combination with geotextiles is closely associated to application aspects such as seeding technique, sowing date and intensity, seed-soil contact or maintenance measures as well as to qualitative aspects like seed quality, germination rates, area of origin, production method or certification. As a general guideline, erosion control within an initial phase is directly related to restoration techniques whereas vegetation specifics with regard to species richness or species composition play a key role in medium to long-term development and slope protection. In this context one of the fundamental objectives of our study is the identification and subsequently the determination of the main interaction processes between technical and biological components of combined slope protection systems. The influence of different geotextile characteristics on specific vegetation properties are studied by setting up comparative test plots at a field study site located at a headrace channel of a hydroelectric power plant. Different vegetational parameters such as basal coverage, species richness, species composition, abundance/dominance values by using a refined Braun-Blanquet cover estimation scale were collected as well as local environmental properties. Results during the first vegetation period show distinct effects of geotextiles especially on overall vegetation coverage and grasses-herbs-ratio. Geotextile supported plots show 20% higher overall coverage but lower amount of herbs after three months of vegetation growth compared to control plots without installation of auxiliary materials. Furthermore coir blankets reveal higher penetration resistance for seed leaves of herbal plants compared to coir nettings. Hence technical erosion protection products, biological components and it's combination have to be closely coordinated in order to achieve specified revegetation objectives and meet long-term functionality.
A decadal observation of vegetation dynamics using multi-resolution satellite images
NASA Astrophysics Data System (ADS)
Chiang, Yang-Sheng; Chen, Kun-Shan; Chu, Chang-Jen
2012-10-01
Vegetation cover not just affects the habitability of the earth, but also provides potential terrestrial mechanism for mitigation of greenhouse gases. This study aims at quantifying such green resources by incorporating multi-resolution satellite images from different platforms, including Formosat-2(RSI), SPOT(HRV/HRG), and Terra(MODIS), to investigate vegetation fractional cover (VFC) and its inter-/intra-annual variation in Taiwan. Given different sensor capabilities in terms of their spatial coverage and resolution, infusion of NDVIs at different scales was used to determine fraction of vegetation cover based on NDVI. Field campaign has been constantly conducted on a monthly basis for 6 years to calibrate the critical NDVI threshold for the presence of vegetation cover, with test sites covering IPCC-defined land cover types of Taiwan. Based on the proposed method, we analyzed spatio- temporal changes of VFC for the entire Taiwan Island. A bimodal sequence of VFC was observed for intra-annual variation based on MODIS data, with level around 5% and two peaks in spring and autumn marking the principal dual-cropping agriculture pattern in southwestern Taiwan. Compared to anthropogenic-prone variation, the inter-annual VFC (Aug.-Oct.) derived from HRV/HRG/RSI reveals that the moderate variations (3%) and the oscillations were strongly linked with regional climate pattern and major disturbances resulting from extreme weather events. Two distinct cycles (2002-2005 and 2005-2009) were identified in the decadal observations, with VFC peaks at 87.60% and 88.12% in 2003 and 2006, respectively. This time-series mapping of VFC can be used to examine vegetation dynamics and its response associated with short-term and long-term anthropogenic/natural events.
Analysis on the Change of Grassland Coverage in the Source Region of Three Rivers during 2000-2012
NASA Astrophysics Data System (ADS)
Luo, Chengfeng; Wang, Jiao; Liu, Meilin; Liu, Zhengjun
2014-03-01
The Source Region of Three Rivers (SRTR) has very important ecological functions which form an ecological security barrier for China's Qinghai-Tibet plateau. As the biggest nationally occuring nature reserve region in China, the ecological environment here is very fragile. In SRTR the grassland coverage is an effective detector to reflect the ecological environment condition, because it records the changing process of climatic and environmental sensitively. In recent years SRTR has been suffering pressures from both nature and social pressures. With MODIS data the study monitored the grassland coverage continuously in SRTR from 2000 to 2012. The density-model was adapted to estimate grassland coverage degree firstly. Then the degree of change and the change intensity, change type were used to judge the grassland coverage change trend comprehensively. For grassland coverage there was natural change annual or within the year, and the degree of change was used to judge if there was change or not. The grassland has another important characteristic, annual fluctuation, and it can be differed from sustained changes with change type. For grassland coverage, such continuous change, like improvement or degradation, and to what extent, has more guidance sense on specific production practice. On the base of change type and degree of change, change intensity was used to identify the change trend of the grassland coverage. The analysis results from our study show that steady state and fluctuation are two main change trends for the vegetation coverage in SRTR from 2000 to 2012. The conclusion of this paper can provide references in response to environment change research and in the regional ecological environmental protection project in SRTR.
Floral Visitors of Three Asteraceae Species in a Xeric Environment in Central Mexico.
Figueroa-Castro, Dulce María; González-Tochihuitl, Guadalupe; Rivas-Arancibia, Sombra Patricia; Castaño-Meneses, Gabriela
2016-12-01
We describe the spatial variation in the structure and composition of the communities of insects visiting the inflorescences of Flaveria ramosissima Klatt, Florestina pedata (Cav.) Cass., and Parthenium bipinnatifidum (Ort.) Rollins (Asteraceae) in a xeric environment in Central Mexico. Inflorescences of the three Asteraceae were visited by a total of 96 species of Hymenoptera, Diptera, Lepidoptera, Coleoptera, and Hemiptera. Total species richness of floral visitors to the three Asteraceae and total abundance of insects of Fl. pedata and P. bipinnatifidum did not differ between low and high vegetation cover sites. Total abundance of insects visiting the inflorescences of F. ramosissima and abundance of Hymenoptera in all three Asteraceae were higher at the low vegetation coverage (LVC) site than at the high vegetation coverage (HVC) one. Diversity of insects of Fl. pedata and P. bipinnatifidum was higher at the HVC site. However, in F. ramosissima diversity was higher at the LVC site. The communities of insects of each Asteraceae were dissimilar between sites. These differences can be attributed to variation in the abundance of Lepidophora (Diptera: Bombyliidae), Miridae (Hemiptera), Melyridae (Coleoptera), Tiphiidae (Hymenoptera), Myrmecocystus mexicanus Wesmael, and Dorymyrmex grandulus (Forel) (Hymenoptera: Formicidae). The first three insect groups were sensitive to LVC, high temperature, and low humidity, whereas the last three tolerated those same environmental conditions. Changes in temperature, humidity, and resources associated with vegetation coverage seem to differentially affect each species of floral visitors of the three Asteraceae species studied. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Yue, H.; Liu, Y.
2018-04-01
As a key factor affecting the biogeochemical cycle of human existence, terrestrial vegetation is vulnerable to natural environment and human activities, with obvious temporal and spatial characteristics. The change of vegetation cover will affect the ecological balance and environmental quality to a great extent. Therefore, the research on the causes and influencing factors of vegetation cover has become the focus of attention of scholars at home and abroad. In the evolution of human activities and natural environment, the vegetation coverage in Shaanxi has changed accordingly. Using MODIS/NDVI 2000-2014 time series data, using the method of raster pixel trend analysis, stability evaluation, rescaled range analysis and correlation analysis, the climatic factors in Shaanxi province were studied in the near 15 years vegetation spatial and temporal variation and influence of vegetation NDVI changes. The results show that NDVI in Shaanxi province in the near 15 years increased by 0.081, the increase of NDVI in Northern Shaanxi was obvious, and negative growth was found in some areas of Guanzhong, southern Shaanxi NDVI overall still maintained at a high level; the trend of vegetation change in Shaanxi province has obvious spatial differences, most of the province is a slight tendency to improve vegetation, there are many obvious improvement areas in Northern Shaanxi Province. Guanzhong area vegetation area decreased, the small range of variation of vegetation in Shaanxi province; the most stable areas are mainly concentrated in the southern, southern Yanan, Yulin, Xi'an area of Weinan changed greatly; Shaanxi Province in recent 15 a, the temperature and precipitation have shown an increasing trend, and the vegetation NDVI is more closely related to the average annual rainfall, with increase of 0.48 °C/10 years and 69.5 mm per year.
Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology.
Cruzan, Mitchell B; Weinstein, Ben G; Grasty, Monica R; Kohrn, Brendan F; Hendrickson, Elizabeth C; Arredondo, Tina M; Thompson, Pamela G
2016-09-01
Low-elevation surveys with small aerial drones (micro-unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology.
Yang, Yongsheng; Bu, Chongfeng; Mu, Xingmin; Shao, Hongbo; Zhang, Kankan
2014-01-01
To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion. PMID:24982973
Yang, Yongsheng; Bu, Chongfeng; Mu, Xingmin; Shao, Hongbo; Zhang, Kankan
2014-01-01
To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion.
Vegetation cover, avoided erosion and water quality in high Andean wetlands, Yeso River Basin
NASA Astrophysics Data System (ADS)
León, Alejandro; Soto, Jorge; Seguel, Oscar; Pérez, Javier; Osses, Daniela; Leiva, Nicolás; Zerega, Linka
2017-04-01
Wetlands on the high Andes mountains near Santiago de Chile have been impacted by overgrazing and off-road tourists. We studied wetlands in El Yeso River basin. In February 2015 we established 36 exclusions and measured vegetation cover and height, biomass production in and out the exclusions starting in October. Water and undisturbed soil samples were collected. Data were analyzed statistically to estimate i) the recovery of vegetation, and ii) the influence of grazing and vehicle traffic on vegetation loss, and iii) impacts on soil and water quality. In areas with less intense traffic, the difference in vegetation coverage in and out the exclusions is 22% (± 11.4%); in areas with more intense traffic this difference is 16% (± 16%). Height of vegetation, in the less intense traffic areas, ranges from 6.25 cm (± 2.8) to 13.32 cm (± 6.3). With higher traffic it varies between 6.9 cm (± 3.1) and 13.6 cm (± 5.4). Biomass varies between 0.06 kg DM/m2 to 0.57 kg DM/m2 depending on botanical composition and date. After water circulates through the wetlands its content of nitrogen increases 37.33% to 0.37 mg N/l and the fecal coliforms 66.67% to 0.67 MPN/100 ml, because of cattle. On the contrary, turbidity decreases 20.67% to 0.21 UNT because sediments are captured by vegetation. We also estimated an avoided erosion rate, ranging between 1.23% and 31.87% (depending on the slope) due to the increase in coverage within the exclusions.
NASA Astrophysics Data System (ADS)
Olliver, Elizabeth A.; Edmonds, Douglas A.
2017-09-01
Land building in deltaic environments occurs when sediment discharged from a river mouth is deposited subaqueously and transitions to subaerial land. The transition from subaqueous deposition to subaerial land is a critical process that marks the creation of relatively stable land, yet it is unclear what controls the speed and style of this transition. We define how this transition, herein termed the land building succession, varies in time and space for the freshwater, intertidal wetlands in Wax Lake Delta, LA. Using remote sensing and field data we classify land cover into sediment, water, or vegetation classes at maximum and minimum biomass. We see two succession patterns within Wax Lake Delta. Deltaic islands near the apex are initially covered by sediment and open water. Through time, open water and sediment coverage decreases as vegetation coverage increases. On the other hand, distal islands show little sediment exposure through time. In both cases, all deltaic islands become covered with vegetation by 2015. As vegetation colonizes the island, the topography organizes into two platforms vertically separated by ∼0.35 m. The lower, intertidal platform occurs in the island interiors and is commonly inundated by water and dominated by subaqueous or floating vegetation. The upper, subaerial platform occurs along island edges and is dominated by a variety of vegetation species including Salix nigra, Colocasia esculenta, and Polygonum punctatum. It takes an average of ∼10 years for the intertidal platform to transition to the subaerial platform. These two platforms are separated by the tidal range measured in Atchafalaya Bay, and the different vegetation communities occupying each platform suggest they are a manifestation of multiple stable states and arise due to vegetation and sedimentation feedbacks.
NASA Technical Reports Server (NTRS)
Park, J. K.; Deering, D. W.
1981-01-01
Out of the lengthy original expression of the diffuse reflectance formula, simple working equations were derived by employing characteristic parameters, which are independent of the canopy coverage and identifiable by field observations. The typical asymptotic nature of reflectance data that is usually observed in biomass studies was clearly explained. The usefulness of the simplified equations was demonstrated by the exceptionally close fit of the theoretical curves to two separately acquired data sets for alfalfa and shortgrass prairie canopies.
Climate-vegetation modelling and fossil plant data suggest low atmospheric CO2 in the late Miocene
NASA Astrophysics Data System (ADS)
Forrest, M.; Eronen, J. T.; Utescher, T.; Knorr, G.; Stepanek, C.; Lohmann, G.; Hickler, T.
2015-12-01
There is an increasing need to understand the pre-Quaternary warm climates, how climate-vegetation interactions functioned in the past, and how we can use this information to understand the present. Here we report vegetation modelling results for the Late Miocene (11-7 Ma) to study the mechanisms of vegetation dynamics and the role of different forcing factors that influence the spatial patterns of vegetation coverage. One of the key uncertainties is the atmospheric concentration of CO2 during past climates. Estimates for the last 20 million years range from 280 to 500 ppm. We simulated Late Miocene vegetation using two plausible CO2 concentrations, 280 ppm CO2 and 450 ppm CO2, with a dynamic global vegetation model (LPJ-GUESS) driven by climate input from a coupled AOGCM (Atmosphere-Ocean General Circulation Model). The simulated vegetation was compared to existing plant fossil data for the whole Northern Hemisphere. For the comparison we developed a novel approach that uses information of the relative dominance of different plant functional types (PFTs) in the palaeobotanical data to provide a quantitative estimate of the agreement between the simulated and reconstructed vegetation. Based on this quantitative assessment we find that pre-industrial CO2 levels are largely consistent with the presence of seasonal temperate forests in Europe (suggested by fossil data) and open vegetation in North America (suggested by multiple lines of evidence). This suggests that during the Late Miocene the CO2 levels have been relatively low, or that other factors that are not included in the models maintained the seasonal temperate forests and open vegetation.
Ground sample data for the Conterminous U.S. Land Cover Characteristics Database
Robert Burgan; Colin Hardy; Donald Ohlen; Gene Fosnight; Robert Treder
1999-01-01
Ground sample data were collected for a land cover database and raster map that portray 159 vegetation classes at 1 km2 resolution for the conterminous United States. Locations for 3,500 1 km2 ground sample plots were selected randomly across the United States. The number of plots representing each vegetation class was weighted by the proportionate coverage of each...
A national framework for monitoring and reporting on environmental sustainability in Canada.
Marshall, I B; Scott Smith, C A; Selby, C J
1996-01-01
In 1991, a collaborative project to revise the terrestrial component of a national ecological framework was undertaken with a wide range of stakeholders. This spatial framework consists of multiple, nested levels of ecological generalization with linkages to existing federal and provincial scientific databases. The broadest level of generalization is the ecozone. Macroclimate, major vegetation types and subcontinental scale physiographic formations constitute the definitive components of these major ecosystems. Ecozones are subdivided into approximately 200 ecoregions which are based on properties like regional physiography, surficial geology, climate, vegetation, soil, water and fauna. The ecozone and ecoregion levels of the framework have been depicted on a national map coverage at 1:7 500 000 scale. Ecoregions have been subdivided into ecodistricts based primarily on landform, parent material, topography, soils, waterbodies and vegetation at a scale (1:2 000 000) useful for environmental resource management, monitoring and modelling activities. Nested within the ecodistricts are the polygons that make up the Soil Landscapes of Canada series of 1:1 000 000 scale soil maps. The framework is supported by an ARC-INFO GIS at Agriculture Canada. The data model allows linkage to associated databases on climate, land use and socio-economic attributes.
Ramezankhani, Roghieh; Sajjadi, Nooshin; Nezakati Esmaeilzadeh, Roya; Jozi, Seyed Ali; Shirzadi, Mohammad Reza
2018-05-08
Cutaneous Leishmaniasis (CL) is a neglected tropical disease that continues to be a health problem in Iran. Nearly 350 million people are thought to be at risk. We investigated the impact of the environmental factors on CL incidence during the period 2007- 2015 in a known endemic area for this disease in Isfahan Province, Iran. After collecting data with regard to the climatic, topographic, vegetation coverage and CL cases in the study area, a decision tree model was built using the classification and regression tree algorithm. CL data for the years 2007 until 2012 were used for model construction and the data for the years 2013 until 2015 were used for testing the model. The Root Mean Square error and the correlation factor were used to evaluate the predictive performance of the decision tree model. We found that wind speeds less than 14 m/s, altitudes between 1234 and 1810 m above the mean sea level, vegetation coverage according to the normalized difference vegetation index (NDVI) less than 0.12, rainfall less than 1.6 mm and air temperatures higher than 30°C would correspond to a seasonal incidence of 163.28 per 100,000 persons, while if wind speed is less than 14 m/s, altitude less than 1,810 m and NDVI higher than 0.12, then the mean seasonal incidence of the disease would be 2.27 per 100,000 persons. Environmental factors were found to be important predictive variables for CL incidence and should be considered in surveillance and prevention programmes for CL control.
Riess, Helene; Clowes, Petra; Kroidl, Inge; Kowuor, Dickens O.; Nsojo, Anthony; Mangu, Chacha; Schüle, Steffen A.; Mansmann, Ulrich; Geldmacher, Christof; Mhina, Seif; Maboko, Leonard; Hoelscher, Michael; Saathoff, Elmar
2013-01-01
Background Hookworm disease is one of the most common infections and cause of a high disease burden in the tropics and subtropics. Remotely sensed ecological data and model-based geostatistics have been used recently to identify areas in need for hookworm control. Methodology Cross-sectional interview data and stool samples from 6,375 participants from nine different sites in Mbeya region, south-western Tanzania, were collected as part of a cohort study. Hookworm infection was assessed by microscopy of duplicate Kato-Katz thick smears from one stool sample from each participant. A geographic information system was used to obtain remotely sensed environmental data such as land surface temperature (LST), vegetation cover, rainfall, and elevation, and combine them with hookworm infection data and with socio-demographic and behavioral data. Uni- and multivariable logistic regression was performed on sites separately and on the pooled dataset. Principal Findings Univariable analyses yielded significant associations for all ecological variables. Five ecological variables stayed significant in the final multivariable model: population density (odds ratio (OR) = 0.68; 95% confidence interval (CI) = 0.63–0.73), mean annual vegetation density (OR = 0.11; 95% CI = 0.06–0.18), mean annual LST during the day (OR = 0.81; 95% CI = 0.75–0.88), mean annual LST during the night (OR = 1.54; 95% CI = 1.44–1.64), and latrine coverage in household surroundings (OR = 1.02; 95% CI = 1.01–1.04). Interaction terms revealed substantial differences in associations of hookworm infection with population density, mean annual enhanced vegetation index, and latrine coverage between the two sites with the highest prevalence of infection. Conclusion/Significance This study supports previous findings that remotely sensed data such as vegetation indices, LST, and elevation are strongly associated with hookworm prevalence. However, the results indicate that the influence of environmental conditions can differ substantially within a relatively small geographic area. The use of large-scale associations as a predictive tool on smaller scales is therefore problematic and should be handled with care. PMID:24040430
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul
2016-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning retrospective predictions at the decadal (5-years), seasonal and sub-seasonal time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and sub-seasonal time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, A.; Catalano, F.; De Felice, M.; van den Hurk, B.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.
2016-12-01
The European consortium earth system model (EC-Earth; http://www.ec-earth.org) has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-08-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
A National Crop Progress Monitoring System Based on NASA Earth Science Results
NASA Astrophysics Data System (ADS)
Di, L.; Yu, G.; Zhang, B.; Deng, M.; Yang, Z.
2011-12-01
Crop progress is an important piece of information for food security and agricultural commodities. Timely monitoring and reporting are mandated for the operation of agricultural statistical agencies. Traditionally, the weekly reporting issued by the National Agricultural Statistics Service (NASS) of the United States Department of Agriculture (USDA) is based on reports from the knowledgeable state and county agricultural officials and farmers. The results are spatially coarse and subjective. In this project, a remote-sensing-supported crop progress monitoring system is being developed intensively using the data and derived products from NASA Earth Observing satellites. Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 product - MOD09 (Surface Reflectance) is used for deriving daily normalized vegetation index (NDVI), vegetation condition index (VCI), and mean vegetation condition index (MVCI). Ratio change to previous year and multiple year mean can be also produced on demand. The time-series vegetation condition indices are further combined with the NASS' remote-sensing-derived Cropland Data Layer (CDL) to estimate crop condition and progress crop by crop. To facilitate the operational requirement and increase the accessibility of data and products by different users, each component of the system has being developed and implemented following open specifications under the Web Service reference model of Open Geospatial Consortium Inc. Sensor observations and data are accessed through Web Coverage Service (WCS), Web Feature Service (WFS), or Sensor Observation Service (SOS) if available. Products are also served through such open-specification-compliant services. For rendering and presentation, Web Map Service (WMS) is used. A Web-service based system is set up and deployed at dss.csiss.gmu.edu/NDVIDownload. Further development will adopt crop growth models, feed the models with remotely sensed precipitation and soil moisture information, and incorporate the model results with vegetation-index time series for crop progress stage estimation.
Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1
Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.
2016-01-01
Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518
Comparing MODIS C6 'Deep Blue' and 'Dark Target' Aerosol Data
NASA Technical Reports Server (NTRS)
Hsu, N. C.; Sayer, A. M.; Bettenhausen, C.; Lee, J.; Levy, R. C.; Mattoo, S.; Munchak, L. A.; Kleidman, R.
2014-01-01
The MODIS Collection 6 Atmospheres product suite includes refined versions of both 'Deep Blue' (DB) and 'Dark Target' (DT) aerosol algorithms, with the DB dataset now expanded to include coverage over vegetated land surfaces. This means that, over much of the global land surface, users will have both DB and DT data to choose from. A 'merged' dataset is also provided, primarily for visualization purposes, which takes retrievals from either or both algorithms based on regional and seasonal climatologies of normalized difference vegetation index (NDVI). This poster present some comparisons of these two C6 aerosol algorithms, focusing on AOD at 550 nm derived from MODIS Aqua measurements, with each other and with Aerosol Robotic Network (AERONET) data, with the intent to facilitate user decisions about the suitability of the two datasets for their desired applications.
Scherer, Laura; Curran, Michael; Alvarez, Miguel
2017-04-01
Biodiversity is highly valuable and critically threatened by anthropogenic degradation of the natural environment. In response, governments have pledged enhanced protected-area coverage, which requires scarce biological data to identify conservation priorities. To assist this effort, we mapped conservation priorities in Kenya based on maximizing alpha (species richness) and beta diversity (species turnover) of plant communities while minimizing economic costs. We used plant-cover percentages from vegetation surveys of over 2000 plots to build separate models for each type of diversity. Opportunity and management costs were based on literature data and interviews with conservation organizations. Species richness was predicted to be highest in a belt from Lake Turkana through Mount Kenya and in a belt parallel to the coast, and species turnover was predicted to be highest in western Kenya and along the coast. Our results suggest the expanding reserve network should focus on the coast and northeastern provinces of Kenya, where new biological surveys would also fill biological data gaps. Meeting the Convention on Biological Diversity target of 17% terrestrial coverage by 2020 would increase representation of Kenya's plant communities by 75%. However, this would require about 50 times more funds than Kenya has received thus far from the Global Environment Facility. © 2016 Society for Conservation Biology.
Reduced sediment transport in the Chinese Loess Plateau due to climate change and human activities.
Yang, Xiaonan; Sun, Wenyi; Li, Pengfei; Mu, Xingmin; Gao, Peng; Zhao, Guangju
2018-06-14
The sediment load on the Chinese Loess Plateau has sharply decreased in recent years. However, the contribution of terrace construction and vegetation restoration projects to sediment discharge reduction remains uncertain. In this paper, eight catchments located in the Loess Plateau were chosen to explore the effects of different driving factors on sediment discharge changes during the period from the 1960s to 2012. Attribution approaches were applied to evaluate the effects of climate, terrace, and vegetation coverage changes on sediment discharge. The results showed that the annual sediment discharge decreased significantly in all catchments ranging from -0.007 to -0.039 Gt·yr -1 . Sediment discharge in most tributaries has shown abrupt changes since 1996, and the total sediment discharge was reduced by 60.1% during 1997-2012. We determined that increasing vegetation coverage was the primary factor driving the reductions in sediment loads since 1996 and accounted for 47.7% of the total reduction. Climate variability and terrace construction accounted for 9.1% and 18.6% of sediment discharge reductions, respectively. Copyright © 2018. Published by Elsevier B.V.
Dispersion and Transport of Cryptosporidium Oocysts from Fecal Pats under Simulated Rainfall Events
Davies, Cheryl M.; Ferguson, Christobel M.; Kaucner, Christine; Krogh, Martin; Altavilla, Nanda; Deere, Daniel A.; Ashbolt, Nicholas J.
2004-01-01
The dispersion and initial transport of Cryptosporidium oocysts from fecal pats were investigated during artificial rainfall events on intact soil blocks (1,500 by 900 by 300 mm). Rainfall events of 55 mm h−1 for 30 min and 25 mm h−1 for 180 min were applied to soil plots with artificial fecal pats seeded with approximately 107 oocysts. The soil plots were divided in two, with one side devoid of vegetation and the other left with natural vegetation cover. Each combination of event intensity and duration, vegetation status, and degree of slope (5° and 10°) was evaluated twice. Generally, a fivefold increase (P < 0.05) in runoff volume was generated on bare soil compared to vegetated soil, and significantly more infiltration, although highly variable, occurred through the vegetated soil blocks (P < 0.05). Runoff volume, event conditions (intensity and duration), vegetation status, degree of slope, and their interactions significantly affected the load of oocysts in the runoff. Surface runoff transported from 100.2 oocysts from vegetated loam soil (25-mm h−1, 180-min event on 10° slope) to up to 104.5 oocysts from unvegetated soil (55-mm h−1, 30-min event on 10° slope) over a 1-m distance. Surface soil samples downhill of the fecal pat contained significantly higher concentrations of oocysts on devegetated blocks than on vegetated blocks. Based on these results, there is a need to account for surface soil vegetation coverage as well as slope and rainfall runoff in future assessments of Cryptosporidium transport and when managing pathogen loads from stock grazing near streams within drinking water watersheds. PMID:14766600
Exploring vegetation in the fourth dimension.
Mitchell, Fraser J G
2011-01-01
Much ecological research focuses on changes in vegetation on spatial scales from stands to landscapes; however, capturing data on vegetation change over relevant timescales remains a challenge. Pollen analysis offers unrivalled access to data with global coverage over long timescales. Robust techniques have now been developed that enable pollen data to be converted into vegetation data in terms of individual taxa, plant communities or biomes, with the possibility of deriving from those data a range of plant attributes and ecological indicators. In this review, I discuss how coupling pollen with macrofossil, charcoal and genetic data opens up the extensive pollen databases to investigation of the drivers of vegetation change over time and also provides extensive data sets for testing hypotheses with wide ecological relevance. © 2010 Elsevier Ltd. All rights reserved.
The Plant Foliage Projective Coverage Change over the Northern Tibetan Plateau during 1957-2009
NASA Astrophysics Data System (ADS)
Cuo, L.
2015-12-01
Northern Tibetan Plateau is the headwater of the Yellow River, the Yangtze River and the Mekong River that support billions of the population. Vegetation change will affect the regional ecosystem and water balances through the changes in biomass and evapotranspiration. Dynamic vegetation growth is determined by physiological, morphological, bioclimatic and phenological properties. These properties are affected by climate variables such as air temperature, precipitation, soil temperature and concentration of CO2, etc. Due to climate change, some parts of the northern Tibetan Plateau are under the threat of desertification. Identifying the places of vegetation degradation and the dominant driven climatic factors will help mitigate the climate change impacts on ecosystem and water resources in this region. In this study, the changes of foliage projective coverages (FPCs) of various plant functional types (PFTs) existed in the northern Tibetan Plateau and the responses of FPCs to the four climate variables over 1957-2009 are examined. The dominant factors among the four climate variables are also identified. The Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) is modified and used for the investigation. The modified LPJ-DGVM can better account for soil temperature in the top 0.4-m depth where vegetation root concentrates over the northern Tibetan Plateau. The modified model is evaluated by using monthly and annual soil temperature observed at stations across the region, and the eco-geographic maps that describe plant types and spatial distributions developed from field surveys and satellite images for this region.
Study on generation and sharing of on-demand global seamless data—Taking MODIS NDVI as an example
NASA Astrophysics Data System (ADS)
Shen, Dayong; Deng, Meixia; Di, Liping; Han, Weiguo; Peng, Chunming; Yagci, Ali Levent; Yu, Genong; Chen, Zeqiang
2013-04-01
By applying advanced Geospatial Data Abstraction Library (GDAL) and BigTIFF technology in a Geographical Information System (GIS) with Service Oriented Architecture (SOA), this study has derived global datasets using tile-based input data and implemented Virtual Web Map Service (VWMS) and Virtual Web Coverage Service (VWCS) to provide software tools for visualization and acquisition of global data. Taking MODIS Normalized Difference Vegetation Index (NDVI) as an example, this study proves the feasibility, efficiency and features of the proposed approach.
Method for determining surface coverage by materials exhibiting different fluorescent properties
NASA Technical Reports Server (NTRS)
Chappelle, Emmett W. (Inventor); Daughtry, Craig S. T. (Inventor); Mcmurtrey, James E., III (Inventor)
1995-01-01
An improved method for detecting, measuring, and distinguishing crop residue, live vegetation, and mineral soil is presented. By measuring fluorescence in multiple bands, live and dead vegetation are distinguished. The surface of the ground is illuminated with ultraviolet radiation, inducing fluorescence in certain molecules. The emitted fluorescent emission induced by the ultraviolet radiation is measured by means of a fluorescence detector, consisting of a photodetector or video camera and filters. The spectral content of the emitted fluorescent emission is characterized at each point sampled, and the proportion of the sampled area covered by residue or vegetation is calculated.
NASA Astrophysics Data System (ADS)
Rasouli, K.; Pomeroy, J. W.; Fang, X.; Whitfield, P. H.; Marks, D. G.; Janowicz, J. R.
2017-12-01
A transect comprising three intensively researched mountain headwater catchments stretching from the northern US to northern Canada provides the basis to downscale climate models outputs for mountain hydrology and insight for an assessment of water futures under changing climate and vegetation using a physically based hydrological model. Reynolds Mountain East, Idaho; Marmot Creek, Alberta and Wolf Creek, Yukon are high mountain catchments dominated by forests and alpine shrub and grass vegetation with long-term snow, hydrometric and meteorological observations and extensive ecohydrological process studies. The physically based, modular, flexible and object-oriented Cold Regions Hydrological Modelling Platform (CRHM) was used to create custom spatially distributed hydrological models for these three catchments. Model parameterisations were based on knowledge of hydrological processes, basin physiography, soils and vegetation with minimal or no calibration from streamflow measurements. The models were run over multidecadal periods using high-elevation meteorological observations to assess the recent ecohydrological functioning of these catchments. The results showed unique features in each catchment, from snowdrift-fed aspen pocket forests in Reynolds Mountain East, to deep late-lying snowdrifts at treeline larch forests in Marmot Creek, and snow-trapping shrub tundra overlying discontinuous permafrost in Wolf Creek. The meteorological observations were then perturbed using the changes in monthly temperature and precipitation predicted by the NARCCAP modelling outputs for the mid-21st C. In all catchments there is a dramatic decline in snow redistribution and sublimation by wind and of snow interception by and sublimation from evergreen canopies that is associated with warmer winters. Reduced sublimation loss only partially compensated for greater rainfall fractions of precipitation. Under climate change, snowmelt was earlier and slower and at the lowest elevations and latitudes produced less proportion of runoff from snowmelt. Transient vegetation changes counteracted increasing streamflow yields from climate change partly due to increased snow retention by enhanced vegetation heights at high elevations and reduced vegetation canopy coverage at low elevations.
1980-10-01
infestation or extent of open water was measured following the same procedures described for deter- fmination of transect percent cover. This value was...procedure where the last vegetation type ended along the transect (i.e. hydrilla, eelgrass, open water ), vegetation coverage was determined for the entire...ated open water , no measurements were made. Approximately 150 to 200 prediction stations were used per monthly sample. 61. For sparse and thick
Transverse and longitudinal variation in woody riparian vegetation along a montane river
Friedman, J.M.; Auble, G.T.; Andrews, E.D.; Kittel, G.; Madole, R.F.; Griffin, E.R.; Allred, Tyler M.
2006-01-01
This study explores how the relationship between flow and riparian vegetation varies along a montane river. We mapped occurrence of woody riparian plant communities along 58 km of the San Miguel River in southwestern Colorado. We determined the recurrence interval of inundation for each plant community by combining step-backwater hydraulic modeling at 4 representative reaches with Log-Pearson analysis of 4 stream gaging stations. Finally, we mapped bottomland surficial geology and used a Geographic Information System to overlay the coverages of geology and vegetation. Plant communities were distinctly arrayed along the hydrologic gradient. The Salix exigua Nuttall (sand-bar willow) community occurred mostly on surfaces with a recurrence interval of inundation shorter than 2.2 years; the Betula occidentalis Hooker (river birch) community peaked on sites with recurrence intervals of inundation between 2.2 and 4.6 years. The hydrologic position occupied by communities dominated by Populus angustifolia James (narrowleaf cottonwood) was strongly related to age of trees and species composition of understory shrubs. The fraction of riparian vegetation on surfaces historically inundated by the river decreased in the upstream direction from almost 100% near Uravan to <50% along the South Fork of the San Miguel River. In upstream reaches much of the physical disturbance necessary to maintain riparian vegetation is provided by valley-side processes including debris flows, floods from minor tributaries, landslides, and beaver activity. Where valley-side processes are important, prediction of riparian vegetation change based on alterations of river flow will be incomplete.
Study of Maowusu Sandy Land Vegetation Coverage Change Based on Modis Ndvi
NASA Astrophysics Data System (ADS)
Ye, Q.; Liu, H.; Lin, Y.; Han, R.
2018-04-01
This paper selected 2006-2016 MODIS NDVI data with a spatial resolution of 500m and time resolution of 16d, got the 11 years' time series NDVI data of Maowusu sandy land through mosaicking, projection transformation, cutting process in batch. Analysed the spatial and temporal distribution and variation characteristics of vegetation cover in year, season and month time scales by maximum value composite, and unary linear regression analysis. Then, we combined the meteorological data of 33 sites around the sandy area, analysed the response characteristics of vegetation cover change to temperature and precipitation through Pearson correlation coefficient. Studies have shown that: (1) The NDVI value has a stable increase trend, which rate is 0.0075 / a. (2) The vegetation growth have significantly difference in four seasons, the NDVI value of summer > autumn > spring > winter. (3) The NDVI value change trend is conformed to the gauss normal distribution in a year, and it comes to be largest in August, its green season is in April, and yellow season is in the middle of November, the growth period is about 220 d. (4) The vegetation has a decreasing trend from the southeast to the northwest, most part is slightly improved, and Etuokeqianqi improved significantly. (5) The correlation indexes of annual NDVI with temperature and precipitation are -0.2178 and 0.6309, the vegetation growth is mainly affected by precipitation. In this study, a complete vegetation cover analysis and evaluation model for sandy land is established. It has important guiding significance for the sand ecological environment protection.
Sheffield, Kathryn; Morse-McNabb, Elizabeth; Clark, Rob; Robson, Susan; Lewis, Hayden
2015-01-01
There is a demand for regularly updated, broad-scale, accurate land cover information in Victoria from multiple stakeholders. This paper documents the methods used to generate an annual dominant land cover (DLC) map for Victoria, Australia from 2009 to 2013. Vegetation phenology parameters derived from an annual time series of the Moderate Resolution Imaging Spectroradiometer Vegetation Indices 16-day 250 m (MOD13Q1) product were used to generate annual DLC maps, using a three-tiered hierarchical classification scheme. Classification accuracy at the broadest (primary) class level was over 91% for all years, while it ranged from 72 to 81% at the secondary class level. The most detailed class level (tertiary) had accuracy levels ranging from 61 to 68%. The approach used was able to accommodate variable climatic conditions, which had substantial impacts on vegetation growth patterns and agricultural production across the state between both regions and years. The production of an annual dataset with complete spatial coverage for Victoria provides a reliable base data set with an accuracy that is fit-for-purpose for many applications. PMID:26602009
Advances in soil erosion modelling through remote sensing data availability at European scale
NASA Astrophysics Data System (ADS)
Panagos, Panos; Karydas, Christos; Borrelli, Pasqualle; Ballabio, Cristiano; Meusburger, Katrin
2014-08-01
Under the European Union's Thematic Strategy for Soil Protection, the European Commission's Directorate-General for the Environment (DG Environment) has identified the mitigation of soil losses by erosion as a priority area. Policy makers call for an overall assessment of soil erosion in their geographical area of interest. They have asked that risk areas for soil erosion be mapped under present land use and climate conditions, and that appropriate measures be taken to control erosion within the legal and social context of natural resource management. Remote sensing data help to better assessment of factors that control erosion, such as vegetation coverage, slope length and slope angle. In this context, the data availability of remote sensing data during the past decade facilitates the more precise estimation of soil erosion risk. Following the principles of the Universal Soil Loss Equation (USLE), various options to calculate vegetative cover management (C-factor) have been investigated. The use of the CORINE Land Cover dataset in combination with lookup table values taken from the literature is presented as an option that has the advantage of a coherent input dataset but with the drawback of static input. Recent developments in the Copernicus programme have made detailed datasets available on land cover, leaf area index and base soil characteristics. These dynamic datasets allow for seasonal estimates of vegetation coverage, and their application in the G2 soil erosion model which represents a recent approach to the seasonal monitoring of soil erosion. The use of phenological datasets and the LUCAS land use/cover survey are proposed as auxiliary information in the selection of the best methodology.
Yang, Wen-yan; Zhou, Zhong-xue
2014-12-01
With the urban eco-environment increasingly deteriorating, the ecosystem services provided by modern urban agriculture are exceedingly significant to maintain and build more suitable environment in a city. Taking Xi' an metropolitan as the study area, based on remote sensing data, DEM data and the economic and social statistics data, the water and soil conservation service of the agricultural ecosystems was valued employing the remote sensing and geographic information system method, covering the reduction values on land waste, soil fertility loss and sediment loss from 2000 to 2011, and analyzed its changes in time and space. The results showed that during the study period, the total value of water and soil conservation service provided by agricultural systems in Xi' an metropolitan was increased by 46,086 and 33.008 billion yuan respectively from period of 2000 to 2005 and from 2005 to 2011. The cultivated land (including grains, vegetables and other farming land), forest (including orchard) and grassland provided higher value on the water and soil conservation service than waters and other land use. Ecosystem service value of water and soil conserva- tion provided by agriculture was gradually decreasing from the southern to the northern in Xi' an metropolitan. There were significantly positive relationship between the ecosystem service value and the vegetation coverage. Forest, orchard and grassland distributed intensively in the southern which had higher vegetation coverage than in northern where covered by more cultivated land, sparse forest and scattered orchard. There were significantly negative correlation between the urbanization level and the value of water and soil conservation. The higher level of urbanization, the lower value there was from built-up area to suburban and to countryside within Xi' an metropolitan.
USAID Expands eMODIS Coverage for Famine Early Warning
NASA Astrophysics Data System (ADS)
Jenkerson, C.; Meyer, D. J.; Evenson, K.; Merritt, M.
2011-12-01
Food security in countries at risk is monitored by U.S. Agency for International Development (USAID) through its Famine Early Warning Systems Network (FEWS NET) using many methods including Moderate Resolution Imaging Spectroradiometer (MODIS) data processed by U.S. Geological Survey (USGS) into eMODIS Normalized Difference Vegetation Index (NDVI) products. Near-real time production is used comparatively with trends derived from the eMODIS archive to operationally monitor vegetation anomalies indicating threatened cropland and rangeland conditions. eMODIS production over Central America and the Caribbean (CAMCAR) began in 2009, and processes 10-day NDVI composites every 5 days from surface reflectance inputs produced using predicted spacecraft and climatology information at Land and Atmosphere Near real time Capability for Earth Observing Systems (EOS) (LANCE). These expedited eMODIS composites are backed by a parallel archive of precision-based NDVI calculated from surface reflectance data ordered through Level 1 and Atmosphere Archive and Distribution System (LAADS). Success in the CAMCAR region led to the recent expansion of eMODIS production to include Africa in 2010, and Central Asia in 2011. Near-real time 250-meter products are available for each region on the last day of an acquisition interval (generally before midnight) from an anonymous file transfer protocol (FTP) distribution site (ftp://emodisftp.cr.usgs.gov/eMODIS). The FTP site concurrently hosts the regional historical collections (2000 to present) which are also searchable using the USGS Earth Explorer (http://edcsns17.cr.usgs.gov/NewEarthExplorer). As eMODIS coverage continues to grow, these geographically gridded, georeferenced tagged image file format (GeoTIFF) NDVI composites increase their utility as effective tools for operational monitoring of near-real time vegetation data against historical trends.
Fan, Baoli; Zhang, Aiping; Yang, Yi; Ma, Quanlin; Li, Xuemin; Zhao, Changming
2016-01-01
The xerophytic desert shrub Haloxylon ammodendron (C. A. Mey.) Bunge. is distributed naturally in Asian and African deserts, and is widely used for vegetation restoration in the desert regions of Northern China. However, there are limited long-term chrono-sequence studies on the impact of changed soil properties and vegetation dynamics following establishment of this shrub on mobile sand dunes. In Minqin County, Gansu Province, we investigated soil properties and herbaceous vegetation development of 10, 20, 30, 40, 50-year-old H. ammodendron plantations on mobile sand dunes. Soil sampling at two depths (0–5 and 5–20 cm) under the shrubs determined SOC, nutrition and soil physical characteristics. The results showed that: establishment of H. ammodendron had improved soil physio-chemical properties, increased thickness of soil crusts and coverage of biological soil crusts (BSCs), and promoted development of topsoil over an extended period of 5 decades. Soil texture and soil nutrition improved along the chrono-sequence according to three distinct phases: i) an initial fast development from 0 to 10 years, ii) a stabilizing phase from 10 to 30 years followed by iii) a relatively marked restoration development in 40 and 50-year-old plantations. Meanwhile, herbaceous community coverage also markedly increased in 30-year-old plantations. However, both soil and vegetation restoration were very slow due to low annual precipitation in Minqin county compared to other Northern China sand afforestation sites. Canonical Correspondence Analysis results demonstrated that herbaceous plant development was closely associated with changes in soil texture (increased clay and silt percentage) and availability of soil nutrients. Thus our results indicated that selection of the long-lived shrub H. ammodendron is an essential and effective tool in arid desert re-vegetation. PMID:27992458
NASA Technical Reports Server (NTRS)
Running, Steven W.; Nemani, Ramakrishna R.
1988-01-01
Weekly AVHRR Normalized Difference Vegetation Index (NDVI) values for 1983-1984 for seven sites of diverse climate in North America were correlated with results of an ecosystem simulation model of a hypothetical forest stand for the corresponding period at each site. The tendency of raw NDVI data to overpredict photosynthesis and transpiration on water limited sites was shown to be partially corrected by using an aridity index of annual radiation/annual precipitation. The results suggest that estimates of vegetation productivity using the global vegetation index are only accurate as annual integrations, unless unsubsampled local area coverage NDVI data can be tested against forest photosynthesis, transpiration and aboveground net primary production data measured at shorter time intervals.
NASA Astrophysics Data System (ADS)
Snickars, Martin; Sandström, Alfred; Lappalainen, Antti; Mattila, Johanna; Rosqvist, Kajsa; Urho, Lauri
2009-01-01
The assemblages of young-of-the-year fish were studied in coastal lagoons in an archipelago with post-glacial land-uplift, which affects environmental gradients at local and regional scale, i.e. lagoon habitat isolation and archipelago position, respectively. The categorisation of 40 undisturbed lagoons into nine habitat types based on habitat isolation and archipelago position was supported by clear relationships with spring temperature and total fish abundance. Rutilus rutilus, breams ( Abramis/Blicca sp.) and Perca fluviatilis were the most abundant and frequently occurring species. The fish assemblage differed among the nine habitat types. Rutilus rutilus, P. fluviatilis and breams were discriminating species in the majority of habitat types with low physical harshness, whereas Alburnus alburnus and Gasterosteus aculeatus increased their contributions in habitat types with high physical harshness. Rutilus rutilus and breams were thus common in lagoons with high habitat isolation situated in the inner archipelago. These lagoons were characterised by warm water and high vegetation coverage. Gasterosteus aculeatus was restricted to lagoons with low habitat isolation and exposure and low vegetation coverage, situated in the outer archipelago. Perca fluviatilis had the widest distribution of all species. The coverage of two macrophytes, Potamogeton perfoliatus and Zannichellia palustris, and salinity matched best the distance among habitat types. These habitat characteristics, as well as the fish abundances and assemblages differed most across the habitat types in the outer and mid archipelago zones and in the lowest habitat isolation. These patterns suggest that the structuring effect of habitat isolation increases along the archipelago gradient as differences between local and regional conditions increase. In the inner archipelago, overall low physical harshness induces homogeneous conditions and the habitat isolation is less important here than in the other zones. We suggest that this difference in the relative importance of the two gradients depending on the level of respective gradient ultimately forms these heterogeneous coastal habitats in a successional landscape. Rutilus rutilus and P. fluviatilis were responsible for large parts of the assemblage patterns. Although sympatric due to similar habitat requirements, differences in dispersal capability, competitive ability and predation vulnerability may add explanation to detected differences in distribution and abundance in these two species in an open system. Our results also stress the structuring role of vegetation in terms of total coverage and species composition, as these two aspects of macrophyte diversity may act as complementary habitat modifiers across gradients of physical harshness.
Estimating plant available water content from remotely sensed evapotranspiration
NASA Astrophysics Data System (ADS)
van Dijk, A. I. J. M.; Warren, G.; Doody, T.
2012-04-01
Plant available water content (PAWC) is an emergent soil property that is a critical variable in hydrological modelling. PAWC determines the active soil water storage and, in water-limited environments, is the main cause of different ecohydrological behaviour between (deep-rooted) perennial vegetation and (shallow-rooted) seasonal vegetation. Conventionally, PAWC is estimated for a combination of soil and vegetation from three variables: maximum rooting depth and the volumetric water content at field capacity and permanent wilting point, respectively. Without elaborate local field observation, large uncertainties in PAWC occur due to the assumptions associated with each of the three variables. We developed an alternative, observation-based method to estimate PAWC from precipitation observations and CSIRO MODIS Reflectance-based Evapotranspiration (CMRSET) estimates. Processing steps include (1) removing residual systematic bias in the CMRSET estimates, (2) making spatially appropriate assumptions about local water inputs and surface runoff losses, (3) using mean seasonal patterns in precipitation and CMRSET to estimate the seasonal pattern in soil water storage changes, (4) from these, calculating the mean seasonal storage range, which can be treated as an estimate of PAWC. We evaluate the resulting PAWC estimates against those determined in field experiments for 180 sites across Australia. We show that the method produces better estimates of PAWC than conventional techniques. In addition, the method provides detailed information with full continental coverage at moderate resolution (250 m) scale. The resulting maps can be used to identify likely groundwater dependent ecosystems and to derive PAWC distributions for each combination of soil and vegetation type.
Post-Fire Peat Land Understory Plant in Rimba Panjang, Sumatera, Indonesia
NASA Astrophysics Data System (ADS)
Firdaus, L. N.; Nursal; Wulandari, Sri; Syafi'i, Wan; Fauziah, Yuslim
2017-12-01
The existence of understory plants during early post-fire succession is essential in term of natural post-fire ecological restoration. More than fifty percent of fire incidents in Riau, Sumatera, Indonesia occurred in shallow peat lands which have the huge impact on vegetation damage. This study aims to explore the understory plants species and diversity in post-fire peat land at Rimba Panjang, Kampar Regency, Sumatera, Indonesia. By using survey method, the observations were conducted on 150 plots which were distributed randomly over four locations based on the year after fire: 2009, 2014, 2015 and 2016. We found respectively 12, 14, 19 and 17 species at that sites with respective Shannon Wiener diversity index were 1.72, 2.00, 2.14 and 2.40. All the sites were dominated by Stenochlaena palustris (Burm.). Coverage percentage of understory vegetation were respectively 28.87%, 25.50%, 51.60% and 54.13%. Overall, we found 31 species of 17 familia. The result showed that the species composition, diversity index and coverage percentage of understory plant are likely to decrease in line with the length of time after the fire. Post peatland fires in Rimba Panjang are still having the characteristics of the peat swamp habitat which was dominated by Stenochlaena palustris (Burm.). Ecological restoration of that habitat is still possible, but it is necessary to consider technological and socio-economical aspects of local communities.
Tropical Wetland Monitoring Using RapidEye and Sentinel 1 Satellite Images in Ifakara (Tanzania)
NASA Astrophysics Data System (ADS)
Kirimi, Fridah; Menz, Gunter
2016-08-01
Food insecurity has been a topic of concern particularly for the developing countries. Wetlands have a consistent supply of water throughout the year. To determine whether the utilization of the wetland for increased food production is viable, there was need to analyse the land uses in different months of the year to better understand the dynamics of existing vegetation.Support Vector Machine was used to classify the optical to establish the dynamics of changing vegetation. Bare land coverage gives an indication of the potentially available land that can be utilized for crop growth. The optical images are affected by cloud coverage. As a remedial action the use of SAR images in monitoring the wetlands is assessed. A great percentage of land remains bare. Quantification of this from the classified images forms a basis upon which decisions on strategic plans of increasing production sustainably in the region can be implemented.
Sivan, Arun; Shriram, A N; Sunish, I P; Vidhya, P T
2015-09-01
Mosquito foraging behavior is a determinant of host-vector contact and has an impact on the risk of arboviral epidemics. Therefore, blood-feeding patterns is a useful tool for assessing the role in pathogen transmission by vector mosquitoes. Competent vectors of dengue and chikungunya viz. Aedes aegypti and Aedes albopictus are widely prevalent in the Andaman and Nicobar archipelago. Considering the vector potential, medical importance of both these mosquito species and lack of information on host-feeding patterns, blood meal analysis of both these vector mosquitoes was undertaken. Biogents Sentinel traps were used for sampling blooded mosquitoes, for identifying the source of blood meal by agar gel-precipitin test. We identified vertebrate source of 147 and 104 blood meals in Ae. aegypti and Ae. albopictus from heterogeneous landscapes in South Andaman district. Results revealed that Ae. aegypti (88 %) and Ae. albopictus (49 %) fed on human and a small proportion on mammals and fowls, indicative of predominance of anthropophilism. Ae. aegypti predominantly fed on human blood (94.2 %-densely built urban, 89.8 %-low vegetation coverage, and 78.3 %-medium vegetation coverage). Anthropophilism in Ae. albopictus was maximal in densely built urban (90.5 %) and progressively decreased from low vegetation-vegetation/forested continuum (66.7, 36.4, and 8.7 %), indicating plasticity in feeding across these landscapes. Epidemiological significance of the findings is discussed.
Evaluation of improved land use and canopy representation in ...
Biogenic volatile organic compounds (BVOC) participate in reactions that can lead to secondarily formed ozone and particulate matter (PM) impacting air quality and climate. BVOC emissions are important inputs to chemical transport models applied on local to global scales but considerable uncertainty remains in the representation of canopy parameterizations and emission algorithms from different vegetation species. The Biogenic Emission Inventory System (BEIS) has been used to support both scientific and regulatory model assessments for ozone and PM. Here we describe a new version of BEIS which includes updated input vegetation data and canopy model formulation for estimating leaf temperature and vegetation data on estimated BVOC. The Biogenic Emission Landuse Database (BELD) was revised to incorporate land use data from the Moderate Resolution Imaging Spectroradiometer (MODIS) land product and 2006 National Land Cover Database (NLCD) land coverage. Vegetation species data are based on the US Forest Service (USFS) Forest Inventory and Analysis (FIA) version 5.1 for 2002–2013 and US Department of Agriculture (USDA) 2007 census of agriculture data. This update results in generally higher BVOC emissions throughout California compared with the previous version of BEIS. Baseline and updated BVOC emission estimates are used in Community Multiscale Air Quality (CMAQ) Model simulations with 4 km grid resolution and evaluated with measurements of isoprene and monoterp
Lane, John W.; Day-Lewis, Frederick D.; Versteeg, Roelof J.; Casey, Clifton C.
2004-01-01
Crosswell radar methods can be used to dynamically image ground-water flow and mass transport associated with tracer tests, hydraulic tests, and natural physical processes, for improved characterization of preferential flow paths and complex aquifer heterogeneity. Unfortunately, because the raypath coverage of the interwell region is limited by the borehole geometry, the tomographic inverse problem is typically underdetermined, and tomograms may contain artifacts such as spurious blurring or streaking that confuse interpretation.We implement object-based inversion (using a constrained, non-linear, least-squares algorithm) to improve results from pixel-based inversion approaches that utilize regularization criteria, such as damping or smoothness. Our approach requires pre- and post-injection travel-time data. Parameterization of the image plane comprises a small number of objects rather than a large number of pixels, resulting in an overdetermined problem that reduces the need for prior information. The nature and geometry of the objects are based on hydrologic insight into aquifer characteristics, the nature of the experiment, and the planned use of the geophysical results.The object-based inversion is demonstrated using synthetic and crosswell radar field data acquired during vegetable-oil injection experiments at a site in Fridley, Minnesota. The region where oil has displaced ground water is discretized as a stack of rectangles of variable horizontal extents. The inversion provides the geometry of the affected region and an estimate of the radar slowness change for each rectangle. Applying petrophysical models to these results and porosity from neutron logs, we estimate the vegetable-oil emulsion saturation in various layers.Using synthetic- and field-data examples, object-based inversion is shown to be an effective strategy for inverting crosswell radar tomography data acquired to monitor the emplacement of vegetable-oil emulsions. A principal advantage of object-based inversion is that it yields images that hydrologists and engineers can easily interpret and use for model calibration.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Sausen, T. M.
1981-01-01
The land use and types of vegetation in the region of the upper Sao Francisco River, Brazil, are identified. This region comprises the supply basin of the Tres Marias reservoir. Imagery from channels 5 and 7 of the LANDSAT multispectral band scanner during wet and rainy seasons and ground truth data were employed to characterize and map the vegetation, land use, and sedimentary discharges from the reservoir. Agricultural and reforested lands, meadows, and forests are identified. Changes in land use due to human activity are demonstrated.
Zhang, Xu Zhu; Han, Yin; Yu, Zhen Rong; Liu, Yun Hui
2017-06-18
This study was conducted before and after harvesting of wheat and maize in a typical agricultural landscape of the North China Plain. We investigated the diversity of two important natural enemy groups, carabids and spiders, using pitfall traps at crop field margin with different vegetation structures and their neighboring crop field. Throughout the comparison of the spatial and temporal distribution of the diversity of carabids and spiders in field margin and neighboring field, and the investigation of the relationship between arthropod communities and vegetation structure, this study aimed to understand the role of semi-natural field margin in biodiversity conservation of different natural enemy taxa. Results showed that the abundance of spiders was significantly higher in field margin than in neighboring fields over the entire period. No significant difference of the diversity of carabids in field margin and crop field was observed, but the community composition was different. Number of spider families increased in field margin but deceased in crop field after harvesting, indicating a migration activity between field and field margin. Vegetation structure in the field margin had different association with carabids than with spiders, with diversity of dominant carabid species positively associated with herb coverage and negatively with wood coverage, while the diversity of spider family Linyphiidae was positively associated with herb coverage only. Semi-natural habitat benefited the conservation of the diversity of arthropod natural enemies in crop field via promoting their dispersal to crop field, while such impacts differed from different vegetation structures and varied from target beneficial natural enemy communities. Future studies should focus on in-depth understanding of the food and habitat source requirement of different natural enemy taxa, and hence to design suitable semi-natural habitats to maintain a high diversity of natural enemy communities.
NASA Astrophysics Data System (ADS)
Alessandri, A.; Catalano, F.; De Felice, M.; Hurk, B. V. D.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.
2017-12-01
Here we demonstrate, for the first time, that the implementation of a realistic representation of vegetation in Earth System Models (ESMs) can significantly improve climate simulation and prediction across multiple time-scales. The effective sub-grid vegetation fractional coverage vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the surface resistance to evapotranspiration, albedo, roughness lenght, and soil field capacity. To adequately represent this effect in the EC-Earth ESM, we included an exponential dependence of the vegetation cover on the Leaf Area Index.By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal (2-4 months) and weather (4 days) time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation-cover consistently correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.Above results are discussed in a peer-review paper just being accepted for publication on Climate Dynamics (Alessandri et al., 2017; doi:10.1007/s00382-017-3766-y).
Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011
Zhang, Yangjian; Dong, Jinwei; Xiao, Xiangming
2013-01-01
As the Earth’s third pole, the Tibetan Plateau has experienced a pronounced warming in the past decades. Recent studies reported that the start of the vegetation growing season (SOS) in the Plateau showed an advancing trend from 1982 to the late 1990s and a delay from the late 1990s to 2006. However, the findings regarding the SOS delay in the later period have been questioned, and the reasons causing the delay remain unknown. Here we explored the alpine vegetation SOS in the Plateau from 1982 to 2011 by integrating three long-term time-series datasets of Normalized Difference Vegetation Index (NDVI): Global Inventory Modeling and Mapping Studies (GIMMS, 1982–2006), SPOT VEGETATION (SPOT-VGT, 1998–2011), and Moderate Resolution Imaging Spectroradiometer (MODIS, 2000–2011). We found GIMMS NDVI in 2001–2006 differed substantially from SPOT-VGT and MODIS NDVIs and may have severe data quality issues in most parts of the western Plateau. By merging GIMMS-based SOSs from 1982 to 2000 with SPOT-VGT–based SOSs from 2001 to 2011 we found the alpine vegetation SOS in the Plateau experienced a continuous advancing trend at a rate of ∼1.04 d·y−1 from 1982 to 2011, which was consistent with observed warming in springs and winters. The satellite-derived SOSs were proven to be reliable with observed phenology data at 18 sites from 2003 to 2011; however, comparison of their trends was inconclusive due to the limited temporal coverage of the observed data. Longer-term observed data are still needed to validate the phenology trend in the future. PMID:23440201
NASA Technical Reports Server (NTRS)
Douglass, R. W.; Meyer, M. P.; French, D. W.
1972-01-01
Criteria was established for practical remote sensing of vegetation stress and mortality caused by dwarf mistletoe infections in black spruce subboreal forest stands. The project was accomplished in two stages: (1) A fixed tower-tramway site in an infected black spruce stand was used for periodic multispectral photo coverage to establish basic film/filter/scale/season/weather parameters; (2) The photographic combinations suggested by the tower-tramway tests were used in low, medium, and high altitude aerial photography.
Integrated NDVI images for Niger 1986-1987. [Normalized Difference Vegetation Index
NASA Technical Reports Server (NTRS)
Harrington, John A., Jr.; Wylie, Bruce K.; Tucker, Compton J.
1988-01-01
Two NOAA AVHRR images are presented which provide a comparison of the geographic distribution of an integration of the normalized difference vegetation index (NDVI) for the Sahel zone in Niger for the growing seasons of 1986 and 1987. The production of the images and the application of the images for resource management are discussed. Daily large area coverage with a spatial resolution of 1.1 km at nadir were transformed to the NDVI and geographically registered to produce the images.
NASA Astrophysics Data System (ADS)
Miao, Lijuan; Liu, Qiang; Fraser, Richard; He, Bin; Cui, Xuefeng
The Mongolian Plateau (MP) steppe is one of the largest steppe environments in the world. To monitor the terrestrial vegetation dynamics on the MP and to ascertain what the driving forces, this study examined the vegetation dynamics in Republic of Mongolia (M) and the Inner Mongolia Autonomous Region (IM) of China from the period 1982 to 2011, based on the satellite-derived GIMMS NDVI3g (Normalized Difference Vegetation Index) data across three biomes (desert, grassland and forest). The results are as followed: (1) Vegetation coverage in IM was generally greater than that in M. Before 2002, time series of NDVI over the MP increased at an average rate of 0.05% yr-1. Additionally, after 2002, the NDVI increased at a rate of 0.21% yr-1. From 1982 to 2011, the area of IM and M with positive anomalies in the NDVI increased at a separate rate of 1.82% yr-1 and 1.76% yr-1, respectively. (2) At the biome scale, the inter-annual forest NDVI variation in IM and desert NDVI for the entire MP had a significant increasing trend (0.06% yr-1 and 0.04% yr-1, respectively). (3) Climate forcing was a dominant controlling factor affecting the vegetation, and the anthropogenic behavior exhibited no significant value in the whole region. However, overgrazing was the most important reason for the regional degradation, particularly in IM. (4) In the future, the forest biome will go to recovery, whereas both the grassland and desert biomes are predicted to degrade continuously.
Lin, Xiao-Sheng; Tang, Jie; Li, Zhao-Yang; Li, Hai-Yi
2016-01-01
Liao River basin in Jilin Province is the place of origin of the Dongliao River. This study gives a comprehensive analysis of the vegetation coverage in the region and provides a potential theoretical basis for ecological restoration. The seasonal variation of vegetation greenness and dynamics based on the Normalized Difference Vegetation Index (NDVI) in major land cover types in the region was studied. Analyzing the relationship NDVI, temperature and rainfall, we derived a set of predictor variables from 2001 to 2012 using the MODIS Terra level 1 Product (MOD02QKM). The results showed a general increasing trend in NDVI value in the region, while 34.63 % of the region showed degradation. NDVI values begin to rise from April when plants are regreening and they drop in September when temperature are decreasing and the leaves are falling in the study area and temperature was found decreasing during the period of 2001-2012 while rainfall showed an increasing trend. This model could be used to observe the change in vegetation greenness and the dynamic effects of temperature and rainfall. This study provided important data for the environmental protection of the basin area. And we hope to provide scientific analysis for controlling water and soil erosion, maintaining the sustainable productivity of land resources, enhancing the treatment of water pollution and stimulating the virtuous cycle of the ecological system.
NASA Astrophysics Data System (ADS)
Jia, S.; Gillespie, T. W.
2016-12-01
Post-fire response from vegetation is determined by the intensity and timing of fires as well as the nature of local biomes. Though the field-based studies focusing on selected study sites helped to understand the mechanisms of post-fire response, there is a need to extend the analysis to a broader spatial extent with the assistance of remotely sensed imagery of fires and vegetation. Pheno-metrics, a series of variables on the growing cycle extracted from basic satellite measurements of vegetation coverage, translate the basic remote sensing measurements such as NDVI to the language of phenology and fire ecology in a quantitative form. In this study, we analyzed the rate of biomass removal after ignition and the speed of post-fire recovery in California protected areas from 2000 to 2014 with USGS MTBS fire data and USGS eMODIS pheno-metrics. NDVI drop caused by fire showed the aboveground biomass of evergreen forest was removed much slower than shrubland because of higher moisture level and greater density of fuel. In addition, the above two major land cover types experienced a greatly weakened immediate post-fire growing season, featuring a later start and peak of season, a shorter length of season, and a lower start and peak of NDVI. Such weakening was highly correlated with burn severity, and also influenced by the season of fire and the land cover type, according to our modeling between the anomalies of pheno-metrics and the difference of normalized burn ratio (dNBR). The influence generally decayed over time, but can remain high within the first 5 years after fire, mostly because of the introduction of exotic species when the native species were missing. Local-specific variables are necessary to better address the variance within the same fire and improve the outcomes of models. This study can help ecologists in validating the theories of post-fire vegetation response mechanisms and assist local fire managers in post-fire vegetation recovery.
Ray, Nicolas; Ebener, Steeve
2008-01-01
Background Access to health care can be described along four dimensions: geographic accessibility, availability, financial accessibility and acceptability. Geographic accessibility measures how physically accessible resources are for the population, while availability reflects what resources are available and in what amount. Combining these two types of measure into a single index provides a measure of geographic (or spatial) coverage, which is an important measure for assessing the degree of accessibility of a health care network. Results This paper describes the latest version of AccessMod, an extension to the Geographical Information System ArcView 3.×, and provides an example of application of this tool. AccessMod 3 allows one to compute geographic coverage to health care using terrain information and population distribution. Four major types of analysis are available in AccessMod: (1) modeling the coverage of catchment areas linked to an existing health facility network based on travel time, to provide a measure of physical accessibility to health care; (2) modeling geographic coverage according to the availability of services; (3) projecting the coverage of a scaling-up of an existing network; (4) providing information for cost effectiveness analysis when little information about the existing network is available. In addition to integrating travelling time, population distribution and the population coverage capacity specific to each health facility in the network, AccessMod can incorporate the influence of landscape components (e.g. topography, river and road networks, vegetation) that impact travelling time to and from facilities. Topographical constraints can be taken into account through an anisotropic analysis that considers the direction of movement. We provide an example of the application of AccessMod in the southern part of Malawi that shows the influences of the landscape constraints and of the modes of transportation on geographic coverage. Conclusion By incorporating the demand (population) and the supply (capacities of heath care centers), AccessMod provides a unifying tool to efficiently assess the geographic coverage of a network of health care facilities. This tool should be of particular interest to developing countries that have a relatively good geographic information on population distribution, terrain, and health facility locations. PMID:19087277
NASA Astrophysics Data System (ADS)
Rudaya, Natalia; Nazarova, Larisa; Novenko, Elena; Babich, Valery; Kalugin, Ivan; Daryin, Andrei
2015-04-01
We report the first high-resolution (with intervals ca. 20-50 years) late-Holocene (4200 yr BP) pollen record from Lake Teletskoye, Altai Mountains, obtained from the underwater Ridge of Sofia Lepneva in 2006 (core Tel 2006). The study presents (i) the results of palynological analysis of Tel 2006; (ii) the results of spectral analysis of natural cycles based on the periodical fluctuation of taiga-biome curve; and (iii) quantitative reconstructions of the late-Holocene regional vegetation, woody coverage and climate in northern part of the Altai Mountains in order to define place of Northeast Altai on the map of the late-Holocene Central Asian environmental history. Late Holocene vegetation of the northeastern part of Altai recorded in Tel 2006 core is characterized by spread of dark-coniferous forest with structure similar to modern. Dominant trees, Siberian pine (Pinus sibirica) and Siberian fir (Abies sibirica), are the most ecological sensitive taxa between Siberian conifers (Shumilova, 1962), that as a whole suggests mild and humid climatic conditions during last 4200 years. However, changes of pollen taxa percentages and results of numerical analysis reveal pronounced fluctuation of climate and vegetation. Relatively cool and dry stage occurred prior to ca. 3500 cal yr BP. Open vegetation was widespread in the region with maximum deforestation and minimal July temperatures between 3800-3500 cal yr BP. Steppe-like communities with Artemisia, Chenopodiaceae and Cyperaceae could grow on the open sites around Lake Teletskoye. Reconstructed woody coverage is very low and varies between 29-35%. After ca. 3500 cal yr BP the area of dark-coniferous mountain taiga has significantly enlarged with maximums of woody coverages and taiga biome scores between ca. 2470-1040 cal yr BP. In the period of ~3500-2500 cal yr BP the averages July temperatures increased more than 1 0C. Climate became warmer and wetter. During last millennium (after 1040 cal yr BP) average July temperatures fell to 17.04 0C. Minimums of July temperatures related to AD1560-1650 and may reflect Little Ice Age in the northeastern Altai. This assumption is in an agreement with previous data from Lake Teletskoye (core Tel 2001-02 covered last 1000 years) where the period with relatively cold and dry climate was revealed between AD1560 and 1820 (Andreev et al., 2007). The coldest period in Tuva according to dendrochronological data (Myglan, Oidupaa, Vaganov, 2012) was in 17-19 centuries with minimum of June-July temperatures at AD1778-1819. Pollen records from the Chuya basin (southeastern part of Russian Altai) revealed the onset of LIA around AD1600 (Schluetz&Lehmkuhl, 2007). Open steppe-like vegetation slightly enlarged after ~AD1700 with increasing of continentality. Modern Index of Continentality mapping for the Altai Mountains is in range of 50-59 (Grieser et al., 2006). The average Index of Continentality calculated for last 30 years using data from Barnaul meteostation, located 300 km northwest of the lake in forest-steppe zone, is 40.6; the average Index of Continentality for Yailu meteostation (north shore of Lake Teletskoye) is 20. Index of Continentality reconstructed from Tel 2006 varies in limits of 48-58 and obviously shows regional but not local situation. Throughout the Tel 2006 record woody coverages vary between 29.0% at the 3890 cal yr BP and 50.3% at the AD1830. Woody coverage greater than 65% is associated with the Siberian mid-latitudinal zonal taiga. Areas north and south of the taiga zone have moderate forest coverage (25-45%), suggesting greater landscape openness (Tarasov et al., 2007). Regarding to VCF data, modern woody cover in 20 km around the lake is ca. 55% (http://glcf.umiacs.umd.edu/data/vcf). Reconstructed woody coverage is lower than observed and reflect probably forest development in the whole lake catchment basin. Spectral analysis of Tel 2006 data demonstrates periodic changes of taiga-biome curve of ~1050, ~470 and ~210 years intervals during the Late Holocene. Kravchinsky et al. (2013) presume that the 1000- and 500-year periodicities recorded in magnetic properties of soil layers correspond to solar activity induced climate changes in Southern Siberia; however, Stuiver&Braziunas (1993) relate the ~500-yr cycle to flux oscillations in the Atlantic Ocean thermohaline circulation. The ˜210-year periodicities may reflect the ~200-year solar de Vries cycle that is commonly believed to be one of the most intense solar cycles (e.g. Wagner G. et al., 2001; Damon&Peristykh, 2000; Stuiver&Braziunas, 1993). Dendrochronlogical data obtained from the Tien Shan and Qinghai-Tibetan Plateau confirm the existence of 200-year climatic cycles associated with solar activity in Central Asia (Raspopov et al., 2008). Absence of 1500-year climatic cycles (Bond events) in Tel 2006 record may be explained by deep intercontinental location of the Lake Teletskoye whereas 1500-year cycles are linked with the North Atlantic oceanic circulation (Bond et al., 2001; Debret et al., 2007).
Shuttle imaging radar views the Earth from Challenger: The SIR-B experiment
NASA Technical Reports Server (NTRS)
Ford, J. P.; Cimino, J. B.; Holt, B.; Ruzek, M. R.
1986-01-01
In October 1984, SIR-B obtained digital image data of about 6.5 million km2 of the Earth's surface. The coverage is mostly of selected experimental test sites located between latitudes 60 deg north and 60 deg south. Programmed adjustments made to the look angle of the steerable radar antenna and to the flight attitude of the shuttle during the mission permitted collection of multiple-incidence-angle coverage or extended mapping coverage as required for the experiments. The SIR-B images included here are representative of the coverage obtained for scientific studies in geology, cartography, hydrology, vegetation cover, and oceanography. The relations between radar backscatter and incidence angle for discriminating various types of surfaces, and the use of multiple-incidence-angle SIR-B images for stereo measurement and viewing, are illustrated with examples. Interpretation of the images is facilitated by corresponding images or photographs obtained by different sensors or by sketch maps or diagrams.
NASA Technical Reports Server (NTRS)
Chang, Jy-Tai; Wetzel, Peter J.
1991-01-01
To examine the effects of spatial variations of soil moisture and vegetation coverage on the evolution of a prestorm environment, the Goddard mesoscale model is modified to incorporate a simple evapotranspiration model that requires these two parameters. The case study of 3-4 June 1980 is of special interest due to the development of a tornado producing convective complex near Grand Island, Nebraska during a period of comparatively weak synoptic-scale forcing. It is shown that the observed stationary front was strongly enhanced by differential heating created by observed gradients of soil moisture, as acted upon by the vegetation cover.
NASA Astrophysics Data System (ADS)
Duffy, James P.; Pratt, Laura; Anderson, Karen; Land, Peter E.; Shutler, Jamie D.
2018-01-01
Seagrass ecosystems are highly sensitive to environmental change. They are also in global decline and under threat from a variety of anthropogenic factors. There is now an urgency to establish robust monitoring methodologies so that changes in seagrass abundance and distribution in these sensitive coastal environments can be understood. Typical monitoring approaches have included remote sensing from satellites and airborne platforms, ground based ecological surveys and snorkel/scuba surveys. These techniques can suffer from temporal and spatial inconsistency, or are very localised making it hard to assess seagrass meadows in a structured manner. Here we present a novel technique using a lightweight (sub 7 kg) drone and consumer grade cameras to produce very high spatial resolution (∼4 mm pixel-1) mosaics of two intertidal sites in Wales, UK. We present a full data collection methodology followed by a selection of classification techniques to produce coverage estimates at each site. We trialled three classification approaches of varying complexity to investigate and illustrate the differing performance and capabilities of each. Our results show that unsupervised classifications perform better than object-based methods in classifying seagrass cover. We also found that the more sparsely vegetated of the two meadows studied was more accurately classified - it had lower root mean squared deviation (RMSD) between observed and classified coverage (9-9.5%) compared to a more densely vegetated meadow (RMSD 16-22%). Furthermore, we examine the potential to detect other biotic features, finding that lugworm mounds can be detected visually at coarser resolutions such as 43 mm pixel-1, whereas smaller features such as cockle shells within seagrass require finer grained data (<17 mm pixel-1).
Evaluation and Validation of Updated MODIS C6 and VIIRS LAI/FPAR
NASA Astrophysics Data System (ADS)
Yan, K.; Park, T.; Chen, C.; Yang, B.; Yan, G.; Knyazikhin, Y.; Myneni, R. B.; CHOI, S.
2015-12-01
Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (0.4-0.7 μm) absorbed by vegetation (FPAR) play a key role in characterizing vegetation canopy functioning and energy absorption capacity. With radiative transfer realization, MODIS onboard NASA EOS Terra and Aqua satellites has provided globally continuous LAI/FPAR since 2000 and continuously updated the products with better quality. And NPP VIIRS shows the measurement capability to extend high-quality LAI/FPAR time series data records as a successor of MODIS. The primary objectives of this study are 1) to evaluate and validate newly updated MODIS Collection 6 (C6) LAI/FPAR product which has finer resolution (500m) and improved biome type input, and 2) to examine and adjust VIIRS LAI/FPAR algorithm for continuity with MODIS'. For MODIS C6 investigation, we basically measure the spatial coverage (i.e., main radiative transfer algorithm execution), continuity and consistency with Collection 5 (C5), and accuracy with field measured LAI/FPAR. And we also validate C6 LAI/FPAR via comparing other possible global LAI/FPAR products (e.g., GLASS and CYCLOPES) and capturing co-varying seasonal signatures with climatic variables (e.g., temperature and precipitation). For VIIRS evaluation and adjustment, we first quantify possible difference between C5 and MODIS heritage based VIIRS LAI/FPAR. Then based on the radiative transfer theory of canopy spectral invariants, we find VIIRS- and biome-specific configurable parameters (single scattering albedo and uncertainty). These two practices for MODIS C6 and VIIRS LAI/FPAR products clearly suggest that (a) MODIS C6 has better coverage and accuracy than C5, (b) C6 shows consistent spatiotemporal pattern with C5, (c) VIIRS has the potential for producing MODIS-like global LAI/FPAR Earth System Data Records.
Drought index driven by L-band microwave soil moisture data
NASA Astrophysics Data System (ADS)
Bitar, Ahmad Al; Kerr, Yann; Merlin, Olivier; Cabot, François; Choné, Audrey; Wigneron, Jean-Pierre
2014-05-01
Drought is considered in many areas across the globe as one of the major extreme events. Studies do not all agree on the increase of the frequency of drought events over the past 60 years [1], but they all agree that the impact of droughts has increased and the need for efficient global monitoring tools has become most than ever urgent. Droughts are monitored through drought indexes, many of which are based on precipitation (Palmer index(s), PDI…), on vegetation status (VDI) or on surface temperatures. They can also be derived from climate prediction models outputs. The GMO has selected the (SPI) Standardized Precipitation Index as the reference index for the monitoring of drought at global scale. The drawback of this index is that it is directly dependent on global precipitation products that are not accurate over global scale. On the other hand, Vegetation based indexes show the a posteriori effect of drought, since they are based on NDVI. In this study, we choose to combine the surface soil moisture from microwave sensor with climate data to access a drought index. The microwave data are considered from the SMOS (Soil Moisture and Ocean Salinity) mission at L-Band (1.4 Ghz) interferometric radiometer from ESA (European Space Agency) [2]. Global surface soil moisture maps with 3 days coverage for ascending 6AM and descending 6PM orbits SMOS have been delivered since January 2010 at a 40 km nominal resolution. We use in this study the daily L3 global soil moisture maps from CATDS (Centre Aval de Traitement des Données SMOS) [3,4]. We present a drought index computed by a double bucket hydrological model driven by operational remote sensing data and ancillary datasets. The SPI is also compared to other drought indicators like vegetation indexes and Palmer drought index. Comparison of drought index to vegetation indexes from AVHRR and MODIS over continental United States show that the drought index can be used as an early warning system for drought monitoring as the water shortage can be sensed several weeks before the vegetation dryness occures. Keywords: SMOS, microwave, level 4, soil moisture, drought, precipitation, hydrological model, vegetation index
Climate Responses to Changes in Land-surface Properties due to Wildfires
NASA Astrophysics Data System (ADS)
Liu, Y.; Hao, X.; Qu, J. J.
2015-12-01
Wildfires can feedback the atmosphere by impacting atmospheric radiation transfer and cloud microphysics through emitting smoke particles and the land-air heat and water fluxes through modifying land-surface properties. While the impacts through smoke particles have been extensively investigated recently, very few studies have been conducted to examine the impacts through land-surface property change. This study is to fill this gap by examining the climate responses to the changes in land-surface properties induced by several large wildfires in the United States. Satellite remote sensing tools including MODIS and Landsat are used to quantitatively evaluate the land-surface changes characterized by reduced vegetation coverage and increased albedo over long post-fire periods. Variations in air and soil temperature and moisture of the burned areas are also monitored. Climate modeling is conducted to simulate climate responses and understand the related physical processes and interactions. The preliminary results indicate noticeable changes in water and heat transfers from the ground to the atmosphere through several mechanisms. Larger albedo reduces solar radiation absorbed on the ground, leading to less energy for latent and sensible heat fluxes. With smaller vegetation coverage, water transfer from the soil to the atmosphere through transpiration is reduced. Meanwhile, the Bowen ratio becomes larger after burning and therefore more solar energy absorbed on the ground is converted into sensible heat instead of being used as latent energy for water phase change. In addition, reduced vegetation coverage reduces roughness and increases wind speed, which modify dynamic resistances to water and heat movements. As a result of the changes in the land-air heat and water fluxes, clouds and precipitation as well as other atmospheric processes are affected by wildfires.
Monitoring the state of vegetation in Hungary using 15 years long MODIS Data
NASA Astrophysics Data System (ADS)
Kern, Anikó; Bognár, Péter; Pásztor, Szilárd; Barcza, Zoltán; Timár, Gábor; Lichtenberger, János; Ferencz, Csaba
2015-04-01
Monitoring the state and health of the vegetation is essential to understand causes and severity of environmental change and to prepare for the negative effects of climate change on plant growth and productivity. Satellite remote sensing is the fundamental tool to monitor and study the changes of vegetation activity in general and to understand its relationship with the climate fluctuations. Vegetation indices and other vegetation related measures calculated from remotely sensed data are widely used to monitor and characterize the state of the terrestrial vegetation. Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) are among the most popular indices that can be calculated from measurements of the MODerate resolution Imaging Spectroradiometer (MODIS) sensor onboard the NASA EOS-AM1/Terra and EOS-PM1/Aqua satellites (since 1999 and 2002 respectively). Based on the available, 15 years long MODIS data (2000-2014) the vegetation characteristics of Hungary was investigated in our research, primarily using vegetation indices. The MODIS NDVI and EVI (both part of the so-called MOD13 product of NASA) are freely available with a finest spatial resolution of 250 meters and a temporal resolution of 16 days since 2000/2002 (for Terra and Aqua respectively). The accuracy, the spatial resolution and temporal continuity of the MODIS products makes these datasets highly valuable despite of its relatively short temporal coverage. NDVI is also calculated routinely from the raw MODIS data collected by the receiving station of Eötvös Loránd University. In order to characterize vegetation activity and its variability within the Carpathian Basin the area-averaged annual cycles and their interannual variability were determined. The main aim was to find those years that can be considered as extreme according to specific indices. Using archive meteorological data the effects of extreme weather on vegetation activity and growth were investigated with emphasis on drought and heat waves. Te relationship between anomalies of vegetation characteristics and crop yield decrease in agricultural regions were characterised as well. The mean NDVI values of Hungary during the 15 years reveal the behaviour of the vegetation in the country, where the main land cover types (forest, agriculture and grassland) were distinguished as well. NDVI anomalies are analyzed separately for the main land cover types. Deviations from the potential maximum vegetation greenness are also calculated for the entire time period.
The Change in the area of various land covers on the Tibetan Plateau during 1957-2015
NASA Astrophysics Data System (ADS)
Cuo, Lan; Zhang, Yongxin
2017-04-01
With average elevation of 4000 m and area of 2.5×106 km2, Tibetan Plateau hosts various fragile ecosystems such as perennial alpine meadow, perennial alpine steppe, temperate evergreen needleleaf trees, temperate deciduous trees, temperate shrub grassland, and barely vegetated desert. Perennial alpine meadow and steppe are the two dominant vegetation types on the heartland of the plateau. MODIS Leaf Area Index (LAI) ranges from 0 to 2 in most part of the plateau. With climate change, these ecosystems are expected to undergo alteration. This study uses a dynamic vegetation model - Lund-Potsdam-Jena (LPJ) to investigate the change of the barely vegetated area and other vegetation types caused by climate change during 1957-2015 on the Tibetan Plateau. Model simulated foliage projective coverage (FPC) and plant functional types (PFTs) are selected for the investigation. The model is evaluated first using both field surveyed land cover map and MODIS LAI images. Long term trends of vegetation FPC is examined. Decadal variations of vegetated and barely vegetated land are compared. The impacts of extreme precipitation, air temperature and CO2 on the expansion and contraction of barely vegetated and vegetated areas are shown. The study will identify the dominant climate factors in affecting the desert area in the region.
Growing season carries stronger contributions to albedo dynamics on the Tibetan plateau
2017-01-01
The Tibetan Plateau has experienced higher-than-global-average climate warming in recent decades, resulting in many significant changes in ecosystem structure and function. Among them is albedo, which bridges the causes and consequences of land surface processes and climate. The plateau is covered by snow/ice and vegetation in the non-growing season (nGS) and growing season (GS), respectively. Based on the MODIS products, we investigated snow/ice cover and vegetation greenness in relation to the spatiotemporal changes of albedo on the Tibetan Plateau from 2000 through 2013. A synchronous relationship was found between the change in GSNDVI and GSalbedo over time and across the Tibetan landscapes. We found that the annual average albedo had a decreasing trend, but that the albedo had slightly increased during the nGS and decreased during the GS. Across the landscapes, the nGSalbedo fluctuated in a synchronous pattern with snow/ice cover. Temporally, monthly snow/ice coverage also had a high correspondence with albedo, except in April and October. We detected clear dependencies of albedo on elevation. With the rise in altitude, the nGSalbedo decreased below 4000 m, but increased for elevations of 4500–5500 m. Above 5500 m, the nGSalbedo decreased, which was in accordance with the decreased amount of snow/ice coverage and the increased soil moisture on the plateau. More importantly, the decreasing albedo in the most recent decade appeared to be caused primarily by lowered growing season albedo. PMID:28886037
Growing season carries stronger contributions to albedo dynamics on the Tibetan plateau.
Tian, Li; Chen, Jiquan; Zhang, Yangjian
2017-01-01
The Tibetan Plateau has experienced higher-than-global-average climate warming in recent decades, resulting in many significant changes in ecosystem structure and function. Among them is albedo, which bridges the causes and consequences of land surface processes and climate. The plateau is covered by snow/ice and vegetation in the non-growing season (nGS) and growing season (GS), respectively. Based on the MODIS products, we investigated snow/ice cover and vegetation greenness in relation to the spatiotemporal changes of albedo on the Tibetan Plateau from 2000 through 2013. A synchronous relationship was found between the change in GSNDVI and GSalbedo over time and across the Tibetan landscapes. We found that the annual average albedo had a decreasing trend, but that the albedo had slightly increased during the nGS and decreased during the GS. Across the landscapes, the nGSalbedo fluctuated in a synchronous pattern with snow/ice cover. Temporally, monthly snow/ice coverage also had a high correspondence with albedo, except in April and October. We detected clear dependencies of albedo on elevation. With the rise in altitude, the nGSalbedo decreased below 4000 m, but increased for elevations of 4500-5500 m. Above 5500 m, the nGSalbedo decreased, which was in accordance with the decreased amount of snow/ice coverage and the increased soil moisture on the plateau. More importantly, the decreasing albedo in the most recent decade appeared to be caused primarily by lowered growing season albedo.
Improved meteorology from an updated WRF/CMAQ modeling ...
Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Quality model) that employs the Pleim-Xiu land surface model (PX LSM). Recently, PX LSM WRF/CMAQ has been updated in vegetation, soil, and boundary layer processes resulting in improved 2 m temperature (T) and mixing ratio (Q), 10 m wind speed, and surface ozone simulations across the domain compared to the previous version for a period around August 2006. Yearlong meteorology simulations with the updated system demonstrate that MODIS input helps reduce bias of the 2 m Q estimation during the growing season from April to September. Improvements follow the green-up in the southeast from April and move toward the west and north through August. From October to March, MODIS input does not have much influence on the system because vegetation is not as active. The greatest effects of MODIS input include more accurate phenology, better representation of leaf area index (LAI) for various forest ecosystems and agricultural areas, and realistically sparse vegetation coverage in the western drylands. Despite the improved meteorology, MODIS input causes higher bias for the surface O3 simulation in April, August, and October in areas where MODIS LAI is much less than the base LAI. Thus, improvement
Aquatic Invertebrate Assemblages in Shallow Prairie Lakes: Fish and Environmental Influences
Paukert, C.P.; Willis, D.W.
2003-01-01
We sampled zooplankton and benthic macroinvertebrate assemblages in 30 shallow natural lakes to determine the effects of the environment (i.e., habitat and fish abundance) on invertebrates. Zooplankters were identified to genus, and up to 120 individuals per genus were measured. Macroinvertebrates were identified to order, class, or family. Fish communities were also sampled. Relative abundances of zooplankton and macroinvertebrates were low at increased chlorophyll a concentrations, although mean zooplankton length increased with total phosphorus, possibly because of an increased proportion of microzooplankton (rotifers and copepod nauplii) at higher phosphorus levels. Canonical correspondence analysis revealed that zooplankton and macroinvertebrate abundance was influenced by submersed vegetation coverage, whereas zooplankton abundance and size structure were also related to productivity (i.e., chlorophyll a and total phosphorus). However, relative abundance of fish species or fish feeding guilds was not strongly correlated with zooplankton or macroinvertebrate abundance or zooplankton size structure. Physical habitat (e.g., vegetation coverage) may exert substantial influences on invertebrate assemblages in these lakes, possibly providing a refuge from fish predation.
DroughtView: Satellite Based Drought Monitoring and Assessment
NASA Astrophysics Data System (ADS)
Hartfield, K. A.; Van Leeuwen, W. J. D.; Crimmins, M.; Marsh, S. E.; Torrey, Y.; Rahr, M.; Orr, B. J.
2014-12-01
Drought is an ever growing concern within the United States and Mexico. Extended periods of below-average precipitation can adversely affect agricultural production and ecosystems, impact local water resources and create conditions prime for wildfire. DroughtView (www.droughtview.arizona.edu) is a new on-line resource for scientists, natural resource managers, and the public that brings a new perspective to remote-sensing based drought impact assessment that is not currently available. DroughtView allows users to monitor the impact of drought on vegetation cover for the entire continental United States and the northern regions of Mexico. As a spatially and temporally dynamic geospatial decision support tool, DroughtView is an excellent educational introduction to the relationship between remotely sensed vegetation condition and drought. The system serves up Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) data generated from 250 meter 16-day composite Moderate-resolution Imaging Spectroradiometer (MODIS) imagery from 2000 to the present. Calculation of difference from average, previous period and previous year greenness products provide the user with a proxy for drought conditions and insight on the secondary impacts of drought, such as wildfire. The various image products and overlays are served up via the ArcGIS Server platform. DroughtView serves as a useful tool to introduce and teach vegetation time series analysis to those unfamiliar with the science. High spatial resolution imagery is available as a reference layer to locate points of interest, zoom in and export images for implementation in reports and presentations. Animation of vegetation time series allows users to examine ecosystem disturbances and climate data is also available to examine the relationship between precipitation, temperature and vegetation. The tool is mobile friendly allowing users to access the system while in the field. The systems capabilities and applications will be demonstrated live during the poster session. Expansion of DroughtView includes future plans to add snow products, phenology data and climate scenarios. Extension of the spatial coverage of the data to other parts of the world is also planned.
NASA Astrophysics Data System (ADS)
Sandi, Steven; Rodriguez, Jose F.; Saco, Patricia M.; Riccardi, Gerardo; Wen, Li; Saintilan, Neil
2016-04-01
The Macquarie Marshes is a complex system of marshes, swamps and lagoons interconnected by a network of streams in the semi-arid region in north western NSW, Australia. The low-gradient topography of the site leads to channel breakdown processes where the river network becomes practically non-existent. As a result, the flow extends over large areas of wetland that later re-join and reform channels exiting the system. Vegetation in semiarid wetlands are often water dependent and flood tolerant species that rely on periodical floods in order to maintain healthy conditions. The detrimental state of vegetation in the Macquarie Marshes over the past few decades has been linked to decreasing inundation frequencies. Spatial distribution of flood tolerant overstory species such as River Red Gum and Black Box has not greatly changed since early 1990's, however; the condition of the vegetation patches shows a clear deterioration evidenced by terrestrial species encroachment on the wetland understory. On the other hand, areas of flood dependent species such as Water Couch and Common Reed have undergone complete succession to terrestrial species and dryland. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological modelling framework that combines hydrodynamic, vegetation and channel evolution modules and in this presentation we provide an update on the status of the model. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model. We presents also the development and assessment of transitional rules to determine if the water conditions have been met for different vegetation associations in the patches known to have undergone succession to terrestrial species and dry-land.
How much rainfall sustained a Green Sahara during the mid-Holocene?
NASA Astrophysics Data System (ADS)
Hopcroft, Peter; Valdes, Paul; Harper, Anna
2016-04-01
The present-day Sahara desert has periodically transformed to an area of lakes and vegetation during the Quaternary in response to orbitally-induced changes in the monsoon circulation. Coupled atmosphere-ocean general circulation model simulations of the mid-Holocene generally underestimate the required monsoon shift, casting doubt on the fidelity of these models. However, the climatic regime that characterised this period remains unclear. To address this, we applied an ensemble of dynamic vegetation model simulations using two different models: JULES (Joint UK Land Environment Simulator) a comprehensive land surface model, and LPJ (Lund-Potsdam-Jena model) a widely used dynamic vegetation model. The simulations are forced with a number of idealized climate scenarios, in which an observational climatology is progressively altered with imposed anomalies of precipitation and other related variables, including cloud cover and humidity. The applied anomalies are based on an ensemble of general circulation model simulations, and include seasonal variations but are spatially uniform across the region. When perturbing precipitation alone, a significant increase of at least 700mm/year is required to produce model simulations with non-negligible vegetation coverage in the Sahara region. Changes in related variables including cloud cover, surface radiation fluxes and humidity are found to be important in the models, as they modify the water balance and so affect plant growth. Including anomalies in all of these variables together reduces the precipitation change required for a Green Sahara compared to the case of increasing precipitation alone. We assess whether the precipitation changes implied by these vegetation model simulations are consistent with reconstructions for the mid-Holocene from pollen samples. Further, Earth System models predict precipitation increases that are significantly smaller than that inferred from these vegetation model simulations. Understanding this difference presents an ongoing challenge.
Nonphotosynthetic Pigments as Potential Biosignatures
Cockell, Charles S.; Meadows, Victoria S.
2015-01-01
Abstract Previous work on possible surface reflectance biosignatures for Earth-like planets has typically focused on analogues to spectral features produced by photosynthetic organisms on Earth, such as the vegetation red edge. Although oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is the dominant metabolism on our planet, pigmentation has evolved for multiple purposes to adapt organisms to their environment. We present an interdisciplinary study of the diversity and detectability of nonphotosynthetic pigments as biosignatures, which includes a description of environments that host nonphotosynthetic biologically pigmented surfaces, and a lab-based experimental analysis of the spectral and broadband color diversity of pigmented organisms on Earth. We test the utility of broadband color to distinguish between Earth-like planets with significant coverage of nonphotosynthetic pigments and those with photosynthetic or nonbiological surfaces, using both 1-D and 3-D spectral models. We demonstrate that, given sufficient surface coverage, nonphotosynthetic pigments could significantly impact the disk-averaged spectrum of a planet. However, we find that due to the possible diversity of organisms and environments, and the confounding effects of the atmosphere and clouds, determination of substantial coverage by biologically produced pigments would be difficult with broadband colors alone and would likely require spectrally resolved data. Key Words: Biosignatures—Exoplanets—Halophiles—Pigmentation—Reflectance spectroscopy—Spectral models. Astrobiology 15, 341–361. PMID:25941875
NASA Technical Reports Server (NTRS)
Clayton, K. M. (Principal Investigator)
1975-01-01
The author has identified the following significant results. An objective system for regionalization is described, using ERTS-1 (or LANDSAT) computer compatible tapes. A range of computer programs for analysis of these tapes was developed. Emphasis is on a level of generalization appropriate to a satellite system whith repetitive global coverage. The main variables are land/water ratios and vegetation cover. The scale or texture of the pattern of change in these variables varies a good deal across the earth's surface, and it seems best if the unit of generalization adopted varies in sympathy with the surface being analyzed.
Zhang, Yan; Yuan, Jianping; Liu, Baoyuan
2002-08-01
Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.
A brief description of the simple biosphere model (SiB)
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Mintz, Y.; Sud, Y. C.
1986-01-01
A biosphere model for calculating the transfer of energy, mass, and momentum between the atmosphere and the vegetated surface of the Earth was designed for atmospheric general circulation models. An upper vegetation layer represents the perennial canopy of trees or shrubs, a lower layer represents the annual ground cover of grasses and other herbacious species. The local coverage of each vegetation layer may be fractional or complete but as the individual vegetation elements are considered to be evenly spaced, their root systems are assumed to extend uniformly throughout the entire grid-area. The biosphere has seven prognostic physical-state variables: two temperatures (one for the canopy and one for the ground cover and soil surface); two interception water stores (one for the canopy and one for the ground cover); and three soil moisture stores (two of which can be reached by the vegetation root systems and one underlying recharge layer into and out of which moisture is transferred only by hydraulic diffusion).
NASA Astrophysics Data System (ADS)
Zhang, Shulei; Yang, Yuting; McVicar, Tim R.; Yang, Dawen
2018-01-01
Vegetation change is a critical factor that profoundly affects the terrestrial water cycle. Here we derive an analytical solution for the impact of vegetation changes on hydrological partitioning within the Budyko framework. This is achieved by deriving an analytical expression between leaf area index (LAI) change and the Budyko land surface parameter (n) change, through the combination of a steady state ecohydrological model with an analytical carbon cost-benefit model for plant rooting depth. Using China where vegetation coverage has experienced dramatic changes over the past two decades as a study case, we quantify the impact of LAI changes on the hydrological partitioning during 1982-2010 and predict the future influence of these changes for the 21st century using climate model projections. Results show that LAI change exhibits an increasing importance on altering hydrological partitioning as climate becomes drier. In semiarid and arid China, increased LAI has led to substantial streamflow reductions over the past three decades (on average -8.5% in 1990s and -11.7% in 2000s compared to the 1980s baseline), and this decreasing trend in streamflow is projected to continue toward the end of this century due to predicted LAI increases. Our result calls for caution regarding the large-scale revegetation activities currently being implemented in arid and semiarid China, which may result in serious future water scarcity issues here. The analytical model developed here is physically based and suitable for simultaneously assessing both vegetation changes and climate change induced changes to streamflow globally.
Carter, Virginia; Rybicki, N.B.; Landwehr, J.M.; Reel, J.T.; Ruhl, H.
1998-01-01
The U.S. Geological Survey has been cooperating with other scientists under the auspices of the Interstate Commission on the Potomac River Basin to utilize existing data from the tidal Potomac River and Estuary for investigating linkages among living resources (primary producers, consumers) and abiotic components of the environment. Because the distribution and abundance of submersed aquatic vegetation in the tidal Potomac River and Estuary are controlled largely by light availability, the first step in investigating linkages with submersed aquatic vegetation is to examine the correlations that exist among vegetative cover, discharge, water quality and weather, all of which can affect light availability directly or indirectly. Growing season (April-October), spring (April-June), and summer (July-August) correlations are presented along with figures demonstrating the significant relationships among variables.
Potential climatic impacts of vegetation change: A regional modeling study
NASA Astrophysics Data System (ADS)
Copeland, Jeffrey H.; Pielke, Roger A.; Kittel, Timothy G. F.
1996-03-01
The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage.
Potential climatic impacts of vegetation change: A regional modeling study
Copeland, J.H.; Pielke, R.A.; Kittel, T.G.F.
1996-01-01
The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage. Copyright 1996 by the American Geophysical Union.
Validation of Distributed Soil Moisture: Airborne Polarimetric SAR vs. Ground-based Sensor Networks
NASA Astrophysics Data System (ADS)
Jagdhuber, T.; Kohling, M.; Hajnsek, I.; Montzka, C.; Papathanassiou, K. P.
2012-04-01
The knowledge of spatially distributed soil moisture is highly desirable for an enhanced hydrological modeling in terms of flood prevention and for yield optimization in combination with precision farming. Especially in mid-latitudes, the growing agricultural vegetation results in an increasing soil coverage along the crop cycle. For a remote sensing approach, this vegetation influence has to be separated from the soil contribution within the resolution cell to extract the actual soil moisture. Therefore a hybrid decomposition was developed for estimation of soil moisture under vegetation cover using fully polarimetric SAR data. The novel polarimetric decomposition combines a model-based decomposition, separating the volume component from the ground components, with an eigen-based decomposition of the two ground components into a surface and a dihedral scattering contribution. Hence, this hybrid decomposition, which is based on [1,2], establishes an innovative way to retrieve soil moisture under vegetation. The developed inversion algorithm for soil moisture under vegetation cover is applied on fully polarimetric data of the TERENO campaign, conducted in May and June 2011 for the Rur catchment within the Eifel/Lower Rhine Valley Observatory. The fully polarimetric SAR data were acquired in high spatial resolution (range: 1.92m, azimuth: 0.6m) by DLR's novel F-SAR sensor at L-band. The inverted soil moisture product from the airborne SAR data is validated with corresponding distributed ground measurements for a quality assessment of the developed algorithm. The in situ measurements were obtained on the one hand by mobile FDR probes from agricultural fields near the towns of Merzenhausen and Selhausen incorporating different crop types and on the other hand by distributed wireless sensor networks (SoilNet clusters) from a grassland test site (near the town of Rollesbroich) and from a forest stand (within the Wüstebach sub-catchment). Each SoilNet cluster incorporates around 150 wireless measuring devices on a grid of approximately 30ha for distributed soil moisture sensing. Finally, the comparison of both distributed soil moisture products results in a discussion on potentials and limitations for obtaining soil moisture under vegetation cover with high resolution fully polarimetric SAR. [1] S.R. Cloude, Polarisation: applications in remote sensing. Oxford, Oxford University Press, 2010. [2] Jagdhuber, T., Hajnsek, I., Papathanassiou, K.P. and Bronstert, A.: A Hybrid Decomposition for Soil Moisture Estimation under Vegetation Cover Using Polarimetric SAR. Proc. of the 5th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, ESA-ESRIN, Frascati, Italy, January 24-28, 2011, p.1-6.
USDA-ARS?s Scientific Manuscript database
A change detection experiment for an invasive species, saltcedar, near Lovelock, Nevada, was conducted with multi-date Compact Airborne Spectrographic Imager (CASI) hyperspectral datasets. Classification and NDVI differencing change detection methods were tested, In the classification strategy, a p...
Shao, Zhenfeng; Zhang, Linjing
2016-01-01
Estimation of forest aboveground biomass is critical for regional carbon policies and sustainable forest management. Passive optical remote sensing and active microwave remote sensing both play an important role in the monitoring of forest biomass. However, optical spectral reflectance is saturated in relatively dense vegetation areas, and microwave backscattering is significantly influenced by the underlying soil when the vegetation coverage is low. Both of these conditions decrease the estimation accuracy of forest biomass. A new optical and microwave integrated vegetation index (VI) was proposed based on observations from both field experiments and satellite (Landsat 8 Operational Land Imager (OLI) and RADARSAT-2) data. According to the difference in interaction between the multispectral reflectance and microwave backscattering signatures with biomass, the combined VI (COVI) was designed using the weighted optical optimized soil-adjusted vegetation index (OSAVI) and microwave horizontally transmitted and vertically received signal (HV) to overcome the disadvantages of both data types. The performance of the COVI was evaluated by comparison with those of the sole optical data, Synthetic Aperture Radar (SAR) data, and the simple combination of independent optical and SAR variables. The most accurate performance was obtained by the models based on the COVI and optical and microwave optimal variables excluding OSAVI and HV, in combination with a random forest algorithm and the largest number of reference samples. The results also revealed that the predictive accuracy depended highly on the statistical method and the number of sample units. The validation indicated that this integrated method of determining the new VI is a good synergistic way to combine both optical and microwave information for the accurate estimation of forest biomass. PMID:27338378
NASA Astrophysics Data System (ADS)
Cheng, Tao; Zhang, Jialong; Zheng, Xinyan; Yuan, Rujin
2018-03-01
The project of The First National Geographic Conditions Census developed by Chinese government has designed the data acquisition content and indexes, and has built corresponding classification system mainly based on the natural property of material. However, the unified standard for land cover classification system has not been formed; the production always needs converting to meet the actual needs. Therefore, it proposed a refined classification method based on multi source of remote sensing information fusion. It takes the third-level classes of forest land and grassland for example, and has collected the thematic data of Vegetation Map of China (1:1,000,000), attempts to develop refined classification utilizing raster spatial analysis model. Study area is selected, and refined classification is achieved by using the proposed method. The results show that land cover within study area is divided principally among 20 classes, from subtropical broad-leaved forest (31131) to grass-forb community type of low coverage grassland (41192); what's more, after 30 years in the study area, climatic factors, developmental rhythm characteristics and vegetation ecological geographical characteristics have not changed fundamentally, only part of the original vegetation types have changed in spatial distribution range or land cover types. Research shows that refined classification for the third-level classes of forest land and grassland could make the results take on both the natural attributes of the original and plant community ecology characteristics, which could meet the needs of some industry application, and has certain practical significance for promoting the product of The First National Geographic Conditions Census.
Pignataro, Ana Genoveva; Levy Tacher, Samuel Israel; Aguirre Rivera, Juan Rogelio; Nahed Toral, José; González Espinosa, Mario; Rendón Carmona, Nelson
2016-10-01
Silvopastoral systems combine trees and/or shrubs with grazing cattle. In the municipality of Salto de Agua, Chiapas, Mexico, some indigenous communities have developed silvopastoral systems based on their traditional knowledge regarding use of local natural resources. Through analysis of classification based on the composition of tree vegetation, two groups of grazing units were identified in the study area. Different attributes of tree and herbaceous vegetation, as well as of agricultural management and production, were compared between the two groups. Results indicate that at least two strategies of silvopastoral management exist. The first - LTD - is characterized by an average density of 22 adult trees ha(-1) in grazing units with an average surface area of 22.4 ha. The second - HTD - has an average of 54.4 trees ha(-1) in grazing units with an average surface area of 12.2 ha. Average richness per grazing unit for the LTD strategy was 7.2 species, and for HTD strategy it was 12.7 species. Average basal area for LTD was 1.7 m2 ha(-1), and for HTD 3.8 m2 ha(-1). Finally, the average level of fixed carbon for LTD was 2.12 mg ha(-1), and for HTD 4.89 mg ha(-1). For all variables, there was a significant difference between the two strategies. In addition, both strategies differ in prairie management. In the HTD strategy, growers spare their preferred spontaneously growing tree species by clearing around them. Many of these species, particularly those harvested for timber, belong to the original vegetation. In these prairies, average coverage of native grasses (60.8 ± 7.85) was significantly greater than in the LTD strategy (38.4 ± 11.32), and neither fertilizers nor fire are used to maintain or improve the pastures; by contrast, in HTD prairies, introduced grasses, principally Cynodon plectostachyus, have a higher average coverage (43.4 ± 13.75) than in the LTD prairies (17.08 ± 9.02). Regardless of the differences in composition of tree and herbaceous vegetation, in both types of grazing units a similar animal load is maintained. Many attributes of these silvopastoral strategies - based on traditional technology of the Chol farmers of the Tulija River Valley - concord with sustainable agriculture and provide a wide variety of services to the farmer and the environment. Diffusion of this technology in areas similar to that of this region could have a positive impact on the economy of conventional cattle raisers while generating environmental services. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline; Laporte, Nadine; Netanyahuy, Nathan S.; Zukor, Dorothy (Technical Monitor)
2001-01-01
The characterization and the mapping of land cover/land use of forest areas, such as the Central African rainforest, is a very complex task. This complexity is mainly due to the extent of such areas and, as a consequence, to the lack of full and continuous cloud-free coverage of those large regions by one single remote sensing instrument, In order to provide improved vegetation maps of Central Africa and to develop forest monitoring techniques for applications at the local and regional scales, we propose to utilize multi-sensor remote sensing observations coupled with in-situ data. Fusion and clustering of multi-sensor data are the first steps towards the development of such a forest monitoring system. In this paper, we will describe some preliminary experiments involving the fusion of SAR and Landsat image data of the Lope Reserve in Gabon. Similarly to previous fusion studies, our fusion method is wavelet-based. The fusion provides a new image data set which contains more detailed texture features and preserves the large homogeneous regions that are observed by the Thematic Mapper sensor. The fusion step is followed by unsupervised clustering and provides a vegetation map of the area.
NASA Astrophysics Data System (ADS)
Vargas, Marco; Miura, Tomoaki; Csiszar, Ivan; Zheng, Weizhong; Wu, Yihua; Ek, Michael
2017-04-01
The first Joint Polar Satellite System (JPSS) mission, the Suomi National Polar-orbiting Partnership (S-NPP) satellite, was successfully launched in October, 2011, and it will be followed by JPSS-1, slated for launch in 2017. JPSS provides operational continuity of satellite-based observations and products for NOAA's Polar Operational Environmental Satellites (POES). Vegetation products derived from satellite measurements are used for weather forecasting, land modeling, climate research, and monitoring the environment including drought, the health of ecosystems, crop monitoring and forest fires. The operationally produced S-NPP VIIRS Vegetation Index (VI) Environmental Data Record (EDR) includes two vegetation indices: the Top of the Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI), and the Top of the Canopy (TOC) Enhanced Vegetation Index (EVI). For JPSS-1, the S-NPP Vegetation Index EDR algorithm has been updated to include the TOC NDV. The current JPSS operational VI products are generated in granule style at 375 meter resolution at nadir, but these products in granule format cannot be ingested into NOAA operational monitoring and decision making systems. For that reason, the NOAA JPSS Land Team is developing a new global gridded Vegetation Index (VI) product suite for operational use by the NOAA National Centers for Environmental Prediction (NCEP). The new global gridded VIs will be used in the Multi-Physics (MP) version of the Noah land surface model (Noah-MP) in NCEP NOAA Environmental Modeling System (NEMS) for plant growth and data assimilation and to describe vegetation coverage and density in order to model the correct surface energy partition. The new VI 4km resolution global gridded products (TOA NDVI, TOC NDVI and TOC EVI) are being designed to meet the needs of directly ingesting vegetation index variables without the need to develop local gridding and compositing procedures. These VI products will be consistent with the already operational SNPP VIIRS Green Vegetation Fraction (GVF) global gridded 4km resolution. The ultimate goal is a global consistent set of global gridded land products at 1-km resolution to enable consistent use of the products in the full suite of global and regional NCEP land models. The new JPSS vegetation products system is scheduled to transition to operations in the fall of 2017.
Ding, Wen Hui; Li, Xiu Zhen; Jiang, Jun Yan; Huang, Xing; Zhang, Yun Qing; Zhang, Qian; Zhou, Yun Xuan
2016-05-01
The salt marsh plant communities were investigated with quadrats in the southern Chongming Dongtan. Based on the vegetation coverage and the 2×2 contingency table, 8 common species among the 17 higher plants recorded were analyzed. The variance ratio of overall association, Chi-square test and Spearman rank correlation coefficient were used to describe the relevance and correlations between species pairs. The results showed that W (48.61), a statistical index to test the variance ratio (VR=0.61), fell outside of the range of Chi-square test, indicating that the overall correlation of all vegetation species was significantly negative. According to the environment adaptation mode of dominant species and the main influencing factors, the species were divided into 4 ecological groups, i.e., Phragmites australis, Carex scabrifolia-Scirpus triqueter - Juncellus serotinus, Spartina alterniflora - Scirpus mariqueter, Echinochloa crusgalli - Imperata cylindrica, based on the ranking of Spearman correlation coefficient. The inter-specific relationships in the salt marsh plant community of southern Chongming Dongtan were complicated and extremely unstable with species sensitive to environmental impacts. According to the analysis of relationships between the species and their pre-sent distribution, we suggested using S. mariqueter as target species to provide strategies for protecting native species based habitats.
Earth Observation for monitoring phenology for european land use and ecosystems over 1998-2011
NASA Astrophysics Data System (ADS)
Ceccherini, Guido; Gobron, Nadine
2013-04-01
Long-term measurements of plant phenology have been used to track vegetation responses to climate change but are often limited to particular species and locations and may not represent synoptic patterns. Given the limitations of working directly with in-situ data, many researchers have instead used available satellite remote sensing. Remote sensing extends the possible spatial coverage and temporal range of phenological assessments of environmental change due to the greater availability of observations. Variations and trends of vegetation dynamics are important because they alter the surface carbon, water and energy balance. For example, the net ecosystem CO2 exchange of vegetation is strongly linked to length of the growing season: extentions and decreases in length of growing season modify carbon uptake and the amount of CO2 in the atmosphere. Advances and delays in starting of growing season also affect the surface energy balance and consequently transpiration. The Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) is a key climate variable identified by Global Terrestrial Observing System (GTOS) that can be monitored from space. This dimensionless variable - varying between 0 and 1- is directly linked to the photosynthetic activity of vegetation, and therefore, can monitor changes in phenology. In this study, we identify the spatio/temporal patterns of vegetation dynamics using a long-term remotely sensed FAPAR dataset over Europe. Our aim is to provide a quantitative analysis of vegetation dynamics relevant to climate studies in Europe. As part of this analysis, six vegetation phenological metrics have been defined and made routinely in Europe. Over time, such metrics can track simple, yet critical, impacts of climate change on ecosystems. Validation has been performed through a direct comparison against ground-based data over ecological sites. Subsequently, using the spatio/temporal variability of this suite of metrics, we classify areas with similar vegetation dynamics. This permits assessment of variations and trends of vegetation dynamics over Europe. Statistical tests to assess the significance of temporal changes are used to evaluate trends in the metrics derived from the recorded time series of the FAPAR.
Meteorological satellite data: A tool to describe the health of the world's agriculture
NASA Technical Reports Server (NTRS)
Gray, T. I., Jr.; Mccrary, D. G. (Principal Investigator); Scott, L.
1981-01-01
Local area coverage data acquired aboard the TIROS-N satellite family by the advanced very high resolution radiometer systems was examined to determine the agricultural information current. Albedo differences between channel 2 and channel 1 of the advanced very high resolution radiometer LAC (called EVI) are shown to be closely correlated to the Ashburn vegetative index produced from LANDSAT multispectral scanner data which have been shown to vary in response to "greenness", soil moisture, and crop production. The statistical correlation between the EVI and the Ashburn Vegetative Index (+ or - 1 deg) is 0.86.
Monitoring rangeland dynamics in Senegal with advanced very high resolution radiometer data
Tappan, G. Gray; Tyler, Dean J.; Wehde, M. E.; Moore, Donald G.
1992-01-01
Time‐series Normalized Difference Vegetation Index (NDVI) data, computed from Advanced Very High Resolution Radiometer data, are being used by regional and national programs in the African Sahel to monitor seasonal rangeland conditions. The data are often used as indicators of grazing conditions and drought. However, distinguishing rangelands from other vegetation cover types on NDVI images is difficult. A second complication is that rangeland types and their associated productivity vary geographically by soil type. To effectively assess rangeland conditions, seasonal fluctuations (due to climatic cycles) must be isolated from long‐term production characteristics associated with vegetation type and soil differences. Rangeland NDVI dynamics, including qualitative assessments of rangeland production, and the timing and length of the growing season in Senegal were examined by using 7.4‐km global area coverage satellite data. Analyses were based on 10‐day NDVI composite image data from 1982 through 1989. The NDVI image data were stratified by rangeland and soil polygons derived from locally available resource maps. Time‐series NDVI statistics were calculated from the resource polygons that had been interpreted into high, medium, and low production rangelands. Analysts monitoring rangeland conditions can better identify seasonal anomalies such as drought by comparing production potential within homogeneous; resource polygons with the current NDVI data.
NASA Astrophysics Data System (ADS)
Zlinszky, András; Prager, Katharina; Koma, Zsófia
2017-04-01
Biodiversity and ecosystem services are in the focus of biogeosciences research and conservation management worldwide. However, their quantification is notoriously difficult. Since full coverage of biodiversity and/or ecosystem services is unfeasible due to their complexity, indicators are recommended: biophysical quantities that are measureable and are expected to be closely related to biodiversity or to ecosystem processes. Nevertheless, many biodiversity and ecosystem service assessments are based on upscaling very few (if any) in-situ measurements using models driven by basic land cover data. Also, many assessments select only a single or very few indicators, which then does not enable analysis of trade-offs and interconnections. Here we propose a system of simple yet reliable field measurements, based on basic sensors, measurements, imaging and sampling technology, suitable for quantitatively representing many components of biodiversity and ecosystem services in emergent wetland vegetation. Along a transect from open water to the shore, sampling stations are laid out that include water temperature, air temperature and humidity sensors, zenith facing photographs and pole contact counts of vegetation in height intervals. Additionally, for some of these stations, small quadrats of vegetation are harvested, separated to individual species and weighed in height intervals above ground/water. Underwater surface of vegetation is estimated by counting stalks and registering average diameter. Finally, decomposition is quantified by leaving a standard amount of biomass in a plastic net bag and re-weighing it a year later. This system allows measuring alpha and beta diversity together with vertical structural diversity, leaf area (as a proxy of shading and pollution absorbtion), biomass (as a proxy of carbon sequestration), underwater surface (as a proxy of fish population sustaining), microclimate influence and soil provision. The necessary tools are temperature and humidity sensors, field scales, pruning shears, plastic net bags, measuring poles (for water depth), a digital camera and a GPS; all small and lightweight enough to be carried and operated by one person under wetland field conditions. Additionally, such measurements are suitable for remote sensing-based direct upscaling of biophysical parameters to create area-covering maps of biodiversity and ecosystem service indicators.
[Changes in mangrove coverage in Culebra Bay, North Pacific of Costa Rica (1945-2010)].
Benavides-Varela, Catalina; Samper-Villareal, Jimena; Cortés, Jorge
2016-09-01
Despite the economic and environmental services that mangroves provide, they continue to be threatened by overexploitation, pollution, and land use change. Costa Rica has mangrove areas on the Pacific and Caribbean coasts, and cover has been declining since the 1980s. However, data on mangrove coverage are not continually updated and are often based on inaccurate estimates. It is therefore necessary to assess the current extension and variation of the mangrove cover in recent years, to determine changes. The mangrove cover was analyzed in two mangrove forests located in Bahía Culebra, North Pacific: Iguanita and Playa Panamá. For this, aerial photographs and satellite imagery were used to study changes for a 65 year period (1945-2010). Spatio-temporal changes were found in mangroves coverage, and adjacent forests and areas without vegetation. Lower mangrove cover occurred during the 1970s (28.4 ha in Iguanita and 4.8 ha in Playa Panamá); but increased in recent years (38.9 ha in Iguanita and 12.0 ha in Panamá). Changes in forest cover by the Iguanita and Playa Panama mangroves were related to the history of land use around Bahía Culebra. Before 1980, there was extensive and intensive cattle ranching, increasing the deforestation rate; after that year, these practices were abandoned and secondary forest coverage increased until 2000. To ensure the adequate protection of mangroves, it is not only important to protect mangrove forests, but it is also necessary to establish buffer zones on their surroundings, to mitigate and/or reduce possible impacts.
NASA Astrophysics Data System (ADS)
Sutfin, N.; Shaw, J. R.; Wohl, E. E.; Cooper, D.
2012-12-01
Interactions between hydrology, channel form, and riparian vegetation along arid ephemeral streams are not thoroughly understood and current stream classifications do not adequately represent variability in channel geometry and associated riparian communities. Relatively infrequent hydrologic disturbances in dryland environments are responsible for creation and maintenance of channel form that supports riparian communities. To investigate the influence of channel characteristics on riparian vegetation in the arid southwestern United States, we develop a geomorphic classification for arid ephemeral streams based on the degree of confinement and the composition of confining material that provide constraints on available moisture. Our conceptual model includes five stream types: 1) bedrock channels entirely confined by exposed bedrock and devoid of persistent alluvium; 2) bedrock with alluvium channels at least partially confined by bedrock but containing enough alluvium to create bedforms that persist through time; 3) incised alluvium channels bound only by unconsolidated alluvial material into which they are incised; 4) braided washes that exhibit multi-thread, braided characteristics regardless of the composition of confining material; and 5) piedmont headwater 0-2nd order streams (Strahler) confined only by unconsolidated alluvium and which initiate as secondary channels on piedmont surfaces. Eighty-six study reaches representing the five stream types were surveyed on the U.S. Army Yuma Proving Ground in the Sonoran Desert of southwestern Arizona. Non-parametric multivariate analysis of variance (PERMANOVA) indicates significant differences between the five stream types with regards to channel geometry (i.e., stream gradient, width-to-depth ratio, the ratio between valley width and channel width (Wv/Wc), shear stress, and unit stream power) and riparian vegetation (i.e., presence and canopy coverage by species, canopy stratum, and life form). Discriminant analysis of the physical driving variables is being conducted to produce a model that predicts stream type and resulting riparian vegetation communities based on channel geometry. This model will be tested on a separate set of 15 study reaches surveyed on the Barry M. Goldwater Air Force Range in southern Arizona. The resulting classification will provide a basis for examining relationships between hydrology, channel and watershed characteristics, riparian vegetation and ecosystem sensitivity of ephemeral streams in arid regions of the American Southwest.
NASA Astrophysics Data System (ADS)
Hulslander, D.; Warren, J. N.; Weintraub, S. R.
2017-12-01
Hyperspectral imaging systems can be used to produce spectral reflectance curves giving rich information about composition, relative abundances of materials, mixes and combinations. Indices based on just a few spectral bands have been used for over 40 years to study vegetation health, mineral abundance, and more. These indices are much simpler to visualize and use than a full hyperspectral data set which may contain over 400 bands. Yet historically, it has been difficult to directly relate remotely sensed spectral indices to quantitative biophysical properties significant to forest ecology such as canopy nitrogen, lignin, and chlorophyll. This linkage is a critical piece in enabling the detection of high value ecological information, usually only available from labor-intensive canopy foliar chemistry sampling, to the geographic and temporal coverage available via remote sensing. Previous studies have shown some promising results linking ground-based data and remotely sensed indices, but are consistently limited in time, geographic extent, and land cover type. Moreover, previous studies are often focused on tuning linkage algorithms for the purpose of achieving good results for only one study site or one type of vegetation, precluding development of more generalized algorithms. The National Ecological Observatory Network (NEON) is a unique system of 47 terrestrial sites covering all of the major eco-climatic domains of the US, including AK, HI, and Puerto Rico. These sites are regularly monitored and sampled using uniform instrumentation and protocols, including both foliar chemistry sampling and remote sensing flights for high resolution hyperspectral, LiDAR, and digital camera data acquisition. In this study we compare the results of foliar chemistry analysis to the remote sensing vegetation indices and investigate possible sources for variance and difference through the use of the larger hyperspectral dataset as well as ground based spectrometer measurements of samples subsequently analyzed for foliar chemistry.
USDA-ARS?s Scientific Manuscript database
Micrometeorological methods can direct measure the sensible and latent heat flux in specific sites and provide robust estimates of the evaporative fraction (EF), which is the fraction of available surface energy contained in latent heat. Across a vegetation coverage gradient in urban area, an empir...
Spatial fuel data products of the LANDFIRE Project
Matt Reeves; Kevin C. Ryan; Matthew G. Rollins; Thomas G. Thompson
2009-01-01
The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50...
Classification of a wetland area along the upper Mississippi River with aerial videography
Jennings, C.A.; Vohs, P.A.; Dewey, M.R.
1992-01-01
We evaluated the use of aerial videography for classifying wetland habitats along the upper Mississippi River and found the prompt availability of habitat feature maps to be the major advantage of the video imagery technique. We successfully produced feature maps from digitized video images that generally agreed with the known distribution and areal coverages of the major habitat types independently identified and quantified with photointerpretation techniques. However, video images were not sufficiently detailed to allow us to consistently discriminate among the classes of aquatic macrophytes present or to quantify their areal coverage. Our inability to consistently distinguish among emergent, floating, and submergent macrophytes from the feature maps may have been related to the structural complexity of the site, to our limited vegetation sampling, and to limitations in video imagery. We expect that careful site selection (i.e., the desired level of resolution is available from video imagery) and additional vegetation samples (e.g., along a transect) will allow improved assignment of spectral values to specific plant types and enhance plant classification from feature maps produced from video imagery.
Establishment and performance of an experimental green roof under extreme climatic conditions.
Klein, Petra M; Coffman, Reid
2015-04-15
Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating that higher evapotranspiration rates compensated for the higher net radiation at the green roof. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, R.; Wen, J.; Wang, X.
2017-12-01
In this study, we use dual polarization brightness temperature observational data at the K frequency band collected by the Micro Wave Radiation Imager (MWRI) on board the Fengyun-3B satellite (FY-3B) to improve the τ-ω model by considering the contribution of water bodies in the pixels to radiation in the wetland area of the Yellow River source region. We define a dual polarization slope parameter and express the surface emissivity in the τ-ω model as the sum of the soil and water body emissivity to retrieve the vegetation optical depth (VOD); however, in regions without water body coverage, we still use the τ-ω model to solve for the VOD. By using the field observation data on the vegetation water content (VWC) in the source region of the Yellow River during the summer of 2012, we establish the regression relationship between the VOD and VWC and retrieve the spatial distribution of the VWC. The results indicate that in the entire source region of the Yellow River in 2012, the VOD was in the range of 0.20-1.20 and the VWC was in the range of 0.20 to 1.40, thereby exhibiting a trend of low values in the west and high values in the east. The area with the largest regional variation is along the Yellow River. We compare the results from remote-sensing estimated and ground-measured vegetation water content, and the root-mean-square error is 0.12. The analysis results indicated that by considering the coverage of seasonal wetlands in the source region of the Yellow River, the microwave remote sensing data collected by the FY-3B MWRI can be used to retrieve the vegetation water content in the source region of the Yellow River.
Use of NOAA-N satellites for land/water discrimination and flood monitoring
NASA Technical Reports Server (NTRS)
Tappan, G.; Horvath, N. C.; Doraiswamy, P. C.; Engman, T.; Goss, D. W. (Principal Investigator)
1983-01-01
A tool for monitoring the extent of major floods was developed using data collected by the NOAA-6 advanced very high resolution radiometer (AVHRR). A basic understanding of the spectral returns in AVHRR channels 1 and 2 for water, soil, and vegetation was reached using a large number of NOAA-6 scenes from different seasons and geographic locations. A look-up table classifier was developed based on analysis of the reflective channel relationships for each surface feature. The classifier automatically separated land from water and produced classification maps which were registered for a number of acquisitions, including coverage of a major flood on the Parana River of Argentina.
NASA Astrophysics Data System (ADS)
Barreto-Munoz, A.; Didan, K.; Riveracamacho, J.; Yitayew, M.
2010-12-01
Remote sensing vegetation indices (NDVI, EVI, and EVI2) are proxies for studying vegetation states and enable the effective and consistent monitoring of global vegetation. Records of daily global satellite images are available from the last three decades, however, the presence of clouds, aerosols, variable viewing geometry and less than ideal processing techniques makes it difficult to obtain high quality data every time; resulting in incomplete daily coverage (80% of the data is either missing or useless sometimes). In order to improve the temporal frequency and coverage, gap fill techniques are usually employed. There are several methods that are mostly based on the use of complex Fourier Transform (TF) functions, Gaussian fitting models, or simple compositing techniques. The first two methods are extremely CPU and memory intensive and the results tend to be biased towards the periods of time when data is available . The composite-method sacrifices the temporal frequency in order to achieve higher quality data over longer periods of time by combining several images into one to insure the elimination of problematic data Long composite period interval tend to inhibit proper change detection during periods of rapid change and periods of land cover disturbance. Because this method is based on maximizing the vegetation index value during the composite period, longer composite interval will shift the start of season towards later dates, the end of season towards earlier dates, and consequently shorter growing season. These slight errors and uncertainties interfere with accurate change detection as they add a level of uncertainty to the estimated Phenology parameters. In this research we’re developing a new technique that aims at producing consistently high quality vegetation index data, while preserving adequate temporal resolution to support accurate phenological studies. This method involves finding the optimum number of days for compositing and then using an interpolation approach for filling the remaining temporal gaps. The seasonally variable per-pixel optimum composite period is obtained by minimizing the number of temporal gaps when varying the composite period from 1 day to 16 days. Remaining gaps are then estimated using a local linear function that uses as input only the nearest high quality observation days. We further constrain this method by a moving window long term average to address biases that may result from over- or under-fitting. This method was evaluated using the 30+ year Climate Modeling Grid resolution (CMG, 0.05 deg.) records of AVHRR and MODIS Terra/Aqua daily surface reflectance. We note several advantages to this method: 1) Simpler and less computer intensive to implement, 2) Superior to other methods since it only looked at the data around the temporal gap which helps eliminate the biases that may result from methods that simultaneously use the full annual cycle, and 3) Most importantly it kept a balance between providing higher frequency and high quality data and the potential noise that results from daily data. It is currently being implemented as a package to support the estimation of global phenology and to generate high quality long term Earth System Data Records of Vegetation Index from multiple sensors.
NASA Astrophysics Data System (ADS)
Setiyono, T. D.
2014-12-01
Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.
Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion.
Goulden, Michael L; Bales, Roger C
2014-09-30
Climate change has the potential to reduce surface-water supply by expanding the activity, density, or coverage of upland vegetation, although the likelihood and severity of this effect are poorly known. We quantified the extent to which vegetation and evapotranspiration (ET) are presently cold-limited in California's upper Kings River basin and used a space-for-time substitution to calculate the sensitivity of riverflow to vegetation expansion. We found that runoff is highly sensitive to vegetation migration; warming projected for 2100 could increase average basin-wide ET by 28% and decrease riverflow by 26%. Kings River basin ET currently peaks at midelevation and declines at higher elevation, creating a cold-limited zone above 2,400 m that is disproportionately important for runoff generation. Climate projections for 2085-2100 indicate as much as 4.1 °C warming in California's Sierra Nevada, which would expand high rates of ET 700-m upslope if vegetation maintains its current correlation with temperature. Moreover, we observed that the relationship between basin-wide ET and temperature is similar across the entire western slope of California's Sierra Nevada, implying that the risk of increasing montane ET with warming is widespread.
NASA Astrophysics Data System (ADS)
Stark, J.; Meire, P.; Temmerman, S.
2017-03-01
The eco-geomorphological development of tidal marshes, from initially low-elevated bare tidal flats up to a high-elevated marsh and its typical network of channels and creeks, induces long-term changes in tidal hydrodynamics in a marsh, which will have feedback effects on the marsh development. We use a two-dimensional hydrodynamic model of the Saeftinghe marsh (Netherlands) to study tidal hydrodynamics, and tidal asymmetry in particular, for model scenarios with different input bathymetries and vegetation coverages that represent different stages of eco-geomorphological marsh development, from a low elevation stage with low vegetation coverage to a high and fully vegetated marsh platform. Tidal asymmetry is quantified along a 4 km marsh channel by (1) the difference in peak flood and peak ebb velocities, (2) the ratio between duration of the rising tide and the falling tide and (3) the time-integrated dimensionless bed shear stress during flood and ebb. Although spatial variations in tidal asymmetry are large and the different indicators for tidal asymmetry do not always respond similarly to eco-geomorphological changes, some general trends can be obtained. Flood-dominance prevails during the initial bare stage of a low-lying tidal flat. Vegetation establishment and platform expansion lead to marsh-scale flow concentration to the bare channels, causing an increase in tidal prism in the channels along with a less flood-dominant asymmetry of the horizontal tide. The decrease in flood-dominance continues as the platform grows vertically and the sediment-demand of the platform decreases. However, when the platform elevation gets sufficiently high in the tidal frame and part of the spring-neap cycle is confined to the channels, the discharge in the channels decreases and tidal asymmetry becomes more flood-dominant again, indicating an infilling of the marsh channels. Furthermore, model results suggest that hydro-morphodynamic feedbacks based on tidal prism to channel cross-sectional area relationships keep the marsh channels from filling in completely by enhancing ebb-dominance as long as the tidal volume and flow velocities remain sufficiently high. Overall, this study increases insight into the hydro-morphodynamic interactions between tidal flow and marsh geomorphology during various stages of eco-geomorphological development of marshes and marsh channels in particular.
NASA Astrophysics Data System (ADS)
Sun, X.; Zou, C.; Wilcox, B. P.; Stebler, E.
2017-12-01
Whole-year measurement with eddy covariance system was carried out over two adjoining plots with contrasting vegetation coverage in tallgrass prairie, one was treated with herbicide and mowing while the other one kept as undisturbed control. The magnitude and phase difference between soil heat storage and ground heat flux were explicitly examined for its relative weights and energy balance. Surface turbulent flux (sensible heat and latent heat) accounted for about 85% of available energy at both sites, implying that vegetation coverage didn't significantly influence the closure scenario of energy imbalance. The seasonal and daily pattern of energy partitioning were dramatically different between the contrasting sites during growing season. The treated site received slightly lower net radiation due to high albedo, had higher sensible heat, and reduced latent heat due to reduction on transpiration. Annual evapotranspiration (ET) in treated site was only accounts for about 73% of annual ET in control. Meanwhile, lower surface conductance and decoupling factor showed that vegetation removal would increase the sensibility of ET to vapor pressure deficit and soil drought. ET dynamics is controlled by leaf area and net radiation when soil moisture is high, while soil drought caused stomata closure and subdued ET during drought. Stomata closure and transpiration reduction caused decline in ET, surface conductance, and decoupling factor. Soil moisture storage served as an important reservoir to meet peak ET demand during growing season. In summary, ET was the dominant component of water balance in tallgrass prairie, and any land management alterring the albedo, soil mositure storage, or canopy phenology (e.g., NDVI) could significantly affect energy and water budgets in .
Vegetation dynamics under fire exclusion and logging in a Rocky Mountain watershed, 1856-1996
Gallant, Alisa L.; Hansen, A.J.; Councilman, J.S.; Monte, D.K.; Betz, D.W.
2003-01-01
How have changes in land management practices affected vegetation patterns in the greater Yellowstone ecosystem? This question led us to develop a deterministic, successional, vegetation model to “turn back the clock” on a study area and assess how patterns in vegetation cover type and structure have changed through different periods of management. Our modeling spanned the closing decades of use by Native Americans, subsequent Euro-American settlement, and associated indirect methods of fire suppression, and more recent practices of fire exclusion and timber harvest. Model results were striking, indicating that the primary forest dynamic in the study area is not fragmentation of conifer forest by logging, but the transition from a fire-driven mosaic of grassland, shrubland, broadleaf forest, and mixed forest communities to a conifer-dominated landscape. Projections for conifer-dominated stands showed an increase in areal coverage from 15% of the study area in the mid-1800s to ∼50% by the mid-1990s. During the same period, projections for aspen-dominated stands showed a decline in coverage from 37% to 8%. Substantial acreage previously occupied by a variety of age classes has given way to extensive tracts of mature forest. Only 4% of the study area is currently covered by young stands, all of which are coniferous. While logging has replaced wildfire as a mechanism for cycling younger stands into the landscape, the locations, species constituents, patch sizes, and ecosystem dynamics associated with logging do not mimic those associated with fire. It is also apparent that the nature of these differences varies among biophysical settings, and that land managers might consider a biophysical class strategy for tailoring management goals and restoration efforts.
Estimating riparian understory vegetation cover with beta regression and copula models
Eskelson, Bianca N.I.; Madsen, Lisa; Hagar, Joan C.; Temesgen, Hailemariam
2011-01-01
Understory vegetation communities are critical components of forest ecosystems. As a result, the importance of modeling understory vegetation characteristics in forested landscapes has become more apparent. Abundance measures such as shrub cover are bounded between 0 and 1, exhibit heteroscedastic error variance, and are often subject to spatial dependence. These distributional features tend to be ignored when shrub cover data are analyzed. The beta distribution has been used successfully to describe the frequency distribution of vegetation cover. Beta regression models ignoring spatial dependence (BR) and accounting for spatial dependence (BRdep) were used to estimate percent shrub cover as a function of topographic conditions and overstory vegetation structure in riparian zones in western Oregon. The BR models showed poor explanatory power (pseudo-R2 ≤ 0.34) but outperformed ordinary least-squares (OLS) and generalized least-squares (GLS) regression models with logit-transformed response in terms of mean square prediction error and absolute bias. We introduce a copula (COP) model that is based on the beta distribution and accounts for spatial dependence. A simulation study was designed to illustrate the effects of incorrectly assuming normality, equal variance, and spatial independence. It showed that BR, BRdep, and COP models provide unbiased parameter estimates, whereas OLS and GLS models result in slightly biased estimates for two of the three parameters. On the basis of the simulation study, 93–97% of the GLS, BRdep, and COP confidence intervals covered the true parameters, whereas OLS and BR only resulted in 84–88% coverage, which demonstrated the superiority of GLS, BRdep, and COP over OLS and BR models in providing standard errors for the parameter estimates in the presence of spatial dependence.
Song, Zitan
2016-01-01
We analyzed the synchronous relationship between forest cover and species distribution to explain the contraction in the distribution range of the brown eared-pheasant (Crossoptilon mantchuricum) in China. Historical resources can provide effective records for reconstructing long-term distribution dynamics. The brown eared-pheasant’s historical distribution from 25 to 1947 CE, which included the three provinces of Shaanxi, Shanxi, and Hebei based on this species’ habitat selection criteria, the history of the forests, ancient climate change records, and fossil data. The current species distribution covers Shaanxi, Shanxi, and Hebei provinces, as well as Beijing city, while Shanxi remains the center of the distribution area. MaxEnt model indicated that the suitable conditions of the brown eared-pheasant had retreated to the western regions of Shanxi and that the historical distribution area had reduced synchronously with the disappearance of local forest cover in Shanxi. We built a correlative relationship between the presence/absence of brown eared-pheasants and forest coverage and found that forest coverage in the north, northeast, central, and southeast areas of the Shanxi province were all less than 10% in 1911. Wild brown eared-pheasants are stable in the Luliang Mountains, where forest coverage reached 13.2% in 2000. Consequently, we concluded that the distribution of this species is primarily determined by vegetation conditions and that forest cover was the most significant determining factor. PMID:27781161
NASA Astrophysics Data System (ADS)
Vreugdenhil, Mariette; de Jeu, Richard; Wagner, Wolfgang; Dorigo, Wouter; Hahn, Sebastian; Bloeschl, Guenter
2013-04-01
Vegetation and its water content affect active and passive microwave soil moisture retrievals and need to be taken into account in such retrieval methodologies. This study compares the vegetation parameterisation that is used in the TU-Wien soil moisture retrieval algorithm to other vegetation products, such as the Vegetation Optical Depth (VOD), Net Primary Production (NPP) and Leaf Area Index (LAI). When only considering the retrieval algorithm for active microwaves, which was developed by the TU-Wien, the effect of vegetation on the backscattering coefficient is described by the so-called slope [1]. The slope is the first derivative of the backscattering coefficient in relation to the incidence angle. Soil surface backscatter normally decreases quite rapidly with the incidence angle over bare or sparsely vegetated soils, whereas the contribution of dense vegetation is fairly uniform over a large range of incidence angles. Consequently, the slope becomes less steep with increasing vegetation. Because the slope is a derivate of noisy backscatter measurements, it is characterised by an even higher level of noise. Therefore, it is averaged over several years assuming that the state of the vegetation doesn't change inter-annually. The slope is compared to three dynamic vegetation products over Australia, the VOD, NPP and LAI. The VOD was retrieved from AMSR-E passive microwave data using the VUA-NASA retrieval algorithm and provides information on vegetation with a global coverage of approximately every two days [2]. LAI is defined as half the developed area of photosynthetically active elements of the vegetation per unit horizontal ground area. In this study LAI is used from the Geoland2 products derived from SPOT Vegetation*. The NPP is the net rate at which plants build up carbon through photosynthesis and is a model-based estimate from the BiosEquil model [3, 4]. Results show that VOD and slope correspond reasonably well over vegetated areas, whereas in arid areas, where the microwave signals mostly stem from the soil surface and deeper soil layers, they are negatively correlated. A second comparison of monthly values of both vegetation parameters to modelled NPP data shows that particularly over dry areas the VOD corresponds better to the NPP, with r=0.79 for VOD-NPP and r=-0.09 for slope-NPP. 1. Wagner, W., et al., A Study of Vegetation Cover Effects on ERS Scatterometer Data. IEEE Transactions on Geoscience and Remote Sensing, 1999. 37(2): p. 938-948. 2. Owe, M., R. de Jeu, and J. Walker, A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. Geoscience and Remote Sensing, IEEE Transactions on, 2001. 39(8): p. 1643-1654. 3. Raupach, M.R., et al., Balances of Water, Carbon, Nitrogen and Phosphorus in Australian Landscapes: (1) Project Description and Results, 2001, Sustainable Minerals Institute, CSIRO Land and Water. 4. Raupach, M.R., et al., Balances of Water, Carbon, Nitrogen and Phosporus in Australian Landscapes: (2) Model Formulation and Testing, 2001, Sustainable Minerals Institute, CSIRO Land and Water. * These products are the joint property of INRA, CNES and VITO under copyright of Geoland2. They are generated from the SPOT VEGETATION data under copyright CNES and distribution by VITO.
Li, Shuai; Liang, Wei; Fu, Bojie; Lü, Yihe; Fu, Shuyi; Wang, Shuai; Su, Huimin
2016-11-01
Recently, relationship between vegetation activity and temperature variability has received much attention in China. However, vegetation-induced changes in water resources through changing land surface energy balance (e.g. albedo), has not been well documented. This study investigates the underlying causes of vegetation change and subsequent impacts on runoff for the Northern Shaanxi Loess Plateau. Results show that satellite-derived vegetation index has experienced a significantly increasing trend during the past three decades, especially during 2000-2012. Large-scale ecological restorations, i.e., the Natural Forest Conservation project and the Grain for Green project, are found to be the primary driving factors for vegetation increase. The increased vegetation coverage induces decrease in surface albedo and results in an increase in temperature. This positive effect can be counteracted by higher evapotranspiration and the net effect is a decrease in daytime land surface temperature. A higher evapotranspiration rate from restored vegetation is the primary reason for the reduced runoff coefficient. Other factors including less heavy precipitation, increased water consumption from town, industry and agriculture also appear to be the important causes for the reduction of runoff. These two ecological restoration projects produce both positive and negative effects on the overall ecosystem services. Thus, long-term continuous monitoring is needed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tueller, P. T.; Lorain, G.; Halvorson, R. M.
1974-01-01
ERTS-1 resolution capabilities and repetitive coverage have allowed the acquisition of several statewide inventories of natural resource features not previously completed or that could not be completed in any other way. Familiarity with landform, tone, pattern and other converging factors, along with multidate imagery, has been required. Nevada's vegetation has been mapped from ERTS-1. Dynamic characteristics of the landscape have been studied. Sequential ERTS-1 imagery has proved its usefulness for mapping vegetation, following vegetation phenology changes, monitoring changes in lakes and reservoirs (including water quality), determining changes in surface mining use, making fire fuel estimates and determining potential hazard, mapping the distribution of rain and snow events, making range readiness determinations, monitoring marshland management practices and other uses. Feasibility has been determined, but details of incorporating the data in management systems awaits further research and development. The need is to accurately define the steps necessary to extract required or usable information from ERTS imagery and fit it into on-going management programs.
Detection of prescribed burn on National Forest
NASA Technical Reports Server (NTRS)
Erb, R. B. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The effects of a prescribed burn in the Sam Houston National Forest have been detected from ERTS-1 coverage of November 27, 1972. The burn was first identified on aircraft underflight photography of November 7, 1972. On color infrared aircraft photography it appeared as a green patch, indicating stressed vegetation, in an area of red coloration, indicating vigorous vegetation. It was later detected on the color composite of ERTS-1 bands 4, 5, and 7, as a black area in otherwise red vegetation. The fire, covering approximately 40 hectares (100 acres), was intentionally started to clear out heavy underbrush so that trees could be marked prior to harvesting. The significance of this observation is that a light burn of this type and its subsequent effects on vegetation could be detected on ERTS-1 imagery. Continued observation of this type of phenomenon under various conditions may provide a means of identifying such an occurrence without a prior knowledge of the event.
A tool for NDVI time series extraction from wide-swath remotely sensed images
NASA Astrophysics Data System (ADS)
Li, Zhishan; Shi, Runhe; Zhou, Cong
2015-09-01
Normalized Difference Vegetation Index (NDVI) is one of the most widely used indicators for monitoring the vegetation coverage in land surface. The time series features of NDVI are capable of reflecting dynamic changes of various ecosystems. Calculating NDVI via Moderate Resolution Imaging Spectrometer (MODIS) and other wide-swath remotely sensed images provides an important way to monitor the spatial and temporal characteristics of large-scale NDVI. However, difficulties are still existed for ecologists to extract such information correctly and efficiently because of the problems in several professional processes on the original remote sensing images including radiometric calibration, geometric correction, multiple data composition and curve smoothing. In this study, we developed an efficient and convenient online toolbox for non-remote sensing professionals who want to extract NDVI time series with a friendly graphic user interface. It is based on Java Web and Web GIS technically. Moreover, Struts, Spring and Hibernate frameworks (SSH) are integrated in the system for the purpose of easy maintenance and expansion. Latitude, longitude and time period are the key inputs that users need to provide, and the NDVI time series are calculated automatically.
Some insights on grassland health assessment based on remote sensing.
Xu, Dandan; Guo, Xulin
2015-01-29
Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.
Some Insights on Grassland Health Assessment Based on Remote Sensing
Xu, Dandan; Guo, Xulin
2015-01-01
Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment. PMID:25643060
Forest fire impact on bird habitat in a mixed oak-pine forest in Puebla, Mexico
Laura P. Ponce-Calderón Ponce-Calderón; Dante A. Rodríguez-Trejo; Beatriz C. Aguilar-Váldez; Elvia López-Pérez
2013-01-01
To assess the impact of different-severity wildfires on bird habitat, habitat quality was determined by analyzing the degree of richness association, abundance and diversity of bird species and vegetation structure (richness, abundance, diversity and coverage). These attributes were quantified with four sampling sites for birds and five for quadrant-centered points...
Defensible space in the news: public discussion of a neglected topic
Jayne Fingerman Johnson; David N. Bengston; David P. Fan
2006-01-01
Managers have an opportunity during times of peak media coverage of wildfire to expand the discussion about defensible space from the current focus on vegetation clearing to include the full range of activities a homeowner can undertake to mitigate damage. Currently, news media discussion of wildfire is overwhelmingly dominated by firefighting, and discussion of...
John F. Caratti
2006-01-01
The FIREMON Species Composition (SC) method is used to provide ocular estimates of cover and height measurements for plant species on a macroplot. The SC method provides plant species composition and coverage estimates to describe a stand or plant community and can be used to document changes over time. It is suited for a wide variety of vegetation types and is...
A non-destructive method for quantifying small-diameter woody biomass in southern pine forests
D. Andrew Scott; Rick Stagg; Morris Smith
2006-01-01
Quantifying the impact of silvicultural treatments on woody understory vegetation largely has been accomplished by destructive sampling or through estimates of frequency and coverage. In studies where repeated measures of understory biomass across large areas are needed, destructive sampling and percent cover estimates are not satisfactory. For example, estimates of...
USDA-ARS?s Scientific Manuscript database
Monitoring of agricultural used soils at frequent intervals is needed to get a sufficient understanding of soil erosion processes. This is crucial to support decision making and refining soil policies especially in the context of climate change. Along with rainfall erosivity, soil coverage by vegeta...
Soil TPH Concentration Estimation Using Vegetation Indices in an Oil Polluted Area of Eastern China
Zhu, Linhai; Zhao, Xuechun; Lai, Liming; Wang, Jianjian; Jiang, Lianhe; Ding, Jinzhi; Liu, Nanxi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Zheng, Yuanrun; Rimmington, Glyn M.
2013-01-01
Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m−2 to 5.3 g m−2 with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg−1 to 652 mg kg−1. The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R 2 = 0.73) and accuracy of prediction (RMSE = 104.2 mg kg−1). For other vegetation indices and red edge parameters, the R2 and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg−1 to 106.8 mg kg−1 respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R 2 = 0.70 and RMSE = 110.1 mg kg−1) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable. PMID:23342066
Coevolution of hydrodynamics, vegetation and channel evolution in wetlands of a semi-arid floodplain
NASA Astrophysics Data System (ADS)
Seoane, Manuel; Rodriguez, Jose Fernando; Rojas, Steven Sandi; Saco, Patricia Mabel; Riccardi, Gerardo; Saintilan, Neil; Wen, Li
2015-04-01
The Macquarie Marshes are located in the semi-arid region in north western NSW, Australia, and constitute part of the northern Murray-Darling Basin. The Marshes are comprised of a system of permanent and semi-permanent marshes, swamps and lagoons interconnected by braided channels. The wetland complex serves as nesting place and habitat for many species of water birds, fish, frogs and crustaceans, and portions of the Marshes was listed as internationally important under the Ramsar Convention. Some of the wetlands have undergone degradation over the last four decades, which has been attributed to changes in flow management upstream of the marshes. Among the many characteristics that make this wetland system unique is the occurrence of channel breakdown and channel avulsion, which are associated with decline of river flow in the downstream direction typical of dryland streams. Decrease in river flow can lead to sediment deposition, decrease in channel capacity, vegetative invasion of the channel, overbank flows, and ultimately result in channel breakdown and changes in marsh formation. A similar process on established marshes may also lead to channel avulsion and marsh abandonment, with the subsequent invasion of terrestrial vegetation. All the previous geomorphological evolution processes have an effect on the established ecosystem, which will produce feedbacks on the hydrodynamics of the system and affect the geomorphology in return. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological modelling framework that combines hydrodynamic, vegetation and channel evolution modules and in this presentation we provide an update on the status of the model. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model.
Zhang, Zhiming; Ouyang, Zhiyun; Xiao, Yi; Xiao, Yang; Xu, Weihua
2017-06-01
Increasing exploitation of karst resources is causing severe environmental degradation because of the fragility and vulnerability of karst areas. By integrating principal component analysis (PCA) with annual seasonal trend analysis (ASTA), this study assessed karst rocky desertification (KRD) within a spatial context. We first produced fractional vegetation cover (FVC) data from a moderate-resolution imaging spectroradiometer normalized difference vegetation index using a dimidiate pixel model. Then, we generated three main components of the annual FVC data using PCA. Subsequently, we generated the slope image of the annual seasonal trends of FVC using median trend analysis. Finally, we combined the three PCA components and annual seasonal trends of FVC with the incidence of KRD for each type of carbonate rock to classify KRD into one of four categories based on K-means cluster analysis: high, moderate, low, and none. The results of accuracy assessments indicated that this combination approach produced greater accuracy and more reasonable KRD mapping than the average FVC based on the vegetation coverage standard. The KRD map for 2010 indicated that the total area of KRD was 78.76 × 10 3 km 2 , which constitutes about 4.06% of the eight southwest provinces of China. The largest KRD areas were found in Yunnan province. The combined PCA and ASTA approach was demonstrated to be an easily implemented, robust, and flexible method for the mapping and assessment of KRD, which can be used to enhance regional KRD management schemes or to address assessment of other environmental issues.
42 CFR 457.440 - Existing comprehensive State-based coverage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 4 2010-10-01 2010-10-01 false Existing comprehensive State-based coverage. 457... STATES State Plan Requirements: Coverage and Benefits § 457.440 Existing comprehensive State-based coverage. (a) General requirements. Existing comprehensive State-based health benefits is coverage that— (1...
Projected future changes in vegetation in western North America in the 21st century
Xiaoyan, Jiang; Rauscher, Sara A.; Ringler, Todd D.; Lawrence, David M.; Williams, A. Park; Allen, Craig D.; Steiner, Allison L.; Cai, D. Michael; McDowell, Nate G.
2013-01-01
Rapid and broad-scale forest mortality associated with recent droughts, rising temperature, and insect outbreaks has been observed over western North America (NA). Climate models project additional future warming and increasing drought and water stress for this region. To assess future potential changes in vegetation distributions in western NA, the Community Earth System Model (CESM) coupled with its Dynamic Global Vegetation Model (DGVM) was used under the future A2 emissions scenario. To better span uncertainties in future climate, eight sea surface temperature (SST) projections provided by phase 3 of the Coupled Model Intercomparison Project (CMIP3) were employed as boundary conditions. There is a broad consensus among the simulations, despite differences in the simulated climate trajectories across the ensemble, that about half of the needleleaf evergreen tree coverage (from 24% to 11%) will disappear, coincident with a 14% (from 11% to 25%) increase in shrubs and grasses by the end of the twenty-first century in western NA, with most of the change occurring over the latter half of the twenty-first century. The net impact is a ~6 GtC or about 50% decrease in projected ecosystem carbon storage in this region. The findings suggest a potential for a widespread shift from tree-dominated landscapes to shrub and grass-dominated landscapes in western NA because of future warming and consequent increases in water deficits. These results highlight the need for improved process-based understanding of vegetation dynamics, particularly including mortality and the subsequent incorporation of these mechanisms into earth system models to better quantify the vulnerability of western NA forests under climate change.
Hammerle, Albin; Meier, Fred; Heinl, Michael; Egger, Angelika; Leitinger, Georg
2017-04-01
Thermal infrared (TIR) cameras perfectly bridge the gap between (i) on-site measurements of land surface temperature (LST) providing high temporal resolution at the cost of low spatial coverage and (ii) remotely sensed data from satellites that provide high spatial coverage at relatively low spatio-temporal resolution. While LST data from satellite (LST sat ) and airborne platforms are routinely corrected for atmospheric effects, such corrections are barely applied for LST from ground-based TIR imagery (using TIR cameras; LST cam ). We show the consequences of neglecting atmospheric effects on LST cam of different vegetated surfaces at landscape scale. We compare LST measured from different platforms, focusing on the comparison of LST data from on-site radiometry (LST osr ) and LST cam using a commercially available TIR camera in the region of Bozen/Bolzano (Italy). Given a digital elevation model and measured vertical air temperature profiles, we developed a multiple linear regression model to correct LST cam data for atmospheric influences. We could show the distinct effect of atmospheric conditions and related radiative processes along the measurement path on LST cam , proving the necessity to correct LST cam data on landscape scale, despite their relatively low measurement distances compared to remotely sensed data. Corrected LST cam data revealed the dampening effect of the atmosphere, especially at high temperature differences between the atmosphere and the vegetated surface. Not correcting for these effects leads to erroneous LST estimates, in particular to an underestimation of the heterogeneity in LST, both in time and space. In the most pronounced case, we found a temperature range extension of almost 10 K.
NASA Astrophysics Data System (ADS)
Wang, X.; Liu, H.; Yao, K.; Wei, Y.
2018-04-01
It is a complicated process to analyze the cause of geological hazard. Through the analysis function of GIS software, 250 landslides were randomly selected from 395 landslide hazards in the study area, superimposed with the types of landforms, annual rainfall and vegetation coverage respectively. It used box dimension method of fractal dimension theory to study the fractal characteristics of spatial distribution of landslide disasters in Dachuan district, and analyse the statistical results. Research findings showed that the The fractal dimension of the landslides in the Dachuan area is 0.9114, the correlation coefficient is 0.9627, and it has high autocorrelation. Zoning statistics according to various natural factors, the fractal dimension between landslide hazard points and deep hill, middle hill area is strong as well as the area whose average annual rainfall is 1050 mm-1250 mm and vegetation coverage is 30 %-60 %. Superposition of the potential hazard distribution map of single influence factors to get the potential hazard zoning of landslides in the area. Verifying the potential hazard zoning map of the potential landslides with 145 remaining disaster points, among them, there are 74 landslide hazard points in high risk area, accounting for 51.03 % of the total. There are 59 landslides in the middle risk area, accounting for 40.69 % of the total, and 12 in the low risk area, accounting for 8.28 % of the total. The matching degree of the verifying result and the potential hazard zoning is high. Therefore, the fractal dimension value divided the degree of geological disaster susceptibility can be described the influence degree of each influence factor to geological disaster point more intuitively, it also can divide potential disaster risk areas and provide visual data support for effective management of geological disasters.
NASA Technical Reports Server (NTRS)
Houston, R. S. (Principal Investigator); Marrs, R. W.; Borgman, L. E.; Agard, S. S.; Barton, R.; Blackstone, D. L.; Breckenridge, R. M.; Decker, E. R.; Earle, J.; Evans, M. A.
1975-01-01
The author has identified the following significant results. The Earth Resources Technology Satellite data included the following successful applications: (1) general geologic mapping, (2) structural and tectonic studies, (3) landforms and surface processes, (4) mineral exploration, (5) land use inventories, (6) hydrologic studies, (7) investigations in agriculture and forestry, and (8) environmental quality and ecology. The chief advantages of ERTS-1 data for geologic studies are synoptic view, spectral information, and seasonal coverage. The spectral data and repetitive aspect are also important for land use and vegetation studies. Low resolution and lack of steoscopic coverage were found to be the main limitations of ERTS data.
Evaluating ESA CCI soil moisture in East Africa.
McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R; Wang, Shugong; Peters-Lidard, Christa D; Verdin, James P
2016-06-01
To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASA's Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R>0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.
InSAR-based detection of McKenzie River Delta Permafrost loss
NASA Astrophysics Data System (ADS)
Oliver-Cabrera, T.; Wdowinski, S.
2017-12-01
Permafrost underlies most of the McKenzie River, North America's largest delta. The in the delta is catalogued as discontinuous permafrost due to the influence of shifting river channels on near-surface ground temperatures. The area is affected by climate change, studies show that ground temperature has increased by 1.5°C since 1970, due to rising annual mean air temperature. Flooding regimes within the delta are also affected by the changing climate due to melting of near surface ground ice together with sea-level rise increasing the potential of land subsidence. Observed consequences of changes occurring in the region are vegetation growth and northward migration of the tree line. The growing vegetation can affect physical properties of the accumulated snow, including depth, density and thermal conductivity. Thogether these variations affect permafrost stability. Permafrost changes can be measured throughout the impacts on river runoffs, ground water, drainages, carbon release, land subsidence and even infrastructure damages. Degradation of permafrost can also be measured by observing ecological changes in the area. In this study, we use InSAR observations to detect permafrost changes and their transition to wetland or vegetated land cover. Our data consist of four ALOS-PALSAR frames covering the entire McKenzie River Delta with temporal coverage spanning from January 2007 to March of 2011. Each frame has 20 to 24 acquisitions, in which half of the data acquired with HH polarization and the other half with HH+HV. We process the data using ROI_PAC and PYSAR software packages. Preliminary results have detected the following spatial patterns: (1) An overall good coherence of summer interferograms with 46-92 day interferograms, (2) Low coherence of winter interferograms (November to February), probably to the increase in snow coverage, (3) Phase jumps along the border of the river reflecting morphological differences between the region near to the river and other land covers, (4) Additional phase jump located near areas undergoing road construction, and (5) Small scale phase changes located in different section of the delta, which occur most likely due to water level changes of small wetland bodies, possibly reflecting permafrost thawing processes.
NASA Astrophysics Data System (ADS)
Blair, J. Bryan; Rabine, David L.; Hofton, Michelle A.
The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter, designed and developed at NASA's Goddard Space Flight Center (GSFC). LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25-m wide footprints. The entire time history of the outgoing and return pulses is digitised, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with dm accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 ns, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the US and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in year 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.
Soil respiration and carbon responses to logging debris and competing vegetation
Robert A. Slesak; Stephen H. Schoenholtz; Timothy B. Harrington
2010-01-01
Management practices following forest harvesting that modify organic matter (OM) inputs and influence changes in the soil environment have the potential to alter soil C pools, but there is still much uncertainty regarding how these practices influence soil C flux. We examined the influence of varying amounts of logging-debris retention (0, 40, and 80% coverage) and...
USDA-ARS?s Scientific Manuscript database
It is widely believed that in Germany and Europe the risk of soil erosion by water increases as a result of changes in climate. Especially, an increase of the frequency of extreme precipitation events during phenological crop phases with reduced soil cover is very likely for the near future. A monit...
Kenneth E. Trousdell
1970-01-01
In the Virginia Coastal Plain, the effects of disking and of three series of prescribed burns on crown coverage and height of regenerating loblolly pine (Pinus taeda L.) and competing hardwoods and shrubs were compared after 6 years. One winter burn followed by three annual summer burns just before harvesting was the site preparation most effective...
Parsekian, A.D.; Jones, Benjamin M.; Jones, M.; Grosse, G.; Walter, Anthony K.M.; Slater, L.
2011-01-01
Investigations on the northern Seward Peninsula in Alaska identified zones of recent (<50years) permafrost collapse that led to the formation of floating vegetation mats along thermokarst lake margins. The occurrence of floating vegetation mat features indicates rapid degradation of near-surface permafrost and lake expansion. This paper reports on the recent expansion of these collapse features and their geometry is determined using geophysical and remote sensing measurements. The vegetation mats were observed to have an average thickness of 0.57m and petrophysical modeling indicated that gas content of 1.5-5% enabled floatation above the lake surface. Furthermore, geophysical investigation provides evidence that the mats form by thaw and subsidence of the underlying permafrost rather than terrestrialization. The temperature of the water below a vegetation mat was observed to remain above freezing late in the winter. Analysis of satellite and aerial imagery indicates that these features have expanded at maximum rates of 1-2myr-1 over a 56year period. Including the spatial coverage of floating 'thermokarst mats' increases estimates of lake area by as much as 4% in some lakes. ?? 2011 John Wiley & Sons, Ltd.
Kong, Dongxian; Miao, Chiyuan; Borthwick, Alistair G L; Lei, Xiaohui; Li, Hu
2018-05-01
Vegetation is a key component of the ecosystem and plays an important role in water retention and resistance to soil erosion. In this study, we used a multiyear normalized difference vegetation index (NDVI) dataset (1982-2013) and corresponding datasets for observed climatic variables to analyze changes in the NDVI at both temporal and spatial scales. The relationships between NDVI, climate change, and human activities were also investigated. The annual average NDVI showed an upward trend over the 32-year study period, especially in the center of the Loess Plateau. NDVI variations lagged behind monthly temperature changes by approximately 1 month. The contribution of human activities to variations in NDVI has become increasingly significant in recent years, with human activities responsible for 30.4% of the change in NDVI during the period 2001-2013. The increased vegetation coverage has reduced soil erosion on the Loess Plateau in recent years. It is suggested that natural restoration of vegetation is the most effective measure for control of erosion; engineering measures that promote this should feature in the future governance of the Loess Plateau.
NASA Technical Reports Server (NTRS)
Omino, J. H. O. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Five investigators report on the applicability of ERTS-1 data covering the major landforms of Kenya. Deficiencies due to lack of equipment, repetitive coverage and interpretation know-how are also reported on. Revision of lake shorelines is an immediate benefit. Basement system metasediments are rapidly differentiated, but dune areas are not readily distinguishable from sandy soils. Forest, moorland, high altitude grass, tea, and conifer plantations are readily distinguished, with podocarpus forest especially distinguishable from podocarpus/juniperus forest. In the arid areas physiographic features, indicating the major soil types, are readily identified and mapped. Preliminary vegetation type analysis in the Mara Game Reserve indicates that in a typical savannah area about 36% of the vegetation types are distinguishable at a scale of 1:1 million as well as drainage patterns and terrain features.
Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation
NASA Technical Reports Server (NTRS)
Hsu, N. C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A. M.; Hansell, R.; Seftor, C. S.; Huang, J.; Tsay, S.-C.
2013-01-01
The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and non- vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of pre-calculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semi-arid regions to the entire land areas.
NASA Astrophysics Data System (ADS)
Wang, J.; Cai, X.
2007-12-01
A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators to represent spatial variables in a more efficient way. The hyper-population consists of a set of populations, which correspond to the spatial distributions of the individual agents (organisms). Furthermore spatial crossover and mutation operators are designed in accordance with the tree representation and then applied to both organisms and populations. This study applies the SEA to a specific problem of water resources management- maximizing the riparian vegetation coverage in accordance with the distributed groundwater system in an arid region. The vegetation coverage is impacted greatly by the nonlinear feedbacks and interactions between vegetation and groundwater and the spatial variability of groundwater. The SEA is applied to search for an optimal vegetation configuration compatible to the groundwater flow. The results from this example demonstrate the effectiveness of the SEA. Extension of the algorithm for other water resources management problems is discussed.
Phenological studies to improve the accuracy of remote sensing data in a diverse pasture
NASA Astrophysics Data System (ADS)
Gecse, Bernadett; Petrás, Dóra; Kertész, Péter; Koncz, Péter; Fóti, Szilvia; Balogh, János
2017-04-01
Remote sensing has been used widely to map nearly all types of vegetation of the Earth. This technique is excessively valuable because it can determine the distribution and the health condition of the vegetation, however it is rarely used in diverse vegetation. Remote sensing is challenged in diverse vegetation, where there is a high variability in the rate and intensity of flowering, greening/senescing among plants. We hypothesised that the interpretation of images of diverse vegetation could become more accurate if the growth and distribution of the dominant plant species are also considered. Our first goal was to establish a monitoring protocol as how to capture the main phenological changes of a diverse (over 80 species per hectare) pasture and reveal the ratio of the production of dominant species to the total biomass production. Our second goal was to answer how flowering influences (i.e. to what extent) the correlation coefficient between airborne Normalized Difference Vegetation Index (NDVI) and biomass. To monitor the phenological changes we measured leaf area index (LAI), estimated the cover of flowers (%), and performed vegetation survey in permanent quadrates (15) during eight measurement campaigns. We also selected 20 dominant species, based on the experience of previous years, which have visually dominant flowers in the area. For these species besides the cover of plant species (%) the number of flowering individuals, the number of flowers and other plant traits were recorded in permanent plots during measurement campaigns. In these plots 10 individuals per species were selected to measure the area and biomass of their leaves, shoots and flowers in the lab. Our results from the biomass production estimations show that biomass of the five most dominant species provided 68% of the total biomass production. We analyzed the connection between the percentage of flowering coverage and the correlation of NDVI and biomass. The data indicated that after June, when many species started to bloom there was a sharp deterioration in the correlation coefficient (r2=0.65 in early May, r2=0.15 in mid-June). The use of remote sensing data for biomass estimations in a diverse grassland is restricted to the spring period.
NASA Astrophysics Data System (ADS)
Vassilakis, Emmanuel; Mallinis, George; Christopoulou, Anastasia; Farangitakis, Georgios-Pavlos; Papanikolaou, Ioannis; Arianoutsou, Margarita
2017-04-01
Mt Taygetos (2407m), located at southern Peloponnese (Greece) suffered a large fire during the summer of 2007. The fire burned approximately 45% of the area covered by the endemic Greek fir (Abies cephalonica) and Black Pine (Pinus nigra) forest ecosystems. The aim of the current study is to examine the potential differences on post-fire vegetation recovery imposed by the lithology as well as the geomorphology of the given area over sites of the same climatic and landscape conditions (elevation, aspect, slope etc.). The main lithologies consist of carbonate, permeable, not easily erodible formations (limestones and marbles) and clastic, impermeable (schists, slate and flysch) erodible ones. A time-series of high spatial resolution satellite images were interpreted, analyzed and compared in order to detect changes in vegetation coverage which could prioritize areas of interest for fieldwork campaigns. The remote sensing datasets were acquired before (Ikonos-2), a few months after (Quickbird-2) and some years after (Worldview-3) the 2007 fire. High resolution Digital Elevation Model was used for the ortho-rectification and co-registration of the remote sensing data, but also for the extraction of the mountainous landscape characteristics. The multi-temporal image dataset was analyzed through GEographic-Object Based Image Analysis (GEOBIA). Objects corresponding to different vegetation types through time were identified through spectral and textural features. The classification results were combined with basic layers such as lithological outcrops, pre-fire vegetation, landscape morphology etc., supplementing a spatial geodatabase used for classifying burnt areas with varying post-fire plant community recovery. We validated the results of the classification during fieldwork and found that at a local scale, where the landscape features are quite similar, the bedrock type proves to be an important factor for vegetation recovery, as it clearly defines the soil generation along with its properties. Plant species recovery seems to be controlled by the local lithology as it was found weaker in plots overlying limestones and marbles, comparing to that observed over schists, even for the same species. In conclusion, post-fire vegetation recovery seems to be a complex process controlled not only from species biology, but also from the geological features.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Berndt, Emily B.; Srikishen, Jayanthi; Zavodsky, Bradley T.
2014-01-01
The NASA SPoRT Center is working to incorporate Suomi-NPP products into its research and transition activities to improve regional numerical weather prediction (NWP). Specifically, SPoRT seeks to utilize two data products from NOAA/NESDIS: (1) daily global VIIRS green vegetation fraction (GVF), and (2) NOAA Unique CrIS and ATMS Processing System (NUCAPS) temperature and moisture retrieved profiles. The goal of (1) is to improve the representation of vegetation in the Noah land surface model (LSM) over existing climatological GVF datasets in order to improve the land-atmosphere energy exchanges in NWP models and produce better temperature, moisture, and precipitation forecasts. The goal of (2) is to assimilate NUCAPS retrieved profiles into the Gridpoint Statistical Interpolation (GSI) data assimilation system to assess the impact on a summer pre-frontal convection case. Most regional NWP applications make use of a monthly GVF climatology for use in the Noah LSM within the Weather Research and Forecasting (WRF) model. The GVF partitions incoming energy into direct surface heating/evaporation over bare soil versus evapotranspiration processes over vegetated surfaces. Misrepresentations of the fractional coverage of vegetation during anomalous weather/climate regimes (e.g., early/late bloom or freeze; drought) can lead to poor NWP model results when land-atmosphere feedback is important. SPoRT has been producing a daily MODIS GVF product based on the University of Wisconsin Direct Broadcast swaths of Normalized Difference Vegetation Index (NDVI). While positive impacts have been demonstrated in the WRF model for some cases, the reflectances composing these NDVI do not correct for atmospheric aerosols nor satellite view angle, resulting in temporal noisiness at certain locations (especially heavy vegetation). The method behind the NESDIS VIIRS GVF is expected to alleviate the issues seen in the MODIS GVF real-time product, thereby offering a higher-quality dataset for modeling applications. SPoRT is evaluating the VIIRS GVF data against the MODIS real-time and climatology GVF in both WRF and the NASA Land Information System. SPoRT has a history of assimilating hyperspectral infrared retrieved profiles
Unsupervised change detection in a particular vegetation land cover type using spectral angle mapper
NASA Astrophysics Data System (ADS)
Renza, Diego; Martinez, Estibaliz; Molina, Iñigo; Ballesteros L., Dora M.
2017-04-01
This paper presents a new unsupervised change detection methodology for multispectral images applied to specific land covers. The proposed method involves comparing each image against a reference spectrum, where the reference spectrum is obtained from the spectral signature of the type of coverage you want to detect. In this case the method has been tested using multispectral images (SPOT5) of the community of Madrid (Spain), and multispectral images (Quickbird) of an area over Indonesia that was impacted by the December 26, 2004 tsunami; here, the tests have focused on the detection of changes in vegetation. The image comparison is obtained by applying Spectral Angle Mapper between the reference spectrum and each multitemporal image. Then, a threshold to produce a single image of change is applied, which corresponds to the vegetation zones. The results for each multitemporal image are combined through an exclusive or (XOR) operation that selects vegetation zones that have changed over time. Finally, the derived results were compared against a supervised method based on classification with the Support Vector Machine. Furthermore, the NDVI-differencing and the Spectral Angle Mapper techniques were selected as unsupervised methods for comparison purposes. The main novelty of the method consists in the detection of changes in a specific land cover type (vegetation), therefore, for comparison purposes, the best scenario is to compare it with methods that aim to detect changes in a specific land cover type (vegetation). This is the main reason to select NDVI-based method and the post-classification method (SVM implemented in a standard software tool). To evaluate the improvements using a reference spectrum vector, the results are compared with the basic-SAM method. In SPOT5 image, the overall accuracy was 99.36% and the κ index was 90.11%; in Quickbird image, the overall accuracy was 97.5% and the κ index was 82.16%. Finally, the precision results of the method are comparable to those of a supervised method, supported by low detection of false positives and false negatives, along with a high overall accuracy and a high kappa index. On the other hand, the execution times were comparable to those of unsupervised methods of low computational load.
Hill, Jason M.; Diefenbach, Duane R.
2013-01-01
The influence of vegetation structure on the probability of daily nest survival (DNS) for grassland passerines has received considerable attention. Some correlative studies suggest that the presence of woody vegetation lowers DNS. Over 3 years (2009–2011), we monitored 215 nests of the Grasshopper Sparrow (Ammodramus savannarum) and Henslow's Sparrow (A. henslowii) on 162 ha of reclaimed surface-mine grasslands in Pennsylvania. We removed shrubs from treatment plots with ≤36% areal coverage of woody vegetation in a before-after-control-impact-pairs (BACIP) design framework. Daily nest survival (95% CI: 0.94–0.96) was as high as previous studies have reported but was not associated with woody vegetative cover, proximity to woody vegetation, or woody stem density. Variation in DNS was best explained by increasing nonwoody-vegetation height. Grasshopper Sparrow fledgling production on treatment plots in 2010 (95% CI: 3.3–4.7) and 2011 (95% CI: 3.8–5.0) was similar to baseline conditions of treatment plots (95% CI: 3.4–4.9) and control plots (95% CI: 3.2–4.5) in 2009. Fledgling production was associated with thatch depth (β ± SE = 0.13 ± 0.09) and bare ground (β ± SE = -2.62 ± 1.29) adjacent to the nest and plot woody vegetative cover ( ± SE = -3.09 ± 1.02). Our experimental research suggests that overall reproductive success of Grasshopper and Henslow's sparrows on reclaimed surfacemine grasslands is driven by a suite of largely nonwoody—vegetation components, and both species can successfully nest and produce young in habitats with greater amounts of scattered woody vegetation than has generally been considered.
Skipper Richness (Hesperiidae) Along Elevational Gradients in Brazilian Atlantic Forest.
Carneiro, E; Mielke, O H H; Casagrande, M M; Fiedler, K
2014-02-01
Hesperiidae are claimed to be a group of elusive butterflies that need major effort for sampling, thus being frequently omitted from tropical butterfly surveys. As no studies have associated species richness patterns of butterflies with environmental gradients of high altitudes in Brazil, we surveyed Hesperiidae ensembles in Serra do Mar along elevational transects (900-1,800 m above sea level) on three mountains. Transects were sampled 11-12 times on each mountain to evaluate how local species richness is influenced by mountain region, vegetation type, and elevational zones. Patterns were also analyzed for the subfamilies, and after disregarding species that exhibit hilltopping behavior. Species richness was evaluated by the observed richness, Jacknife2 estimator and Chao 1 estimator standardized by sample coverage. Overall, 155 species were collected, but extrapolation algorithms suggest a regional richness of about 220 species. Species richness was far higher in forest than in early successional vegetation or grassland. Richness decreased with elevation, and was higher on Anhangava mountain compared with the two others. Patterns were similar between observed and extrapolated Jacknife2 richness, but vegetation type and mountain richness became altered using sample coverage standardization. Hilltopping species were more easily detected than species that do not show this behavior; however, their inclusion did neither affect estimated richness nor modify the shape of the species accumulation curve. This is the first contribution to systematically study highland butterflies in southern Brazil where all records above 1,200 m are altitudinal extensions of the known geographical ranges of skipper species in the region.
Qin, Haiming; Wang, Cheng; Zhao, Kaiguang; Xi, Xiaohuan
2018-01-01
Accurate estimation of the fraction of absorbed photosynthetically active radiation (fPAR) for maize canopies are important for maize growth monitoring and yield estimation. The goal of this study is to explore the potential of using airborne LiDAR and hyperspectral data to better estimate maize fPAR. This study focuses on estimating maize fPAR from (1) height and coverage metrics derived from airborne LiDAR point cloud data; (2) vegetation indices derived from hyperspectral imagery; and (3) a combination of these metrics. Pearson correlation analyses were conducted to evaluate the relationships among LiDAR metrics, hyperspectral metrics, and field-measured fPAR values. Then, multiple linear regression (MLR) models were developed using these metrics. Results showed that (1) LiDAR height and coverage metrics provided good explanatory power (i.e., R2 = 0.81); (2) hyperspectral vegetation indices provided moderate interpretability (i.e., R2 = 0.50); and (3) the combination of LiDAR metrics and hyperspectral metrics improved the LiDAR model (i.e., R2 = 0.88). These results indicate that LiDAR model seems to offer a reliable method for estimating maize fPAR at a high spatial resolution and it can be used for farmland management. Combining LiDAR and hyperspectral metrics led to better performance of maize fPAR estimation than LiDAR or hyperspectral metrics alone, which means that maize fPAR retrieval can benefit from the complementary nature of LiDAR-detected canopy structure characteristics and hyperspectral-captured vegetation spectral information.
NASA Technical Reports Server (NTRS)
Potter, Christopher
2018-01-01
This presentation is part of the Independent Science Board of the State of California Delta Stewardship Council brown bag seminar series on the "How the Delta is Monitored", followed with a panel discussion. Various remote sensing approaches for aquatic vegetation will be reviewed. Key research and application issues with remote sensing monitoring in the Delta will be addressed.
K.R. Matthews
1996-01-01
Abstract.âI used radio transmitters to determine habitat selection and movement patterns of California golden trout Oncorhynchus mykiss aguabonita in two areas defined by their different levels of habitat recovery in the Golden Trout Wilderness, California. Study areas were differentiated by the amount of streamside vegetation (low or high coverage of beaked sedge...
Rohner, Fabian; Leyvraz, Magali; Konan, Amoin G.; Esso, Lasme J. C. E.; Wirth, James P.; Norte, Augusto; Adiko, Adiko F.; Bonfoh, Bassirou; Aaron, Grant J.
2016-01-01
Poor micronutrient intakes are a major contributing factor to the high burden of micronutrient deficiencies in Côte d’Ivoire. Large-scale food fortification is considered a cost-effective approach to deliver micronutrients, and fortification of salt (iodine), wheat flour (iron and folic acid), and vegetable oil (vitamin A) is mandatory in Côte d’Ivoire. A cross-sectional survey on households with at least one child 6–23 months was conducted to update coverage figures with adequately fortified food vehicles in Abidjan, the capital of and largest urban community in Côte d’Ivoire, and to evaluate whether additional iron and vitamin A intake is sufficient to bear the potential to reduce micronutrient malnutrition. Information on demographics and food consumption was collected, along with samples of salt and oil. Wheat flour was sampled from bakeries and retailers residing in the selected clusters. In Abidjan, 86% and 97% of salt and vegetable oil samples, respectively, were adequately fortified, while only 32% of wheat flour samples were adequately fortified, but all samples contained some added iron. There were no major differences in additional vitamin A and iron intake between poor and non-poor households. For vitamin A in oil, the additional percentage of the recommended nutrient intake was 27% and 40% for children 6–23 months and women of reproductive age, respectively, while for iron from wheat flour, only 13% and 19% could be covered. Compared to previous estimates, coverage has remained stable for salt and wheat flour, but improved for vegetable oil. Fortification of vegetable oil clearly provides a meaningful additional amount of vitamin A. This is not currently the case for iron, due to the low fortification levels. Iron levels in wheat flour should be increased and monitored, and additional vehicles should be explored to add iron to the Ivorian diet. PMID:27384762
Fifty years of fat: news coverage of trends that predate obesity prevalence.
Davis, Brennan; Wansink, Brian
2015-07-10
Obesity prevalence has risen in fifty years. While people generally expect media mentions of health risks like obesity prevalence to follow health risk trends, food consumption trends may precede obesity prevalence trends. Therefore, this research investigates whether media mentions of food predate obesity prevalence. Fifty years of non-advertising articles in the New York Times (and 17 years for the London Times) are coded for the mention of less healthy (5 salty and 5 sweet snacks) and healthy (5 fruits and 5 vegetables) food items by year and then associated with annual obesity prevalence in subsequent years. Time-series generalized linear models test whether food-related mentions predate or postdate obesity prevalence in each country. United States obesity prevalence is positively associated with New York Times mentions of sweet snacks (b = 55.2, CI = 42.4 to 68.1, p = .000) and negatively associated with mentions of fruits (b = -71.28, CI -91.5 to -51.1, p = .000) and vegetables (b = -13.6, CI = -17.5 to -9.6, p = .000). Similar results are found for the United Kingdom and The London Times. Importantly, the "obesity followed mentions" models are stronger than the "obesity preceded mentions" models. It may be possible to estimate a nation's future obesity prevalence (e.g., three years from now) based on how frequently national media mention sweet snacks (positively related) and vegetables or fruits (negatively related) today. This may provide public health officials and epidemiologists with new tools to more quickly assess the effectiveness of current obesity interventions based on what is mentioned in the media today.
Water Use by Urban Landscapes in Semi-Arid Environments
NASA Astrophysics Data System (ADS)
Litvak, E.; Pataki, D. E.
2017-12-01
Water use by urban trees and lawns constitutes a significant yet uncertain portion of urban water budgets. Reducing this uncertainty is essential for developing effective water conservation strategies that are critically needed in dry regions. Landscape water use is particularly difficult to estimate in semi-arid cities with diverse plant compositions and large proportions of non-native species sustained by irrigation. We developed an empirical model of urban evapotranspiration based on in situ measurements of 11 lawns and 108 trees that we previously collected in the greater Los Angeles area. The model in its current state considers urban landscapes as two-component systems comprised of lawns and trees, which have contrasting patterns of water use. Turfgrass lawns consume large amounts of irrigation water (up to 10 mm/d) that may be effectively reduced by the shade from trees. Trees consume much smaller amounts of water at common urban planting densities (0.1-2.6 mm/d), and provide shade over lawns. We estimated water use by irrigated landscapes in Los Angeles by combining this model with remotely sensed estimates of vegetation cover and ground-based vegetation surveys and weather data. According to our estimates, water use by Los Angeles landscapes was close to potential evapotranspiration ( 1,100 mm/yr), with turfgrass responsible for 64-84% of total water use. Landscape water use linearly increased with median household income across Los Angeles, where wealthier parts of the city were consistently more vegetated than less affluent parts. Our results indicate extremely high water use by urban landscapes in semi-arid environments, largely owing to high spatial coverage of excessively irrigated lawns. These results have important implications for constraining municipal water budgets and developing water-saving landscaping practices.
Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Yue, Guangyang; Liu, Guimin; Chen, Hao
2017-12-31
Vertical patterns and determinants of soil nutrients are critical to understand nutrient cycling in high-altitude ecosystems; however, they remain poorly understood in the alpine grassland due to lack of systematic field observations. In this study, we examined vertical distributions of soil nutrients and their influencing factors within the upper 1m of soil, using data of 68 soil profiles surveyed in the alpine grassland of the eastern Qinghai-Tibet Plateau. Soil organic carbon (SOC) and total nitrogen (TN) stocks decreased with depth in both alpine meadow (AM) and alpine steppe (AS), but remain constant along the soil profile in alpine swamp meadow (ASM). Total phosphorus, Ca 2+ , and Mg 2+ stocks slightly increased with depth in ASM. K + stock decreased with depth, while Na + stock increased slightly with depth among different vegetation types; however, SO 4 2- and Cl - stocks remained relatively uniform throughout different depth intervals in the alpine grassland. Except for SOC and TN, soil nutrient stocks in the top 20cm soils were significantly lower in ASM compared to those in AM and AS. Correlation analyses showed that SOC and TN stocks in the alpine grassland positively correlated with vegetation coverage, soil moisture, clay content, and silt content, while they negatively related to sand content and soil pH. However, base cation stocks revealed contrary relationships with those environmental variables compared to SOC and TN stocks. These correlations varied between vegetation types. In addition, no significant relationship was detected between topographic factors and soil nutrients. Our findings suggest that plant cycling and soil moisture primarily control vertical distributions of soil nutrients (e.g. K) in the alpine grassland and highlight that vegetation types in high-altitude permafrost regions significantly affect soil nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.
Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI
NASA Technical Reports Server (NTRS)
Potter, C. S.; Brooks, V.
1997-01-01
This paper describes the use of satellite data to calibrate a new climate-vegetation greenness relationship for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes If the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980's in order to refine our understanding of intra-annual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global 1o gridded data sets suggest that three climate indexes: degree days (growing/chilling), annual precipitation total, and an annual moisture index together can account to 70-80 percent of the geographic variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same annual climate index values from the previous year explains no substantial additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes is closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from lo grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI for several different years at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes are not accurately predicted are mainly high latitude zones, mixed and disturbed vegetation types, and other remote locations where climate station data are sparse.
Coverage-based constraints for IMRT optimization
NASA Astrophysics Data System (ADS)
Mescher, H.; Ulrich, S.; Bangert, M.
2017-09-01
Radiation therapy treatment planning requires an incorporation of uncertainties in order to guarantee an adequate irradiation of the tumor volumes. In current clinical practice, uncertainties are accounted for implicitly with an expansion of the target volume according to generic margin recipes. Alternatively, it is possible to account for uncertainties by explicit minimization of objectives that describe worst-case treatment scenarios, the expectation value of the treatment or the coverage probability of the target volumes during treatment planning. In this note we show that approaches relying on objectives to induce a specific coverage of the clinical target volumes are inevitably sensitive to variation of the relative weighting of the objectives. To address this issue, we introduce coverage-based constraints for intensity-modulated radiation therapy (IMRT) treatment planning. Our implementation follows the concept of coverage-optimized planning that considers explicit error scenarios to calculate and optimize patient-specific probabilities q(\\hat{d}, \\hat{v}) of covering a specific target volume fraction \\hat{v} with a certain dose \\hat{d} . Using a constraint-based reformulation of coverage-based objectives we eliminate the trade-off between coverage and competing objectives during treatment planning. In-depth convergence tests including 324 treatment plan optimizations demonstrate the reliability of coverage-based constraints for varying levels of probability, dose and volume. General clinical applicability of coverage-based constraints is demonstrated for two cases. A sensitivity analysis regarding penalty variations within this planing study based on IMRT treatment planning using (1) coverage-based constraints, (2) coverage-based objectives, (3) probabilistic optimization, (4) robust optimization and (5) conventional margins illustrates the potential benefit of coverage-based constraints that do not require tedious adjustment of target volume objectives.
Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers
NASA Technical Reports Server (NTRS)
Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)
1996-01-01
Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.
Asner, Gregory P; Joseph, Shijo
2015-01-01
Conservation and monitoring of tropical forests requires accurate information on their extent and change dynamics. Cloud cover, sensor errors and technical barriers associated with satellite remote sensing data continue to prevent many national and sub-national REDD+ initiatives from developing their reference deforestation and forest degradation emission levels. Here we present a framework for large-scale historical forest cover change analysis using free multispectral satellite imagery in an extremely cloudy tropical forest region. The CLASlite approach provided highly automated mapping of tropical forest cover, deforestation and degradation from Landsat satellite imagery. Critically, the fractional cover of forest photosynthetic vegetation, non-photosynthetic vegetation, and bare substrates calculated by CLASlite provided scene-invariant quantities for forest cover, allowing for systematic mosaicking of incomplete satellite data coverage. A synthesized satellite-based data set of forest cover was thereby created, reducing image incompleteness caused by clouds, shadows or sensor errors. This approach can readily be implemented by single operators with highly constrained budgets. We test this framework on tropical forests of the Colombian Pacific Coast (Chocó) – one of the cloudiest regions on Earth, with successful comparison to the Colombian government’s deforestation map and a global deforestation map. PMID:25678933
NASA Astrophysics Data System (ADS)
Ivory, S.; Russell, J. L.; Cohen, A. S.
2010-12-01
Threats to tropical biodiversity with serious and costly implications for both ecosystems and human well-being in Africa have led the IPCC to classify this region as vulnerable to negative impacts from climate change. Yet little is known about how vegetation communities respond to altered patterns of rainfall and evaporation. Paleoclimate records within the tropics can help answer questions about how vegetation response to climate forcing changes over time. However, sparse spatial extent of records and uncertainty surrounding the climate-vegetation relationship complicate these insights. Understanding the climatic mechanisms involved in landscape change at all temporal scales creates the need for quantitative constraints of the modern relationship between climatic controls, hydrology, and vegetation. Though modern observational data can help elucidate this relationship, low resolution and complicated rainfall/vegetation associations make them less than ideal. Satellite data of vegetation productivity (NDVI) with continuous high-resolution spatial coverage provides a robust and elegant tool for identifying the link between global and regional controls and vegetation. We use regression analyses of variables either previously proposed or potentially important in regulating Afro-tropical vegetation (insolation, out-going long-wave radiation, geopotential height, Southern Oscillation Index, Indian Ocean Dipole, Indian Monsoon precipitation, sea-level pressure, surface wind, sea-surface temperature) on continuous, time-varying spatial fields of 8km NDVI for sub-Saharan Africa. These analyses show the importance of global atmospheric controls in producing regional intra-annual and inter-annual vegetation variability. Dipole patterns emerge primarily correlated with both the seasonal and inter-annual extent of the Intertropical Convergence Zone (ITCZ). Inter-annual ITCZ variability drives patterns in African vegetation resulting from the effect of insolation anomalies and ENSO events on atmospheric circulation rather than sea surface temperatures or teleconnections to mid/high latitudes. Global controls on tropical atmospheric circulation regulate vegetation throughout sub-Saharan Africa on many time scales through alteration of dry season length and moisture convergence, rather than precipitation amount.
Remote detection of forest damage
NASA Technical Reports Server (NTRS)
Rock, B. N.; Vogelmann, J. E.; Vogelmann, A. F.; Hoshizaki, T.; Williams, D. L.
1986-01-01
The use of remote sensing to discriminate, measure, and map forest damage is evaluated. TM spectal coverage, a helicopter-mounted radiometer, and ground-based surveys were utilized to examine the responses of the spruces and firs of Camels Hump Mountain, Vermont to stresses, such as pollution and trace metals. The basic spectral properties of vegetation are described. Forest damage at the site was estimated as 11.8-76.0 percent for the spruces and 19-43.8 percent for the balsam firs. Shifts in the spectra of the conifers in particular in the near IR region are analyzed, and variations in the mesophyll cell anatomy and pigment content of the spruces and firs are investigated. The relations between canopy moisture and damage is studied. The TM data are compared to aircraft data and found to be well correlated.
The impacts of the dust radiative effect on vegetation growth in the Sahel
NASA Astrophysics Data System (ADS)
Evans, S. M.; Shevliakova, E.; Malyshev, S.; Ginoux, P. A.
2017-12-01
Many studies have been conducted on the effects of dust on rainfall in the Sahel, and generally show that African dust weakens the West African Monsoon, drying the region. This drying is often assumed to reduce vegetation cover for the region, providing a positive feedback with dust emission. There are, however, other competing effects of dust that are also important to plant growth, including a reduction in surface temperature, a reduction in downwelling solar radiation, and an increase in the diffuse fraction of that solar radiation. Using the NOAA/GFDL CM3 model coupled to the dynamic vegetation model LM3, we demonstrate that the combined effect of all these processes is to decrease the vegetation coverage and productivity of the Sahel and West Africa. We accomplish this by comparing experiments with radiatively active dust to experiments with radiatively invisible dust. We find that in modern conditions, the dust radiative effect reduces the net primary productivity of West Africa and the Sahel by up to 30% locally, and when summed over the region accounts for a difference of approximately 0.4 GtC per year. Experiments where the vegetation experiences preindustrial rather than modern CO2 levels show that without carbon fertilization, this loss of productivity would be approximately 10% stronger. In contrast, during preindustrial conditions the vegetation response is less than half as strong, despite the dust induced rainfall and temperature anomalies being similar. We interpret this as the vegetation being less susceptible to drought in a less evaporative climate. These changes in vegetation create the possibility of a dust-vegetation feedback loop whose strength varies with the mean state of the climate, and which may grow stronger in the future.
Estimation of Physical Parameters of a Multilayered Multi-Scale Vegetated Surface
NASA Astrophysics Data System (ADS)
Hosni, I.; Bennaceur Farah, L.; Naceur, M. S.; Farah, I. R.
2016-06-01
Soil moisture is important to enable the growth of vegetation in the way that it also conditions the development of plant population. Additionally, its assessment is important in hydrology and agronomy, and is a warning parameter for desertification. Furthermore, the soil moisture content affects exchanges with the atmosphere via the energy balance at the soil surface; it is significant due to its impact on soil evaporation and transpiration. Therefore, it conditions the energy transfer between Earth and atmosphere. Many remote sensing methods were tested. For the soil moisture; the first methods relied on the optical domain (short wavelengths). Obviously, due to atmospheric effects and the presence of clouds and vegetation cover, this approach is doomed to fail in most cases. Therefore, the presence of vegetation canopy complicates the retrieval of soil moisture because the canopy contains moisture of its own. This paper presents a synergistic methodology of SAR and optical remote sensing data, and it's for simulation of statistical parameters of soil from C-band radar measurements. Vegetation coverage, which can be easily estimated from optical data, was combined in the backscattering model. The total backscattering was divided into the amount attributed to areas covered with vegetation and that attributed to areas of bare soil. Backscattering coefficients were simulated using the established backscattering model. A two-dimensional multiscale SPM model has been employed to investigate the problem of electromagnetic scattering from an underlying soil. The water cloud model (WCM) is used to account for the effect of vegetation water content on radar backscatter data, whereof to eliminate the impact of vegetation layer and isolate the contributions of vegetation scattering and absorption from the total backscattering coefficient.
Contribution of climate and fires to vegetation composition in the boreal forest of China
NASA Astrophysics Data System (ADS)
Venevsky, S.; Wu, C.; Sitch, S.
2017-12-01
Climate is well known as an important determinant of biogeography. Although climate is directly important for vegetation composition in the boreal forests, these ecosystems are strongly sensitive to an indirect effect of climate via fire disturbance. However, the driving balance of fire disturbance and climate on composition is poorly understood. In this study we quantitatively analyzed their individual contributions for the boreal forests of the Heilongjiang province, China and their response to climate change using four warming scenarios (+1.5, 2, 3, and 4°C). This study employs the statistical methods of Redundancy Analysis (RDA) and variation partitioning combined with simulation results from a Dynamic Global Vegetation Model, SEVER-DGVM, and remote sensing datasets of global land cover (GLC2000) and the Global Fire Emissions Database (GFED3). Results show that the vegetation distribution for the present day is mainly determined directly by climate (35%) rather than fire (1%-10.9%). However, with a future global warming of 1.5°C, local vegetation composition will be determined by fires rather than climate (36.3% > 29.3%). Above a 1.5°C warming, temperature will be more important than fires in regulating vegetation distribution although other factors like precipitation can also contribute. The spatial pattern in vegetation composition over the region, as evaluated by Moran's Eigenvector Map (MEM), has a significant impact on local vegetation coverage, i.e. composition at any individual location is highly related to that in its neighborhood. It represents the largest contribution to vegetation distribution in all scenarios, but will not change the driving balance between climate and fires. Our results are highly relevant for forest and wildfires' management.
Evaluating ESA CCI Soil Moisture in East Africa
NASA Technical Reports Server (NTRS)
McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R.; Wang, Shugong; Peters-Lidard, Christa D.; Verdin, James P.
2016-01-01
To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASAs Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R greater than 0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.
RIPGIS-NET: a GIS tool for riparian groundwater evapotranspiration in MODFLOW.
Ajami, Hoori; Maddock, Thomas; Meixner, Thomas; Hogan, James F; Guertin, D Phillip
2012-01-01
RIPGIS-NET, an Environmental System Research Institute (ESRI's) ArcGIS 9.2/9.3 custom application, was developed to derive parameters and visualize results of spatially explicit riparian groundwater evapotranspiration (ETg), evapotranspiration from saturated zone, in groundwater flow models for ecohydrology, riparian ecosystem management, and stream restoration. Specifically RIPGIS-NET works with riparian evapotranspiration (RIP-ET), a modeling package that works with the MODFLOW groundwater flow model. RIP-ET improves ETg simulations by using a set of eco-physiologically based ETg curves for plant functional subgroups (PFSGs), and separates ground evaporation and plant transpiration processes from the water table. The RIPGIS-NET program was developed in Visual Basic 2005, .NET framework 2.0, and runs in ArcMap 9.2 and 9.3 applications. RIPGIS-NET, a pre- and post-processor for RIP-ET, incorporates spatial variability of riparian vegetation and land surface elevation into ETg estimation in MODFLOW groundwater models. RIPGIS-NET derives RIP-ET input parameters including PFSG evapotranspiration curve parameters, fractional coverage areas of each PFSG in a MODFLOW cell, and average surface elevation per riparian vegetation polygon using a digital elevation model. RIPGIS-NET also provides visualization tools for modelers to create head maps, depth to water table (DTWT) maps, and plot DTWT for a PFSG in a polygon in the Geographic Information System based on MODFLOW simulation results. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Lian, Xu; Zeng, Zhenzhong; Yao, Yitong; Peng, Shushi; Wang, Kaicun; Piao, Shilong
2017-02-01
There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature (Tair). Using satellite observations and in situ station-based data sets, we conducted a global-scale assessment of the spatial and seasonal variations in the difference between daily maximum LST and daily maximum Tair (δT, LST - Tair) during 2003-2014. Spatially, LST is generally higher than Tair over arid and sparsely vegetated regions in the middle-low latitudes, but LST is lower than Tair in tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, δT is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the midlatitudes and boreal regions. The seasonality in the midlatitudes is a result of the asynchronous responses of LST and Tair to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. Our study identified substantial spatial heterogeneity and seasonality in δT, as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface air temperature changes using remote sensing, particularly in remote regions.
Hernandez, J E; Epstein, L D; Rodriguez, M H; Rodriguez, A D; Rejmankova, E; Roberts, D R
1997-03-01
We propose the use of generalized tree models (GTMs) to analyze data from entomological field studies. Generalized tree models can be used to characterize environments with different mosquito breeding capacity. A GTM simultaneously analyzes a set of predictor variables (e.g., vegetation coverage) in relation to a response variable (e.g., counts of Anopheles albimanus larvae), and how it varies with respect to a set of criterion variables (e.g., presence of predators). The algorithm produces a treelike graphical display with its root at the top and 2 branches stemming down from each node. At each node, conditions on the value of predictors partition the observations into subgroups (environments) in which the relation between response and criterion variables is most homogeneous.
A Five-Year Analysis of MODIS NDVI and NDWI for Rangeland Drought Assessment: Preliminary Results
NASA Astrophysics Data System (ADS)
Gu, Y.; Brown, J. F.; Verdin, J. P.; Wardlow, B.
2006-12-01
Drought is one of the most costly natural disasters in the United States. Traditionally, drought monitoring has been based on weather station observations, which lack the continuous spatial coverage needed to adequately characterize and monitor detailed spatial patterns of drought conditions. Satellite remote sensing observations can provide a synoptic view of the land and provide a spatial context for measuring drought. A common satellite-based index, the normalized difference vegetation index (NDVI) has a 30-year history of use for vegetation condition monitoring. NDVI is calculated from the visible red and near infrared channels and measures the changes in chlorophyll absorption and reflection in the spongy mesophyll of the vegetation canopy that are reflected in these respective bands. The normalized difference water index (NDWI) is another index, derived from the near-infrared and short wave infrared channels, and reflects changes in both the water content and spongy mesophyll in the vegetation canopy. As a result, the NDWI is influenced by both desiccation and wilting in the vegetation canopy and may be a more sensitive indicator than the NDVI for large- area drought monitoring. The objective of this study was to process and evaluate a 5-year history of 500-meter NDVI and NDWI data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument and to investigate methods for measuring and monitoring drought in rangeland over the southern plains of the United States. This initial study included: (1) the development of a climatological database for MODIS NDVI and NDWI, (2) a study of the relationship between the NDVI, NDWI, and drought condition over rangeland, (3) the development of a method to provide threshold NDVI/NDWI values under drought conditions based on the 5-year NDVI/NDWI/drought condition analysis, and (4) the investigation of additional vegetation drought information provided by the NDWI versus the NDVI in a 5-year comparison of the two indices. The MODIS data were obtained from the Land Processes Distributed Active Archive System. Results show strong relationships among NDVI, NDWI, and drought analyzed over grasslands in the Flint Hills region of Kansas and Oklahoma. During the summer months, the average NDVI and NDWI values were consistently lower (NDVI<0.5 and NDWI<0.3) for the tallgrass prairie under drought conditions than under normal climate conditions (NDVI>0.6 and NDWI>0.4). The distinctions between drought conditions and normal climate conditions are based on the historic U.S. Drought Monitor maps and the historic Palmer index data. To take advantage of information contained in both indices, we calculated the difference between NDVI and NDWI (NDVI-NDWI). The difference between NDVI and NDWI slightly increases during the summer drought condition. Based on these analyses, the NDWI appears to be more sensitive than NDVI to drought conditions. The results of statistical analysis of the relationships among these indices will be presented in the poster.
NASA Technical Reports Server (NTRS)
Mascaro, Giuseppe; Vivoni, Enrique R.; Deidda, Roberto
2010-01-01
Accounting for small-scale spatial heterogeneity of soil moisture (theta) is required to enhance the predictive skill of land surface models. In this paper, we present the results of the development, calibration, and performance evaluation of a downscaling model based on multifractal theory using aircraft!based (800 m) theta estimates collected during the southern Great Plains experiment in 1997 (SGP97).We first demonstrate the presence of scale invariance and multifractality in theta fields of nine square domains of size 25.6 x 25.6 sq km, approximately a satellite footprint. Then, we estimate the downscaling model parameters and evaluate the model performance using a set of different calibration approaches. Results reveal that small-scale theta distributions are adequately reproduced across the entire region when coarse predictors include a dynamic component (i.e., the spatial mean soil moisture
The WEPP Model Application in a Small Watershed in the Loess Plateau
Han, Fengpeng; Ren, Lulu; Zhang, Xingchang; Li, Zhanbin
2016-01-01
In the Loess Plateau, soil erosion has not only caused serious ecological and environmental problems but has also impacted downstream areas. Therefore, a model is needed to guide the comprehensive control of soil erosion. In this study, we introduced the WEPP model to simulate soil erosion both at the slope and watershed scales. Our analyses showed that: the simulated values at the slope scale were very close to the measured. However, both the runoff and soil erosion simulated values at the watershed scale were higher than the measured. At the slope scale, under different coverage, the simulated erosion was slightly higher than the measured. When the coverage is 40%, the simulated results of both runoff and erosion are the best. At the watershed scale, the actual annual runoff of the Liudaogou watershed is 83m3; sediment content is 0.097 t/m3, annual erosion sediment 8.057t and erosion intensity 0.288 t ha-1 yr-1. Both the simulated values of soil erosion and runoff are higher than the measured, especially the runoff. But the simulated erosion trend is relatively accurate after the farmland is returned to grassland. We concluded that the WEPP model can be used to establish a reasonable vegetation restoration model and guide the vegetation restoration of the Loess Plateau. PMID:26963704
Kang, Sung-Ryong; King, Sammy L.
2013-01-01
Hydrologic connectivity and environmental variation can influence nekton assemblages in coastal ecosystems. We evaluated the effects of hydrologic connectivity (permanently connected pond: PCP; temporary connected pond: TCP), salinity, vegetation coverage, water depth and other environmental variables on seasonal nekton assemblages in freshwater, brackish, and saline marshes of the Chenier Plain, Louisiana, USA. We hypothesize that 1) nekton assemblages in PCPs have higher metrics (density, biomass, assemblage similarity) than TCPs within all marsh types and 2) no nekton species would be dominant across all marsh types. In throw traps, freshwater PCPs in Fall (36.0 ± 1.90) and Winter 2009 (43.2 ± 22.36) supported greater biomass than freshwater TCPs (Fall 2009: 9.1 ± 4.65; Winter 2009: 8.3 ± 3.42). In minnow traps, saline TCPs (5.9 ± 0.85) in Spring 2009 had higher catch per unit effort than saline PCPs (0.7 ± 0.67). Our data only partially support our first hypothesis as freshwater marsh PCPs had greater assemblage similarity than TCPs. As predicted by our second hypothesis, no nekton species dominated across all marsh types. Nekton assemblages were structured by individual species responses to the salinity gradient as well as pond habitat attributes (submerged aquatic vegetation coverage, dissolved oxygen, hydrologic connectivity).
A terrestrial lidar assessment of climate change impacts on forest structure
NASA Astrophysics Data System (ADS)
van Aardt, J. A.; Kelbe, D.; Sacca, K.; Giardina, C. P.; Selmants, P. C.; Litton, C. M.; Asner, G. P.
2016-12-01
The projected impact of climate change on ecosystems has received much scientific attention, specifically related to geographical species shifts and carbon allocation. This study, however, was undertaken to assess the expected changes in tropical forest structure as a function of changing temperatures. Our study area is a constrained model ecological system and is located on the eastern flank of Mauna Kea Volcano, Hawaii, USA. Nine plots from this closed-canopy, tropical montane wet forest fall along an elevation-based 5.2°C mean annual temperature (MAT) gradient, where multiple other biotic and abiotic factors are held nearly constant. This MAT gradient has been used to assess subtle temperature effects on ecosystem functioning including carbon cycles, but less has been done on the effects of temperature on vegetation structure. We acquired vegetation structural data using a SICK-LMS151 terrestrial laser scanner (905 nm) for full 270x360° coverage. This Compact Biomass Lidar (CBL) was developed by Rochester Institute of Technology and the University of Massachusetts, Boston. Data for each plot along the temperature gradient were collected in a 20 m x 20 m configuration at a 5 m scan spacing. Initial challenges, related to the irregular radial scan pattern and registration of 25 scans per plot, were addressed in order to extract normalized vegetation density metrics and to mitigate occlusion effects, respectively. However, we believe that the CBL scans can be assessed independently, i.e., treating 25 scans/plot as a population sample. We derived height statistics, return density metrics, canopy rugosity, and higher-order metrics in order to describe the differences in vegetation structure, which ultimately will be tied to the elevation-induced temperature range. We hypothesized that, for this MAT gradient (i) vertical vegetation stratification; (ii) diameter distributions; and (iii) aboveground biomass will differ significantly, while more species-dependent canopy rugosity remain stable. Our results support these hypotheses, allowing for future studies of vegetation structural responses to static and dynamic climate drivers. The findings have implications for forest management, mitigation strategies to limit losses in carbon sequestration, and forest inventory in structurally complex forests.
NASA Astrophysics Data System (ADS)
Hunt, E. D.; Otkin, J.; Zhong, Y.
2017-12-01
Flash drought, characterized by the rapid onset of abnormally warm and dry weather conditions that leads to the rapid depletion of soil moisture and rapid deteriorations in vegetation health. Flash recovery, on the other hand, is characterized by a period(s) of intense precipitation where drought conditions are quickly eradicated and may be replaced by saturated soils and flooding. Both flash drought and flash recovery are closely tied to the rapid depletion or recharge of root zone soil moisture; therefore, soil moisture observations are very useful for monitoring their evolution. However, in-situ soil moisture observations tend to be concentrated over small regions and thus other methods are needed to provide a spatially continuous depiction of soil moisture conditions. One option is to use top soil moisture retrievals from the Soil Moisture Active Passive (SMAP) sensor. SMAP provides routine coverage of surface soil moisture (0-5 cm) over most of the globe, including the timespan (2015) and region of interest (Texas) that are the focus of our study. This region had an unusual sequence of flash recovery-flash drought-flash recovery during an six-month period during 2015 that provides a valuable case study of rapid transitions between extreme soil moisture conditions. During this project, SMAP soil moisture retrievals are being used in combination with in-situ soil moisture observations and assimilated into the Land Information System (LIS) to provide information about soil moisture content. LIS also provides greenness vegetation fraction data over large regions. The relationship between soil moisture and vegetation conditions and the response of the vegetation to the rapidly changing conditions are also assessed using the satellite thermal infrared based Evaporative Stress Index (ESI) that depicts anomalies in evapotranspiration, along with other vegetation datasets (leaf area index, greenness fraction) derived using MODIS observations. Preliminary results with the Noah land surface model (inside of LIS) shows that it broadly captured the soil moisture evolution during the 2015 sequence but tended to underestimate the magnitude of soil moisture anomalies. The ESI also showed negative anomalies during the drought. These and other results will be presented at the annual meeting.
Quantification of Ecological Changes by Remote Sensing
NASA Astrophysics Data System (ADS)
Roerink, Gerbert J.; Danes, Matthijs H. G. I.
2010-05-01
During the recent year there is a growing interest for ecological trends and conditions. Satellite images are very suitable to monitor the ecological conditions as they are sensitive to vegetation properties, provide for objective information on a regular basis and have a complete land surface coverage. However, up to now monitoring of the vegetation properties with remote sensing is done qualitatively only, i.e. the land cover is classified in several classes and changes between years are monitored. In this way, quantitative changes within a certain land cover class cannot be monitored, like for example start of the growing season or maximum vegetation peak. This paper describes a method to overcome these shortcomings. The method is based upon quantification of the plant phenology by a time series analysis of satellite images. The HANTS time series algorithm is applied to MODIS 16-days-max-NDVI composite images of the Netherlands in the years 2003 (relatively dry and cold winter) and 2007 (relatively wet). This algorithm considers only the most significant frequencies expected to be present in the time profiles, and applies a least squares curve fitting procedure based on harmonic components (cosines). For each frequency the amplitude and phase of the cosine function is determined during an iterative procedure. Input data points that have a large positive or negative deviation from the current curve are removed by assigning a weight of zero to them. After recalculation of the coefficients on the basis of the remaining points, the procedure is repeated until the maximum error is acceptable or the number of remaining points has become too small. The resulting amplitude and phase values describe in a quantitative way the plant phenology. The next step is to subtract the amplitude and phase values from the two considered years. Agricultural areas are masked as their land cover is changing frequently by definition due to the rotating cropping systems at agricultural fields. The remaining natural areas are examined in detail. The differences are the result from weather conditions, human interventions and other causes, like for example plant disease or forest fires. Weather conditions are responsible for the overall trend in differences: the average NDVI was lower in 2003 (less precipitation), the annual amplitude was higher in 2003 (colder winter), and annual phase started later in 2003 (colder winter). However, extreme differences are detected as well. Examples of these so-called "hot-spots" are investigated in detail with aerial photography from 2003 and 2006. In most cases human interventions, like forest cutting, giving agricultural lands back to nature or removal of shrubs, can be indentified as main explanation for the hot-spots. However, in some cases the explanation is less easy, which is however also the strength of the method. The described method is able to detect quantitatively ecological or environmental changes with complete land surface coverage and has the potential to monitor land surface with its vegetation dynamics in an operational way.
NASA Astrophysics Data System (ADS)
Kim, Y.; Wang, G.
2006-05-01
Soil moisture-vegetation-precipitation feedbacks tend to enhance soil moisture memory in some areas of the globe, which contributes to the subseasonal and seasonal climate prediction skill. In this study, the impact of vegetation on precipitation over North America is investigated using a coupled land-atmosphere model CAM3- CLM3. The coupled model has been modified to include a predictive vegetation phenology scheme and validated against the MODIS data. Vegetation phenology is modeled by updating the leaf area index (LAI) daily in response to cumulative and concurrent hydrometeorological conditions. First, driven with the climatological SST, a large group of 5-member ensembles of simulations from the late spring and summer to the end of year are generated with the different initial conditions of soil moisture. The impact of initial soil moisture anomalies on subsequent precipitation is examined with the predictive vegetation phenology scheme disabled/enabled ("SM"/"SM_Veg" ensembles). The simulated climate differences between "SM" and "SM_Veg" ensembles represent the role of vegetation in soil moisture-vegetation- precipitation feedback. Experiments in this study focus on how the response of precipitation to initial soil moisture anomalies depends on their characteristics, including the timing, magnitude, spatial coverage and vertical depth, and further how it is modified by the interactive vegetation. Our results, for example, suggest that the impact of late spring soil moisture anomalies is not evident in subsequent precipitation until early summer when local convective precipitation dominates. With the summer wet soil moisture anomalies, vegetation tends to enhance the positive feedback between soil moisture and precipitation, while vegetation tends to suppress such positive feedback with the late spring anomalies. Second, the impact of vegetation feedback is investigated by driving the model with the inter-annually varying monthly SST (1983-1994). With the predictive vegetation phenology disabled/enabled ("SM"/"SM_Veg" ensembles), the simulated climates are compared with the observation. This will present the role of an interactive or predictive vegetation phenology scheme in subseasonal and seasonal climate prediction. Specifically, the extreme climate events such as drought in 1988 and flood in 1993 over the Midwestern United States will be the focus of results analyses.
Floristic and vegetation successional processes within landslides in a Mediterranean environment.
Neto, Carlos; Cardigos, Patrícia; Oliveira, Sérgio Cruz; Zêzere, José Luís
2017-01-01
Floristic and vegetation analysis in seven Mediterranean landslides led to the understanding of the successional processes occurring in different landslide disturbed sectors. Our study showed that in landslides that occurred between 1996 and 2010 there is a clear differentiation between the three main landslide sectors (scarp, main body and foot) concerning floristic composition, vegetation structure, floristic richness, successional processes and plant functional type. Additional differences were found between landslide areas and undisturbed agricultural areas adjacent to landslides. In this study 48 floristic relevés were made using a stratified random sampling design. The main landslide body exhibits the highest floristic richness whereas the landslide scarp has the lowest coverage rate and the highest presence of characteristic species from ruderal and strongly perturbed habitats. Finally, the landslide foot shows a late stage in the succession (maquis or pre-forest stage) with a high dominance of vines. We further discuss the importance of landslides as reservoirs of biodiversity especially for Mediterranean orchids. Copyright © 2016 Elsevier B.V. All rights reserved.
Understorey vegetation along a heavy-metal pollution gradient in SW Finland.
Salemaa, M; Vanha-Majamaa, I; Derome, J
2001-01-01
Understorey vegetation of Scots pine forests was studied along a 8-km transect running SE from a Cu-Ni smelter at Harjavalta, SW Finland. Long-term accumulation of heavy metals and sulphur in the forest ecosystem has drastically changed plant communities. Vegetation was almost absent up to a distance of 0.5 km from the smelter. The total coverage and the number of plant species increased with increasing distance from the smelter. Ordination by global non-metric multidimensional scaling (GNMDS) indicated that the floristic composition was differentiated in response to the pollution level. The main compositional gradient of GNMDS was correlated with the heavy metal concentrations in the organic soil layer and with the size of the overstorey trees. Vascular plants were more pollution-resistant than ground lichens, whereas mosses were the most sensitive plant group. In addition to heavy metals, nutrient imbalances and the considerably reduced water-holding capacity of the surface soil also restrict plant recolonisation on the degraded sites.
The impact of habitat fragmentation on tsetse abundance on the plateau of eastern Zambia.
Ducheyne, E; Mweempwa, C; De Pus, C; Vernieuwe, H; De Deken, R; Hendrickx, G; Van den Bossche, P
2009-09-01
Tsetse-transmitted human or livestock trypanosomiasis is one of the major constraints to rural development in sub-Saharan Africa. The epidemiology of the disease is determined largely by tsetse fly density. A major factor, contributing to tsetse population density is the availability of suitable habitat. In large parts of Africa, encroachment of people and their livestock resulted in a destruction and fragmentation of such suitable habitat. To determine the effect of habitat change on tsetse density a study was initiated in a tsetse-infested zone of eastern Zambia. The study area represents a gradient of habitat change, starting from a zone with high levels of habitat destruction and ending in an area where livestock and people are almost absent. To determine the distribution and density of the fly, tsetse surveys were conducted throughout the study area in the dry and in the rainy season. Landsat ETM+ imagery covering the study area were classified into four land cover classes (munga, miombo, agriculture and settlements) and two auxiliary spectral classes (clouds and shadow) using a Gaussian Maximum Likelihood Classifier. The classes were regrouped into natural vegetation and agricultural zone. The binary images were overlaid with hexagons to obtain the spatial spectrum of spatial pattern. Hexagonal coverage was selected because of its compact and regular form. To identify scale-specific spatial patterns and associated entomological phenomena, the size of the hexagonal coverage was varied (250 and 500 m). Per coverage, total class area, mean patch size, number of patches and patch size standard deviation were used as fragmentation indices. Based on the fragmentation index values, the study zone was classified using a Partitioning Around Mediods (PAM) method. The number of classes was determined using the Wilks' lambda coefficient. To determine the impact of habitat fragmentation on tsetse abundance, the correlation between the fragmentation indices and the index of apparent density of the flies was determined and habitat changes most affecting tsetse abundance was identified. From this it followed that there is a clear relationship between habitat fragmentation and the abundance of tsetse flies. Heavily fragmented areas have lower numbers of tsetse flies, but when the fragmentation of natural vegetation decreases, the number of tsetse flies increases following a sigmoidal-like curve.
NASA Astrophysics Data System (ADS)
Bigot, S.; Dedieu, Jp.; Rome, S.
2009-04-01
Sylvain.bigot@ujf-grenoble.fr Jean-pierre.dedieu@hmg.inpg.fr Sandra.rome@ujf-grenoble.fr Estimation of the Snow Covered Area (SCA) is an important issue for meteorological application and hydrological modeling of runoff. With spectral bands in the visible, near and middle infrared, the SPOT-4 and -5 VEGETATION sensors are used to detect snow cover because of large differences between reflectance from snow covered and snow free surfaces. At the same time, it allows separation between snow and clouds. Moreover, the sensor provides a daily coverage of large areas. However, as the pixel size is 1km x 1km, a VGT pixel may be partially covered by snow, particularly in Alpine areas, where snow may not be present in valleys lying at lower altitudes. Also, variation of reflectance due to differential sunlit effects as a function of slope and aspect, as well as bidirectional effects may be present in images. Nevertheless, it is possible to estimate snow cover at the sub-pixel level with a relatively good accuracy and with very good results if the sub-pixel estimations are integrated for a few pixels relative to an entire watershed. Application of this approach in the French Alps is presented over the Vercors Natural Park area (N 44°.50' / E 05°.30'), based on 10-day Synthetic products for the 1998-2008 time period, and using the NDSII (Normalized Difference Snow/Ice Index) as numerical threshold. This work performs an analysis of climate impact on snow cover spatial and temporal variability, at mid-elevation mountain range (1500 m asl) under temperate climate conditions. The results indicates (i) a increasing temporal and spatial variability of snow coverage, and (ii) a high sensitivity to low variation of air temperature, often close to 1° C. This is the case in particular for the beginning and the end of the winter season. The regional snow cover depletion is both influenced by thermal positives anomalies (e.g. 2000 and 2006), and the general trend of rising atmospheric temperatures since the late 1980s.
NASA Astrophysics Data System (ADS)
Liu, P.; Bongiovanni, T. E.; Monsivais-Huertero, A.; Bindlish, R.; Judge, J.
2013-12-01
Accurate estimates of crop yield are important for managing agricultural production and food security. Although the crop growth models, such as the Decision Support System Agrotechnology Transfer (DSSAT), have been used to simulate crop growth and development, the crop yield estimates still diverge from the reality due to different sources of errors in the models and computation. Auxiliary observations may be incorporated into such dynamic models to improve predictions using data assimilation. Active and passive (AP) microwave observations at L-band (1-2 GHz) are sensitive to dielectric and geometric properties of soil and vegetation, including soil moisture (SM), vegetation water content (VWC), surface roughness, and vegetation structure. Because SM and VWC are one of the governing factors in estimating crop yield, microwave observations may be used to improve crop yield estimates. Current studies have shown that active observations are more sensitive to the surface roughness of soil and vegetation structure during the growing season, while the passive observations are more sensitive to the SM. Backscatter and emission models linked with the DSSAT model (DSSAT-A-P) allow assimilation of microwave observations of backscattering coefficient (σ0) and brightness temperature (TB) may provide biophysically realistic estimates of model states and parameters. The present ESA Soil Moisture Ocean Salinity (SMOS) mission provides passive observations at 1.41 GHz at 25 km every 2-3 days, and the NASA/CNDAE Aquarius mission provides L-band AP observations at spatial resolution of 150 km with a repeat coverage of 7 days for global SM products. In 2014, the planned NASA Soil Moisture Active Passive mission will provide AP observations at 1.26 and 1.41 GHz at the spatial resolutions of 3 and 30 km, respectively, with a repeat coverage of 2-3 days. The goal of this study is to understand the impacts of assimilation of asynchronous and synchronous AP observations on crop yield estimates. An Ensemble Kalman Filter-based methodology is implemented to incorporate σ0 and TB from Aquarius and SMOS in the DSSAT-A-P model to improve crop yield for two growing seasons of soybean -a normal and a drought affected season- in the rain-fed region of the Brazilian La Plata Basin, South America. Different scenarios of assimilation, including active only, passive only, and combined AP observations were considered. The elements of the state vector included both model states and parameters related to soil and vegetation. The number of elements included in the state vector changed depending upon different scenarios of assimilation and also upon the growth stages. Crop yield estimates were compared for different scenarios during the two seasons. A synthetic experiment conducted previously showed an improvement of crop estimates in the RMSD by 90 kg/ha using combined AP compared to the openloop and active only assimilation over the region.
Feng, Li; Li, Xin-Rong; Guo, Qun; Zhang, Jing-Guang; Zhang, Zhi-Shan
2011-05-01
Aimed to examine the effects of highway on the vegetation species composition in arid desert area, forty-eight transects perpendicular to the provincial highway 201 from Shapotou to Jing-tai in the southeastern margin of Tengger Desert were installed, with the vegetation species distribution along a distance gradient from the road edge investigated. The results showed that with increasing distance from the road edge, the species number, coverage, biomass, and alpha-diversity of herbaceous plants declined, but had no significant differences with the control beyond 5 m. Within 0-6 m to the road edge, the herbaceous plant height was greater than that of the control, but their density had less change. Within 0-2 m to the road edge, the species turnover rate of herbaceous plants was lower; at 2-5m, this rate was the highest; while beyond 10 m, the species composition of herbaceous plants was similar to that of the control. The herbaceous plant community at the road edge was dominated by gramineous plants, with the disturbance-tolerant species Pennisetum centrasiaticum, Chloris virgata, and Agropyron cristatum accounting for 68.6% of the total. C. virgata beyond 1 m to the road edge had a rapid decrease in its individual number and presence frequency, P. centrasiaticum and A. cristatum beyond 2 m also showed a similar trend, while the composite plants Artemisia capillaris and A. frigida beyond 2 m from the road edge had a rapid increase in its individual number, accounting for 70% of the herbaceous plants. At the road edge, the coverage and density of shrubs were significantly lower than those of the control, but the species composition had no significant difference.
Vegetation Health and Productivity Indicators for Sustained National Climate Assessments
NASA Astrophysics Data System (ADS)
Jones, M. O.; Running, S. W.
2014-12-01
The National Climate Assessment process is developing a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public. Implementing a 14 year record of Gross and Net Primary Productivity (GPP/NPP) derived from the NASA EOS MODIS satellite sensor we demonstrate how these products can serve as Ecosystem Productivity and Vegetation Health National Climate Indicators for implementation in sustained National Climate Assessments. The NPP product combines MODIS vegetation data with daily global meteorology to calculate annual growth of all plant material at 1 sq. km resolution. NPP anomalies identify regions with above or below average plant growth that may result from climate fluctuations and can inform carbon source/sink dynamics, agricultural and forestry yield measures, and response to wildfire or drought conditions. The GPP product provides a high temporal resolution (8-day) metric of vegetation growth which can be used to monitor short-term vegetation response to extreme events and implemented to derive vegetation phenology metrics; growing season start, end, and length, which can elucidate land cover and regionally specific vegetation responses to a changing climate. The high spatial resolution GPP and NPP indicators can also inform and clarify responses seen from other proposed Pilot Indicators such as forest growth/productivity, land cover, crop production, and phenology. The GPP and NPP data are in continuous production and will be sustained into the future with the next generation satellite missions. The long-term Ecosystem Productivity and Vegetation Health Indicators are ideal for use in sustained National Climate Assessments, providing regionally specific responses to a changing climate and complete coverage at the national scale.
Analysis of change in marsh types of coastal Louisiana, 1978-2001
Linscombe, Robert G.; Hartley, Stephen B.
2011-01-01
Scientists and geographers have provided multiple datasets and maps to document temporal changes in vegetation types and land-water relationships in coastal Louisiana. Although these maps provide useful historical information, technological limitations prevented these and other mapping efforts from providing sufficiently detailed calculations of areal changes and shifts in habitat coverage. The current analysis of habitat change draws upon these past mapping efforts but is based on an advanced, geographic information system dataset that was created by using Landsat 5 Thematic Mapper imagery and digital orthophoto quarter quadrangles. The objective of building this dataset was to more specifically define land-water relationships over time in coastal Louisiana, and it provides the most detailed analysis of vegetation shifts to date. In the current study, we have attempted to explain these vegetation shifts by interpreting them in the context of rainfall records, data from the Palmer Drought Severity Index, and salinity data. During the 23 years we analyzed, total marsh acreage decreased, with conversion of marsh to open water. Furthermore, the general trend across coastal Louisiana was a shift to increasingly fresh marsh types. Although fresh marsh remained almost the same during the 1978-88 study period, there were greater increases during the 1988-2001 study periods. Intermediate marsh followed the same pattern, whereas brackish marsh showed a reverse (decreasing) pattern. Changes in saline (saltwater) marsh were minimal. Interpreting shifts in marsh vegetation types by using climate and salinity data provides better understanding of factors influencing these changes and, therefore, can improve our ability to make predictions about future marsh loss related to vegetation changes. Results of our study indicate that precipitation fluctuations prior to vegetation surveys impacted salinities differently across the coast. For example, a wet 6 months prior to the survey may or may not have made up for a dry period during the earlier 12 months. More research is needed to better understand rainfall periods and how they affect salinity changes. The ability to understand past dynamics and to anticipate future trends in vegetation change and related land loss in the coastal region of Louisiana is a vital part of ongoing and future efforts to conserve its critical wetland ecosystem. With the loss of marsh and resultant changes in hydrology, it is likely that changes in marsh type may show greater variation in the future, even if given only minor changes in precipitation levels.
NASA Astrophysics Data System (ADS)
Gebrehiwot, Mesfin; Kifle, Demeke; Triest, Ludwig
2017-12-01
Understanding the biodiversity value of littoral zones of lakes is a priority for aquatic biodiversity conservation. However, less emphasis has been given to the littoral part of tropical African lakes, with many of the previous researches focusing only on the open water side. The aim of the present study was, therefore, to investigate the impact of the littoral zone of a shallow freshwater tropical lake (Ziway, Ethiopia), dominated by two emergent macrophytes, on zooplankton community structure. We hypothesized that the wetland vegetation serves as a preferred microhabitat for zooplankton communities. A lake with substantial coverage of emergent macrophytes was monitored monthly from January to August, 2016. The monitoring included the measurements of physical, chemical, and biological parameters. Sampling sites were selected to represent areas of the macrophyte vegetation ( Typha latifolia and Phragmites australis) and the open water part of the lake. Sites with macrophyte vegetation were found to be the home of more dense and diverse zooplankton community. However, during the period of high vegetation loss, the density of crustacean zooplankton showed significant reduction within the patches of macrophytes. From biodiversity conservation perspective, it was concluded that the preservation of such small areas of macrophytes covering the littoral zone of lakes could be as important as protecting the whole lake. However, the rapid degradation of wetland vegetation by human activities is a real threat to the lake ecosystem. In the not-too-far future, it could displace and evict riparian vegetation and the biota it supports.
Modelling post-fire vegetation recovery in Portugal
NASA Astrophysics Data System (ADS)
Bastos, A.; Gouveia, C.; Dacamara, C. C.; Trigo, R. M.
2011-05-01
Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 yr (1998-2009), at 1 × 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In what respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus Pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland-shrub, which tend to dominate the areas following the fire event.
Modelling post-fire vegetation recovery in Portugal
NASA Astrophysics Data System (ADS)
Bastos, A.; Gouveia, C. M.; Dacamara, C. C.; Trigo, R. M.
2011-12-01
Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 years (1998-2009), at 1 km × 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland-shrub, which tend to dominate the areas following the fire event.
Shore Vegetation of Lakes Oahe and Sakakawea, Mainstream Missouri River Reservoirs.
1978-04-01
Atriplex rosea, Polygonum ramosissimum, Thlaspi arvense and Xanthium strumarium were also important on ungrazed plots and were reduced or absent on grazed... strumarium were all important on ungrazed plots, and absent on grazed plots at Minnconjou. Melilotus spp. and Thlaspi arvense were also important on ungrazed...the increase in coverage with fertilization of Chenopodium album, from 0% to 75%, and in :125 Xanthium strumarium , from 14%to 28%, Melilotus s de
AVHRR-based drought-observing system for monitoring the environment and socioeconomic activities
NASA Astrophysics Data System (ADS)
Kogan, F.
From all natural disaster, drought is the least understandable and the most damaging environmental phenomenon. Although in pre-satellite era, climate data were used for drought monitoring, drought specifics created problems in early drought detection start/end, monitoring its expansion/contraction, intensity and area coverage and the most important, timely estimation of the impacts on the environment and socioeconomic activities. The latest prevented to take prompt measures in mitigating negative consequences of drought for the society. Advances in remote sensing of the past ten years, contributed to the development of comprehensive drought monitoring system and numerous applications, which helped to make decisions for monitoring the environment and predicting sustainable socioeconomic activities. This paper discusses satellite-based land-surface observing system, which provides wells of information used for monitoring such unusual natural disaster as drought. This system was developed from the observations of the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA operational polar-orbiting satellites. The AVHRR data were packed into the Global Vegetation Index (GVI) product, which have served the global community since 1981. The GVI provided reflectances and indices (4 km spacial resolution) every seven days for each 16 km map cell between 75EN and 55ES covering all land ecosystems. The data includes raw and calibrated radiances in the visible, near infrared and infrared spectral bands, processed (with eliminated high frequency noise) radiances, normalized difference vegetation index (NDVI), 20-year climatology, vegetation condition indices and also products, such as vegetation health, drought, vegetation fraction, fire risk etc. In the past ten years, users around the world used this information addressing different issues of drought impacts on socioeconomic activities and responded positively to real time drought information place regularly on the following web site http://orbit-net.nesdis.noaa.gov/crad/sat/surf/vci/. Drought assessments were compared with ground observations in twenty two countries around the world and showed good results in early drought detection and monitoring its development and impacts on the environment and socioeconomic activities, for assessment of biomass/crop production losses and fire risk. In addition, the AVHRR-based products showed potential in monitoring mosquito-born epidemics, amount of water required for irrigation, and predicting ENSO impacts on productivity of land ecosystems. These applications were used in agriculture, forestry, weather models, climatology. This presentation will be illustrated with many examples of data applications and also with explanations of data structure and use.
Burnim, Michael; Ivy, Julianne A; King, Charles H
2017-10-01
The mainstay of current schistosomiasis control programs is mass preventive chemotherapy of school-aged children with praziquantel. This treatment is delivered through school-based, community-based, or combined school- and community-based systems. Attaining very high coverage rates for children is essential in mass schistosomiasis treatment programs, as is ensuring that there are no persistently untreated subpopulations, a potential challenge for school-based programs in areas with low school enrollment. This review sought to compare the different treatment delivery methods based both on their coverage of school-aged children overall and on their coverage specifically of non-enrolled children. In addition, qualitative community or programmatic factors associated with high or low coverage rates were identified, with suggestions for overall coverage improvement. This review was registered prospectively with PROSPERO (CRD 42015017656). Five hundred forty-nine publication of potential relevance were identified through database searches, reference lists, and personal communications. Eligible studies included those published before October 2015, written in English or French, containing quantitative or qualitative data about coverage rates for MDA of school-aged children with praziquantel. Among the 22 selected studies, combined community- and school-based programs achieved the highest median coverage rates (89%), followed by community-based programs (72%). School-based programs had both the lowest median coverage of children overall (49%) and the lowest coverage of the non-enrolled subpopulation of children. Qualitatively, major factors affecting program success included fear of side effects, inadequate education about schistosomiasis, lack of incentives for drug distributors, and inequitable distribution to minority groups. This review provides an evidence-based framework for the development of future schistosomiasis control programs. Based on our results, a combined community and school-based delivery system should maximize coverage for both in- and out-of-school children, especially when combined with interventions such as snacks for treated children, educational campaigns, incentives for drug distributors, and active inclusion of marginalized groups. ClinicalTrials.gov CRD42015017656.
The use of ERTS-1 MSS data for mapping strip mines and acid mine drainage in Pennsyvania
NASA Technical Reports Server (NTRS)
Alexander, S. S.; Dein, J. L.; Gold, D. P.
1973-01-01
Digital processing of ERTS-I MSS data for areas around the west branch of the Susquehanna River permits identification of stripped areas including ones that are not discernible from visual analysis of ERTS imagery. Underflight data and ground-based observations are used for ground-truth and as a basis for designing more refined operators to make sub-classifications of stripped areas, particularly with regard to manifestations of acid mine drainage; because of associated diagnostic effects on vegetation, seasonal changes in classifiction criteria are being documented as repeated, cloud-free ERTS-I coverage of the same area becomes available. Preliminary results indicate that ERTS data can be used to moniter not only the total extent of stripping in given areas but also the effectiveness of reclamation and pollution abatement procedures.
SAR sensors onboard small satellites - Problems and prospectives
NASA Astrophysics Data System (ADS)
Perrotta, Giorgio
A system concept based on a constellation of 4 to 6 lightsats in low inclined circular orbits is presented. Each satellite carries a SAR sensor with two antennas, resulting in 5-m resolution and continuous coverage of the earth belt between 50 deg N and 50 deg S latitude, with typical revisit intervals of a few hours. Such a system appears highly suitable for tactical applications and can be adapted to the needs of conventional disarmament verification. The system can be used for: surface and subsurface sea traffic surveillance; near real-time tracking of oil spills; early warning of events preceding natural disasters; and rapid assessment of postdisaster damage. The system can also support and complement other remote sensing satellites providing, for example, the HF components of the effects of the interaction between meteorological events and soil, vegetation, and national resources in general.
Tian, Y.Q.; Yu, Q.; Zimmerman, M.J.; Flint, S.; Waldron, M.C.
2010-01-01
This study evaluates the efficacy of remote sensing technology to monitor species composition, areal extent and density of aquatic plants (macrophytes and filamentous algae) in impoundments where their presence may violate water-quality standards. Multispectral satellite (IKONOS) images and more than 500 in situ hyperspectral samples were acquired to map aquatic plant distributions. By analyzing field measurements, we created a library of hyperspectral signatures for a variety of aquatic plant species, associations and densities. We also used three vegetation indices. Normalized Difference Vegetation Index (NDVI), near-infrared (NIR)-Green Angle Index (NGAI) and normalized water absorption depth (DH), at wavelengths 554, 680, 820 and 977 nm to differentiate among aquatic plant species composition, areal density and thickness in cases where hyperspectral analysis yielded potentially ambiguous interpretations. We compared the NDVI derived from IKONOS imagery with the in situ, hyperspectral-derived NDVI. The IKONOS-based images were also compared to data obtained through routine visual observations. Our results confirmed that aquatic species composition alters spectral signatures and affects the accuracy of remote sensing of aquatic plant density. The results also demonstrated that the NGAI has apparent advantages in estimating density over the NDVI and the DH. In the feature space of the three indices, 3D scatter plot analysis revealed that hyperspectral data can differentiate several aquatic plant associations. High-resolution multispectral imagery provided useful information to distinguish among biophysical aquatic plant characteristics. Classification analysis indicated that using satellite imagery to assess Lemna coverage yielded an overall agreement of 79% with visual observations and >90% agreement for the densest aquatic plant coverages. Interpretation of biophysical parameters derived from high-resolution satellite or airborne imagery should prove to be a valuable approach for assessing the effectiveness of management practices for controlling aquatic plant growth in inland waters, as well as for routine monitoring of aquatic plants in lakes and suitable lentic environments. ?? 2010 Blackwell Publishing Ltd.
Schröder, Winfried; Nickel, Stefan; Jenssen, Martin; Riediger, Jan
2015-07-15
A methodology for mapping ecosystems and their potential development under climate change and atmospheric nitrogen deposition was developed using examples from Germany. The methodology integrated data on vegetation, soil, climate change and atmospheric nitrogen deposition. These data were used to classify ecosystem types regarding six ecological functions and interrelated structures. Respective data covering 1961-1990 were used for reference. The assessment of functional and structural integrity relies on comparing a current or future state with an ecosystem type-specific reference. While current functions and structures of ecosystems were quantified by measurements, potential future developments were projected by geochemical soil modelling and data from a regional climate change model. The ecosystem types referenced the potential natural vegetation and were mapped using data on current tree species coverage and land use. In this manner, current ecosystem types were derived, which were related to data on elevation, soil texture, and climate for the years 1961-1990. These relations were quantified by Classification and Regression Trees, which were used to map the spatial patterns of ecosystem type clusters for 1961-1990. The climate data for these years were subsequently replaced by the results of a regional climate model for 1991-2010, 2011-2040, and 2041-2070. For each of these periods, one map of ecosystem type clusters was produced and evaluated with regard to the development of areal coverage of ecosystem type clusters over time. This evaluation of the structural aspects of ecological integrity at the national level was added by projecting potential future values of indicators for ecological functions at the site level by using the Very Simple Dynamic soil modelling technique based on climate data and two scenarios of nitrogen deposition as input. The results were compared to the reference and enabled an evaluation of site-specific ecosystem changes over time which proved to be both, positive and negative. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.
2013-01-01
Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg. We also show some significant differences between fluorescence and coincident normalized difference vegetation indices (NDVI) retrievals.
NASA Technical Reports Server (NTRS)
Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.
2013-01-01
Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 0.5. We also show some significant differences between fluorescence and coincident normalized difference vegetation indices (NDVI) retrievals.
On the relationship between land surface infrared emissivity and soil moisture
NASA Astrophysics Data System (ADS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu
2018-01-01
The relationship between surface infrared (IR) emissivity and soil moisture content has been investigated based on satellite measurements. Surface soil moisture content can be estimated by IR remote sensing, namely using the surface parameters of IR emissivity, temperature, vegetation coverage, and soil texture. It is possible to separate IR emissivity from other parameters affecting surface soil moisture estimation. The main objective of this paper is to examine the correlation between land surface IR emissivity and soil moisture. To this end, we have developed a simple yet effective scheme to estimate volumetric soil moisture (VSM) using IR land surface emissivity retrieved from satellite IR spectral radiance measurements, assuming those other parameters impacting the radiative transfer (e.g., temperature, vegetation coverage, and surface roughness) are known for an acceptable time and space reference location. This scheme is applied to a decade of global IR emissivity data retrieved from MetOp-A infrared atmospheric sounding interferometer measurements. The VSM estimated from these IR emissivity data (denoted as IR-VSM) is used to demonstrate its measurement-to-measurement variations. Representative 0.25-deg spatially-gridded monthly-mean IR-VSM global datasets are then assembled to compare with those routinely provided from satellite microwave (MW) multisensor measurements (denoted as MW-VSM), demonstrating VSM spatial variations as well as seasonal-cycles and interannual variability. Initial positive agreement is shown to exist between IR- and MW-VSM (i.e., R2 = 0.85). IR land surface emissivity contains surface water content information. So, when IR measurements are used to estimate soil moisture, this correlation produces results that correspond with those customarily achievable from MW measurements. A decade-long monthly-gridded emissivity atlas is used to estimate IR-VSM, to demonstrate its seasonal-cycle and interannual variation, which is spatially coherent and consistent with that from MW measurements, and, moreover, to achieve our objective of investigating the relationship between land surface IR emissivity and soil moisture.
Causes of spring vegetation greenness trends in the northern mid-high latitudes from 1982 to 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E
2012-01-01
The Community Land Model version 4 (CLM4) is applied to explore the spatial temporal patterns of spring (April May) vegetation growth trends over the northern mid high latitudes (NMH) (>25 N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experiencemore » temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity.« less
Cundill, Sharon L.; van der Werff, Harald M. A.; van der Meijde, Mark
2015-01-01
The use of data from multiple sensors is often required to ensure data coverage and continuity, but differences in the spectral characteristics of sensors result in spectral index values being different. This study investigates spectral response function effects on 48 spectral indices for cultivated grasslands using simulated data of 10 very high spatial resolution sensors, convolved from field reflectance spectra of a grass covered dike (with varying vegetation condition). Index values for 48 indices were calculated for original narrow-band spectra and convolved data sets, and then compared. The indices Difference Vegetation Index (DVI), Global Environmental Monitoring Index (GEMI), Enhanced Vegetation Index (EVI), Modified Soil-Adjusted Vegetation Index (MSAVI2) and Soil-Adjusted Vegetation Index (SAVI), which include the difference between the near-infrared and red bands, have values most similar to those of the original spectra across all 10 sensors (1:1 line mean 1:1R2 > 0.960 and linear trend mean ccR2 > 0.997). Additionally, relationships between the indices’ values and two quality indicators for grass covered dikes were compared to those of the original spectra. For the soil moisture indicator, indices that ratio bands performed better across sensors than those that difference bands, while for the dike cover quality indicator, both the choice of bands and their formulation are important. PMID:25781511
NASA Astrophysics Data System (ADS)
Li, R.; Arora, V. K.
2012-01-01
Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus mosaic approaches of representing vegetation. These idealized simulations use 50% fractional coverage for each of the two dominant PFTs in a grid cell. Differences in simulated grid averaged primary energy fluxes at selected sites are generally less than 5% between the two approaches. Simulated grid-averaged carbon fluxes and pool sizes at these sites can, however, differ by as much as 46%. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.
Sharkey, Joseph R; Horel, Scott; Dean, Wesley R
2010-05-25
There has been limited study of all types of food stores, such as traditional (supercenters, supermarkets, and grocery stores), convenience stores, and non-traditional (dollar stores, mass merchandisers, and pharmacies) as potential opportunities for purchase of fresh and processed (canned and frozen) fruits and vegetables, especially in small-town or rural areas. Data from the Brazos Valley Food Environment Project (BVFEP) are combined with 2000 U.S. Census data for 101 Census block groups (CBG) to examine neighborhood access to fruits and vegetables. BVFEP data included identification and geocoding of all food stores (n = 185) in six rural counties in Texas, using ground-truthed methods and on-site assessment of the availability and variety of fresh and processed fruits and vegetables in all food stores. Access from the population-weighted centroid of each CBG was measured using proximity (minimum network distance) and coverage (number of shopping opportunities) for a good selection of fresh and processed fruits and vegetables. Neighborhood inequalities (deprivation and vehicle ownership) and spatial access for fruits and vegetables were examined using Wilcoxon matched-pairs signed-rank test and multivariate regression models. The variety of fruits or vegetables was greater at supermarkets compared with grocery stores. Among non-traditional and convenience food stores, the largest variety was found at dollar stores. On average, rural neighborhoods were 9.9 miles to the nearest supermarket, 6.7 miles and 7.4 miles to the nearest food store with a good variety of fresh fruits and vegetables, respectively, and 4.7 miles and 4.5 miles to a good variety of fresh and processed fruits or vegetables. High deprivation or low vehicle ownership neighborhoods had better spatial access to a good variety of fruits and vegetables, both in the distance to the nearest source and in the number of shopping opportunities. Supermarkets and grocery stores are no longer the only shopping opportunities for fruits or vegetables. The inclusion of data on availability of fresh or processed fruits or vegetables in the measurements provides robust meaning to the concept of potential access in this large rural area.
NASA Astrophysics Data System (ADS)
Prescott, C. L.; Dolan, A. M.; Haywood, A. M.; Hunter, S. J.; Tindall, J. C.
2018-02-01
Regional climate and environmental variability in response to orbital forcing during interglacial events within the mid-Piacenzian (Pliocene) Warm Period (mPWP; 3.264-3.025 Ma) has been rarely studied using climate and vegetation models. Here we use climate and vegetation model simulations to predict changes in regional vegetation patterns in response to orbital forcing for four different interglacial events within the mPWP (Marine Isotope Stages (MIS) G17, K1, KM3 and KM5c). The efficacy of model-predicted changes in regional vegetation is assessed by reference to selected high temporal resolution palaeobotanical studies that are theoretically capable of discerning vegetation patterns for the selected interglacial stages. Annual mean surface air temperatures for the studied interglacials are between 0.4 °C to 0.7 °C higher than a comparable Pliocene experiment using modern orbital parameters. Increased spring/summer and reduced autumn/winter insolation in the Northern Hemisphere during MIS G17, K1 and KM3 enhances seasonality in surface air temperature. The two most robust and notable regional responses to this in vegetation cover occur in North America and continental Eurasia, where forests are replaced by more open-types of vegetation (grasslands and shrubland). In these regions our model results appear to be inconsistent with local palaeobotanical data. The orbitally driven changes in seasonal temperature and precipitation lead to a 30% annual reduction in available deep soil moisture (2.0 m from surface), a critical parameter for forest growth, and subsequent reduction in the geographical coverage of forest-type vegetation; a phenomenon not seen in comparable simulations of Pliocene climate and vegetation run with a modern orbital configuration. Our results demonstrate the importance of examining model performance under a range of realistic orbital forcing scenarios within any defined time interval (e.g. mPWP). Additional orbitally resolved records of regional vegetation are needed to further examine the validity of model-predicted regional climate and vegetation responses in greater detail.
2010-01-01
Objective There has been limited study of all types of food stores, such as traditional (supercenters, supermarkets, and grocery stores), convenience stores, and non-traditional (dollar stores, mass merchandisers, and pharmacies) as potential opportunities for purchase of fresh and processed (canned and frozen) fruits and vegetables, especially in small-town or rural areas. Methods Data from the Brazos Valley Food Environment Project (BVFEP) are combined with 2000 U.S. Census data for 101 Census block groups (CBG) to examine neighborhood access to fruits and vegetables. BVFEP data included identification and geocoding of all food stores (n = 185) in six rural counties in Texas, using ground-truthed methods and on-site assessment of the availability and variety of fresh and processed fruits and vegetables in all food stores. Access from the population-weighted centroid of each CBG was measured using proximity (minimum network distance) and coverage (number of shopping opportunities) for a good selection of fresh and processed fruits and vegetables. Neighborhood inequalities (deprivation and vehicle ownership) and spatial access for fruits and vegetables were examined using Wilcoxon matched-pairs signed-rank test and multivariate regression models. Results The variety of fruits or vegetables was greater at supermarkets compared with grocery stores. Among non-traditional and convenience food stores, the largest variety was found at dollar stores. On average, rural neighborhoods were 9.9 miles to the nearest supermarket, 6.7 miles and 7.4 miles to the nearest food store with a good variety of fresh fruits and vegetables, respectively, and 4.7 miles and 4.5 miles to a good variety of fresh and processed fruits or vegetables. High deprivation or low vehicle ownership neighborhoods had better spatial access to a good variety of fruits and vegetables, both in the distance to the nearest source and in the number of shopping opportunities. Conclusion Supermarkets and grocery stores are no longer the only shopping opportunities for fruits or vegetables. The inclusion of data on availability of fresh or processed fruits or vegetables in the measurements provides robust meaning to the concept of potential access in this large rural area. PMID:20500853
Configuration and Specifications of AN Unmanned Aerial Vehicle for Precision Agriculture
NASA Astrophysics Data System (ADS)
Erena, M.; Montesinos, S.; Portillo, D.; Alvarez, J.; Marin, C.; Fernandez, L.; Henarejos, J. M.; Ruiz, L. A.
2016-06-01
Unmanned Aerial Vehicles (UAVs) with multispectral sensors are increasingly attractive in geosciences for data capture and map updating at high spatial and temporal resolutions. These autonomously-flying systems can be equipped with different sensors, such as a six-band multispectral camera (Tetracam mini-MCA-6), GPS Ublox M8N, and MEMS gyroscopes, and miniaturized sensor systems for navigation, positioning, and mapping purposes. These systems can be used for data collection in precision viticulture. In this study, the efficiency of a light UAV system for data collection, processing, and map updating in small areas is evaluated, generating correlations between classification maps derived from remote sensing and production maps. Based on the comparison of the indices derived from UAVs incorporating infrared sensors with those obtained by satellites (Sentinel 2A and Landsat 8), UAVs show promise for the characterization of vineyard plots with high spatial variability, despite the low vegetative coverage of these crops. Consequently, a procedure for zoning map production based on UAV/UV images could provide important information for farmers.
Study on forest above-ground biomass synergy inversion from GLAS and HJ-1 data
NASA Astrophysics Data System (ADS)
Fang, Zhou; Cao, Chunxiang; Ji, Wei; Xu, Min; Chen, Wei
2012-10-01
The need exists to develop a systematic approach to inventory and monitor global forests, both for carbon stock evaluation and for land use change analysis. The use of freely available satellite-based data for carbon stock estimation mitigates both the cost and the spatial limitations of field-based techniques. Spaceborne lidar data have been demonstrated as useful for forest aboveground biomass (AGB) estimation over a wide range of biomass values and forest types. However, the application of these data is limited because of their spatially discrete nature. Spaceborne multispectral sensors have been used extensively to estimate AGB, but these methods have been demonstrated as inappropriate for forest structure characterization in high-biomass mature forests. This study uses an integration of ICESat Geospatial Laser Altimeter System (GLAS) lidar and HJ-1 satellites data to develop methods to estimate AGB in an area of Qilian Mountains, Northwest China. Considering the study area belongs to mountainous terrain, the difficulties of this article are how to extract canopy height from GLAS waveform metrics. Combining with HJ-1 data and ground survey data of the study area, we establish forest biomass estimation model for the GLAS data based on BP neural network model. In order to estimate AGB, the training sample data includes the canopy height extracted from GLAS, LAI, vegetation coverage and several kinds of vegetation indices from HJ-1 data. The results of forest aboveground biomass are very close to the fields measured results, and are consistent with land cover data in the spatial distribution.
2008-02-01
FINAL ENVIRONMENTAL ASSESSMENT February 2008 Malmstrom ® AFB WIDE AREA COVERAGE CONSTRUCT LAND MOBILE NETWORK COMMUNICATIONS INFRASTRUCTURE...Wide Area Coverage Construct Land Mobile Network Communications Infrastructure Malmstrom Air Force Base, Montana 5a. CONTRACT NUMBER 5b. GRANT...SIGNIFICANT IMPACT WIDE AREA COVERAGE CONSTRUCT LAND MOBILE NETWORK COMMUNICATIONS INFRASTRUCTURE MALMSTROM AIR FORCE BASE, MONTANA The
AVHRR for monitoring global tropical deforestation
NASA Technical Reports Server (NTRS)
Malingreau, J. P.; Laporte, N.; Tucker, C. J.
1989-01-01
Advanced Very High Resolution Radiometer (AVHRR) data have been used to assess the dynamics of forest trnsformations in three parts of the tropical belt. A large portion of the Amazon Basin has been systematically covered by Local Area Coverage (LAC) data in the 1985-1987 period. The analysis of the vegetation index and thermal data led to the identification and measurement of large areas of active deforestation. The Kalimantan/Borneo forest fires were monitored and their impact was evaluated using the Global Area Coverage (GAC) 4 km resolution data. Finally, High Resolution Picture Transmission (HRPT) data have provided preliminary information on current activities taking place at the boundary between the savanna and the forest in the Southern part of West Africa. The AVHRR approach is found to be a highly valuable means for carrying out deforestation assessments in regional and global perspectives.
Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI
NASA Technical Reports Server (NTRS)
Potter, C. S.
1997-01-01
This study describes the use of satellite data to calibrate a new climate-vegetation greenness function for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our empirical understanding of intraannual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global l(sup o) gridded data sets suggest that three climate indexes: growing degree days, annual precipitation total, and an annual moisture index together can account to 70-80 percent of the variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same climate index values from the previous year explained no significant additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes was closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from l(sup o) grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes were not accurately predicted are mainly high latitude ecosystems and other remote locations where climate station data are sparse.
Expanding health insurance for children: examining the alternatives.
Fronstin, P; Pierron, B
1997-07-01
This Issue Brief examines the issue of uninsured children. The budget reconciliation legislation currently under congressional consideration earmarks $16 billion for new initiatives to provide health insurance coverage to approximately 5 million of the 10 million uninsured children during the next five years. Proposals to expand coverage among children include the use of tax credits, subsidies, vouchers, Medicaid program expansion, and expansion of state programs. However, these proposals do not address the decline in employment-based health insurance coverage--the underlying cause of the lack of coverage, to the extent that a cause can be identified. What is worse, some proposals to expand health insurance among children may discourage employers from offering coverage. Between 1987 and 1995, the percentage of children with employment-based health insurance declined from 66.7 percent to 58.6 percent. Despite this trend, the percentage of children without any form of health insurance coverage barely increased. In 1987, 13.1 percent were uninsured, compared with 13.8 percent in 1995. Medicaid program expansions helped to alleviate the effects of the decline in employment-based health insurance coverage among children and the potential increase in the number of uninsured children. Between 1987 and 1995, the percentage of children enrolled in the Medicaid program increased from 15.5 percent to 23.2 percent. Some questions to consider in assessing approaches to improving children's health insurance coverage include the following: If the government intervenes, should it do so through a compulsory mechanism or a voluntary system? Is the employment-based system "worth saving" for children? In other words, are the market interventions necessary to keep this system functioning for children too regulatory, too intrusive, and too cumbersome to be practical? In addition to reforming the employment-based system, what reforms are necessary in order to reach those families who have no coverage through the work place? Which approaches are both efficient and politically acceptable? Employment-based coverage of children will likely continue. The challenge for lawmakers is to find a way to cover more uninsured children without eroding employment-based coverage. Several current legislative proposals attempt to avoid this problem by excluding children who have access to employment-based coverage. Without such a requirement, the opportunity to purchase coverage at a discount would create incentives for some low-income employees to drop dependent/family coverage, which in turn could lead some employers to drop their health plans.
Friesen, Valerie M; Aaron, Grant J; Myatt, Mark; Neufeld, Lynnette M
2017-05-01
Food fortification is a widely used approach to increase micronutrient intake in the diet. High coverage is essential for achieving impact. Data on coverage is limited in many countries, and tools to assess coverage of fortification programs have not been standardized. In 2013, the Global Alliance for Improved Nutrition developed the Fortification Assessment Coverage Toolkit (FACT) to carry out coverage assessments in both population-based (i.e., staple foods and/or condiments) and targeted (e.g., infant and young child) fortification programs. The toolkit was designed to generate evidence on program coverage and the use of fortified foods to provide timely and programmatically relevant information for decision making. This supplement presents results from FACT surveys that assessed the coverage of population-based and targeted food fortification programs across 14 countries. It then discusses the policy and program implications of the findings for the potential for impact and program improvement.
Fronstin, Paul
2007-10-01
This Issue Brief provides historic data through 2006 on the number and percentage of nonelderly individuals with and without health insurance. Based on EBRI estimates from the U.S. Census Bureau's March 2007 Current Population Survey (CPS), it reflects 2006 data. It also discusses trends in coverage for the 1994-2006 period and highlights characteristics that typically indicate whether an individual is insured. HEALTH COVERAGE CONTINUES DECLINE: The percentage of the nonelderly population (under age 65) with health insurance coverage continued to decline, reaching to a post-1994 low of 82.1 percent in 2006. Declines in health insurance coverage have been recorded in all but four years since 1994, when 36.5 million nonelderly individuals were uninsured; in 2006, the uninsured population was 46.5 million. EMPLOYMENT-BASED COVERAGE REMAINS DOMINANT SOURCE OF HEALTH COVERAGE: Employment-based health benefits remain by far the most common form of health coverage in the United States, consistently covering 60-70 percent of nonelderly individuals. In 2006, 62.2 percent of the nonelderly population had employment-based health benefits, as compared with 64.4 percent in 1994. Between 1994 and 2000, the percentage of the nonelderly population with employment-based coverage expanded. Since 2000, the percentage has declined. PUBLIC PROGRAM COVERAGE IS STABLE: Public-sector health coverage was slightly lower as a percentage of the population in 2006, accounting for 17.5 percent of the nonelderly population. The decline was due to a drop in the percentage of the population covered by the Tricare/CHAMPVA program. Enrollment in Medicaid and the State Children's Health Insurance Program increased, reaching 34.9 million in 2006, and covering 13.4 percent of the nonelderly population, which is significantly above the 10.5 percent level of 1999, but not far above the 12.7 percent level of 1994. INDIVIDUAL COVERAGE STABLE: Individually purchased health coverage was unchanged in 2006 and has basically hovered in the high 6 and low 7 percent range since 1994. PRIVATE- VS. PUBLIC-COVERAGE TRENDS REVERSING: Health insurance coverage generally has not sustained unbroken trends since 1994. There were crosscurrents: Employment-based coverage expanded significantly in the 1994-2000 period to exceed the growth in public programs. Subsequently, the dynamic reversed, as public programs expanded while employment-based coverage declined. It appears that 2005 might be the beginning of a new trend, where the erosion in employment-based coverage is not being offset by expansions in public programs. This may be due to the fact that, while unemployment is relatively low, the cost of providing health benefits continues to increase faster than inflation.
Ginocchio, Rosanna; León-Lobos, Pedro; Arellano, Eduardo Carlos; Anic, Vinka; Ovalle, Juan Francisco; Baker, Alan John Martin
2017-05-01
Abandoned tailing dumps (ATDs) offer an opportunity to identify the main physicochemical filters that determine colonization of vegetation in solid mine wastes. The current study determined the soil physicochemical factors that explain the compositional variation of pioneer vegetal species on ATDs from surrounding areas in semiarid Mediterranean-climate type ecosystems of north-central Chile (Coquimbo Region). Geobotanical surveys-including physicochemical parameters of substrates (0-20 cm depth), plant richness, and coverage of plant species-were performed on 73 ATDs and surrounding areas. A total of 112 plant species were identified from which endemic/native species (67%) were more abundant than exotic species (33%) on ATDs. The distribution of sampling sites and plant species in canonical correspondence analysis (CCA) ordination diagrams indicated a gradual and progressive variation in species composition and abundance from surrounding areas to ATDs because of variations in total Cu concentration (1.3%) and the percentage of soil particles <2 μm (1.8%). According to the CCA, there were 10 plant species with greater abundance on sites with high total Cu concentrations and fine-textured substrates, which could be useful for developing plant-based stabilization programs of ATDs in semiarid Mediterranean-climate type ecosystems of north-central Chile.
Angelidis, Ioannis; Levin, Gregor; Díaz-Varela, Ramón Alberto; Malinowski, Radek
2017-09-01
LiDAR (Light Detection and Ranging) is a remote sensing technology that uses light in the form of pulses to measure the range between a sensor and the Earth's surface. Recent increase in availability of airborne LiDAR scanning (ALS) data providing national coverage with high point densities has opened a wide range of possibilities for monitoring landscape elements and their changes at broad geographical extent. We assessed the dynamics of the spatial extent of non-forest woody vegetation (NFW) in a study area of approx. 2500 km 2 in southern Jutland, Denmark, based on two acquisitions of ALS data for 2006 and 2014 in combination with other spatial data. Our results show a net-increase (4.8%) in the total area of NFW. Furthermore, this net change comprises of both areas with a decrease and areas with an increase of NFW. An accuracy assessment based on visual interpretation of aerial photos indicates high accuracy (>95%) in the delineation of NFW without changes during the study period. For NFW that changed between 2006 and 2014, accuracies were lower (90 and 82% in removed and new features, respectively), which is probably due to lower point densities of the 2006 ALS data (0.5 pts./m 2 ) compared to the 2014 data (4-5 pts./m 2 ). We conclude that ALS data, if combined with other spatial data, in principle are highly suitable for detailed assessment of changes in landscape features, such as formations of NFW at broad geographical extent. However, in change assessment based on multi-temporal ALS data with different point densities errors occur, particularly when examining small or narrow NFW objects.
Cristine Pessoa, Milene; Loures Mendes, Larissa; Teixeira Caiaffa, Waleska; Carvalho Malta, Deborah; Velásquez-Meléndez, Gustavo
2014-12-17
The food environment can have an important influence on the availability of and access to food, which plays a significant role in the health of individuals. The goal of this study was to compare the consumption of fruits, legumes and vegetables (FLV) by adults and the availability of food stores in the context of socioeconomic and geographic space connected to basic health units in a Brazilian capital city. The study was developed from information obtained through the Risk Factors Surveillance for Non-Communicable Diseases Prevention by Telephone Survey (VIGITEL), using samples from Belo Horizonte from the years 2008 to 2010. A total of 5611 records were geocoded based on the postal code. A score was created based on the weekly and daily frequency of FLV intake of individuals. The coverage area of basic health units was used as a neighborhood unit. Georeferenced data on food stores in the city and neighborhood income were used. As neighborhood income increased, there was an increase in the distribution of food establishments for all of the studied categories. The highest FLV intake scores were observed in areas with higher income levels. The highest concentration of food stores, regardless of supply quality, was observed in geographic areas with higher purchasing power and in those where there was a greater concentration of other types of businesses and services, a different pattern from that found in other countries. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Haijun; Wignall, Paul B.; Tong, Jinnan; Song, Huyue; Chen, Jing; Chu, Daoliang; Tian, Li; Luo, Mao; Zong, Keqing; Chen, Yanlong; Lai, Xulong; Zhang, Kexin; Wang, Hongmei
2015-08-01
New 87Sr/86Sr data based on 127 well-preserved and well-dated conodont samples from South China were measured using a new technique (LA-MC-ICPMS) based on single conodont albid crown analysis. These reveal a spectacular climb in seawater 87Sr/86Sr ratios during the Early Triassic that was the most rapid of the Phanerozoic. The rapid increase began in Bed 25 of the Meishan section (GSSP of the Permian-Triassic boundary, PTB), and coincided closely with the latest Permian extinction. Modeling results indicate that the accelerated rise of 87Sr/86Sr ratios can be ascribed to a rapid increase (>2.8×) of riverine flux of Sr caused by intensified weathering. This phenomenon could in turn be related to an intensification of warming-driven runoff and vegetation die-off. Continued rise of 87Sr/86Sr ratios in the Early Triassic indicates that continental weathering rates were enhanced >1.9 times compared to those of the Late Permian. Continental weathering rates began to decline in the middle-late Spathian, which may have played a role in the decrease of oceanic anoxia and recovery of marine benthos. The 87Sr/86Sr values decline gradually into the Middle Triassic to an equilibrium values around 1.2 times those of the Late Permian level, suggesting that vegetation coverage did not attain pre-extinction levels thereby allowing higher runoff.
NASA Astrophysics Data System (ADS)
Lian, X.
2016-12-01
There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature ( ). Using satellite observations and in-situ station-based datasets, we conducted a global-scale assessment of the spatial, seasonal, and interannual variations in the difference between daytime maximum LST and daytime maximum ( , LST - ) during 2003-2014. Spatially, LST is generally higher than over arid and sparsely vegetated regions in the mid-low latitudes, but LST is lower than in the tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the mid-latitudes and boreal regions. The seasonality in the mid-latitudes is a result of the asynchronous responses of LST and to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. At an interannual scale, only a small proportion of the land surface displays a statistically significant trend (P <0.05) due to the short time span of current measurements. Our study identified substantial spatial heterogeneity and seasonality in , as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface temperature changes using remote sensing, particularly in remote regions.
Nordberg, Maj-Liz; Evertson, Joakim
2003-12-01
Vegetation cover-change analysis requires selection of an appropriate set of variables for measuring and characterizing change. Satellite sensors like Landsat TM offer the advantages of wide spatial coverage while providing land-cover information. This facilitates the monitoring of surface processes. This study discusses change detection in mountainous dry-heath communities in Jämtland County, Sweden, using satellite data. Landsat-5 TM and Landsat-7 ETM+ data from 1984, 1994 and 2000, respectively, were used. Different change detection methods were compared after the images had been radiometrically normalized, georeferenced and corrected for topographic effects. For detection of the classes change--no change the NDVI image differencing method was the most accurate with an overall accuracy of 94% (K = 0.87). Additional change information was extracted from an alternative method called NDVI regression analysis and vegetation change in 3 categories within mountainous dry-heath communities were detected. By applying a fuzzy set thresholding technique the overall accuracy was improved from of 65% (K = 0.45) to 74% (K = 0.59). The methods used generate a change product showing the location of changed areas in sensitive mountainous heath communities, and it also indicates the extent of the change (high, moderate and unchanged vegetation cover decrease). A total of 17% of the dry and extremely dry-heath vegetation within the study area has changed between 1984 and 2000. On average 4% of the studied heath communities have been classified as high change, i.e. have experienced "high vegetation cover decrease" during the period. The results show that the low alpine zone of the southern part of the study area shows the highest amount of "high vegetation cover decrease". The results also show that the main change occurred between 1994 and 2000.
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Gobron, Nadine; Pinty, Bernard; Widlowski, Jean-Luc; Verstraete, Michel M.; Lau, William K. M. (Technical Monitor)
2001-01-01
The analysis of data from the MODIS instrument on the Terra platform to derive global distribution of aerosols assumes a set of relationships between the blue, rho (sub blue), the red, rho (sub red), and 2.1 micrometers, rho (sub 2.1), spectral channels. These relations have been established from a series of measurements indicating that rho (sub blue) approximately 0.5 rho (sub red) approximately 0.25 rho (sub 2.1). Here we use a model to describe the transfer of radiation through a vegetation canopy composed of randomly oriented leaves to assess the theoretical foundations for these relationships. The influence of varying fractional vegetation coverage is simulated simply as a linear combination of pure soil and pure vegetation conditions, also known as Independent Pixel Approximation (IPA). Calculations for a wide range of leaf area indices and vegetation fractions show that rho (sub blue) is consistently about 1/4 of rho (sub 2.1) as used by MODIS for the whole range of analyzed cases, except for very dark soils, such as those found in burn scars. For its part, the ratio rho (sub red)/rho (sub 2.1) varies from less than the empirically derived value of 1/2 for dense and dark vegetation (rho (sub 2.1) less than 0.1), to more than 1/2 for bright mixture of soil and vegetation. This is in agreement with measurements over uniform dense vegetation, but not with measurements over mixed dark scenes. In the later case, the discrepancy is probably mitigated by shadows due to uneven canopy and terrain on a large scale. It is concluded that the value of this ratio should ideally be made dependent on the land cover type in the operational processing of MODIS data, especially over dense forests.
Spatial forecast of landslides in three gorges based on spatial data mining.
Wang, Xianmin; Niu, Ruiqing
2009-01-01
The Three Gorges is a region with a very high landslide distribution density and a concentrated population. In Three Gorges there are often landslide disasters, and the potential risk of landslides is tremendous. In this paper, focusing on Three Gorges, which has a complicated landform, spatial forecasting of landslides is studied by establishing 20 forecast factors (spectra, texture, vegetation coverage, water level of reservoir, slope structure, engineering rock group, elevation, slope, aspect, etc). China-Brazil Earth Resources Satellite (Cbers) images were adopted based on C4.5 decision tree to mine spatial forecast landslide criteria in Guojiaba Town (Zhigui County) in Three Gorges and based on this knowledge, perform intelligent spatial landslide forecasts for Guojiaba Town. All landslides lie in the dangerous and unstable regions, so the forecast result is good. The method proposed in the paper is compared with seven other methods: IsoData, K-Means, Mahalanobis Distance, Maximum Likelihood, Minimum Distance, Parallelepiped and Information Content Model. The experimental results show that the method proposed in this paper has a high forecast precision, noticeably higher than that of the other seven methods.
Spatial Forecast of Landslides in Three Gorges Based On Spatial Data Mining
Wang, Xianmin; Niu, Ruiqing
2009-01-01
The Three Gorges is a region with a very high landslide distribution density and a concentrated population. In Three Gorges there are often landslide disasters, and the potential risk of landslides is tremendous. In this paper, focusing on Three Gorges, which has a complicated landform, spatial forecasting of landslides is studied by establishing 20 forecast factors (spectra, texture, vegetation coverage, water level of reservoir, slope structure, engineering rock group, elevation, slope, aspect, etc). China-Brazil Earth Resources Satellite (Cbers) images were adopted based on C4.5 decision tree to mine spatial forecast landslide criteria in Guojiaba Town (Zhigui County) in Three Gorges and based on this knowledge, perform intelligent spatial landslide forecasts for Guojiaba Town. All landslides lie in the dangerous and unstable regions, so the forecast result is good. The method proposed in the paper is compared with seven other methods: IsoData, K-Means, Mahalanobis Distance, Maximum Likelihood, Minimum Distance, Parallelepiped and Information Content Model. The experimental results show that the method proposed in this paper has a high forecast precision, noticeably higher than that of the other seven methods. PMID:22573999
Land cover and climate change in Koshi River Basin, the Third Pole
NASA Astrophysics Data System (ADS)
Zhang, Y.; Gao, J. G.; Liu, L.; Nie, Y.; Wang, Z.; Yang, X.
2011-12-01
Koshi River Basin (KRB) is an important part of trans-boundary river basins in the Himalaya region, shared between China and Nepal. The Koshi River, originating from the snowy mountains, glaciers and permafrost melt in the Tibetan Plateau and the northern areas of Nepal, with heavily glaciated and snow covered catchments, has three sub-tributaries. Total area is 53955.57 km2. It is being under the risk of glacier lakes outburst and extreme climate events in many place in the KRB. The basin contains many important ecosystems and protected areas which provide a wide range of biodiversity and related ecosystem services, so it sustains different kinds of livelihood styles. Air temperature data from 1901 to 2009 with spatial resolution of 0.5° were obtained by the Climatic Research Unit of the University of East Anglia, named as CRU-TS 3.1. The change significant was inspected by Mann-Kendall method. Vegetation coverage is calculated by Spot vegetation dataset provided by ten day global syntheses data, which produced by VITO.The land cover data was provided by ICIMOD and IGSNRR. Results show that:1. The main land-cover types are alpine meadow in northern slope of Mt. Himalaya, while main types in southern slope of the mountain are forest and cultivated land. Snow and ice are broadly distributed on the boundary between two countries. 2. From the data, we found that there happened a little change for vegetation coverage in most part of the KRB. But the regions with change is striped in a north-south orientation, more interesting phenomenon is that, the areas vegetation increasing is distributed along the river, that decreasing is mountain ridge. 3. The mean temperature in the KRB is increasing in recent more than 100 years at a rate of 0.87 Celsius Degree per hundred of years, while annual precipitation is decreasing at a rate of 120.9 mm pre hundred years at the same period and fluctuation range is gradually widened. The change rate of temperature ranges from 0.4 to 0.9 Celsius Degree pre hundred years in the whole KRB, while the change rate of precipitation range from less than 90 mm to 305 mm per hundred years. The most significantly temperature increasing area is located at southern part of the KRB, while precipitation decreasing most significantly in the northwestern part of the KRB. 4. The trends of climate change and land cover change in KRB showed that increasing of temperature might lead to the melting of glaciers in middle part of the KRB having been picked up speed. It helps vegetation coverage in the valley tend to increase with desertification being aggravated on the mountain ridge. The melting might has already threatened native species. Temperature and precipitation are important factors to the distribution of land cover types, slight change might result in large change of the ecosystem in KRB, especially in the northern part of the KRB.(This work was financially supported by the National Basic Research Program of China(No.2010CB951704,2005CB422006) and External Cooperation Program of the CAS(No. GJHZ0954)).
Burnim, Michael; Ivy, Julianne A.
2017-01-01
Background The mainstay of current schistosomiasis control programs is mass preventive chemotherapy of school-aged children with praziquantel. This treatment is delivered through school-based, community-based, or combined school- and community-based systems. Attaining very high coverage rates for children is essential in mass schistosomiasis treatment programs, as is ensuring that there are no persistently untreated subpopulations, a potential challenge for school-based programs in areas with low school enrollment. This review sought to compare the different treatment delivery methods based both on their coverage of school-aged children overall and on their coverage specifically of non-enrolled children. In addition, qualitative community or programmatic factors associated with high or low coverage rates were identified, with suggestions for overall coverage improvement. Methodology/Principal findings This review was registered prospectively with PROSPERO (CRD 42015017656). Five hundred forty-nine publication of potential relevance were identified through database searches, reference lists, and personal communications. Eligible studies included those published before October 2015, written in English or French, containing quantitative or qualitative data about coverage rates for MDA of school-aged children with praziquantel. Among the 22 selected studies, combined community- and school-based programs achieved the highest median coverage rates (89%), followed by community-based programs (72%). School-based programs had both the lowest median coverage of children overall (49%) and the lowest coverage of the non-enrolled subpopulation of children. Qualitatively, major factors affecting program success included fear of side effects, inadequate education about schistosomiasis, lack of incentives for drug distributors, and inequitable distribution to minority groups. Conclusions/Significance This review provides an evidence-based framework for the development of future schistosomiasis control programs. Based on our results, a combined community and school-based delivery system should maximize coverage for both in- and out-of-school children, especially when combined with interventions such as snacks for treated children, educational campaigns, incentives for drug distributors, and active inclusion of marginalized groups. Trial registration ClinicalTrials.gov CRD42015017656 PMID:29077723
Massa, K; Olsen, A; Sheshe, A; Ntakamulenga, R; Ndawi, B; Magnussen, P
2009-11-01
Control programmes generally use a school-based strategy of mass drug administration to reduce morbidity of schistosomiasis and soil-transmitted helminthiasis (STH) in school-aged populations. The success of school-based programmes depends on treatment coverage. The community-directed treatment (ComDT) approach has been implemented in the control of onchocerciasis and lymphatic filariasis in Africa and improves treatment coverage. This study compared the treatment coverage between the ComDT approach and the school-based treatment approach, where non-enrolled school-aged children were invited for treatment, in the control of schistosomiasis and STH among enrolled and non-enrolled school-aged children. Coverage during the first treatment round among enrolled children was similar for the two approaches (ComDT: 80.3% versus school: 82.1%, P=0.072). However, for the non-enrolled children the ComDT approach achieved a significantly higher coverage than the school-based approach (80.0 versus 59.2%, P<0.001). Similar treatment coverage levels were attained at the second treatment round. Again, equal levels of treatment coverage were found between the two approaches for the enrolled school-aged children, while the ComDT approach achieved a significantly higher coverage in the non-enrolled children. The results of this study showed that the ComDT approach can obtain significantly higher treatment coverage among the non-enrolled school-aged children compared to the school-based treatment approach for the control of schistosomiasis and STH.
Reputation-Based Trust for a Cooperative, Agent-Based Backup Protection Scheme for Power Networks
2010-03-01
85 Appendix B . Performance Charts for Data by Scenario...protection for that line. For example Relay 3 provides zone 1 coverage for line B and zone 3 coverage for line C. Relay 4 would also provide zone 1...coverage for line B but zone 3 coverage for line A instead since it is directional. Relay 1 and relay 6 would provide zone 3 coverage for line B . A
A brief review of vaccination coverage in immunization registries.
Goldstein, Neal D; Maiese, Brett A
2011-01-01
Immunization registries are effective electronic tools for assessing vaccination coverage, but are only as good as the information reported to them. This review summarizes studies through August 2010 on vaccination coverage in registries and identifies key characteristics of successful registries. Based on the current state of registries, paper-based charts combined with electronic registry reporting provide the most cohesive picture of coverage. To ultimately supplant paper charts, registries must exhibit increased coverage and participation.
24 CFR 965.215 - Lead-based paint liability insurance coverage.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Lead-based paint liability... Insurance Coverage § 965.215 Lead-based paint liability insurance coverage. (a) General. The purpose of this... with lead-based paint activities that the PHA undertakes, in accordance with the PHA's ACC with HUD...
24 CFR 965.215 - Lead-based paint liability insurance coverage.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Lead-based paint liability... Insurance Coverage § 965.215 Lead-based paint liability insurance coverage. (a) General. The purpose of this... with lead-based paint activities that the PHA undertakes, in accordance with the PHA's ACC with HUD...
24 CFR 965.215 - Lead-based paint liability insurance coverage.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Lead-based paint liability... Insurance Coverage § 965.215 Lead-based paint liability insurance coverage. (a) General. The purpose of this... with lead-based paint activities that the PHA undertakes, in accordance with the PHA's ACC with HUD...
24 CFR 965.215 - Lead-based paint liability insurance coverage.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Lead-based paint liability... Insurance Coverage § 965.215 Lead-based paint liability insurance coverage. (a) General. The purpose of this... with lead-based paint activities that the PHA undertakes, in accordance with the PHA's ACC with HUD...
24 CFR 965.215 - Lead-based paint liability insurance coverage.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Lead-based paint liability... Insurance Coverage § 965.215 Lead-based paint liability insurance coverage. (a) General. The purpose of this... with lead-based paint activities that the PHA undertakes, in accordance with the PHA's ACC with HUD...
An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data
Tan, B.; Morisette, J.T.; Wolfe, R.E.; Gao, F.; Ederer, G.A.; Nightingale, J.; Pedelty, J.A.
2011-01-01
An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates. ?? 2010 IEEE.
Vegetation composition, nutrient, and sediment dynamics along a floodplain landscape
Rybicki, Nancy B.; Noe, Gregory; Hupp, Cliff R.; Robinson, Myles
2015-01-01
Forested floodplains are important landscape features for retaining river nutrients and sediment loads but there is uncertainty in how vegetation influences nutrient and sediment retention. In order to understand the role of vegetation in nutrient and sediment trapping, we quantified species composition and the uptake of nutrients in plant material relative to landscape position and ecosystem attributes in an urban, Piedmont watershed in Virginia, USA. We investigated in situ interactions among vegetative composition, abundance, carbon (C), nitrogen (N) and phosphorus (P) fluxes and ecosystem attributes such as water level, shading, soil nutrient mineralization, and sediment deposition. This study revealed strong associations between vegetation and nutrient and sediment cycling processes at the plot scale and in the longitudinal dimension, but there were few strong patterns between these aspects at the scale of geomorphic features (levee, backswamp, and toe-slope). Patterns reflected the nature of the valley setting rather than a simple downstream continuum. Plant nutrient uptake and sediment trapping were greatest at downstream sites with the widest floodplain and lowest gradient where the hydrologic connection between the floodplain and stream is greater. Sediment trapping increased in association with higher herbaceous plant coverage and lower tree canopy density that, in turn, was associated with a more water tolerant tree community found in the lower watershed but not at the most downstream site in the watershed. Despite urbanization effects on the hydrology, this floodplain functioned as an efficient nutrient trap. N and P flux rates of herbaceous biomass and total litterfall more than accounted for the N and P mineralization flux rate, indicating that vegetation incorporated nearly all mineralized nutrients into biomass.
An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data
NASA Technical Reports Server (NTRS)
Tan, Bin; Morisette, Jeffrey T.; Wolfe, Robert E.; Gao, Feng; Ederer, Gregory A.; Nightingale, Joanne; Pedelty, Jeffrey A.
2012-01-01
An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates.
Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI)
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Rosen, Paul; Ranson, Jon; Zebker, Howard
2008-01-01
The National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommends that DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice), an integrated L-band InSAR and multibeam Lidar mission, launch in the 2010- 2013 timeframe. The mission will measure surface deformation for solid Earth and cryosphere objectives and vegetation structure for understanding the carbon cycle. InSAR has been used to study surface deformation of the solid Earth and cryosphere and more recently vegetation structure for estimates of biomass and ecosystem function. Lidar directly measures topography and vegetation structure and is used to estimate biomass and detect changes in surface elevation. The goal of DESDynI is to take advantage of the spatial continuity of InSAR and the precision and directness of Lidar. There are several issues related to the design of the DESDynI mission, including combining the two instruments into a single platform, optimizing the coverage and orbit for the two techniques, and carrying out the science modeling to define and maximize the scientific output of the mission.
A study of the usefulness of Skylab EREP data for earth resources studies in Australia
NASA Technical Reports Server (NTRS)
Lambert, B. P.; Benson, M. L.; Borough, C. J.; Myers, B. J.; Maffi, C. E.; Simpson, C. J.; Perry, W. J.; Burns, K. L.; Shepherd, J.; Beattie, R. (Principal Investigator)
1975-01-01
The author has identified the following significant results. In subhumid, vegetated areas, S190B photography: (1) has a potentially operational role in detecting lineaments in 1:100,000 scale geological mapping and in major civil engineering surveys; (2) is of limited value for regional lithological mapping at 1:500,000 scale; and (3) provided much useful synoptic information and some detailed information of direct value to the mapping of nonmineral natural resources such as vegetation, land soil, and water. In arid, well exposed areas, S190B photography could be used: (1) with a limited amount of field traverses, to produce reliable 1:500,000 scale geological maps of sedimentary sequences; (2) to update superficial geology on 1:250,000 scale maps; and (3) together with the necessary field studies, to prepare landform, soil, and vegetation maps at 1:1,000,000 scale. Skylab photography was found to be more useful than LANDSAT images for small scale mapping of geology and land types, and for the revision of topographic maps at 1:100,000 scale, because of superior spatial resolution and stereoscopic coverage.
Pastoralism, land degradation and Carbon redistribution in rangelands
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.; Ali, Seid Mohammed
2017-04-01
Pastoralism is rarely viewed as a major future form of land use, because of well-documented cases of rangeland degradation, attributed to irrational overstocking, and the subsequent losses of ecosystem services. However, pastoralists were actually encouraged to settle and adopt such strategies, copied from rangelands with higher and more reliable rainfall. This curtailed mobility resulted in a shift from opportunistic and extensive land use to more intensive and settled forms of use, and promoted degradation of vegetation and soils and the ecosystem services they provided. However, pastoralists traditionally employed several techniques to manage rangeland resources. These practices, such as the use of seasonal grassland reserves and livestock mobility, influence vegetation composition, coverage and abundance in rangelands and preserved ecosystem services relevant for pastoralists. The traditional practices also offer tools for soil and vegetation protection and restoration, thereby contributing to the mitigation of climate change. However, various internal and external factors have curtailed traditional management practices and livestock mobility, breaking the co-evolved balance of vegetation, wildlife and land use, thus exposing rangeland to continued livestock pressure, which often leads to degradation. Rather than abandoning pastoralism as consequence of 20th century land degradation, the revitalisation of traditional practices and indigenous knowledge can be vital to secure sustainable livelihoods for millions of pastoralists and to maintain rangeland ecosystem services.
Brown, Jesslyn; Howard, Daniel M.; Wylie, Bruce K.; Friesz, Aaron M.; Ji, Lei; Gacke, Carolyn
2015-01-01
Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS) system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1), the eMODIS Normalized Difference Vegetation Index (NDVI) maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra) or afternoon (Aqua) orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.
Vegetation Response to Climate Change in the Southern Part of Qinghai-Tibet Plateau at Basinal Scale
NASA Astrophysics Data System (ADS)
Liu, X.; Liu, C.; Kang, Q.; Yin, B.
2018-04-01
Global climate change has significantly affected vegetation variation in the third-polar region of the world - the Qinghai-Tibet Plateau. As one of the most important indicators of vegetation variation (growth, coverage and tempo-spatial change), the Normalized Difference Vegetation Index (NDVI) is widely employed to study the response of vegetation to climate change. However, a long-term series analysis cannot be achieved because a single data source is constrained by time sequence. Therefore, a new framework was presented in this paper to extend the product series of monthly NDVI, taking as an example the Yarlung Zangbo River Basin, one of the most important river basins in the Qinghai-Tibet Plateau. NDVI products were acquired from two public sources: Global Inventory Modeling and Mapping Studies (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) and Moderate-Resolution Imaging spectroradiometer (MODIS). After having been extended using the new framework, the new time series of NDVI covers a 384 months period (1982-2013), 84 months longer than previous time series of NDVI product, greatly facilitating NDVI related scientific research. In the new framework, the Gauss Filtering Method was employed to filter out noise in the NDVI product. Next, the standard method was introduced to enhance the comparability of the two data sources, and a pixel-based regression method was used to construct NDVI-extending models with one pixel after another. The extended series of NDVI fit well with original AVHRR-NDVI. With the extended time-series, temporal trends and spatial heterogeneity of NDVI in the study area were studied. Principal influencing factors on NDVI were further determined. The monthly NDVI is highly correlated with air temperature and precipitation in terms of climatic change wherein the spatially averaged NDVI slightly increases in the summer and has increased in temperature and decreased in precipitation in the 32 years period. The spatial heterogeneity of NDVI is in accordance with the seasonal variation of the two climate-change factors. All of these findings can provide valuable scientific support for water-land resources exploration in the third-polar region of the world.
NASA Astrophysics Data System (ADS)
Hardiman, B. S.; Hutyra, L.; Gately, C.; Raciti, S. M.
2014-12-01
Urban areas are home to 80% of the US population and 70% of energy related fossil fuel emissions originate from urban areas. Efforts to accurately monitor, report, and verify anthropogenic CO2 missions using atmospheric measurements require reliable partitioning of anthropogenic and biogenic sources. Anthropogenic emissions peak during the daytime, coincident with biogenic drawdown of CO2. In contrast, biogenic respiration emissions peak at night when anthropogenic emissions are lower. This temporal aliasing of fluxes requires careful modeling of both biogenic and anthropogenic fluxes for accurate source attribution through inverse modeling. Biogenic fluxes in urban regions can be a significant component of the urban carbon cycle. However, vegetation in urban areas is subject to longer growing seasons, reduced competition, higher rates of nitrogen deposition, and altered patterns of biomass inputs, all interacting to elevate C turnover rates relative to analogous non-urban ecosystems. These conditions suggest that models that ignore urban vegetation or base biogenic flux estimates on non-urban forests are likely to produce inaccurate estimates of anthropogenic CO2 emissions. Biosphere models often omit biogenic fluxes in urban areas despite potentially extensive vegetation coverage. For example, in Massachusetts, models mask out as much as 40% of land area, effectively assuming they have no biological flux. This results in a ~32% underestimate of aboveground biomass (AGB) across the state as compared to higher resolution vegetation maps. Our analysis suggests that some common biomass maps may underestimate forest biomass by ~520 Tg C within the state of Massachusetts. Moreover, omitted portions of the state have the highest population density, indicating that we know least about regions where most people live. We combine remote sensing imagery of urban vegetation cover with ground surveys of tree growth and mortality to improve estimates of aboveground biomass and biogenic flux rates. Updated biogenic flux rates are combined with spatially explicit anthropogenic flux estimates and a network of urban CO2 monitoring sites as the foundation for a novel carbon monitoring system spanning the Boston-Washington D.C. metropolitan corridor.
A Framework for the Ecogeomorphological Modelling of the Macquarie Marshes, Australia
NASA Astrophysics Data System (ADS)
Rodriguez, J. F.; Seoane Salazar, M.; Sandi Rojas, S.; Saco, P. M.; Riccardi, G.; Saintilan, N.; Wen, L.
2014-12-01
The Macquarie Marshes is a system of permanent and semi-permanent marshes, swamps and lagoons interconnected by braided channels. The Marshes are located in the semi-arid region in north western NSW, Australia, and constitute part of the northern Murray-Darling Basin. The wetland complex serves as nesting place and habitat for many species of water birds, fish, frogs and crustaceans, and portions of the Marshes was listed as internationally important under the Ramsar Convention. Over the last four decades, some of the wetlands have undergone degradation, which has been attributed to flow abstraction and regulation at Burrendong Dam upstream of the marshes. Among the many characteristics that make this wetland system unique is the occurrence of channel breakdown and channel avulsion, which are associated with decline of river flow in the downstream direction typical of dryland streams. Decrease in river flow can lead to sediment deposition, decrease in channel capacity, vegetative invasion of the channel, overbank flows, and ultimately result in channel breakdown and changes in marsh formation. A similar process on established marshes may also lead to channel avulsion and marsh abandonment. All the previous geomorphological evolution processes have an effect on the established ecosystem, which will produce feedbacks on the hydrodynamics of the system and affect the geomorphology in return. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological framework that combines hydrodynamic, vegetation and channel evolution modules. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model. We perform preliminary tests by running continuous simulation over several years and compare the results to existing hydrological, vegetation and geomorphological data to assess the model capabilities and limitations. We also analyse the effects of the implementation of a number of water management strategies.
29 CFR 2590.715-2714 - Eligibility of children until at least age 26.
Code of Federal Regulations, 2010 CFR
2010-07-01
... plan, or a health insurance issuer offering group health insurance coverage, that makes available... or health insurance coverage providing dependent coverage of children cannot vary based on age... of self-only or family health coverage. Dependent coverage is provided under family health coverage...
Mapping northern Atlantic coastal marshlands, Maryland-Virginia, using ERTS imagery
NASA Technical Reports Server (NTRS)
Anderson, R. R. (Principal Investigator); Carter, V. L.; Mcginness, J. W., Jr.
1973-01-01
The author has identified the following significant results. ERTS-1 data provides repetitive synoptic coverage for DC 00000 of wetland ecology, detection of change, and mapping or inventory of wetland boundaries and plant communities. ERTS-1 positive transparencies of Atlantic Coastal wetlands were enlarged to different scales and mapped using a variety of methods. Results of analysis indicate: (1) mapping of wetland boundaries and vegetative communities from imagery at a scale of 1:1,000,000 is impractical because small details are difficult to illustrate; (2) mapping to a scale of 1:250,000 is practical for defining land-water interface, upper wetland boundary, gross vegetative communities, and spoil disposal/dredge and fill operations; (3) 1:125,000 enlargements provide additional information on transition zones, smaller plant communities, and drainage or mosquito ditching. Overlays may be made directly from prints.
Measuring and Specifying Combinatorial Coverage of Test Input Configurations
Kuhn, D. Richard; Kacker, Raghu N.; Lei, Yu
2015-01-01
A key issue in testing is how many tests are needed for a required level of coverage or fault detection. Estimates are often based on error rates in initial testing, or on code coverage. For example, tests may be run until a desired level of statement or branch coverage is achieved. Combinatorial methods present an opportunity for a different approach to estimating required test set size, using characteristics of the test set. This paper describes methods for estimating the coverage of, and ability to detect, t-way interaction faults of a test set based on a covering array. We also develop a connection between (static) combinatorial coverage and (dynamic) code coverage, such that if a specific condition is satisfied, 100% branch coverage is assured. Using these results, we propose practical recommendations for using combinatorial coverage in specifying test requirements. PMID:28133442
NASA Astrophysics Data System (ADS)
Jayanthi, Harikishan
The focus of this research was two-fold: (1) extend the reflectance-based crop coefficient approach to non-grain (potato and sugar beet), and vegetable crops (bean), and (2) develop vegetation index (VI)-yield statistical models for potato and sugar beet crops using high-resolution aerial multispectral imagery. Extensive crop biophysical sampling (leaf area index and aboveground dry biomass sampling) and canopy reflectance measurements formed the backbone of developing of canopy reflectance-based crop coefficients for bean, potato, and sugar beet crops in this study. Reflectance-based crop coefficient equations were developed for the study crops cultivated in Kimberly, Idaho, and subsequently used in water availability simulations in the plant root zone during 1998 and 1999 seasons. The simulated soil water profiles were compared with independent measurements of actual soil water profiles in the crop root zone in selected fields. It is concluded that the canopy reflectance-based crop coefficient technique can be successfully extended to non-grain crops as well. While the traditional basal crop coefficients generally expect uniform growth in a region the reflectance-based crop coefficients represent the actual crop growth pattern (in less than ideal water availability conditions) in individual fields. Literature on crop canopy interactions with sunlight states that there is a definite correspondence between leaf area index progression in the season and the final yield. In case of crops like potato and sugar beet, the yield is influenced not only on how early and how quickly the crop establishes its canopy but also on how long the plant stands on the ground in a healthy state. The integrated area under the crop growth curve has shown excellent correlations with hand-dug samples of potato and sugar beet crops in this research. Soil adjusted vegetation index-yield models were developed, and validated using multispectral aerial imagery. Estimated yield images were compared with the actual yields extracted from the ground. The remote sensing-derived yields compared well with the actual yields sampled on the ground. This research has highlighted the importance of the date of spectral emergence, the need to know the duration for which the crops stand on the ground, and the need to identify critical periods of time when multispectral coverages are essential for reliable tuber yield estimation.
NASA Astrophysics Data System (ADS)
Jokinen, Henri; Wennhage, Håkan; Ollus, Victoria; Aro, Eero; Norkko, Alf
2016-01-01
Flatfish in the northern Baltic Sea are facing multiple environmental pressures due to on-going large-scale ecosystem changes linked to eutrophication and climate change. Shallow juvenile habitats of flatfishes are expected to be especially susceptible to these environmental pressures. Using previously unpublished historical and present-state data on juvenile flatfish in nursery areas along the Finnish coast we demonstrate a drastic (up to 40 ×) decline in 1-Y-O flounder densities since the 1980s and a particularly low current occurrence of both flounders and turbots in several known juvenile habitats. As a consequence of ongoing coastal eutrophication vegetation coverage and filamentous algae have generally increased in shallow areas. We examined the predicted negative effect of vegetation/algae by exploring quantitative relationships between juvenile flatfish (flounder and turbot) occurrence and vegetation/algae among other environmental factors in shallow juvenile habitats. Despite sparse occurrence of juveniles we found a significant negative relationship between flatfish abundance and vegetation cover, implicating eutrophication as a potential major driver affecting the value of juvenile habitat. Shallow littoral habitats play a particularly central role for flatfish due to the spatial concentration of fish in these areas during the critical juvenile stage. Despite their importance, these areas have been relatively poorly studied in the northern Baltic Sea, which makes it difficult to quantify overall changes in environmental conditions and to relate these changes to flatfish recruitment. The low present-state flatfish densities recorded preclude strong inferences of the role of habitat quality to be drawn. Our study does, however, provide a baseline for future assessment. Based on existing evidence, we cannot thus establish any bottlenecks but hypothesize that the current low occurrence of juvenile flatfish, and the population decline of flounder on the Finnish coast, might have resulted from a combination of altered larval supply and reduced nursery value.
Deardorff, Katrina V; Rubin Means, Arianna; Ásbjörnsdóttir, Kristjana H; Walson, Judd
2018-02-01
Community-based public health campaigns, such as those used in mass deworming, vitamin A supplementation and child immunization programs, provide key healthcare interventions to targeted populations at scale. However, these programs often fall short of established coverage targets. The purpose of this systematic review was to evaluate the impact of strategies used to increase treatment coverage in community-based public health campaigns. We systematically searched CAB Direct, Embase, and PubMed archives for studies utilizing specific interventions to increase coverage of community-based distribution of drugs, vaccines, or other public health services. We identified 5,637 articles, from which 79 full texts were evaluated according to pre-defined inclusion and exclusion criteria. Twenty-eight articles met inclusion criteria and data were abstracted regarding strategy-specific changes in coverage from these sources. Strategies used to increase coverage included community-directed treatment (n = 6, pooled percent change in coverage: +26.2%), distributor incentives (n = 2, +25.3%), distribution along kinship networks (n = 1, +24.5%), intensified information, education, and communication activities (n = 8, +21.6%), fixed-point delivery (n = 1, +21.4%), door-to-door delivery (n = 1, +14.0%), integrated service distribution (n = 9, +12.7%), conversion from school- to community-based delivery (n = 3, +11.9%), and management by a non-governmental organization (n = 1, +5.8%). Strategies that target improving community member ownership of distribution appear to have a large impact on increasing treatment coverage. However, all strategies used to increase coverage successfully did so. These results may be useful to National Ministries, programs, and implementing partners in optimizing treatment coverage in community-based public health programs.
2018-01-01
Background Community-based public health campaigns, such as those used in mass deworming, vitamin A supplementation and child immunization programs, provide key healthcare interventions to targeted populations at scale. However, these programs often fall short of established coverage targets. The purpose of this systematic review was to evaluate the impact of strategies used to increase treatment coverage in community-based public health campaigns. Methodology/ principal findings We systematically searched CAB Direct, Embase, and PubMed archives for studies utilizing specific interventions to increase coverage of community-based distribution of drugs, vaccines, or other public health services. We identified 5,637 articles, from which 79 full texts were evaluated according to pre-defined inclusion and exclusion criteria. Twenty-eight articles met inclusion criteria and data were abstracted regarding strategy-specific changes in coverage from these sources. Strategies used to increase coverage included community-directed treatment (n = 6, pooled percent change in coverage: +26.2%), distributor incentives (n = 2, +25.3%), distribution along kinship networks (n = 1, +24.5%), intensified information, education, and communication activities (n = 8, +21.6%), fixed-point delivery (n = 1, +21.4%), door-to-door delivery (n = 1, +14.0%), integrated service distribution (n = 9, +12.7%), conversion from school- to community-based delivery (n = 3, +11.9%), and management by a non-governmental organization (n = 1, +5.8%). Conclusions/significance Strategies that target improving community member ownership of distribution appear to have a large impact on increasing treatment coverage. However, all strategies used to increase coverage successfully did so. These results may be useful to National Ministries, programs, and implementing partners in optimizing treatment coverage in community-based public health programs. PMID:29420534
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator)
1981-01-01
The use of LANDSAT multispectral scanner and return beam vidicon imagery for surveying the natural resources of the Brazilian Amazonas is described. Purposes of the Amazonas development project are summarized. The application of LANDSAT imagery to identification of vegetation coverage and soil use, identification of soil types, geomorphology, and geology and highway planning is discussed. An evaluation of the worth of LANDSAT imagery in mapping the region is presented. Maps generated by the project are included.
Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis
2010-01-01
In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.
Use of remote sensing for monitoring deforestation in tropical and subtropical latitudes
Talbot, J. J.; Pettinger, Lawrence R.
1981-01-01
Factors limiting the application of Landsat data—including relatively low spatial resolution, persistent cloud cover in tropical regions, inadequate coverage of certain areas due to data-acquisition restraints and lack of local Landsat data receiving stations for real-time data recording—must be considered in any proposed study. Future improvements in Landsat capabilities might extend present applications beyond distinction of forest vs. non-forest cover, determination of gross vegetation or forest type, and generalized land use mapping.
2014-01-01
Comparison of footprints from various image sensors used in this study . Landsat (blue) is in the upper left panel, SPOT (yellow) is in the upper right...the higher resolution sensors evaluated as part of this study are limited to four spectral bands. Moderate resolution processing. ArcGIS ...moderate, effective useful coverage may be much more limited for a scene that includes significant amounts of water. Throughout the study period, SPOT 4
Eavesdropping on the Arctic: Automated bioacoustics reveal dynamics in songbird breeding phenology.
Oliver, Ruth Y; Ellis, Daniel P W; Chmura, Helen E; Krause, Jesse S; Pérez, Jonathan H; Sweet, Shannan K; Gough, Laura; Wingfield, John C; Boelman, Natalie T
2018-06-01
Bioacoustic networks could vastly expand the coverage of wildlife monitoring to complement satellite observations of climate and vegetation. This approach would enable global-scale understanding of how climate change influences phenomena such as migratory timing of avian species. The enormous data sets that autonomous recorders typically generate demand automated analyses that remain largely undeveloped. We devised automated signal processing and machine learning approaches to estimate dates on which songbird communities arrived at arctic breeding grounds. Acoustically estimated dates agreed well with those determined via traditional surveys and were strongly related to the landscape's snow-free dates. We found that environmental conditions heavily influenced daily variation in songbird vocal activity, especially before egg laying. Our novel approaches demonstrate that variation in avian migratory arrival can be detected autonomously. Large-scale deployment of this innovation in wildlife monitoring would enable the coverage necessary to assess and forecast changes in bird migration in the face of climate change.
Initial evaluation of the geologic applications of ERTS-1 imagery for New Mexico
NASA Technical Reports Server (NTRS)
Vonderlinden, K.; Kottlowski, F. E.
1973-01-01
Coverage of approximately one-third of the test site, the state of New Mexico, had been received by January 31, 1973 and all of the images received were MSS products. Features noted during visual inspection of 91/2 x 91/2 prints include major structural forms, vegetation patterns, drainage patterns and outcrops of geologic formations having marked color contrasts. The Border Hills Structural Zone and the Y-O Structural Zone are prominently reflected in coverage of the Pecos Valley. A study of available maps and remote sensing material covering the Deming-Columbus area indicated that the limit of detection and the resolution of MSS products are not as good as those of aerial photographs, geologic maps, and manned-satellite photographs. The limit of detection of high contrast features on MSS prints in approximately 1000 feet or 300 meters for linear features and about 18 acres for roughly circular areas.
Remote sensing analysis of Lake Livingston aquatic plants
NASA Technical Reports Server (NTRS)
Benton, A. R., Jr.; Newman, R. M.
1976-01-01
Results obtained during 1975 to monitor the growth of aquatic plants in the Lake Livingston area, using remote sensing photographic imagery, were described. Sequential total coverage was provided of the Jungle and White Rock Creek, plus coverage of smaller areas of localized infestation downlake, including Brushy Creek, KOA Kampground Marina, Penwaugh Slough, Memorial Point Marina, the Beacon Bay marinas and Pine Island. The imagery was generally good, photographic exposure being increased as the season progressed in order to obtain better pictures of the submerged vegetation. Some very significant differences in growth patterns, species interaction, and species dominance were observed when compared to 1974. Observation of the following plants was discussed: water hyacinth, hydrilla, coontail, potamageton. In general, the level of infestation was lower in 1975 than in 1974, due to the combined effect of more systematic application of herbicides and harsher intervening winter weather conditions.
Jacobs, Ken; Graham-Squire, Dave; Roby, Dylan H; Kominski, Gerald F; Kinane, Christina M; Needleman, Jack; Watson, Greg; Gans, Daphna
2011-12-01
Key Findings. The Patient Protection and Affordable Care Act (ACA) is designed to offer premium subsidies to help eligible individuals and their families purchase insurance coverage when affordable job-based coverage is not available. However, the law is unclear on how this affordability protection is applied in those instances where self-only coverage offered by an employer is affordable but family coverage is not. Regulations recently proposed by the Department of the Treasury would make family members ineligible for subsidized coverage in the exchange if an employee is offered affordable self-only coverage by an employer, even if family coverage is unaffordable. This could have significant financial consequences for low- and moderate-income families that fall in this gap. Using an alternative interpretation of the law could allow the entire family to enter the exchange when family coverage is unaffordable, which would broaden access to coverage. However, this option has been cited as cost prohibitive. In this brief we consider a middle ground alternative that would base eligibility for the individual worker on the cost of self-only coverage, but would use the additional cost to the employee for family coverage as the basis for determining affordability and eligibility for subsidies for the remaining family members. We find that: Under the middle ground alternative scenario an additional 144,000 Californians would qualify for and use premium subsidies in the California Health Benefit Exchange, half of whom are children. Less than 1 percent of those with employer-based coverage would move to subsidized coverage in the California Health Benefit Exchange as a result of having unaffordable coverage on the job.
Song, Xiang; Zeng, Xiaodong
2017-02-01
The climate has important influences on the distribution and structure of forest ecosystems, which may lead to vital feedback to climate change. However, much of the existing work focuses on the changes in carbon fluxes or water cycles due to climate change and/or atmospheric CO 2 , and few studies have considered how and to what extent climate change and CO 2 influence the ecosystem structure (e.g., fractional coverage change) and the changes in the responses of ecosystems with different characteristics. In this work, two dynamic global vegetation models (DGVMs): IAP-DGVM coupled with CLM3 and CLM4-CNDV, were used to investigate the response of the forest ecosystem structure to changes in climate (temperature and precipitation) and CO 2 concentration. In the temperature sensitivity tests, warming reduced the global area-averaged ecosystem gross primary production in the two models, which decreased global forest area. Furthermore, the changes in tree fractional coverage (Δ F tree ; %) from the two models were sensitive to the regional temperature and ecosystem structure, i.e., the mean annual temperature (MAT; °C) largely determined whether Δ F tree was positive or negative, while the tree fractional coverage ( F tree ; %) played a decisive role in the amplitude of Δ F tree around the globe, and the dependence was more remarkable in IAP-DGVM. In cases with precipitation change, F tree had a uniformly positive relationship with precipitation, especially in the transition zones of forests (30% < F tree < 60%) for IAP-DGVM and in semiarid and arid regions for CLM4-CNDV. Moreover, Δ F tree had a stronger dependence on F tree than on the mean annual precipitation (MAP; mm/year). It was also demonstrated that both models captured the fertilization effects of the CO 2 concentration.
Evaluating lidar point densities for effective estimation of aboveground biomass
Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.
2016-01-01
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.
NASA Astrophysics Data System (ADS)
Rigden, Angela J.; Salvucci, Guido D.
2015-04-01
A novel method of estimating evapotranspiration (ET), referred to as the ETRHEQ method, is further developed, validated, and applied across the U.S. from 1961 to 2010. The ETRHEQ method estimates the surface conductance to water vapor transport, which is the key rate-limiting parameter of typical ET models, by choosing the surface conductance that minimizes the vertical variance of the calculated relative humidity profile averaged over the day. The ETRHEQ method, which was previously tested at five AmeriFlux sites, is modified for use at common weather stations and further validated at 20 AmeriFlux sites that span a wide range of climates and limiting factors. Averaged across all sites, the daily latent heat flux RMSE is ˜26 W·m-2 (or 15%). The method is applied across the U.S. at 305 weather stations and spatially interpolated using ANUSPLIN software. Gridded annual mean ETRHEQ ET estimates are compared with four data sets, including water balance-derived ET, machine-learning ET estimates based on FLUXNET data, North American Land Data Assimilation System project phase 2 ET, and a benchmark product that integrates 14 global ET data sets, with RMSEs ranging from 8.7 to 12.5 cm·yr-1. The ETRHEQ method relies only on data measured at weather stations, an estimate of vegetation height derived from land cover maps, and an estimate of soil thermal inertia. These data requirements allow it to have greater spatial coverage than direct measurements, greater historical coverage than satellite methods, significantly less parameter specification than most land surface models, and no requirement for calibration.
Msyamboza, Kelias Phiri; Mwagomba, Beatrice Matanje; Valle, Moussa; Chiumia, Hastings; Phiri, Twambilire
2017-06-26
Cervical cancer is a major public health problem in Malawi. The age-standardized incidence and mortality rates are estimated to be 75.9 and 49.8 per 100,000 population, respectively. The availability of the human papillomavirus (HPV) vaccine presents an opportunity to reduce the morbidity and mortality associated with cervical cancer. In 2013, the country introduced a school-class-based HPV vaccination pilot project in two districts. The aim of this study was to evaluate HPV vaccine coverage, lessons learnt and challenges identified during the first three years of implementation. This was an evaluation of the HPV vaccination project targeting adolescent girls aged 9-13 years conducted in Malawi from 2013 to 2016. We analysed programme data, supportive supervision reports and minutes of National HPV Task Force meetings to determine HPV vaccine coverage, reasons for partial or no vaccination and challenges. Administrative coverage was validated using a community-based coverage survey. A total of 26,766 in-school adolescent girls were fully vaccinated in the two pilot districts during the first three years of the programme. Of these; 2051 (7.7%) were under the age of 9 years, 884 (3.3%) were over the age of 13 years, and 23,831 (89.0%) were aged 9-13 years (the recommended age group). Of the 765 out-of-school adolescent girls aged 9-13 who were identified during the period, only 403 (52.7%) were fully vaccinated. In Zomba district, the coverage rates of fully vaccinated were 84.7%, 87.6% and 83.3% in year 1, year 2 and year 3 of the project, respectively. The overall coverage for the first three years was 82.7%, and the dropout rate was 7.7%. In Rumphi district, the rates of fully vaccinated coverage were 90.2% and 96.2% in year 1 and year 2, respectively, while the overall coverage was 91.3%, and the dropout rate was 4.9%. Administrative (facility-based) coverage for the first year was validated using a community-based cluster coverage survey. The majority of the coverage results were statistically similar, except for in Rumphi district, where community-based 3-dose coverage was higher than the corresponding administrative-coverage (94.2% vs 90.2%, p < 0.05), and overall (in both districts), facility-based 1-dose coverage was higher than the corresponding community-based (94.6% vs 92.6%, p < 0.05). Transferring out of the district, dropping out of school and refusal were some of the reasons for partial or no uptake of the vaccine. In Malawi, the implementation of a school-class-based HPV vaccination strategy was feasible and produced high (>80%) coverage. However, this strategy may be associated with the vaccination of under- and over-aged adolescent girls who are outside of the vaccine manufacturer's stipulated age group (9-13 years). The health facility-based coverage for out-of-school adolescent girls produced low coverage, with only half of the target population being fully vaccinated. These findings highlight the need to assess the immunogenicity associated with the administration of a two-dose schedule to adolescent girls younger or older than 9-13 years and effectiveness of health facility-based strategy before rolling out the programme.
One-fifth of nonelderly Californians do not have access to job-based health insurance coverage.
Lavarreda, Shana Alex; Cabezas, Livier
2010-11-01
Lack of job-based health insurance does not affect just workers, but entire families who depend on job-based coverage for their health care. This policy brief shows that in 2007 one-fifth of all Californians ages 0-64 who lived in households where at least one family member was employed did not have access to job-based coverage. Among adults with no access to job-based coverage through their own or a spouse's job, nearly two-thirds remained uninsured. In contrast, the majority of children with no access to health insurance through a parent obtained public health insurance, highlighting the importance of such programs. Low-income, Latino and small business employees were more likely to have no access to job-based insurance. Provisions enacted under national health care reform (the Patient Protection and Affordable Care Act of 2010) will aid some of these populations in accessing health insurance coverage.
Fronstin, Paul
2011-09-01
LATEST CENSUS DATA: This Issue Brief provides historical data through 2010 on the number and percentage of nonelderly individuals with and without health insurance. Based on EBRI estimates from the U.S. Census Bureau's March 2011 Current Population Survey (CPS), it reflects 2010 data. It also discusses trends in coverage for the 1994-2010 period and highlights characteristics that typically indicate whether an individual is insured. HEALTH COVERAGE RATE CONTINUES TO DECREASE, UNINSURED INCREASE: The percentage of the nonelderly population (under age 65) with health insurance coverage decreased to 81.5 percent in 2010. Increases in health insurance coverage have been recorded in only three years since 1994, when 36.5 million nonelderly individuals were uninsured. The percentage of nonelderly individuals without health insurance coverage was 18.5 percent in 2010, up from 18.3 percent in 2009, and its highest level during the 1994-2010 period. EMPLOYMENT-BASED COVERAGE REMAINS DOMINANT SOURCE OF HEALTH COVERAGE, BUT CONTINUES TO ERODE: Employment-based health benefits remain the most common form of health coverage in the United States. In 2010, 58.7 percent of the nonelderly population had employment-based health benefits, down from 69.3 percent in 2000. SHIFTING COMPOSITION OF EMPLOYMENT-BASED COVERAGE: Between 2007 and 2010, the percentage of individuals under age 65 with employment-based coverage in their own name has dropped. In 2007, 54.2 percent had coverage in their own name. By 2010, it was down to 51.5 percent. Dependent coverage during this time period fell slightly from 17.5 percent to 17.1 percent, and increased slightly from 16.8 percent to 17.1 percent between 2009 and 2010. PUBLIC PROGRAM COVERAGE IS GROWING: Public program health coverage expanded as a percentage of the population in 2010, accounting for 21.6 percent of the nonelderly population. Enrollment in Medicaid and the State Children's Health Insurance Program increased, reaching a combined 45 million in 2010, and covering 16.9 percent of the nonelderly population, significantly above the 10.2 percent level of 1999. INDIVIDUAL COVERAGE STABLE: Individually purchased health coverage was unchanged in 2010 and has basically hovered in the 6-7 percent range since 1994. WHAT TO EXPECT IN 2011: 2010 is the most recent year for data on sources of health coverage. Unemployment in 2011 has been about 9 percent since the beginning of the year. While down from the 2010 average of 9.6 percent, it remains high and there is a continued threat of a double-dip recession increasing it even further. As a result, the nation is likely to see continued erosion of employment-based health benefits when the data for 2011 are released in 2012. Fewer working individuals translates into fewer individuals with access to health benefits in the work place, especially after COBRA subsidies have been exhausted.
Uav Photogrammetry for Mapping and Monitoring of Northern Permafrost Landscapes
NASA Astrophysics Data System (ADS)
Fraser, R. H.; Olthof, I.; Maloley, M.; Fernandes, R.; Prevost, C.; van der Sluijs, J.
2015-08-01
Northern environments are changing in response to recent climate warming, resource development, and natural disturbances. The Arctic climate has warmed by 2-3°C since the 1950's, causing a range of cryospheric changes including declines in sea ice extent, snow cover duration, and glacier mass, and warming permafrost. The terrestrial Arctic has also undergone significant temperature-driven changes in the form of increased thermokarst, larger tundra fires, and enhanced shrub growth. Monitoring these changes to inform land managers and decision makers is challenging due to the vast spatial extents involved and difficult access. Environmental monitoring in Canada's North is often based on local-scale measurements derived from aerial reconnaissance and photography, and ecological, hydrologic, and geologic sampling and surveying. Satellite remote sensing can provide a complementary tool for more spatially comprehensive monitoring but at coarser spatial resolutions. Satellite remote sensing has been used to map Arctic landscape changes related to vegetation productivity, lake expansion and drainage, glacier retreat, thermokarst, and wildfire activity. However, a current limitation with existing satellite-based techniques is the measurement gap between field measurements and high resolution satellite imagery. Bridging this gap is important for scaling up field measurements to landscape levels, and validating and calibrating satellite-based analyses. This gap can be filled to a certain extent using helicopter or fixed-wing aerial surveys, but at a cost that is often prohibitive. Unmanned aerial vehicle (UAV) technology has only recently progressed to the point where it can provide an inexpensive and efficient means of capturing imagery at this middle scale of measurement with detail that is adequate to interpret Arctic vegetation (i.e. 1-5 cm) and coverage that can be directly related to satellite imagery (1-10 km2). Unlike satellite measurements, UAVs permit frequent surveys (e.g. for monitoring vegetation phenology, fires, and hydrology), are not constrained by repeat cycle or cloud cover, can be rapidly deployed following a significant event, and are better suited than manned aircraft for mapping small areas. UAVs are becoming more common for agriculture, law enforcement, and marketing, but their use in the Arctic is still rare and represents untapped technology for northern mapping, monitoring, and environmental research. We are conducting surveys over a range of sensitive or changing northern landscapes using a variety of UAV multicopter platforms and small sensors. Survey targets include retrogressive thaw slumps, tundra shrub vegetation, recently burned vegetation, road infrastructure, and snow. Working with scientific partners involved in northern monitoring programs (NWT CIMP, CHARS, NASA ABOVE, NRCan-GSC) we are investigating the advantages, challenges, and best practices for acquiring high resolution imagery from multicopters to create detailed orthomosaics and co-registered 3D terrain models. Colour and multispectral orthomosaics are being integrated with field measurements and satellite imagery to conduct spatial scaling of environmental parameters. Highly detailed digital terrain models derived using structure from motion (SfM) photogrammetry are being applied to measure thaw slump morphology and change, snow depth, tundra vegetation structure, and surface condition of road infrastructure. These surveys and monitoring applications demonstrate that UAV-based photogrammetry is poised to make a rapid contribution to a wide range of northern monitoring and research applications.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false When we give you quarters of coverage based on military service to establish a period of disability. 404.133 Section 404.133 Employees' Benefits... Status and Quarters of Coverage Disability Insured Status § 404.133 When we give you quarters of coverage...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false When we give you quarters of coverage based on military service to establish a period of disability. 404.133 Section 404.133 Employees' Benefits... Status and Quarters of Coverage Disability Insured Status § 404.133 When we give you quarters of coverage...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false When we give you quarters of coverage based on military service to establish a period of disability. 404.133 Section 404.133 Employees' Benefits... Status and Quarters of Coverage Disability Insured Status § 404.133 When we give you quarters of coverage...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false When we give you quarters of coverage based on military service to establish a period of disability. 404.133 Section 404.133 Employees' Benefits... Status and Quarters of Coverage Disability Insured Status § 404.133 When we give you quarters of coverage...
NASA Astrophysics Data System (ADS)
Vander Jagt, Benjamin John
Snow and its water equivalent plays a vital role in global water and energy balances, with particular relevance in mountainous areas with arid and semi-arid climate regimes. Spaceborne passive microwave (PM) remote sensing measurements are attractive for snowpack characterization due to their continuous global coverage and historical record; over 30 years of research has been invested in the development of methods to characterize large-scale snow water resources from PM-based measurements. Historically, use of PM data for snowpack characterization in montane enviroments has been obstructed by the complex subpixel variability of snow properties within the PM measurement footprint. The main subpixel effects can be grouped as: the effect of snow microstructure (e.g. snow grain size) and stratigraphy on snow microwave emission, vegetation attenuation of PM measurements, and the sensitivity PM brightness temperature (Tb) observation to the variability of different subpixel properties at spaceborne measurement scales. This dissertation is focused on a systematic examination of these issues, which thus far have prevented the widespread integration of snow water equivalent (SWE) retrieval methods. It is meant to further our comprehension of the underlying processes at work in these rugged, remote, a hydrologically important areas. The role that snow microstructure plays in the PM retrievals of SWE is examined first. Traditional estimates of grain size are subjective and prone to error. Objective techniques to characterize grain size are described and implemented, including near infrared (NIR), stereology, and autocorrelation based approaches. Results from an intensive Colorado field study in which independent estimates of grain size and their modeled brightness temperature (Tb) emission are evaluated against PM Tb observations are included. The coarse resolution of the passive microwave measurements provides additional challenges when trying to resolve snow states via remote sensing observations. The natural heterogeneity of snowpack (e.g. depth, stratigraphy, etc) and vegetative states within the PM footprint occurs at spatial scales smaller than PM observation scales. The sensitivity to changes in snow depth given sub-pixel variability in snow and vegetation is explored and quantified using the comprehensive dataset acquired during the Cold Land Processes experiment (CLPX). Lastly, vegetation has long been an obstacle in efforts to derive snow depth and mass estimates from passive microwave (PM) measurements of brightness temperature (Tb). We introduce a vegetation transmissivity model that is derived entirely from multi-scale and multi-temporal PM Tb observations and a globally available vegetation dataset, specifically the Leaf Area Index (LAI). This newly constructed model characterizes the attenuation of PM Tb observations at frequencies typically employed for snow retrieval algorithms, as a function of LAI. Additionally, the model is used to predict how much SWE is observable within the major river basins of Colorado and the central Rockies.
Evaluation of Reconstructed Remote Sensing Time Series Data
NASA Astrophysics Data System (ADS)
Rivera-Camacho, J.; Didan, K.; Barreto-munoz, A.; Yitayew, M.
2011-12-01
Vegetation phenology is the study of vegetation state, function and change over time and is directly linked to the carbon cycle and an integrative measure of climate change impacts. Field observations of phenology can address some questions associated with phenology and climate change, but they are not effective at estimating and understanding large scale change in biome seasonality. Synoptic remote sensing has emerged as a practical tool for studying the land surface vegetation over large spatial and temporal scales. However, the presence of clouds, noise, inadequate processing algorithms result in poor quality data that needs to be discarded. Discarded data is so prevalent sometimes that up to 80% of the spatial and temporal coverage is missing which inhibits the proper study of vegetation phenology. To improve these data records gap filling techniques are employed. The purpose is to accurately reconstruct the VI time series profile, while preserving as much of the original data to support accurate land surface vegetation characterization. Some methods use complex Fourier Transform (FT) functions, Gaussian fitting models, or Piecewise techniques, while others are based on simpler linear interpolation. The impact of these gap filling methods on the resulting record is yet to be fully explored and characterized. In this project, we devised a new hybrid gap filling technique based on finding the seasonally variable per-pixel optimum composite period and then filling the remaining gaps with a simple local interpolation using the Inverse Distance Weighting (IDW) approach. The method is further constrained by a moving window long term average to minimize the biases that may result from over- or under-fitting. This method was applied to a 30-year sensor independent Vegetation Index ESDR from AHRR and MODIS records. To understand the impact of this gap filling technique, we performed statistical analyses to determine the error and uncertainty associated with estimating the start of season, length of season and integrated VI signal over the growing season (proxy of Gross Primary Productivity, or Carbon). Our preliminary results indicate that the time series is sensitive to the gap filling technique, particularly over areas prone to residual cloud noise and/or areas subject to long period of snow cover. This has a direct impact on the growing season characterization by making the season shorter (up to 4 weeks) and the start of the season later (up to 2 weeks). The seasonal summation of VI becomes then smaller (13%) with a direct impact on the carbon budget estimation. Another important finding is that special attention must be paid to data filtering, since this will impact the residual noise/signal in the input data and will subsequently impact the gap filling outcome.
Barrier Coverage for 3D Camera Sensor Networks
Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi; Ji, Peng; Chu, Hao
2017-01-01
Barrier coverage, an important research area with respect to camera sensor networks, consists of a number of camera sensors to detect intruders that pass through the barrier area. Existing works on barrier coverage such as local face-view barrier coverage and full-view barrier coverage typically assume that each intruder is considered as a point. However, the crucial feature (e.g., size) of the intruder should be taken into account in the real-world applications. In this paper, we propose a realistic resolution criterion based on a three-dimensional (3D) sensing model of a camera sensor for capturing the intruder’s face. Based on the new resolution criterion, we study the barrier coverage of a feasible deployment strategy in camera sensor networks. Performance results demonstrate that our barrier coverage with more practical considerations is capable of providing a desirable surveillance level. Moreover, compared with local face-view barrier coverage and full-view barrier coverage, our barrier coverage is more reasonable and closer to reality. To the best of our knowledge, our work is the first to propose barrier coverage for 3D camera sensor networks. PMID:28771167
Barrier Coverage for 3D Camera Sensor Networks.
Si, Pengju; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi; Ji, Peng; Chu, Hao
2017-08-03
Barrier coverage, an important research area with respect to camera sensor networks, consists of a number of camera sensors to detect intruders that pass through the barrier area. Existing works on barrier coverage such as local face-view barrier coverage and full-view barrier coverage typically assume that each intruder is considered as a point. However, the crucial feature (e.g., size) of the intruder should be taken into account in the real-world applications. In this paper, we propose a realistic resolution criterion based on a three-dimensional (3D) sensing model of a camera sensor for capturing the intruder's face. Based on the new resolution criterion, we study the barrier coverage of a feasible deployment strategy in camera sensor networks. Performance results demonstrate that our barrier coverage with more practical considerations is capable of providing a desirable surveillance level. Moreover, compared with local face-view barrier coverage and full-view barrier coverage, our barrier coverage is more reasonable and closer to reality. To the best of our knowledge, our work is the first to propose barrier coverage for 3D camera sensor networks.
5 CFR 847.415 - OASDI coverage.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false OASDI coverage. 847.415 Section 847.415...) ELECTIONS OF RETIREMENT COVERAGE BY CURRENT AND FORMER EMPLOYEES OF NONAPPROPRIATED FUND INSTRUMENTALITIES Elections of Coverage Under the Retroactive Provisions Elections of Csrs Or Fers Coverage Based on A Move...
5 CFR 847.415 - OASDI coverage.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false OASDI coverage. 847.415 Section 847.415...) ELECTIONS OF RETIREMENT COVERAGE BY CURRENT AND FORMER EMPLOYEES OF NONAPPROPRIATED FUND INSTRUMENTALITIES Elections of Coverage Under the Retroactive Provisions Elections of Csrs Or Fers Coverage Based on A Move...
5 CFR 847.415 - OASDI coverage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false OASDI coverage. 847.415 Section 847.415...) ELECTIONS OF RETIREMENT COVERAGE BY CURRENT AND FORMER EMPLOYEES OF NONAPPROPRIATED FUND INSTRUMENTALITIES Elections of Coverage Under the Retroactive Provisions Elections of Csrs Or Fers Coverage Based on A Move...
NASA Astrophysics Data System (ADS)
Li, Xinrong
2016-04-01
Biological soil crust (BSC) is a vital component in the stabilized sand dunes with a living cover up to more than 70% of the total, which has been considered as a bio-mediator that directly influences and regulates the sand dune ecosystem processes. However, its influences on soil hydrological processes have been long neglected in Chinese deserts. In this study, BSCs of different successional stages were chose to test their influence on the hydrological processes of stabilized dune, where the groundwater deep exceeds 30m, further to explore why occur the sand-binding vegetation replacement between shrubs and herbs. Our long-term observation (60 years) shows that cyanobacteria crust has been colonized and developed after 3 years since the sand-binding vegetation has been established and dune fixation using planted xerophytic shrubs and made sand barrier (straw-checkerboard) on shifting dune surface, lichen and moss crust occurred after 20 years, and the cover of moss dominated crust could reach 70 % after 50 years. The colonization and development of BSC altered the initial soil water balance of revegetated areas by influencing rainfall infiltration, soil evaporation and dew water entrapment. The results show that BSC obviously reduced the infiltration that occurred during most rainfall events (80%), when rainfall was greater than 5 mm or less than 20 mm. The presence of BSC reduced evaporation of topsoil after small rainfall (<5 mm) because its high proportion of finer particles slowed the evaporation rate, thus keeping the water in the soil surface longer, and crust facilitated topsoil evaporation when rainfall reached 10 mm. The amount of dew entrapment increases with the succession of BSC. Moreover, the effect of the later successional BSC to dew entrapment, rainfall infiltration and evaporation was more obvious than the early successional BSC on stabilized dunes. In general, BSC reduced the amount of rainfall water that reached deeper soil (0.4-3m), which is where the roots of shrubs are primarily distributed. These changes in the soil moisture pattern induced shifting of sand-binding vegetation from initial planted xerophytic shrub communities with higher coverage (35%) to complex communities dominated by shallow-rooted herbaceous species with low shrub coverage (9%). In correspondence with these changes, soil water balance of the initial vegetation systems (mean soil water kept 3.5%) was turned into a new balance of current vegetation (mean soil water maintains 1.5%). Above findings provide an important enlightenment for future desertification control and sand hazards prevention by revegetation.
NASA Astrophysics Data System (ADS)
Krogh, S. A.; Pomeroy, J. W.
2017-12-01
Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.
Falcão de Oliveira, Everton; Casaril, Aline Etelvina; Fernandes, Wagner Souza; Ravanelli, Michelle de Saboya; Medeiros, Márcio José de; Gamarra, Roberto Macedo; Paranhos Filho, Antônio Conceição; Oshiro, Elisa Teruya; Oliveira, Alessandra Gutierrez de; Galati, Eunice Aparecida Bianchi
2016-01-01
The monthly distribution and abundance of sand flies are influenced by both biotic and abiotic factors. The present study aimed to evaluate the seasonal distribution of sand flies and the relation between their abundance and environmental parameters, including vegetation and climate. This study was conducted over a 2-year period (April 2012 to March 2014). Monthly distribution was evaluated through the weekly deployment of CDC light traps in the peridomicile area of 5 residences in an urban area of the municipality of Corumbá in the State of Mato Grosso do Sul, Brazil. Meteorological data were obtained from the Mato Grosso do Sul Center for Weather, Climate, and Water Resources. The spectral indices were calculated based on spatial resolution images (GeoEye) and the percentage of vegetal coverage. Differences in the abundance of sand flies among the collection sites were assessed using the Kruskal-Wallis test, and the strength of correlations between environmental variables was determined by calculating Spearman's correlation coefficients. Lutzomyia cruzi, Lu. forattinii, and Evandromyia corumbaensis were the most frequently found species. Although no significant association was found among these sand fly species and the tested environmental variables (vegetation and climate), high population peaks were found during the rainy season, whereas low peaks were observed in the dry season. The monthly distribution of sand flies was primarily determined by Lu. cruzi, which accounted for 93.94% of the specimens collected each month throughout the experimental period. The fact that sand flies were detected year-round indicates a continuous risk of infection to humans, demonstrating the need for targeted management and education programs.
Anteau, M.J.; Sherfy, M.H.; Wiltermuth, M.T.
2012-01-01
Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m) during summers 2006-2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m 2) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies.
Anteau, Michael J.; Sherfy, Mark H.; Wiltermuth, Mark T.
2012-01-01
Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m) during summers 2006–2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m2) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies.
Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.
2008-01-01
The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh-dominated coasts. Such datasets can be instrumental in effective coastal-resource management.
Establishment and analysis of High-Resolution Assimilation Dataset of water-energy cycle over China
NASA Astrophysics Data System (ADS)
Wen, Xiaohang; Liao, Xiaohan; Dong, Wenjie; Yuan, Wenping
2015-04-01
For better prediction and understanding of water-energy exchange process and land-atmospheric interaction, the in-situ observed meteorological data which were acquired from China Meteorological Administration (CMA) were assimilated in the Weather Research and Forecasting (WRF) model and the monthly Green Vegetation Coverage (GVF) data, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing System Moderate-Resolution Imaging Spectroradiometer (EOS-MODIS), Digital Elevation Model (DEM) data of the Shuttle Radar Topography Mission (SRTM) system were also integrated in the WRF model over China. Further, the High-Resolution Assimilation Dataset of water-energy cycle over China (HRADC) was produced by WRF model. This dataset include 25 km horizontal resolution near surface meteorological data such as air temperature, humidity, ground temperature, and pressure at 19 levels, soil temperature and soil moisture at 4 levels, green vegetation coverage, latent heat flux, sensible heat flux, and ground heat flux for 3 hours. In this study, we 1) briefly introduce the cycling 3D-Var assimilation method; 2) Compare results of meteorological elements such as 2 m temperature, precipitation and ground temperature generated by the HRADC with the gridded observation data from CMA, and Global Land Data Assimilation System (GLDAS) output data from National Aeronautics and Space Administration (NASA). It is found that the results of 2 m temperature were improved compared with the control simulation and has effectively reproduced the observed patterns, and the simulated results of ground temperature, 0-10 cm soil temperature and specific humidity were as much closer to GLDAS outputs. Root mean square errors are reduced in assimilation run than control run, and the assimilation run of ground temperature, 0-10 cm soil temperature, radiation and surface fluxes were agreed well with the GLDAS outputs over China. The HRADC could be used in further research on the long period climatic effects and characteristics of water-energy cycle over China.
Anteau, Michael J; Sherfy, Mark H; Wiltermuth, Mark T
2012-01-01
Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m) during summers 2006-2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m(2)) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies.
Anteau, Michael J.; Sherfy, Mark H.; Wiltermuth, Mark T.
2012-01-01
Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m) during summers 2006–2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m2) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies. PMID:22299037
29 CFR 1620.6 - Coverage is not based on amount of covered activity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 4 2010-07-01 2010-07-01 false Coverage is not based on amount of covered activity. 1620.6 Section 1620.6 Labor Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION THE EQUAL PAY ACT § 1620.6 Coverage is not based on amount of covered activity. The FLSA makes no...
Monitoring Urban Greenness Dynamics Using Multiple Endmember Spectral Mixture Analysis
Gan, Muye; Deng, Jinsong; Zheng, Xinyu; Hong, Yang; Wang, Ke
2014-01-01
Urban greenness is increasingly recognized as an essential constituent of the urban environment and can provide a range of services and enhance residents’ quality of life. Understanding the pattern of urban greenness and exploring its spatiotemporal dynamics would contribute valuable information for urban planning. In this paper, we investigated the pattern of urban greenness in Hangzhou, China, over the past two decades using time series Landsat-5 TM data obtained in 1990, 2002, and 2010. Multiple endmember spectral mixture analysis was used to derive vegetation cover fractions at the subpixel level. An RGB-vegetation fraction model, change intensity analysis and the concentric technique were integrated to reveal the detailed, spatial characteristics and the overall pattern of change in the vegetation cover fraction. Our results demonstrated the ability of multiple endmember spectral mixture analysis to accurately model the vegetation cover fraction in pixels despite the complex spectral confusion of different land cover types. The integration of multiple techniques revealed various changing patterns in urban greenness in this region. The overall vegetation cover has exhibited a drastic decrease over the past two decades, while no significant change occurred in the scenic spots that were studied. Meanwhile, a remarkable recovery of greenness was observed in the existing urban area. The increasing coverage of small green patches has played a vital role in the recovery of urban greenness. These changing patterns were more obvious during the period from 2002 to 2010 than from 1990 to 2002, and they revealed the combined effects of rapid urbanization and greening policies. This work demonstrates the usefulness of time series of vegetation cover fractions for conducting accurate and in-depth studies of the long-term trajectories of urban greenness to obtain meaningful information for sustainable urban development. PMID:25375176
Comparison of C-band and Ku-band scatterometry for medium-resolution tropical forest inventory
NASA Astrophysics Data System (ADS)
Hardin, Perry J.; Long, David G.
1993-08-01
Since 1978, AVHRR imagery from NOAA polar orbiters has provided coverage of tropical regions at this desirable resolution, but much of the imagery is plagued with heavy cloud cover typical of equatorial regions. Clearly a medium resolution radar sensor would be a useful addition to AVHRR, but none are planned to fly in the future. In contrast, scatterometers are an important radar component of many future earth remote sensing systems, but the inherent resolution of these instruments is too low (approximately equals 50 km) for monitoring earth's land surfaces. However, a recently developed image reconstruction technique can increase the spatial resolution of scatterometer data to levels (approximately equals 4 to 14 km) approaching AVHRR global area coverage (approximately equals 4 km). When reconstructed, scatterometer data may prove to be an important asset in evaluating equatorial land cover. In this paper, the authors compare the utility of reconstructed Seasat scatterometer (SASS), Ku-band microwave data to reconstructed ERS-1 C-band scatterometer imagery for discrimination and monitoring of tropical vegetation formations. In comparative classification experiments conducted on reconstructed images of Brasil, the ERS-1 C-band imagery was slightly superior to its reconstructed SASS Ku-band counterpart for discriminating between several equatorial land cover classes. A classification accuracy approaching .90 was achieved when the two scatterometer images were combined with an AVHRR normalized difference vegetation index (NDVI) image. The success of these experiments indicates that further research into reconstructed image applications to tropical forest monitoring is warranted.
NASA Astrophysics Data System (ADS)
Zhong, Wei; Wei, Zhiqiang; Shang, Shentan; Ye, Susu; Tang, Xiaowen; Zhu, Chan; Xue, Jibin; Ouyang, Jun; Smol, John P.
2018-04-01
A detailed environmental magnetic investigation has been performed on a sub-alpine sedimentary succession deposited over the past 15,400 years in Daping Swamp in the western Nanling Mountains of South China. Magnetic parameters reveal that fine grains of pseudo-single domain (PSD) magnetite or titanomagnetite are the dominant magnetic minerals in the lake sediments and surface soils collected from the catchment, which suggests that magnetic minerals in lake sediments mainly originated from surface soil erosion of the catchment. Variation of surface runoff caused by rainfall is interpreted as the main process for transportation of weathered soils into the lake. In the Last Deglacial period (LGP, 15,400-11,500 cal a BP), the influx of magnetic minerals of detrital material may have been significantly affected by the severe dry and cold conditions of the Last Glacial Maximum. Stabilised conditions of the catchment associated with increased vegetation coverage (e.g., 8000-4500 and 2500-1000 cal a BP) limited the input of magnetic minerals. Intensive soil erosion caused by increased human activity may have given rise to abnormal increases in multiple magnetic parameters after 1000 cal a BP. Because changes in runoff and vegetation coverage are closely related to Asian summer monsoon (ASM) intensity, the sedimentary magnetism of Daping Swamp provides another source of information to investigate the evolution of the ASM.
NASA Astrophysics Data System (ADS)
Ning, D.; Zhang, M.; Ren, S.; Hou, Y.; Yu, L.; Meng, Z.
2017-01-01
Forest plays an important role in hydrological cycle, and forest changes will inevitably affect runoff across multiple spatial scales. The selection of a suitable indicator for forest changes is essential for predicting forest-related hydrological response. This study used the Meijiang River, one of the headwaters of the Poyang Lake as an example to identify the best indicator of forest changes for predicting forest change-induced hydrological responses. Correlation analysis was conducted first to detect the relationships between monthly runoff and its predictive variables including antecedent monthly precipitation and indicators for forest changes (forest coverage, vegetation indices including EVI, NDVI, and NDWI), and by use of the identified predictive variables that were most correlated with monthly runoff, multiple linear regression models were then developed. The model with best performance identified in this study included two independent variables -antecedent monthly precipitation and NDWI. It indicates that NDWI is the best indicator of forest change in hydrological prediction while forest coverage, the most commonly used indicator of forest change is insignificantly related to monthly runoff. This highlights the use of vegetation index such as NDWI to indicate forest changes in hydrological studies. This study will provide us with an efficient way to quantify the hydrological impact of large-scale forest changes in the Meijiang River watershed, which is crucial for downstream water resource management and ecological protection in the Poyang Lake basin.
STATE SOIL GEOGRAPHIC (STATSGO) DATA BASE FOR THE COTERNIMOUS UNITED STATES
USSOILS is an Arc 7.0 coverage containing hydrology-relevant information for 10,498 map units covering the entire conterminous United States. The coverage was compiled from individual State coverages contained in the October 1994 State Soil Geographic (STATSGO) Data Base produce...
Submersed aquatic vegetation in Chesapeake Bay: Sentinel species in a changing world
Orth, Robert J.; Dennison, William C.; Lefcheck, Jonathon S.; Gurbisz, Cassie; Hannam, Michael; Keisman, Jennifer; Landry, J. Brooke; Moore, Kenneth A.; Murphy, Rebecca R.; Patrick, Christopher J.; Testa, Jeremy; Weller, Donald E.; Wilcox, David J.
2017-01-01
Chesapeake Bay has undergone profound changes since European settlement. Increases in human and livestock populations, associated changes in land use, increases in nutrient loadings, shoreline armoring, and depletion of fish stocks have altered the important habitats within the Bay. Submersed aquatic vegetation (SAV) is a critical foundational habitat and provides numerous benefits and services to society. In Chesapeake Bay, SAV species are also indicators of environmental change because of their sensitivity to water quality and shoreline development. As such, SAV has been deeply integrated into regional regulations and annual assessments of management outcomes, restoration efforts, the scientific literature, and popular media coverage. Even so, SAV in Chesapeake Bay faces many historical and emerging challenges. The future of Chesapeake Bay is indicated by and contingent on the success of SAV. Its persistence will require continued action, coupled with new practices, to promote a healthy and sustainable ecosystem.
Deep Space Network and Lunar Network Communication Coverage of the Moon
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2006-01-01
In this article, we describe the communication coverage analysis for the lunar network and the Earth ground stations. The first part of this article focuses on the direct communication coverage of the Moon from the Earth's ground stations. In particular, we assess the coverage performance of the Moon based on the existing Deep Space Network (DSN) antennas and the complimentary coverage of other potential stations at Hartebeesthoek, South Africa and at Santiago, Chile. We also address the coverage sensitivity based on different DSN antenna scenarios and their capability to provide single and redundant coverage of the Moon. The second part of this article focuses on the framework of the constrained optimization scheme to seek a stable constellation six relay satellites in two planes that not only can provide continuous communication coverage to any users on the Moon surface, but can also deliver data throughput in a highly efficient manner.
A Novel Deployment Scheme Based on Three-Dimensional Coverage Model for Wireless Sensor Networks
Xiao, Fu; Yang, Yang; Wang, Ruchuan; Sun, Lijuan
2014-01-01
Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme. PMID:25045747
Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation
NASA Astrophysics Data System (ADS)
Nguyen, Uyen
The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation Index (NDVI) average values in the adjacent uplands also decreased over thirty years and were correlated with the previous year's annual precipitation. Hence an increase in ET in the uplands did not appear to be responsible for the decrease in river flows in this study, leaving increased regional groundwater pumping as a feasible alternative explanation for decreased flows and deterioration of the riparian forest. The second research objective was to develop a new method of classification using very high-resolution aerial photo to map riparian vegetation at the species level in the Colorado River Ecosystem, Grand Canyon area, Arizona. Ground surveys have showed an obvious trend in which non-native saltcedar (Tamarix spp.) has replaced native vegetation over time. Our goal was to develop a quantitative mapping procedure to detect changes in vegetation as the ecosystem continues to respond to hydrological and climate changes. Vegetation mapping for the Colorado River Ecosystem needed an updated database map of the area covered by riparian vegetation and an indicator of species composition in the river corridor. The objective of this research was to generate a new riparian vegetation map at species level using a supervised image classification technique for the purpose of patch and landscape change detection. A new classification approach using multispectral images allowed us to successfully identify and map riparian species coverage the over whole Colorado River Ecosystem, Grand Canyon area. The new map was an improvement over the initial 2002 map since it reduced fragmentation from mixed riparian vegetation areas. The most dominant tree species in the study areas is saltcedar (Tamarix spp.). The overall accuracy is 93.48% and the kappa coefficient is 0.88. The reference initial inventory map was created using 2002 images to compare and detect changes through 2009. The third objective of my research focused on using multiplatform of remote sensing and ground calibration to estimate the effects of vegetation, land use patterns and water cycles. Climate change, hydrological and human uses are also leading to riparian, upland, grassland and crop vegetation changes at a variety of temporal and spatial scales, particularly in the arid and semi arid ecosystems, which are more sensitive to changes in water availability than humid ecosystems. The objectives of these studies from the last three articles were to evaluate the effect of water balance on vegetation indices in different plant communities based on relevant spatial and temporal scales. The new methodology of estimating water requirements using remote sensing data and ground calibration with flux tower data has been successfully tested at a variety sites, a sparse desert shrub environment as well as mixed riparian and cropland systems and upland vegetation in the arid and semi-arid regions. The main finding form these studies is that vegetation-index methods have to be calibrated with ground data for each new ecosystem but once calibrated they can accurately scale ET over wide areas and long time spans.
Towards Semantic Web Services on Large, Multi-Dimensional Coverages
NASA Astrophysics Data System (ADS)
Baumann, P.
2009-04-01
Observed and simulated data in the Earth Sciences often come as coverages, the general term for space-time varying phenomena as set forth by standardization bodies like the Open GeoSpatial Consortium (OGC) and ISO. Among such data are 1-d time series, 2-D surface data, 3-D surface data time series as well as x/y/z geophysical and oceanographic data, and 4-D metocean simulation results. With increasing dimensionality the data sizes grow exponentially, up to Petabyte object sizes. Open standards for exploiting coverage archives over the Web are available to a varying extent. The OGC Web Coverage Service (WCS) standard defines basic extraction operations: spatio-temporal and band subsetting, scaling, reprojection, and data format encoding of the result - a simple interoperable interface for coverage access. More processing functionality is available with products like Matlab, Grid-type interfaces, and the OGC Web Processing Service (WPS). However, these often lack properties known as advantageous from databases: declarativeness (describe results rather than the algorithms), safe in evaluation (no request can keep a server busy infinitely), and optimizable (enable the server to rearrange the request so as to produce the same result faster). WPS defines a geo-enabled SOAP interface for remote procedure calls. This allows to webify any program, but does not allow for semantic interoperability: a function is identified only by its function name and parameters while the semantics is encoded in the (only human readable) title and abstract. Hence, another desirable property is missing, namely an explicit semantics which allows for machine-machine communication and reasoning a la Semantic Web. The OGC Web Coverage Processing Service (WCPS) language, which has been adopted as an international standard by OGC in December 2008, defines a flexible interface for the navigation, extraction, and ad-hoc analysis of large, multi-dimensional raster coverages. It is abstract in that it does not anticipate any particular protocol. One such protocol is given by the OGC Web Coverage Service (WCS) Processing Extension standard which ties WCPS into WCS. Another protocol which makes WCPS an OGC Web Processing Service (WPS) Profile is under preparation. Thereby, WCPS bridges WCS and WPS. The conceptual model of WCPS relies on the coverage model of WCS, which in turn is based on ISO 19123. WCS currently addresses raster-type coverages where a coverage is seen as a function mapping points from a spatio-temporal extent (its domain) into values of some cell type (its range). A retrievable coverage has an identifier associated, further the CRSs supported and, for each range field (aka band, channel), the interpolation methods applicable. The WCPS language offers access to one or several such coverages via a functional, side-effect free language. The following example, which derives the NDVI (Normalized Difference Vegetation Index) from given coverages C1, C2, and C3 within the regions identified by the binary mask R, illustrates the language concept: for c in ( C1, C2, C3 ), r in ( R ) return encode( (char) (c.nir - c.red) / (c.nir + c.red), H˜DF-EOS\\~ ) The result is a list of three HDF-EOS encoded images containing masked NDVI values. Note that the same request can operate on coverages of any dimensionality. The expressive power of WCPS includes statistics, image, and signal processing up to recursion, to maintain safe evaluation. As both syntax and semantics of any WCPS expression is well known the language is Semantic Web ready: clients can construct WCPS requests on the fly, servers can optimize such requests (this has been investigated extensively with the rasdaman raster database system) and automatically distribute them for processing in a WCPS-enabled computing cloud. The WCPS Reference Implementation is being finalized now that the standard is stable; it will be released in open source once ready. Among the future tasks is to extend WCPS to general meshes, in synchronization with the WCS standard. In this talk WCPS is presented in the context of OGC standardization. The author is co-chair of OGC's WCS Working Group (WG) and Coverages WG.
Plant traits and trait-based vegetation modeling in the Arctic
NASA Astrophysics Data System (ADS)
Xu, C.; Sevanto, S.; Iversen, C. M.; Salmon, V. G.; Rogers, A.; Wullschleger, S.; Wilson, C. J.
2017-12-01
Arctic tundra environments are characterized by extremely cold temperatures, strong winds, short growing season and thin, nutrient-poor soil layer impacted by permafrost. To survive in this environment vascular plants have developed traits that simultaneously promote high productivity under favorable environments, and survival in harsh conditions. To improve representation of Arctic tundra vegetation in Earth System Models we surveyed plant trait data bases for key trait parameters that influence modeled ecosystem carbon balance, and compared the traits within plant families occurring in the boreal, temperate and arctic zones. The parameters include photosynthetic carbon uptake efficiency (Vcmax and Jmax), root:shoot ratio, and root and leaf nitrogen content, and we focused on woody shrubs. Our results suggest that root nitrogen content in non-nitrogen fixing tundra shrubs is lower than in representatives of the same families in the boreal or temperate zone. High tissue nitrogen concentrations have been related to high vulnerability to drought. The low root nitrogen concentrations in tundra shrubs may thus be an indication of acclimation to shallow soils, and frequent freezing that has a similar impact on the plant conductive tissue as drought. With current nitrogen availability, nitrogen limitation reduces the benefits of increased temperatures and longer growing seasons to the tundra ecosystem carbon balance. Thawing of permafrost will increase nitrogen availability, and promote plant growth and carbon uptake, but it could also make the shrubs more vulnerable to freeze-thaw cycles, with the overall result of reduced shrub coverage. The final outcome of warming temperatures and thawing of permafrost on tundra shrubs will thus depend on the relative speed of warming and plant acclimation.
State contraceptive coverage laws: creative responses to questions of "conscience".
Dailard, C
1999-08-01
The Federal Employees Health Benefits Program (FEHBP) guaranteed contraceptive coverage for employees of the federal government. However, opponents of the FEHBP contraceptive coverage questioned the viability of the conscience clause. Supporters of the contraceptive coverage pressed for the narrowest exemption, one that only permit religious plans that clearly states religious objection to contraception. There are six of the nine states that have enacted contraceptive coverage laws aimed at the private sector. The statutes included a provision of conscience clause. The private sector disagrees to the plan since almost all of the employees¿ work for employers who only offer one plan. The scope of exemption for employers was an issue in five states that have enacted the contraceptive coverage. In Hawaii and California, it was exemplified that if employers are exempted from the contraceptive coverage based on religious grounds, an employee will be entitled to purchase coverage directly from the plan. There are still questions on how an insurer, who objects based on religious grounds to a plan with contraceptive coverage, can function in a marketplace where such coverage is provided by most private sector employers.
NASA Astrophysics Data System (ADS)
Baranova, Alina; Schickhoff, Udo; Shunli, Wang; Ming, Jin
2015-04-01
Qilian Mountains are the water source region for the low arid reaches of HeiHe river basin (Gansu province, NW China). Due to overstocking and overgrazing during the last decades adverse ecological ef¬fects, in particular on soil properties and hydrological cycle, are to be expected in growing land areas. Vegetation cover is very important to prevent erosion process and to sustain stable subsurface runoff and ground water flow. The aim of this research is to identify plant communities, detecting grazing-induced and spatially differentiated changes in vegetation patterns, and to evaluate status of pasture land degradation.The study area is located in the spring/autumn pasture area of South Qilian Mountains between 2600-3600 m a.s.l., covering five main vegetation types: spruce forest, alpine shrubland, shrubby grassland, mountain grassland, degraded mountain grassland. In order to analyze gradual changes in vegetation patterns along altitudinal and grazing gradients and to classify related plant communities, quantitative and qualitative relevé data were collected (coverage, species composition, abundance of unpalatable plants, plant functional types, etc.). Vegetation was classified using hierarchical cluster analyses. Indirect Detrended Correspondence Analysis (DCA) was used to analyze variation in relationships between vegetation, environmental factors, and grazing impact. According to DCA results, distribution of the plant communities was strongly affected by altitude and exposition. Grassland floristic gradients showed greater dependence on grazing impact, which correlated contrarily with soil organic content, soil moisture and pH. Highest numbers of species richness and alpha diversity were detected in alpine shrubland vegetation type. Comparing the monitoring data for the recent nine years, a trend of deterioration, species successions and shift in dominant species becomes obvious. Species indicating degrading site environmental conditions were identified. Most of the grasslands have become secondary vegetation, with a considerable percentage of unpalatable, toxic and often thorny or spiny shrub and herb species that have a lower grazing value and rarely form a closed vegetation cover, at least in loess slopes. To prevent further degradation of the grassland and to sustain the diversity of the plant species (affecting the carrying capacity pastureland) appropriate pasture management strategy should be implemented.
Fire and Deforestation Dynamics in South America over the Past 50 Years
NASA Astrophysics Data System (ADS)
van Marle, M.; Field, R. D.; van der Werf, G.
2015-12-01
Fires play an important role in the Earth system and are one of the major sources of greenhouse gases and aerosols. Satellites have been key to understand their spatial and temporal variability in space and time, but the most frequently used satellite datasets start only in 1995. There are still large uncertainties about the frequency and intensity of fires in the pre-satellite time period, especially in regions with active deforestation, which may have changed dramatically in intensity in the past decades influencing fire dynamics. We used two datasets to extend the record of fires and deforestation in the Amazon region back in time: 1) annual forest loss rates starting in 1990 derived from Vegetation Optical Depth (VOD), which is a satellite-based vegetation product that can be used as proxy for forest loss, and 2) horizontal visibility as proxy for fire emissions, reported by weather stations and airports in the Amazon, which started around 1940, and having widespread coverage since 1973. We show that these datasets overlap with fire emission estimates from the Global Fire Emissions Database (GFED) enabling us to estimate fire emissions over the last 50 years. We will discuss how fires have varied over time in this region with globally significant emissions, how droughts have influenced fire activity and deforestation rates, and what the impact is of land-use change caused by fire on emissions in the Amazon region.
Holmgren, Camille A.; Betancourt, Julio L.; Rylander, Kate A.
2011-01-01
Plant macrofossils from 38 packrat middens spanning the last ~ 33,000 cal yr BP record vegetation between ~ 650 and 900 m elevation along the eastern escarpment of the Sierra San Pedro Mártir, northern Baja California. The middens span most of the Holocene, with a gap between ~ 4600 and 1800 cal yr BP, but coverage in the Pleistocene is uneven with a larger hiatus between 23,100 and 14,400 cal yr BP. The midden flora is relatively stable from the Pleistocene to Holocene. Exceptions include Pinus californiarum, Juniperus californica and other chaparral elements that were most abundant > 23,100 cal yr BP and declined after 14,400 cal yr BP. Despite being near the chaparral/woodland-desertscrub ecotone during glacial times, the midden assemblages reflect none of the climatic reversals evident in the glacial or marine record, and this is corroborated by a nearby semi-continuous pollen stratigraphy from lake sediments. Regular appearance of C4 grasses and summer-flowering annuals since 13,600 cal yr BP indicates occurrence of summer rainfall equivalent to modern (JAS average of ~ 80–90 mm). This casts doubt on the claim, based on temperature proxies from marine sediments in the Guaymas Basin, that monsoonal development in the northern Gulf and Arizona was delayed until after 6200 cal yr BP.
Wu, Jianping; Liu, Zhanfeng; Huang, Guomin; Chen, Dima; Zhang, Weixin; Shao, Yuanhu; Wan, Songze; Fu, Shenglei
2014-09-02
Reforested plantations have substantial effects on terrestrial carbon cycling due to their large coverage area. Although understory plants are important components of reforested plantations, their effects on ecosystem carbon dynamics remain unclear. This study was designed to investigate the effects of vegetation removal/understory removal and tree girdling on soil respiration and ecosystem carbon dynamics in Eucalyptus plantations of South China with contrasting ages (2 and 24 years old). We conducted a field manipulation experiment from 2008 to 2009. Understory removal reduced soil respiration in both plantations, whereas tree girdling decreased soil respiration only in the 2-year-old plantations. The net ecosystem production was approximately three times greater in the 2-year-old plantations (13.4 t C ha(-1) yr(-1)) than in the 24-year-old plantations (4.2 t C h(-1) yr(-1)). The biomass increase of understory plants was 12.6 t ha(-1) yr(-1) in the 2-year-old plantations and 2.9 t ha(-1) yr(-1) in the 24-year-old plantations, accounting for 33.9% nd 14.1% of the net primary production, respectively. Our findings confirm the ecological importance of understory plants in subtropical plantations based on the 2 years of data. These results also indicate that Eucalyptus plantations in China may be an important carbon sink due to the large plantation area.
Dodds, Naomi; Emerson, Philip; Phillips, Stephanie; Green, David R; Jansen, Jan O
2017-03-01
Trauma systems in remote and rural regions often rely on helicopter emergency medical services to facilitate access to definitive care. The siting of such resources is key, but often relies on simplistic modeling of coverage, using circular isochrones. Scotland is in the process of implementing a national trauma network, and there have been calls for an expansion of aeromedical retrieval capacity. The aim of this study was to analyze population and area coverage of the current retrieval service configuration, with three aircraft, and a configuration with an additional helicopter, in the North East of Scotland, using a novel methodology. Both overall coverage and coverage by physician-staffed aircraft, with enhanced clinical capability, were analyzed. This was a geographical analysis based on calculation of elliptical isochrones, which consider the "open-jaw" configuration of many retrieval flights. Helicopters are not always based at hospitals. We modeled coverage based on different outbound and inbound flights. Areally referenced population data were obtained from the Scottish Government. The current helicopter network configuration provides 94.2% population coverage and 59.0% area coverage. The addition of a fourth helicopter would marginally increase population coverage to 94.4% and area coverage to 59.1%. However, when considering only physician-manned aircraft, the current configuration provides only 71.7% population coverage and 29.4% area coverage, which would be increased to 91.1% and 51.2%, respectively, with a second aircraft. Scotland's current helicopter network configuration provides good population coverage for retrievals to major trauma centers, which would only be increased minimally by the addition of a fourth aircraft in the North East. The coverage provided by the single physician-staffed aircraft is more limited, however, and would be increased considerably by a second physician-staffed aircraft in the North East. Elliptical isochrones provide a useful means of modeling "open-jaw" retrieval missions and provide a more realistic estimate of coverage. Epidemiological study, level IV; therapeutic study, level IV.
Permafrost Thaw increases Emissions of Nitrous Oxide from Subarctic Peatlands
NASA Astrophysics Data System (ADS)
Voigt, C.; Marushchak, M. E.; Lamprecht, R. E.; Jackowicz-Korczynski, M.; Lindgren, A.; Mastepanov, M.; Christensen, T. R.; Granlund, L.; Tahvanainen, T.; Martikainen, P. J.; Biasi, C.
2017-12-01
Permafrost soils in the Arctic are thawing, exposing not only carbon but also large nitrogen stocks. The decomposition of this vast pool of long-term immobile C and N stocks results in the release of greenhouse gases to the atmosphere. Among these, carbon dioxide (CO2) and methane (CH4) are being studied extensively, and gaseous C release from thawing permafrost is known to be substantial. Most recent studies, however, show that Arctic soils may further be a relevant source of the strong greenhouse gas nitrous oxide (N2O). As N2O is almost 300 times more powerful in warming the climate than CO2 based on a 100-yr time horizon, the release of N2O from thawing permafrost could create a significant non-carbon permafrost-climate feedback. To study the effect of permafrost thaw on N2O fluxes, we collected peat mesocosms from a Subarctic permafrost peatland, and subjected these intact soil-plant systems to sequential thawing from the top of the active layer down to the upper permafrost layer. Measurements of N2O fluxes were coupled with detailed soil analyses and process studies. Since N2O fluxes are highly dependent on moisture conditions and vegetation cover, we applied two distinct moisture treatments (dry vs. wet) and simulated permafrost thaw in vegetated as well as in naturally bare mesocosms. Under dry conditions, permafrost thaw clearly increased N2O emissions. We observed the largest post-thaw emissions from bare peat surfaces, a typical landform in subarctic peatlands previously identified as hot spots for Arctic N2O emissions. There, permafrost thaw caused a five-fold increase in emissions (0.56 vs. 2.81 mg N2O m-2 d-1). While water-logged conditions suppressed N2O emissions, the presence of vegetation lowered, but did not prevent post-thaw N2O release. Based on these findings, we show that one fourth of the Arctic land area could be vulnerable for N2O emissions when permafrost thaws. Our results demonstrate that Arctic N2O emissions may be larger than previously thought, and that the source strength will be crucially governed by moisture conditions at times of thaw, as well as on future changes in vegetation coverage.
Tang, Ming-Yan; Yang, Yong-Xing
2014-05-01
The characteristics of vegetation and soil were investigated in Bita Lake and Shudu Lake wetlands in northwest Yunnan Plateau under tourism disturbance. The 22 typical plots in the wetlands were classified into 4 types by TWINSPAN, including primary wetland, light degradation, moderate degradation, and severe degradation. Along the degradation gradient, the plant community density, coverage, species number and Shannon diversity index increased and the plant height decreased in Bita Lake and Shudu Lake wetlands, and Whittaker diversity index increased in Bita Lake wetland. Plant species number, soil organic matter, total nitrogen, porosity, available nitrogen, available phosphorus and available potassium contents were higher in Shudu Lake wetland than in Bita Lake wetland, but the plant density, height, soil total potassium and pH were opposite. Canonical correspondence analysis (CCA) by importance values of 42 plants and 11 soil variables showed that soil organic matter, total nitrogen and total potassium were the key factors on plant species distribution in Bita Lake and Shudu Lake wetlands under tourism disturbance. TWINSPAN classification and analysis of vegetation-soil characteristics indicated the effects of tourism disturbance in Bita Lake wetland were larger than in Shudu Lake wetland.
Legacy Effect of Amazonian Drought Delays the Season Transition from Dry to Wet
NASA Astrophysics Data System (ADS)
Shi, M.; Liu, J.; Wong, S.; Worden, J. R.; Fisher, J.; Frankenberg, C.
2017-12-01
The long-term drought effect on forest coverage, so-called legacy effect, has been observed in ground and remote sensing measurements. Drought and forest loss may amplify each other through vegetation-atmosphere feedbacks. In this study, we investigate the impact of the reduced growth of southern Amazonian forest from the 2005 drought on dry-to-wet season transition and its variations in 2005 and 2006. We quantified the vegetation-atmosphere feedbacks with the Community Atmosphere Model version 5 (CAM5) with a control and a sensitivity experiments. We further investigate the mechanism of vegetation-atmosphere feedbacks with data-constrained evapotranspiration (ET) and HDO/H2O observations from the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) and from the Tropospheric Emission Spectrometer (TES). Our results show that the dry season end (DSE) in southern Amazonian forest was delayed by 15 days in 2005 and by 25 days in 2006 with drought induced leaf carbon pool reduction. The postponed DSE is triggered by the reduced evapotranspiration (ET), but amplified by change of large-scale circulation. The reduction of ET and its delaying effect on dry-wet season transition is further confirmed with SCIAMACHY and TES HDO/H2O measurements.
NASA Astrophysics Data System (ADS)
Finsinger, Walter; Morales-Molino, Cesar; Gałka, Mariusz; Valsecchi, Verushka; Bojovic, Srdjan; Tinner, Willy
2017-07-01
We analysed sediments from Crveni Potok (Tara Mountains, Serbia), a key site in the Dinaric Alps because it is located within the restricted distribution range of the endemic conifer Picea omorika (Serbian spruce), and thereby bears a unique potential in revealing its Holocene history. We used a set of proxies (pollen, plant-macrofossils, charcoal) to reconstruct the long-term vegetation and fire histories at different spatial scales. The comprehensive snapshot provided by the reconstructions fill an important gap of European long-term vegetation and fire histories in the overall data-coverage poor region of the Dinaric Alps. The reconstructions unfolded an unusual late-Holocene persistence of high forest cover that contrasts with the large majority of European landscape-scale forest-cover records, which show massive anthropogenic openings in the past two millennia. We also found evidence for good post-fire recovery of the currently threatened endemic P. omorika populations. This leads us to suggest that prescribed-burning programmes may be beneficial to reduce the vulnerability of the species, and for ecological restoration and conservation purposes of the declining and endangered populations.
Kakinuma, Kaoru; Sasaki, Takehiro; Jamsran, Undarmaa; Okuro, Toshiya; Takeuchi, Kazuhiko
2014-10-01
Applying the threshold concept to rangeland management is an important challenge in semi-arid and arid regions. Threshold recognition and prediction is necessary to enable local pastoralists to prevent the occurrence of an undesirable state that would result from unsustainable grazing pressure, but this requires a better understanding of the pastoralists' perception of vegetation threshold changes. We estimated plant species cover in survey plots along grazing gradients in steppe and desert-steppe areas of Mongolia. We also conducted interviews with local pastoralists and asked them to evaluate whether the plots were suitable for grazing. Floristic composition changed nonlinearly along the grazing gradient in both the desert-steppe and steppe areas. Pastoralists observed the floristic composition changes along the grazing gradients, but their evaluations of grazing suitability did not always decrease along the grazing gradients, both of which included areas in a post-threshold state. These results indicated that local pastoralists and scientists may have different perceptions of vegetation states, even though both of groups used plant species and coverage as indicators in their evaluations. Therefore, in future studies of rangeland management, researchers and pastoralists should exchange their knowledge and perceptions to successfully apply the threshold concept to rangeland management.
NASA Astrophysics Data System (ADS)
Hardin, Perry J.; Long, David G.
1993-08-01
There is considerable interest in utilizing microwave and visible spectrum imagery for the assessment of tropical rain forests. Because rain forest spans large sub-continental areas, medium resolution (1 - 16 km) imagery will play an important role in providing a global perspective of any forest removal or change. Since 1978, AVHRR imagery from NOAA polar orbiters has provided coverage of tropical regions at this desirable resolution, but much of the imagery is plagued with heavy cloud cover typical of equatorial regions. In contrast, no historical source of active microwave imagery at native 1 - 16 km resolution exists for all the global rain forest regions. In this paper, the authors compare the utility of Seasat scatterometer (SASS) ku-band microwave data to early-date AVHRR vegetation index products for discrimination of tropical vegetation formations. When considered separately, both the AVHRR imagery and the SASS imagery could be used to distinguish between broad categories of equatorial land cover, but the AVHRR imagery was slightly superior. When combined, the two data sets provided discrimination capability superior than could be obtained by using either set alone.
NASA Astrophysics Data System (ADS)
Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.
2016-02-01
An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation-climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America - 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.
NASA Technical Reports Server (NTRS)
Goetz, A. F. H.; Heidebrecht, K. B.; Gutmann, E. D.; Warner, A. S.; Johnson, E. L.; Lestak, L. R.
1999-01-01
Approximately 100,000 sq. km of the High Plains of the central United States are covered by sand dunes and sand sheets deposited during the Holocene. Soil-dating evidence shows that there were at least four periods of dune reactivation during major droughts in the last 10,000 years. The dunes in this region are anchored by vegetation. We have undertaken a study of land-use change in the High Plains from 1985 to the present using Landsat 5 TM and Landsat 7 ETM+ images to map variation in vegetation cover during wet and dry years. Mapping vegetation cover of less than 20% is important in modeling potential surface reactivation since at this level the vegetation no longer sufficiently shields sandy surfaces from movement by wind. Landsat TM data have both the spatial resolution and temporal coverage to facilitate vegetation cover analysis for model development and verification. However, there is still the question of how accurate TM data are for the measurement of both growing and senescent vegetation in and and semi-arid regions. AVIRIS provides both high spectral resolution as well as high signal-to-noise ratio and can be used to test the accuracy of Landsat TM and ETM+ data. We have analyzed data from AVIRIS flown nearly concurrently with a Landsat 7 overpass. The comparison between an AVIRIS image swath of 11 km width subtending a 30 deg. angle and the same area covered by a 0.8 deg. angle from Landsat required accounting for the BRDF. A normalization technique using the ratio of the reflectances from registered AVIRIS and Landsat data proved superior to the techniques of column averaging on AVIRIS data alone published previously by Kennedy et al. This technique can be applied to aircraft data covering a wider swath angle than AVIRIS to develop BRDF responses for a wide variety of surfaces more efficiently than from ground measurements.
Wang, Dan; Lau, Kevin Ka-Lun; Yu, Ruby; Wong, Samuel Y S; Kwok, Timothy T Y; Woo, Jean
2017-08-01
Green space has been shown to be beneficial for human wellness through multiple pathways. This study aimed to explore the contributions of neighbouring green space to cause-specific mortality. Data from 3544 Chinese men and women (aged ≥65 years at baseline) in a community-based cohort study were analysed. Outcome measures, identified from the death registry, were death from all-cause, respiratory system disease, circulatory system disease. The quantity of green space (%) within a 300 m radius buffer was calculated for each subject from a map created based on the Normalised Difference Vegetation Index. Cox proportional hazard models adjusted for demographics, socioeconomics, lifestyle, health conditions and housing type were used to estimate the HRs and 95% CIs. During a mean of 10.3 years of follow-up, 795 deaths were identified. Our findings showed that a 10% increase in coverage of green space was significantly associated with a reduction in all-cause mortality (HR 0.963, 95% CI 0.930 to 0.998), circulatory system-caused mortality (HR 0.887, 95% CI 0.817 to 0.963) and stroke-caused mortality (HR 0.661, 95% CI 0.524 to 0.835), independent of age, sex, marital status, years lived in Hong Kong, education level, socioeconomic ladder, smoking, alcohol intake, diet quality, self-rated health and housing type. The inverse associations between coverage of green space with all-cause mortality (HR 0.964, 95% CI 0.931 to 0.999) and circulatory system disease-caused mortality (HR 0.888, 95% CI 0.817 to 0.964) were attenuated when the models were further adjusted for physical activity and cognitive function. The effects of green space on all-cause and circulatory system-caused mortality tended to be stronger in females than in males. Higher coverage of green space was associated with reduced risks of all-cause mortality, circulatory system-caused mortality and stroke-caused mortality in Chinese older people living in a highly urbanised city. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Wang, Dan; Lau, Kevin Ka-Lun; Yu, Ruby; Wong, Samuel Y S; Kwok, Timothy T Y; Woo, Jean
2017-01-01
Objective Green space has been shown to be beneficial for human wellness through multiple pathways. This study aimed to explore the contributions of neighbouring green space to cause-specific mortality. Methods Data from 3544 Chinese men and women (aged ≥65 years at baseline) in a community-based cohort study were analysed. Outcome measures, identified from the death registry, were death from all-cause, respiratory system disease, circulatory system disease. The quantity of green space (%) within a 300 m radius buffer was calculated for each subject from a map created based on the Normalised Difference Vegetation Index. Cox proportional hazard models adjusted for demographics, socioeconomics, lifestyle, health conditions and housing type were used to estimate the HRs and 95% CIs. Results During a mean of 10.3 years of follow-up, 795 deaths were identified. Our findings showed that a 10% increase in coverage of green space was significantly associated with a reduction in all-cause mortality (HR 0.963, 95% CI 0.930 to 0.998), circulatory system-caused mortality (HR 0.887, 95% CI 0.817 to 0.963) and stroke-caused mortality (HR 0.661, 95% CI 0.524 to 0.835), independent of age, sex, marital status, years lived in Hong Kong, education level, socioeconomic ladder, smoking, alcohol intake, diet quality, self-rated health and housing type. The inverse associations between coverage of green space with all-cause mortality (HR 0.964, 95% CI 0.931 to 0.999) and circulatory system disease-caused mortality (HR 0.888, 95% CI 0.817 to 0.964) were attenuated when the models were further adjusted for physical activity and cognitive function. The effects of green space on all-cause and circulatory system-caused mortality tended to be stronger in females than in males. Conclusion Higher coverage of green space was associated with reduced risks of all-cause mortality, circulatory system-caused mortality and stroke-caused mortality in Chinese older people living in a highly urbanised city. PMID:28765127
NASA Satellite Monitoring of Water Clarity in Mobile Bay for Nutrient Criteria Development
NASA Technical Reports Server (NTRS)
Blonski, Slawomir; Holekamp, Kara; Spiering, Bruce A.
2009-01-01
This project has demonstrated feasibility of deriving from MODIS daily measurements time series of water clarity parameters that provide coverage of a specific location or an area of interest for 30-50% of days. Time series derived for estuarine and coastal waters display much higher variability than time series of ecological parameters (such as vegetation indices) derived for land areas. (Temporal filtering often applied in terrestrial studies cannot be used effectively in ocean color processing). IOP-based algorithms for retrieval of diffuse light attenuation coefficient and TSS concentration perform well for the Mobile Bay environment: only a minor adjustment was needed in the TSS algorithm, despite generally recognized dependence of such algorithms on local conditions. The current IOP-based algorithm for retrieval of chlorophyll a concentration has not performed as well: a more reliable algorithm is needed that may be based on IOPs at additional wavelengths or on remote sensing reflectance from multiple spectral bands. CDOM algorithm also needs improvement to provide better separation between effects of gilvin (gelbstoff) and detritus. (Identification or development of such algorithm requires more data from in situ measurements of CDOM concentration in Gulf of Mexico coastal waters (ongoing collaboration with the EPA Gulf Ecology Division))
NASA Astrophysics Data System (ADS)
Oliver, R.; Ellis, D.; Gough, L.; Chmura, H.; Sweet, S. K.; Boelman, N.; Krause, J.; Perez, J.; Wingfield, J.
2017-12-01
Climate change is altering the seasonality of environmental conditions and the phenology of vegetation, particularly at high northern latitudes. Yet changes in the phenology of wildlife that rely on northern ecosystems is significantly understudied. In much the same way that remote sensing enables global-scale observations of climate and vegetation, ground-based bioacoustic recording networks have the potential to vastly expand the spatial and temporal coverage of wildlife monitoring. However, the enormous datasets that autonomous recorders typically generate demand automated analyses that remain largely undeveloped. To unleash the potential for global-scale bioacoustic monitoring, we developed automated signal processing and machine learning algorithms to generate seasonal times series of breeding songbird vocal activity from 1200 hours of landscape-level recordings in northern Alaska. The calendar dates on which songbird communities arrived to their breeding grounds in five springs (2010-2014) were automatically extracted from the time series, and agreed within 3 days to those determined via traditional avian surveys (RMSE = 1.88 - 3.02). Relative to other years, our bioacoustic approach identified a 1-9 day delay in the arrival of long distance migratory songbird communities to their breeding grounds in 2013 - a spring characterized by persistent snow cover and cold temperatures. Differences in arrival timing among sites were strongly related to the date on which the landscape surrounding the microphone became snow-free, particularly in the supervised approach (supervised: R2 = 0.59, p < 0.01 and unsupervised: R2 = 0.13, p = 0.15). We found daily variation in vocal activity was heavily influenced by environmental conditions - primarily snow cover and temperature, and especially prior to egg laying (R2 = 0.61 +/- 0.07 vs. 0.23 +/- 0.07, p < 0.1) - suggesting that extending bioacoustics analysis beyond arrival date estimation requires coupling recordings with meteorological networks and information on community breeding phenology. The success of our novel analytical approach demonstrates that shifts in avian migratory behavior could be detected autonomously, which would provide the coverage necessary to determine and project the influence of climate on rapidly changing ecosystems.
Grazed grass was estimated via satellite images better then mowed grass
NASA Astrophysics Data System (ADS)
Koncz, Péter; Gubányi, András; Gecse, Bernadett; Tolnai, Márton; Pintér, Krisztina; Kertész, Péter; Fóti, Szilvia; Balogh, János; Nagy, Zoltán
2017-04-01
Precise livestock management requires objective alert system about the potential threats of overgrazing and intensive mowing. This kind of system could be based on the estimation of the amount of grazed and mowed biomass by remote sensing of vegetation indices. In our study we used the Normalized Difference Vegetation Index (NDVI) derived from Landsat 7 and 8 satellites to establish a regression between the vegetation index and the biomass (cut from ten, 40× 40 cm plots, during 52 measurement campaigns, 2011-2013) in a semi-arid grassland of Hungary, Bugac. Based on the regression time series of NDVI data were converted into biomass data in case of grazed and mowed areas (2011?2016). Biomass changes, inferred from NDVI data, were compared to the estimated grazed (based on daily dry matter uptake of cattle) and measured mowed (weighted) biomass. We found significant correlation between the NDVI and the total biomass (r2=0.6, p<0.05, n=52, RMSE=52.8 g m-2) and a stronger one between the NDVI and the green biomass (r2=0.75, p<0.05, n=52, RMSE=36.8 g m-2). We found that the amount of grazed biomass based on dry matter uptake was in close agreement with the biomass changes inferred from NDVI data (r2=0.42, p=0.11, n=7, RMSE=25.2 g m-2). However, there was no correlation between the biomass of the measured hay and the biomass inferred from NDVI data (r2=0.16, p=0.49, n=5, RMSE=67.4 g m-2). This was most probably due to the fact that mowing is a sudden, while grazing is a prolonged event, hence satellite data are less likely to be available before and after the mowing events (i.e. within days) compared to the grazing periods which usually lasts for months (only 12±2 satellite images were suitable per year). Therefore, NDVI changes are more accurately captured when grazing is observed than when mowing. We concluded that NDVI data from satellite images could be used to estimate the amount of grazed biomass, however to estimate the amount of mowed hay more frequent data coverage would be needed.
NASA Astrophysics Data System (ADS)
Bian, Zhengfu; Lei, Shaogang; Inyang, Hilary I.; Chang, Luqun; Zhang, Richen; Zhou, Chengjun; He, Xiao
2009-03-01
Mining affects the environment in different ways depending on the physical context in which the mining occurs. In mining areas with an arid environment, mining affects plants’ growth by changing the amount of available water. This paper discusses the effects of mining on two important determinants of plant growth—soil moisture and groundwater table (GWT)—which were investigated using an integrated approach involving a field sampling investigation with remote sensing (RS) and ground-penetrating radar (GPR). To calculate and map the distribution of soil moisture for a target area, we initially analyzed four models for regression analysis between soil moisture and apparent thermal inertia and finally selected a linear model for modeling the soil moisture at a depth 10 cm; the relative error of the modeled soil moisture was about 6.3% and correlation coefficient 0.7794. A comparison of mined and unmined areas based on the results of limited field sampling tests or RS monitoring of Landsat 5-thermatic mapping (TM) data indicated that soil moisture did not undergo remarkable changes following mining. This result indicates that mining does not have an effect on soil moisture in the Shendong coal mining area. The coverage of vegetation in 2005 was compared with that in 1995 by means of the normalized difference vegetation index (NDVI) deduced from TM data, and the results showed that the coverage of vegetation in Shendong coal mining area has improved greatly since 1995 because of policy input RMB¥0.4 per ton coal production by Shendong Coal Mining Company. The factor most affected by coal mining was GWT, which dropped from a depth of 35.41 m before mining to a depth of 43.38 m after mining at the Bulianta Coal Mine based on water well measurements. Ground-penetrating radar at frequencies of 25 and 50 MHz revealed that the deepest GWT was at about 43.4 m. There was a weak water linkage between the unsaturated zone and groundwater, and the decline of water table primarily resulted from the well pumping for mining safety rather than the movement of cracking strata. This result is in agreement with the measurements of the water wells. The roots of nine typical plants in the study area were investigated. Populus was found to have the deepest root system with a depth of about 26 m. Based on an assessment of plant growth demands and the effect of mining on environmental factors, we concluded that mining will have less of an effect on plant growth at those sites where the primary GWT depth before mining was deep enough to be unavailable to plants. If the primary GWT was available for plant growth before mining, especially to those plants with deeper roots, mining will have a significant effect on the growth of plants and the mechanism of this effect will include the loss of water to roots and damage to the root system.
Munos, Melinda K; Stanton, Cynthia K; Bryce, Jennifer
2017-06-01
Regular monitoring of coverage for reproductive, maternal, neonatal, and child health (RMNCH) is central to assessing progress toward health goals. The objectives of this review were to describe the current state of coverage measurement for RMNCH, assess the extent to which current approaches to coverage measurement cover the spectrum of RMNCH interventions, and prioritize interventions for a novel approach to coverage measurement linking household surveys with provider assessments. We included 58 interventions along the RMNCH continuum of care for which there is evidence of effectiveness against cause-specific mortality and stillbirth. We reviewed household surveys and provider assessments used in low- and middle-income countries (LMICs) to determine whether these tools generate measures of intervention coverage, readiness, or quality. For facility-based interventions, we assessed the feasibility of linking provider assessments to household surveys to provide estimates of intervention coverage. Fewer than half (24 of 58) of included RMNCH interventions are measured in standard household surveys. The periconceptional, antenatal, and intrapartum periods were poorly represented. All but one of the interventions not measured in household surveys are facility-based, and 13 of these would be highly feasible to measure by linking provider assessments to household surveys. We found important gaps in coverage measurement for proven RMNCH interventions, particularly around the time of birth. Based on our findings, we propose three sets of actions to improve coverage measurement for RMNCH, focused on validation of coverage measures and development of new measurement approaches feasible for use at scale in LMICs.
Fronstin, Paul
2009-09-01
This Issue Brief provides historical data through 2008 on the number and percentage of nonelderly individuals with and without health insurance. Based on EBRI estimates from the U.S. Census Bureau's March 2009 Current Population Survey (CPS), it reflects 2008 data. It also discusses trends in coverage for the 1994-2008 period and highlights characteristics that typically indicate whether an individual is insured. HEALTH COVERAGE RATE CONTINUES TO DECREASE: The percentage of the nonelderly population (under age 65) with health insurance coverage decreased to 82.6 percent in 2008. Increases in health insurance coverage have been recorded in only four years since 1994, when 36.5 million nonelderly individuals were uninsured; in 2008, the uninsured population was 45.7 million. EMPLOYMENT-BASED COVERAGE REMAINS DOMINANT SOURCE OF HEALTH COVERAGE, BUT CONTINUES TO SLOWLY ERODE: Employment-based health benefits remain the most common form of health coverage in the United States. In 2008, 61.1 percent of the nonelderly population had employment-based health benefits, down from 68.4 percent in 2000. Between 1994 and 2000, the percentage of the nonelderly population with employment-based coverage expanded. PUBLIC PROGRAM COVERAGE IS GROWING: Public program health coverage expanded as a percentage of the population in 2008, accounting for 19.4 percent of the nonelderly population. Enrollment in Medicaid and the State Children's Health Insurance Program increased, reaching a combined 39.2 million in 2008, and covering 14.9 percent of the nonelderly population, significantly above the 10.5 percent level of 1999. INDIVIDUAL COVERAGE STABLE: Individually purchased health coverage was unchanged in 2008 and has basically hovered in the 6-7 percent range since 1994. MOST/LEAST LIKELY TO HAVE HEALTH INSURANCE: Full-time, full-year workers, public-sector workers, workers employed in manufacturing, managerial and professional workers, and individuals living in high-income families are most likely to have employment-based health benefits. Poor families are most likely to be covered by public coverage programs such as Medicaid or S-CHIP. RETHINKING THE VALUE OF OFFERING HEALTH INSURANCE: Research illustrates the advantages to consumers of having health insurance and the benefits to employers of offering it. In general, the availability of health insurance allows consumers to avoid unnecessary pain and suffering and improves the quality of life, and employers report that offering benefits has a positive impact on worker recruitment, retention, health status, and productivity. Employers may believe in the business case for providing health benefits today, but in the future they may rethink the value that offering coverage provides, especially if health costs continue to escalate sharply or if health reform changes the value proposition.
Target Coverage in Wireless Sensor Networks with Probabilistic Sensors
Shan, Anxing; Xu, Xianghua; Cheng, Zongmao
2016-01-01
Sensing coverage is a fundamental problem in wireless sensor networks (WSNs), which has attracted considerable attention. Conventional research on this topic focuses on the 0/1 coverage model, which is only a coarse approximation to the practical sensing model. In this paper, we study the target coverage problem, where the objective is to find the least number of sensor nodes in randomly-deployed WSNs based on the probabilistic sensing model. We analyze the joint detection probability of target with multiple sensors. Based on the theoretical analysis of the detection probability, we formulate the minimum ϵ-detection coverage problem. We prove that the minimum ϵ-detection coverage problem is NP-hard and present an approximation algorithm called the Probabilistic Sensor Coverage Algorithm (PSCA) with provable approximation ratios. To evaluate our design, we analyze the performance of PSCA theoretically and also perform extensive simulations to demonstrate the effectiveness of our proposed algorithm. PMID:27618902
Utilizing collagen membranes for guided tissue regeneration-based root coverage.
Wang, Hom-Lay; Modarressi, Marmar; Fu, Jia-Hui
2012-06-01
Gingival recession is a common clinical problem that can result in hypersensitivity, pain, root caries and esthetic concerns. Conventional soft tissue procedures for root coverage require an additional surgical site, thereby causing additional trauma and donor site morbidity. In addition, the grafted tissues heal by repair, with formation of long junctional epithelium with some connective tissue attachment. Guided tissue regeneration-based root coverage was thus developed in an attempt to overcome these limitations while providing comparable clinical results. This paper addresses the biologic foundation of guided tissue regeneration-based root coverage, and describes the indications and contraindications for this technique, as well as the factors that influence outcomes. The step-by-step clinical techniques utilizing collagen membranes are also described. In comparison with conventional soft tissue procedures, the benefits of guided tissue regeneration-based root coverage procedures include new attachment formation, elimination of donor site morbidity, less chair-time, and unlimited availability and uniform thickness of the product. Collagen membranes, in particular, benefit from product biocompatibility with the host, while promoting chemotaxis, hemostasis, and exchange of gas and nutrients. Such characteristics lead to better wound healing by promoting primary wound coverage, angiogenesis, space creation and maintenance, and clot stability. In conclusion, collagen membranes are a reliable alternative for use in root coverage procedures. © 2012 John Wiley & Sons A/S.
Brotherton, Julia M L; Liu, Bette; Donovan, Basil; Kaldor, John M; Saville, Marion
2014-01-23
Accurate estimates of coverage are essential for estimating the population effectiveness of human papillomavirus (HPV) vaccination. Australia has a purpose built National HPV Vaccination Program Register for monitoring coverage, however notification of doses administered to young women in the community during the national catch-up program (2007-2009) was not compulsory. In 2011, we undertook a population-based mobile phone survey of young women to independently estimate HPV vaccination coverage. Randomly generated mobile phone numbers were dialed to recruit women aged 22-30 (age eligible for HPV vaccination) to complete a computer assisted telephone interview. Consent was sought to validate self reported HPV vaccination status against the national register. Coverage rates were calculated based on self report and weighted to the age and state of residence structure of the Australian female population. These were compared with coverage estimates from the register using Australian Bureau of Statistics estimated resident populations as the denominator. Among the 1379 participants, the national estimate for self reported HPV vaccination coverage for doses 1/2/3, respectively, weighted for age and state of residence, was 64/59/53%. This compares with coverage of 55/45/32% and 49/40/28% based on register records, using 2007 and 2011 population data as the denominators respectively. Some significant differences in coverage between the states were identified. 20% (223) of women returned a consent form allowing validation of doses against the register and provider records: among these women 85.6% (538) of self reported doses were confirmed. We confirmed that coverage rates for young women vaccinated in the community (at age 18-26 years) are underestimated by the national register and that under-notification is greater for second and third doses. Using 2011 population estimates, rather than estimates contemporaneous with the program rollout, reduces register-based coverage estimates further because of large population increases due to immigration since the program. Copyright © 2013 Elsevier Ltd. All rights reserved.
Xia, Jianyang; Wan, Shiqiang
2012-01-01
Background The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems. Methodology/Principal Findings A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration. Conclusions/Significance These plants' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands. PMID:22359660
Development of a simulation of the surficial groundwater system for the CONUS
NASA Astrophysics Data System (ADS)
Zell, W.; Sanford, W. E.
2016-12-01
Water resource and environmental managers across the country face a variety of questions involving groundwater availability and/or groundwater transport pathways. Emerging management questions require prediction of groundwater response to changing climate regimes (e.g., how drought-induced water-table recession may degrade near-stream vegetation and result in increased wildfire risks), while existing questions can require identification of current groundwater contributions to surface water (e.g., groundwater linkages between landscape contaminant inputs and receiving streams may help explain in-stream phenomena such as fish intersex). At present, few national-coverage simulation tools exist to help characterize groundwater contributions to receiving streams and predict potential changes in base-flow regimes under changing climate conditions. We will describe the Phase 1 development of a simulation of the water table and shallow groundwater system for the entire CONUS. We use national-scale datasets such as the National Recharge Map and the Map Database for Surficial Materials in the CONUS to develop groundwater flow (MODFLOW) and transport (MODPATH) models that are calibrated against groundwater level and stream elevation data from NWIS and NHD, respectively. Phase 1 includes the development of a national transmissivity map for the surficial groundwater system and examines the impact of model-grid resolution on the simulated steady-state discharge network (and associated recharge areas) and base-flow travel time distributions for different HUC scales. In the course of developing the transmissivity map we show that transmissivity in fractured bedrock systems is dependent on depth to water. Subsequent phases of this work will simulate water table changes at a monthly time step (using MODIS-dependent recharge estimates) and serve as a critical complement to surface-water-focused USGS efforts to provide national coverage hydrologic modeling tools.
Boidin, B
2015-02-01
This article tackles the perspectives and limits of the extension of health coverage based on community based health insurance schemes in Africa. Despite their strong potential contribution to the extension of health coverage, their weaknesses challenge their ability to play an important role in this extension. Three limits are distinguished: financial fragility; insufficient adaptation to characteristics and needs of poor people; organizational and institutional failures. Therefore lessons can be learnt from the limits of the institutionalization of community based health insurance schemes. At first, community based health insurance schemes are to be considered as a transitional but insufficient solution. There is also a stronger role to be played by public actors in improving financial support, strengthening health services and coordinating coverage programs.
Public Health Policy in Support of Insurance Coverage for Smoking Cessation Treatments
Schwartz, Robert; Haji, Farzana; Babayan, Alexey; Longo, Christopher; Ferrence, Roberta
2017-01-01
Insurance coverage for evidence-based smoking cessation treatments (SCTs) promotes uptake and reduces smoking rates. Published studies in this area are based in the US where employers are the primary source of health insurance. In Ontario, Canada, publicly funded healthcare does not cover SCTs, but it can be supplemented with employer-sponsored benefit plans. This study explores factors affecting the inclusion/exclusion of smoking cessation (SC) benefits. In total, 17 interviews were conducted with eight employers (auto, retail, banking, municipal and university industries), four health insurers, two government representatives and three advisors/consultants. Overall, SCT coverage varied among industries; it was inconsistently restrictive and SCT differed by coverage amount and length of use. Barriers impeding coverage included the lack of the following: Canadian-specific return on investment (ROI), SC cost information, employer demand, government regulations/incentives and employee awareness of and demand. A Canadian evidence-based calculation of ROI for SC coupled with government incentives and public education may be needed to promote uptake of SCT coverage by employers. PMID:28617238
NASA Astrophysics Data System (ADS)
Nagler, P. L.; Glenn, E. P.; Gomez-Sapiens, M.; Jarchow, C.; Milliken, J.
2014-12-01
The Lower Colorado River Spring 2014 pulse flood release of water to the delta in Mexico is a collaborative monitoring project funded by the Department of Interior, in part, with teams of scientists from governments, universities and non-profits on both sides of the border. Our goal was to provide measures of the vegetation response to this Minute 319 pulse flood and to document post-flooding changes in the vegetation along the lower Colorado River reaches 1-7, which include ca. 150 narrow miles of riparian habitat until it opens to the Sea of Cortez. We used Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) on the Terra satellite, which provides near-daily coverage at 250 m resolution, while the Landsat 8 satellite provides this data at 16 day intervals at 30 m resolution. We are combining the two sources of satellite data to obtain high spatial and temporal resolution. NDVI and EVI data for each river reach from 2000 to the present were collected, as well as VI for specific target areas. These include restoration sites, vegetation transect sites, and bird observation sites. Green vegetation has decreased steadily in all river reaches since the flood years of 1997-2000. This loss of vegetation vigor has been accompanied by a loss of habitat for riparian dependent birds from 2002 to the present. The loss of vegetation vigor resulted in a lowering of evapotranspiration (ET) in each river reach. ET has decreased approximately from 155 mcm/year in 2000 to 100 mcm/year in 2013. The pulse flood, at 130 mcm, is designed to restore some of the vegetation vigor and to germinate new cohorts of native trees throughout the river reaches. Early positive results are apparent in the zones of inundation. For example, an area of about 600 hectares has shown rapid green-up at the end of the pilot channel in Reach 5 and extending into Reach 7. This is a mixed vegetation zone containing native trees, saltcedar (Tamarix sp.) and other riparian species. In the longer run, groundwater recharged upstream is expected to restore further productivity in downstream river reaches. We document here that results of a pulse flood plays out over a period of years in terms of enhanced productivity of the groundwater-dependent riparian vegetation.
NASA Astrophysics Data System (ADS)
Chen, X.; Vierling, L. A.; Deering, D. W.
2004-12-01
Satellite data offer unique perspectives for monitoring and quantifying land cover change, however, the radiometric consistency among co-located multi-temporal images is difficult to maintain due to variations in sensors and atmosphere. To detect accurate landscape change using multi-temporal images, we developed a new relative radiometric normalization scheme: the temporally invariant cluster (TIC) method. Image data were acquired on 9 June 1990 (Landsat 4), 20 June 2000, and 26 August 2001 (Landsat 7) for analyses over boreal forests near the Siberian city of Krasnoyarsk. Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Reduced Simple Ratio (RSR) were investigated in the normalization study. The temporally invariant cluster (TIC) centers were identified through a point density map of the base image and the target image and a normalization regression line was created through all TIC centers. The target image digital data were then converted using the regression function so that the two images could be compared using the resulting common radiometric scale. We found that EVI was very sensitive to vegetation structure and could thus be used to separate conifer forests from deciduous forests and grass/crop lands. NDVI was a very effective vegetation index to reduce the influence of shadow, while EVI was very sensitive to shadowing. After normalization, correlations of NDVI and EVI with field collected total Leaf Area Index (LAI) data in 2000 and 2001 were significantly improved; the r-square values in these regressions increased from 0.49 to 0.69 and from 0.46 to 0.61, respectively. An EVI ¡°cancellation effect¡± where EVI was positively related to understory greenness but negatively related to forest canopy coverage was evident across a post fire chronosequence. These findings indicate that the TIC method provides a simple, effective and repeatable method to create radiometrically comparable data sets for remote detection of landscape change. Compared with some previous relative normalization methods, this new method can avoid subjective selection of a normalization regression line. It does not require high level programming and statistical analyses, yet remains sensitive to landscape changes occurring over seasonal and inter-annual time scales. In addition, the TIC method maintains sensitivity to subtle changes in vegetation phenology and enables normalization even when invariant features are rare.
NASA Astrophysics Data System (ADS)
Pisek, Jan; Chen, Jing; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael; Karnieli, Arnon; Sprintsin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi
2016-04-01
Ground vegetation (understory) provides an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modelling efforts. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing. Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of over- and understory and its variable nature. Understory can consist of several sub-layers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales. In this presentation, we report on retrieving seasonal courses of understory Normalized Difference Vegetation Index (NDVI) from multi-angular MODIS BRDF/Albedo data. We compared satellite-based seasonal courses of understory NDVI against an extended collection of different types of forest sites with available in-situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semi-arid pine plantation in Israel. Our results indicated the retrieval method performs well particularly over open forests of different types. We also demonstrated the limitations of the method for closed canopies, where the understory signal retrieval is much attenuated. The retrieval of understory signal can be used e.g. to improve the estimates of leaf area index (LAI), fAPAR in sparsely vegetated areas, and also to study the phenology of understory layer. Our results are particularly useful to producing Northern hemisphere maps of seasonal dynamics of forests, allowing to separately retrieve understory variability, being a main contributor to spring emergence and fall senescence uncertainty. The inclusion of understory variability in ecological models will ultimately improve prediction and forecast horizons of vegetation dynamics.
Rogers, Eleanor; Myatt, Mark; Woodhead, Sophie; Guerrero, Saul; Alvarez, Jose Luis
2015-01-01
Objective This paper reviews coverage data from programmes treating severe acute malnutrition (SAM) collected between July 2012 and June 2013. Design This is a descriptive study of coverage levels and barriers to coverage collected by coverage assessments of community-based SAM treatment programmes in 21 countries that were supported by the Coverage Monitoring Network. Data from 44 coverage assessments are reviewed. Setting These assessments analyse malnourished populations from 6 to 59 months old to understand the accessibility and coverage of services for treatment of acute malnutrition. The majority of assessments are from sub-Saharan Africa. Results Most of the programmes (33 of 44) failed to meet context-specific internationally agreed minimum standards for coverage. The mean level of estimated coverage achieved by the programmes in this analysis was 38.3%. The most frequently reported barriers to access were lack of awareness of malnutrition, lack of awareness of the programme, high opportunity costs, inter-programme interface problems, and previous rejection. Conclusions This study shows that coverage of CMAM is lower than previous analyses of early CTC programmes; therefore reducing programme impact. Barriers to access need to be addressed in order to start improving coverage by paying greater attention to certain activities such as community sensitisation. As barriers are interconnected focusing on specific activities, such as decentralising services to satellite sites, is likely to increase significantly utilisation of nutrition services. Programmes need to ensure that barriers are continuously monitored to ensure timely removal and increased coverage. PMID:26042827
42 CFR 457.1005 - Cost-effective coverage through a community-based health delivery system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... requirements of § 457.618 (the 10 percent limit on expenditures not used for health benefits coverage for... health care delivery system, such as through contracts with health centers receiving funds under section... 42 Public Health 4 2013-10-01 2013-10-01 false Cost-effective coverage through a community-based...
42 CFR 457.1005 - Cost-effective coverage through a community-based health delivery system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... requirements of § 457.618 (the 10 percent limit on expenditures not used for health benefits coverage for... health care delivery system, such as through contracts with health centers receiving funds under section... 42 Public Health 4 2014-10-01 2014-10-01 false Cost-effective coverage through a community-based...
42 CFR 457.1005 - Cost-effective coverage through a community-based health delivery system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... requirements of § 457.618 (the 10 percent limit on expenditures not used for health benefits coverage for... health care delivery system, such as through contracts with health centers receiving funds under section... 42 Public Health 4 2010-10-01 2010-10-01 false Cost-effective coverage through a community-based...
42 CFR 457.1005 - Cost-effective coverage through a community-based health delivery system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... requirements of § 457.618 (the 10 percent limit on expenditures not used for health benefits coverage for... health care delivery system, such as through contracts with health centers receiving funds under section... 42 Public Health 4 2012-10-01 2012-10-01 false Cost-effective coverage through a community-based...
42 CFR 457.1005 - Cost-effective coverage through a community-based health delivery system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... requirements of § 457.618 (the 10 percent limit on expenditures not used for health benefits coverage for... health care delivery system, such as through contracts with health centers receiving funds under section... 42 Public Health 4 2011-10-01 2011-10-01 false Cost-effective coverage through a community-based...
Astale, Tigist; Sata, Eshetu; Zerihun, Mulat; Nute, Andrew W; Stewart, Aisha E P; Gessese, Demelash; Ayenew, Gedefaw; Melak, Berhanu; Chanyalew, Melsew; Tadesse, Zerihun; Callahan, E Kelly; Nash, Scott D
2018-02-01
Trachoma is the leading infectious cause of blindness worldwide. In communities where the district level prevalence of trachomatous inflammation-follicular among children ages 1-9 years is ≥5%, WHO recommends annual mass drug administration (MDA) of antibiotics with the aim of at least 80% coverage. Population-based post-MDA coverage surveys are essential to understand the effectiveness of MDA programs, yet published reports from trachoma programs are rare. In the Amhara region of Ethiopia, a population-based MDA coverage survey was conducted 3 weeks following the 2016 MDA to estimate the zonal prevalence of self-reported drug coverage in all 10 administrative zones. Survey households were selected using a multi-stage cluster random sampling design and all individuals in selected households were presented with a drug sample and asked about taking the drug during the campaign. Zonal estimates were weighted and confidence intervals were calculated using survey procedures. Self-reported drug coverage was then compared with regional reported administrative coverage. Region-wide, 24,248 individuals were enumerated, of which, 20,942 (86.4%) individuals were present. The regional self-reported antibiotic coverage was 76.8% (95%Confidence Interval (CI):69.3-82.9%) in the population overall and 77.4% (95%CI = 65.7-85.9%) among children ages 1-9 years old. Zonal coverage ranged from 67.8% to 90.2%. Five out of 10 zones achieved a coverage >80%. In all zones, the reported administrative coverage was greater than 90% and was considerably higher than self-reported MDA coverage. Main reasons reported for MDA campaign non-attendance included being physically unable to get to MDA site (22.5%), traveling (20.6%), and not knowing about the campaign (21.0%). MDA refusal was low (2.8%) in this population. Although self-reported MDA coverage in Amhara was greater than 80% in some zones, programmatic improvements are warranted throughout Amhara to achieve higher coverage. These results will be used to enhance community mobilization and improve training for MDA distributors and supervisors to improve coverage in future MDAs.
Lu, Yongshang; Larock, Richard C
2009-01-01
Veggie-based products: Vegetable-oil-based polymeric materials, prepared by free radical, cationic, and olefin metathesis polymerizations, range from soft rubbers to ductile or rigid plastics, and to high-performance biocomposites and nanocomposites. They display a wide range of thermophysical and mechanical properties and may find promising applications as alternatives to petroleum-based polymers.Vegetable oils are considered to be among the most promising renewable raw materials for polymers, because of their ready availability, inherent biodegradability, and their many versatile applications. Research on and development of vegetable oil based polymeric materials, including thermosetting resins, biocomposites, and nanocomposites, have attracted increasing attention in recent years. This Minireview focuses on the latest developments in the preparation, properties, and applications of vegetable oil based polymeric materials obtained by free radical, cationic, and olefin metathesis polymerizations. The novel vegetable oil based polymeric materials obtained range from soft rubbery materials to ductile or rigid plastics and to high-performance biocomposites and nanocomposites. These vegetable oil based polymeric materials display a wide range of thermophysical and mechanical properties and should find useful applications as alternatives to their petroleum-based counterparts.
NASA Astrophysics Data System (ADS)
Zhao, W.; Zhang, X.; Liu, Y.; Fang, X.
2017-12-01
Currently, the ecological restoration of the Loess Plateau has led to significant achievements such as increases in vegetation coverage, decreases in soil erosion, and enhancement of ecosystem services. Soil moisture shortages, however, commonly occur as a result of limited rainfall and strong evaporation in this semiarid region of China. Since soil moisture is critical in regulating plant growth in these semiarid regions, it is crucial to identify the spatial variation and factors affecting soil moisture at multi-scales in the Loess Plateau of China. In the last several years, extensive studies on soil moisture have been carried out by our research group at the plot, small watershed, watershed, and regional scale in the Loess Plateau, providing some information for vegetation restoration in the region. The main research results are as follows: (1) the highest soil moisture content was in the 0-0.1 m layer with a large coefficient of variation; (2) in the 0-0.1m layer, soil moisture content was negatively correlated with relative elevation, slope and vegetation cover, the correlations among slope, aspect and soil moisture increased with depth increased; (3) as for the deep soil moisture content, the higher spatial variation of deep SMC occurred at 1.2-1.4 m and 4.8-5.0m; (4) the deep soil moisture content in native grassland and farmland were significant higher than that of introduced vegetation; (5) at regional scale, the soil water content under different precipitation zones increased following the increase of precipitation, while, the influencing factors of deep SMC at watershed scale varied with land management types; (6) in the areas with multi-year precipitation of 370 - 440mm, natural grass is more suitable for restoration, and this should be treated as the key areas in vegetation restoration; (7) appropriate planting density and species selection should be taken into account for introduced vegetation management; (8) it is imperative to take the local reality into account and to balance the economic and ecological benefits so that the ratio of artificial vegetation and natural restoration can be optimized to realize sustainability of vegetation restoration
Eavesdropping on the Arctic: Automated bioacoustics reveal dynamics in songbird breeding phenology
Ellis, Daniel P. W.; Pérez, Jonathan H.; Wingfield, John C.; Boelman, Natalie T.
2018-01-01
Bioacoustic networks could vastly expand the coverage of wildlife monitoring to complement satellite observations of climate and vegetation. This approach would enable global-scale understanding of how climate change influences phenomena such as migratory timing of avian species. The enormous data sets that autonomous recorders typically generate demand automated analyses that remain largely undeveloped. We devised automated signal processing and machine learning approaches to estimate dates on which songbird communities arrived at arctic breeding grounds. Acoustically estimated dates agreed well with those determined via traditional surveys and were strongly related to the landscape’s snow-free dates. We found that environmental conditions heavily influenced daily variation in songbird vocal activity, especially before egg laying. Our novel approaches demonstrate that variation in avian migratory arrival can be detected autonomously. Large-scale deployment of this innovation in wildlife monitoring would enable the coverage necessary to assess and forecast changes in bird migration in the face of climate change. PMID:29938220
Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza; Barbosa, Reinaldo Imbrozio
2017-01-01
Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms.
Chen, Yong; Hu, Wenyou; Huang, Biao; Weindorf, David C; Rajan, Nithya; Liu, Xiaoxiao; Niedermann, Silvana
2013-12-01
Heavy metal accumulation in vegetables is a growing concern for public health. Limited studies have elucidated the heavy metal accumulation characteristics and health risk of different vegetables produced in different facilities such as greenhouses and open-air fields and under different management modes such as harmless and organic. Given the concern over the aforementioned factors related to heavy metal accumulation, this study selected four typical greenhouse vegetable production bases, short-term harmless greenhouse vegetable base (SHGVB), middle-term harmless greenhouse vegetable base (MHGVB), long-term harmless greenhouse vegetable base (LHGVB), and organic greenhouse vegetable base (OGVB), in Nanjing City, China to study heavy metal accumulation in different vegetables and their associated health risks. Results showed that soils and vegetables from SHGVB and OGVB apparently accumulated fewer certain heavy metals than those from other bases, probably due to fewer planting years and special management, respectively. Greenhouse conditions significantly increased certain soil heavy metal concentrations relative to open-air conditions. However, greenhouse conditions did not significantly increase concentrations of As, Cd, Cu, Hg, and Zn in leaf vegetables. In fact, under greenhouse conditions, Pb accumulation was effectively reduced. The main source of soil heavy metals was the application of large amounts of low-grade fertilizer. There was larger health risk for producers' children to consume vegetables from the three harmless vegetable bases than those of residents' children. The hazard index (HI) over a large area exceeded 1 for these two kinds of children in the MHGVB and LHGVB. There was also a slight risk in the SHGVB for producers' children solely. However, the HI of the whole area of the OGVB for two kinds of children was below 1, suggesting low risk of heavy metal exposure through the food chain. Notably, the contribution rate of Cu and Zn to the HI were high in the four bases, yet current Chinese standards provide no limit for the concentrations of Cu and Zn; thus a potential health risk concerning these metals exists. © 2013 Elsevier Inc. All rights reserved.
Shoreline surveys of oil-impacted marsh in southern Louisiana, July to August 2010
Kokaly, Raymond F.; Heckman, David; Holloway, JoAnn; Piazza, Sarai C.; Couvillion, Brady R.; Steyer, Gregory D.; Mills, Christopher T.; Hoefen, Todd M.
2011-01-01
This report describes shoreline surveys conducted in the marshes of Louisiana in areas impacted by oil spilled from the Deepwater Horizon offshore oil drilling platform in the Gulf of Mexico. Three field expeditions were conducted on July 7-10, August 12-14, and August 24-26, 2010, in central Barataria Bay and the Bird's Foot area at the terminus of the Mississippi River delta. This preliminary report includes locations of survey points, a photographic record of each site, field observations of vegetation cover and descriptions of oil coverage in the water and on plants, including measurements of the distance of oil penetration from the shoreline. Oiling in Barataria Bay marshes ranged from lightly oiled sections of stems of the predominant species Spartina alterniflora and Juncus roemerianus to wide zones of oil-damaged canopies and broken stems penetrating as far as 19 m into the marsh. For the 34 survey points in Barataria Bay where dimensions of oil damaged zones were measured, the depth of the oil-damaged zone extended, on average, 6.7 m into the marsh, with a standard deviation of 4.5 m. The median depth of penetration was 5.5 m. The extent to which the oil-damaged zone stretched along the shore varied with location but often extended more than 100 m parallel to the shoreline. Oil was observed on the marsh sediment at some sites in Barataria Bay. This oiled sediment was observed both above and a few centimeters below the water surface depending on the level of the tide. Phragmites australis was the dominant vegetation in oil-impacted zones in the Bird's Foot area of the Mississippi River delta. Oiling of the leaves and portions of the thick stems of P. australis was observed during field surveys. In contrast to the marshes of Barataria Bay, fewer areas of oil-damaged canopy were documented in the Bird's Foot area. In both areas, oil was observed to be persistent on the marsh plants from the earliest (July 7) to the latest (August 24) surveys. At sites repeatedly visited in Barataria Bay over this time period, oiled plant stems and leaves, laid over by the weight of the oil, broke and were removed from the vegetation canopy, likely due to tidal action. In these areas, a zone of 2-5 cm high plant stubble remained at the edge of the marsh. Signs of both further degradation and recovery were observed and varied with site. Oil damage to the marsh at some sites resulted in complete reduction of live vegetation cover and erosion of exposed sediments, while other damaged zones had signs of regrowth of vegetation in up to 10 percent of the areal coverage.
Biocrust spectral response as affected by changing climatic conditions
NASA Astrophysics Data System (ADS)
Rodriguez-Caballero, Emilio; Guirado, Emilio; Escribano, Paula; Reyes, Andres; Weber, Bettina
2017-04-01
Drylands are characterized by scarce vegetation coverage and low rates of biological activity, both constrained by water scarcity. Under these conditions, biocrusts form key players of ecosystem functioning. They comprise complex poikilohydric communities of cyanobacteria, algae, lichens and bryophytes together with heterotrophic bacteria, archaea and fungi, which cover the uppermost soil layer. Biocrusts can cope with prolonged phases of drought, being rapidly re-activated when water becomes available again. Upon reactivation, biocrusts almost immediately turn green, fixing atmospheric carbon and nitrogen and increasing ecosystem productivity. However, due to their inconspicuous growth they have only rarely been analysed and spatially and temporally continuous information on their response to water pulses is missing. These data are particularly important under changing climatic conditions predicting an increase in aridity and variations in precipitation patterns within most of the dryland regions. In the present study, we used multi-temporal series of NDVI obtained from LANDSAT images to analyze biocrust and vegetation response to water pulses within the South African Succulent Karoo and we predicted their future response under different climate change scenarios. The results showed that biocrust and vegetation greenness are controlled by aridity, solar radiation and soil water content, showing similar annual patterns, with minimum values during dry periods that increased within the rainy season and decreased again after the onset of drought. However, biocrusts responded faster to water availability and turned green almost immediately after small rains, producing a small NDVI peak only few days after rainfall, whereas more time was needed for vegetation to grow new green tissue. However, once the photosynthetic tissue of vegetation was restored, it caused the highest increase of NDVI values after the rain. Predicted changes in precipitation patterns and aridity within the Succulent Karoo in South Africa comprise a decrease in rainfall events and aridity that finally resulted in higher water availability, especially on days just after rainfall, where biocrust are active. Our calculations suggest that these climatic alterations cause an increase of 30 % in biocrust NDVI by the end of the century, responding far more drastically than vascular plants. As biocrust NDVI is related to biocrust coverage, developmental stage and physiological activity, this will positively affect their contribution to global biogeochemical cycles and their soil-stabilizing effects, partially compensating the negative impacts of climate change on drylands regions. One has to keep in mind, however, that the investigated scenarios considered only climatic and no land use effects and that this study was restricted to a well-confined region. Nevertheless, our data clearly demonstrate that biocrust data need to be incorporated in land use programs and policies to ensure dryland sustainability under global change scenarios.
NASA Technical Reports Server (NTRS)
Madsen, Soren; Komar, George (Technical Monitor)
2001-01-01
A GEO-based Synthetic Aperture Radar (SAR) could provide daily coverage of basically all of North and South America with very good temporal coverage within the mapped area. This affords a key capability to disaster management, tectonic mapping and modeling, and vegetation mapping. The fine temporal sampling makes this system particularly useful for disaster management of flooding, hurricanes, and earthquakes. By using a fairly long wavelength, changing water boundaries caused by storms or flooding could be monitored in near real-time. This coverage would also provide revolutionary capabilities in the field of radar interferometry, including the capability to study the interferometric signature immediately before and after an earthquake, thus allowing unprecedented studies of Earth-surface dynamics. Preeruptive volcano dynamics could be studied as well as pre-seismic deformation, one of the most controversial and elusive aspects of earthquakes. Interferometric correlation would similarly allow near real-time mapping of surface changes caused by volcanic eruptions, mud slides, or fires. Finally, a GEO SAR provides an optimum configuration for soil moisture measurement that requires a high temporal sampling rate (1-2 days) with a moderate spatial resolution (1 km or better). From a technological point of view, the largest challenges involved in developing a geosynchronous SAR capability relate to the very large slant range distance from the radar to the mapped area. This leads to requirements for large power or alternatively very large antenna, the ability to steer the mapping area to the left and right of the satellite, and control of the elevation and azimuth angles. The weight of this system is estimated to be 2750 kg and it would require 20 kW of DC-power. Such a system would provide up to a 600 km ground swath in a strip-mapping mode and 4000 km dual-sided mapping in a scan-SAR mode.
NASA Astrophysics Data System (ADS)
Meena, Shweta; Choudhary, Sudhanshu
2017-12-01
Spin polarized properties of fluorinated graphene as tunnel barrier with CrO2 as two HMF electrodes are studied using first principle methods based on density functional theory. Fluorinated graphene with different fluorine coverages is explored as tunnel barriers in magnetic tunnel junctions. Density functional computation for different fluorine coverages imply that with increase in fluorine coverages, there is increase in band gap (Eg) of graphene, Eg ˜ 3.466 e V was observed when graphene sheet is fluorine adsorbed on both-side with 100% coverage (CF). The results of CF graphene are compared with C4F (fluorination on one-side of graphene sheet with 25% coverage) and out-of-plane graphene based magnetic tunnel junctions. On comparison of the results it is observed that CF graphene based structure offers high TMR ˜100%, and the transport of carrier is through tunneling as there are no transmission states near Fermi level. This suggests that graphene sheet with both-side fluorination with 100% coverages acts as a perfect insulator and hence a better barrier to the carriers which is due to negligible spin down current (I ↓ ) in both Parallel Configuration (PC) and Antiparallel Configuration (APC).
NASA Astrophysics Data System (ADS)
Pagán, B. R.; Martens, B.; Maes, W. H.; Miralles, D. G.
2017-12-01
Global satellite-based data sets of land evaporation overcome limitations in coverage of in situ measurements while retaining some observational nature. Although their potential for real world applications are promising, their value during dry conditions is still poorly understood. Most evaporation retrieval algorithms are not directly sensitive to soil moisture. An exception is the Global Land Evaporation Amsterdam Model (GLEAM), which uses satellite surface soil moisture and precipitation to account for land water availability. The existing methodology may greatly benefit from the optimal integration of novel observations of the land surface. Microwave vegetation optical depth (VOD) and near-infrared solar-induced fluorescence (SIF) are expected to reflect different aspects of evaporative stress. While the former is considered to be a proxy of vegetation water content, the latter is indicative of the activity of photosynthetic machinery. As stomata regulate both photosynthesis and transpiration, we expect a relationship between SIF and transpiration. An important motivation to incorporate observations in land evaporation calculations is that plant transpiration - usually the largest component of the flux - is extremely challenging to model due to species-dependent responses to drought. Here we present an innovative integration of VOD and SIF into the GLEAM evaporative stress function. VOD is utilized as a measurement of isohydricity to improve the representation of species specific drought responses. SIF is used for transpiration modelling, a novel application, and standardized by incoming solar radiation to better account for radiation-limited periods. Results are validated with global FLUXNET and International Soil Moisture Network data and demonstrate that the incorporation of VOD and SIF can yield accurate estimates of transpiration over large-scales, which are essential to further understand ecosystem-atmosphere feedbacks and the response of terrestrial hydrology and ecology to meteorological drought. The resulting retrievals of land evaporation can be used to benchmark climate model representation of turbulent fluxes, at a time when these models still consider water stress rudimentarily, and typically assume the same sensitivity for all vegetation types to drought stress.
NASA Astrophysics Data System (ADS)
Goulden, T.; Hopkinson, C.
2013-12-01
The quantification of LiDAR sensor measurement uncertainty is important for evaluating the quality of derived DEM products, compiling risk assessment of management decisions based from LiDAR information, and enhancing LiDAR mission planning capabilities. Current quality assurance estimates of LiDAR measurement uncertainty are limited to post-survey empirical assessments or vendor estimates from commercial literature. Empirical evidence can provide valuable information for the performance of the sensor in validated areas; however, it cannot characterize the spatial distribution of measurement uncertainty throughout the extensive coverage of typical LiDAR surveys. Vendor advertised error estimates are often restricted to strict and optimal survey conditions, resulting in idealized values. Numerical modeling of individual pulse uncertainty provides an alternative method for estimating LiDAR measurement uncertainty. LiDAR measurement uncertainty is theoretically assumed to fall into three distinct categories, 1) sensor sub-system errors, 2) terrain influences, and 3) vegetative influences. This research details the procedures for numerical modeling of measurement uncertainty from the sensor sub-system (GPS, IMU, laser scanner, laser ranger) and terrain influences. Results show that errors tend to increase as the laser scan angle, altitude or laser beam incidence angle increase. An experimental survey over a flat and paved runway site, performed with an Optech ALTM 3100 sensor, showed an increase in modeled vertical errors of 5 cm, at a nadir scan orientation, to 8 cm at scan edges; for an aircraft altitude of 1200 m and half scan angle of 15°. In a survey with the same sensor, at a highly sloped glacial basin site absent of vegetation, modeled vertical errors reached over 2 m. Validation of error models within the glacial environment, over three separate flight lines, respectively showed 100%, 85%, and 75% of elevation residuals fell below error predictions. Future work in LiDAR sensor measurement uncertainty must focus on the development of vegetative error models to create more robust error prediction algorithms. To achieve this objective, comprehensive empirical exploratory analysis is recommended to relate vegetative parameters to observed errors.
Implementation of a Multi-Robot Coverage Algorithm on a Two-Dimensional, Grid-Based Environment
2017-06-01
two planar laser range finders with a 180-degree field of view , color camera, vision beacons, and wireless communicator. In their system, the robots...Master’s thesis 4. TITLE AND SUBTITLE IMPLEMENTATION OF A MULTI -ROBOT COVERAGE ALGORITHM ON A TWO -DIMENSIONAL, GRID-BASED ENVIRONMENT 5. FUNDING NUMBERS...path planning coverage algorithm for a multi -robot system in a two -dimensional, grid-based environment. We assess the applicability of a topology
Bridges, Daniel J; Pollard, Derek; Winters, Anna M; Winters, Benjamin; Sikaala, Chadwick; Renn, Silvia; Larsen, David A
2018-02-23
Indoor residual spraying (IRS) is a key tool in the fight to control, eliminate and ultimately eradicate malaria. IRS protection is based on a communal effect such that an individual's protection primarily relies on the community-level coverage of IRS with limited protection being provided by household-level coverage. To ensure a communal effect is achieved through IRS, achieving high and uniform community-level coverage should be the ultimate priority of an IRS campaign. Ensuring high community-level coverage of IRS in malaria-endemic areas is challenging given the lack of information available about both the location and number of households needing IRS in any given area. A process termed 'mSpray' has been developed and implemented and involves use of satellite imagery for enumeration for planning IRS and a mobile application to guide IRS implementation. This study assessed (1) the accuracy of the satellite enumeration and (2) how various degrees of spatial aid provided through the mSpray process affected community-level IRS coverage during the 2015 spray campaign in Zambia. A 2-stage sampling process was applied to assess accuracy of satellite enumeration to determine number and location of sprayable structures. Results indicated an overall sensitivity of 94% for satellite enumeration compared to finding structures on the ground. After adjusting for structure size, roof, and wall type, households in Nchelenge District where all types of satellite-based spatial aids (paper-based maps plus use of the mobile mSpray application) were used were more likely to have received IRS than Kasama district where maps used were not based on satellite enumeration. The probability of a household being sprayed in Nchelenge district where tablet-based maps were used, did not differ statistically from that of a household in Samfya District, where detailed paper-based spatial aids based on satellite enumeration were provided. IRS coverage from the 2015 spray season benefited from the use of spatial aids based upon satellite enumeration. These spatial aids can guide costly IRS planning and implementation leading to attainment of higher spatial coverage, and likely improve disease impact.
NASA Astrophysics Data System (ADS)
Larsen, Laurel G.; Ma, Jie; Kaplan, David
2017-10-01
How important is hydrologic connectivity for surface water fluxes through heterogeneous floodplains, deltas, and wetlands? While significant for management, this question remains poorly addressed. Here we adopt spatial resistance averaging, based on channel and patch configuration metrics quantifiable from aerial imagery, to produce an upscaled rate law for discharge. Our model suggests that patch coverage largely controls discharge sensitivity, with smaller effects from channel connectivity and vegetation patch fractal dimension. However, connectivity and patch configuration become increasingly important near the percolation threshold and at low water levels. These effects can establish positive feedbacks responsible for substantial flow change in evolving landscapes (14-36%, in our Everglades case study). Connectivity also interacts with other drivers; flow through poorly connected hydroscapes is less resilient to perturbations in other drivers. Finally, we found that flow through heterogeneous patches is alone sufficient to produce non-Manning flow-depth relationships commonly observed in wetlands but previously attributed to depth-varying roughness.
Duke, Norman C
2016-08-30
Mangrove tidal wetland habitats are recognised as highly vulnerable to large and chronic oil spills. This review of current literature and public databases covers the last 6 decades, summarising global data on oil spill incidents affecting, or likely to have affected, mangrove habitat. Over this period, there have been at least 238 notable oil spills along mangrove shorelines worldwide. In total, at least 5.5milliontonnes of oil has been released into mangrove-lined, coastal waters, oiling possibly up to around 1.94millionha of mangrove habitat, and killing at least 126,000ha of mangrove vegetation since 1958. However, there were assessment limitations with incomplete and unavailable data, as well as unequal coverage across world regions. To redress the gaps described here in reporting on oil spill impacts on mangroves and their recovery worldwide, a number of recommendations and suggestions are made for refreshing and updating standard operational procedures for responders, managers and researchers alike. Copyright © 2016 Elsevier Ltd. All rights reserved.
Landscape of genomic diversity and trait discovery in soybean.
Valliyodan, Babu; Dan Qiu; Patil, Gunvant; Zeng, Peng; Huang, Jiaying; Dai, Lu; Chen, Chengxuan; Li, Yanjun; Joshi, Trupti; Song, Li; Vuong, Tri D; Musket, Theresa A; Xu, Dong; Shannon, J Grover; Shifeng, Cheng; Liu, Xin; Nguyen, Henry T
2016-03-31
Cultivated soybean [Glycine max (L.) Merr.] is a primary source of vegetable oil and protein. We report a landscape analysis of genome-wide genetic variation and an association study of major domestication and agronomic traits in soybean. A total of 106 soybean genomes representing wild, landraces, and elite lines were re-sequenced at an average of 17x depth with a 97.5% coverage. Over 10 million high-quality SNPs were discovered, and 35.34% of these have not been previously reported. Additionally, 159 putative domestication sweeps were identified, which includes 54.34 Mbp (4.9%) and 4,414 genes; 146 regions were involved in artificial selection during domestication. A genome-wide association study of major traits including oil and protein content, salinity, and domestication traits resulted in the discovery of novel alleles. Genomic information from this study provides a valuable resource for understanding soybean genome structure and evolution, and can also facilitate trait dissection leading to sequencing-based molecular breeding.
Landscape of genomic diversity and trait discovery in soybean
Valliyodan, Babu; Dan Qiu; Patil, Gunvant; Zeng, Peng; Huang, Jiaying; Dai, Lu; Chen, Chengxuan; Li, Yanjun; Joshi, Trupti; Song, Li; Vuong, Tri D.; Musket, Theresa A.; Xu, Dong; Shannon, J. Grover; Shifeng, Cheng; Liu, Xin; Nguyen, Henry T.
2016-01-01
Cultivated soybean [Glycine max (L.) Merr.] is a primary source of vegetable oil and protein. We report a landscape analysis of genome-wide genetic variation and an association study of major domestication and agronomic traits in soybean. A total of 106 soybean genomes representing wild, landraces, and elite lines were re-sequenced at an average of 17x depth with a 97.5% coverage. Over 10 million high-quality SNPs were discovered, and 35.34% of these have not been previously reported. Additionally, 159 putative domestication sweeps were identified, which includes 54.34 Mbp (4.9%) and 4,414 genes; 146 regions were involved in artificial selection during domestication. A genome-wide association study of major traits including oil and protein content, salinity, and domestication traits resulted in the discovery of novel alleles. Genomic information from this study provides a valuable resource for understanding soybean genome structure and evolution, and can also facilitate trait dissection leading to sequencing-based molecular breeding. PMID:27029319
A NDVI assisted remote sensing image adaptive scale segmentation method
NASA Astrophysics Data System (ADS)
Zhang, Hong; Shen, Jinxiang; Ma, Yanmei
2018-03-01
Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.
A long-term vegetation history of the Mojave-Colorado Desert ecotone at Joshua Tree National Park
Holmgren, Camille A.; Betancourt, Julio L.; Rylander, Kate A.
2010-01-01
Thirty-eight dated packrat middens were collected from upper desert (930–1357 m) elevations within Joshua Tree National Park near the ecotone between the Mojave Desert and Colorado Desert, providing a 30 ka record of vegetation change with remarkably even coverage for the last 15 ka. This record indicates that vegetation was relatively stable, which may reflect the lack of invasion by extralocal species during the late glacial and the early establishment and persistence of many desert scrub elements. Many of the species found in the modern vegetation assemblages were present by the early Holocene, as indicated by increasing Sørenson's Similarity Index values. C4 grasses and summer-flowering annuals arrived later at Joshua Tree National Park in the early Holocene, suggesting a delayed onset of warm-season monsoonal precipitation compared to other Sonoran Desert and Chihuahuan Desert localities to the east, where summer rains and C4 grasses persisted through the last glacial–interglacial cycle. This would suggest that contemporary flow of monsoonal moisture into eastern California is secondary to the core processes of the North American Monsoon, which remained intact throughout the late Quaternary. In the Holocene, northward displacement of the jet stream, in both summer and winter, allowed migration of the subtropical ridge as far north as southern Idaho and the advection of monsoonal moisture both westward into eastern California and northward into the southern Great Basin and Colorado Plateau.
NASA Astrophysics Data System (ADS)
Pedro, Sílvia; Duarte, Bernardo; Raposo de Almeida, Pedro; Caçador, Isabel
2015-12-01
Salt marshes provide environmental conditions that are known to affect metal speciation in sediments. The elevational gradient along the marsh and consequent differential flooding are some of the major factors influencing halophytic species distribution and coverage due to their differential tolerance to salinity and submersion. Different species, in turn, also have distinct influences on the sediment's metal speciation, and its metal accumulation abilities. The present work aimed to evaluate how different halophyte species in two different salt marshes could influence metal partitioning in the sediment at root depth and how that could differ from bare sediments. Metal speciation in sediments around the roots (rhizosediments) of Halimione portulacoides, Sarcocornia fruticosa and Spartina maritima was determined by sequentially extracting operationally defined fractions with solutions of increasing strength and acidity. Rosário salt marsh generally showed higher concentrations of all metals in the rhizosediments. Metal partitioning was primarily related to the type of metal, with the elements' chemistry overriding the environment's influence on fractionation schemes. The most mobile elements were Cd and Zn, with greater availability being found in non-vegetated sediments. Immobilization in rhizosediments was predominantly influenced by the presence of Fe and Mn oxides, as well as organic complexes. In the more mature of both salt marshes, the differences between vegetated and non-vegetated sediments were more evident regarding S. fruticosa, while in the younger system all halophytes presented significantly different metal partitioning when compared to that of mudflats.
Investigation of uncertainties of establishment schemes in dynamic global vegetation models
NASA Astrophysics Data System (ADS)
Song, Xiang; Zeng, Xiaodong
2014-01-01
In Dynamic Global Vegetation Models (DGVMs), the establishment of woody vegetation refers to flowering, fertilization, seed production, germination, and the growth of tree seedlings. It determines not only the population densities but also other important ecosystem structural variables. In current DGVMs, establishments of woody plant functional types (PFTs) are assumed to be either the same in the same grid cell, or largely stochastic. We investigated the uncertainties in the competition of establishment among coexisting woody PFTs from three aspects: the dependence of PFT establishments on vegetation states; background establishment; and relative establishment potentials of different PFTs. Sensitivity experiments showed that the dependence of establishment rate on the fractional coverage of a PFT favored the dominant PFT by increasing its share in establishment. While a small background establishment rate had little impact on equilibrium states of the ecosystem, it did change the timescale required for the establishment of alien species in pre-existing forest due to their disadvantage in seed competition during the early stage of invasion. Meanwhile, establishment purely from background (the scheme commonly used in current DGVMs) led to inconsistent behavior in response to the change in PFT specification (e.g., number of PFTs and their specification). Furthermore, the results also indicated that trade-off between individual growth and reproduction/colonization has significant influences on the competition of establishment. Hence, further development of establishment parameterization in DGVMs is essential in reducing the uncertainties in simulations of both ecosystem structures and successions.
Global discrimination of land cover types from metrics derived from AVHRR pathfinder data
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeFries, R.; Hansen, M.; Townshend, J.
1995-12-01
Global data sets of land cover are a significant requirement for global biogeochemical and climate models. Remotely sensed satellite data is an increasingly attractive source for deriving these data sets due to the resulting internal consistency, reproducibility, and coverage in locations where ground knowledge is sparse. Seasonal changes in the greenness of vegetation, described in remotely sensed data as changes in the normalized difference vegetation index (NDVI) throughout the year, have been the basis for discriminating between cover types in previous attempts to derive land cover from AVHRR data at global and continental scales. This study examines the use ofmore » metrics derived from the NDVI temporal profile, as well as metrics derived from observations in red, infrared, and thermal bands, to improve discrimination between 12 cover types on a global scale. According to separability measures calculated from Bhattacharya distances, average separabilities improved by using 12 of the 16 metrics tested (1.97) compared to separabilities using 12 monthly NDVI values alone (1.88). Overall, the most robust metrics for discriminating between cover types were: mean NDVI, maximum NDVI, NDVI amplitude, AVHRR Band 2 (near-infrared reflectance) and Band 1 (red reflectance) corresponding to the time of maximum NDVI, and maximum land surface temperature. Deciduous and evergreen vegetation can be distinguished by mean NDVI, maximum NDVI, NDVI amplitude, and maximum land surface temperature. Needleleaf and broadleaf vegetation can be distinguished by either mean NDVI and NDVI amplitude or maximum NDVI and NDVI amplitude.« less
NASA Astrophysics Data System (ADS)
Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.
2015-07-01
An improved understanding of present-day climate variability and change relies on high-quality data sets from the past two millennia. Global efforts to reconstruct regional climate modes are in the process of validating and integrating paleo-proxies. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to its unknown spatial and temporal coverage. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last two millennia. We identify the pollen records with the required temporal characteristics for PAGES-2 ka climate modelling and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local scale responses to climate modes, thus it is necessary to understand how vegetation-climate interactions might diverge under variable settings. Additionally, pollen is an excellent indicator of human impact through time. Evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. The LOTRED-SA-2 k initiative provides the ideal framework for the integration of the various paleoclimatic sub-disciplines and paleo-science, thereby jumpstarting and fostering multi-disciplinary research into environmental change on centennial and millennial time scales.
Vegetation optical depth measured by microwave radiometry as an indicator of tree mortality risk
NASA Astrophysics Data System (ADS)
Rao, K.; Anderegg, W.; Sala, A.; Martínez-Vilalta, J.; Konings, A. G.
2017-12-01
Increased drought-related tree mortality has been observed across several regions in recent years. Vast spatial extent and high temporal variability makes field monitoring of tree mortality cumbersome and expensive. With global coverage and high temporal revisit, satellite remote sensing offers an unprecedented tool to monitor terrestrial ecosystems and identify areas at risk of large drought-driven tree mortality events. To date, studies that use remote sensing data to monitor tree mortality have focused on external climatic thresholds such as temperature and evapotranspiration. However, this approach fails to consider internal water stress in vegetation - which can vary across trees even for similar climatic conditions due to differences in hydraulic behavior, soil type, etc - and may therefore be a poor basis for measuring mortality events. There is a consensus that xylem hydraulic failure often precedes drought-induced mortality, suggesting depleted canopy water content shortly before onset of mortality. Observations of vegetation optical depth (VOD) derived from passive microwave are proportional to canopy water content. In this study, we propose to use variations in VOD as an indicator of potential tree mortality. Since VOD accounts for intrinsic water stress undergone by vegetation, it is expected to be more accurate than external climatic stress indicators. Analysis of tree mortality events in California, USA observed by airborne detection shows a consistent relationship between mortality and the proposed VOD metric. Although this approach is limited by the kilometer-scale resolution of passive microwave radiometry, our results nevertheless demonstrate that microwave-derived estimates of vegetation water content can be used to study drought-driven tree mortality, and may be a valuable tool for mortality predictions if they can be combined with higher-resolution variables.
Fiedler, John L; Lividini, Keith; Kabaghe, Gladys; Zulu, Rodah; Tehinse, John; Bermudez, Odilia I; Jallier, Vincent; Guyondet, Christophe
2013-12-01
Background. Since fortification of sugar with vitamin A was mandated in 1998, Zambia's fortification program has not changed, while the country remains plagued by high rates ofmicronutrient deficiencies. Objective. To provide evidence-based fortification options with the hope of reinvigorating the Zambian fortification program. Methods. Zambia's 2006 Living Conditions Monitoring Survey is used to estimate the apparent intakes of vitamin A, iron, and zinc, as well as the apparent consumption levels and coverage of four fortification vehicles. Fourteen alternativefoodfortification portfolios are modeled, and their costs, impacts, average cost-effectiveness, and incremental cost-effectiveness are calculated using three alternative impact measures. Results. Alternative impact measures result in different rank orderings of the portfolios. The most cost-effective portfolio is vegetable oil, which has a cost per disability-adjusted life-year (DALY) saved ranging from 12% to 25% of that of sugar, depending on the impact measure used. The public health impact of fortified vegetable oil, however, is relatively modest. Additional criteria beyond cost-effectiveness are introduced and used to rank order the portfolios. The size of the public health impact, the total cost, and the incremental cost-effectiveness of phasing in multiple vehicle portfolios over time are analyzed. Conclusions. Assessing fortification portfolios by measuring changes in the prevalence of inadequate intakes underestimates impact. A more sensitive measure, which also takes into account change in the Estimated Average Requirement (EAR) gap, is provided by a dose-response-based approach to estimating the number ofDALYs saved. There exist highly cost-effective fortification intervention portfolios with substantial public health impacts and variable price tags that could help improve Zambians' nutrition status.
NASA Astrophysics Data System (ADS)
Sun, Chao; Liu, Yongxue; Zhao, Saishuai; Zhou, Minxi; Yang, Yuhao; Li, Feixue
2016-03-01
Salt marshes are seen as the most dynamic and valuable ecosystems in coastal zones, and in these areas, it is crucial to obtain accurate remote sensing information on the spatial distributions of species over time. However, discriminating various types of salt marsh is rather difficult because of their strong spectral similarities. Previous salt marsh mapping studies have focused mainly on high spatial and spectral (i.e., hyperspectral) resolution images combined with auxiliary information; however, the results are often limited to small regions. With a high temporal and moderate spatial resolution, the Chinese HuanJing-1 (HJ-1) satellite optical imagery can be used not only to monitor phenological changes of salt marsh vegetation over short-time intervals, but also to obtain coverage of large areas. Here, we apply HJ-1 satellite imagery to the middle coast of Jiangsu in east China to monitor changes in saltmarsh vegetation cover. First, we constructed a monthly NDVI time-series to classify various types of salt marsh and then we tested the possibility of using compressed time-series continuously, to broaden the applicability of this particular approach. Our principal findings are as follows: (1) the overall accuracy of salt marsh mapping based on the monthly NDVI time-series was 90.3%, which was ∼16.0% higher than the single-phase classification strategy; (2) a compressed time-series, including NDVI from six key months (April, June-September, and November), demonstrated very little reduction (2.3%) in overall accuracy but led to obvious improvements in unstable regions; and (3) a simple rule for Spartina alterniflora identification was established using a scene solely from November, which may provide an effective way for regularly monitoring its distribution.
NASA Astrophysics Data System (ADS)
Cammalleri, C.; Anderson, M. C.; Ciraolo, G.; Durso, G.; Kustas, W. P.; La Loggia, G.; Minacapilli, M.
2010-12-01
For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can strongly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977), Massman (1987) and Lalic et al. (2003). The in-canopy wind profile formulations are applied to the thermal-based two-source energy balance (TSEB) model developed by Norman et al. (1995) and modified by Kustas and Norman (1999). High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy) comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters needed to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlights the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical range of canopy properties encountered in these agricultural areas. It is found that differences among the models in wind just above the soil surface are most significant under sparse and medium fractional cover conditions (15-50%). The TSEB model heat flux estimates are compared with micro-meteorological measurements from a small aperture scintillometer and an eddy covariance tower collected over an olive orchard characterized by moderate fractional vegetation cover (≍35%) and relatively tall crop (≍3.5 m). TSEB fluxes for the 7 image acquisition dates generated using both the Massman and Goudriaan in-canopy wind profile formulations give close agreement with measured fluxes, while the Lalic et al. equations yield poor results. The Massman wind profile scheme slightly outperforms that of Goudriaan, but it requires an additional parameter accounting for the roughness sub-layer of the underlying vegetative surface. The analysis also suggests that within-canopy wind profile model discrepancies become important, in terms of impact on modelled sensible heat flux, only for sparse canopies with moderate vegetation coverage.
Spectroscopic Methods of Remote Sensing for Vegetation Characterization
NASA Astrophysics Data System (ADS)
Kokaly, R. F.
2013-12-01
Imaging spectroscopy (IS), often referred to as hyperspectral remote sensing, is one of the latest innovations in a very long history of spectroscopy. Spectroscopic methods have been used for understanding the composition of the world around us, as well as, the solar system and distant parts of the universe. Continuous sampling of the electromagnetic spectrum in narrow bands is what separates IS from previous forms of remote sensing. Terrestrial imaging spectrometers often have hundreds of channels that cover the wavelength range of reflected solar radiation, including the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions. In part due to the large number of channels, a wide variety of methods have been applied to extract information from IS data sets. These can be grouped into several broad classes, including: multi-channel indices, statistical procedures, full spectrum mixing models, and spectroscopic methods. Spectroscopic methods carry on the more than 150 year history of laboratory-based spectroscopy applied to material identification and characterization. Spectroscopic methods of IS relate the positions and shapes of spectral features resolved by airborne and spaceborne sensors to the biochemical and physical composition of vegetation in a pixel. The chlorophyll 680nm, water 980nm, water 1200nm, SWIR 1700nm, SWIR 2100nm, and SWIR 2300nm features have been the subject of study. Spectral feature analysis (SFA) involves isolating such an absorption feature using continuum removal (CR) and calculating descriptors of the feature, such as center position, depth, width, area, and asymmetry. SFA has been applied to quantify pigment and non-pigment biochemical concentrations in leaves, plants, and canopies. Spectral feature comparison (SFC) utilizes CR of features in each pixel's spectrum and linear regression with continuum-removed features in reference spectra in a library of known vegetation types to map vegetation species and communities. SFC has been applied to map the distributions of minerals in soils and rocks; however, its application to characterize vegetation cover has been less widespread than SFA. Using IS data and the USGS Processing Routines in IDL for Spectroscopic Measurements (PRISM; http://pubs.usgs.gov/of/2011/1155/), this talk will examine requirements for and limitations in applying SFA and SFC to characterize vegetation. A time series of Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) data collected in the marshes of Louisiana following the Deepwater Horizon oil spill will be used to examine the impact of varying leaf water content on the shapes of the SWIR 1700, 2100, and 2300 nm features and the implications of these changes on vegetation identification and biochemical estimation. The USGS collection of HyMap data over Afghanistan, the largest terrestrial coverage of IS data to date, will be used to demonstrate the characterization of vegetation in arid and semi-arid regions, in which chlorophyll absorption is often weak and soil and rock mineral absorption features overlap vegetation features. Hyperion data, overlapping the HyMap data, will be presented to illustrate the complications that arise when signal-to-noise is low. The benefits of and challenges to applying a spectroscopic remote sensing approach to imaging spectrometer data will be discussed.
Public Health Policy in Support of Insurance Coverage for Smoking Cessation Treatments.
Schwartz, Robert; Haji, Farzana; Babayan, Alexey; Longo, Christopher; Ferrence, Roberta
2017-05-01
Insurance coverage for evidence-based smoking cessation treatments (SCTs) promotes uptake and reduces smoking rates. Published studies in this area are based in the US where employers are the primary source of health insurance. In Ontario, Canada, publicly funded healthcare does not cover SCTs, but it can be supplemented with employer-sponsored benefit plans. This study explores factors affecting the inclusion/exclusion of smoking cessation (SC) benefits. In total, 17 interviews were conducted with eight employers (auto, retail, banking, municipal and university industries), four health insurers, two government representatives and three advisors/consultants. Overall, SCT coverage varied among industries; it was inconsistently restrictive and SCT differed by coverage amount and length of use. Barriers impeding coverage included the lack of the following: Canadian-specific return on investment (ROI), SC cost information, employer demand, government regulations/incentives and employee awareness of and demand. A Canadian evidence-based calculation of ROI for SC coupled with government incentives and public education may be needed to promote uptake of SCT coverage by employers. Copyright © 2017 Longwoods Publishing.
2016-01-01
Objectives. This study evaluated the impact of private insurance coverage on the symptoms of depression, activities of daily living (ADLs), and instrumental activities of daily living (IADLs) in the years leading up to Medicare eligibility focusing on the transition from full-time work to early full retirement. Method. The Health and Retirement Study was used to (a) estimate 2-stage selection equations of (i) the transition to retirement and (ii) current insurance status, and (b) the impact of insurance coverage on health, net of endogeneity associated retirement and insurance coverage. Results. Employment-based insurance coverage was generally associated with better health. Moreover, being without employment-based insurance was particularly problematic during the transition to retirement. Non-group insurance only moderated the association between losing employment-based insurance and IADLs. Discussion. Results indicated that private insurance coverage is an important contextual factor for the health of early retirees. Those who maintain steady coverage tend to fare the best in retirement. This highlights the dynamic nature of changes in health in later life. PMID:25819976
Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.
Paull, Liam; Thibault, Carl; Nagaty, Amr; Seto, Mae; Li, Howard
2014-09-01
Area coverage with an onboard sensor is an important task for an unmanned aerial vehicle (UAV) with many applications. Autonomous fixed-wing UAVs are more appropriate for larger scale area surveying since they can cover ground more quickly. However, their non-holonomic dynamics and susceptibility to disturbances make sensor coverage a challenging task. Most previous approaches to area coverage planning are offline and assume that the UAV can follow the planned trajectory exactly. In this paper, this restriction is removed as the aircraft maintains a coverage map based on its actual pose trajectory and makes control decisions based on that map. The aircraft is able to plan paths in situ based on sensor data and an accurate model of the on-board camera used for coverage. An information theoretic approach is used that selects desired headings that maximize the expected information gain over the coverage map. In addition, the branch entropy concept previously developed for autonomous underwater vehicles is extended to UAVs and ensures that the vehicle is able to achieve its global coverage mission. The coverage map over the workspace uses the projective camera model and compares the expected area of the target on the ground and the actual area covered on the ground by each pixel in the image. The camera is mounted on a two-axis gimbal and can either be stabilized or optimized for maximal coverage. Hardware-in-the-loop simulation results and real hardware implementation on a fixed-wing UAV show the effectiveness of the approach. By including the already developed automatic takeoff and landing capabilities, we now have a fully automated and robust platform for performing aerial imagery surveys.
Singleterry, Jennifer; Jump, Zach; Lancet, Elizabeth; Babb, Stephen; MacNeil, Allison; Zhang, Lei
2014-03-28
Medicaid enrollees have a higher smoking prevalence than the general population (30.1% of adult Medicaid enrollees aged <65 years smoke, compared with 18.1% of U.S. adults of all ages), and smoking-related disease is a major contributor to increasing Medicaid costs. Evidence-based cessation treatments exist, including individual, group, and telephone counseling and seven Food and Drug Administration (FDA)-approved medications. A Healthy People 2020 objective (TU-8) calls for all state Medicaid programs to adopt comprehensive coverage of these treatments. However, most states do not provide such coverage. To monitor trends in state Medicaid cessation coverage, the American Lung Association collected data on coverage of all evidence-based cessation treatments except telephone counseling by state Medicaid programs (for a total of nine treatments), as well as data on barriers to accessing these treatments (such as charging copayments or limiting the number of covered quit attempts) from December 31, 2008, to January 31, 2014. As of 2014, all 50 states and the District of Columbia cover some cessation treatments for at least some Medicaid enrollees, but only seven states cover all nine treatments for all enrollees. Common barriers in 2014 include duration limits (40 states for at least some populations or plans), annual limits (37 states), prior authorization requirements (36 states), and copayments (35 states). Comparing 2008 with 2014, 33 states added treatments to coverage, and 22 states removed treatments from coverage; 26 states removed barriers to accessing treatments, and 29 states added new barriers. The evidence from previous analyses suggests that states could reduce smoking-related morbidity and health-care costs among Medicaid enrollees by providing Medicaid coverage for all evidence-based cessation treatments, removing all barriers to accessing these treatments, promoting the coverage, and monitoring its use.
Lefevere, Eva; Theeten, Heidi; Hens, Niel; De Smet, Frank; Top, Geert; Van Damme, Pierre
2015-09-22
School-based, free HPV vaccination for girls in the first year of secondary school was introduced in Flanders (Belgium) in 2010. Before that, non school-based, co-payment vaccination for girls aged 12-18 was in place. We compared vaccination coverage, age-specific coverage and socio-economic inequalities in coverage - 3 important parameters contributing to the effectiveness of the vaccination programs - under both vaccination systems. We used retrospective administrative data from different sources. Our sample consisted of all female members of the National Alliance of Christian Mutualities born in 1995, 1996, 1998 or 1999 (N=66,664). For each vaccination system we described the cumulative proportion HPV vaccination initiation and completion over time. We used life table analysis to calculate age-specific rates of HPV vaccination initiation and completion. Analyses were done separately for higher income and low income groups. Under non school-based, co-payment vaccination the proportions HPV vaccination initiation and completion slowly rose over time. By age 17, the proportion HPV vaccination initiation/completion was 0.75 (95% CI 0.74-076)/0.66 (95% CI 0.65-0.67). The median age at vaccination initiation/completion was 14.4 years (95% CI 14.4-14.5)/15.4 years (95% CI 15.3-15.4). Socio-economic inequalities in coverage widened over time and with age. Under school-based, free vaccination rates of HPV vaccination initiation were substantially higher. By age 14,the proportion HPV vaccination initiation/completion was 0.90 (95% CI 0.90-0.90)/0.87 (95% CI 0.87-0.88). The median age at vaccination initiation/completion was 12.7 years (95% CI 12.7-12.7)/13.3 years (95% CI 13.3-13.3). Socio-economic inequalities in coverage and in age-specific coverage were substantially smaller. Copyright © 2015. Published by Elsevier Ltd.
Kripke, Katharine; Hatzold, Karin; Mugurungi, Owen; Ncube, Gertrude; Xaba, Sinokuthemba; Gold, Elizabeth; Ahanda, Kim Seifert; Kruse-Levy, Natalie; Njeuhmeli, Emmanuel
2016-01-01
Zimbabwe aims to increase circumcision coverage to 80% among 13- to 29-year-olds. However, implementation data suggest that high coverage among men ages 20 and older may not be achievable without efforts specifically targeted to these men, incurring additional costs per circumcision. Scale-up scenarios were created based on trends in implementation data in Zimbabwe, and the cost-effectiveness of increasing efforts to recruit clients ages 20-29 was examined. Zimbabwe voluntary medical male circumcision (VMMC) program data were used to project trends in male circumcision coverage by age into the future. The projection informed a base scenario in which, by 2018, the country achieves 80% circumcision coverage among males ages 10-19 and lower levels of coverage among men above age 20. The Zimbabwe DMPPT 2.0 model was used to project costs and impacts, assuming a US$109 VMMC unit cost in the base scenario and a 3% discount rate. Two other scenarios assumed that the program could increase coverage among clients ages 20-29 with a corresponding increase in unit cost for these age groups. When circumcision coverage among men ages 20-29 is increased compared with a base scenario reflecting current implementation trends, fewer VMMCs are required to avert one infection. If more than 50% additional effort (reflected as multiplying the unit cost by >1.5) is required to double the increase in coverage among this age group compared with the base scenario, the cost per HIV infection averted is higher than in the base scenario. Although increased investment in recruiting VMMC clients ages 20-29 may lead to greater overall impact if recruitment efforts are successful, it may also lead to lower cost-effectiveness, depending on the cost of increasing recruitment. Programs should measure the relationship between increased effort and increased ability to attract this age group.
Sharps, Maxine; Robinson, Eric
2016-05-01
Traditional intervention approaches to promote fruit and vegetable consumption outline the health benefits of eating fruit and vegetables. More recently, social norm-based messages describing the healthy eating habits of others have been shown to increase fruit and vegetable intake in adults. Here we report two experimental studies which investigated whether exposure to descriptive social norm-based messages about the behaviour of other children and health-based messages increased fruit and vegetable intake in young children. In both studies children were exposed to messages whilst playing a board-game. After exposure to the messages, children were able to consume fruit and vegetables, as well as high calorie snack foods. Although findings were inconsistent across the two individual studies, in a pooled analysis we found evidence that both health messages and descriptive social norm-based messages increased children's fruit and vegetable intake, relative to control condition messages (p < .05). Whether descriptive social norm-based messages can be used to promote meaningful changes to children's dietary behaviour warrants further study. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sharps, Maxine; Robinson, Eric
2016-01-01
Traditional intervention approaches to promote fruit and vegetable consumption outline the health benefits of eating fruit and vegetables. More recently, social norm-based messages describing the healthy eating habits of others have been shown to increase fruit and vegetable intake in adults. Here we report two experimental studies which investigated whether exposure to descriptive social norm-based messages about the behaviour of other children and health-based messages increased fruit and vegetable intake in young children. In both studies children were exposed to messages whilst playing a board-game. After exposure to the messages, children were able to consume fruit and vegetables, as well as high calorie snack foods. Although findings were inconsistent across the two individual studies, in a pooled analysis we found evidence that both health messages and descriptive social norm-based messages increased children's fruit and vegetable intake, relative to control condition messages (p < .05). Whether descriptive social norm-based messages can be used to promote meaningful changes to children's dietary behaviour warrants further study. PMID:26820776
ERIC Educational Resources Information Center
Lyytimäki, Jari
2015-01-01
Research on long-term media coverage of environmental issues has focused predominantly on English-speaking industrialized countries and on single isolated topics. This article presents a comparative analysis of the Finnish newspaper coverage of climate change and eutrophication from 1990-2014. The coverage of eutrophication showed an annual cycle…
Mbogo, Barnabas Africanus; McGill, Deborah
2016-08-19
Globally, about 150 million people experience catastrophic healthcare expenditure services annually. Among low and middle income countries, out-of-pocket expenditure pushes about 100 million people into poverty annually. In Botswana, 83 % of the general population and 58 % of employed individuals do not have medical aid coverage. Moreover, inequity allocation of financial resources between health services suggests marginalization of population-based health care services (i.e. diseases prevention and health promotion). The purpose of the study is to explore perspectives on employed individuals regarding financing population based health care interventions towards Universal Health Coverage (UHC) in order to make recommendations to the Ministry of Health on health financing options to cover population-based health services. A qualitative design grounded in interpretivist epistemology through social constructivism lens was critical for exploring perspectives of employed individuals. Through purposive and snowballing sampling techniques, a total of 15 respondents including 8 males and 7 females were recruited and interviewed using a semi-structured format. Their age ranged from 23 to 59 years with a median of 36 years. Data was analyzed using Thematic Content Analysis technique. Use of social constructivism lens enabled to classify emerging themes into population coverage, health services coverage and financial protection issues. Despite broad understanding of health coverage schemes among participants, knowledge appears insignificant in increasing enrolment. Participants indicated limited understanding of UHC concepts, however showed willingness to embrace UHC upon brief description. Main thematic issues raised include: exclusion of population-based health services from coverage scheme; disparity in financial protection and health services coverage among enrollees; inability to sustain contracted employees; and systematic exclusion of unemployed individuals and informal sector employees. Increasing enrolment in health coverage schemes requires targeted campaign for information dissemination through use of myriads mass media including: social networks, TV, Radio and others. Moreover, re-designing health insurance schemes is critical in order to include population-based interventions; expand uptake of unemployed and informal sector employees; flexibility in monthly premiums payment plan and use of technology to increase access to payment points. Further study need to evaluate the content of health financing policy in Botswana measured against the World Health Organization Universal Health Coverage conceptual requirements for Low and Middle Income Countries.
Zhang, Yaonan; Hao, Meiyu; Takekawa, John Y.; Lei, Fumin; Yan, Baoping; Prosser, Diann J.; Douglas, David C.; Xing, Zhi; Newman, Scott H.
2011-01-01
The autumn migration routes of bar-headed geese captured before the 2008 breeding season at Qinghai Lake, China, were documented using satellite tracking data. To assess how the migration strategies of bar-headed geese are influenced by environmental conditions, the relationship between migratory routes, temperatures, and vegetation coverage at stopovers sites estimated with the Normalized Difference Vegetation Index (NDVI) were analyzed. Our results showed that there were four typical migration routes in autumn with variation in timing among individuals in start and end times and in total migration and stopover duration. The observed variation may be related to habitat type and other environmental conditions along the routes. On average, these birds traveled about 1300 to 1500 km, refueled at three to six stopover sites and migrated for 73 to 83 days. The majority of the habitat types at stopover sites were lake, marsh, and shoal wetlands, with use of some mountainous regions, and farmland areas.
NASA Technical Reports Server (NTRS)
Isaacson, D. L.; Smith, H. G.; Alexander, C. J. (Principal Investigator)
1980-01-01
The depth, texture, and water holding capacity of the soil before the fire in the Bridge Creek area of Deschutes National Forest (1979) were determined from available aerial photography and LANDSAT MSS digital data. Three days after the fire was out, complete coverage of the burned area was acquired on 35 mm color infrared film from a near vertical or low oblique perspective. These photographs were used in assessing the condition of vegetation, and in predicting the likelihood of survival. Negatives from vertical natural photography obtained during the same flight were used to produce 3R prints from which large scale mosaics of the entire burned area were obtained. LANDSAT MSS data obtained on the day the fire was under control were used to evaluate vegetative vigor (by calculating a band 7/band 5 ratio value for each spectral class) and to determine the boundary between altered and unaltered land.
The Rise of GNSS Reflectometry for Earth Remote Sensing
NASA Technical Reports Server (NTRS)
Zuffada, Cinzia; Li, Zhijin; Nghiem, Son V.; Lowe, Steve; Shah, Rashmi; Clarizia, Maria Paola; Cardellach, Estel
2015-01-01
The Global Navigation Satellite System (GNSS) reflectometry, i.e. GNSS-R, is a novel remote-sensing technique first published in that uses GNSS signals reflected from the Earth's surface to infer its surface properties such as sea surface height (SSH), ocean winds, sea-ice coverage, vegetation, wetlands and soil moisture, to name a few. This communication discusses the scientific value of GNSS-R to (a) furthering our understanding of ocean mesoscale circulation toward scales finer than those that existing nadir altimeters can resolve, and (b) mapping vegetated wetlands, an emerging application that might open up new avenues to map and monitor the planet's wetlands for methane emission assessments. Such applications are expected to be demonstrated by the availability of data from GEROS-ISS, an ESA experiment currently in phase A, and CyGNSS [3], a NASA mission currently in development. In particular, the paper details the expected error characteristics and the role of filtering played in the assimilation of these data to reduce the altimetric error (when averaging many measurements).
The Roles of Technology in Primary HIV Prevention for Men Who Have Sex with Men.
Sullivan, Patrick S; Jones, Jeb; Kishore, Nishant; Stephenson, Rob
2015-12-01
Men who have sex with men (MSM) are at disproportionate risk for HIV infection globally. The past 5 years have seen considerable advances in biomedical interventions to reduce the risk of HIV infection. To be impactful in reducing HIV incidence requires the rapid and expansive scale-up of prevention. One mechanism for achieving this is technology-based tools to improve knowledge, acceptability, and coverage of interventions and services. This review provides a summary of the current gap in coverage of primary prevention services, how technology-based interventions and services can address gaps in coverage, and the current trends in the development and availability of technology-based primary prevention tools for use by MSM. Results from agent-based models of HIV epidemics of MSM suggest that 40-50 % coverage of multiple primary HIV prevention interventions and services, including biomedical interventions like preexposure prophylaxis, will be needed to reduce HIV incidence among MSM. In the USA, current levels of coverage for all interventions, except HIV testing and condom distribution, fall well short of this target. Recent findings illustrate how technology-based HIV prevention tools can be used to provide certain kinds of services at much larger scale, with marginal incremental costs. A review of mobile apps for primary HIV prevention revealed that most are designed by nonacademic, nonpublic health developers, and only a small proportion of available mobile apps specifically address MSM populations. We are unlikely to reach the required scale of HIV prevention intervention coverage for MSM unless we can leverage technologies to bring key services to broad coverage for MSM. Despite an exciting pipeline of technology-based prevention tools, there are broader challenges with funding structures and sustainability that need to be addressed to realize the full potential of this emerging public health field.
The Utility and Versatility of Perforator-Based Propeller Flaps in Burn Care.
Teven, Chad M; Mhlaba, Julie; O'Connor, Annemarie; Gottlieb, Lawrence J
The majority of surgical burn care involves the use of skin grafts. However, there are cases when flaps are required or provide superior outcomes both in the acute setting and for postburn reconstruction. Rarely discussed in the context of burn care, the perforator-based propeller flap is an important option to consider. We describe our experience with perforator-based propeller flaps in the acute and reconstructive phases of burn care. We reviewed demographics, indications, operative details, and outcomes for patients whose burn care included the use of a perforator-based propeller flap at our institution from May 2007 to April 2015. Details of the surgical technique and individual cases are also discussed. Twenty-one perforator-based propeller flaps were used in the care of 17 burn patients. Six flaps (29%) were used in the acute phase for coverage of exposed joints, tendons, cartilage, and bone; coverage of open wounds; and preservation of range of motion (ROM) by minimizing scar contracture. Fifteen flaps (71%) were used for reconstruction of postburn deformities including coverage of chronic wounds, for coverage after scar contracture release, and to improve ROM. The majority of flaps (94% at follow-up) exhibited stable soft tissue coverage and good or improved ROM of adjacent joints. Three cases of partial flap loss and one case of total flap loss occurred. Perforator-based propeller flaps provide reliable vascularized soft tissue for coverage of vital structures and wounds, contracture release, and preservation of ROM across joints. Despite a relatively significant risk of minor complications particularly in the coverage of chronic wounds, our study supports their utility in both the acute and reconstructive phases of burn care.
Bereswill, Renja; Streloke, Martin; Schulz, Ralf
2014-04-01
Measures to mitigate the risk of pesticide entry into aquatic ecosystems are becoming increasingly more important in the management of hot spots of pesticide transfer; such management, for example, is required by the European Union's directive for the sustainable use of pesticides (2009/128/EC). Measures beyond those currently stipulated for pesticide product authorization may be needed. A concise compilation of the appropriate measures for users (that are primarily farmers but also, e.g., regulators and farm extension services) and a guide for practically identifying these measures at the catchment scale is currently not available. Therefore, a proposal was developed for a guide focusing on the most important diffuse entry pathways (spray drift and runoff). Based on a survey of exposure-relevant landscape parameters (i.e., the riparian buffer strip width, riparian vegetation type, density of ground vegetation cover, coverage of the water body with aquatic macrophytes, field slope, and existence of concentrated flow paths), a set of risk mitigation measures focusing on the specific situation of pollution of a water body catchment can be identified. The user can then choose risk mitigation measures to implement, assisted by evaluations of their efficiency in reducing pesticide entry, feasibility, and expected acceptability to farmers. Currently, 12 landscape-related measures and 6 application-related measures are included. The present guide presents a step toward the practical implementation of risk mitigation measures for reducing pesticide entry in aquatic ecosystems. © 2013 SETAC.
Wu, Jianping; Liu, Zhanfeng; Huang, Guomin; Chen, Dima; Zhang, Weixin; Shao, Yuanhu; Wan, Songze; Fu, Shenglei
2014-01-01
Reforested plantations have substantial effects on terrestrial carbon cycling due to their large coverage area. Although understory plants are important components of reforested plantations, their effects on ecosystem carbon dynamics remain unclear. This study was designed to investigate the effects of vegetation removal/understory removal and tree girdling on soil respiration and ecosystem carbon dynamics in Eucalyptus plantations of South China with contrasting ages (2 and 24 years old). We conducted a field manipulation experiment from 2008 to 2009. Understory removal reduced soil respiration in both plantations, whereas tree girdling decreased soil respiration only in the 2-year-old plantations. The net ecosystem production was approximately three times greater in the 2-year-old plantations (13.4 t C ha−1 yr−1) than in the 24-year-old plantations (4.2 t C h−1 yr−1). The biomass increase of understory plants was 12.6 t ha−1 yr−1 in the 2-year-old plantations and 2.9 t ha−1 yr−1 in the 24-year-old plantations, accounting for 33.9% and 14.1% of the net primary production, respectively. Our findings confirm the ecological importance of understory plants in subtropical plantations based on the 2 years of data. These results also indicate that Eucalyptus plantations in China may be an important carbon sink due to the large plantation area. PMID:25179343
Bonar, Scott A.; Bolding, B.; Divens, M.
2002-01-01
We investigated effects of triploid grass carp Ctenopharyngodon idella on aquatic macrophyte communities, water quality, and public satisfaction for 98 lakes and ponds in Washington State stocked with grass carp between 1990 and 1995. Grass carp had few noticeable effects on macrophyte communities until 19 months following stocking. After 19 months, submersed macrophytes were either completely eradicated (39% of the lakes) or not controlled (42% of the lakes) in most lakes. Intermediate control of submersed macrophytes occurred in 18% of lakes at a median stocking rate of 24 fish per vegetated surface acre. Most of the landowners interviewed (83%) were satisfied with the results of introducing grass carp. For sites where all submersed macrophytes were eradicated, average turbidity was higher (11 nephelometric turbidity units, NTU) than at sites where macrophytes were controlled to intermediate levels (4 NTU) or unaffected by grass carp grazing (5 NTU). Chlorophyll a was not significantly different between levels of macrophyte control; therefore, we concluded that most of this turbidity was abiotic and not algal. Triploid grass carp were a popular control option and effectively grazed most submersed macrophytes in Washington State. However, calculating stocking rates based on landowner estimates of aquatic plant coverage rarely resulted in intermediate levels of aquatic plant control. Additionally, the effects of particular stocking rates varied considerably. We recommend against using grass carp in Washington lakes where eradication of submersed vegetation cannot be tolerated.
Gutierrez, Hialy; Shewade, Ashwini; Dai, Minghan; Mendoza-Arana, Pedro; Gómez-Dantés, Octavio; Jain, Nishant; Khonelidze, Irma; Nabyonga-Orem, Juliet; Saleh, Karima; Teerawattananon, Yot; Nishtar, Sania; Hornberger, John
2015-08-01
Lessons learned by countries that have successfully implemented coverage schemes for health services may be valuable for other countries, especially low- and middle-income countries (LMICs), which likewise are seeking to provide/expand coverage. The research team surveyed experts in population health management from LMICs for information on characteristics of health care coverage schemes and factors that influenced decision-making processes. The level of coverage provided by the different schemes varied. Nearly all the health care coverage schemes involved various representatives and stakeholders in their decision-making processes. Maternal and child health, cardiovascular diseases, cancer, and HIV were among the highest priorities guiding coverage development decisions. Evidence used to inform coverage decisions included medical literature, regional and global epidemiology, and coverage policies of other coverage schemes. Funding was the most commonly reported reason for restricting coverage. This exploratory study provides an overview of health care coverage schemes from participating LMICs and contributes to the scarce evidence base on coverage decision making. Sharing knowledge and experiences among LMICs can support efforts to establish systems for accessible, affordable, and equitable health care.
Wilson, Chris H; Caughlin, T Trevor; Rifai, Sami W; Boughton, Elizabeth H; Mack, Michelle C; Flory, S Luke
2017-07-01
Soil carbon sequestration in agroecosystems could play a key role in climate change mitigation but will require accurate predictions of soil organic carbon (SOC) stocks over spatial scales relevant to land management. Spatial variation in underlying drivers of SOC, such as plant productivity and soil mineralogy, complicates these predictions. Recent advances in the availability of remotely sensed data make it practical to generate multidecadal time series of vegetation indices with high spatial resolution and coverage. However, the utility of such data largely is unknown, only having been tested with shorter (e.g., 1-2 yr) data summaries. Across a 2,000 ha subtropical grassland, we found that a long time series (28 yr) of a vegetation index (Enhanced Vegetation Index; EVI) derived from the Landsat 5 satellite significantly enhanced prediction of spatially varying SOC pools, while a short summary (2 yr) was an ineffective predictor. EVI was the best predictor for surface SOC (0-5 cm depth) and total measured SOC stocks (0-15 cm). The optimum models for SOC in the upper soil layer combined EVI records with elevation and calcium concentration, while deeper SOC was more strongly associated with calcium availability. We demonstrate how data from the open access Landsat archive can predict SOC stocks, a key ecosystem metric, and illustrate the rich variety of analytical approaches that can be applied to long time series of remotely sensed greenness. Overall, our results showed that SOC pools were closely coupled to EVI in this ecosystem, demonstrating that maintenance of higher average green leaf area is correlated with higher SOC. The strong associations of vegetation greenness and calcium concentration with SOC suggest that the ability to sequester additional SOC likely will rely on strategic management of pasture vegetation and soil fertility. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Brunck, H.; Sirocko, F.; Albert, J.
2016-07-01
This study reconstructs the main flood phases in central Europe from event layers in sediment cores from Holocene Eifel maar lakes and Pleistocene dry maar structures. These reconstructions are combined with recent gauge time-series to cover the entire precipitation extremes of the last 60 000 years. In general, Eifel maar sediments are perfectly suited for the preservation of event layers since the deep water in the maar lakes is seasonal anoxic and therefore, bioturbation is low. However, the preservation of annual lamination is only preserved in Holzmaar and Ulmener Maar; the other cores are dated by 14C, magnetostratigraphy, tephra markers and ice core tuning. The cores were drilled in the Eifel region of central western Germany, which represents a climatic homogenous region from Belgium to Poland and all across Central Europe. A total of 233 flood layers over 7.5 mm were detected in all analysed cores. The stratigraphic classification of the flood events follows the newly defined Landscape Evolution Zones (LEZ). The strongest events in the Holocene have occurred during LEZ 1 (0-6000 b2k) in the years 658, 2800 and 4100 b2k. Flood layers in the LEZ 2 (6000-10 500 b2k) are not as frequent as during the LEZ 1, nevertheless, the floods cluster between 6000 and 6500 b2k. Twenty flood layers are found in the LEZ 3 (10 500-14 700 b2k); 11 in LEZ 4 (14 700-21 000 b2k); 15 in LEZ 5 (21 000-28 500 b2k); 34 in LEZ 6 (28 500-36 500 b2k); 8 in LEZ 7 (36 500-49 000 b2k); zero in LEZ 8 (49 000-55 000 b2k) and LEZ 9 (55 000-60 000 b2k). The maximum flood phases during the Pleistocene are at 11 500-17 500 (late glacial and Younger Dryas), 23 000-24 000 (before Greenland Interstadial (GI) 2), 29 000-35 000 (especially between GI 5 and 4) and 44 000-44 500 b2k (transition from GI 12 to 11). The variations in flood dynamics are climatically driven and mainly associated with climate transitions and colder periods, combined with light vegetation. It turns out that low vegetation coverage related to both Greenland Stadial phases and anthropogenic impacts since late Holocene is the main cause for the development of flood layers in maar sediments. The precipitation itself, plays only a secondary role. This interpretation is based on the current climate understanding of cold phases and several studies of fluvial erosion related to vegetation coverage.
Analysis of Potential Deep-Seated Landslide in Hekeng Watershed by Environment Indices
NASA Astrophysics Data System (ADS)
Hsieh, C. J.; Chompuchan, C.
2014-12-01
Landslides are a major natural disaster in Taiwan relevant to the human life. After the catastrophic Xiaolin landslide during Typhoon Morakot in August 2009 caused around 400 casualties, the deep-seated landslide has become a serious issue. This study explored the potential deep-seated landslide in Hekeng watershed extracted from SPOT-5 imageries. The empirical topographic correction was applied to minimize effect of the mountain shaded area due to the difference of sun elevation and terrain angle. Consequently the multi-temporal environmental indices, i.e., modified Normalized Difference Vegetation Index (mNDVI) and modified Normalized Difference Water Index (mNDWI) were corrected. Seasonal vegetation cover and surface moisture change were analyzed incorporate with a slope which obtain from DEM data. The result showed that the distribution of potential deep-seated landslide vulnerable area mainly located at headstream watershed. It could be explained that the headstream watershed has less human interference, therefore the environmental indices interpreted those area as deep soil layer and dense vegetation coverage. However, the upstream canal could suffer from the long-term erosion and possibly cause slope toe collapse. In addition, the western watershed is the afforestation zone whereas the eastern watershed is natural forest zone with higher development ratio. The upslope forest management of eastern and western watershed should be discussed variously.
[Spatiotemporal characteristics of MODIS NDVI in Hulunber Grassland].
Zhang, Hong-Bin; Yang, Gui-Xia; Wu, Wen-Bin; Li, Gang; Chen, Bao-Rui; Xin, Xiao-Ping
2009-11-01
Time-series MODIS NDVI datasets from 2000 to 2008 were used to study the spatial change trend, fluctuation degree, and occurrence time of the annual NDVImax of four typical grassland types, i.e., lowland meadow, temperate steppe, temperate meadow steppe, and upland meadow, in Hulunber Grassland. In 2000-2008, the vegetation in Hulunber Grassland presented an obvious deterioration trend. The mean annual NDVImax of the four grassland types had a great fluctuation, especially in temperate steppe where the maximum change in the mean value of annual NDVImax approximated to 50%. As for the area change of different grade grasslands, the areas with NDVImax between 0.4 and 1 accounted for about 91% of the total grassland area, which suggested the good vegetation coverage in the Grassland. However, though the areas with NDVImax values in (0.4, 0.8) showed an increasing trend, the areas with NDVImax values in (0.2, 0.4) and (0.8, 1) decreased greatly in the study period. Overall, the deteriorating grassland took up about 66.25% of the total area, and the restoring grassland took the rest. There was about 62.85% of the grassland whose NDVImax occurred between the 193rd day and the 225th day in each year, indicating that this period was the most important vegetation growth season in Hulunber Grassland.
Braeckman, Tessa; Lernout, Tinne; Top, Geert; Paeps, Annick; Roelants, Mathieu; Hoppenbrouwers, Karel; Van Damme, Pierre; Theeten, Heidi
2014-01-09
Infant immunisation coverage in Flanders, Belgium, is monitored through repeated coverage surveys. With the increased use of Vaccinnet, the web-based ordering system for vaccines in Flanders set up in 2004 and linked to an immunisation register, this database could become an alternative to quickly estimate vaccination coverage. To evaluate its current accuracy, coverage estimates generated from Vaccinnet alone were compared with estimates from the most recent survey (2012) that combined interview data with data from Vaccinnet and medical files. Coverage rates from registrations in Vaccinnet were systematically lower than the corresponding estimates obtained through the survey (mean difference 7.7%). This difference increased by dose number for vaccines that require multiple doses. Differences in administration date between the two sources were observed for 3.8-8.2% of registered doses. Underparticipation in Vaccinnet thus significantly impacts on the register-based immunisation coverage estimates, amplified by underregistration of administered doses among vaccinators using Vaccinnet. Therefore, survey studies, despite being labour-intensive and expensive, currently provide more complete and reliable results than register-based estimates alone in Flanders. However, further improvement of Vaccinnet's completeness will likely allow more accurate estimates in the nearby future. Copyright © 2013 Elsevier Ltd. All rights reserved.
Factors Impacting Spatial Patterns of Snow Distribution in a Small Catchment near Nome, AK
NASA Astrophysics Data System (ADS)
Chen, M.; Wilson, C. J.; Charsley-Groffman, L.; Busey, R.; Bolton, W. R.
2017-12-01
Snow cover plays an important role in the climate, hydrology and ecological systems of the Arctic due to its influence on the water balance, thermal regimes, vegetation and carbon flux. Thus, snow depth and coverage have been key components in all the earth system models but are often poorly represented for arctic regions, where fine scale snow distribution data is sparse. The snow data currently used in the models is at coarse resolution, which in turn leads to high uncertainty in model predictions. Through the DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic, high resolution snow distribution data is being developed and applied in catchment scale models to ultimately improve representation of snow and its interactions with other model components in the earth system models . To improve these models, it is important to identify key factors that control snow distribution and quantify the impacts of those factors on snow distribution. In this study, two intensive snow depth surveys (1 to 10 meters scale) were conducted for a 2.3 km2 catchment on the Teller road, near Nome, AK in the winter of 2016 and 2017. We used a statistical model to quantify the impacts of vegetation types, macro-topography, micro-topography, and meteorological parameters on measured snow depth. The results show that snow spatial distribution was similar between 2016 and 2017, snow depth was spatially auto correlated over small distance (2-5 meters), but not spatially auto correlated over larger distance (more than 2-5 meters). The coefficients of variation of snow depth was above 0.3 for all the snow survey transects (500-800 meters long). Variation of snow depth is governed by vegetation height, aspect, slope, surface curvature, elevation and wind speed and direction. We expect that this empirical statistical model can be used to estimate end of winter snow depth for the whole watershed and will further develop the model using data from other arctic regions to estimate seasonally dynamic snow coverage and properties for use in catchment scale to pan-Arctic models.
Olenicki, Thomas J.; Irby, Lynn R.
2005-01-01
4. Estimate annual production and standing crop available during non-growing seasons for herbaceous and shrub layers in major habitat types in the Hayden Valley. Our efforts to describe forage use by bison focused on assessing finer scale habitat use is a core summer range for bison in YNP. We also collected information on bison food habits and forage quality to begin to explain the “whys” of bison distribution. Short-term impacts of bison forage utilization were addressed by comparing standing biomass in plots protected from grazing with plots exposed to grazing. Historical data were not available to directly address long-term effects of ungulate foraging in the Hayden Valley, but we were able to indirectly assess some aspects of this question by determining the frequency of repeat grazing over a 3-year period and the rate at which trees along the margins of the Hayden Valley were being killed by bison rubbing The third objective, determining the relative efficacy of different vegetation monitoring approaches, was accomplished by comparing estimates of standing biomass and biomas: utilization obtained via conventional exclosure techniques with estimates based on remote sensing techniques (ground-based and satellite-borne multi-spectral radiometry|[MSR]). We addressed efficacy in terms of precision and accuracy of estimates, reliability, and logistical costs at different coverage scales. The fourth objective, estimation of forage available for ungulates in the Hayden Valley, was achieved using conventional exclosure methodology and remote sensing. We were able to estimate herbaceous biomass production during 3 different years. Exclosures allowed us to estimated changes instanding crop of herbaceous vegetation at the plant community (conventional cover types, moisture plant growth form groups, and communities defined by dominant graminoids) and catena (a repeating sequence of communities tied to landscape physiognomy) scales. We developed empirical approaches that allowed us to estimate standing biomass of herbaceous plants from reflectance data obtained from ground-based and satellite-borne multi-spectral radiometry (MSR) units. We demonstrated the potential to estimate biomass of shrubs using the same approaches. We did not have time and resources to complete vegetation maps that would optimize estimates from remote sources, but we have outlined procedures that can be followed in the future to obtain biomass estimates at the landscape scale.
NASA Astrophysics Data System (ADS)
Ichii, K.; Kondo, M.; Ueyama, M.; Kato, T.; Ito, A.; Sasai, T.; Sato, H.; Kobayashi, H.; Saigusa, N.
2014-12-01
Long term record of satellite-based terrestrial vegetation are important to evaluate terrestrial carbon cycle models. In this study, we demonstrate how multiple satellite observation can be used for evaluating past changes in gross primary productivity (GPP) and detecting robust anomalies in terrestrial carbon cycle in Asia through our model-data synthesis analysis, Asia-MIP. We focused on the two different temporal coverages: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2011; data intensive period) scales. We used a NOAA/AVHRR NDVI record for long-term analysis and multiple satellite data and products (e.g. Terra-MODIS, SPOT-VEGETATION) as historical satellite data, and multiple terrestrial carbon cycle models (e.g. BEAMS, Biome-BGC, ORCHIDEE, SEIB-DGVM, and VISIT). As a results of long-term (30 years) trend analysis, satellite-based time-series data showed that approximately 40% of the area has experienced a significant increase in the NDVI, while only a few areas have experienced a significant decreasing trend over the last 30 years. The increases in the NDVI were dominant in the sub-continental regions of Siberia, East Asia, and India. Simulations using the terrestrial biosphere models also showed significant increases in GPP, similar to the results for the NDVI, in boreal and temperate regions. A modeled sensitivity analysis showed that the increases in GPP are explained by increased temperature and precipitation in Siberia. Precipitation, solar radiation, CO2fertilization and land cover changes are important factors in the tropical regions. However, the relative contributions of each factor to GPP changes are different among the models. Year-to-year variations of terrestrial GPP were overall consistently captured by the satellite data and terrestrial carbon cycle models if the anomalies are large (e.g. 2003 summer GPP anomalies in East Asia and 2002 spring GPP anomalies in mid to high latitudes). The behind mechanisms can be consistently explained by the models if the anomalies are caused in the low temperature regions (e.g. spring in Northern Asia). However, water-driven or radiation-driven GPP anomalies lacks consistent explanation among models. Therefore, terrestrial carbon cycle models require improvement of the sensitivity of climate anomalies to carbon cycles.
Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing
2016-01-01
Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs. PMID:27052108
Wilson, Elizabeth Ruth; Kyle, Theodore K; Nadglowski, Joseph F; Stanford, Fatima Cody
2017-02-01
Evidence-based obesity treatments, such as bariatric surgery, are not considered essential health benefits under the Affordable Care Act. Employer-sponsored wellness programs with incentives based on biometric outcomes are allowed and often used despite mixed evidence regarding their effectiveness. This study examines consumers' perceptions of their coverage for obesity treatments and exposure to workplace wellness programs. A total of 7,378 participants completed an online survey during 2015-2016. Respondents answered questions regarding their health coverage for seven medical services and exposure to employer wellness programs that target weight or body mass index (BMI). Using χ 2 tests, associations between perceptions of exposure to employer wellness programs and coverage for medical services were examined. Differences between survey years were also assessed. Most respondents reported they did not have health coverage for obesity treatments, but more of the respondents with employer wellness programs reported having coverage. Neither the perception of coverage for obesity treatments nor exposure to wellness programs increased between 2015 and 2016. Even when consumers have exposure to employer wellness programs that target BMI, their health insurance often excludes obesity treatments. Given the clinical and cost-effectiveness of such treatments, reducing that coverage gap may mitigate obesity's individual- and population-level effects. © 2017 The Obesity Society.
A Hybrid Memetic Framework for Coverage Optimization in Wireless Sensor Networks.
Chen, Chia-Pang; Mukhopadhyay, Subhas Chandra; Chuang, Cheng-Long; Lin, Tzu-Shiang; Liao, Min-Sheng; Wang, Yung-Chung; Jiang, Joe-Air
2015-10-01
One of the critical concerns in wireless sensor networks (WSNs) is the continuous maintenance of sensing coverage. Many particular applications, such as battlefield intrusion detection and object tracking, require a full-coverage at any time, which is typically resolved by adding redundant sensor nodes. With abundant energy, previous studies suggested that the network lifetime can be maximized while maintaining full coverage through organizing sensor nodes into a maximum number of disjoint sets and alternately turning them on. Since the power of sensor nodes is unevenly consumed over time, and early failure of sensor nodes leads to coverage loss, WSNs require dynamic coverage maintenance. Thus, the task of permanently sustaining full coverage is particularly formulated as a hybrid of disjoint set covers and dynamic-coverage-maintenance problems, and both have been proven to be nondeterministic polynomial-complete. In this paper, a hybrid memetic framework for coverage optimization (Hy-MFCO) is presented to cope with the hybrid problem using two major components: 1) a memetic algorithm (MA)-based scheduling strategy and 2) a heuristic recursive algorithm (HRA). First, the MA-based scheduling strategy adopts a dynamic chromosome structure to create disjoint sets, and then the HRA is utilized to compensate the loss of coverage by awaking some of the hibernated nodes in local regions when a disjoint set fails to maintain full coverage. The results obtained from real-world experiments using a WSN test-bed and computer simulations indicate that the proposed Hy-MFCO is able to maximize sensing coverage while achieving energy efficiency at the same time. Moreover, the results also show that the Hy-MFCO significantly outperforms the existing methods with respect to coverage preservation and energy efficiency.
[Object-oriented aquatic vegetation extracting approach based on visible vegetation indices.
Jing, Ran; Deng, Lei; Zhao, Wen Ji; Gong, Zhao Ning
2016-05-01
Using the estimation of scale parameters (ESP) image segmentation tool to determine the ideal image segmentation scale, the optimal segmented image was created by the multi-scale segmentation method. Based on the visible vegetation indices derived from mini-UAV imaging data, we chose a set of optimal vegetation indices from a series of visible vegetation indices, and built up a decision tree rule. A membership function was used to automatically classify the study area and an aquatic vegetation map was generated. The results showed the overall accuracy of image classification using the supervised classification was 53.7%, and the overall accuracy of object-oriented image analysis (OBIA) was 91.7%. Compared with pixel-based supervised classification method, the OBIA method improved significantly the image classification result and further increased the accuracy of extracting the aquatic vegetation. The Kappa value of supervised classification was 0.4, and the Kappa value based OBIA was 0.9. The experimental results demonstrated that using visible vegetation indices derived from the mini-UAV data and OBIA method extracting the aquatic vegetation developed in this study was feasible and could be applied in other physically similar areas.
Motion Trajectories for Wide-area Surveying with a Rover-based Distributed Spectrometer
NASA Technical Reports Server (NTRS)
Tunstel, Edward; Anderson, Gary; Wilson, Edmond
2006-01-01
A mobile ground survey application that employs remote sensing as a primary means of area coverage is highlighted. It is distinguished from mobile robotic area coverage problems that employ contact or proximity-based sensing. The focus is on a specific concept for performing mobile surveys in search of biogenic gases on planetary surfaces using a distributed spectrometer -- a rover-based instrument designed for wide measurement coverage of promising search areas. Navigation algorithms for executing circular and spiral survey trajectories are presented for widearea distributed spectroscopy and evaluated based on area covered and distance traveled.
The need for consumer behavior analysis in health care coverage decisions.
Thompson, A M; Rao, C P
1990-01-01
Demographic analysis has been the primary form of analysis connected with health care coverage decisions. This paper reviews past demographic research and shows the need to use behavioral analyses for health care coverage policy decisions. A behavioral model based research study is presented and a case is made for integrated study into why consumers make health care coverage decisions.
A Max-Flow Based Algorithm for Connected Target Coverage with Probabilistic Sensors
Shan, Anxing; Xu, Xianghua; Cheng, Zongmao; Wang, Wensheng
2017-01-01
Coverage is a fundamental issue in the research field of wireless sensor networks (WSNs). Connected target coverage discusses the sensor placement to guarantee the needs of both coverage and connectivity. Existing works largely leverage on the Boolean disk model, which is only a coarse approximation to the practical sensing model. In this paper, we focus on the connected target coverage issue based on the probabilistic sensing model, which can characterize the quality of coverage more accurately. In the probabilistic sensing model, sensors are only be able to detect a target with certain probability. We study the collaborative detection probability of target under multiple sensors. Armed with the analysis of collaborative detection probability, we further formulate the minimum ϵ-connected target coverage problem, aiming to minimize the number of sensors satisfying the requirements of both coverage and connectivity. We map it into a flow graph and present an approximation algorithm called the minimum vertices maximum flow algorithm (MVMFA) with provable time complex and approximation ratios. To evaluate our design, we analyze the performance of MVMFA theoretically and also conduct extensive simulation studies to demonstrate the effectiveness of our proposed algorithm. PMID:28587084
A Max-Flow Based Algorithm for Connected Target Coverage with Probabilistic Sensors.
Shan, Anxing; Xu, Xianghua; Cheng, Zongmao; Wang, Wensheng
2017-05-25
Coverage is a fundamental issue in the research field of wireless sensor networks (WSNs). Connected target coverage discusses the sensor placement to guarantee the needs of both coverage and connectivity. Existing works largely leverage on the Boolean disk model, which is only a coarse approximation to the practical sensing model. In this paper, we focus on the connected target coverage issue based on the probabilistic sensing model, which can characterize the quality of coverage more accurately. In the probabilistic sensing model, sensors are only be able to detect a target with certain probability. We study the collaborative detection probability of target under multiple sensors. Armed with the analysis of collaborative detection probability, we further formulate the minimum ϵ -connected target coverage problem, aiming to minimize the number of sensors satisfying the requirements of both coverage and connectivity. We map it into a flow graph and present an approximation algorithm called the minimum vertices maximum flow algorithm (MVMFA) with provable time complex and approximation ratios. To evaluate our design, we analyze the performance of MVMFA theoretically and also conduct extensive simulation studies to demonstrate the effectiveness of our proposed algorithm.
Universal health coverage in Latin American countries: how to improve solidarity-based schemes.
Titelman, Daniel; Cetrángolo, Oscar; Acosta, Olga Lucía
2015-04-04
In this Health Policy we examine the association between the financing structure of health systems and universal health coverage. Latin American health systems encompass a wide range of financial sources, which translate into different solidarity-based schemes that combine contributory (payroll taxes) and non-contributory (general taxes) sources of financing. To move towards universal health coverage, solidarity-based schemes must heavily rely on countries' capacity to increase public expenditure in health. Improvement of solidarity-based schemes will need the expansion of mandatory universal insurance systems and strengthening of the public sector including increased fiscal expenditure. These actions demand a new model to integrate different sources of health-sector financing, including general tax revenue, social security contributions, and private expenditure. The extent of integration achieved among these sources will be the main determinant of solidarity and universal health coverage. The basic challenges for improvement of universal health coverage are not only to spend more on health, but also to reduce the proportion of out-of-pocket spending, which will need increased fiscal resources. Copyright © 2015 Elsevier Ltd. All rights reserved.
Trends in Childhood Influenza Vaccination Coverage—U.S., 2004–2012
Lu, Peng-Jun; O'Halloran, Alissa; Meghani, Ankita; Grabowsky, Mark; Singleton, James A.
2014-01-01
Objective We compared estimates of childhood influenza vaccination coverage by health status, age, and racial/ethnic group across eight consecutive influenza seasons (2004 through 2012) based on two survey systems to assess trends in childhood influenza vaccination coverage in the U.S. Methods We used National Health Interview Survey (NHIS) and National Immunization Survey-Flu (NIS-Flu) data to estimate receipt of at least one dose of influenza vaccination among children aged 6 months to 17 years based on parental report. We computed estimates using Kaplan-Meier survival analysis methods. Results Based on the NHIS, overall influenza vaccination coverage with at least one dose of influenza vaccine among children increased from 16.2% during the 2004–2005 influenza season to 47.1% during the 2011–2012 influenza season. Children with health conditions that put them at high risk for complications from influenza had higher influenza vaccination coverage than children without these health conditions for all the seasons studied. In seven of the eight seasons studied, there were no significant differences in influenza vaccination coverage between non-Hispanic black and non-Hispanic white children. Influenza vaccination coverage estimates for children were slightly higher based on NIS-Flu data compared with NHIS data for the 2010–2011 and 2011–2012 influenza seasons (4.1 and 4.4 percentage points higher, respectively); both NIS-Flu and NHIS estimates had similar patterns of decreasing vaccination coverage with increasing age. Conclusions Although influenza vaccination coverage among children continued to increase, by the 2011–2012 influenza season, only slightly less than half of U.S. children were vaccinated against influenza. Much improvement is needed to ensure all children aged ≥6 months are vaccinated annually against influenza. PMID:25177053
47 CFR 24.103 - Construction requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... licensees shall construct base stations that provide coverage to a composite area of 750,000 square..., shall construct base stations that provide coverage to a composite area of 1,500,000 square kilometers...) of this section. (b) Regional narrowband PCS licensees shall construct base stations that provide...
Patterns of glacial-interglacial vegetation and climate variability in eastern South Africa
NASA Astrophysics Data System (ADS)
Dupont, Lydie; Caley, Thibaut; Malaizé, Bruno; Giraudeau, Jacques
2010-05-01
Vegetation is an integrated part of the earth system and our understanding needs records of its glacial-interglacial variability. Although the data coverage for South Africa is slightly better than for some other parts of Africa, there are only very few records that allow us a glimpse of the vegetation history and development through one or more late Quaternary climate cycles. The existing evidence is fragmentary and in some cases contradictory. Marine sediments can offer here continuous sequences that cover large periods of time and provide a record of a signal that integrates rather large continental regions. Core MD96-2048 has been cored off the Limpopo River mouth at 26°10'S 34°01'E in 660 m water depth. This area is under the double influence of continental discharge and Agulhas current water advection. The sedimentation is slow and continuous. The upper 5 meter (down till 250 ka) have been analysed for pollen and spores at millennial resolution. The terrestrial pollen assemblages indicate that during interglacials the vegetation of eastern South Africa and southern Mozambique largely consisted of evergreen and deciduous forests with an increase of dry deciduous forest and open woodland during interglacial optima. During glacials open mountainous shrubland extended. The pattern strongly suggests a shifting of altitudinal vegetation belts in the mountains primarily depending on temperature, although the decline of forested areas during glacial times might also be the effect of low atmospheric carbon dioxide concentrations. This pattern in eastern South Africa differs from that suggested for western South Africa, where extension of the winter rain climate seems likely, and corroborates findings of increased C4 vegetation during the Glacial of eastern South Africa. The spread of dry deciduous forest and open woodland suggests a hot and dry climate during interglacial optima. The vegetation and climate of eastern South Africa seems to follow a mid to high latitude rhythm, in which the glacial-interglacial contrast is more important than the precessional forced monsoon system of tropical Africa.
Habitat manipulation influences northern bobwhite resource selection on a reclaimed surface mine
Brooke, Jarred M.; Peters, David C.; Unger, Ashley M.; Tanner, Evan P.; Harper, Craig A.; Keyser, Patrick D.; Clark, Joseph D.; Morgan, John J.
2015-01-01
More than 600,000 ha of mine land have been reclaimed in the eastern United States, providing large contiguous tracts of early successional vegetation that can be managed for northern bobwhite (Colinus virginianus). However, habitat quality on reclaimed mine land can be limited by extensive coverage of non-native invasive species, which are commonly planted during reclamation. We used discrete-choice analysis to investigate bobwhite resource selection throughout the year on Peabody Wildlife Management Area, a 3,330-ha reclaimed surface mine in western Kentucky. We used a treatment-control design to study resource selection at 2 spatial scales to identify important aspects of mine land vegetation and whether resource selection differed between areas with habitat management (i.e., burning, disking, herbicide; treatment) and unmanaged units (control). Our objectives were to estimate bobwhite resource selection on reclaimed mine land and to estimate the influence of habitat management practices on resource selection. We used locations from 283 individuals during the breeding season (1 Apr–30 Sep) and 136 coveys during the non-breeding season (1 Oct–Mar 31) from August 2009 to March 2014. Individuals were located closer to shrub cover than would be expected at random throughout the year. During the breeding season, individuals on treatment units used areas with smaller contagion index values (i.e., greater interspersion) compared with individuals on control units. During the non-breeding season, birds selected areas with greater shrub-open edge density compared with random. At the microhabitat scale, individuals selected areas with increased visual obstruction >1 m aboveground. During the breeding season, birds were closer to disked areas (linear and non-linear) than would be expected at random. Individuals selected non-linear disked areas during winter but did not select linear disked areas (firebreaks) because they were planted to winter wheat each fall and lacked cover during the non-breeding season. Individuals also selected areas treated with herbicide to control sericea lespedeza (Lespedeza cuneata) throughout the year. During the breeding season, bobwhites avoided areas burned during the previous dormant season. Habitat quality of reclaimed mine lands may be limited by a lack of shrub cover and extensive coverage of non-native herbaceous vegetation. Managers aiming to increase bobwhite abundance should focus on increasing interspersion of shrub cover, with no area >100 m from shrub cover. We suggest disking and herbicide application to control invasive species and improve the structure and composition of vegetation for bobwhites.
Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Niedermann, Silvana; Hu, Wenyou; Chen, Yong
2016-09-01
To provide growing population with sufficient food, greenhouse vegetable production has expanded rapidly in recent years in China and sustainability of its farming practices is a major concern. Therefore, this study assessed the sustainability of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China based on selected indicators. The empirical data were collected through a survey of 91 farm households from six typical greenhouse vegetable production bases and analysis of environmental material samples. The results showed that heavy fertilization in greenhouse vegetable bases of China resulted in an accumulation of N, P, Cd, Cu, Pb, and Zn in soil, nutrient eutrophication in irrigation water, and high Cd in some leaf vegetables cultivated in acidic soil. Economic factors including decreased crop yield in conventional farming bases, limited and site-dependent farmers' income, and lack of complete implementation of subsidy policies contributed a lot to adoption of heavy fertilization by farmers. Also, socio-institutional factors such as lack of unified management of agricultural supplies in the bases operated in cooperative and small family business models and low agricultural extension service efficiency intensified the unreasonable fertilization. The selection of cultivated vegetables was mainly based on farmers' own experience rather than site-dependent soil conditions. Thus, for sustainable development of greenhouse vegetable production systems in China, there are two key aspects. First, it is imperative to reduce environmental pollution and subsequent health risks through integrated nutrient management and the planting strategy of selected low metal accumulation vegetable species especially in acidic soil. Second, a conversion of cooperative and small family business models of greenhouse vegetable bases to enterprises should be extensively advocated in future for the unified agricultural supplies management and improved agricultural extension service efficiency, which in turn can stabilize vegetable yields and increase farmers' benefits.
Wiltermuth, Mark T.; Anteau, Michael J.
2016-01-01
In the Prairie Pothole Region of North America, disturbances to wetlands that disrupt water-level fluctuations in response to wet–dry climatic conditions have the potential to alter natural vegetative communities in favor of species that proliferate in stable environments, such as cattail (Typha spp.). We evaluated the effect of water-level dynamics during a recent fluctuation in wet–dry conditions on cattail coverage within semipermanently and permanently ponded wetlands situated in watersheds with different land use and amounts of wetland drainage. We found that ponded water depth increase was significantly greater in wetlands where water levels were not near the spill point of the topographic basin, where banks were steeper, and in larger wetlands where past dry conditions had less influence on change in pond area. Proportion of the wetland covered by cattail was negatively correlated with increased water depth, bank slope and pond area. Our observations provide evidence that cattail coverage in prairie wetlands is regulated by water-level fluctuations and that land use surrounding the wetland might have an indirect effect on cattail coverage by altering water-level response to wet–dry climate conditions. For example, drainage of smaller wetlands into larger wetlands that are characterized by more permanent hydroperiods, leads to stabilized water levels near their spill point and is therefore a potential mechanism for increased cattail abundance in the northern prairie region.
Object-Based Classification and Change Detection of Hokkaido, Japan
NASA Astrophysics Data System (ADS)
Park, J. G.; Harada, I.; Kwak, Y.
2016-06-01
Topography and geology are factors to characterize the distribution of natural vegetation. Topographic contour is particularly influential on the living conditions of plants such as soil moisture, sunlight, and windiness. Vegetation associations having similar characteristics are present in locations having similar topographic conditions unless natural disturbances such as landslides and forest fires or artificial disturbances such as deforestation and man-made plantation bring about changes in such conditions. We developed a vegetation map of Japan using an object-based segmentation approach with topographic information (elevation, slope, slope direction) that is closely related to the distribution of vegetation. The results found that the object-based classification is more effective to produce a vegetation map than the pixel-based classification.
Hwang, I-Shyan
2017-01-01
The K-coverage configuration that guarantees coverage of each location by at least K sensors is highly popular and is extensively used to monitor diversified applications in wireless sensor networks. Long network lifetime and high detection quality are the essentials of such K-covered sleep-scheduling algorithms. However, the existing sleep-scheduling algorithms either cause high cost or cannot preserve the detection quality effectively. In this paper, the Pre-Scheduling-based K-coverage Group Scheduling (PSKGS) and Self-Organized K-coverage Scheduling (SKS) algorithms are proposed to settle the problems in the existing sleep-scheduling algorithms. Simulation results show that our pre-scheduled-based KGS approach enhances the detection quality and network lifetime, whereas the self-organized-based SKS algorithm minimizes the computation and communication cost of the nodes and thereby is energy efficient. Besides, SKS outperforms PSKGS in terms of network lifetime and detection quality as it is self-organized. PMID:29257078