Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...
Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Satellite Communications Terminal, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...
Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Electric Substation, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...
Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Microwave Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...
Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Civil Engineering Storage Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Looking north Beale Air Force Base, Perimeter Acquisition Vehicle ...
Looking north - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Electric Substation, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Interior, looking northeast Beale Air Force Base, Perimeter Acquisition ...
Interior, looking northeast - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Microwave Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Computer Maintenance Operations Center (CMOC), additional computer support equipment ...
Computer Maintenance Operations Center (CMOC), additional computer support equipment - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
View of the PAVE PAWS radar from approach along Spencer ...
View of the PAVE PAWS radar from approach along Spencer Paul Road, looking northwest - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
View of Face A and Face B Arrays, looking northeast ...
View of Face A and Face B Arrays, looking northeast - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170174 computers ...
Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170-174 computers - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Detail of array panels, Face B, with active and terminated ...
Detail of array panels, Face B, with active and terminated dipole elements - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Looking into Generator Room, showing electromagnetic pulse (EMP) filter boxes ...
Looking into Generator Room, showing electromagnetic pulse (EMP) filter boxes mounted above door - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Power Plant, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Within compound, looking southeast Power Plant (Building 5761) to left, ...
Within compound, looking southeast Power Plant (Building 5761) to left, Satellite Communications Terminal (Building 5771), center - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Looking northwest, Face B Array to left, Face C (rear) ...
Looking northwest, Face B Array to left, Face C (rear) center, Power Plant (Building 5761), to right - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Within compound, looking northwest, Power Plant (Building 5761) and Guard ...
Within compound, looking northwest, Power Plant (Building 5761) and Guard Tower (Building 5762) to left, Electrical Substation to right - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Exterior, looking west, Equipment Building to left, Tower at center, ...
Exterior, looking west, Equipment Building to left, Tower at center, Civil Engineering Storage Building (Building 5765) at left - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Microwave Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Within compound, from Guard Tower, looking southeast, Power Plant (Building ...
Within compound, from Guard Tower, looking southeast, Power Plant (Building 5761) to left, Satellite Communications Terminal (Building 5771) center, Supply Warehouse (Building 5768) to left - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Within compound, from Guard Tower (Building 5762), looking southwest, Technical ...
Within compound, from Guard Tower (Building 5762), looking southwest, Technical Equipment Building (Building 5760) to left, Microwave Tower (associated with Building 5769) and Civil Engineering Storage Building (Building 5766) to left - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Within compound, from Gate House, looking northwest, Power Plant (Building ...
Within compound, from Gate House, looking northwest, Power Plant (Building 5761) to left, Electrical Substation (Building 5770) and Supply Warehouse (Building 5768) center, Satellite Communications Terminal (Building 5771) to far left - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project
NASA Technical Reports Server (NTRS)
Zakrajsek, Robert J.
2000-01-01
The goal of the Advanced Communications for Air Traffic Management (AC/ATM) Project at the NASA Glenn Research Center at Lewis Field is to enable a communications infrastructure that provides the capacity, efficiency, and flexibility necessary to realize a mature free-flight environment. The technical thrust of the AC/ATM Project is targeted at the design, development, integration, test, and demonstration of enabling technologies for global broadband aeronautical communications. Since Ku-band facilities and equipment are readily available, one of the near-term demonstrations involves a link through a Kuband communications satellite. Two conformally mounted antennas will support the initial AC/ATM communications links. Both of these are steered electronically through monolithic microwave integrated circuit (MMIC) amplifiers and phase shifters. This link will be asymmetrical with the downlink to the aircraft (mobile vehicle) at a throughput rate of greater than 1.5 megabits per second (Mbps), whereas the throughput rate of the uplink from the aircraft will be greater than 100 kilobits per second (kbps). The data on the downlink can be narrow-band, wide-band, or a combination of both, depending on the requirements of the experiment. The AC/ATM project is purchasing a phased-array Ku-band transmitting antenna for the uplink from the test vehicle. Many Ku-band receiving antennas have been built, and one will be borrowed for a short time to perform the initial experiments at the NASA Glenn Research Center at Lewis Field. The Ku-band transmitting antenna is a 254-element MMIC phased-array antenna being built by Boeing Phantom Works. Each element can radiate 100 mW. The antenna is approximately 43-cm high by 24-cm wide by 3.3-cm thick. It can be steered beyond 60 from broadside. The beamwidth varies from 6 at broadside to 12 degrees at 60 degrees, which is typical of phased-array antennas. When the antenna is steered to 60 degrees, the beamwidth will illuminate approximately five satellites on the orbital arc. Spread spectrum techniques will be employed to keep the power impinging on the adjacent satellites below their noise floor so that no interference results. This antenna is power limited. If the antenna elements (currently 254) are increased by a factor of 4 (1024) or 16 (4096), the gain will increase and the beamwidth will decrease in proportion. For the latter two antenna sizes, the power must be "backed off" to prevent interference with the neighboring satellites. The receiving antenna, which is approximately 90-cm high, 60-cm wide, and 3.5-cm thick, is composed of 1500 phased-array elements. The system phased-array controller can control both a 1500-element receiving antenna and a 500-element transmitting antenna. For ground testing, this controller will allow manual beam pointing and polarization alignment. For normal operation, the system can be connected to the receiving antenna and the navigation system for real-time autonomous track operation. This will be accomplished by first pointing both antennas at the satellite using information from the aircraft data bus. Then, the system phased-array controller will electronically adjust the antenna pointing of the receiving antenna to find the peak signal. After the peak signal has been found, the beam of the transmitting antenna will be pointed to the same steering angles as the receiving antenna. For initial ground testing without an aircraft, the ARINC 429 data bus (ARINC Inc., Annapolis, Maryland) will be simulated by a gyro system purchased for the follow-on to the Monolithic Microwave Integrated Circuit (MMIC) Arrays for Satellite Communication on the Move (MASCOM) Project. MASCOM utilized the Advanced Communications Technology Satellite (ACTS) with a pair of Ka-band experimental phased-array antennas.
NASA Astrophysics Data System (ADS)
Rizvi, S. Tauqeer ul Islam; Linshu, He; ur Rehman, Tawfiq; Rafique, Amer Farhan
2012-11-01
A numerical optimization study of lifting body re-entry vehicles is presented for nominal as well as shallow entry conditions for Medium and Intermediate Range applications. Due to the stringent requirement of a high degree of accuracy for conventional vehicles, lifting re-entry can be used to attain the impact at the desired terminal flight path angle and speed and thus can potentially improve accuracy of the re-entry vehicle. The re-entry of a medium range and intermediate range vehicles is characterized by very high negative flight path angle and low re-entry speed as compared to a maneuverable re-entry vehicle or a common aero vehicle intended for an intercontinental range. Highly negative flight path angles at the re-entry impose high dynamic pressure as well as heat loads on the vehicle. The trajectory studies are carried out to maximize the cross range of the re-entry vehicle while imposing a maximum dynamic pressure constraint of 350 KPa with a 3 MW/m2 heat rate limit. The maximum normal acceleration and the total heat load experienced by the vehicle at the stagnation point during the maneuver have been computed for the vehicle for possible future conceptual design studies. It has been found that cross range capability of up to 35 km can be achieved with a lifting-body design within the heat rate and the dynamic pressure boundary at normal entry conditions. For shallow entry angle of -20 degree and intermediate ranges a cross range capability of up to 250 km can be attained for a lifting body design with less than 10 percent loss in overall range. The normal acceleration also remains within limits. The lifting-body results have also been compared with wing-body results at shallow entry condition. An hp-adaptive pseudo-spectral method has been used for constrained trajectory optimization.
Aerodynamic and Aerothermal TPS Instrumentation Reference Guide
NASA Technical Reports Server (NTRS)
Woollard, Bryce A.; Braun, Robert D.; Bose, Deepack
2016-01-01
The hypersonic regime of planetary entry combines the most severe environments that an entry vehicle will encounter with the greatest amount of uncertainty as to the events unfolding during that time period. This combination generally leads to conservatism in the design of an entry vehicle, specifically that of the thermal protection system (TPS). Each planetary entry provides a valuable aerodynamic and aerothermal testing opportunity; the utilization of this opportunity is paramount in better understanding how a specific entry vehicle responds to the demands of the hypersonic entry environment. Previous efforts have been made to instrument entry vehicles in order to collect data during the entry period and reconstruct the corresponding vehicle response. The purpose of this paper is to cumulatively document past TPS instrumentation designs for applicable planetary missions, as well as to list pertinent results and any explainable shortcomings.
Titan Submarine : AUV Design for Cryogenic Extraterrestrial Seas of Hydrocarbons
NASA Astrophysics Data System (ADS)
Lorenz, Ralph D.; Oleson, Steven; Colozza, Tony; Hartwig, Jason; Schmitz, Paul; Landis, Geoff; Paul, Michael; Walsh, Justin
2016-04-01
Saturn's moon Titan has three seas, apparently composed predominantly of liquid methane, near its north pole. The largest of these, Ligeia Mare and Kraken Mare, span about 400km and 1000km respectively, and are linked by a narrow strait. Radar measurements from the Cassini spacecraft (currently in orbit around Saturn) show that Ligeia at least is 160m deep, Kraken perhaps deeper. Titan has a nitrogen atmosphere somewhat denser than Earth's, and gravity about the same as the Earth's moon, and its surface temperature is about 92K ; the seas are liquid under conditions rather similar to those of liquified natural gas (LNG) a commodity with familiar engineering properties. We report a NASA Innovative Advanced Concepts (NIAC) study into a submersible vehicle able to explore these seas, to survey shoreline geomorphology, investigate air-sea exchange processes, measure composition to evaluate stratification and mixing, and map the seabed. The Titan environment poses unique thermal management and buoyancy control challenges (the temperature-dependent solubility of nitrogen in methane leads to the requirement to isolate displacement gas from liquid in buoyancy control tanks, and may result in some effervescence due to the heat dissipation into the liquid from the vehicle's radioisotope power supply, a potential noise source for sonar systems). The vehicle must also be delivered from the air, either by parachute extraction from or controlled ditching of a slender entry system, and must communicate its results back to Earth. Nominally the latter function is achieved with a large dorsal phased-array antenna, operated while surfaced, but solutions using an orbiting relay spacecraft and even communication while submerged, are being examined. While these aspects seem fantastical, in many respects the structural, propulsion and navigation/autonomy challenges of such a vehicle are little different from terrestrial autonomous underwater vehicles. We discuss the results of the study to date, which brought together power/propulsion/space systems expertise from NASA Glenn Research Center, with hydrodynamics, propulsion and operations from the Penn State Applied Research Lab, and the latest Titan understanding from the JHU Applied Physics Lab.
Titan Submarine : AUV Design for Cryogenic Extraterrestrial Seas of Hydrocarbons
NASA Astrophysics Data System (ADS)
Lorenz, R. D.
2016-02-01
Saturn's moon Titan has three seas, apparently composed predominantly of liquid methane, near its north pole. The largest of these, Ligeia Mare and Kraken Mare, span about 400km and 1000km respectively, and are linked by a narrow strait. Radar measurements from the Cassini spacecraft (currently in orbit around Saturn) show that Ligeia at least is 160m deep, Kraken perhaps deeper. Titan has a nitrogen atmosphere somewhat denser than Earth's, and gravity about the same as the Earth's moon, and its surface temperature is about 92K ; the seas are liquid under conditions rather similar to those of liquified natural gas (LNG) a commodity with familiar engineering properties. We report a NASA Innovative Advanced Concepts (NIAC) study into a submersible vehicle able to explore these seas, to survey shoreline geomorphology, investigate air-sea exchange processes, measure composition to evaluate stratification and mixing, and map the seabed. The Titan environment poses unique thermal management and buoyancy control challenges (the temperature-dependent solubility of nitrogen in methane leads to the requirement to isolate displacement gas from liquid in buoyancy control tanks, and may result in some effervescence due to the heat dissipation into the liquid from the vehicle's radioisotope power supply, a potential noise source for sonar systems). The vehicle must also be delivered from the air, either by parachute extraction from or controlled ditching of a slender entry system, and must communicate its results back to Earth. Nominally the latter function is achieved with a large dorsal phased-array antenna, operated while surfaced, but solutions using an orbiting relay spacecraft and even communication while submerged, are being examined. While these aspects seem fantastical, in many respects the structural, propulsion and navigation/autonomy challenges of such a vehicle are little different from terrestrial autonomous underwater vehicles. We discuss the results of the study to date, which brought together power/propulsion/space systems expertise from NASA Glenn Research Center, with hydrodynamics, propulsion and operations from the Penn State Applied Research Lab, and the latest Titan understanding from the JHU Applied Physics Lab. We look forward to discussions and ideas with the broader AUV/UUV community.
Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang
2012-05-01
Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.
Yang, Jian; Li, Yongli; Feng, Jinfu; Hu, Junhua; Liu, An
2017-01-01
The motion characteristics of trans-media vehicles during the water-entry process were explored in this study in an effort to obtain the optimal water-entry condition of the vehicle for developing a novel, single control strategy integrating underwater non-control and in-air control. A water-entry dynamics model is established by combining the water-entry motion characteristics of the vehicle in uncontrolled conditions at low speed with time-varying parameters (e.g. buoyancy, added mass). A water-entry experiment is designed to confirm the effectiveness of the established model. After that, by comparing the experimental results with the simulated results, the model is further modified to more accurately reflect water-entry motion. The change laws of the vehicle's attitude and position during the water-entry process are also obtained by analyzing the simulation of the modified model under different velocity, angle, and angle of attack conditions. The results presented here have guiding significance for the future realization of reaching the stable underwater navigation state of the vehicle after water-entry process.
Lee, R F; Giaquinto, R; Constantinides, C; Souza, S; Weiss, R G; Bottomley, P A
2000-02-01
Despite their proven gains in signal-to-noise ratio and field-of-view for routine clinical MRI, phased-array detection systems are currently unavailable for nuclei other than protons (1H). A broadband phased-array system was designed and built to convert the 1H transmitter signal to the non-1H frequency for excitation and to convert non-1H phased-array MRI signals to the 1H frequency for presentation to the narrowband 1H receivers of a clinical whole-body 1.5 T MRI system. With this system, the scanner operates at the 1H frequency, whereas phased-array MRI occurs at the frequency of the other nucleus. Pulse sequences were developed for direct phased-array sodium (23Na) and phosphorus (31P) MRI of high-energy phosphates using chemical selective imaging, thereby avoiding the complex processing and reconstruction required for phased-array magnetic resonance spectroscopy data. Flexible 4-channel 31P and 23Na phased-arrays were built and the entire system tested in phantom and human studies. The array produced a signal-to-noise ratio improvement of 20% relative to the best-positioned single coil, but gains of 300-400% were realized in many voxels located outside the effective field-of-view of the single coil. Cardiac phosphorus and sodium MRI were obtained in 6-13 min with 16 and 0.5 mL resolution, respectively. Lower resolution human cardiac 23Na MRI were obtained in as little as 4 sec. The system provides a practical approach to realizing the advantages of phased-arrays for nuclei other than 1H, and imaging metabolites directly.
Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.
1976-01-01
The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.
Development and Test Plans for the MSR EEV
NASA Technical Reports Server (NTRS)
Dillman, Robert; Laub, Bernard; Kellas, Sotiris; Schoenenberger, Mark
2005-01-01
The goal of the proposed Mars Sample Return mission is to bring samples from the surface of Mars back to Earth for thorough examination and analysis. The Earth Entry Vehicle is the passive entry body designed to protect the sample container from entry heating and deceleration loads during descent through the Earth s atmosphere to a recoverable location on the surface. This paper summarizes the entry vehicle design and outlines the subsystem development and testing currently planned in preparation for an entry vehicle flight test in 2010 and mission launch in 2013. Planned efforts are discussed for the areas of the thermal protection system, vehicle trajectory, aerodynamics and aerothermodynamics, impact energy absorption, structure and mechanisms, and the entry vehicle flight test.
Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun
2012-01-01
Purpose Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Materials and Methods Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Results Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Conclusion Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI. PMID:22476999
Integrated Composite Stiffener Structure (ICoSS) Concept for Planetary Entry Vehicles
NASA Technical Reports Server (NTRS)
Kellas, Sotiris
2016-01-01
Results from the design, manufacturing, and testing of a lightweight Integrated Composite Stiffened Structure (ICoSS) concept, intended for multi-mission planetary entry vehicles are presented. Tests from both component and full-scale tests for a typical Earth Entry Vehicle forward shell manufactured using the ICoSS concept are presented and advantages of the concept for the particular application of passive Earth Entry Vehicles over other structural concepts are discussed.
Ablative Heat Shield Studies for NASA Mars/Earth Return Entry Vehicles
1990-09-01
RETURN ENTRY VEHICLES by Michael K. Hamm September, 1990 NASA Thesis Advisor: William D. Henline Thesis Co-Advisor: Max F. Platzer Approved for public...STUDIES FOR NASA MARS/EARTH RETURN ENTRY VEHICLES (UNCLASSIFIED) 12. PERSONAL AUTHOR(S) Harm, Michael, K. 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF...theoretical values. The tests were performed to ascertain if RSI type materials could be used for entry vehicles proposed in NASA Mars missions. 20
Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.
Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa
2017-01-01
In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d 33 >1000pC/N) and electromechanical coupling (k 33 >0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Jian; Feng, Jinfu; Hu, Junhua; Liu, An
2017-01-01
The motion characteristics of trans-media vehicles during the water-entry process were explored in this study in an effort to obtain the optimal water-entry condition of the vehicle for developing a novel, single control strategy integrating underwater non-control and in-air control. A water-entry dynamics model is established by combining the water-entry motion characteristics of the vehicle in uncontrolled conditions at low speed with time-varying parameters (e.g. buoyancy, added mass). A water-entry experiment is designed to confirm the effectiveness of the established model. After that, by comparing the experimental results with the simulated results, the model is further modified to more accurately reflect water-entry motion. The change laws of the vehicle’s attitude and position during the water-entry process are also obtained by analyzing the simulation of the modified model under different velocity, angle, and angle of attack conditions. The results presented here have guiding significance for the future realization of reaching the stable underwater navigation state of the vehicle after water-entry process. PMID:28558012
More About Lens Antenna For Mobile/Satellite Communication
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.; Bodnar, D. G.; Rainer, B. K.
1990-01-01
Report presents additional details of design of proposed phased-array antenna described in "Lens Antenna for Mobile/Satellite Communication" (NPO-16948). Intended to be compact and to lie flat on top of vehicle on ground. Transmits and receives circularly polarized radiation in frequency ranges of 821 to 825 MHz and 860 to 870 MHz. Transmitting and receiving beams electronically steerable to any of 48 evenly spaced directions to provide complete azimuth coverage, and would be fixed, but wide, in elevation, to provide coverage at elevation angles from 20 degrees to 60 degrees.
NASA Technical Reports Server (NTRS)
Pastor, P. Rick; Bishop, Robert H.; Striepe, Scott A.
2000-01-01
A first order simulation analysis of the navigation accuracy expected from various Navigation Quick-Look data sets is performed. Here quick-look navigation data are observations obtained by hypothetical telemetried data transmitted on the fly during a Mars probe's atmospheric entry. In this simulation study, navigation data consists of 3-axis accelerometer sensor and attitude information data. Three entry vehicle guidance types are studied: I. a Maneuvering entry vehicle (as with Mars 01 guidance where angle of attack and bank angle are controlled); II. Zero angle-of-attack controlled entry vehicle (as with Mars 98); and III. Ballistic, or spin stabilized entry vehicle (as with Mars Pathfinder);. For each type, sensitivity to progressively under sampled navigation data and inclusion of sensor errors are characterized. Attempts to mitigate the reconstructed trajectory errors, including smoothing, interpolation and changing integrator characteristics are also studied.
A Comparison of Two Skip Entry Guidance Algorithms
NASA Technical Reports Server (NTRS)
Rea, Jeremy R.; Putnam, Zachary R.
2007-01-01
The Orion capsule vehicle will have a Lift-to-Drag ratio (L/D) of 0.3-0.35. For an Apollo-like direct entry into the Earth's atmosphere from a lunar return trajectory, this L/D will give the vehicle a maximum range of about 2500 nm and a maximum crossrange of 216 nm. In order to y longer ranges, the vehicle lift must be used to loft the trajectory such that the aerodynamic forces are decreased. A Skip-Trajectory results if the vehicle leaves the sensible atmosphere and a second entry occurs downrange of the atmospheric exit point. The Orion capsule is required to have landing site access (either on land or in water) inside the Continental United States (CONUS) for lunar returns anytime during the lunar month. This requirement means the vehicle must be capable of flying ranges of at least 5500 nm. For the L/D of the vehicle, this is only possible with the use of a guided Skip-Trajectory. A skip entry guidance algorithm is necessary to achieve this requirement. Two skip entry guidance algorithms have been developed: the Numerical Skip Entry Guidance (NSEG) algorithm was developed at NASA/JSC and PredGuid was developed at Draper Laboratory. A comparison of these two algorithms will be presented in this paper. Each algorithm has been implemented in a high-fidelity, 6 degree-of-freedom simulation called the Advanced NASA Technology Architecture for Exploration Studies (ANTARES). NASA and Draper engineers have completed several monte carlo analyses in order to compare the performance of each algorithm in various stress states. Each algorithm has been tested for entry-to-target ranges to include direct entries and skip entries of varying length. Dispersions have been included on the initial entry interface state, vehicle mass properties, vehicle aerodynamics, atmosphere, and Reaction Control System (RCS). Performance criteria include miss distance to the target, RCS fuel usage, maximum g-loads and heat rates for the first and second entry, total heat load, and control system saturation. The comparison of the performance criteria has led to a down select and guidance merger that will take the best ideas from each algorithm to create one skip entry guidance algorithm for the Orion vehicle.
Entry, Descent, and Landing technological barriers and crewed MARS vehicle performance analysis
NASA Astrophysics Data System (ADS)
Subrahmanyam, Prabhakar; Rasky, Daniel
2017-05-01
Mars has been explored historically only by robotic crafts, but a crewed mission encompasses several new engineering challenges - high ballistic coefficient entry, hypersonic decelerators, guided entry for reaching intended destinations within acceptable margins for error in the landing ellipse, and payload mass are all critical factors for evaluation. A comprehensive EDL parametric analysis has been conducted in support of a high mass landing architecture by evaluating three types of vehicles -70° Sphere Cone, Ellipsled and SpaceX hybrid architecture called Red Dragon as potential candidate options for crewed entry vehicles. Aerocapture at the Martian orbit of about 400 km and subsequent Entry-from-orbit scenarios were investigated at velocities of 6.75 km/s and 4 km/s respectively. A study on aerocapture corridor over a range of entry velocities (6-9 km/s) suggests that a hypersonic L/D of 0.3 is sufficient for a Martian aerocapture. Parametric studies conducted by varying aeroshell diameters from 10 m to 15 m for several entry masses up to 150 mt are summarized and results reveal that vehicles with entry masses in the range of about 40-80 mt are capable of delivering cargo with a mass on the order of 5-20 mt. For vehicles with an entry mass of 20 mt to 80 mt, probabilistic Monte Carlo analysis of 5000 cases for each vehicle were run to determine the final landing ellipse and to quantify the statistical uncertainties associated with the trajectory and attitude conditions during atmospheric entry. Strategies and current technological challenges for a human rated Entry, Descent, and Landing to the Martian surface are presented in this study.
Entry Vehicle Control System Design for the Mars Smart Lander
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Queen, Eric M.
2002-01-01
The NASA Langley Research Center, in cooperation with the Jet Propulsion Laboratory, participated in a preliminary design study of the Entry, Descent and Landing phase for the Mars Smart Lander Project. This concept utilizes advances in Guidance, Navigation and Control technology to significantly reduce uncertainty in the vehicle landed location on the Mars surface. A candidate entry vehicle controller based on the Reaction Control System controller for the Apollo Lunar Excursion Module digital autopilot is proposed for use in the entry vehicle attitude control. A slight modification to the phase plane controller is used to reduce jet-firing chattering while maintaining good control response for the Martian entry probe application. The controller performance is demonstrated in a six-degree-of-freedom simulation with representative aerodynamics.
Mesh-Based Entry Vehicle and Explosive Debris Re-Contact Probability Modeling
NASA Technical Reports Server (NTRS)
McPherson, Mark A.; Mendeck, Gavin F.
2011-01-01
The risk to a crewed vehicle arising from potential re-contact with fragments from an explosive breakup of any jettisoned spacecraft segments during entry has long sought to be quantified. However, great difficulty lies in efficiently capturing the potential locations of each fragment and their collective threat to the vehicle. The method presented in this paper addresses this problem by using a stochastic approach that discretizes simulated debris pieces into volumetric cells, and then assesses strike probabilities accordingly. Combining spatial debris density and relative velocity between the debris and the entry vehicle, the strike probability can be calculated from the integral of the debris flux inside each cell over time. Using this technique it is possible to assess the risk to an entry vehicle along an entire trajectory as it separates from the jettisoned segment. By decoupling the fragment trajectories from that of the entry vehicle, multiple potential separation maneuvers can then be evaluated rapidly to provide an assessment of the best strategy to mitigate the re-contact risk.
In Situ Magnetohydrodynamic Energy Generation for Planetary Entry Vehicles
NASA Astrophysics Data System (ADS)
Ali, H. K.; Braun, R. D.
2014-06-01
This work aims to study the suitability of multi-pass entry trajectories for harnessing of vehicle kinetic energy through magnetohydrodynamic power generation from the high temperature entry plasma. Potential mission configurations are analyzed.
Journal of Chinese Society of Astronautics (Selected Articles),
1983-03-10
Graphics Disclaimer...................... ..... .. . .. .. . . ... Calculation of Minimum Entry Heat Transfer Shape of a Space * Vehicle , by, Zhou Qi...the best quality copy available. ..- ii CALCULATION OF MINIMUM ENTRY HEAT TRANSFER SHAPE OF A SPACE VEHICLE Zhou Qi cheng ABSTRACT This paper dealt...entry heat transfer shape under specified fineness ratio and total vehicle weight conditions could be obtained using a variational method. Finally, the
Research on the water-entry attitude of a submersible aircraft.
Xu, BaoWei; Li, YongLi; Feng, JinFu; Hu, JunHua; Qi, Duo; Yang, Jian
2016-01-01
The water entry of a submersible aircraft, which is transient, highly coupled, and nonlinear, is complicated. After analyzing the mechanics of this process, the change rate of every variable is considered. A dynamic model is build and employed to study vehicle attitude and overturn phenomenon during water entry. Experiments are carried out and a method to organize experiment data is proposed. The accuracy of the method is confirmed by comparing the results of simulation of dynamic model and experiment under the same condition. Based on the analysis of the experiment and simulation, the initial attack angle and angular velocity largely influence the water entry of vehicle. Simulations of water entry with different initial and angular velocities are completed, followed by an analysis, and the motion law of vehicle is obtained. To solve the problem of vehicle stability and control during water entry, an approach is proposed by which the vehicle sails with a zero attack angle after entering water by controlling the initial angular velocity. With the dynamic model and optimization research algorithm, calculation is performed, and the optimal initial angular velocity of water-entry is obtained. The outcome of simulations confirms that the effectiveness of the propose approach by which the initial water-entry angular velocity is controlled.
Mission Sizing and Trade Studies for Low Ballistic Coefficient Entry Systems to Venus
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Smith, Brandon; Prabhu, Dinesh; Venkatapathy, Ethiraj
2012-01-01
The U.S and the U.S.S.R. have sent seventeen successful atmospheric entry missions to Venus. Past missions to Venus have utilized rigid aeroshell systems for entry. This rigid aeroshell paradigm sets performance limitations since the size of the entry vehicle is constrained by the fairing diameter of the launch vehicle. This has limited ballistic coefficients (beta) to well above 100 kg/m2 for the entry vehicles. In order to maximize the science payload and minimize the Thermal Protection System (TPS) mass, these missions have entered at very steep entry flight path angles (gamma). Due to Venus thick atmosphere and the steep-gamma, high- conditions, these entry vehicles have been exposed to very high heat flux, very high pressures and extreme decelerations (upwards of 100 g's). Deployable aeroshells avoid the launch vehicle fairing diameter constraint by expanding to a larger diameter after the launch. Due to the potentially larger wetted area, deployable aeroshells achieve lower ballistic coefficients (well below 100 kg/m2), and if they are flown at shallower flight path angles, the entry vehicle can access trajectories with far lower decelerations (50-60 g's), peak heat fluxes (400 W/cm2) and peak pressures. The structural and TPS mass of the shallow-gamma, low-beta deployables are lower than their steep-gamma, high-beta rigid aeroshell counterparts at larger diameters, contributing to lower areal densities and potentially higher payload mass fractions. For example, at large diameters, deployables may attain aeroshell areal densities of 10 kg/m2 as opposed to 50 kg/m2 for rigid aeroshells. However, the low-beta, shallow-gamma paradigm also raises issues, such as the possibility of skip-out during entry. The shallow-gamma could also increase the landing footprint of the vehicle. Furthermore, the deployable entry systems may be flexible, so there could be fluid-structure interaction, especially in the high altitude, low-density regimes. The need for precision in guidance, navigation and control during entry also has to be better understood. This paper investigates some of the challenges facing the design of a shallow-gamma, low-beta entry system.
Combined Structural and Trajectory Control of Variable-Geometry Planetary Entry Systems
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Pellegrino, Sergio; Kwok, Kawai
2011-01-01
Some of the key challenges of planetary entry are to dissipate the large kinetic energy of the entry vehicle and to land with precision. Past missions to Mars were based on unguided entry, where entry vehicles carried payloads of less than 0.6 T and landed within 100 km of the designated target. The Mars Science Laboratory (MSL) is expected to carry a mass of almost 1 T to within 20 km of the target site. Guided lifting entry is needed to meet these higher deceleration and targeting demands. If the aerodynamic characteristics of the decelerator are variable during flight, more trajectory options are possible, and can be tailored to specific mission requirements. In addition to the entry trajectory modulation, having variable aerodynamic properties will also favor maneuvering of the vehicle prior to descent. For proper supersonic parachute deployment, the vehicle needs to turn to a lower angle of attack. One approach to entry trajectory improvement and angle of attack control is to embed a variable geometry decelerator in the design of the vehicle. Variation in geometry enables the vehicle to adjust its aerodynamic performance continuously without additional fuel cost because only electric power is needed for actuating the mechanisms that control the shape change. Novel structural and control concepts have been developed that enable the decelerator to undergo variation in geometry. Changing the aerodynamic characteristics of a flight vehicle by active means can potentially provide a mechanically simple, affordable, and enabling solution for entry, descent, and landing across a wide range of mission types, sample capture and return, and reentry to Earth, Titan, Venus, or Mars. Unguided ballistic entry is not sufficient to meet this more stringent deceleration, heating, and targeting demands. Two structural concepts for implementing the cone angle variation, a segmented shell, and a corrugated shell, have been presented.
Coherent optical monolithic phased-array antenna steering system
Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.
1994-01-01
An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.
NASA Technical Reports Server (NTRS)
Robinson, Jeffrey S.; Wurster, Kathryn E.
2006-01-01
Recently, NASA's Exploration Systems Research and Technology Project funded several tasks that endeavored to develop and evaluate various thermal protection systems and high temperature material concepts for potential use on the crew exploration vehicle. In support of these tasks, NASA Langley's Vehicle Analysis Branch generated trajectory information and associated aeroheating environments for more than 60 unique entry cases. Using the Apollo Command Module as the baseline entry system because of its relevance to the favored crew exploration vehicle design, trajectories for a range of lunar and Mars return, direct and aerocapture Earth-entry scenarios were developed. For direct entry, a matrix of cases was created that reflects reasonably expected minimum and maximum values of vehicle ballistic coefficient, inertial velocity at entry interface, and inertial flight path angle at entry interface. For aerocapture, trajectories were generated for a range of values of initial velocity and ballistic coefficient that, when combined with proper initial flight path angles, resulted in achieving a low Earth orbit either by employing a full lift vector up or full lift vector down attitude. For each trajectory generated, aeroheating environments were generated which were intended to bound the thermal protection system requirements for likely crew exploration vehicle concepts. The trades examined clearly pointed to a range of missions / concepts that will require ablative systems as well as a range for which reusable systems may be feasible. In addition, the results clearly indicated those entry conditions and modes suitable for manned flight, considering vehicle deceleration levels experienced during entry. This paper presents an overview of the analysis performed, including the assumptions, methods, and general approach used, as well as a summary of the trajectory and aerothermal environment information that was generated.
Method for Fabricating and Packaging an M.Times.N Phased-Array Antenna
NASA Technical Reports Server (NTRS)
Xu, Xiaochuan (Inventor); Chen, Yihong (Inventor); Chen, Ray T. (Inventor); Subbaraman, Harish (Inventor)
2017-01-01
A method for fabricating an M.times.N, P-bit phased-array antenna on a flexible substrate is disclosed. The method comprising ink jet printing and hardening alignment marks, antenna elements, transmission lines, switches, an RF coupler, and multilayer interconnections onto the flexible substrate. The substrate of the M.times.N, P-bit phased-array antenna may comprise an integrated control circuit of printed electronic components such as, photovoltaic cells, batteries, resistors, capacitors, etc. Other embodiments are described and claimed.
Overview of the Mars Sample Return Earth Entry Vehicle
NASA Technical Reports Server (NTRS)
Dillman, Robert; Corliss, James
2008-01-01
NASA's Mars Sample Return (MSR) project will bring Mars surface and atmosphere samples back to Earth for detailed examination. Langley Research Center's MSR Earth Entry Vehicle (EEV) is a core part of the mission, protecting the sample container during atmospheric entry, descent, and landing. Planetary protection requirements demand a higher reliability from the EEV than for any previous planetary entry vehicle. An overview of the EEV design and preliminary analysis is presented, with a follow-on discussion of recommended future design trade studies to be performed over the next several years in support of an MSR launch in 2018 or 2020. Planned topics include vehicle size for impact protection of a range of sample container sizes, outer mold line changes to achieve surface sterilization during re-entry, micrometeoroid protection, aerodynamic stability, thermal protection, and structural materials selection.
Virtual Reality Modelling Simulation of the Re-entry Motion of an Axialsymmetric Vehicle
NASA Astrophysics Data System (ADS)
Guidi, A.; Chu, Q.. P.; Mulder, J. A.
This work started during the stability analysis of the Delft Aerospace Re-entry Test demonstrator (DART) which is a small axisymmetric ballistic re-entry vehicle. The dynamic stability evaluation of an axisymmetric re-entry vehicle is especially concerned on the behaviour of its angle of attack during the flight through the atmosphere. The variation in the angle of attack is essential for prediction of the trajectory of the vehicle and for heating requirement of the structure of the vehicle. The concept of the total angle of attack and the windward meridian plane are introduced. The position of the centre of pressure can be a crucial point in the stability of the vehicle. Although the simpleness of an axisymmetric shape, the re-entry of such a vehicle is characterised by several complex phenomenologies that were analysed with the aid of the flight simulator and of a 3D virtual reality modeling simulator. Simulations were performed with a 25° AOA initial condition in order to simulate the response of the vehicle to a disturbance that may occur during the flight causing a variation in attitude from its Trim . Certain aspects of re-entry vehicle motion are conveniently described in the terms of Euler angles. Using the Eulerian angle it is possible to generate a tridimensional animation of the output of the Flight Simulator. This tridimensional analysis is of great importance in order to understand the mentioned complex motions. Furthermore with growing in computer power it is possible to generate online visualisation of the simulations. The output of the flight simulator was used in a software written in Virtual Reality Modelling Language (VRML). With VRML this software was possible the visualisation of the re-entry motion of the vehicle. With this option the animation can run on-line during the with the flight simulator and can be also easily published on the internet or send to other users in very small file size. (the VRLM simulation of the re-entry, can be seen at the official DART internet site: www.dart-project.com)
Simulation-Based Analysis of Reentry Dynamics for the Sharp Atmospheric Entry Vehicle
NASA Technical Reports Server (NTRS)
Tillier, Clemens Emmanuel
1998-01-01
This thesis describes the analysis of the reentry dynamics of a high-performance lifting atmospheric entry vehicle through numerical simulation tools. The vehicle, named SHARP, is currently being developed by the Thermal Protection Materials and Systems branch of NASA Ames Research Center, Moffett Field, California. The goal of this project is to provide insight into trajectory tradeoffs and vehicle dynamics using simulation tools that are powerful, flexible, user-friendly and inexpensive. Implemented Using MATLAB and SIMULINK, these tools are developed with an eye towards further use in the conceptual design of the SHARP vehicle's trajectory and flight control systems. A trajectory simulator is used to quantify the entry capabilities of the vehicle subject to various operational constraints. Using an aerodynamic database computed by NASA and a model of the earth, the simulator generates the vehicle trajectory in three-dimensional space based on aerodynamic angle inputs. Requirements for entry along the SHARP aerothermal performance constraint are evaluated for different control strategies. Effect of vehicle mass on entry parameters is investigated, and the cross range capability of the vehicle is evaluated. Trajectory results are presented and interpreted. A six degree of freedom simulator builds on the trajectory simulator and provides attitude simulation for future entry controls development. A Newtonian aerodynamic model including control surfaces and a mass model are developed. A visualization tool for interpreting simulation results is described. Control surfaces are roughly sized. A simple controller is developed to fly the vehicle along its aerothermal performance constraint using aerodynamic flaps for control. This end-to-end demonstration proves the suitability of the 6-DOF simulator for future flight control system development. Finally, issues surrounding real-time simulation with hardware in the loop are discussed.
A hypersonic vehicle approach to planetary exploration
NASA Technical Reports Server (NTRS)
Murbach, Marcus S.
1993-01-01
An enhanced Mars network class mission using a lifting hypersonic entry vehicle is proposed. The basic vehicle, derived from a mature hypersonic flight system called SWERVE, offers several advantages over more conventional low L/D or ballistic entry systems. The proposed vehicle has greatly improved lateral and cross range capability (e.g., it is capable of reaching the polar regions during less than optimal mission opportunities), is not limited to surface target areas of low elevation, and is less susceptible to problems caused by Martian dust storms. Further, the integrated vehicle has attractive deployment features and allows for a much improved evolutionary path to larger vehicles with greater science capability. Analysis of the vehicle is aided by the development of a Mars Hypersonic Flight Simulator from which flight trajectories are obtained. Atmospheric entry performance of the baseline vehicle is improved by a deceleration skirt and transpiration cooling system which significantly reduce TPS (Thermal Protection System) and flight battery mass. The use of the vehicle is also attractive in that the maturity of the flight systems make it cost-competitive with the development of a conventional low L/D entry system. Finally, the potential application of similar vehicles to other planetary missions is discussed.
Impact Testing of the H1224A Shipping/Storage Container
1994-05-01
may not provide significant ener- gy absorption for the re - entry vehicle midsection but can provide some confinement of potentially damaged...Horizontal Low-Velocity impact test LHV Longitudinal High-Velocity impact test HHV Horizontal High-Velocity impact test RV Re - entry Vehicle midsection mass...Also, integration of these pulses showed that only a much shorter dura- tion pulse was necessary to slow the re - entry vehicle midsection velocity
An Entry Flight Controls Analysis for a Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Calhoun, Philip
2000-01-01
The NASA Langley Research Center has been performing studies to address the feasibility of various single-stage to orbit concepts for use by NASA and the commercial launch industry to provide a lower cost access to space. Some work on the conceptual design of a typical lifting body concept vehicle, designated VentureStar(sup TM) has been conducted in cooperation with the Lockheed Martin Skunk Works. This paper will address the results of a preliminary flight controls assessment of this vehicle concept during the atmospheric entry phase of flight. The work includes control analysis from hypersonic flight at the atmospheric entry through supersonic speeds to final approach and landing at subsonic conditions. The requirements of the flight control effectors are determined over the full range of entry vehicle Mach number conditions. The analysis was performed for a typical maximum crossrange entry trajectory utilizing angle of attack to limit entry heating and providing for energy management, and bank angle to modulation of the lift vector to provide downrange and crossrange capability to fly the vehicle to a specified landing site. Sensitivity of the vehicle open and closed loop characteristics to CG location, control surface mixing strategy and wind gusts are included in the results. An alternative control surface mixing strategy utilizing a reverse aileron technique demonstrated a significant reduction in RCS torque and fuel required to perform bank maneuvers during entry. The results of the control analysis revealed challenges for an early vehicle configuration in the areas of hypersonic pitch trim and subsonic longitudinal controllability.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
...; Training Certification for Entry-Level Commercial Motor Vehicle Operators AGENCY: Federal Motor Carrier... Holidays. SUPPLEMENTARY INFORMATION: Title: Training Certification for Entry-Level Commercial Motor Vehicle.... Respondents: Entry-level CDL drivers. Estimated Number of Respondents: 397,500. Estimated Time per Response...
Radiant Heat Testing of the H1224A Shipping/Storage Container
1994-05-01
re - entry vehicles caused by credible accidents during air and ground transportation. Radiant heat testing of the H1224A storage/shipping container is...inner container, and re - entry vehicle (RV) temperatures during radiant heat testing. Computer modelling can be used to predict weapon response throughout...Nomenclature RV Re - entry Vehicle midsection mass mock-up WR War Reserve STS Stockpile-to-Target Sequence NAWC Simulated H1224A container by Naval Air
Optimization of entry-vehicle shapes during conceptual design
NASA Astrophysics Data System (ADS)
Dirkx, D.; Mooij, E.
2014-01-01
During the conceptual design of a re-entry vehicle, the vehicle shape and geometry can be varied and its impact on performance can be evaluated. In this study, the shape optimization of two classes of vehicles has been studied: a capsule and a winged vehicle. Their aerodynamic characteristics were analyzed using local-inclination methods, automatically selected per vehicle segment. Entry trajectories down to Mach 3 were calculated assuming trimmed conditions. For the winged vehicle, which has both a body flap and elevons, a guidance algorithm to track a reference heat-rate was used. Multi-objective particle swarm optimization was used to optimize the shape using objectives related to mass, volume and range. The optimizations show a large variation in vehicle performance over the explored parameter space. Areas of very strong non-linearity are observed in the direct neighborhood of the two-dimensional Pareto fronts. This indicates the need for robust exploration of the influence of vehicle shapes on system performance during engineering trade-offs, which are performed during conceptual design. A number of important aspects of the influence of vehicle behavior on the Pareto fronts are observed and discussed. There is a nearly complete convergence to narrow-wing solutions for the winged vehicle. Also, it is found that imposing pitch-stability for the winged vehicle at all angles of attack results in vehicle shapes which require upward control surface deflections during the majority of the entry.
Optimization of a Hot Structure Aeroshell and Nose Cap for Mars Atmospheric Entry
NASA Technical Reports Server (NTRS)
Langston, Sarah L.; Lang, Christapher G.; Samareh, Jamshid A.; Daryabeigi, Kamran
2016-01-01
The National Aeronautics and Space Administration (NASA) is preparing to send humans beyond Low Earth Orbit and eventually to the surface of Mars. As part of the Evolvable Mars Campaign, different vehicle configurations are being designed and considered for delivering large payloads to the surface of Mars. Weight and packing volume are driving factors in the vehicle design, and the thermal protection system (TPS) for planetary entry is a technology area which can offer potential weight and volume savings. The feasibility and potential benefits of a ceramic matrix composite hot structure concept for different vehicle configurations are explored in this paper, including the nose cap for a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and an aeroshell for a mid lift-to-drag (Mid L/D) concept. The TPS of a planetary entry vehicle is a critical component required to survive the severe aerodynamic heating environment during atmospheric en- try. The current state-of-the-art is an ablative material to protect the vehicle from the heat load. The ablator is bonded to an underlying structure, which carries the mechanical loads associated with entry. The alternative hot structure design utilizes an advanced carbon-carbon material system on the outer surface of the vehicle, which is exposed to the severe heating and acts as a load carrying structure. The preliminary design using the hot structure concept and the ablative concept is determined for the spherical nose cap of the HIAD entry vehicle and the aeroshell of the Mid L/D entry vehicle. The results of the study indicate that the use of hot structures for both vehicle concepts leads to a feasible design with potential weight and volume savings benefits over current state-of-the-art TPS technology that could enable future missions.
Co-Optimization of Blunt Body Shapes for Moving Vehicles
NASA Technical Reports Server (NTRS)
Kinney, David J. (Inventor); Mansour, Nagi N (Inventor); Brown, James L. (Inventor); Garcia, Joseph A (Inventor); Bowles, Jeffrey V (Inventor)
2014-01-01
A method and associated system for multi-disciplinary optimization of various parameters associated with a space vehicle that experiences aerocapture and atmospheric entry in a specified atmosphere. In one embodiment, simultaneous maximization of a ratio of landed payload to vehicle atmospheric entry mass, maximization of fluid flow distance before flow separation from vehicle, and minimization of heat transfer to the vehicle are performed with respect to vehicle surface geometric parameters, and aerostructure and aerothermal vehicle response for the vehicle moving along a specified trajectory. A Pareto Optimal set of superior performance parameters is identified.
Implementation of phased-array homework: Assessment and focused understanding
NASA Astrophysics Data System (ADS)
Godshall, Stacy H.
2012-02-01
Students demonstrate different levels of understanding of material which often coincide with how diligent the students are with their daily preparation for class. Having students attempt homework problems prior to class enables them to be better prepared to ask specific questions about concepts and to perform on exams, as well as to develop as self learners. This paper will introduce "phased-array homework" that is a flexible system of assigning homework. In addition, this paper discusses resources for students that provide a scaffold for completing this type of homework. As the name of the homework system implies, phased-array homework (PAH) allows an instructor to shape and steer student understanding in much the same way that a phased-array antenna allows for the shaping and steering of a transmitted electromagnetic signal to yield its subsequent effective radiation pattern. Implementation method and results will be presented as well as student perspective on the system.
NASA Technical Reports Server (NTRS)
McNamara, Luke W.
2012-01-01
One of the key design objectives of NASA's Orion Exploration Flight Test 1 (EFT-1) is to execute a guided entry trajectory demonstrating GN&C capability. The focus of this paper is the ight control authority of the vehicle throughout the atmospheric entry ight to the target landing site and its impacts on GN&C, parachute deployment, and integrated performance. The vehicle's attitude control authority is obtained from thrusting 12 Re- action Control System (RCS) engines, with four engines to control yaw, four engines to control pitch, and four engines to control roll. The static and dynamic stability derivatives of the vehicle are determined to assess the inherent aerodynamic stability. The aerodynamic moments at various locations in the entry trajectory are calculated and compared to the available torque provided by the RCS system. Interaction between the vehicle's RCS engine plumes and the aerodynamic conditions are considered to assess thruster effectiveness. This document presents an assessment of Orion's ight control authority and its effectiveness in controlling the vehicle during critical events in the atmospheric entry trajectory.
49 CFR Appendix A to Part 591 - Section 591.5(f) Bond for the Entry of a Single Vehicle
Code of Federal Regulations, 2010 CFR
2010-10-01
... VEHICLES AND EQUIPMENT SUBJECT TO FEDERAL SAFETY, BUMPER AND THEFT PREVENTION STANDARDS Pt. 591, App. A Appendix A to Part 591—Section 591.5(f) Bond for the Entry of a Single Vehicle Department of Transportation... Vehicle A Appendix A to Part 591 Transportation Other Regulations Relating to Transportation (Continued...
NASA Technical Reports Server (NTRS)
Sepka, Steven A.; Zarchi, Kerry; Maddock, Robert W.; Samareh, Jamshid A.
2013-01-01
Part of NASAs In-Space Propulsion Technology (ISPT) program is the development of the tradespace to support the design of a family of multi-mission Earth Entry Vehicles (MMEEV) to meet a wide range of mission requirements. An integrated tool called the Multi Mission System Analysis for Planetary Entry Descent and Landing or M-SAPE tool is being developed as part of Entry Vehicle Technology project under In-Space Technology program. The analysis and design of an Earth Entry Vehicle (EEV) is multidisciplinary in nature, requiring the application many disciplines. Part of M-SAPE's application required the development of parametric mass estimating relationships (MERs) to determine the vehicle's required Thermal Protection System (TPS) for safe Earth entry. For this analysis, the heat shield was assumed to be made of a constant thickness TPS. This resulting MERs will then e used to determine the pre-flight mass of the TPS. Two Mers have been developed for the vehicle forebaody. One MER was developed for PICA and the other consisting of Carbon Phenolic atop an Advanced Carbon-Carbon composition. For the the backshell, MERs have been developed for SIRCA, Acusil II, and LI-900. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed in this poster.
Lawson, Glyn; Herriotts, Paul; Malcolm, Louise; Gabrecht, Katharina; Hermawati, Setia
2015-05-01
Ease of entry and exit is important for creating a positive first impression of a car and increasing customer satisfaction. Several methods are used within vehicle development to optimise ease of entry and exit, including CAD reviews, benchmarking and buck trials. However, there is an industry trend towards digital methods to reduce the costs and time associated with developing physical prototypes. This paper reports on a study of entry strategy in three properties (buck, car, CAVE) in which inconsistencies were demonstrated by people entering a vehicle representation in the CAVE. In a second study industry practitioners rated the CAVE as worse than physical methods for identifying entry and exit issues, and having lower perceived validity and reliability. However, the resource issues associated with building bucks were recognised. Recommendations are made for developing the CAVE and for combinations of methods for use at different stages of a vehicle's development. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Spratlin, Kenneth Milton
1987-01-01
An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.
Parametric Thermal Soak Model for Earth Entry Vehicles
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Samareh, Jamshid; Doan, Quy D.
2013-01-01
The analysis and design of an Earth Entry Vehicle (EEV) is multidisciplinary in nature, requiring the application many disciplines. An integrated tool called Multi Mission System Analysis for Planetary Entry Descent and Landing or M-SAPE is being developed as part of Entry Vehicle Technology project under In-Space Technology program. Integration of a multidisciplinary problem is a challenging task. Automation of the execution process and data transfer among disciplines can be accomplished to provide significant benefits. Thermal soak analysis and temperature predictions of various interior components of entry vehicle, including the impact foam and payload container are part of the solution that M-SAPE will offer to spacecraft designers. The present paper focuses on the thermal soak analysis of an entry vehicle design based on the Mars Sample Return entry vehicle geometry and discusses a technical approach to develop parametric models for thermal soak analysis that will be integrated into M-SAPE. One of the main objectives is to be able to identify the important parameters and to develop correlation coefficients so that, for a given trajectory, can estimate the peak payload temperature based on relevant trajectory parameters and vehicle geometry. The models are being developed for two primary thermal protection (TPS) materials: 1) carbon phenolic that was used for Galileo and Pioneer Venus probes and, 2) Phenolic Impregnated Carbon Ablator (PICA), TPS material for Mars Science Lab mission. Several representative trajectories were selected from a very large trade space to include in the thermal analysis in order to develop an effective parametric thermal soak model. The selected trajectories covered a wide range of heatload and heatflux combinations. Non-linear, fully transient, thermal finite element simulations were performed for the selected trajectories to generate the temperature histories at the interior of the vehicle. Figure 1 shows the finite element model that was used for the simulations. The results indicate that it takes several hours for the thermal energy to soak into the interior of the vehicle and achieve maximum payload temperatures. In addition, a strong correlation between the heatload and peak payload container temperature is observed that will help establishing the parametric thermal soak model.
Advanced Microstrip Antenna Developments : Volume I. Technology Studies for Aircraft Phased Arrays
DOT National Transportation Integrated Search
1981-06-01
Work has continued on improvement of microstrip phased-array antenna technology since the first microstrip phased-array was flight-tested during the FAA 1974-1975 ATS-6 test program. The present development has extended this earlier work in three are...
Avionics architecture studies for the entry research vehicle
NASA Technical Reports Server (NTRS)
Dzwonczyk, M. J.; Mckinney, M. F.; Adams, S. J.; Gauthier, R. J.
1989-01-01
This report is the culmination of a year-long investigation of the avionics architecture for NASA's Entry Research Vehicle (ERV). The Entry Research Vehicle is conceived to be an unmanned, autonomous spacecraft to be deployed from the Shuttle. It will perform various aerodynamic and propulsive maneuvers in orbit and land at Edwards AFB after a 5 to 10 hour mission. The design and analysis of the vehicle's avionics architecture are detailed here. The architecture consists of a central triply redundant ultra-reliable fault tolerant processor attached to three replicated and distributed MIL-STD-1553 buses for input and output. The reliability analysis is detailed here. The architecture was found to be sufficiently reliable for the ERV mission plan.
Yun, Sungdae; Kyriakos, Walid E; Chung, Jun-Young; Han, Yeji; Yoo, Seung-Schik; Park, Hyunwook
2007-03-01
To develop a novel approach for calculating the accurate sensitivity profiles of phased-array coils, resulting in correction of nonuniform intensity in parallel MRI. The proposed intensity-correction method estimates the accurate sensitivity profile of each channel of the phased-array coil. The sensitivity profile is estimated by fitting a nonlinear curve to every projection view through the imaged object. The nonlinear curve-fitting efficiently obtains the low-frequency sensitivity profile by eliminating the high-frequency image contents. Filtered back-projection (FBP) is then used to compute the estimates of the sensitivity profile of each channel. The method was applied to both phantom and brain images acquired from the phased-array coil. Intensity-corrected images from the proposed method had more uniform intensity than those obtained by the commonly used sum-of-squares (SOS) approach. With the use of the proposed correction method, the intensity variation was reduced to 6.1% from 13.1% of the SOS. When the proposed approach was applied to the computation of the sensitivity maps during sensitivity encoding (SENSE) reconstruction, it outperformed the SOS approach in terms of the reconstructed image uniformity. The proposed method is more effective at correcting the intensity nonuniformity of phased-array surface-coil images than the conventional SOS method. In addition, the method was shown to be resilient to noise and was successfully applied for image reconstruction in parallel imaging.
Radiative Heat Transfer During Atmosphere Entry at Parabolic Velocity
NASA Technical Reports Server (NTRS)
Yoshikawa, Kenneth K.; Wick, Bradford H.
1961-01-01
Stagnation point radiative heating rates for manned vehicles entering the earth's atmosphere at parabolic velocity are presented and compared with corresponding laminar convective heating rates. The calculations were made for both nonlifting and lifting entry trajectories for vehicles of varying nose radius, weight-to-area ratio, and drag. It is concluded from the results presented that radiative heating will be important for the entry conditions considered.
A phased array bread board for future remote sensing applications
NASA Astrophysics Data System (ADS)
Zahn, R. W.; Schmidt, E.
The next generation of SAR antennas will be of the active phased-array type. The ongoing development of a phased-array breadboard for remote sensing is described. Starting from a detailed system design, a functional representative breadboard was developed. The design and the performance of the breadboard are discussed.
Mars Pathfinder flight system integration and test.
NASA Astrophysics Data System (ADS)
Muirhead, B. K.
This paper describes the system integration and test experiences, problems and lessons learned during the assembly, test and launch operations (ATLO) phase of the Mars Pathfinder flight system scheduled to land on the surface of Mars on July 4, 1997. The Mars Pathfinder spacecraft consists of three spacecraft systems: cruise stage, entry vehicle and lander. The cruise stage carries the entry and lander vehicles to Mars and is jettisoned prior to entry. The entry vehicle, including aeroshell, parachute and deceleration rockets, protects the lander during the direct entry and reduces its velocity from 7.6 to 0 km/s in stages during the 5 min entry sequence. The lander's touchdown is softened by airbags which are retracted once stopped on the surface. The lander then uprights itself, opens up fully and begins surface operations including deploying its camera and rover. This paper overviews the system design and the results of the system integration and test activities, including the entry, descent and landing subsystem elements. System test experiences including science instruments, the microrover, Sojourner, and software are discussed. The final qualification of the entry, descent and landing subsystems during this period is also discussed.
Orion Entry Performance-Based Center-of-Gravity Box
NASA Technical Reports Server (NTRS)
Rea, Jeremy R.
2010-01-01
The Orion capsule has many performance requirements for its atmospheric entry trajectory. Requirements on landing accuracy, maximum heating rate, total heat load, propellant usage, and sensed acceleration must all be satised. It is desired to define a methodology to translate the many performance requirements for an atmospheric entry trajectory into language easily understood by vehicle designers in terms of an allowable center-of-gravity box. This is possible by noting that most entry performance parameters for a capsule vehicle are mainly determined by the lift-to-drag ratio of the vehicle. However, the lift-to- drag ratio should be considered a probabilistic quantity rather than deterministic, where variations in the lift-to-drag are caused by both aerodynamic and center-of-gravity un- certainties. This paper discusses the technique used by the Orion program to define the allowable dispersions in center-of-gravity to achieve the desired entry performance while accounting for aerodynamic uncertainty.
Aerobraking characteristics for several potential manned Mars entry vehicles
NASA Technical Reports Server (NTRS)
Tartabini, Paul V.; Suit, William T.
1989-01-01
While a reduction in weight is always desirable for any space vehicle, it is crucial for vehicles to be used in the proposed Manned Mars Mission (MMM). One such way to reduce a spacecraft's weight is through aeroassist braking which is an alternative to retro-rockets, the traditional method of slowing a craft approaching from a high energy orbit. In this paper aeroassist braking was examined for two blunt vehicle configurations and one streamlined configuration. For each vehicle type, a range of lift-to-drag ratios was examined and the entry angle windows, bank profiles, and trajectory parameters were recorded here. In addition, the sensitivities of velocity and acceleration with respect to the entry angle and bank angles were included. Also, the effect of using different atmosphere models was tested by incorporating several models into the simulation program.
Passive vs. Parachute System Architecture for Robotic Sample Return Vehicles
NASA Technical Reports Server (NTRS)
Maddock, Robert W.; Henning, Allen B.; Samareh, Jamshid A.
2016-01-01
The Multi-Mission Earth Entry Vehicle (MMEEV) is a flexible vehicle concept based on the Mars Sample Return (MSR) EEV design which can be used in the preliminary sample return mission study phase to parametrically investigate any trade space of interest to determine the best entry vehicle design approach for that particular mission concept. In addition to the trade space dimensions often considered (e.g. entry conditions, payload size and mass, vehicle size, etc.), the MMEEV trade space considers whether it might be more beneficial for the vehicle to utilize a parachute system during descent/landing or to be fully passive (i.e. not use a parachute). In order to evaluate this trade space dimension, a simplified parachute system model has been developed based on inputs such as vehicle size/mass, payload size/mass and landing requirements. This model works in conjunction with analytical approximations of a mission trade space dataset provided by the MMEEV System Analysis for Planetary EDL (M-SAPE) tool to help quantify the differences between an active (with parachute) and a passive (no parachute) vehicle concept.
Optically controlled phased-array antenna technology for space communication systems
NASA Technical Reports Server (NTRS)
Kunath, Richard R.; Bhasin, Kul B.
1988-01-01
Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power.
Transport properties associated with carbon-phenolic ablators
NASA Technical Reports Server (NTRS)
Biolsi, L.
1982-01-01
Entry vehicle heat shields designed for entry into the atmosphere of the outer planets are usually made of carbonaceous material such as carbon-phenolic ablator. Ablative injection of this material is an important mechanism for reducing the heat at the surface of the entry vehicle. Conductive transport properties in the shock layer are important for some entry conditions. The kinetic theory of gases has been used to calculate the transport properties for 17 gaseous species obtained from the ablation of carbon-phenolic heat shields. Results are presented for the pure species and for the gas mixture.
Flap effectiveness appraisal for winged re-entry vehicles
NASA Astrophysics Data System (ADS)
de Rosa, Donato; Pezzella, Giuseppe; Donelli, Raffaele S.; Viviani, Antonio
2016-05-01
The interactions between shock waves and boundary layer are commonplace in hypersonic aerodynamics. They represent a very challenging design issue for hypersonic vehicle. A typical example of shock wave boundary layer interaction is the flowfield past aerodynamic surfaces during control. As a consequence, such flow interaction phenomena influence both vehicle aerodynamics and aerothermodynamics. In this framework, the present research effort describes the numerical activity performed to simulate the flowfield past a deflected flap in hypersonic flowfield conditions for a winged re-entry vehicle.
A Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Cerimele, Christopher J.; Robertson, Edward A.; Sostaric, Ronald R.; Campbell, Charles H.; Robinson, Phil; Matz, Daniel A.; Johnson, Breanna J.; Stachowiak, Susan J.; Garcia, Joseph A.; Bowles, Jeffrey V.;
2017-01-01
Current NASA Human Mars architectures require delivery of approximately 20 metric tons of cargo to the surface in a single landing. A proposed vehicle type for performing the entry, descent, and landing at Mars associated with this architecture is a rigid, enclosed, elongated lifting body shape that provides a higher lift-to-drag ratio (L/D) than a typical entry capsule, but lower than a typical winged entry vehicle (such as the Space Shuttle Orbiter). A rigid Mid-L/D shape has advantages for large mass Mars EDL, including loads management, range capability during entry, and human spaceflight heritage. Previous large mass Mars studies have focused more on symmetric and/or circular cross-section Mid-L/D shapes such as the ellipsled. More recent work has shown performance advantages for non-circular cross section shapes. This paper will describe efforts to design a rigid Mid-L/D entry vehicle for Mars which shows mass and performance improvements over previous Mid-L/D studies. The proposed concept, work to date and evolution, forward path, and suggested future strategy are described.
NASA Technical Reports Server (NTRS)
Gazarik, Michael J.; Hwang, Helen; Little, Alan; Cheatwood, Neil; Wright, Michael; Herath, Jeff
2007-01-01
The Mars Science Laboratory Entry, Descent, and Landing Instrumentation (MEDLI) Project's objectives are to measure aerothermal environments, sub-surface heatshield material response, vehicle orientation, and atmospheric density for the atmospheric entry and descent phases of the Mars Science Laboratory (MSL) entry vehicle. The flight science objectives of MEDLI directly address the largest uncertainties in the ability to design and validate a robust Mars entry system, including aerothermal, aerodynamic and atmosphere models, and thermal protection system (TPS) design. The instrumentation suite will be installed in the heatshield of the MSL entry vehicle. The acquired data will support future Mars entry and aerocapture missions by providing measured atmospheric data to validate Mars atmosphere models and clarify the design margins for future Mars missions. MEDLI thermocouple and recession sensor data will significantly improve the understanding of aeroheating and TPS performance uncertainties for future missions. MEDLI pressure data will permit more accurate trajectory reconstruction, as well as separation of aerodynamic and atmospheric uncertainties in the hypersonic and supersonic regimes. This paper provides an overview of the project including the instrumentation design, system architecture, and expected measurement response.
NASA Technical Reports Server (NTRS)
Gazarik, Michael J.; Little, Alan; Cheatwood, F. Neil; Wright, Michael J.; Herath, Jeff A.; Martinez, Edward R.; Munk, Michelle; Novak, Frank J.; Wright, Henry S.
2008-01-01
The Mars Science Laboratory Entry, Descent, and Landing Instrumentation (MEDLI) Project s objectives are to measure aerothermal environments, sub-surface heatshield material response, vehicle orientation, and atmospheric density for the atmospheric entry and descent phases of the Mars Science Laboratory (MSL) entry vehicle. The flight science objectives of MEDLI directly address the largest uncertainties in the ability to design and validate a robust Mars entry system, including aerothermal, aerodynamic and atmosphere models, and thermal protection system (TPS) design. The instrumentation suite will be installed in the heatshield of the MSL entry vehicle. The acquired data will support future Mars entry and aerocapture missions by providing measured atmospheric data to validate Mars atmosphere models and clarify the design margins for future Mars missions. MEDLI thermocouple and recession sensor data will significantly improve the understanding of aeroheating and TPS performance uncertainties for future missions. MEDLI pressure data will permit more accurate trajectory reconstruction, as well as separation of aerodynamic and atmospheric uncertainties in the hypersonic and supersonic regimes. This paper provides an overview of the project including the instrumentation design, system architecture, and expected measurement response.
Planetary Mission Entry Vehicles Quick Reference Guide. Version 3.0
NASA Technical Reports Server (NTRS)
Davies, Carol; Arcadi, Marla
2006-01-01
This is Version 3.0 of the planetary mission entry vehicle document. Three new missions, Re-entry F, Hayabusa, and ARD have been added to t he previously published edition (Version 2.1). In addition, the Huyge ns mission has been significantly updated and some Apollo data correc ted. Due to the changing nature of planetary vehicles during the desi gn, manufacture and mission phases, and to the variables involved in measurement and computation, please be aware that the data provided h erein cannot be guaranteed. Contact Carol Davies at cdavies@mail.arc. nasa.gov to correct or update the current data, or to suggest other missions.
NASA Technical Reports Server (NTRS)
1977-01-01
Recoverable launch vehicle concepts for the Solar Power Satellite program were identified. These large launch vehicles are powered by proposed engines in the F-1 thrust level class. A description of the candidate launch vehicles and their operating mode was provided. Predictions of the sonic over pressures during ascent and entry for both types of vehicles, and prediction of launch noise levels in the vicinity of the launch site were included. An overall assessment and criteria for sonic overpressure and noise levels was examined.
Mid-Lift-to-Drag Ratio Rigid Vehicle Control System Design and Simulation for Human Mars Entry
NASA Technical Reports Server (NTRS)
Johnson, Breanna J.; Cerimele, Christopher J.; Stachowiak, Susan J.; Sostaric, Ronald R.; Matz, Daniel A.; Lu, Ping
2018-01-01
The Mid-Lift-to-Drag Ratio Rigid Vehicle (MRV) is a proposed candidate in the NASA Evolvable Mars Campaign's (EMC) Pathfinder Entry, Descent, and Landing (EDL) architecture study. The purpose of the study is to design a mission and vehicle capable of transporting a 20mt payload to the surface of Mars. The MRV is unique in its rigid, asymmetrical lifting-body shape which enables a higher lift-to-drag ratio (L/D) than the typical robotic Mars entry capsule vehicles that carry much less mass. This paper presents the formulation and six-degree-of-freedom (6DOF) performance of the MRV's control system, which uses both aerosurfaces and a propulsive reaction control system (RCS) to affect longitudinal and lateral directional behavior.
On-Board Entry Trajectory Planning Expanded to Sub-orbital Flight
NASA Technical Reports Server (NTRS)
Lu, Ping; Shen, Zuojun
2003-01-01
A methodology for on-board planning of sub-orbital entry trajectories is developed. The algorithm is able to generate in a time frame consistent with on-board environment a three-degree-of-freedom (3DOF) feasible entry trajectory, given the boundary conditions and vehicle modeling. This trajectory is then tracked by feedback guidance laws which issue guidance commands. The current trajectory planning algorithm complements the recently developed method for on-board 3DOF entry trajectory generation for orbital missions, and provides full-envelope autonomous adaptive entry guidance capability. The algorithm is validated and verified by extensive high fidelity simulations using a sub-orbital reusable launch vehicle model and difficult mission scenarios including failures and aborts.
Orion Entry Display Feeder and Interactions with the Entry Monitor System
NASA Technical Reports Server (NTRS)
Baird, Darren; Bernatovich, Mike; Gillespie, Ellen; Kadwa, Binaifer; Matthews, Dave; Penny, Wes; Zak, Tim; Grant, Mike; Bihari, Brian
2010-01-01
The Orion spacecraft is designed to return astronauts to a landing within 10 km of the intended landing target from low Earth orbit, lunar direct-entry, and lunar skip-entry trajectories. Al pile the landing is nominally controlled autonomously, the crew can fly precision entries manually in the event of an anomaly. The onboard entry displays will be used by the crew to monitor and manually fly the entry, descent, and landing, while the Entry Monitor System (EMS) will be used to monitor the health and status of the onboard guidance and the trajectory. The entry displays are driven by the entry display feeder, part of the Entry Monitor System (EMS). The entry re-targeting module, also part of the EMS, provides all the data required to generate the capability footprint of the vehicle at any point in the trajectory, which is shown on the Primary Flight Display (PFD). It also provides caution and warning data and recommends the safest possible re-designated landing site when the nominal landing site is no longer within the capability of the vehicle. The PFD and the EMS allow the crew to manually fly an entry trajectory profile from entry interface until parachute deploy having the flexibility to manually steer the vehicle to a selected landing site that best satisfies the priorities of the crew. The entry display feeder provides data from the ENIS and other components of the GNC flight software to the displays at the proper rate and in the proper units. It also performs calculations that are specific to the entry displays and which are not made in any other component of the flight software. In some instances, it performs calculations identical to those performed by the onboard primary guidance algorithm to protect against a guidance system failure. These functions and the interactions between the entry display feeder and the other components of the EMS are described.
Development of a Parachute System for Deceleration of Flying Vehicles in Supersonic Regimes
NASA Astrophysics Data System (ADS)
Pilyugin, N. N.; Khlebnikov, V. S.
2010-09-01
Aerodynamic problems arising during design and development of braking systems for re-entry vehicles are analyzed. Aerodynamic phenomena and laws valid in a supersonic flow around a pair of bodies having different shapes are studied. Results of this research can be used in solving application problems (arrangement and optimization of experiments; design and development of various braking systems for re-entry vehicles moving with supersonic speeds in the atmosphere).
Wang, Mingjun; Zhou, Yufeng
2016-08-01
HIFU becomes an effective and non-invasive modality of solid tumour/cancer ablation. Simulation of the non-linear acoustic wave propagation using a phased-array transducer in multiple layered media using different focusing strategies and the consequent lesion formation are essential in HIFU planning in order to enhance the efficacy and efficiency of treatment. An angular spectrum approach with marching fractional steps was applied in the wave propagation from phased-array HIFU transducer, and diffraction, attenuation, and non-linearity effects were accounted for by a second-order operator splitting scheme. The simulated distributions of the first three harmonics along and transverse to the transducer axis were compared to the hydrophone measurements. The bioheat equation was used to simulate the subsequent temperature elevation using the deposited acoustic energy, and lesion formation was determined by the thermal dose. Better agreement was found between the measured harmonics distribution and simulation using the proposed algorithm than the Khokhlov-Zabozotskaya-Kuznetsov equation. Variable focusing of the phased-array transducer (geometric focusing, transverse shifting and the generation of multiple foci) can be simulated successfully. The shifting and splitting of focus was found to result in significantly less temperature elevation at the focus and the subsequently, the smaller lesion size, but the larger grating lobe grating lobe in the pre-focal region. The proposed algorithm could simulate the non-linear wave propagation from the source with arbitrary shape and distribution of excitation through multiple tissue layers in high computation accuracy. The performance of phased-array HIFU can be optimised in the treatment planning.
An Integrated Tool for System Analysis of Sample Return Vehicles
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.
2012-01-01
The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... public transportation services. Self-propelled, rubber-tired vehicles designed to look like antique or...-entry vehicles or by level boarding. New vehicle means a vehicle which is offered for sale or lease...
NASA Technical Reports Server (NTRS)
Swanson, Gregory T.; Cassell, Alan M.
2011-01-01
Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology is currently being considered for multiple atmospheric entry applications as the limitations of traditional entry vehicles have been reached. The Inflatable Re-entry Vehicle Experiment (IRVE) has successfully demonstrated this technology as a viable candidate with a 3.0 m diameter vehicle sub-orbital flight. To further this technology, large scale HIADs (6.0 8.5 m) must be developed and tested. To characterize the performance of large scale HIAD technology new instrumentation concepts must be developed to accommodate the flexible nature inflatable aeroshell. Many of the concepts that are under consideration for the HIAD FY12 subsonic wind tunnel test series are discussed below.
Saket, Ramin R; Razavi, Mahmood K; Padidar, Arash; Kee, Stephen T; Sze, Daniel Y; Dake, Michael D
2004-06-01
To report our experience using a commercially available catheter-based system equipped with an intravascular ultrasound (IVUS) transducer to achieve controlled true lumen re-entry in patients undergoing subintimal angioplasty for chronic total occlusions (CTO) or aortic dissections. During an 8-month period, 10 patients (6 men; mean age 73.4 years) with lower extremity (LE) ischemia from CTOs (n=7) or true lumen collapse from aortic dissections (n=3) were treated. Subintimal access and controlled re-entry of the CTOs were performed with a commercially available 6.2-F dual-lumen catheter, which contained an integrated 64-element phased-array IVUS transducer and a deployable 24-G needle through which a guidewire was passed once the target lumen was reached. The occluded segments were balloon dilated; self-expanding nitinol stents were deployed. In the aortic dissections, fenestrations were performed using the same device, with the IVUS unit acting as the guide. The fenestrations were balloon dilated and stented to support the true lumen. Time to effective re-entry ranged from 6 to 10 minutes (mean 7) in the CTOs; antegrade flow was restored in all 7 CTOs, and the patients were free of ischemic symptoms at up to 8-month follow-up. In the aortic dissection cases, the fenestrations equalized pressures between the lumens and restored flow into the compromised vessels. There were no complications related to the use of this device in any of the 10 patients. Our preliminary results demonstrate the feasibility of using this catheter-based system for subintimal recanalization with controlled re-entry in CTOs and for aortic flap fenestrations in aortic dissections. This approach can improve the technical success rate, reduce the time of the procedure, and minimize potential complications.
Earth Return Aerocapture for the TransHab/Ellipsled Vehicle
NASA Technical Reports Server (NTRS)
Muth, W. D.; Hoffmann, C.; Lyne, J. E.
2000-01-01
The current architecture being considered by NASA for a human Mars mission involves the use of an aerocapture procedure at Mars arrival and possibly upon Earth return. This technique would be used to decelerate the vehicles and insert them into their desired target orbits, thereby eliminating the need for propulsive orbital insertions. The crew may make the interplanetary journey in a large, inflatable habitat known as the TransHab. It has been proposed that upon Earth return, this habitat be captured into orbit for use on subsequent missions. In this case, the TransHab would be complimented with an aeroshell, which would protect it from heating during the atmospheric entry and provide the vehicle with aerodynamic lift. The aeroshell has been dubbed the "Ellipsled" because of its characteristic shape. This paper reports the results of a preliminary study of the aerocapture of the TransHab/Ellipsled vehicle upon Earth return. Undershoot and overshoot boundaries have been determined for a range of entry velocities, and the effects of variations in the atmospheric density profile, the vehicle deceleration limit, the maximum vehicle roll rate, the target orbit, and the vehicle ballistic coefficient have been examined. A simple, 180 degree roll maneuver was implemented in the undershoot trajectories to target the desired 407 km circular Earth orbit. A three-roll sequence was developed to target not only a specific orbital energy, but also a particular inclination, thereby decreasing propulsive inclination changes and post-aerocapture delta-V requirements. Results show that the TransHab/Ellipsled vehicle has a nominal corridor width of at least 0.7 degrees for entry speeds up to 14.0 km/s. Most trajectories were simulated using continuum flow aerodynamics, but the impact of high-altitude viscous effects was evaluated and found to be minimal. In addition, entry corridor comparisons have been made between the TransHab/Ellipsled and a modified Apollo capsule which is also being considered as the crew return vehicle; because of its slightly higher lift-to-drag ratio, the TransHab has a modest advantage with regard to corridor width. Stagnation-point heating rates and integrated heat loads were determined for a range of vehicle ballistic coefficients and entry velocities.
Grid resolution and solution convergence for Mars Pathfinder forebody
NASA Technical Reports Server (NTRS)
Nettelhorst, Heather L.; Mitcheltree, Robert A.
1994-01-01
As part of the Discovery Program, NASA Plans to launch a series of probes to Mars. The Mars Pathfinder project is the first of this series with a scheduled Mars arrival in July 1997. The entry vehicle will perform a direct entry into the atmosphere and deliver a lander to the surface. Predicting the entry vehicle's flight performance and designing the forebody heatshield requires knowledge of the expected aerothermodynamic environment. Much of this knowledge can be obtained through computational fluid dynamic (CFD) analysis.
Accurate predictor-corrector skip entry guidance for low lift-to-drag ratio spacecraft
NASA Astrophysics Data System (ADS)
Enmi, Y.; Qian, W.; He, K.; Di, D.
2018-06-01
This paper develops numerical predictor-corrector skip en try guidance for vehicles with low lift-to-drag L/D ratio during the skip entry phase of a Moon return mission. The guidance method is composed of two parts: trajectory planning before entry and closed-loop gu idance during skip entry. The result of trajectory planning before entry is able to present an initial value for predictor-corrector algorithm in closed-loop guidance for fast convergence. The magnitude of bank angle, which is parameterized as a linear function of the range-to-go, is modulated to satisfy the downrange requirements. The sign of the bank ang le is determined by the bank-reversal logic. The predictor-corrector algorithm repeatedly applied onboard in each guidance cycle to realize closed-loop guidance in the skip entry phase. The effectivity of the proposed guidance is validated by simulations in nominal conditions, including skip entry, loft entry, and direct entry, as well as simulations in dispersion conditions considering the combination disturbance of the entry interface, the aerodynamic coefficients, the air density, and the mass of the vehicle.
2012-10-03
ISS033-E-009232 (3 Oct. 2012) --- This still photo taken by the Expedition 33 crew members aboard the International Space Station shows evidence of the fiery plunge through Earth?s atmosphere and the destructive re-entry of the European Automated Transfer Vehicle-3 (ATV-3) spacecraft, also known as ?Edoardo Amaldi.? The end of the ATV took place over a remote swath of the Pacific Ocean where any surviving debris safely splashed down a short time later, at around 1:30 a.m. (GMT) on Oct. 3, thus concluding the highly successful ATV-3 mission. Aboard the craft during re-entry was the Re Entry Breakup Recorder (REBR), a spacecraft ?black box? designed to gather data on vehicle disintegration during re-entry in order to improve future spacecraft re-entry models.
Multi-Mission System Analysis for Planetary Entry (M-SAPE) Version 1
NASA Technical Reports Server (NTRS)
Samareh, Jamshid; Glaab, Louis; Winski, Richard G.; Maddock, Robert W.; Emmett, Anjie L.; Munk, Michelle M.; Agrawal, Parul; Sepka, Steve; Aliaga, Jose; Zarchi, Kerry;
2014-01-01
This report describes an integrated system for Multi-mission System Analysis for Planetary Entry (M-SAPE). The system in its current form is capable of performing system analysis and design for an Earth entry vehicle suitable for sample return missions. The system includes geometry, mass sizing, impact analysis, structural analysis, flight mechanics, TPS, and a web portal for user access. The report includes details of M-SAPE modules and provides sample results. Current M-SAPE vehicle design concept is based on Mars sample return (MSR) Earth entry vehicle design, which is driven by minimizing risk associated with sample containment (no parachute and passive aerodynamic stability). By M-SAPE exploiting a common design concept, any sample return mission, particularly MSR, will benefit from significant risk and development cost reductions. The design provides a platform by which technologies and design elements can be evaluated rapidly prior to any costly investment commitment.
Kellman, Peter; Dyke, Christopher K.; Aletras, Anthony H.; McVeigh, Elliot R.; Arai, Andrew E.
2007-01-01
Regions of the body with long T1, such as cerebrospinal fluid (CSF), may create ghost artifacts on gadolinium-hyperenhanced images of myocardial infarction when inversion recovery (IR) sequences are used with a segmented acquisition. Oscillations in the transient approach to steady state for regions with long T1 may cause ghosts, with the number of ghosts being equal to the number of segments. B1-weighted phased-array combining provides an inherent degree of ghost artifact suppression because the ghost artifact is weighted less than the desired signal intensity by the coil sensitivity profiles. Example images are shown that illustrate the suppression of CSF ghost artifacts by the use of B1-weighted phased-array combining of multiple receiver coils. PMID:14755669
Fjield, T; Hynynen, K
2000-01-01
Phased-array technology offers an incredible advantage to therapeutic ultrasound due to the ability to electronically steer foci, create multiple foci, or to create an enlarged focal region by using phase cancellation. However, to take advantage of this flexibility, the phased-arrays generally consist of many elements. Each of these elements requires its own radio-frequency generator with independent amplitude and phase control, resulting in a large, complex, and expensive driving system. A method is presented here where in certain cases the number of amplifier channels can be reduced to a fraction of the number of transducer elements, thereby simplifying the driving system and reducing the overall system complexity and cost, by using isolation transformers to produce 180 degrees phase shifts.
Integrated Design System (IDS) Tools for the Spacecraft Aeroassist/Entry Vehicle Design Process
NASA Technical Reports Server (NTRS)
Olynick, David; Braun, Robert; Langhoff, Steven R. (Technical Monitor)
1997-01-01
The definition of the Integrated Design System technology focus area as presented in the NASA Information Technology center of excellence strategic plan is described. The need for IDS tools in the aeroassist/entry vehicle design process is illustrated. Initial and future plans for spacecraft IDS tool development are discussed.
NASA Technical Reports Server (NTRS)
Whiting, Ellis E.
1990-01-01
Future space vehicles returning from distant missions or high earth orbits may enter the upper regions of the atmosphere and use aerodynamic drag to reduce their velocity before they skip out of the atmosphere and enter low earth orbit. The Aeroassist Flight Experiment (AFE) is designed to explore the special problems encountered in such entries. A computer code was developed to calculate the radiative transport along line-or-sight in the general 3-D flow field about an arbitrary entry vehicle, if the temperatures and species concentrations along the line-of-sight are known. The radiative heating calculation at the stagnation point of the AFE vehicle along the entry trajectory was performed, including a detailed line-by-line accounting of the radiative transport in the vacuum ultraviolet (below 200 nm) by the atomic N and O lines. A method was developed for making measurements of the haze particles in the Titan atmosphere above 200 km altitude. Several other tasks of a continuing nature, to improve the technical ability to calculate the nonequilibrium gas dynamic flow field and radiative heating of entry vehicles, were completed or advanced.
Base flow investigation of the Apollo AS-202 Command Module
NASA Astrophysics Data System (ADS)
Walpot, Louis M. G.; Wright, Michael J.; Noeding, Peter; Schrijer, Ferry
2012-01-01
A major contributor to the overall vehicle mass of re-entry vehicles is the afterbody thermal protection system. This is due to the large acreage (equal or bigger than that of the forebody) to be protected. The present predictive capabilities for base flows are comparatively lower than those for windward flowfields and offer therefore a substantial potential for improving the design of future re-entry vehicles. To that end, it is essential to address the accuracy of high fidelity CFD tools exercised in the US and EU, which motivates a thorough investigation of the present status of hypersonic flight afterbody heating. This paper addresses the predictive capabilities of afterbody flow fields of re-entry vehicles investigated in the frame of the NATO/RTO-RTG-043 task group. First, the verification of base flow topologies on the basis of available wind-tunnel results performed under controlled supersonic conditions (i.e. cold flows devoid of reactive effects) is performed. Such tests address the detailed characterization of the base flow with particular emphasis on separation/reattachment and their relation to Mach number effects. The tests have been performed on an Apollo-like re-entry capsule configuration. Second, the tools validated in the frame of the previous effort are exercised and appraised against flight-test data collected during the Apollo AS-202 re-entry.
NASA Technical Reports Server (NTRS)
Tigges, Michael; Crull, Timothy; Rea, Jeremy; Johnson, Wyatt
2006-01-01
This paper assesses a preliminary guidance and targeting strategy for accomplishing Skip-Entry (SE) flight during a lunar return-capsule entry flight. One of the primary benefits of flying a SE trajectory is to provide the crew with continuous Continental United States (CONUS) landing site access throughout the lunar month. Without a SE capability, the capsule must land either in water or at one of several distributed land sites in the Southern Hemisphere for a significant portion of a lunar month using a landing and recovery scenario similar to that employed during the Apollo program. With a SE trajectory, the capsule can land either in water at a site in proximity to CONUS or at one of several distributed landing sites within CONUS, thereby simplifying the operational requirements for crew retrieval and vehicle recovery, and possibly enabling a high degree of vehicle reusability. Note that a SE capability does not require that the vehicle land on land. A SE capability enables a longer-range flight than a direct-entry flight, which permits the vehicle to land at a much greater distance from the Entry Interface (EI) point. This does not exclude using this approach to push the landing point to a water location in proximity of CONUS and utilizing water or airborne recovery forces.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., rubber-tired vehicles designed to look like antique or vintage trolleys are considered buses. Commerce... provided by step-entry vehicles or by level boarding. New vehicle means a vehicle which is offered for sale...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., rubber-tired vehicles designed to look like antique or vintage trolleys are considered buses. Commerce... provided by step-entry vehicles or by level boarding. New vehicle means a vehicle which is offered for sale...
Hypersonic and Supersonic Static Aerodynamics of Mars Science Laboratory Entry Vehicle
NASA Technical Reports Server (NTRS)
Dyakonov, Artem A.; Schoenenberger, Mark; Vannorman, John W.
2012-01-01
This paper describes the analysis of continuum static aerodynamics of Mars Science Laboratory (MSL) entry vehicle (EV). The method is derived from earlier work for Mars Exploration Rover (MER) and Mars Path Finder (MPF) and the appropriate additions are made in the areas where physics are different from what the prior entry systems would encounter. These additions include the considerations for the high angle of attack of MSL EV, ablation of the heatshield during entry, turbulent boundary layer, and other aspects relevant to the flight performance of MSL. Details of the work, the supporting data and conclusions of the investigation are presented.
Laminar, Transitional, and Turbulent Heating on Mid Lift-to-Drag Ratio Entry Vehicles
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Hollingsworth, Kevin E.
2013-01-01
The boundary-layer transition characteristics and convective aeroheating levels on mid lift-to-drag ratio entry vehicle configurations have been studied through wind-tunnel testing. Several configurations were investigated, including elliptically blunted cylinders with both circular and elliptically flattened cross sections, biconic geometries based on launch vehicle dual-use shrouds, and parametrically optimized analytic geometries. Vehicles of this class have been proposed for high-mass Mars missions, such as sample return and crewed exploration, for which the conventional sphere-cone entry-vehicle geometries of previous Mars missions are insufficient. Testing was conducted at Mach 6 over a range of Reynolds numbers sufficient to generate laminar, transitional, and turbulent flow. Transition onset locations, both straight-line and cross-flow, and heating rates were obtained through global phosphor thermography. Supporting computations were performed to obtain heating rates for comparison with the data. Laminar data and predictions agreed to well within the experimental uncertainty. Fully turbulent data and predictions also agreed well. However, in transitional flow regions, greater differences were observed.
FLPP IXV Re-entry Vehicle, Transonic Characterisation Based on FOI T1500 Wind Tunnel Tests and CFD
NASA Astrophysics Data System (ADS)
Torngren, L.; Chiarelli, C.; Mareschi, V.; Tribot, J.-P.; Binetti, P.; Walloschek, T.
2009-01-01
The European Space Agency ESA, has engaged in 2004, the IXV project (Intermediate eXperimental Vehicle) which is part of the FLPP (Future Launcher Preparatory Programme) aiming at answering to critical technological issues, while supporting the future generation launchers and to improve in general European capabilities in the strategic field of atmospheric re-entry for space transportation, exploration and scientific applications. The IXV key mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled re-entry system, integrating the critical re-entry technologies at the system level. The current IXV vehicle is a slender body type exhibiting rounded shape, thick body controlled by means of two control surfaces. The current mission is to perform an atmospheric re- entry ended by a safe recovery in supersonic regime. A potential extension of the flight domain down to the transonic regime was proposed to be analyzed. The objectives were to study the capability of the IXV for flying autonomously enabling a recovery of the vehicle by means of a subsonic parachute based DRS. The vehicle designed for the hypersonic speeds integrating a large base with only two control surfaces located close to the plane of symmetry is definitively not tuned for transonic ones. CFD done by Thales Alenia Space and wind tunnel activities involving FOI T1500 facility contributed to built up an Aerodynamic Data Base (AEDB) to be used as inputs for flying qualities analysis and re-entry simulations. The paper presents the main objectives of the transonic activities with emphasis on CFD and WTT including a description of the different prediction tools and discussing the main outcomes of the current data comparisons.
Contemporary Impact Analysis Methodology for Planetary Sample Return Missions
NASA Technical Reports Server (NTRS)
Perino, Scott V.; Bayandor, Javid; Samareh, Jamshid A.; Armand, Sasan C.
2015-01-01
Development of an Earth entry vehicle and the methodology created to evaluate the vehicle's impact landing response when returning to Earth is reported. NASA's future Mars Sample Return Mission requires a robust vehicle to return Martian samples back to Earth for analysis. The Earth entry vehicle is a proposed solution to this Mars mission requirement. During Earth reentry, the vehicle slows within the atmosphere and then impacts the ground at its terminal velocity. To protect the Martian samples, a spherical energy absorber called an impact sphere is under development. The impact sphere is composed of hybrid composite and crushable foam elements that endure large plastic deformations during impact and cause a highly nonlinear vehicle response. The developed analysis methodology captures a range of complex structural interactions and much of the failure physics that occurs during impact. Numerical models were created and benchmarked against experimental tests conducted at NASA Langley Research Center. The postimpact structural damage assessment showed close correlation between simulation predictions and experimental results. Acceleration, velocity, displacement, damage modes, and failure mechanisms were all effectively captured. These investigations demonstrate that the Earth entry vehicle has great potential in facilitating future sample return missions.
The use of inflatable structures for re-entry of orbiting vehicles
NASA Astrophysics Data System (ADS)
Kendall, Robert T.; Maddox, Arthur R.
1990-10-01
Inflatable recovery systems offer the unique advantage that a large high-drag shape can be stored initially in a relatively small package. The resulting shapes decelerate rapidly with lower heating inputs than other types of re-entry vehicles. Recent developments have led to some light-weight materials, with little thermal protection, can withstand the heating inputs to such vehicles. As a result, inflatable recovery vehicles offer a simple, reliable and economical way to return various vehicles from orbit. This paper examines the application of this concept to a large and a small vehicle with the accompanying dynamics that might be expected. More complex systems could extend the concept to emergency personnel escape systems, payload abort and satellite recovery systems.
Phased-Array Antenna With Optoelectronic Control Circuits
NASA Technical Reports Server (NTRS)
Kunath, Richard R.; Shalkhauser, Kurt A.; Martzaklis, Konstantinos; Lee, Richard Q.; Downey, Alan N.; Simons, Rainee N.
1995-01-01
Prototype phased-array antenna features control of amplitude and phase at each radiating element. Amplitude- and phase-control signals transmitted on optical fiber to optoelectronic interface circuit (OEIC), then to monolithic microwave integrated circuit (MMIC) at each element. Offers advantages of flexible, rapid electronic steering and shaping of beams. Furthermore, greater number of elements, less overall performance of antenna degraded by malfunction in single element.
Multi-Mission Earth Vehicle Subsonic Dynamic Stability Testing and Analyses
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Fremaux, C. Michael
2013-01-01
Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes, retro-rockets, and reaction control systems and rely on the natural aerodynamic stability of the vehicle throughout the Entry, Descent, and Landing (EDL) phase of flight. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs for an array of missions and develop and visualize the trade space. Testing in NASA Langley?s Vertical Spin Tunnel (VST) was conducted to significantly improve M-SAPE?s subsonic aerodynamic models. Vehicle size and shape can be driven by entry flight path angle and speed, thermal protection system performance, terminal velocity limitations, payload mass and density, among other design parameters. The objectives of the VST testing were to define usable subsonic center of gravity limits, and aerodynamic parameters for 6-degree-of-freedom (6-DOF) simulations, for a range of MMEEV designs. The range of MMEEVs tested was from 1.8m down to 1.2m diameter. A backshell extender provided the ability to test a design with a much larger payload for the 1.2m MMEEV.
Thermal Protection Materials: Development, Characterization and Evaluation
NASA Technical Reports Server (NTRS)
Johnson, Silvia M.
2012-01-01
Thermal protection materials and systems (TPS) are used to protect space vehicles from the heat experienced during entry into an atmosphere. The application for these materials is very specialized as are the materials. They must have specific properties to withstand conditions during specific entries. There is no one-size-fits-all TPS as the conditions experienced by a material are very dependent upon the atmosphere, the entry speed, the size and shape of the vehicle, and the location on the vehicle. However, all TPS must be reliable and efficient to ensure mission safety, that is to protect the vehicle while ensuring that payload is maximized. Types of TPS will be reviewed in relation to types of missions and applications. Both reusable and ablative materials will be discussed. Approaches to characterizing and evaluating these materials will be presented. The role of heritage versus new materials will be described.
ASTRONAUTICS INFORMATION. OPEN LITERATURE SURVEY, VOLUME III, NO. 2 (ENTRIES 30,202-30,404)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-02-01
<>15:014925. An annotated list of references on temperature control of satellite and space vehicles is presented. Methods and systems for maintaining vehicles within tolerable temperature bounds while operating outside planetary atmospheres are outlined. Discussions of the temperature environment in space and how it might affect vehicle operation are given. Re-entry heating problems are not included. Among the sources used were: Engineering Index, Applied Science and Technology Index, Astronautics Abstracts, PAL uniterm index, ASTIA, and LMSD card catalog. (auth)
2006-09-26
KENNEDY SPACE CENTER, FLA. - Workers mingle around the west door entry to the crew exploration vehicle (CEV) environment in the Operations and Checkout Building. A ribbon-cutting officially reactivated the entry. During the rest of the decade, KSC will transition from launching space shuttles to launching new vehicles in NASA’s Vision For Space Exploration. Photo credit: NASA/Kim Shiflett
Earth Entry Vehicle Design for Sample Return Missions Using M-SAPE
NASA Technical Reports Server (NTRS)
Samareh, Jamshid
2015-01-01
Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle (EEV). The primary focus of this paper is the examination of EEV design space for relevant sample return missions. Mission requirements for EEV concepts can be divided into three major groups: entry conditions (e.g., velocity and flight path angle), payload (e.g., mass, volume, and g-load limit), and vehicle characteristics (e.g., thermal protection system, structural topology, and landing concepts). The impacts of these requirements on the EEV design have been studied with an integrated system analysis tool, and the results will be discussed in details. In addition, through sensitivities analyses, critical design drivers that have been identified will be reviewed.
NASA Technical Reports Server (NTRS)
Wurster, K. E.
1981-01-01
This study examines the impact of turbulent heating on thermal protection system (TPS) mass for advanced winged entry vehicles. Four basic systems are considered: insulative, metallic hot structures, metallic standoff, and hybrid systems. TPS sizings are performed using entry trajectories tailored specifically to the characteristics of each TPS concept under consideration. Comparisons are made between systems previously sized under the assumption of all laminar heating and those sized using a baseline estimate of transition and turbulent heating. The relative effect of different transition criteria on TPS mass requirements is also examined. Also investigated are entry trajectories tailored to alleviate turbulent heating. Results indicate the significant impact of turbulent heating on TPS mass and demonstrate the importance of both accurate transition criteria and entry trajectory tailoring.
NASA Technical Reports Server (NTRS)
Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.
2014-01-01
The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.
Orion Entry Performance-Based Center-of-Gravity Box
NASA Technical Reports Server (NTRS)
Rea, Jeremy R.
2010-01-01
The Orion capsule is designed both for Low Earth Orbit missions to the ISS and for missions to the moon. For ISS class missions, the capsule will use an Apollo-style direct entry. For lunar return missions, depending on the timing of the mission, the capsule could perform a direct entry or a skip entry of up to 4800 n.mi. in order to land in the coastal waters of California. The physics of atmospheric re-entry determine the capability of the Orion vehicle. For a given vehicle mass and shape, physics tells us that the driving parameters for an entry vehicle are the hypersonic lift-to-drag ratio (L/D) and the flight path angle at entry interface (gamma(sub EI)). The design of the Orion atmospheric re-entry must meet constraints during both nominal and dispersed flight conditions on landing accuracy, heating rate, total heat load, sensed acceleration, and proper disposal of the Service Module. These constraints define an entry corridor in the space of L/D-gamma(sub EI); if the vehicle falls within this corridor, then all constraints are met. The gamma(sub EI) dimension of the corridor can be further constrained by the gloads experienced during emergency entries. Thus, the entry performance for the Orion vehicle can be described completely by the L/D. Bounds on the hypersonic L/D necessary to achieve all the mission requirements can be defined for the given entry corridor. Landing accuracy performance drives the lower limit on L/D. In order to achieve the desired landing accuracy, a minimum L/D must be ensured. The design of the Thermal Protection System (TPS) drives the upper limit on L/D. A higher L/D can drive mass into the design of the TPS. Conversely, once the TPS is designed, the L/D must be ensured to stay below a certain limit in order for the TPS to stay within its design envelop. The L/D must stay within its upper and lower bounds during dispersed flight conditions. L/D is a function of both the aerodynamics and the center-of-gravity (CG) of the vehicle. The aerodynamics of the vehicle are determined by Computational Fluid Mechanics (CFD) and wind tunnel tests. However, the aerodynamics are not known precisely. Instead, an aerodynamic database has been developed where the aerodynamic coefficients are known to fall within a probabilistic band defined by upper and lower bounds. It is expected that the probabilistic band will shrink after the first missions are flown and real-world data is collected. Until that time, the Orion must be designed to the current aerodynamic database. Thus, for a given aerodynamic database with given uncertainties, the allowable range in L/D can be mapped to an allowable box for the CG location. The CG box is used to set requirements on the dispersions allowed for vehicle packaging and cargo storage. As the aerodynamic uncertainties decrease, the size of the CG box can increase. This paper discusses the technique used to map the minimum and maximum L/D bounds set by the entry performance requirements to the allowable dispersions in CG while accounting for aerodynamic uncertainties. The L/D is defined as the ratio of the lift force to the drag force. It is equivalent to the ratio of lift coefficient (C(sub L)) over drag coefficient (C(sub D)). C(sub L) and C(sub D) are functions of Mach number (M) and angle of attack (alpha). A Mach number of 25 is used as a measuring point of the hypersonic L/D. Variations in C(sub L), C(sub D) and alpha cause variations in L/D. Equation (1) shows the three contributions to the variation in L/D.
NASA Technical Reports Server (NTRS)
Dillman, Robert
2015-01-01
Entry mass at Mars is limited by the payload size that can be carried by a rigid capsule that can fit inside the launch vehicle fairing. Landing altitude at Mars is limited by ballistic coefficient (mass per area) of entry body. Inflatable technologies allow payload to use full diameter of launch fairing, and deploy larger aeroshell before atmospheric interface, landing more payload at a higher altitude. Also useful for return of large payloads from Low Earth Orbit (LEO).
Automated Re-Entry System using FNPEG
NASA Technical Reports Server (NTRS)
Johnson, Wyatt R.; Lu, Ping; Stachowiak, Susan J.
2017-01-01
This paper discusses the implementation and simulated performance of the FNPEG (Fully Numerical Predictor-corrector Entry Guidance) algorithm into GNC FSW (Guidance, Navigation, and Control Flight Software) for use in an autonomous re-entry vehicle. A few modifications to FNPEG are discussed that result in computational savings -- a change to the state propagator, and a modification to cross-range lateral logic. Finally, some Monte Carlo results are presented using a representative vehicle in both a high-fidelity 6-DOF (degree-of-freedom) sim as well as in a 3-DOF sim for independent validation.
The X-38 V-201 Flap Actuator Mechanism
NASA Technical Reports Server (NTRS)
Hagen, Jeff; Moore, Landon; Estes, Jay; Layer, Chris
2004-01-01
The X-38 Crew Rescue Vehicle V-201 space flight test article was designed to achieve an aerodynamically controlled re-entry from orbit in part through the use of two body mounted flaps on the lower rear side. These flaps are actuated by an electromechanical system that is partially exposed to the re-entry environment. These actuators are of a novel configuration and are unique in their requirement to function while exposed to re-entry conditions. The authors are not aware of any other vehicle in which a major actuator system was required to function throughout the complete re-entry profile while parts of the actuator were directly exposed to the ambient environment.
Ground-Based Radar (GBR): Environmental Assessment.
1989-03-01
control of the antenna’s radiation pattern, the narrow, pencil-shaped main beam can be directed essentially instantaneously at incoming targets in any...Public Law 99-239: Compact of Free Association Act of 1M, January 14. 108. U.S. Department of Defense, Office of Economic Adjustment, 1984. Ecnomic ...may be directed essentially instantaneously at incoming targets. Phased-Array Technology The GBR will use a phased-array antenna for radiating the
Phased-array laser radar: Concept and application
NASA Technical Reports Server (NTRS)
Kadrmas, K. A.
1973-01-01
The design and construction of a coaxial transmitter-receiver combination was investigated. Major emphasis was placed on simple permanent optical alignment, transmitter-receiver field of view matching, use of a pulsed gas laser as a transmitter maximum optical efficiency, complete digital control of data acquisition, and optical mount pointing and tracking. Also a means of expanding the coaxial transmitter-receiver concept to allow phased-array lidar, par-lidar was described.
Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.
Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N
2016-06-01
The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920 ps) together with a compact footprint (4.15 mm2) and optical loss <27 dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.
Masui, T; Takehara, Y; Igarashi, T; Ichijo, K; Takahashi, M; Kaneko, M; Nozaki, A
1997-07-01
Breath-hold 2D phase-contrast (PC) cine MR angiography with a phased-array coil and 2D time-of-flight (TOF) MR angiography were performed in the renal arteries and their findings were compared. Breath-hold 2D thin slice PC and TOF MR angiography were performed in 10 normal volunteers for renal arteries. A PC technique with k-space segmentation was utilized with the phased-array coil. A PC technique provided visualization of the renal artery more distally than a TOF technique (4.8 +/- 0.5 cm vs. 3.7 +/- 0.8 cm). With cardiac triggering, distal renal arteries were well demonstrated in PC MR angiography. On PC images, up- or downward movements of the mid to distal renal arteries with aortic pulsatility were recognized. The quality of the images was better with the PC than with the TOF technique (3.4 vs. 2.7). The mid to distal portions of the renal arteries translationally move with aortic pulsatility. To consistently visualize and evaluate them on MR angiography, cardiac triggering might be required to reduce the effects of pulsatile motions of the renal artery in the use of a phased-array coil.
Entry Guidance for the Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Lu, Ping
1999-01-01
The X-33 Advanced Technology Demonstrator is a half-scale prototype developed to test the key technologies needed for a full-scale single-stage reusable launch vehicle (RLV). The X-33 is a suborbital vehicle that will be launched vertically, and land horizontally. The goals of this research were to develop an alternate entry guidance scheme for the X-33 in parallel to the actual X-33 entry guidance algorithms, provide comparative and complementary study, and identify potential new ways to improve entry guidance performance. Toward these goals, the nominal entry trajectory is defined by a piecewise linear drag-acceleration-versus-energy profile, which is in turn obtained by the solution of a semi-analytical parameter optimization problem. The closed-loop guidance is accomplished by tracking the nominal drag profile with primarily bank-angle modulation on-board. The bank-angle is commanded by a single full-envelope nonlinear trajectory control law. Near the end of the entry flight, the guidance logic is switched to heading control in order to meet strict conditions at the terminal area energy management interface. Two methods, one on ground-track control and the other on heading control, were proposed and examined for this phase of entry guidance where lateral control is emphasized. Trajectory dispersion studies were performed to evaluate the effectiveness of the entry guidance algorithms against a number of uncertainties including those in propulsion system, atmospheric properties, winds, aerodynamics, and propellant loading. Finally, a new trajectory-regulation method is introduced at the end as a promising precision entry guidance method. The guidance principle is very different and preliminary application in X-33 entry guidance simulation showed high precision that is difficult to achieve by existing methods.
NASA Technical Reports Server (NTRS)
Dieriam, Todd A.
1990-01-01
Future missions to Mars may require pin-point landing precision, possibly on the order of tens of meters. The ability to reach a target while meeting a dynamic pressure constraint to ensure safe parachute deployment is complicated at Mars by low atmospheric density, high atmospheric uncertainty, and the desire to employ only bank angle control. The vehicle aerodynamic performance requirements and guidance necessary for 0.5 to 1.5 lift drag ratio vehicle to maximize the achievable footprint while meeting the constraints are examined. A parametric study of the various factors related to entry vehicle performance in the Mars environment is undertaken to develop general vehicle aerodynamic design requirements. The combination of low lift drag ratio and low atmospheric density at Mars result in a large phugoid motion involving the dynamic pressure which complicates trajectory control. Vehicle ballistic coefficient is demonstrated to be the predominant characteristic affecting final dynamic pressure. Additionally, a speed brake is shown to be ineffective at reducing the final dynamic pressure. An adaptive precision entry atmospheric guidance scheme is presented. The guidance uses a numeric predictor-corrector algorithm to control downrange, an azimuth controller to govern crossrange, and analytic control law to reduce the final dynamic pressure. Guidance performance is tested against a variety of dispersions, and the results from selected tests are presented. Precision entry using bank angle control only is demonstrated to be feasible at Mars.
Integrated Thermal Response Tool for Earth Entry Vehicles
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Milos, F. S.; Partridge, Harry (Technical Monitor)
2001-01-01
A system is presented for multi-dimensional, fully-coupled thermal response modeling of hypersonic entry vehicles. The system consists of a two-dimensional implicit thermal response, pyrolysis and ablation program (TITAN), a commercial finite-element thermal and mechanical analysis code (MARC), and a high fidelity Navier-Stokes equation solver (GIANTS). The simulations performed by this integrated system include hypersonic flow-field, fluid and solid interaction, ablation, shape change, pyrolysis gas generation and flow, and thermal response of heatshield and structure. The thermal response of the ablating and charring heatshield material is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal response of both the heatshield and the structure can be obtained simultaneously. Representative computations for a proposed blunt body earth entry vehicle are presented and discussed in detail.
Laminar, Transitional, and Turbulent Heating on Mid Lift-to-Drag Ratio Entry Vehicles
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Hollingsworth, Kevin E.
2012-01-01
The boundary-layer transition characteristics and convective aeroheating levels on mid lift-to-drag ratio entry vehicle configurations have been studied through wind tunnel testing. Several configurations were investigated, including elliptically-blunted cylinders with both circular and elliptically-flattened cross sections, biconic geometries based on launch vehicle dual-use shrouds, and parametrically-optimized analytic geometries. Vehicles of this class have been proposed for high-mass Mars missions, such as sample return and crewed exploration, for which the conventional sphere-cone entry-vehicle geometries of previous Mars missions are insufficient. Testing was conducted at Mach 6 over a range of Reynolds numbers sufficient to generate laminar, transitional, and turbulent flow. Transition onset locations - both straight-line and cross-flow - and heating rates were obtained through global phosphor thermography. Supporting computations were performed to obtain heating rates for comparison with the data. Laminar data and predictions agreed to well within the experimental uncertainty. Fully-turbulent data and predictions also agreed well. However, in transitional flow regions, greater differences were observed. Additional aerodynamic performance data were also generated through Modified-Newtonian analyses of the geometries.
Chen, Gin-Shin; Lin, Che-Yu; Jeong, Jong Seob; Cannata, Jonathan M.; Lin, Win-Li; Chang, Hsu; Shung, K. Kirk
2013-01-01
A dual-curvature focused ultrasound phased-array transducer with a symmetric control has been developed for noninvasive ablative treatment of tumors. The 1.5-D array was constructed in-house and the electro-acoustic conversion efficiency was measured to be approximately 65%. In vitro experiments demonstrated that the array uses 256 independent elements to achieve 2-D wide-range high-intensity electronic focusing. PMID:22293745
NASA Astrophysics Data System (ADS)
Paul, Dilip K.; Razdan, Rajender; Goldman, Alfred M.
1996-10-01
Feasibility of photonics in beam forming and steering of large phased-array antennas onboard communications satellite/avionics systems is addressed in this paper. Specifically, a proof-of-concept demonstration of phased- array antenna feed network using fiber optic true time-delay (TTD) elements is reported for SATCOM phased-array antennas operating at C-band. Results of the photonic hardware design and performance analysis, including the measured radiation patterns of the antenna array fed by the photonic BFN, are presented. An excellent agreement between the analysis and measured data has been observed. In addition to being light- weight and compact, several unique characteristics such as rf carrier frequency agility and continuous steerability of the radiated beam achieved by the fiber optic TTD architecture are clear evidences of its superiority over other competing photonic architectures.
Phased-array sources based on nonlinear metamaterial nanocavities
Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal
2015-01-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879
Phased-array vector velocity estimation using transverse oscillations.
Pihl, Michael J; Marcher, Jonne; Jensen, Jorgen A
2012-12-01
A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicability of the method. A phased-array transducer has a smaller footprint and a larger field of view than a linear array, and is therefore more suited for, e.g., cardiac imaging. The method relies on suitable TO fields, and a beamforming strategy employing diverging TO beams is proposed. The implementation of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process. Therefore, three performance metrics are proposed. They are calculated based on the complex TO spectrum of the combined TO fields. It is hypothesized that the performance metrics are related to the performance of the velocity estimates. The simulations show that the squared correlation values range from 0.79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations of a parabolic flow at a depth of 10 cm, a relative (to the peak velocity) bias and standard deviation of 4% and 8%, respectively, are obtained. Overall, the simulations show that the TO method implemented on a phased-array transducer is robust with relative standard deviations around 10% in most cases. The flow-rig measurements show similar results. At a depth of 9.5 cm using 32 emissions per estimate, the relative standard deviation is 9% and the relative bias is -9%. At the center of the vessel, the velocity magnitude is estimated to be 0.25 ± 0.023 m/s, compared with an expected peak velocity magnitude of 0.25 m/s, and the beam-to-flow angle is calculated to be 89.3° ± 0.77°, compared with an expected angle value between 89° and 90°. For steering angles up to ±20° degrees, the relative standard deviation is less than 20%. The results also show that a 64-element transducer implementation is feasible, but with a poorer performance compared with a 128-element transducer. The simulation and experimental results demonstrate that the TO method is suitable for use in conjunction with a phased-array transducer, and that 2-D vector velocity estimation is possible down to a depth of 15 cm.
Low-Profile Multiband and Flush-Mountable Wideband Antennas for HF/VHF and K/Ka Band Applications
NASA Astrophysics Data System (ADS)
Garrido Lopez, David
This thesis introduces several novel antenna systems with extended performance capabilities achieved by either enabling multiple operation bands or by widening the bandwidth. Proposed theoretical concepts are successfully tested through simulations and experiments with excellent agreement are demonstrated. The designs developed in this thesis research are low-profile or flush mountable, enabling simple platform integration. In the HF/VHF bands, the development of a novel low-profile multiband antenna for vehicular applications is presented. Specifically, an inverted-F antenna is used as a driven element, to operate at the lowest frequency of 27 MHz, whereas two parasitic elements are built as inverted-L monopoles to enable resonances at 49 and 53 MHz. To eliminate the need for an external matching network, an offset feeding technique is used. When the antenna is mounted on a vehicle and bent to follow its profile, a very low-profile is achieved (lambda/44) while good impedance and far-field performance are maintained across all three bands. The developed antenna system is not only electrically smallest among others found in the literature, but it is easily modified for other band selections and tuning of each band can be readily achieved. Vehicular antennas are often used for high power applications, which may cause exposure of nearby individuals to possibly dangerous electromagnetic fields. To assess this hazard, the RF exposure of a vehicle's crew is discussed and an original and fast modeling approach for prediction thereof is demonstrated. The modeling approach is based on eigenmode analysis for acquiring a range of frequencies where the shielding effectiveness of a vehicle cabin is expected to be lower than average. This approach is typically much faster and requires less computational resources as compared to classical full-wave analyses. This analysis also shows that the position of an antenna system is critical and must be considered when high-power RF emissions are planned. Following the same trend of antenna system size reduction with extension of capabilities in a congested spectral environment, the millimeter wave spectrum is explored next. Specifically, antenna systems for wideband amplitude only (AO) direction finding (DF) are thoroughly considered. Theory and design considerations are developed to fill gaps in open literature. Typical sources of errors are theoretically analyzed, and a discussion on limitations and advantages of different AO DF architectures is given. Practical millimeter wave realizations of AO DF antenna front-ends in the K/Ka/Q bands (18-45 GHz) are developed using two different architectures: a passive phased-array and a squinted antenna system. For the former, a tightly coupled two-element tapered slot antenna (TSA) array with a stacked arrangement is developed. A novel enclosure of the array inside an absorbing cavity is proposed and improved system performance with flush mounted configuration is demonstrated. The squinted antenna system avoids the use of a beamformer, therefore reducing insertion loss and amplitude/phase imbalances to reduce DF errors. For design robustness, the same TSA element used in the phased-array configuration is used. A novel tapered cavity is also developed to stabilize H-plane radiation patterns and suppress sidelobes. It is seen that the squinted antenna AO DF front-end has better performance than the phased-array antenna system at the expense of larger size.
26 CFR 41.6001-3 - Proof of payment for entry into the United States.
Code of Federal Regulations, 2012 CFR
2012-04-01
... imposed on such vehicle; (ii) the vehicle identification number of such vehicle; (iii) the date on which... which tax has been suspended. The vehicle identification number of any vehicle for which a return is... (CONTINUED) MISCELLANEOUS EXCISE TAXES EXCISE TAX ON USE OF CERTAIN HIGHWAY MOTOR VEHICLES Administrative...
26 CFR 41.6001-3 - Proof of payment for entry into the United States.
Code of Federal Regulations, 2011 CFR
2011-04-01
... imposed on such vehicle; (ii) the vehicle identification number of such vehicle; (iii) the date on which... which tax has been suspended. The vehicle identification number of any vehicle for which a return is... (CONTINUED) MISCELLANEOUS EXCISE TAXES EXCISE TAX ON USE OF CERTAIN HIGHWAY MOTOR VEHICLES Administrative...
26 CFR 41.6001-3 - Proof of payment for entry into the United States.
Code of Federal Regulations, 2013 CFR
2013-04-01
... imposed on such vehicle; (ii) the vehicle identification number of such vehicle; (iii) the date on which... which tax has been suspended. The vehicle identification number of any vehicle for which a return is... (CONTINUED) MISCELLANEOUS EXCISE TAXES EXCISE TAX ON USE OF CERTAIN HIGHWAY MOTOR VEHICLES Administrative...
26 CFR 41.6001-3 - Proof of payment for entry into the United States.
Code of Federal Regulations, 2010 CFR
2010-04-01
... imposed on such vehicle; (ii) the vehicle identification number of such vehicle; (iii) the date on which... which tax has been suspended. The vehicle identification number of any vehicle for which a return is... (CONTINUED) MISCELLANEOUS EXCISE TAXES EXCISE TAX ON USE OF CERTAIN HIGHWAY MOTOR VEHICLES Administrative...
A Mars/phobos Transportation System
NASA Technical Reports Server (NTRS)
1989-01-01
A transportation system will be necessary to support construction and operation of bases on Phobos and Mars beginning in the year 2020 or later. An approach to defining a network of vehicles and the types of vehicles which may be used in the system are presented. The network will provide a convenient, integrated means for transporting robotically constructed bases to Phobos and Mars. All the technology needed for the current plan is expected to be available for use at the projected date of cargo departure from the Earth system. The modular design of the transportation system provides easily implemented contingency plans, so that difficulties with any one vehicle will have a minimal effect on the progress of the total mission. The transportation network proposed consists of orbital vehicles and atmospheric entry vehicles. Initially, only orbital vehicles will participate in the robotic construction phase of the Phobos base. The Interplanetary Transfer Vehicle (ITV) will carry the base and construction equipment to Phobos where the Orbital Maneuvering Vehicles (OMV's) will participate in the initial construction of the base. When the Mars base is ready to be sent, one or more ITV's will be used to transport the atmospheric entry vehicles from Earth. These atmospheric vehicles are the One Way Landers (OWL's) and the Ascent/Descent Vehicles (ADV's). They will be used to carry the base components and/or construction equipment. The OMV's and the Orbital Transfer Vehicles (OTV's) will assist in carrying the atmospheric entry vehicles to low Martian orbit where the OWL's or ADV's will descent to the planet surface. The ADV's were proposed to accommodate expansion of the system. Additionally, a smaller version of the ADV class is capable of transporting personnel between Mars and Phobos.
Address entry while driving: speech recognition versus a touch-screen keyboard.
Tsimhoni, Omer; Smith, Daniel; Green, Paul
2004-01-01
A driving simulator experiment was conducted to determine the effects of entering addresses into a navigation system during driving. Participants drove on roads of varying visual demand while entering addresses. Three address entry methods were explored: word-based speech recognition, character-based speech recognition, and typing on a touch-screen keyboard. For each method, vehicle control and task measures, glance timing, and subjective ratings were examined. During driving, word-based speech recognition yielded the shortest total task time (15.3 s), followed by character-based speech recognition (41.0 s) and touch-screen keyboard (86.0 s). The standard deviation of lateral position when performing keyboard entry (0.21 m) was 60% higher than that for all other address entry methods (0.13 m). Degradation of vehicle control associated with address entry using a touch screen suggests that the use of speech recognition is favorable. Speech recognition systems with visual feedback, however, even with excellent accuracy, are not without performance consequences. Applications of this research include the design of in-vehicle navigation systems as well as other systems requiring significant driver input, such as E-mail, the Internet, and text messaging.
Aerodynamic Challenges for the Mars Science Laboratory Entry, Descent and Landing
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; Dyakonov, Artem; Buning, Pieter; Scallion, William; Norman, John Van
2009-01-01
An overview of several important aerodynamics challenges new to the Mars Science Laboratory (MSL) entry vehicle are presented. The MSL entry capsule is a 70 degree sphere cone-based on the original Mars Viking entry capsule. Due to payload and landing accuracy requirements, MSL will be flying at the highest lift-to-drag ratio of any capsule sent to Mars (L/D = 0.24). The capsule will also be flying a guided entry, performing bank maneuvers, a first for Mars entry. The system's mechanical design and increased performance requirements require an expansion of the MSL flight envelope beyond those of historical missions. In certain areas, the experience gained by Viking and other recent Mars missions can no longer be claimed as heritage information. New analysis and testing is re1quired to ensure the safe flight of the MSL entry vehicle. The challenge topics include: hypersonic gas chemistry and laminar-versus-turbulent flow effects on trim angle, a general risk assessment of flying at greater angles-of-attack than Viking, quantifying the aerodynamic interactions induced by a new reaction control system and a risk assessment of recontact of a series of masses jettisoned prior to parachute deploy. An overview of the analysis and tests being conducted to understand and reduce risk in each of these areas is presented. The need for proper modeling and implementation of uncertainties for use in trajectory simulation has resulted in a revision of prior models and additional analysis for the MSL entry vehicle. The six degree-of-freedom uncertainty model and new analysis to quantify roll torque dispersions are presented.
Advanced Aero-Propulsive Mid-Lift-to-Drag Ratio Entry Vehicle for Future Exploration Missions
NASA Technical Reports Server (NTRS)
Campbell, C. H.; Stosaric, R. R; Cerimele, C. J.; Wong, K. A.; Valle, G. D.; Garcia, J. A.; Melton, J. E.; Munk, M. M.; Blades, E.; Kuruvila, G.;
2012-01-01
NASA is currently looking well into the future toward realizing Exploration mission possibilities to destinations including the Earth-Moon Lagrange points, Near-Earth Asteroids (NEAs) and the Moon. These are stepping stones to our ultimate destination Mars. New ideas will be required to conquer the significant challenges that await us, some just conceptions and others beginning to be realized. Bringing these ideas to fruition and enabling further expansion into space will require varying degrees of change, from engineering and integration approaches used in spacecraft design and operations, to high-level architectural capabilities bounded only by the limits of our ideas. The most profound change will be realized by paradigm change, thus enabling our ultimate goals to be achieved. Inherent to achieving these goals, higher entry, descent, and landing (EDL) performance has been identified as a high priority. Increased EDL performance will be enabled by highly-capable thermal protection systems (TPS), the ability to deliver larger and heavier payloads, increased surface access, and tighter landing footprints to accommodate multiple asset, single-site staging. In addition, realizing reduced cost access to space will demand more efficient approaches and reusable launch vehicle systems. Current operational spacecraft and launch vehicles do not incorporate the technologies required for these far-reaching missions and goals, nor what is needed to achieve the desired launch vehicle cost savings. To facilitate these missions and provide for safe and more reliable capabilities, NASA and its partners will need to make ideas reality by gaining knowledge through the design, development, manufacturing, implementation and flight testing of robotic and human spacecraft. To accomplish these goals, an approach is recommended for integrated development and implementation of three paradigm-shifting capabilities into an advanced entry vehicle system with additional application to launch vehicle stage return, thus making ideas reality. These paradigm shifts include the technology maturation of advanced flexible thermal protection materials onto mid lift-to-drag ratio entry vehicles, the development of integrated supersonic aero-propulsive maneuvering, and the implementation of advanced asymmetric launch shrouds. These paradigms have significant overlap with launch vehicle stage return already being developed by the Air Force and several commercial space efforts. Completing the realization of these combined paradigms holds the key to a high-performing entry vehicle system capability that fully leverages multiple technology benefits to accomplish NASA's Exploration missions to atmospheric planetary destinations.
Sosna, Jacob; Pedrosa, Ivan; Dewolf, William C; Mahallati, Houman; Lenkinski, Robert E; Rofsky, Neil M
2004-08-01
To qualitatively compare the image quality of torso phased-array 3-Tesla (3T) imaging of the prostate with that of endorectal 1.5-Tesla imaging. Twenty cases of torso phased-array prostate imaging performed at 3-Tesla with FSE T2 weighted images were evaluated by two readers independently for visualization of the posterior border (PB), seminal vesicles (SV), neurovascular bundles (NVB), and image quality rating (IQR). Studies were performed at large fields of view(FOV) (25 cm) (14 cases) (3TL) and smaller FOV (14 cm) (19 cases) (3TS). A comparison was made to 20 consecutive cases of 1.5-T endorectal evaluation performed during the same time period.Results. 3TL produced a significantly better image quality compared with the small FOV for PB (P = .0001), SV (P =.0001), and IQR (P = .0001). There was a marginally significant difference within the NVB category (P = .0535). 3TL produced an image of similar quality to image quality at 1.5 T for PB (P = .3893), SV (P = .8680), NB (P = .2684), and IQR (P = .8599). Prostate image quality at 3T with a torso phased-array coil can be comparable with that of endorectal 1.5-T imaging. These findings suggest that additional options are now available for magnetic resonance imaging of the prostate gland.
Phased-Array Study of Dual-Flow Jet Noise: Effect of Nozzles and Mixers
NASA Technical Reports Server (NTRS)
Soo Lee, Sang; Bridges, James
2006-01-01
A 16-microphone linear phased-array installed parallel to the jet axis and a 32-microphone azimuthal phased-array installed in the nozzle exit plane have been applied to identify the noise source distributions of nozzle exhaust systems with various internal mixers (lobed and axisymmetric) and nozzles (three different lengths). Measurements of velocity were also obtained using cross-stream stereo particle image velocimetry (PIV). Among the three nozzle lengths tested, the medium length nozzle was the quietest for all mixers at high frequency on the highest speed flow condition. Large differences in source strength distributions between nozzles and mixers occurred at or near the nozzle exit for this flow condition. The beamforming analyses from the azimuthal array for the 12-lobed mixer on the highest flow condition showed that the core flow and the lobe area were strong noise sources for the long and short nozzles. The 12 noisy spots associated with the lobe locations of the 12-lobed mixer with the long nozzle were very well detected for the frequencies 5 KHz and higher. Meanwhile, maps of the source strength of the axisymmetric splitter show that the outer shear layer was the most important noise source at most flow conditions. In general, there was a good correlation between the high turbulence regions from the PIV tests and the high noise source regions from the phased-array measurements.
Design and development of high frequency matrix phased-array ultrasonic probes
NASA Astrophysics Data System (ADS)
Na, Jeong K.; Spencer, Roger L.
2012-05-01
High frequency matrix phased-array (MPA) probes have been designed and developed for more accurate and repeatable assessment of weld conditions of thin sheet metals commonly used in the auto industry. Unlike the line focused ultrasonic beam generated by a linear phased-array (LPA) probe, a MPA probe can form a circular shaped focused beam in addition to the typical beam steering capabilities of phased-array probes. A CIVA based modeling and simulation method has been used to design the probes in terms of various probe parameters such as number of elements, element size, overall dimensions, frequency etc. Challenges associated with the thicknesses of thin sheet metals have been resolved by optimizing these probe design parameters. A further improvement made on the design of the MPA probe proved that a three-dimensionally shaped matrix element can provide a better performing probe at a much lower probe manufacturing cost by reducing the total number of elements and lowering the operational frequency. This three dimensional probe naturally matches to the indentation shape of the weld on the thin sheet metals and hence a wider inspection area with the same level of spatial resolution obtained by a twodimensional flat MPA probe operating at a higher frequency. The two aspects, a wider inspection area and a lower probe manufacturing cost, make this three-dimensional MPA sensor more attractive to auto manufacturers demanding a quantitative nondestructive inspection method.
PredGuid+A: Orion Entry Guidance Modified for Aerocapture
NASA Technical Reports Server (NTRS)
Lafleur, Jarret
2013-01-01
PredGuid+A software was developed to enable a unique numerical predictor-corrector aerocapture guidance capability that builds on heritage Orion entry guidance algorithms. The software can be used for both planetary entry and aerocapture applications. Furthermore, PredGuid+A implements a new Delta-V minimization guidance option that can take the place of traditional targeting guidance and can result in substantial propellant savings. PredGuid+A allows the user to set a mode flag and input a target orbit's apoapsis and periapsis. Using bank angle control, the guidance will then guide the vehicle to the appropriate post-aerocapture orbit using one of two algorithms: Apoapsis Targeting or Delta-V Minimization (as chosen by the user). Recently, the PredGuid guidance algorithm was adapted for use in skip-entry scenarios for NASA's Orion multi-purpose crew vehicle (MPCV). To leverage flight heritage, most of Orion's entry guidance routines are adapted from the Apollo program.
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1995-01-01
This final report will attempt to concisely summarize the activities and accomplishments associated with NASA Grant and to include pertinent documents in an appendix. The project initially had one primary and several secondary objectives. The original primary objective was to couple into the NASA Johnson Space Center (JSC) nonequilibrium chemistry Euler equation entry vehicle flowfield code, INEQ3D, the Texas A&M University (TAMU) local thermodynamic nonequilibrium (LTNE) radiation model. This model had previously been developed and verified under NASA Langley and NASA Johnson sponsorship as part of a viscous shock layer entry vehicle flowfield code. The secondary objectives were: (1) to investigate the necessity of including the radiative flux term in the vibrational-electron-electronic (VEE) energy equation as well as in the global energy equation, (2) to determine the importance of including the small net change in electronic energy between products and reactants which occurs during a chemical reaction, and (3) to study the effect of atom-atom impact ionization reactions on entry vehicle nonequilibrium flowfield chemistry and radiation. For each, of these objectives, it was assumed that the code would be applicable to lunar return entry conditions, i.e. altitude above 75 km, velocity greater, than 11 km/sec, where nonequilibrium chemistry and radiative heating phenomena would be significant. In addition, it was tacitly assumed that as part of the project the code would be applied to a variety of flight conditions and geometries.
NASA Astrophysics Data System (ADS)
Pezzella, Giuseppe; Richiello, Camillo; Russo, Gennaro
2011-05-01
This paper deals with the aerodynamic and aerothermodynamic trade-off analysis carried out with the aim to design a hypersonic flying test bed (FTB), namely USV3. Such vehicle will have to be launched with a small expendable launcher and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry phenomena. The demonstrator under study is a re-entry space glider characterized by a relatively simple vehicle architecture able to validate hypersonic aerothermodynamic design database and passenger experiments, including thermal shield and hot structures. Then, a summary review of the aerodynamic characteristics of two FTB concepts, compliant with a phase-A design level, has been provided hereinafter. Indeed, several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper.
SHEFEX - the vehicle and sub-systems for a hypersonic re-entry flight experiment
NASA Astrophysics Data System (ADS)
Turner, John; Hörschgen, Marcus; Turner, Peter; Ettl, Josef; Jung, Wolfgang; Stamminger, Andreas
2005-08-01
The purpose of the Sharp Edge Flight Experiment (SHEFEX) is to investigate the aerodynamic behaviour and thermal problems of an unconventional shape for re-entry vehicles, comprising multi-facetted surfaces with sharp edges. The main object of this experiment is the correlation of numerical analysis with real flight data in terms of the aerodynamic effects and structural concept for the thermal protection system (TPS). The Mobile Rocket Base of the German Aerospace Center (DLR) is responsible for the test flight of SHEFEX on a two stage unguided solid propellant sounding rocket which is required to provide a velocity of the order of March 7 for more than 30 seconds during atmospheric re-entry. This paper discusses the problems associated with the mission requirements and the solutions developed for the vehicle and sub-systems.
NASA Technical Reports Server (NTRS)
Little, Alan; Bose, Deepak; Karlgaard, Chris; Munk, Michelle; Kuhl, Chris; Schoenenberger, Mark; Antill, Chuck; Verhappen, Ron; Kutty, Prasad; White, Todd
2013-01-01
The Mars Science Laboratory (MSL) Entry, Descent and Landing Instrumentation (MEDLI) hardware was a first-of-its-kind sensor system that gathered temperature and pressure readings on the MSL heatshield during Mars entry on August 6, 2012. MEDLI began as challenging instrumentation problem, and has been a model of collaboration across multiple NASA organizations. After the culmination of almost 6 years of effort, the sensors performed extremely well, collecting data from before atmospheric interface through parachute deploy. This paper will summarize the history of the MEDLI project and hardware development, including key lessons learned that can apply to future instrumentation efforts. MEDLI returned an unprecedented amount of high-quality engineering data from a Mars entry vehicle. We will present the performance of the 3 sensor types: pressure, temperature, and isotherm tracking, as well as the performance of the custom-built sensor support electronics. A key component throughout the MEDLI project has been the ground testing and analysis effort required to understand the returned flight data. Although data analysis is ongoing through 2013, this paper will reveal some of the early findings on the aerothermodynamic environment that MSL encountered at Mars, the response of the heatshield material to that heating environment, and the aerodynamic performance of the entry vehicle. The MEDLI data results promise to challenge our engineering assumptions and revolutionize the way we account for margins in entry vehicle design.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Liechty, Derek S.
2008-01-01
The influence of cavities (for attachment bolts) on the heat-shield of the proposed Mars Science Laboratory entry vehicle has been investigated experimentally and computationally in order to develop a criterion for assessing whether the boundary layer becomes turbulent downstream of the cavity. Wind tunnel tests were conducted on the 70-deg sphere-cone vehicle geometry with various cavity sizes and locations in order to assess their influence on convective heating and boundary layer transition. Heat-transfer coefficients and boundary-layer states (laminar, transitional, or turbulent) were determined using global phosphor thermography.
The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The status of spacecraft bus and platform technology development under the NASA ISPT program
NASA Astrophysics Data System (ADS)
Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.
2012-01-01
The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Impact of Vehicle Flexibility on IRVE-II Flight Dynamics
NASA Technical Reports Server (NTRS)
Bose, David M.; Toniolo, Matthew D.; Cheatwood, F. M.; Hughes, Stephen J.; Dillman, Robert A.
2011-01-01
The Inflatable Re-entry Vehicle Experiment II (IRVE-II) successfully launched from Wallops Flight Facility (WFF) on August 17, 2009. The primary objectives of this flight test were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for refining pre-flight design and analysis tools. Post-flight analysis including trajectory reconstruction outlined in O Keefe3 demonstrated that the IRVE-II Research Vehicle (RV) met mission objectives but also identified a few anomalies of interest to flight dynamics engineers. Most notable of these anomalies was high normal acceleration during the re-entry pressure pulse. Deflection of the inflatable aeroshell during the pressure pulse was evident in flight video and identified as the likely cause of the anomaly. This paper provides a summary of further post-flight analysis with particular attention to the impact of aeroshell flexibility on flight dynamics and the reconciliation of flight performance with pre-flight models. Independent methods for estimating the magnitude of the deflection of the aeroshell experienced on IRVE-II are discussed. The use of the results to refine models for pre-flight prediction of vehicle performance is then described.
Vertical Spin Tunnel Testing and Stability Analysis of Multi-Mission Earth Entry Vehicles
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Morelli, Eugene A.; Fremaux, C. Michael; Bean, Jacob
2014-01-01
Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from space to the surface of the Earth. To achieve high reliability and minimum weight, MMEEVs avoid using limited-reliability systems, such as parachutes, retro-rockets, and reaction control systems and rely on the natural aerodynamic stability of the vehicle throughout the Entry, Descent, and Landing phases of flight. Testing in NASA Langley's 20-FT Vertical Spin Tunnel (20-FT VST), dynamically-scaled MMEEV models was conducted to improve subsonic aerodynamic models and validate stability criteria for this class of vehicle. This report documents the resulting data from VST testing for an array of 60-deg sphere-cone MMEEVs. Model configurations included were 1.2 meter, and 1.8 meter designs. The addition of a backshell extender, which provided a 150% increase in backshell diameter for the 1.2 meter design, provided a third test configuration. Center of Gravity limits were established for all MMEEV configurations. An application of System Identification (SID) techniques was performed to determine the aerodynamic coefficients in order to provide databases for subsequent 6-degree-of-freedom simulations.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Hollingsworth, Kevin E.
2014-01-01
Aeroheating data on mid lift-to-drag ratio entry vehicle configurations has been obtained through hypersonic wind tunnel testing. Vehicles of this class have been proposed for high-mass Mars missions, such as sample return and crewed exploration, for which the conventional sphere-cone entry vehicle geometries of previous Mars missions are insufficient. Several configurations were investigated, including elliptically-blunted cylinders with both circular and elliptical cross sections, biconic geometries based on launch vehicle dual-use shrouds, and parametrically-optimized analytic geometries. Testing was conducted at Mach 6 over a range of Reynolds numbers sufficient to generate laminar, transitional, and turbulent flow. Global aeroheating data were obtained using phosphor thermography. Both stream-wise and cross-flow transition occured on different configurations. Comparisons were made with laminar and turbulent computational predictions generated with an algebraic turbulence model. Predictions were generally in good agreement in regions of laminar or fully-turbulent flow; however for transitional cases, the lack of a transition onset prediction capability produced less accurate comparisons. The data obtained in this study are intended to be used for prelimary mission design studies and the development and validation of computational methods.
75 FR 71184 - Petition for Exemption From the Vehicle Theft Prevention Standard; BMW
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
... and unlock all doors or to unlock only the driver's door, preventing forced entry into the vehicle... From the Vehicle Theft Prevention Standard; BMW AGENCY: National Highway Traffic Safety Administration... vehicle line in accordance with 49 CFR part 543, Exemption from the Theft Prevention Standard. This...
Balloon launched decelerator test program: Post-test test report
NASA Technical Reports Server (NTRS)
Dickinson, D.; Schlemmer, J.; Hicks, F.; Michel, F.; Moog, R. D.
1972-01-01
Balloon Launched Decelerator Test (BLDT) flights were conducted during the summer of 1972 over the White Sands Missile Range. The purpose of these tests was to qualify the Viking disk-gap band parachute system behind a full-scale simulator of the Viking Entry Vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. Test concerns centered on the ability of a minimum weight parachute system to operate without structural damage in the turbulent wake of the blunt-body entry vehicle (140 deg, 11.5 diameter cone). This is the first known instance of parachute operation at supersonic speeds in the wake of such a large blunt body. The flight tests utilized the largest successful balloon-payload weight combination known to get to high altitude (120kft) where rocket engines were employed to boost the test vehicle to supersonic speeds and dynamic pressures simulating the range of conditions on Mars.
NASA Astrophysics Data System (ADS)
Dutheil, Sylvain; Pibarot, Julien; Tran, Dac; Vallee, Jean-Jacques; Tribot, Jean-Pierre
2016-07-01
With the aim of placing Europe among the world's space players in the strategic area of atmospheric re-entry, several studies on experimental vehicle concepts and improvements of critical re-entry technologies have paved the way for the flight of an experimental space craft. The successful flight of the Intermediate eXperimental Vehicle (IXV), under ESA's Future Launchers Preparatory Programme (FLPP), is definitively a significant step forward from the Atmospheric Reentry Demonstrator flight (1998), establishing Europe as a key player in this field. The IXV project objectives were the design, development, manufacture and ground and flight verification of an autonomous European lifting and aerodynamically controlled reentry system, which is highly flexible and maneuverable. The paper presents, the role of aerodynamics aerothermodynamics as part of the key technologies for designing an atmospheric re-entry spacecraft and securing a successful flight.
Entry, Descent, and Landing Performance for a Mid-Lift-to-Drag Ratio Vehicle at Mars
NASA Technical Reports Server (NTRS)
Johnson, Breanna J.; Braden, Ellen M.; Sostaric, Ronald R.; Cerimele, Christopher J.; Lu, Ping
2018-01-01
In an effort to mature the design of the Mid-Lift-to-Drag ratio Rigid Vehicle (MRV) candidate of the NASA Evolvable Mars Campaign (EMC) architecture study, end-to-end six-degree-of-freedom (6DOF) simulations are needed to ensure a successful entry, descent, and landing (EDL) design. The EMC study is assessing different vehicle and mission architectures to determine which candidate would be best to deliver a 20 metric ton payload to the surface of Mars. Due to the large mass payload and the relatively low atmospheric density of Mars, all candidates of the EMC study propose to use Supersonic Retro-Propulsion (SRP) throughout the descent and landing phase, as opposed to parachutes, in order to decelerate to a subsonic touchdown. This paper presents a 6DOF entry-to-landing performance and controllability study with sensitivities to dispersions, particularly in the powered descent and landing phases.
Phased-array sources based on nonlinear metamaterial nanocavities
Wolf, Omri; Campione, Salvatore; Benz, Alexander; ...
2015-07-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less
Passive Earth Entry Vehicle Landing Test
NASA Technical Reports Server (NTRS)
Kellas, Sotiris
2017-01-01
Two full-scale passive Earth Entry Vehicles (EEV) with realistic structure, surrogate sample container, and surrogate Thermal Protection System (TPS) were built at NASA Langley Research Center (LaRC) and tested at the Utah Test and Training Range (UTTR). The main test objective was to demonstrate structural integrity and investigate possible impact response deviations of the realistic vehicle as compared to rigid penetrometer responses. With the exception of the surrogate TPS and minor structural differences in the back shell construction, the two test vehicles were identical in geometry and both utilized the Integrated Composite Stiffener Structure (ICoSS) structural concept in the forward shell. The ICoSS concept is a lightweight and highly adaptable composite concept developed at NASA LaRC specifically for entry vehicle TPS carrier structures. The instrumented test vehicles were released from a helicopter approximately 400 m above ground. The drop height was selected such that at least 98% of the vehicles terminal velocity would be achieved. While drop tests of spherical penetrometers and a low fidelity aerodynamic EEV model were conducted at UTTR in 1998 and 2000, this was the first time a passive EEV with flight-like structure, surrogate TPS, and sample container was tested at UTTR for the purpose of complete structural system validation. Test results showed that at a landing vertical speed of approximately 30 m/s, the test vehicle maintained structural integrity and enough rigidity to penetrate the sandy clay surface thus attenuating the landing load, as measured at the vehicle CG, to less than 600 g. This measured deceleration was found to be in family with rigid penetrometer test data from the 1998 and 2000 test campaigns. Design implications of vehicle structure/soil interaction with respect to sample container and sample survivability are briefly discussed.
NASA Astrophysics Data System (ADS)
Fei, Huang; Xu-hong, Jin; Jun-ming, Lv; Xiao-li, Cheng
2016-11-01
An attempt has been made to analyze impact of Martian atmosphere parameter uncertainties on entry vehicle aerodynamics for hypersonic rarefied conditions with a DSMC code. The code has been validated by comparing Viking vehicle flight data with present computational results. Then, by simulating flows around the Mars Science Laboratory, the impact of errors of free stream parameter uncertainties on aerodynamics is investigated. The validation results show that the present numerical approach can show good agreement with the Viking flight data. The physical and chemical properties of CO2 has strong impact on aerodynamics of Mars entry vehicles, so it is necessary to make proper corrections to the data obtained with air model in hypersonic rarefied conditions, which is consistent with the conclusions drawn in continuum regime. Uncertainties of free stream density and velocity weakly influence aerodynamics and pitching moment. However, aerodynamics appears to be little influenced by free stream temperature, the maximum error of what is below 0.5%. Center of pressure position is not sensitive to free stream parameters.
Assessment of the Reconstructed Aerodynamics of the Mars Science Laboratory Entry Vehicle
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; Van Norman, John W.; Dyakonov, Artem A.; Karlgaard, Christopher D.; Way, David W.; Kutty, Prasad
2013-01-01
On August 5, 2012, the Mars Science Laboratory entry vehicle successfully entered Mars atmosphere, flying a guided entry until parachute deploy. The Curiosity rover landed safely in Gale crater upon completion of the Entry Descent and Landing sequence. This paper compares the aerodynamics of the entry capsule extracted from onboard flight data, including Inertial Measurement Unit (IMU) accelerometer and rate gyro information, and heatshield surface pressure measurements. From the onboard data, static force and moment data has been extracted. This data is compared to preflight predictions. The information collected by MSL represents the most complete set of information collected during Mars entry to date. It allows the separation of aerodynamic performance from atmospheric conditions. The comparisons show the MSL aerodynamic characteristics have been identified and resolved to an accuracy better than the aerodynamic database uncertainties used in preflight simulations. A number of small anomalies have been identified and are discussed. This data will help revise aerodynamic databases for future missions and will guide computational fluid dynamics (CFD) development to improved prediction codes.
MSL EDL Entry Guidance using the Entry Terminal Point Controller
NASA Technical Reports Server (NTRS)
2006-01-01
The Mars Science Laboratory will be the first Mars mission to attempt a guided entry with the objective of safely delivering the entry vehicle to a survivable parachute deploy state within 10 km of the pre-designated landing site. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control range based on deviations in range, altitude rate, and drag acceleration from a reference trajectory. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last four years. Performance tradeoffs between ellipse size and deploy altitude will be presented, along with imposed constraints of entry acceleration and heating. Performance sensitivities to the bank reversal deadbands, heading alignment, attitude initialization error, and atmospheric delivery errors are presented. Guidance settings for contingency operations, such as those appropriate for severe dust storm scenarios, are evaluated.
Mars Science Laboratory Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberer, Mark; Shidner, Jeremy D.
2013-01-01
On August 5th 2012, The Mars Science Laboratory entry vehicle successfully entered Mars atmosphere and landed the Curiosity rover on its surface. A Kalman filter approach has been implemented to reconstruct the entry, descent, and landing trajectory based on all available data. The data sources considered in the Kalman filtering approach include the inertial measurement unit accelerations and angular rates, the terrain descent sensor, the measured landing site, orbit determination solutions for the initial conditions, and a new set of instrumentation for planetary entry reconstruction consisting of forebody pressure sensors, known as the Mars Entry Atmospheric Data System. These pressure measurements are unique for planetary entry, descent, and landing reconstruction as they enable a reconstruction of the freestream atmospheric conditions without any prior assumptions being made on the vehicle aerodynamics. Moreover, the processing of these pressure measurements in the Kalman filter approach enables the identification of atmospheric winds, which has not been accomplished in past planetary entry reconstructions. This separation of atmosphere and aerodynamics allows for aerodynamic model reconciliation and uncertainty quantification, which directly impacts future missions. This paper describes the mathematical formulation of the Kalman filtering approach, a summary of data sources and preprocessing activities, and results of the reconstruction.
The Design Process of Physical Security as Applied to a U.S. Border Port of Entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, G.G.
1999-02-22
This paper details the application of a standard physical security system design process to a US Border Port of Entry (PoE) for vehicle entry/exit. The physical security design methodology is described as well as the physical security similarities to facilities currently at a US Border PoE for vehicles. The physical security design process description includes the various elements that make up the methodologies well as the considerations that must be taken into account when dealing with system integration of those elements. The distinctions between preventing unlawful entry/exit of illegal contraband and personnel are described. The potential to enhance the functionsmore » of drug/contraband detection in the Pre-Primary Inspection area through the application of emerging technologies are also addressed.« less
Electronic Data Interchange in Defense Transportation
1987-10-01
entry into a nearly paperless transportation environment. • Prescribe DoD’s use of the EDI standards developed by the transportation industry and lead...information into a format for internal use so that it can be processed. * Key Entry Costs. Data will no longer need to be entered manually into a terminal or...that commercial standards cannot meet, DoD must create standards. A vehicle for creating those DoD-unique standards now exists. That vehicle , the
40 CFR 86.096-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2013 CFR
2013-07-01
... records for each such vehicle: (i) EPA engine family; (ii) Vehicle identification number; (iii) Model year... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles...
40 CFR 86.096-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2011 CFR
2011-07-01
... records for each such vehicle: (i) EPA engine family; (ii) Vehicle identification number; (iii) Model year... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles...
40 CFR 86.096-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2012 CFR
2012-07-01
... records for each such vehicle: (i) EPA engine family; (ii) Vehicle identification number; (iii) Model year... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles...
Design Criteria for Low Risk Re-Entry Vehicles
NASA Astrophysics Data System (ADS)
Monti, R.; Pezzella, G.
2005-02-01
The paper shows how a sharp vehicle with low wing loading, is able to follow re-entry trajectories with low thermal risks by using Ultra High Temperature Ceramics (UHTC) to thermally protect the vehicle front edges. These reusable materials can withstand the global radiative equilibrium temperatures that are experienced during reentry characterized by a longer and a more gradual conversion of the kinetic and potential energy of the vehicle into thermal energy. A number of aerothermodynamic problems are addressed to assess the feasibility of the vehicle design and of the thermal protection of the payload. In particular, the boundary layer thermal protection concept is illustrated to show how a UHTC massive tip edges (fuselage and wings) are able to protect also the remaining vehicle structure made of conventional material, promoting a revolutionary approach to the Thermal Protection System (TPS) configuration for hypersonic vehicle flying at small angle of attack. CFD results and engineering formulations are adopted for the computation of the aerodynamic coefficients and heat fluxes. The analysis identifies the design criteria for a conventional looking vehicle for a crew return from LEO (e.g. from the International Space Station).
X-38 V201 Avionics Architecture
NASA Technical Reports Server (NTRS)
Bedos, Thierry; Anderson, Brian L.
1999-01-01
The X-38 is an experimental NASA project developing a core human capable spacecraft at a fraction of the cost of any previous human rated vehicle. The first operational derivative developed from the X-38 program will be the International Space Station (ISS) Crew Return Vehicle (CRV). Although the current X-38 vehicles are designed as re-entry vehicles only, the option exists to modify the vehicle for uses as an upward vehicle launched from an expendable launch vehicle or from the X-33 operational derivative. The Operational CRV, that will be derived from the X-38 spaceflight vehicle, will provide an emergency return capability from the International Space Station (ISS). The spacecraft can hold a crew of up to seven inside a pressurized cabin. The CRV is passively delivered to ISS, stays up to three year on-orbit attached to ISS in a passive mode with periodic functional checkout, before separation from ISS, de-orbit, entry and landing. The X-38 Vehicle 201 (V201) is being developed at NASA/JSC to demonstrate key technologies associated with the development of the CRV design. The X-38 flight test will validate the low cost development concept by demonstrating the entire station departure, re-entry, guidance and landing portions of the CRV mission. All new technologies and subsystems proposed for CRV will be validated during either the on orbit checkout or flight phases of the X-38 space flight test. The X-38 subsystems are required to be similar to those subsystems required for the CRV to the greatest extent possible. In many cases, the subsystems are identical to those that will be utilized on the Operational CRV.
Development and flight qualification of the C-SiC thermal protection systems for the IXV
NASA Astrophysics Data System (ADS)
Buffenoir, François; Zeppa, Céline; Pichon, Thierry; Girard, Florent
2016-07-01
The Intermediate experimental Vehicle (IXV) atmospheric re-entry demonstrator, developed within the FLPP (Future Launcher Preparatory Programme) and funded by ESA, aimed at developing a demonstration vehicle that gave Europe a unique opportunity to increase its knowledge in the field of advanced atmospheric re-entry technologies. A key technology that has been demonstrated in real conditions through the flight of this ambitious vehicle is the thermal protection system (TPS) of the Vehicle. Within this programme, HERAKLES, Safran Group, has been in charge of the TPS of the windward and nose assemblies of the vehicle, and has developed and manufactured SepcarbInox® ceramic matrix composite (CMC) protection systems that provided a high temperature resistant non ablative outer mould line (OML) for enhanced aerodynamic control. The design and flight justification of these TPS has been achieved through extensive analysis and testing:
Application of a Fully Numerical Guidance to Mars Aerocapture
NASA Technical Reports Server (NTRS)
Matz, Daniel A.; Lu, Ping; Mendeck, Gavin F.; Sostaric, Ronald R.
2017-01-01
An advanced guidance algorithm, Fully Numerical Predictor-corrector Aerocapture Guidance (FNPAG), has been developed to perform aerocapture maneuvers in an optimal manner. It is a model-based, numerical guidance that benefits from requiring few adjustments across a variety of different hypersonic vehicle lift-to-drag ratios, ballistic co-efficients, and atmospheric entry conditions. In this paper, FNPAG is first applied to the Mars Rigid Vehicle (MRV) mid lift-to-drag ratio concept. Then the study is generalized to a design map of potential Mars aerocapture missions and vehicles, ranging from the scale and requirements of recent robotic to potential human and precursor missions. The design map results show the versatility of FNPAG and provide insight for the design of Mars aerocapture vehicles and atmospheric entry conditions to achieve desired performance.
Two-dimensional optical architectures for the receive mode of phased-array antennas.
Pastur, L; Tonda-Goldstein, S; Dolfi, D; Huignard, J P; Merlet, T; Maas, O; Chazelas, J
1999-05-10
We propose and experimentally demonstrate two optical architectures that process the receive mode of a p x p element phased-array antenna. The architectures are based on free-space propagation and switching of the channelized optical carriers of microwave signals. With the first architecture a direct transposition of the received signals in the optical domain is assumed. The second architecture is based on the optical generation and distribution of a microwave local oscillator matched in frequency and direction. Preliminary experimental results at microwave frequencies of approximately 3 GHz are presented.
Investigations of Control Surface Seals for Re-entry Vehicles
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; DeMange, Jeffrey J.; Rivers, H. Kevin; Hsu, Su-Yuen
2002-01-01
Re-entry vehicles generally require control surfaces (e.g., rudders, body flaps) to steer them during flight. Control surface seals are installed along hinge lines and where control surface edges move close to the vehicle body. These seals must operate at high temperatures and limit heat transfer to underlying structures to prevent them from overheating and causing possible loss of vehicle structural integrity. This paper presents results for thermal analyses and mechanical testing conducted on the baseline rudder/fin seal design for the X-38 re-entry vehicle. Exposure of the seals in a compressed state at the predicted peak seal temperature of 1900 F resulted in loss of seal resiliency. The vertical Inconel rudder/fin rub surface was re-designed to account for this loss of resiliency. Room temperature compression tests revealed that seal unit loads and contact pressures were below limits set to protect Shuttle thermal tiles on the horizontal sealing surface. The seals survived an ambient temperature 1000 cycle scrub test over sanded Shuttle tiles and were able to disengage and re-engage the tile edges during testing. Arc jet tests confirmed the need for seals in the rudder/fin gap location because a single seal caused a large temperature drop (delta T = 1710 F) in the gap.
Physiological constraints on deceleration during the aerocapture of manned vehicles
NASA Technical Reports Server (NTRS)
Lyne, J. E.
1992-01-01
The peak deceleration load allowed for aerobraking of manned vehicles is a critical parameter in planning future excursions to Mars. However, considerable variation exists in the limits used by various investigators. The goal of this study was to determine the most appropriate level for this limit. Methods: Since previous U.S. space flights have been limited to 84 days duration, Soviet flight results were examined. Published details of Soviet entry trajectories were not available. However, personal communication with Soviet cosmonauts suggested that peak entry loads of 5-6 G had been encountered upon return from 8 months in orbit. Soyuz entry capsule's characteristics were established and the capsule's entry trajectory was numerically calculated. The results confirm a peak load of 5 to 6 G. Results: Although the Soviet flights were of shorter duration than expected Mars missions, evidence exists that the deceleration experience is applicable. G tolerance has been shown to stabilize after 1 to 3 months in space if adequate countermeasures are used. The calculated Soyuz deceleration histories are graphically compared with those expected for Mars aerobraking. Conclusions: Previous spaceflight experience supports the use of a 5 G limit for the aerocapture of a manned vehicle at Mars.
Impact Foam Testing for Multi-Mission Earth Entry Vehicle Applications
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Agrawal, Paul; Hawbaker, James
2013-01-01
Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, two different Rohacell foams were tested to determine their thermal conductivity in support of MMEEV design applications. These applications include thermal insulation during atmospheric entry, impact attenuation, and post-impact thermal insulation in support of thermal soak analysis. Results indicate that for these closed-cell foams, the effect of impact is limited on thermal conductivity due to the venting of the virgin material gas and subsequent ambient air replacement. Results also indicate that the effect of foam temperature is significant compared to data suggested by manufacturer's specifications.
Aerothermodynamics of Blunt Body Entry Vehicles. Chapter 3
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Borrelli, Salvatore
2011-01-01
In this chapter, the aerothermodynamic phenomena of blunt body entry vehicles are discussed. Four topics will be considered that present challenges to current computational modeling techniques for blunt body environments: turbulent flow, non-equilibrium flow, rarefied flow, and radiation transport. Examples of comparisons between computational tools to ground and flight-test data will be presented in order to illustrate the challenges existing in the numerical modeling of each of these phenomena and to provide test cases for evaluation of Computational Fluid Dynamics (CFD) code predictions.
Aerothermodynamics of blunt body entry vehicles
NASA Astrophysics Data System (ADS)
Hollis, Brian R.; Borrelli, Salvatore
2012-01-01
In this chapter, the aerothermodynamic phenomena of blunt body entry vehicles are discussed. Four topics will be considered that present challenges to current computational modeling techniques for blunt body environments: turbulent flow, non-equilibrium flow, rarefied flow, and radiation transport. Examples of comparisons between computational tools to ground and flight-test data will be presented in order to illustrate the challenges existing in the numerical modeling of each of these phenomena and to provide test cases for evaluation of computational fluid dynamics (CFD) code predictions.
Radar cross section measurements of a scale model of the space shuttle orbiter vehicle
NASA Technical Reports Server (NTRS)
Yates, W. T.
1978-01-01
A series of microwave measurements was conducted to determine the radar cross section of the Space Shuttle Orbiter vehicle at a frequency and at aspect angles applicable to re-entry radar acquisition and tracking. The measurements were performed in a microwave anechoic chamber using a 1/15th scale model and a frequency applicable to C-band tracking radars. The data were digitally recorded and processed to yield statistical descriptions useful for prediction of orbiter re-entry detection and tracking ranges.
Port-of-entry advanced sorting system (PASS) operational test
DOT National Transportation Integrated Search
1998-12-01
In 1992 the Oregon Department of Transportation undertook an operational test of the Port-of-Entry Advanced Sorting System (PASS), which uses a two-way communication automatic vehicle identification system, integrated with weigh-in-motion, automatic ...
Amygdala activity associated with social choice in mice.
Mihara, Takuma; Mensah-Brown, Kobina; Sobota, Rosanna; Lin, Robert; Featherstone, Robert; Siegel, Steven J
2017-08-14
Studies suggest that the amygdala is a key region for regulation of anxiety, fear and social function. Therefore, dysfunction of the amygdala has been proposed as a potential mechanism for negative symptoms in schizophrenia. This may be due to NMDA receptor-mediated hypofunction, which is thought to be related to the pathogenesis of schizophrenia. In this study, electroencephalographic amygdala activity was assessed in mice during the three-chamber social test. This activity was also evaluated following exposure to the NMDA receptor antagonist ketamine. Vehicle-treated mice spent significantly more time in the social than the non-social chamber. This social preference was eliminated by ketamine. However, ketamine-treated mice spent significantly less time in the social chamber and significantly more time in the nonsocial chamber than vehicle-treated mice. There were no significant differences in induced powers between social and non-social chamber entries in vehicle-treated mice, except for theta frequencies, which featured greater induced theta power during non-social chamber entry. Ketamine eliminated differences in induced theta power between social and non-social chamber entries. Moreover, ketamine increased the induced gamma power during social chamber entry compared to that of vehicle-treated mice. All other frequency ranges were not significantly influenced by zone or drug condition. All significant findings were upon entry to chambers not during interaction. Results suggest that impaired function of NMDA receptor-mediated glutamate transmission can induce social impairments and amygdala dysfunction, similar to the pattern in schizophrenia. Future studies will utilize this method to evaluate mechanisms of social dysfunction and development of treatments of social impairments in schizophrenia. Copyright © 2017. Published by Elsevier B.V.
EXPERT: An atmospheric re-entry test-bed
NASA Astrophysics Data System (ADS)
Massobrio, F.; Viotto, R.; Serpico, M.; Sansone, A.; Caporicci, M.; Muylaert, J.-M.
2007-06-01
In recognition of the importance of an independent European access to the International Space Station (ISS) and in preparation for the future needs of exploration missions, ESA is conducting parallel activities to generate flight data using atmospheric re-entry test-beds and to identify vehicle design solutions for human and cargo transportation vehicles serving the ISS and beyond. The EXPERT (European eXPErimental Re-entry Test-bed) vehicle represents the major on-going development in the first class of activities. Its results may also benefit in due time scientific missions to planets with an atmosphere and future reusable launcher programmes. The objective of EXPERT is to provide a test-bed for the validation of aerothermodynamics models, codes and ground test facilities in a representative flight environment, to improve the understanding of issues related to analysis, testing and extrapolation to flight. The vehicle will be launched on a sub-orbital trajectory using a Volna missile. The EXPERT concept is based on a symmetrical re-entry capsule whose shape is composed of simple geometrical elements. The suborbital trajectory will reach 120 km altitude and a re-entry velocity of 5 6km/s. The dimensions of the capsule are 1.6 m high and 1.3 m diameter; the overall mass is in the range of 250 350kg, depending upon the mission parameters and the payload/instrumentation complement. A consistent number of scientific experiments are foreseen on-board, from innovative air data system to shock wave/boundary layer interaction, from sharp hot structures characterisation to natural and induced regime transition. Currently the project is approaching completion of the phase B, with Alenia Spazio leading the industrial team and CIRA coordinating the scientific payload development under ESA contract.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview
NASA Technical Reports Server (NTRS)
Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil
2005-01-01
Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural integrity when exposed to a relevant dynamic pressure and aerodynamic stability of the inflatable system. Structural integrity and structural response of the inflatable will be verified with photogrammetric measurements of the back side of the aeroshell in flight. Aerodynamic stability as well as drag performance will be verified with on board inertial measurements and radar tracking from multiple ground radar stations. The experiment will yield valuable information about zero-g vacuum deployment dynamics of the flexible inflatable structure with both inertial and photographic measurements. In addition to demonstrating inflatable technology, IRVE will validate structural, aerothermal, and trajectory modeling techniques for the inflatable. Structural response determined from photogrammetrics will validate structural models, skin temperature measurements and additional in-depth temperature measurements will validate material thermal performance models, and on board inertial measurements along with radar tracking from multiple ground radar stations will validate trajectory simulation models.
Hypersonic entry vehicle state estimation using nonlinearity-based adaptive cubature Kalman filters
NASA Astrophysics Data System (ADS)
Sun, Tao; Xin, Ming
2017-05-01
Guidance, navigation, and control of a hypersonic vehicle landing on the Mars rely on precise state feedback information, which is obtained from state estimation. The high uncertainty and nonlinearity of the entry dynamics make the estimation a very challenging problem. In this paper, a new adaptive cubature Kalman filter is proposed for state trajectory estimation of a hypersonic entry vehicle. This new adaptive estimation strategy is based on the measure of nonlinearity of the stochastic system. According to the severity of nonlinearity along the trajectory, the high degree cubature rule or the conventional third degree cubature rule is adaptively used in the cubature Kalman filter. This strategy has the benefit of attaining higher estimation accuracy only when necessary without causing excessive computation load. The simulation results demonstrate that the proposed adaptive filter exhibits better performance than the conventional third-degree cubature Kalman filter while maintaining the same performance as the uniform high degree cubature Kalman filter but with lower computation complexity.
Near-Optimal Re-Entry Trajectories for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Chou, H.-C.; Ardema, M. D.; Bowles, J. V.
1997-01-01
A near-optimal guidance law for the descent trajectory for earth orbit re-entry of a fully reusable single-stage-to-orbit pure rocket launch vehicle is derived. A methodology is developed to investigate using both bank angle and altitude as control variables and selecting parameters that maximize various performance functions. The method is based on the energy-state model of the aircraft equations of motion. The major task of this paper is to obtain optimal re-entry trajectories under a variety of performance goals: minimum time, minimum surface temperature, minimum heating, and maximum heading change; four classes of trajectories were investigated: no banking, optimal left turn banking, optimal right turn banking, and optimal bank chattering. The cost function is in general a weighted sum of all performance goals. In particular, the trade-off between minimizing heat load into the vehicle and maximizing cross range distance is investigated. The results show that the optimization methodology can be used to derive a wide variety of near-optimal trajectories.
Port-of-entry Advanced Sorting System (PASS) operational test : final report
DOT National Transportation Integrated Search
1998-12-01
In 1992 the Oregon Department of Transportation undertook an operational test of the Port-of-Entry Advanced Sorting System (PASS), which uses a two-way communication automatic vehicle identification system, integrated with weigh-in-motion, automatic ...
K-Band Phased Array Developed for Low- Earth-Orbit Satellite Communications
NASA Technical Reports Server (NTRS)
Anzic, Godfrey
1999-01-01
Future rapid deployment of low- and medium-Earth-orbit satellite constellations that will offer various narrow- to wide-band wireless communications services will require phased-array antennas that feature wide-angle and superagile electronic steering of one or more antenna beams. Antennas, which employ monolithic microwave integrated circuits (MMIC), are perfectly suited for this application. Under a cooperative agreement, an MMIC-based, K-band phased-array antenna is being developed with 50/50 cost sharing by the NASA Lewis Research Center and Raytheon Systems Company. The transmitting array, which will operate at 19 gigahertz (GHz), is a state-of-the-art design that features dual, independent, electronically steerable beam operation ( 42 ), a stand-alone thermal management, and a high-density tile architecture. This array can transmit 622 megabits per second (Mbps) in each beam from Earth orbit to small Earth terminals. The weight of the total array package is expected to be less than 8 lb. The tile integration technology (flip chip MMIC tile) chosen for this project represents a major advancement in phased-array engineering and holds much promise for reducing manufacturing costs.
NASA Astrophysics Data System (ADS)
Mair, H. D.; Ciorau, P.; Owen, D.; Hazelton, T.; Dunning, G.
2000-05-01
Two ultrasonic simulation packages: Imagine 3D and SIMSCAN have specifically been developed to solve the inverse problem for blade root and rotor steeple of low-pressure turbine. The software was integrated with the 3D drawing of the inspected parts, and with the dimensions of linear phased-array probes. SIMSCAN simulates the inspection scenario in both optional conditions: defect location and probe movement/refracted angle range. The results are displayed into Imagine 3-D, with a variety of options: rendering, display 1:1, grid, generated UT beam. The results are very useful for procedure developer, training and to optimize the phased-array probe inspection sequence. A spreadsheet is generated to correlate the defect coordinates with UT data (probe position, skew and refracted angle, UT path, and probe movement). The simulation models were validated during experimental work with phased-array systems. The accuracy in probe position is ±1 mm, and the refracted/skew angle is within ±0.5°. Representative examples of phased array focal laws/probe movement for a specific defect location, are also included.
NASA Astrophysics Data System (ADS)
Fatemi, Javad
2011-05-01
The thermal protection system of the EXPERT re-entry vehicle is subjected to accelerations, vibrations, acoustic and shock loads during launch and aero-heating loads and aerodynamic forces during re-entry. To fully understand the structural and thermomechanical performances of the TPS, heat transfer analysis, thermal stress analysis, and thermal buckling analysis must be performed. This requires complex three-dimensional thermal and structural models of the entire TPS including the insulation and sensors. Finite element (FE) methods are employed to assess the thermal and structural response of the TPS to the mechanical and aerothermal loads. The FE analyses results are used for the design verification and design improvement of the EXPERT thermal protection system.
Cubesat Application for Planetary Entry (CAPE) Missions: Micro-Return Capsule (MIRCA)
NASA Technical Reports Server (NTRS)
Esper, Jaime
2016-01-01
The Cubesat Application for Planetary Entry Missions (CAPE) concept describes a high-performing Cubesat system which includes a propulsion module and miniaturized technologies capable of surviving atmospheric entry heating, while reliably transmitting scientific and engineering data. The Micro Return Capsule (MIRCA) is CAPE's first planetary entry probe flight prototype. Within this context, this paper briefly describes CAPE's configuration and typical operational scenario, and summarizes ongoing work on the design and basic aerodynamic characteristics of the prototype MIRCA vehicle. CAPE not only opens the door to new planetary mission capabilities, it also offers relatively low-cost opportunities especially suitable to university participation. In broad terms, CAPE consists of two main functional components: the "service module" (SM), and "CAPE's entry probe" (CEP). The SM contains the subsystems necessary to support vehicle targeting (propulsion, ACS, computer, power) and the communications capability to relay data from the CEP probe to an orbiting "mother-ship". The CEP itself carries the scientific instrumentation capable of measuring atmospheric properties (such as density, temperature, composition), and embedded engineering sensors for Entry, Descent, and Landing (EDL). The first flight of MIRCA was successfully completed on 10 October 2015 as a "piggy-back" payload onboard a NASA stratospheric balloon launched from Ft. Sumner, NM.
Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators
NASA Technical Reports Server (NTRS)
DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.
2011-01-01
Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.
19 CFR 123.82 - Treatment of stolen vehicles returned from Mexico.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Treatment of stolen vehicles returned from Mexico... SECURITY; DEPARTMENT OF THE TREASURY CUSTOMS RELATIONS WITH CANADA AND MEXICO Miscellaneous Provisions § 123.82 Treatment of stolen vehicles returned from Mexico. Port directors shall admit without entry and...
19 CFR 148.45 - Vehicles and other conveyances.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Vehicles and other conveyances. 148.45 Section 148.45 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF... Vehicles and other conveyances. Nonresidents are entitled to entry free of duty and internal revenue tax...
19 CFR 148.45 - Vehicles and other conveyances.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 2 2012-04-01 2012-04-01 false Vehicles and other conveyances. 148.45 Section 148.45 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF... Vehicles and other conveyances. Nonresidents are entitled to entry free of duty and internal revenue tax...
19 CFR 148.45 - Vehicles and other conveyances.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 2 2014-04-01 2014-04-01 false Vehicles and other conveyances. 148.45 Section 148.45 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF... Vehicles and other conveyances. Nonresidents are entitled to entry free of duty and internal revenue tax...
78 FR 74122 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-10
... drive government owned or leased vehicles that exceed 10,000 pounds gross vehicle weight and are used... vehicle operator identification card. DATES: This proposed action will be effective on January 10, 2014... license.'' Authority for maintenance of the system: Delete entry and replace with ``10 U.S.C. 8013...
49 CFR Appendix B to Part 591 - Section 591.5(f) Bond for the Entry of More Than a Single Vehicle
Code of Federal Regulations, 2010 CFR
2010-10-01
...) IMPORTATION OF VEHICLES AND EQUIPMENT SUBJECT TO FEDERAL SAFETY, BUMPER AND THEFT PREVENTION STANDARDS Pt. 591... Federal motor vehicle safety, or bumper, or theft prevention standards; and WHEREAS, pursuant to 49 CFR... to conform to the Federal motor vehicle safety, bumper, and theft prevention standards; and WHEREAS...
76 FR 2598 - Final Theft Data; Motor Vehicle Theft Prevention Standard
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... ``Quattro'' and ``Avant'' should be deleted from the Volkswagen and Audi vehicle line nomenclature. The..., Quattro and Avant have been deleted from the vehicle line nomenclature for the Volkswagen and Audi vehicle lines. Therefore, the entry for the Audi A6/A6 Quattro/S6/ S6 Avant has been changed to the Audi A6 and...
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2014-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPTs propulsion technologies include: 1) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; 2) a Hall-effect electric propulsion (HEP) system for sample return and low cost missions; 3) the Advanced Xenon Flow Control System (AXFS); ultra-lightweight propellant tank technologies (ULTT); and propulsion technologies for a Mars Ascent Vehicle (MAV). The AXFS and ULTT are two component technologies being developed with nearer-term flight infusion in mind, whereas NEXT and the HEP are being developed as EP systems. ISPTs entry vehicle technologies are: 1) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GNC) models of blunt-body rigid aeroshells; and aerothermal effect models; and 2) Multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions. The Systems Mission Analysis area is focused on developing tools and assessing the application of propulsion, entry vehicle, and spacecraft bus technologies to a wide variety of mission concepts. Several of the ISPT technologies are related to sample return missions and other spacecraft bus technology needs like: MAV propulsion, MMEEV, and electric propulsion. These technologies, as well as Aerocapture, are more vehicle and mission-focused, and present a different set of technology development challenges. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
NASA Technical Reports Server (NTRS)
D'souza, Sarah N.; Kinney, David J.; Garcia, Joseph A.; Sarigul-Klijn, Nesrin
2014-01-01
The state-of-the-art in vehicle design decouples flight feasible trajectory generation from the optimization process of an entry spacecraft shape. The disadvantage to this decoupled process is seen when a particular aeroshell does not meet in-flight requirements when integrated into Guidance, Navigation, and Control simulations. It is postulated that the integration of a guidance algorithm into the design process will provide a real-time, rapid trajectory generation technique to enhance the robustness of vehicle design solutions. The potential benefit of this integration is a reduction in design cycles (possible cost savings) and increased accuracy in the aerothermal environment (possible mass savings). This work examines two aspects: 1) the performance of a reference tracking guidance algorithm for five different geometries with the same reference trajectory and 2) the potential of mass savings from improved aerothermal predictions. An Apollo Derived Guidance (ADG) algorithm is used in this study. The baseline geometry and five test case geometries were flown using the same baseline trajectory. The guided trajectory results are compared to separate trajectories determined in a vehicle optimization study conducted for NASA's Mars Entry, Descent, and Landing System Analysis. This study revealed several aspects regarding the potential gains and required developments for integrating a guidance algorithm into the vehicle optimization environment. First, the generation of flight feasible trajectories is only as good as the robustness of the guidance algorithm. The set of dispersed geometries modelled aerodynamic dispersions that ranged from +/-1% to +/-17% and a single extreme case was modelled where the aerodynamics were approximately 80% less than the baseline geometry. The ADG, as expected, was able to guide the vehicle into the aeroshell separation box at the target location for dispersions up to 17%, but failed for the 80% dispersion cases. Finally, the results revealed that including flight feasible trajectories for a set of dispersed geometries has the potential to save mass up to 430 kg.
33 CFR 105.260 - Security measures for restricted areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; (7) Control the entry, parking, loading and unloading of vehicles; (8) Control the movement and...) Using security personnel, automatic intrusion detection devices, surveillance equipment, or surveillance systems to detect unauthorized entry or movement within restricted areas; (7) Directing the parking...
33 CFR 105.260 - Security measures for restricted areas.
Code of Federal Regulations, 2011 CFR
2011-07-01
...; (7) Control the entry, parking, loading and unloading of vehicles; (8) Control the movement and...) Using security personnel, automatic intrusion detection devices, surveillance equipment, or surveillance systems to detect unauthorized entry or movement within restricted areas; (7) Directing the parking...
Dolfi, D; Joffre, P; Antoine, J; Huignard, J P; Philippet, D; Granger, P
1996-09-10
The experimental demonstration and the far-field pattern characterization of an optically controlled phased-array antenna are described. It operates between 2.5 and 3.5 GHz and is made of 16 radiating elements. The optical control uses a two-dimensional architecture based on free-space propagation and on polarization switching by N spatial light modulators of p × p pixels. It provides 2(N-1) time-delay values and an analog control of the 0 to 2π phase for each of the p × p signals feeding the antenna (N = 5, p = 4).
Communications Blackout Predictions for Atmospheric Entry of Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Morabito, David D.; Edquist, Karl T.
2005-01-01
The Mars Science Laboratory (MSL) is expected to be a long-range, long-duration science laboratory rover on the Martian surface. MSL will provide a significant milestone that paves the way for future landed missions to Mars. NASA is studying options to launch MSL as early as 2009. There are three elements to the spacecraft; carrier (cruise stage), entry vehicle, and rover. The rover will have a UHF proximity link as the primary path for EDL communications and may have an X-band direct-to-Earth link as a back-up. Given the importance of collecting critical event telemetry data during atmospheric entry, it is important to understand the ability of a signal link to be maintained, especially during the period near peak convective heating. The received telemetry during entry (or played back later) will allow for the performance of the Entry-Descent-Landing technologies to be assessed. These technologies include guided entry for precision landing, a new sky-crane landing system and powered descent. MSL will undergo an entry profile that may result in a potential communications blackout caused by ionized particles for short periods near peak heating. The vehicle will use UHF and possibly X-band during the entry phase. The purpose of this rep0rt is to quantify or bound the likelihood of any such blackout at UHF frequencies (401 MHz) and X-band frequencies (8.4 GHz). Two entry trajectory scenarios were evaluated: a stressful entry trajectory to quantify an upper-bound for any possible blackout period, and a nominal trajectory to quantify likelihood of blackout for such cases.
Parametric Study of an Ablative TPS and Hot Structure Heatshield for a Mars Entry Capsule Vehicle
NASA Technical Reports Server (NTRS)
Langston, Sarah L.; Lang, Christapher G.; Samareh, Jamshid A.
2017-01-01
The National Aeronautics and Space Administration is planning to send humans to Mars. As part of the Evolvable Mars Campaign, different en- try vehicle configurations are being designed and considered for delivering larger payloads than have been previously sent to the surface of Mars. Mass and packing volume are driving factors in the vehicle design, and the thermal protection for planetary entry is an area in which advances in technology can offer potential mass and volume savings. The feasibility and potential benefits of a carbon-carbon hot structure concept for a Mars entry vehicle is explored in this paper. The windward heat shield of a capsule design is assessed for the hot structure concept as well as an ablative thermal protection system (TPS) attached to a honeycomb sandwich structure. Independent thermal and structural analyses are performed to determine the minimum mass design. The analyses are repeated for a range of design parameters, which include the trajectory, vehicle size, and payload. Polynomial response functions are created from the analysis results to study the capsule mass with respect to the design parameters. Results from the polynomial response functions created from the thermal and structural analyses indicate that the mass of the capsule was higher for the hot structure concept as compared to the ablative TPS for the parameter space considered in this study.
Transitioning to Low-GWP Alternatives in Motor Vehicle Air Conditioning Systems
This fact sheet provides information on low-GWP alternatives in newly manufactured motor vehicle air conditioning systems. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.
On-Board Generation of Three-Dimensional Constrained Entry Trajectories
NASA Technical Reports Server (NTRS)
Shen, Zuojun; Lu, Ping; Jackson, Scott (Technical Monitor)
2002-01-01
A methodology for very fast design of 3DOF entry trajectories subject to all common inequality and equality constraints is developed. The approach make novel use of the well known quasi-equilibrium glide phenomenon in lifting entry as a center piece for conveniently enforcing the inequality constraints which are otherwise difficulty to handle. The algorithm is able to generate a complete feasible 3DOF entry trajectory, given the entry conditions, values of constraint parameters, and final conditions in about 2 seconds on a PC. Numerical simulations with the X-33 vehicle model for various entry missions to land at Kennedy Space Center will be presented.
Anatomy of an entry vehicle experiment
NASA Technical Reports Server (NTRS)
Eide, D. G.; Wurster, K. E.; Helms, V. T.; Ashby, G. C.
1981-01-01
The anatomy and evolution of a simple small-scale unmanned entry vehicle is described that is delivered to orbit by the shuttle and entered into the atmosphere from orbit to acquire flight data to improve our knowledge of boundary-layer behavior and evaluate advanced thermal protection systems. The anatomy of the experiment includes the justification for the experiments, instrumentation, configuration, material, and operational needs, and the translation of these needs into a configuration, weight statement, aerodynamics, program cost, and trajectory. Candidates for new instrumentation development are also identified for nonintrusive measurements of the boundary-layer properties.
Test Results for Entry Guidance Methods for Space Vehicles
NASA Technical Reports Server (NTRS)
Hanson, John M.; Jones, Robert E.
2004-01-01
There are a number of approaches to advanced guidance and control that have the potential for achieving the goals of significantly increasing reusable launch vehicle (or any space vehicle that enters an atmosphere) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future vehicle concepts.
Orion Entry, Descent, and Landing Performance and Mission Design
NASA Technical Reports Server (NTRS)
Broome, Joel M.; Johnson, Wyatt
2007-01-01
The Orion Vehicle is the next spacecraft to take humans into space and will include missions to ISS as well as missions to the Moon. As part of that challenge, the vehicle will have to accommodate multiple mission design concepts, since return from Low Earth Orbit and return from the Moon can be quite different. Commonality between the different missions as it relates to vehicle systems, guidance capability, and operations concepts is the goal. Several unique mission design concepts include the specification of multiple land-based landing sites for a vehicle with closed-loop direct and skip entry guidance, followed by a parachute descent and landing attenuation system. This includes the ability of the vehicle to accurately target and land at a designated landing site, including site location aspects, landing site size, and landing opportunities assessments. Analyses associated with these mission design and flight performance challenges and constraints will be discussed as well as potential operational concepts to provide feasibility and/or mission commonality.
Determination of Barometric Altimeter Errors for the Orion Exploration Flight Test-1 Entry
NASA Technical Reports Server (NTRS)
Brown, Denise L.; Bunoz, Jean-Philippe; Gay, Robert
2012-01-01
The Exploration Flight Test 1 (EFT-1) mission is the unmanned flight test for the upcoming Multi-Purpose Crew Vehicle (MPCV). During entry, the EFT-1 vehicle will trigger several Landing and Recovery System (LRS) events, such as parachute deployment, based on on-board altitude information. The primary altitude source is the filtered navigation solution updated with GPS measurement data. The vehicle also has three barometric altimeters that will be used to measure atmospheric pressure during entry. In the event that GPS data is not available during entry, the altitude derived from the barometric altimeter pressure will be used to trigger chute deployment for the drogues and main parachutes. Therefore it is important to understand the impact of error sources on the pressure measured by the barometric altimeters and on the altitude derived from that pressure. The error sources for the barometric altimeters are not independent, and many error sources result in bias in a specific direction. Therefore conventional error budget methods could not be applied. Instead, high fidelity Monte-Carlo simulation was performed and error bounds were determined based on the results of this analysis. Aerodynamic errors were the largest single contributor to the error budget for the barometric altimeters. The large errors drove a change to the altitude trigger setpoint for FBC jettison deploy.
Parametric Structural Model for a Mars Entry Concept
NASA Technical Reports Server (NTRS)
Lane, Brittney M.; Ahmed, Samee W.
2017-01-01
This paper outlines the process of developing a parametric model for a vehicle that can withstand Earth launch and Mars entry conditions. This model allows the user to change a variety of parameters ranging from dimensions and meshing to materials and atmospheric entry angles to perform finite element analysis on the model for the specified load cases. While this work focuses on an aeroshell for Earth launch aboard the Space Launch System (SLS) and Mars entry, the model can be applied to different vehicles and destinations. This specific project derived from the need to deliver large payloads to Mars efficiently, safely, and cheaply. Doing so requires minimizing the structural mass of the body as much as possible. The code developed for this project allows for dozens of cases to be run with the single click of a button. The end result of the parametric model gives the user a sense of how the body reacts under different loading cases so that it can be optimized for its purpose. The data are reported in this paper and can provide engineers with a good understanding of the model and valuable information for improving the design of the vehicle. In addition, conclusions show that the frequency analysis drives the design and suggestions are made to reduce the significance of normal modes in the design.
Base Flow Investigation of the Apollo AS-202 Command Module. Chapter 6
NASA Technical Reports Server (NTRS)
Walpot, Louis M. G.; Wright, Michael J.; Noeding, Peter; Schrijer, Ferry
2011-01-01
In recent years, both Europe and the US are developing hypersonic research and operational vehicles. These include (re)entry capsules (both ballistic and lifting) and lifting bodies such as ExoMars, EXPERT, ARV, CEV and IXV. The research programs are meant to enable technology and engineering capabilities to support during the next decade the development of affordable (possibly reusable) space transportation systems as well as hypersonic weapons systems for time critical targets. These programs have a broad range of goals, ranging from the qualification of thermal protection systems, the assessment of RCS performances, the development of GNC algorithms, to the full demonstration of the performance and operability of the integrated vehicles. Since the aerothermodynamic characteristics influence nearly all elements of the vehicle design, the accurate prediction of the aerothermal environment is a prerequisite for the design of efficient hypersonic systems. Significant uncertainties in the prediction of the hypersonic aerodynamic and the aerothermal loads can lead to conservative margins in the design of the vehicle including its Outer Mould Line (OML), thermal protection system, structure, and required control system robustness. The current level of aerothermal prediction uncertainties results therefore in reduced vehicle performances (e.g., sub-optimal payload to mass ratio, increased operational constraints). On the other hand, present computational capabilities enable the simulation of three dimensional flow fields with complex thermo-chemical models over complete trajectories and ease the validation of these tools by, e.g., reconstruction of detailed wind tunnel tests performed under identified and controlled conditions (flow properties and vehicle attitude in particular). These controlled conditions are typically difficult to achieve when performing in flight measurements which in turn results in large associated measurement uncertainties. Similar problems arise when attempting to rebuild measurements performed in "hot" ground facilities, where the difficulty level is increased by the addition of the free-flow characterization itself. The implementation of ever more sophisticated thermochemical models is no obvious cure to the aforementioned problems since their effect is often overwhelmed by the large measurement uncertainties incurred in both flight and ground high enthalpy facilities. Concurrent to the previous considerations, a major contributor to the overall vehicle mass of re-entry vehicles is the afterbody thermal protection system. This is due to the large acreage (equal or bigger than that of the forebody) to be protected. The present predictive capabilities for base flows are comparatively lower than those for windward flowfields and offer therefore a substantial potential for improving the design of future re-entry vehicles. To that end, it is essential to address the accuracy of high fidelity CFD tools exercised in the US and EU, which motivates a thorough investigation of the present status of hypersonic flight afterbody heating. This paper addresses the predictive capabilities of after body flow fields of re-entry vehicles investigated in the frame of the NATO/RTO - RTG-043 Task Group and is structured as follows: First, the verification of base flow topologies on the basis of available wind-tunnel results performed under controlled supersonic conditions (i.e., cold flows devoid of reactive effects) is performed. Such tests address the detailed characterization of the base flow with particular emphasis on separation/reattachment and their relation to Mach number effects. The tests have been performed on an Apollo-like re-entry capsule configuration. Second, the tools validated in the frame of the previous effort are exercised and appraised against flight-test data collected during the Apollo AS-202 re-entry.
Dynamic and Static High Temperature Resistant Ceramic Seals for X- 38 re-Entry Vehicle
NASA Astrophysics Data System (ADS)
Handrick, Karin E.; Curry, Donald M.
2002-01-01
In a highly successful partnership, NAS A, ESA, DLR (German Space Agency) and European industry are building the X-38, V201 re-entry spacecraft, the prototype of the International Space Station's Crew Return Vehicle (CRV). This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. The development of essential systems and technologies for a reusable re-entry vehicle is a first for Europe, and sharing the development of an advanced re-entry spacecraft with foreign partners is a first for NASA. NASA, in addition to its subsystem responsibilities, is performing overall X-38 vehicle system engineering and integration, will launch V201 on the Space Shuttle, deliver flight data for post-flight analysis and assessment and is responsible for development and manufacture of structural vehicle components and thermal protection (TPS) tiles. The major European objective for cooperation with NASA on X-38 was to establish a clear path through which key technologies needed for future space transportation systems could be developed and validated at affordable cost and with controlled risk. Europe has taken the responsibility to design and manufacture hot control surfaces like metallic rudders and ceramic matrix composites (CMC) body flaps, thermal protection systems such as CMC leading edges, the CMC nose cap and -skirt, insulation, landing gears and elements of the V201 primary structure. Especially hot control surfaces require extremely high temperature resistant seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent overheating of these structures and possible loss of the vehicle. Complex seal interfaces, which have to fulfill various, tight mission- and vehicle-related requirements exist between the moveable ceramic body flaps and the bottom surface of the vehicle, between the rudder and fin structure and the ceramic leading edge panel and TPS tiles. While NASA concentrated on the development, qualification and manufacture of dynamic seals in the rudder area, the responsibility of MAN Technologie focused on the development, lay-out, qualification and flight hardware manufacture of static and dynamic seals in ceramic hot structures' associated gaps and interfaces, dealing with re-entry temperatures up to 1600°C. This paper presents results for temperature and mechanical stability, flow, scrub (up to 1000 cycles) and of arc jet tests under representative low boundary conditions and plasma step/gap tests, conducted during the development and qualification phases of these different kind of ceramic seals. Room temperature seal compression tests were performed at low compression levels to determine load versus linear compression, preload, contact area, stiffness and resiliency characteristics under low load conditions. Flow tests with thermally aged seals were conducted at ambient temperature to examine leakage at low compression levels and in as-manufactured conditions. Seal scrub tests were performed to examine durability and wear resistance and to recommend surface treatments required to maximize seal wear life. Results of arc jet/plasma tests under simulated re-entry conditions (pressure, temperature) verified seal temperature stability and function under representative assembly and interface conditions. Each of these specifically developed seals fulfilled the requirements and is qualified for flight on X-38, V201.
40 CFR 600.005-81 - Maintenance of records and rights of entry.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy... applicable: (a) The manufacturer of any new motor vehicle subject to any of the standards or procedures... ensure that the vehicle with respect to its engine, drive train, fuel system, emission control system...
40 CFR 86.000-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: (i) EPA engine family; (ii) Vehicle identification number; (iii) Model year and production date; (iv... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles...
40 CFR 86.000-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: (i) EPA engine family; (ii) Vehicle identification number; (iii) Model year and production date; (iv... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles...
40 CFR 86.000-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: (i) EPA engine family; (ii) Vehicle identification number; (iii) Model year and production date; (iv... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles...
40 CFR 86.000-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2012 CFR
2012-07-01
...: (i) EPA engine family; (ii) Vehicle identification number; (iii) Model year and production date; (iv... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles...
19 CFR 123.82 - Treatment of stolen vehicles returned from Mexico.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Treatment of stolen vehicles returned from Mexico... SECURITY; DEPARTMENT OF THE TREASURY CBP RELATIONS WITH CANADA AND MEXICO Miscellaneous Provisions § 123.82 Treatment of stolen vehicles returned from Mexico. Port directors shall admit without entry and payment of...
19 CFR 123.82 - Treatment of stolen vehicles returned from Mexico.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 1 2013-04-01 2013-04-01 false Treatment of stolen vehicles returned from Mexico... SECURITY; DEPARTMENT OF THE TREASURY CBP RELATIONS WITH CANADA AND MEXICO Miscellaneous Provisions § 123.82 Treatment of stolen vehicles returned from Mexico. Port directors shall admit without entry and payment of...
19 CFR 123.82 - Treatment of stolen vehicles returned from Mexico.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 1 2014-04-01 2014-04-01 false Treatment of stolen vehicles returned from Mexico... SECURITY; DEPARTMENT OF THE TREASURY CBP RELATIONS WITH CANADA AND MEXICO Miscellaneous Provisions § 123.82 Treatment of stolen vehicles returned from Mexico. Port directors shall admit without entry and payment of...
19 CFR 123.82 - Treatment of stolen vehicles returned from Mexico.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 1 2012-04-01 2012-04-01 false Treatment of stolen vehicles returned from Mexico... SECURITY; DEPARTMENT OF THE TREASURY CBP RELATIONS WITH CANADA AND MEXICO Miscellaneous Provisions § 123.82 Treatment of stolen vehicles returned from Mexico. Port directors shall admit without entry and payment of...
Flexible Ablators: Applications and Arcjet Testing
NASA Technical Reports Server (NTRS)
Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey
2011-01-01
Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.
Composite flexible insulation for thermal protection of space vehicles
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda
1991-01-01
A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the aeroassist space transfer vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.
A fault-tolerant avionics suite for an entry research vehicle
NASA Technical Reports Server (NTRS)
Dzwonczyk, Mark; Stone, Howard
1988-01-01
A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.
A fault-tolerant avionics suite for an entry research vehicle
NASA Astrophysics Data System (ADS)
Dzwonczyk, Mark; Stone, Howard
A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.
Draper Laboratory small autonomous aerial vehicle
NASA Astrophysics Data System (ADS)
DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.
1997-06-01
The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.
NASA Technical Reports Server (NTRS)
Wurster, K. E.; Eldred, C. H.
1979-01-01
A broad parametric study which examines several critical aspects of low-heat-rate entry trajectories is performed. Low planform loadings associated with future winged earth-entry vehicles coupled with the potential application of metallic thermal protection systems (TPS) suggest that such trajectories are of particular interest. Studied are three heating conditions - reference, stagnation, and windward centerline, for both laminar and turbulent flow; configuration-related factors including planform loading and hypersonic angle of attack; and mission-related factors such as cross-range and orbit inclination. Results indicate benefits in the design of TPS to be gained by utilizing moderate angles of attack as opposed to high-lift coefficient, high angles of attack, during entry. An assessment of design and technology implications is made.
Longitudinal control effectiveness and entry dynamics of a single-stage-to-orbit vehicle
NASA Technical Reports Server (NTRS)
Vinh, N. X.; Lin, C. F.
1982-01-01
The classical theory of flight dynamics for airplane longitudinal stability and control analysis was extended to the case of a hypervelocity reentry vehicle. This includes the elements inherent in supersonic and hypersonic flight such as the influence of the Mach number on aerodynamic characteristics, and the effect of the reaction control system and aerodynamic controls on the trim condition through a wide range of speed. Phugoid motion and angle of attack oscillation for typical cases of cruising flight, ballistic entry, and glide entry are investigated. In each case, closed form solutions for the variations in altitude, flight path angle, speed and angle of attack are obtained. The solutions explicitly display the influence of different regions design parameters and trajectory variables on the stability of the motion.
NASA Technical Reports Server (NTRS)
Kitts, Christopher
2001-01-01
The NASA Ames Research Center (Thermal Protection Materials and Systems Branch) is investigating new ceramic materials for the thermal protection of atmospheric entry vehicles. An incremental approach to proving the capabilities of these materials calls for a lifting entry flight test of a sharp leading edge component on the proposed SHARP (Slender Hypervelocity Aerothermodynamic Research Probe) vehicle. This flight test will establish the aerothermal performance constraint under real lifting entry conditions. NASA Ames has been developing the SHARP test flight with SSDL (responsible for the SHARP S I vehicle avionics), Montana State University (responsible for the SHARP S I vehicle airframe), the Wickman Spacecraft and Propulsion Company (responsible for the sounding rocket and launch operations), and with the SCU Intelligent Robotics Program, The SCU team was added well after the rest of the development team had formed. The SCU role was to assist with the development of a real-time video broadcast system which would relay onboard flight video to a communication groundstation. The SCU team would also assist with general vehicle preparation as well as flight operations. At the time of the submission of the original SCU proposal, a test flight in Wyoming was originally targeted for September 2000. This date was moved several times into the Fall of 2000. It was then postponed until the Spring of 2001, and later pushed into late Summer 2001. To date, the flight has still not taken place. These project delays resulted in SCU requesting several no-cost extensions to the project. Based on the most recent conversations with the project technical lead, Paul Kolodjiez, the current plan is for the overall SHARP team to assemble what exists of the vehicle, to document the system, and to 'mothball' the vehicle in anticipation of future flight and funding opportunities.
A cost engineered launch vehicle for space tourism
NASA Astrophysics Data System (ADS)
Koelle, -Ing. Dietrich E., , Dr.
1999-09-01
The paper starts with a set of major requirements for a space tourism vehicle and discusses major vehicle options proposed for this purpose. It seems that the requirements can be met best with a Ballistic SSTO Vehicle which has the additional advantage of lowest development cost compared to other launch vehicle options — important for a commercial development venture. The BETA Ballistic Reusable Vehicle Concept is characterized by the plug nozzle cluster engine configuration where the plug nozzle serves also as base plate and re-entry heat shield. In this case no athmospheric turn maneuver is required (as in case-of the front-entry Delta-Clipper DC-Y concept). In our specific case for space tourism this mode has the avantage that the forces at launch and reentry are in exactly the same direction, easing passenger seating arrangements. The second basic advantage is the large available volume on top of the vehicle providing ample space for passenger accomodation, visibility and volume for zero-g experience (free floating), one of the major passenger mission requirements. An adequate passenger cabin design for 100 passengers is presented, as well as the modern BETA-STV Concept with its mass allocations.
Angle of Attack Modulation for Mars Entry Terminal State Optimization
NASA Technical Reports Server (NTRS)
Lafleur, Jarret M.; Cerimele, Christopher J.
2009-01-01
From the perspective of atmospheric entry, descent, and landing (EDL), one of the most foreboding destinations in the solar system is Mars due in part to its exceedingly thin atmosphere. To benchmark best possible scenarios for evaluation of potential Mars EDL system designs, a study is conducted to optimize the entry-to-terminal-state portion of EDL for a variety of entry velocities and vehicle masses, focusing on the identification of potential benefits of enabling angle of attack modulation. The terminal state is envisioned as one appropriate for the initiation of terminal descent via parachute or other means. A particle swarm optimizer varies entry flight path angle, ten bank profile points, and ten angle of attack profile points to find maximum-final-altitude trajectories for a 10 30 m ellipsled at 180 different combinations of values for entry mass, entry velocity, terminal Mach number, and minimum allowable altitude. Parametric plots of maximum achievable altitude are shown, as are examples of optimized trajectories. It is shown that appreciable terminal state altitude gains (2.5-4.0 km) over pure bank angle control may be possible if angle of attack modulation is enabled for Mars entry vehicles. Gains of this magnitude could prove to be enabling for missions requiring high-altitude landing sites. Conclusions are also drawn regarding trends in the bank and angle of attack profiles that produce the optimal trajectories in this study, and directions for future work are identified.
Application of the FADS system on the Re-entry Module
NASA Astrophysics Data System (ADS)
Zhen, Huang
2016-07-01
The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.
Stakeholder identification of advanced technology opportunities at international ports of entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, S.K.; Icerman, L.
As part of the Advanced Technologies for International and Intermodal Ports of Entry (ATIPE) Project, a diverse group of stakeholders was engaged to help identify problems experienced at inland international border crossings, particularly those at the US-Mexican border. The fundamental issue at international ports of entry is reducing transit time through the required documentation and inspection processes. Examples of other issues or problems, typically manifested as time delays at border crossings, repeatedly mentioned by stakeholders include: (1) lack of document standardization; (2) failure to standardize inspection processes; (3) inadequate information and communications systems; (4) manual fee and tariff collection; (5)more » inconsistency of processes and procedures; and (6) suboptimal cooperation among governmental agencies. Most of these issues can be addressed to some extent by the development of advanced technologies with the objective of allowing ports of entry to become more efficient while being more effective. Three categories of technologies were unambiguously of high priority to port of entry stakeholders: (1) automated documentation; (2) systems integration; and (3) vehicle and cargo tracking. Together, these technologies represent many of the technical components necessary for pre-clearance of freight approaching international ports of entry. Integration of vehicle and cargo tracking systems with port of entry information and communications systems, as well as existing industry legacy systems, should further enable border crossings to be accomplished consistently with optimal processing times.« less
NASA Astrophysics Data System (ADS)
Sepka, S. A.; Samareh, J. A.
2014-06-01
Mass estimating relationships have been formulated to determine a vehicle's Thermal Protection System material and required thickness for safe Earth entry. We focus on developing MERs, the resulting equations, model limitations, and model accuracy.
Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.
2013-01-01
There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.
NASA Astrophysics Data System (ADS)
Crosbie, A. L.
Aspects of aerothermodynamics are considered, taking into account aerodynamic heating for gaps in laminar and transitional boundary layers, the correlation of convection heat transfer for open cavities in supersonic flow, the heat transfer and pressure on a flat plate downstream of heated square jet in a Mach 0.4 to 0.8 crossflow, the effect of surface roughness character on turbulent reentry heating, three-dimensional protuberance interference heating in high-speed flow, and hypersonic flow over small span flaps in a thick turbulent boundary layer. Questions of thermal protection are investigated, giving attention to thermochemical ablation of tantalum carbide loaded carbon-carbons, the catalytic recombination of nitrogen and oxygen on high-temperature reusable surface insulation, particle acceleration using a helium arc heater, a temperature and ablation optical sensor, a wind-tunnel study of ascent heating of multiple reentry vehicle configurations, and reentry vehicle soft-recovery techniques. Subjects examined in connection with a discussion of planetary entry are related to a thermal protection system for the Galileo mission atmospheric entry probe, the viscosity of multicomponent partially ionized gas mixtures associated with Jovian entry, coupled laminar and turbulent flow solutions for Jovian entry, and a preliminary aerothermal analysis for Saturn entry.
Hybrid FSAE Vehicle Realization
DOT National Transportation Integrated Search
2010-12-01
The goal of this multi-year project is to create a fully functional University of Idaho entry in the hybrid FSAE competition. Vehicle integration is underway as part of a variety of 2010-11 senior design projects. This leverages a variety of analytic...
Communications Blackout Predictions for Atmospheric Entry of Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Morabito, David D.; Edquist, Karl
2005-01-01
The Mars Science Laboratory (MSL) is expected to be a long-range, long-duration science laboratory rover on the Martian surface. MSL will provide a significant milestone that paves the way for future landed missions to Mars. NASA is studying options to launch MSL as early as 2009. MSL will be the first mission to demonstrate the new technology of 'smart landers', which include precision landing and hazard avoidance in order to -land at scientifically interesting sites that would otherwise be unreachable. There are three elements to the spacecraft; carrier (cruise stage), entry vehicle, and rover. The rover will have an X-band direct-to-Earth (DTE) link as well as a UHF proximity link. There is also a possibility of an X-band proximity link. Given the importance of collecting critical event telemetry data during atmospheric entry, it is important to understand the ability of a signal link to be maintained, especially during the period near peak convective heating. The received telemetry during entry (or played back later) will allow for the performance of the Entry-Descent-Landing technologies to be assessed. These technologies include guided entry for precision landing, hazard avoidance, a new sky-crane landing system and powered descent. MSL will undergo an entry profile that may result in a potential communications blackout caused by ionized plasma for short periods near peak heating. The vehicle will use UHF and possibly X-band during the entry phase. The purpose of this report is to quantify or bound the likelihood of any such blackout at UHF frequencies (401 MHz) and X-band frequencies (8.4 GHz). Two entry trajectory scenarios were evaluated: a stressful entry trajectory to quantify an upper-bound for any possible blackout period, and a nominal likely trajectory to quantify likelihood of blackout for such cases.
Thermal protection systems manned spacecraft flight experience
NASA Technical Reports Server (NTRS)
Curry, Donald M.
1992-01-01
Since the first U.S. manned entry, Mercury (May 5, 1961), seventy-five manned entries have been made resulting in significant progress in the understanding and development of Thermal Protection Systems (TPS) for manned rated spacecraft. The TPS materials and systems installed on these spacecraft are compared. The first three vehicles (Mercury, Gemini, Apollo) used ablative (single-use) systems while the Space Shuttle Orbiter TPS is a multimission system. A TPS figure of merit, unit weight lb/sq ft, illustrates the advances in TPS material performance from Mercury (10.2 lb/sq ft) to the Space Shuttle (1.7 lb/sq ft). Significant advances have been made in the design, fabrication, and certification of TPS on manned entry vehicles (Mercury through Shuttle Orbiter). Shuttle experience has identified some key design and operational issues. State-of-the-art ceramic insulation materials developed in the 1970's for the Space Shuttle Orbiter have been used in the initial designs of aerobrakes. This TPS material experience has identified the need to develop a technology base from which a new class of higher temperature materials will emerge for advanced space transportation vehicles.
The IXV Ground Segment design, implementation and operations
NASA Astrophysics Data System (ADS)
Martucci di Scarfizzi, Giovanni; Bellomo, Alessandro; Musso, Ivano; Bussi, Diego; Rabaioli, Massimo; Santoro, Gianfranco; Billig, Gerhard; Gallego Sanz, José María
2016-07-01
The Intermediate eXperimental Vehicle (IXV) is an ESA re-entry demonstrator that performed, on the 11th February of 2015, a successful re-entry demonstration mission. The project objectives were the design, development, manufacturing and on ground and in flight verification of an autonomous European lifting and aerodynamically controlled re-entry system. For the IXV mission a dedicated Ground Segment was provided. The main subsystems of the IXV Ground Segment were: IXV Mission Control Center (MCC), from where monitoring of the vehicle was performed, as well as support during pre-launch and recovery phases; IXV Ground Stations, used to cover IXV mission by receiving spacecraft telemetry and forwarding it toward the MCC; the IXV Communication Network, deployed to support the operations of the IXV mission by interconnecting all remote sites with MCC, supporting data, voice and video exchange. This paper describes the concept, architecture, development, implementation and operations of the ESA Intermediate Experimental Vehicle (IXV) Ground Segment and outlines the main operations and lessons learned during the preparation and successful execution of the IXV Mission.
Dynamical and thermal qualification of the C-SiC nose for the IXV
NASA Astrophysics Data System (ADS)
Buffenoir, François; Escafre, David; Brault, Tiana; Rival, Loic; Girard, Florent
2016-07-01
The Intermediate experimental Vehicle (IXV) atmospheric re-entry demonstrator, developed within the FLPP (Future Launcher Preparatory Program) and funded by ESA, was aimed at developing a demonstration vehicle that gave Europe a unique opportunity to increase its knowledge in the field of advanced atmospheric re-entry technologies. Within this program, HERAKLES, Safran Group, was in charge of the TPS of the windward and nose assemblies of the vehicle, and has developed and manufactured SepcarbInox® Ceramic Matrix Composite (CMC) protection systems that provided a high temperature resistant nonablative outer mold line (OML) for enhanced aerodynamic control. A key component of this TPS is the nose assembly, which is one the most loaded part during re-entry. The paper describes the analysis activities that led to the qualification of the nose assembly, through two activities: Dynamical behavior of the nose. Thermal behavior of the nose For both cases, the paper shows how FE models, compared with tests results, led to the understanding and simulation of the nose assembly behavior, allowing HERAKLES to confirm the design margins before flight.
An Evaluation of Potential Operating Systems for Autonomous Underwater Vehicles
2013-02-01
Remotely Operated Vehicle RTOS Real-Time Operating System SAUC -E Student Autonomous Underwater Vehicle Challenge - Europe TCP Transmission Control Protocol...popularity, with examples including the Student Autonomous Underwater Vehicle Challenge - Europe ( SAUC -E) [7] and the AUVSI robosub competition [8]. For...28] for entry into AUV competitions such as SAUC -E [7], and AUVSI [8]. 8 UNCLASSIFIED UNCLASSIFIED DSTO–TN–1194 3.4 Windows CE Windows CE
Multiband Photonic Phased-Array Antenna
NASA Technical Reports Server (NTRS)
Tang, Suning
2015-01-01
A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.
NASA Technical Reports Server (NTRS)
Casasent, D.
1978-01-01
The article discusses several optical configurations used for signal processing. Electronic-to-optical transducers are outlined, noting fixed window transducers and moving window acousto-optic transducers. Folded spectrum techniques are considered, with reference to wideband RF signal analysis, fetal electroencephalogram analysis, engine vibration analysis, signal buried in noise, and spatial filtering. Various methods for radar signal processing are described, such as phased-array antennas, the optical processing of phased-array data, pulsed Doppler and FM radar systems, a multichannel one-dimensional optical correlator, correlations with long coded waveforms, and Doppler signal processing. Means for noncoherent optical signal processing are noted, including an optical correlator for speech recognition and a noncoherent optical correlator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Aaron A.; Chamberlin, Clyde E.; Edwards, Matthew K.
This section of the Joint summary technical letter report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2016 (FY16) on the under-sodium viewing (USV) PNNL project 58745, work package AT-16PN230102. This section of the TLR satisfies PNNL’s M3AT-16PN2301025 milestone and is focused on summarizing the design, development, and evaluation of two different phased-array ultrasonic testing (PA-UT) probe designs—a two-dimensional (2D) matrix phased-array probe, and two one-dimensional (1D) linear array probes, referred to as serial number 4 (SN4) engineering test units (ETUs). The 2D probe is a pulse-echo (PE), 32×2, 64-element matrix phased-array ETU. The 1Dmore » probes are 32×1 element linear array ETUs. This TLR also provides the results from a performance demonstration (PD) of in-sodium target detection trials at 260°C using both probe designs. This effort continues the iterative evolution supporting the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor (SFR) inspection system for in-sodium detection and imaging.« less
Ka-Band Multibeam Aperture Phased Array Being Developed
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.
2004-01-01
Phased-array antenna systems offer many advantages to low-Earth-orbiting satellite systems. Their large scan angles and multibeam capabilities allow for vibration-free, rapid beam scanning and graceful degradation operation for high rate downlink of data to users on the ground. Technology advancements continue to reduce the power, weight, and cost of these systems to make phased arrays a competitive alternative in comparison to the gimbled reflector system commonly used in science missions. One effort to reduce the cost of phased arrays is the development of a Ka-band multibeam aperture (MBA) phased array by Boeing Corporation under a contract jointly by the NASA Glenn Research Center and the Office of Naval Research. The objective is to develop and demonstrate a space-qualifiable dual-beam Ka-band (26.5-GHz) phased-array antenna. The goals are to advance the state of the art in Ka-band active phased-array antennas and to develop and demonstrate multibeam transmission technology compatible with spacecraft in low Earth orbit to reduce the cost of future missions by retiring certain development risks. The frequency chosen is suitable for space-to-space and space-to-ground communication links. The phased-array antenna has a radiation pattern designed by combining a set of individual radiating elements, optimized with the type of radiating elements used, their positions in space, and the amplitude and phase of the currents feeding the elements. This arrangement produces a directional radiation pattern that is proportional to the number of individual radiating elements. The arrays of interest here can scan the main beam electronically with a computerized algorithm. The antenna is constructed using electronic components with no mechanical parts, and the steering is performed electronically, without any resulting vibration. The speed of the scanning is limited primarily by the control electronics. The radiation performance degrades gracefully if a portion of the elements fail. The arrays can be constructed to conform to a mounting surface, and multibeam capability is integral to the design. However, there are challenges for mission designers using monolithic-microwave-integrated-circuit- (MMIC-) based arrays because of reduced power efficiency, higher costs, and certain system effects that result in link degradations. The multibeam aperture phased-array antenna development is attempting to address some of these issues, particularly manufacturing, costs, and system performance.
DOT National Transportation Integrated Search
2012-11-01
This report summarizes background research and presents an analysis template for analyzing the emissions from vehicle delay at land ports of entry along the United States-Mexico border. The analyses template is presented along with two case studies. ...
NASA Technical Reports Server (NTRS)
Gonzales, Andrew A.; Lemke, Lawrence G.; Huynh, Loc C.
2014-01-01
This paper describes a critical portion of the work that has been done at NASA, Ames Research Center regarding the use of the commercially developed Dragon capsule as a delivery vehicle for the elements of a high priority Mars Sample Return mission. The objective of the investigation was to determine entry and landed mass capabilities that cover anticipated mission conditions. The "Red Dragon", Mars configuration, uses supersonic retro-propulsion, with no required parachute system, to perform Entry, Descent, and Landing (EDL) maneuvers. The propulsive system proposed for use is the same system that will perform an abort, if necessary, for a human rated version of the Dragon capsule. Standard trajectory analysis tools are applied to publically available information about Dragon and other legacy capsule forms in order to perform the investigation. Trajectory simulation parameters include entry velocity, flight path angle, lift to drag Ratio (L/D), landing site elevation, atmosphere density, and total entry mass, in addition engineering assumptions for the performance of the propulsion system are stated. Mass estimates for major elements of the overall proposed architecture are coupled to this EDL analysis to close the overall architecture. Three synodic launch opportunities, beginning with the 2022 opportunity, define the arrival conditions. Results state the relations between the analysis parameters as well as sensitivities to those parameters. The EDL performance envelope includes landing altitudes between 0 and -4 km referenced to the Mars Orbiter Laser Altimeter datum as well as minimum and maximum atmosphere density. Total entry masses between 7 and 10 mt are considered with architecture closure occurring between 9.0 and 10 mt. Propellant mass fractions for each major phase of the EDL - Entry, Terminal Descent, and Hazard Avoidance - have been derived. An assessment of the effect of the entry conditions on the Thermal Protection System (TPS) currently in use for Dragon missions shows no significant stressors. A useful payload mass of 2.0 mt is provided and includes mass and grow allowance for a Mars Ascent Vehicle (MAV), Earth Return Vehicle (ERV), and mission unique equipment. The useful payload supports an architecture that receives a sample from another surface asset and sends it directly back to Earth for recovery in a high Earth orbit. The work shows that emerging commercial capabilities as well as previously studied EDL methodologies can be used to efficiently support an important planetary science objective. The work also has applications for human exploration missions that will also use propulsive EDL techniques
Radiative and convective heating during Venus entry.
NASA Technical Reports Server (NTRS)
Page, W. A.; Woodward, H. T.
1972-01-01
Determination of the stagnation region heating of probes entering the Venusian atmosphere. Both convective and radiative heat-transfer rates are predicted, and account is taken of the important effects of radiative transport in the vehicle shock layer. A nongray radiative transport model is utilized which parallels a four-band treatment previously developed for air (Page et al., 1969), but includes two additional bands to account for the important CO(4+) molecular band system. Some comparisons are made between results for Venus entry and results for earth entry obtained using a viscous earth entry program.
Genesis Sample Return Capsule Overview
NASA Technical Reports Server (NTRS)
Willcockson, Bill
2005-01-01
I. Simple Entry Capsule Concept: a) Spin-Stabilized/No Active Control Systems; b) Ballistic Entry for 11.04 km/sec Velocity; c) No Heatshield Separation During Entry; d) Parachute Deploy via g-Switch + Timer. II. Stardust Design Inheritance a) Forebody Shape; b) Seal Concepts; c) Parachute Deploy Control; d) Utah Landing Site (UTTR). III. TPS Systems a) Heatshield - Carbon-Carbon - First Planetary Entry; b) Backshell - SLA-561V - Flight Heritage from Pathfinder, MER; d) Forebody Structural Penetrations Aerothermal and TPS Design Process has the Same Methodology as Used for Pathfinder, MER Flight Vehicles.
NASA Astrophysics Data System (ADS)
Alkandry, Hicham
Future missions to Mars, including sample-return and human-exploration missions, may require alternative entry, descent, and landing technologies in order to perform pinpoint landing of heavy vehicles. Two such alternatives are propulsive deceleration (PD) and reaction control systems (RCS). PD can slow the vehicle during Mars atmospheric descent by directing thrusters into the incoming freestream. RCS can provide vehicle control and steering by inducing moments using thrusters on the hack of the entry capsule. The use of these PD and RCS jets, however, involves complex flow interactions that are still not well understood. The fluid interactions induced by PD and RCS jets for Mars-entry vehicles in hypersonic freestream conditions are investigated using computational fluid dynamics (CFD). The effects of central and peripheral PD configurations using both sonic and supersonic jets at various thrust conditions are examined in this dissertation. The RCS jet is directed either parallel or transverse to the freestream flow at different thrust conditions in order to examine the effects of the thruster orientation with respect to the center of gravity of the aeroshell. The physical accuracy of the computational method is also assessed by comparing the numerical results with available experimental data. The central PD configuration decreases the drag force acting on the entry capsule due to a shielding effect that prevents mass and momentum in the hypersonic freestream from reaching the aeroshell. The peripheral PD configuration also decreases the drag force by obstructing the flow around the aeroshell and creating low surface pressure regions downstream of the PD nozzles. The Mach number of the PD jets, however, does not have a significant effect on the induced fluid interactions. The reaction control system also alters the flowfield, surface, and aerodynamic properties of the aeroshell, while the jet orientation can have a significant effect on the control effectiveness of the RCS.
Laminar and turbulent heating predictions for mars entry vehicles
NASA Astrophysics Data System (ADS)
Wang, Xiaoyong; Yan, Chao; Zheng, Weilin; Zhong, Kang; Geng, Yunfei
2016-11-01
Laminar and turbulent heating rates play an important role in the design of Mars entry vehicles. Two distinct gas models, thermochemical non-equilibrium (real gas) model and perfect gas model with specified effective specific heat ratio, are utilized to investigate the aerothermodynamics of Mars entry vehicle named Mars Science Laboratory (MSL). Menter shear stress transport (SST) turbulent model with compressible correction is implemented to take account of the turbulent effect. The laminar and turbulent heating rates of the two gas models are compared and analyzed in detail. The laminar heating rates predicted by the two gas models are nearly the same at forebody of the vehicle, while the turbulent heating environments predicted by the real gas model are severer than the perfect gas model. The difference of specific heat ratio between the two gas models not only induces the flow structure's discrepancy but also increases the heating rates at afterbody of the vehicle obviously. Simple correlations for turbulent heating augmentation in terms of laminar momentum thickness Reynolds number, which can be employed as engineering level design and analysis tools, are also developed from numerical results. At the time of peak heat flux on the +3σ heat load trajectory, the maximum value of momentum thickness Reynolds number at the MSL's forebody is about 500, and the maximum value of turbulent augmentation factor (turbulent heating rates divided by laminar heating rates) is 5 for perfect gas model and 8 for real gas model.
X-33 Attitude Control System Design for Ascent, Transition, and Entry Flight Regimes
NASA Technical Reports Server (NTRS)
Hall, Charles E.; Gallaher, Michael W.; Hendrix, Neal D.
1998-01-01
The Vehicle Control Systems Team at Marshall Space Flight Center, Systems Dynamics Laboratory, Guidance and Control Systems Division is designing under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control system for the X-33 experimental vehicle. Ascent flight control begins at liftoff and ends at linear aerospike main engine cutoff (NECO) while Transition and Entry flight control begins at MECO and concludes at the terminal area energy management (TAEM) interface. TAEM occurs at approximately Mach 3.0. This task includes not only the design of the vehicle attitude control systems but also the development of requirements for attitude control system components and subsystems. The X-33 attitude control system design is challenged by a short design cycle, the design environment (Mach 0 to about Mach 15), and the X-33 incremental test philosophy. The X-33 design-to-launch cycle of less than 3 years requires a concurrent design approach while the test philosophy requires design adaptation to vehicle variations that are a function of Mach number and mission profile. The flight attitude control system must deal with the mixing of aerosurfaces, reaction control thrusters, and linear aerospike engine control effectors and handle parasitic effects such as vehicle flexibility and propellant sloshing from the uniquely shaped propellant tanks. The attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems.
Hypersonic Wind Tunnel Test of a Flare-type Membrane Aeroshell for Atmospheric Entry Capsules
NASA Astrophysics Data System (ADS)
Yamada, Kazuhiko; Koyama, Masashi; Kimura, Yusuke; Suzuki, Kojiro; Abe, Takashi; Koichi Hayashi, A.
A flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system. In this study, hypersonic wind tunnel tests were carried out to investigate the behavior, aerodynamic characteristics and aerodynamic heating environment in hypersonic flow for a previously developed capsule-type vehicle with a flare-type membrane aeroshell made of ZYLON textile sustained by a rigid torus frame. Two different models with different flare angles (45º and 60º) were tested to experimentally clarify the effect of flare angle. Results indicate that flare angle of aeroshell has significant and complicate effect on flow field and aerodynamic heating in hypersonic flow at Mach 9.45 and the flare angle is very important parameter for vehicle design with the flare-type membrane aeroshell.
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields, volume 2
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1991-01-01
A technique was developed for predicting the character and magnitude of the shock wave precursor ahead of an entry vehicle and the effect of this precursor on the vehicle flow field was ascertained. A computational method and program were developed to properly model this precursor. Expressions were developed for the mass production rates of each species due to photodissociation and photoionization reactions. Also, consideration was given to the absorption and emission of radiation and how it affects the energy in each of the energy modes of both the atomic and diatomic species. A series of parametric studies were conducted covering a range of entry conditions in order to predict the effects of the precursor on the shock layer and the radiative heat transfer to the body.
Human Mars Entry, Descent and Landing Architectures Study Overview
NASA Technical Reports Server (NTRS)
Polsgrove, Tara T.; Dwyer Cianciolo, Alicia
2016-01-01
Landing humans on Mars will require entry, descent and landing (EDL) capability beyond the current state of the art. Nearly twenty times more delivered payload and an order of magnitude improvement in precision landing capability will be necessary. Several EDL technologies capable of meeting the human class payload delivery requirements are being considered. The EDL technologies considered include low lift-to-drag vehicles like Hypersonic Inflatable Aerodynamic Decelerators (HIAD), Adaptable Deployable Entry and Placement Technology (ADEPT), and mid range lift-to-drag vehicles like rigid aeroshell configurations. To better assess EDL technology options and sensitivities to future human mission design variations, a series of design studies has been conducted. The design studies incorporate EDL technologies with conceptual payload arrangements defined by the Evolvable Mars Campaign to evaluate the integrated system with higher fidelity than have been performed to date. This paper describes the results of the design studies for a lander design using the HIAD, ADEPT and rigid shell entry technologies and includes system and subsystem design details including mass and power estimates. This paper will review the point design for three entry configurations capable of delivering a 20 t human class payload to the surface of Mars.
2011-07-07
CAPE CANAVERAL, Fla. -- A media event was held on the grounds near the Press Site at NASA's Kennedy Space Center in Florida where a Multi-Purpose Crew Vehicle (MPCV) is on display. The MPCV is based on the Orion design requirements for traveling beyond low Earth orbit and will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. Seen here is a sample of the Orion launch-and-entry suit on display. Photo credit: NASA/Frankie Martin
NASA Technical Reports Server (NTRS)
Spencer, Bernard, Jr.; Fox, Charles H.; Huffman, Jarrett K.
1995-01-01
An investigation has been conducted in the Langley 7- by 10-Foot High Speed Wind Tunnel to determine the longitudinal and lateral directional aerodynamic characteristics of a series of personnel launch system concepts. This series of configurations evolved during an effort to improve the subsonic characteristics of a proposed lifting entry vehicle (designated the HL-20). The primary purpose of the overall investigation was to provide a vehicle concept which was inherently stable and trimable from entry to landing while examining methods of improving subsonic aerodynamic performance.
Physiologically constrained aerocapture for manned Mars missions
NASA Technical Reports Server (NTRS)
Lyne, James Evans
1992-01-01
Aerobraking has been proposed as a critical technology for manned missions to Mars. The variety of mission architectures currently under consideration presents aerobrake designers with an enormous range of potential entry scenarios. Two of the most important considerations in the design of an aerobrake are the required control authority (lift-to-drag ratio) and the aerothermal environment which the vehicle will encounter. Therefore, this study examined the entry corridor width and stagnation-point heating rate and load for the entire range of probable entry velocities, lift-to-drag ratios, and ballistic coefficients for capture at both Earth and Mars. To accomplish this, a peak deceleration limit for the aerocapture maneuvers had to be established. Previous studies had used a variety of load limits without adequate proof of their validity. Existing physiological and space flight data were examined, and it was concluded that a deceleration limit of 5 G was appropriate. When this load limit was applied, numerical studies showed that an aerobrake with an L/D of 0.3 could provide an entry corridor width of at least 1 degree for all Mars aerocaptures considered with entry velocities up to 9 km/s. If 10 km/s entries are required, an L/D of 0.4 to 0.5 would be necessary to maintain a corridor width of at least 1 degree. For Earth return aerocapture, a vehicle with an L/D of 0.4 to 0.5 was found to provide a corridor width of 0.7 degree or more for all entry velocities up to 14.5 km/s. Aerodynamic convective heating calculations were performed assuming a fully catalytic, 'cold' wall; radiative heating was calculated assuming that the shock layer was in thermochemical equilibrium. Heating rates were low enough for selected entries at Mars that a radiatively cooled thermal protection system might be feasible, although an ablative material would be required for most scenarios. Earth return heating rates were generally more severe than those encountered by the Apollo vehicles, and would require ablative heat shields in all cases.
A Survey of Supersonic Retropropulsion Technology for Mars Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Korzun, Ashley M.; Cruz, Juan R.; Braun, Robert D.
2007-01-01
This paper presents a literature survey on supersonic retropropulsion technology as it applies to Mars entry, descent, and landing (EDL). The relevance of this technology to the feasibility of Mars EDL is shown to increase with ballistic coefficient to the point that it is likely required for human Mars exploration. The use of retropropulsion to decelerate an entry vehicle from hypersonic or supersonic conditions to a subsonic velocity is the primary focus of this review. Discussed are systems-level studies, general flowfield characteristics, static aerodynamics, vehicle and flowfield stability considerations, and aerothermodynamics. The experimental and computational approaches used to develop retropropulsion technology are also reviewed. Finally, the applicability and limitations of the existing literature and current state-of-the-art computational tools to future missions are discussed in the context of human and robotic Mars exploration.
NASA Astrophysics Data System (ADS)
Palharini, R. C.; Scanlon, T. J.; Reese, J. M.
The study of atmospheric re-entry under rarefied nonequilibrium flows is a challenging problem directly related to the development of new aerospace technologies, where the prediction of thermal loads acting over the spacecraft is critical during descent phase.
Review of chemical-kinetic problems of future NASA missions, II: Mars entries
NASA Technical Reports Server (NTRS)
Park, Chul; Howe, John T.; Jaffe, Richard L.; Candler, Graham V.
1994-01-01
The present work aims to derive a set of thermomechanical relaxation rate parameters and chemical reaction rate coefficients relevant to future interplanetary missions. It also attempts to assess the impact of thermochemical nonequilibrium phenomena on radiative heating rates for the stagnation point of the Martian entry vehicle.
40 CFR 600.005 - Maintenance of records and rights of entry.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Maintenance of records and rights of entry. 600.005 Section 600.005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES General Provisions...
40 CFR 600.005 - Maintenance of records and rights of entry.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Maintenance of records and rights of entry. 600.005 Section 600.005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES General Provisions...
40 CFR 600.005 - Maintenance of records and rights of entry.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Maintenance of records and rights of entry. 600.005 Section 600.005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES General Provisions...
Traffic pollutants measured inside vehicles waiting in line at a major US-Mexico Port of Entry.
Quintana, Penelope J E; Khalighi, Mehdi; Castillo Quiñones, Javier Emmanuel; Patel, Zalak; Guerrero Garcia, Jesus; Martinez Vergara, Paulina; Bryden, Megan; Mantz, Antoinette
2018-05-01
At US-Mexico border Ports of Entry, vehicles idle for long times waiting to cross northbound into the US. Long wait times at the border have mainly been studied as an economic issue, however, exposures to emissions from idling vehicles can also present an exposure risk. Here we present the first data on in-vehicle exposures to driver and passengers crossing the US-Mexico border at the San Ysidro, California Port of Entry (SYPOE). Participants were recruited who regularly commuted across the border in either direction and told to drive a scripted route between two border universities, one in the US and one in Mexico. Instruments were placed in participants' cars prior to commute to monitor-1-minute average levels of the traffic pollutants ultrafine particles (UFP), black carbon (BC) and carbon monoxide (CO) in the breathing zone of drivers and passengers. Location was determined by a GPS monitor. Results reported here are for 68 northbound participant trips. The highest median levels of in-vehicle UFP were recorded during the wait to cross at the SYPOE (median 29,692particles/cm 3 ) significantly higher than the portion of the commute in the US (median 20,508particles/cm 3 ) though not that portion in Mexico (median 22, 191particles/cm 3 ). In-vehicle BC levels at the border were significantly lower than in other parts of the commute. Our results indicate that waiting in line at the SYPOE contributes a median 62.5% (range 15.5%-86.0%) of a cross-border commuter's exposure to UFP and a median 44.5% (range (10.6-79.7%) of exposure to BC inside the vehicle while traveling in the northbound direction. Reducing border wait time can significantly reduce in-vehicle exposures to toxic air pollutants such as UFP and BC, and these preventable exposures can be considered an environmental justice issue. Copyright © 2017 Elsevier B.V. All rights reserved.
Magnetohydrodynamic Power Generation in the Laboratory Simulated Martian Entry Plasma
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Popovic, S.; Drake, J.; Moses, R. W.
2005-01-01
This paper addresses the magnetohydrodynamic (MHD) conversion of the energy released during the planetary entry phase of an interplanetary vehicle trajectory. The effect of MHD conversion is multi-fold. It reduces and redirects heat transferred to the vehicle, and regenerates the dissipated energy in reusable and transportable form. A vehicle on an interplanetary mission carries about 10,000 kWh of kinetic energy per ton of its mass. This energy is dissipated into heat during the planetary atmospheric entry phase. For instance, the kinetic energy of Mars Pathfinder was about 4220 kWh. Based on the loss in velocity, Mars Pathfinder lost about 92.5% of that energy during the plasma-sustaining entry phase that is approximately 3900 kWh. An ideal MHD generator, distributed over the probe surface of Mars Pathfinder could convert more than 2000 kWh of this energy loss into electrical energy, which correspond to more than 50% of the kinetic energy loss. That means that the heat transferred to the probe surface can be reduced by at least 50% if the converted energy is adequately stored, or re-radiated, or directly used. Therefore, MHD conversion could act not only as the power generating, but also as the cooling process. In this paper we describe results of preliminary experiments with light and microwave emitters powered by model magnetohydrodynamic generators and discuss method for direct use of converted energy.
Venus Atmospheric Maneuverable Platform (VAMP) - A Low Cost Venus Exploration Concept
NASA Astrophysics Data System (ADS)
Lee, G.; Polidan, R. S.; Ross, F.
2015-12-01
The Northrop Grumman Aerospace Systems and L-Garde team has been developing an innovative mission concept: a long-lived, maneuverable platform to explore the Venus upper atmosphere. This capability is an implementation of our Lifting Entry Atmospheric Flight (LEAF) system concept, and the Venus implementation is called the Venus Atmospheric Maneuverable Platform (VAMP). The VAMP concept utilizes an ultra-low ballistic coefficient (< 50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters without an aeroshell, and provides a long-lived (months to a year) maneuverable vehicle capable of carrying science instruments to explore the Venus upper atmosphere. In this presentation we provide an update on the air vehicle design and a low cost pathfinder mission concept that can be implemented in the near-term. The presentation also provides an overview of our plans for future trade studies, analyses, and prototyping to advance and refine the concept. We will discuss the air vehicle's entry concepts of operations (CONOPs) and atmospheric science operations. We will present a strawman concept of a VAMP pathfinder, including ballistic coefficient, planform area, percent buoyancy, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, and instruments accommodation. In this context, we will discuss the following key factors impacting the design and performance of VAMP: Entry into the Venus atmosphere, including descent profile, heating rate, total heat load, stagnation, and acreage temperatures Impact of maximum altitude on air vehicle design and entry heating Candidate thermal protection system (TPS) requirements We will discuss the interdependencies of the above factors and the manner in which the VAMP pathfinder concept's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support Venus science goals. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.
Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design
NASA Technical Reports Server (NTRS)
Lee, Esther; Wurster, Kathryn E.
2017-01-01
A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating environments, coupled with the use of unstructured methods, is considered enabling for TPS material selection and design in conceptual studies where vehicle mission, shape, and entry strategies evolve rapidly.
Planetary Probe Entry Atmosphere Estimation Using Synthetic Air Data System
NASA Technical Reports Server (NTRS)
Karlgaard, Chris; Schoenenberger, Mark
2017-01-01
This paper develops an atmospheric state estimator based on inertial acceleration and angular rate measurements combined with an assumed vehicle aerodynamic model. The approach utilizes the full navigation state of the vehicle (position, velocity, and attitude) to recast the vehicle aerodynamic model to be a function solely of the atmospheric state (density, pressure, and winds). Force and moment measurements are based on vehicle sensed accelerations and angular rates. These measurements are combined with an aerodynamic model and a Kalman-Schmidt filter to estimate the atmospheric conditions. The new method is applied to data from the Mars Science Laboratory mission, which landed the Curiosity rover on the surface of Mars in August 2012. The results of the new estimation algorithm are compared with results from a Flush Air Data Sensing algorithm based on onboard pressure measurements on the vehicle forebody. The comparison indicates that the new proposed estimation method provides estimates consistent with the air data measurements, without the use of pressure measurements. Implications for future missions such as the Mars 2020 entry capsule are described.
Determination of Barometric Altimeter Errors for the Orion Exploration Flight Test-1 Entry
NASA Technical Reports Server (NTRS)
Brown, Denise L.; Munoz, Jean-Philippe; Gay, Robert
2011-01-01
The EFT-1 mission is the unmanned flight test for the upcoming Multi-Purpose Crew Vehicle (MPCV). During entry, the EFT-1 vehicle will trigger several Landing and Recovery System (LRS) events, such as parachute deployment, based on onboard altitude information. The primary altitude source is the filtered navigation solution updated with GPS measurement data. The vehicle also has three barometric altimeters that will be used to measure atmospheric pressure during entry. In the event that GPS data is not available during entry, the altitude derived from the barometric altimeter pressure will be used to trigger chute deployment for the drogues and main parachutes. Therefore it is important to understand the impact of error sources on the pressure measured by the barometric altimeters and on the altitude derived from that pressure. There are four primary error sources impacting the sensed pressure: sensor errors, Analog to Digital conversion errors, aerodynamic errors, and atmosphere modeling errors. This last error source is induced by the conversion from pressure to altitude in the vehicle flight software, which requires an atmosphere model such as the US Standard 1976 Atmosphere model. There are several secondary error sources as well, such as waves, tides, and latencies in data transmission. Typically, for error budget calculations it is assumed that all error sources are independent, normally distributed variables. Thus, the initial approach to developing the EFT-1 barometric altimeter altitude error budget was to create an itemized error budget under these assumptions. This budget was to be verified by simulation using high fidelity models of the vehicle hardware and software. The simulation barometric altimeter model includes hardware error sources and a data-driven model of the aerodynamic errors expected to impact the pressure in the midbay compartment in which the sensors are located. The aerodynamic model includes the pressure difference between the midbay compartment and the free stream pressure as a function of altitude, oscillations in sensed pressure due to wake effects, and an acoustics model capturing fluctuations in pressure due to motion of the passive vents separating the barometric altimeters from the outside of the vehicle.
NASA Astrophysics Data System (ADS)
Yamada, Kazuhiko; Suzuki, Kojiro; Honma, Naohiko; Abe, Daisuke; Makino, Hitoshi; Nagata, Yasunori; Kimura, Yusuke; Koyama, Masashi; Akita, Daisuke; Hayashi, Koichi; Abe, Takashi
A deployable and flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system in the near future, because the large-area, low-mass aeroshell dramatically reduces aerodynamic heating and achieves a soft landing without a conventional parachute system thanks to its low ballistic coefficient. Various concepts of flexible aeroshell have been proposed in the past. Our group are researching and developing a flare-type membrane aeroshell sustained by inflatable torus. As a part of the development, a deployment and drop test of a capsule-type experimental vehicle with a 1.264-m-diameter flare-type membrane aeroshell sustained by inflatable torus was carried out using a large scientific balloon in August, 2009. The objectives of this experiment are 1) to demonstrate the remote inflation system of inflatable aeroshell, 2) to acquire aerodynamic performance of a low ballistic coefficient vehicle including an inflatable structure in subsonic region, and 3) to observe behavior and deformation of the flexible aeroshell during free flight. In this test, the inflatable aeroshell was deployed at an altitude 24.6km by radio command from ground station. After deployment, the experimental vehicle was dropped from the balloon and underwent free flight. The flight data and images of the aeroshell collected using onboard sensors were transmitted successfully during the flight by the telemetry system. The data showed that the vehicle was almost stable in free flight condition and the inflatable aeroshell was collapsed at expected altitude. This deployment and drop test was very successful and useful data for design of actual atmospheric-entry vehicles with inflatable structure was acquired as planned.
Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David
2011-01-01
The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.
Roles of Engineering Correlations in Hypersonic Entry Boundary Layer Transition Prediction
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; Anderson, Brian P.; King, Rudolph A.; Kegerise, Michael A.; Berry, Scott A.; Horvath, Thomas J.
2010-01-01
Efforts to design and operate hypersonic entry vehicles are constrained by many considerations that involve all aspects of an entry vehicle system. One of the more significant physical phenomenon that affect entry trajectory and thermal protection system design is the occurrence of boundary layer transition from a laminar to turbulent state. During the Space Shuttle Return To Flight activity following the loss of Columbia and her crew of seven, NASA's entry aerothermodynamics community implemented an engineering correlation based framework for the prediction of boundary layer transition on the Orbiter. The methodology for this implementation relies upon similar correlation techniques that have been is use for several decades. What makes the Orbiter boundary layer transition correlation implementation unique is that a statistically significant data set was acquired in multiple ground test facilities, flight data exists to assist in establishing a better correlation and the framework was founded upon state of the art chemical nonequilibrium Navier Stokes flow field simulations. Recent entry flight testing performed with the Orbiter Discovery now provides a means to validate this engineering correlation approach to higher confidence. These results only serve to reinforce the essential role that engineering correlations currently exercise in the design and operation of entry vehicles. The framework of information related to the Orbiter empirical boundary layer transition prediction capability will be utilized to establish a fresh perspective on this role, and to discuss the characteristics which are desirable in a next generation advancement. The details of the paper will review the experimental facilities and techniques that were utilized to perform the implementation of the Orbiter RTF BLT Vsn 2 prediction capability. Statistically significant results for multiple engineering correlations from a ground testing campaign will be reviewed in order to describe why only certain correlations were selected for complete implementation to support the Shuttle Program. Historical Orbiter flight data on early boundary layer transition due to protruding gap fillers will be described in relation to the selected empirical correlations. In addition, Orbiter entry flight testing results from the BLT Flight Experiment will be discussed in relation to these correlations. Applicability of such correlations to the entry design problem will be reviewed, and finally a perspective on the desirable characteristics for a next generation capability based on high fidelity physical models will be provided.
FLPP IXV Re-Entry Vehicle, Supersonic Charectisation Based on DNW SST Wind Tunnel Tests and CFD
NASA Astrophysics Data System (ADS)
Kapteijn, C.; Maseland, H.; Chiarelli, C.; Mareschi, V.; Tribot, J.-P.; Binetti, P.; Walloscheck, T.
2009-01-01
The European Space Agency ESA, has engaged in 2004, the IXV project (Intermediate eXperimental Vehicle) which is part of the FLPP (Future Launcher Preparatory Programme) aiming at answering to critical technological issues for controlled re-entry, while supporting the future generation launchers and to improve in general European capabilities in the strategic field of atmospheric re-entry for future space transportation, exploration and scientific applications. The IXV key mission and system objectives are the design, development, manufacturing, assembling and on- ground to in-flight verification of an autonomous European lifting and aerodynamically controlled re- entry system, integrating the critical re- entry technologies at the system level. In particular, the IXV shall demonstrate system integrated key technologies such as lifting flight control by means of aerodynamic surfaces that are one of the main primary objectives of the experimental investigation. Lifting and aerodynamic controlled re-entry represents a significant capability advancement with respect to the ballistic re-entry of capsules like the ARD. Since hypersonic aerodynamics is essentially different from supersonic aerodynamics, the current mission is to perform an atmospheric re-entry in combination with a safe recovery the in supersonic flight regime. However, mission extension to trimmed transonic flight is under consideration based on a preliminary analysis of the aerodynamic characteristics of the IXV configuration. Since the beginning of the IXV project, an aerodynamic data base (AEDB) has been built up and continuously updated integrating the additional information mainly provided by means of CFD (ie: Euler and Navier-Stokes) and lately also by means of WTTs. This AEDB serves for flying qualities analysis and for re-entry simulations. During the development phase B2/C1, the effectiveness of the control surfaces and their impact on te vehicle's aerodynamic forces in the supersonic regime is measured for a number of discrete deflection settings in the Super-Sonic wind Tunnel (SST) of DNW. Enabling an improved understanding of the measured aerodynamic characteristics, complementary computations were performed by Thales Alenia Space. The complete set of data was analyzed and compared enabling a consolidation of the nominal aerodynamic and aerodynamic uncertainties as well. The paper presents the main objectives of the supersonic characterisation of IXV including WTTs, and the main outcomes of the current data comparisons.
Design, synthesis, manufacturing, and testing of a competitive FHSAE vehicle.
DOT National Transportation Integrated Search
2012-06-01
The goal of this multi-year project is to create a fully functional University of Idaho entry in the hybrid FSAE competition scheduled for : 2012. Vehicle integration has been completed as part of a variety of 2010-2011 senior design projects and 201...
Test Results for Entry Guidance Methods for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Hanson, John M.; Jones, Robert E.
2003-01-01
There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies (ITAGCT) has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future reusable vehicle concepts.
Aerocapture for manned Mars missions - Status and challenges
NASA Astrophysics Data System (ADS)
Walberg, Gerald D.
1991-08-01
The current status for manned Mars missions and the associated challenges are summarized. Mission benefits are considered to increase with increasing Mars entry velocity. However, significant benefits accrue at moderate entry velocities between 7 and 8 km/sec, which is the realistically achievable range in view of g-limits and heating constraints. Blunt, low mass/drag coefficient (reference area) vehicles with L/Ds from 0.3 to 0.5 are found to be the preferred configurations, taking into account their adequate control authority and good payload packaging characteristics. The overall design characteristics of Mars aerocapture vehicles can be established with good confidence, using flight and ground test data and the state-of-the-art flow field analysis techniques. The principal challenges are identified as follows: to refine the knowledge of the Martian atmosphere in order to reduce design conservatism, to extend present stagnation region heating analyses to the entire vehicle forebody, and to develop reflective low-wall-catalycity TPS systems for enabling reusable vehicles.
Aerothermodynamic environments for Mars entry, Mars return, and lunar return aerobraking missions
NASA Astrophysics Data System (ADS)
Rochelle, W. C.; Bouslog, S. A.; Ting, P. C.; Curry, D. M.
1990-06-01
The aeroheating environments to vehicles undergoing Mars aerocapture, earth aerocapture from Mars, and earth aerocapture from the moon are presented. An engineering approach for the analysis of various types of vehicles and trajectories was taken, rather than performing a benchmark computation for a specific point at a selected time point in a trajectory. The radiation into Mars using the Mars Rover Sample Return (MRSR) 2-ft nose radius bionic remains a small contributor of heating for 6 to 10 km/sec; however, at 12 km/sec it becomes comparable with the convection. For earth aerocapture, returning from Mars, peak radiation for the MRSR SRC is only 25 percent of the peak convection for the 12-km/sec trajectory. However, when large vehicles are considered with this trajectory, peak radiation can become 2 to 4 times higher than the peak convection. For both Mars entry and return, a partially ablative Thermal Protection System (TPS) would be required, but for Lunar Transfer Vehicle return an all-reusable TPS can be used.
Composite flexible insulation for thermal protection of space vehicles
NASA Astrophysics Data System (ADS)
Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda
1992-09-01
A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the Aeroassist Space Transfer Vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this system are also described. Analytical modeling describing the thermal performance of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.
Aerocapture for manned Mars missions - Status and challenges
NASA Technical Reports Server (NTRS)
Walberg, Gerald D.
1991-01-01
The current status for manned Mars missions and the associated challenges are summarized. Mission benefits are considered to increase with increasing Mars entry velocity. However, significant benefits accrue at moderate entry velocities between 7 and 8 km/sec, which is the realistically achievable range in view of g-limits and heating constraints. Blunt, low mass/drag coefficient (reference area) vehicles with L/Ds from 0.3 to 0.5 are found to be the preferred configurations, taking into account their adequate control authority and good payload packaging characteristics. The overall design characteristics of Mars aerocapture vehicles can be established with good confidence, using flight and ground test data and the state-of-the-art flow field analysis techniques. The principal challenges are identified as follows: to refine the knowledge of the Martian atmosphere in order to reduce design conservatism, to extend present stagnation region heating analyses to the entire vehicle forebody, and to develop reflective low-wall-catalycity TPS systems for enabling reusable vehicles.
2011-04-01
Lai, W., Carhart, M., Richards, D., Brown, J. and Raasch, C., (2006), Modeling the Effects of Seat Belt Pretensioners on Occupant Kinematics During...from being ejected from the vehicle but also be able to assist rapid entry into the vehicle during a rollover or other accidents to avoid injury or...vehicles, such as gunner restraint systems, blast-protective seating systems and other restraint systems, and commercial applications, such as
Afterbody Heating Predictions for a Mars Science Laboratory Entry Vehicle
NASA Technical Reports Server (NTRS)
Edquist, Karl T.
2005-01-01
The Mars Science Laboratory mission intends to deliver a large rover to the Martian surface within 10 km of its target site. One candidate entry vehicle aeroshell consists of a 3.75-m diameter, 70-deg sphere-cone forebody and a biconic afterbody similar to that of Viking. This paper presents computational fluid dynamics predictions of laminar afterbody heating rates for this configuration and a 2010 arrival at Mars. Computational solutions at flight conditions used an 8-species Mars gas model in chemical and thermal non-equilibrium. A grid resolution study examined the effects of mesh spacing on afterbody heating rates and resulted in grids used for heating predictions on a reference entry trajectory. Afterbody heating rate reaches its maximum value near 0.6 W/sq cm on the first windward afterbody cone at the time of peak freestream dynamic pressure. Predicted afterbody heating rates generally are below 3% of the forebody laminar nose cap heating rate throughout the design trajectory. The heating rates integrated over time provide total heat load during entry, which drives thermal protection material thickness.
Full-Scale Passive Earth Entry Vehicle Landing Tests: Methods and Measurements
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Kellas, Sotiris
2018-01-01
During the summer of 2016, a series of drop tests were conducted on two passive earth entry vehicle (EEV) test articles at the Utah Test and Training Range (UTTR). The tests were conducted to evaluate the structural integrity of a realistic EEV vehicle under anticipated landing loads. The test vehicles were lifted to an altitude of approximately 400m via a helicopter and released via release hook into a predesignated 61 m landing zone. Onboard accelerometers were capable of measuring vehicle free flight and impact loads. High-speed cameras on the ground tracked the free-falling vehicles and data was used to calculate critical impact parameters during the final seconds of flight. Additional sets of high definition and ultra-high definition cameras were able to supplement the high-speed data by capturing the release and free flight of the test articles. Three tests were successfully completed and showed that the passive vehicle design was able to withstand the impact loads from nominal and off-nominal impacts at landing velocities of approximately 29 m/s. Two out of three test resulted in off-nominal impacts due to a combination of high winds at altitude and the method used to suspend the vehicle from the helicopter. Both the video and acceleration data captured is examined and discussed. Finally, recommendations for improved release and instrumentation methods are presented.
Assessment of Laminar, Convective Aeroheating Prediction Uncertainties for Mars Entry Vehicles
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Prabhu, Dinesh K.
2011-01-01
An assessment of computational uncertainties is presented for numerical methods used by NASA to predict laminar, convective aeroheating environments for Mars entry vehicles. A survey was conducted of existing experimental heat-transfer and shock-shape data for high enthalpy, reacting-gas CO2 flows and five relevant test series were selected for comparison to predictions. Solutions were generated at the experimental test conditions using NASA state-of-the-art computational tools and compared to these data. The comparisons were evaluated to establish predictive uncertainties as a function of total enthalpy and to provide guidance for future experimental testing requirements to help lower these uncertainties.
Assessment of Laminar, Convective Aeroheating Prediction Uncertainties for Mars-Entry Vehicles
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Prabhu, Dinesh K.
2013-01-01
An assessment of computational uncertainties is presented for numerical methods used by NASA to predict laminar, convective aeroheating environments for Mars-entry vehicles. A survey was conducted of existing experimental heat transfer and shock-shape data for high-enthalpy reacting-gas CO2 flows, and five relevant test series were selected for comparison with predictions. Solutions were generated at the experimental test conditions using NASA state-of-the-art computational tools and compared with these data. The comparisons were evaluated to establish predictive uncertainties as a function of total enthalpy and to provide guidance for future experimental testing requirements to help lower these uncertainties.
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.
2002-01-01
In this report we present a time-varying sliding mode control (TV-SMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC is developed and tuned up for the X-33 sub-orbital technology demonstration vehicle in launch and re-entry modes. A variety of nominal, dispersion and failure scenarios have tested via high fidelity 6DOF simulations using MAVERIC/SLIM simulation software.
Convective and radiative heating for vehicle return from the Moon and Mars
NASA Technical Reports Server (NTRS)
Greendyke, Robert B.; Gnoffo, Peter A.
1995-01-01
The aerothermal environment is examined for two vehicle forebodies near the peak heating points of lunar and martian return-to-earth trajectories at several nominal entry velocities. The first vehicle forebody is that of a 70 deg aerobrake for entry into earth orbit; the second, a capsule of Apollo configuration for direct entry into the earth's atmosphere. The configurations and trajectories are considered likely candidates for such missions. Two-temperature, thermochemical nonequilibrium models are used in the flow field analyses. In addition to Park's empirical model for dissociation under conditions of thermal nonequilibrium, the Gordiets kinetic model for the homonuclear dissociation of N2 and O2 is also considered. Temperature and emission profiles indicate nonequilibrium effects in a 2 to 5 cm post shock region. Substantial portions of the shock layer flow appear to be in equilibrium. The shock layer over an aerobrake for return from the moon exhibits the largest extent of nonequilibrium effects of all considered missions. Differences between the Gordiets and Parks kinetic model were generally very small for the lunar return aerobrake case, the greatest difference of 6.1 percent occurring in the radiative heating levels.
The aerodynamic challenges of the design and development of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Young, J. C.; Underwood, J. M.; Hillje, E. R.; Whitnah, A. M.; Romere, P. O.; Gamble, J. D.; Roberts, B. B.; Ware, G. M.; Scallion, W. I.; Spencer, B., Jr.
1985-01-01
The major aerodynamic design challenge at the beginning of the United States Space Transportation System (STS) research and development phase was to design a vehicle that would fly as a spacecraft during early entry and as an aircraft during the final phase of entry. The design was further complicated because the envisioned vehicle was statically unstable during a portion of the aircraft mode of operation. The second challenge was the development of preflight aerodynamic predictions with an accuracy consistent with conducting a manned flight on the initial orbital flight. A brief history of the early contractual studies is presented highlighting the technical results and management decisions influencing the aerodynamic challenges. The configuration evolution and the development of preflight aerodynamic predictions will be reviewed. The results from the first four test flights shows excellent agreement with the preflight aerodynamic predictions over the majority of the flight regimes. The only regimes showing significant disagreement is confined primarily to early entry, where prediction of the basic vehicle trim and the influence of the reaction control system jets on the flow field were found to be deficient. Postflight results are analyzed to explain these prediction deficiencies.
Impact of Rainfall on Multilane Roundabout Flowrate Contraction
NASA Astrophysics Data System (ADS)
PARKSHIR, Amir; BEN-EDIGBE, Johnnie
2017-08-01
In this study, roundabouts at two sites in the Malaysia were investigated under rainy and dry weather conditions. Two automatic traffic counters per roundabout arm as well as two rain gauge stations were used to collect data at each surveyed site. Nearly one million vehicles were investigated at four sites. Vehicle volume, speeds and headways for entry and circulating flows were collected continuously at each roundabout about arm for six weeks between November 2013 and January 2014. Empirical regression technique and gap-acceptance models were modified and used to analyze roundabout capacity. Good fits to the data were obtained; the results also fit models developed in other countries. It was assumed that entry capacity depends on the geometric characteristics of the roundabout, particularly the diameter of the outside circle of the intersection. It was also postulated that geometric characteristics determine the speed of vehicles around the central island and, therefore, have an impact on the gap-acceptance process and consequently the capacity. Only off-peak traffic data per light, moderate or heavy rainfall were analysed. Peak traffic data were not used because of the presence of peak traffic flow. Passenger car equivalent values being an instrument of conversion from traffic volume to flow were modified. Results show that, average entry capacity loss is about 22.6% under light rainfall, about 18.1% under moderate rainfall and about 5.6% under heavy rainfall. Significant entry capacity loss would result from rainfall irrespective of their intensity. It can be postulated that entry capacity loss under heavy rainfall is lowest because the advantage enjoyed by circulating flow would be greatly reduced with increased rainfall intensity. The paper concluded that rainfall has significant impact of flowrate contraction at roundabouts.
The effect of interplanetary trajectory options on a manned Mars aerobrake configuration
NASA Technical Reports Server (NTRS)
Braun, Robert D.; Powell, Richard W.; Hartung, Lin C.
1990-01-01
Manned Mars missions originating in low Earth orbit (LEO) in the time frame 2010 to 2025 were analyzed to identify preferred mission opportunities and their associated vehicle and trajectory characteristics. Interplanetary and Mars atmospheric trajectory options were examined under the constraints of an initial manned exploration scenario. Two chemically propelled vehicle options were considered: (1) an all propulsive configuration, and (2) a configuration which employs aerobraking at Earth and Mars with low lift/drag (L/D) shapes. Both the interplanetary trajectory options as well as the Mars atmospheric passage are addressed to provide a coupled trajectory simulation. Direct and Venus swingby interplanetary transfers with a 60 day Mars stopover are considered. The range and variation in both Earth and Mars entry velocity are also defined. Two promising mission strategies emerged from the study: (1) a 1.0 to 2.0 year Venus swingby mission, and (2) a 2.0 to 2.5 year direct mission. Through careful trajectory selection, 11 mission opportunities are identified in which the Mars entry velocity is between 6 and 10 km/sec and Earth entry velocity ranges from 11.5 to 12.5 km/sec. Simulation of the Earth return aerobraking maneuver is not performed. It is shown that a low L/D configuration is not feasible for Mars aerobraking without substantial improvements in the interplanetary navigation system. However, even with an advanced navigation system, entry corridor and aerothermal requirements restrict the number of potential mission opportunities. It is also shown that for a large blunt Mars aerobrake configuration, the effects of radiative heating can be significant at entry velocities as low as 6.2 km/sec and will grow to dominate the aerothermal environment at entry velocities above 8.5 km/sec. Despite the additional system complexity associated with an aerobraking vehicle, the use of aerobraking was shown to significantly lower the required initial LEO weight. In comparison with an all propulsive mission, savings between 19 and 59 percent were obtained depending upon launch date.
Fenchel, Michael; Nael, Kambiz; Deshpande, Vibhas S; Finn, J Paul; Kramer, Ulrich; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard
2006-09-01
The aim of the present study was to assess the feasibility of renal magnetic resonance angiography at 3.0 T using a phased-array coil system with 32-coil elements. Specifically, high parallel imaging factors were used for an increased spatial resolution and anatomic coverage of the whole abdomen. Signal-to-noise values and the g-factor distribution of the 32 element coil were examined in phantom studies for the magnetic resonance angiography (MRA) sequence. Eleven volunteers (6 men, median age of 30.0 years) were examined on a 3.0-T MR scanner (Magnetom Trio, Siemens Medical Solutions, Malvern, PA) using a 32-element phased-array coil (prototype from In vivo Corp.). Contrast-enhanced 3D-MRA (TR 2.95 milliseconds, TE 1.12 milliseconds, flip angle 25-30 degrees , bandwidth 650 Hz/pixel) was acquired with integrated generalized autocalibrating partially parallel acquisition (GRAPPA), in both phase- and slice-encoding direction. Images were assessed by 2 independent observers with regard to image quality, noise and presence of artifacts. Signal-to-noise levels of 22.2 +/- 22.0 and 57.9 +/- 49.0 were measured with (GRAPPAx6) and without parallel-imaging, respectively. The mean g-factor of the 32-element coil for GRAPPA with an acceleration of 3 and 2 in the phase-encoding and slice-encoding direction, respectively, was 1.61. High image quality was found in 9 of 11 volunteers (2.6 +/- 0.8) with good overall interobserver agreement (k = 0.87). Relatively low image quality with higher noise levels were encountered in 2 volunteers. MRA at 3.0 T using a 32-element phased-array coil is feasible in healthy volunteers. High diagnostic image quality and extended anatomic coverage could be achieved with application of high parallel imaging factors.
NASA Technical Reports Server (NTRS)
Powell, R. W.
1975-01-01
There are six degree-of-freedom simulations of the space shuttle orbiter entry with aerodynamic control hysteresis conducted on the NASA Langley Research Center interactive simulator known as the Automatic Reentry Flight Dynamics Simulator. These were performed to determine if the presence of aerodynamic control hysteresis would endanger the mission, either by making the vehicle unable to maintain proper attitude for a safe entry, or by increasing the amount of the reaction control system's fuel consumption beyond that carried.
Adaptable, Deployable Entry and Placement Technology (ADEPT) Overview of FY15 Accomplishments
NASA Technical Reports Server (NTRS)
Wercinski, P.; Brivkalns, C.; Cassell, A.; Chen, Y.-K.; Boghozian, T.; Chinnapongse, R.; Gasch, M.; Kruger, C.; Makino, A.; Milos, F.;
2015-01-01
ADEPT is an atmospheric entry architecture for missions to most planetary bodies with atmospheres: Current Technology development project funded under STMD Game Changing Development Program (FY12 start); stowed inside the launch vehicle shroud and deployed in space prior to entry; low ballistic coefficient (less than 50 kilograms per square meter) provides a benign deceleration and thermal environment to the payload; High-temperature ribs support three dimensional woven carbon fabric to generate drag and withstand high heating.
NASA Technical Reports Server (NTRS)
Swei, Sean
2014-01-01
We propose to develop a robust guidance and control system for the ADEPT (Adaptable Deployable Entry and Placement Technology) entry vehicle. A control-centric model of ADEPT will be developed to quantify the performance of candidate guidance and control architectures for both aerocapture and precision landing missions. The evaluation will be based on recent breakthroughs in constrained controllability/reachability analysis of control systems and constrained-based energy-minimum trajectory optimization for guidance development operating in complex environments.
Equilibrium radiative heating tables for Earth entry
NASA Astrophysics Data System (ADS)
Sutton, Kenneth; Hartung, Lin C.
1990-05-01
The recent resurgence of interest in blunt-body atmospheric entry for applications such as aeroassisted orbital transfer and planetary return has engendered a corresponding revival of interest in radiative heating. Radiative heating may be of importance in these blunt-body flows because of the highly energetic shock layer around the blunt nose. Sutton developed an inviscid, stagnation point, radiation coupled flow field code for investigating blunt-body atmospheric entry. The method has been compared with ground-based and flight data, and reasonable agreement has been found. To provide information for entry body studies in support of lunar and Mars return scenarios of interest in the 1970's, the code was exercised over a matrix of Earth entry conditions. Recently, this matrix was extended slightly to reflect entry vehicle designs of current interest. Complete results are presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... analyses, including cost/benefit considerations. The entire day's proceedings will be webcast. DATES: The... Vehicle Operators; Public Listening Session AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of public listening session. SUMMARY: FMCSA announces that it will hold a public...
32 CFR 636.38 - Impounding privately owned vehicles (POVs).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Impounding privately owned vehicles (POVs). 636.38 Section 636.38 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... action will be documented by an entry in the Military Police desk journal. (ii) The owner will be allowed...
32 CFR 636.38 - Impounding privately owned vehicles (POVs).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 4 2011-07-01 2011-07-01 false Impounding privately owned vehicles (POVs). 636.38 Section 636.38 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... action will be documented by an entry in the Military Police desk journal. (ii) The owner will be allowed...
32 CFR 636.38 - Impounding privately owned vehicles (POVs).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 4 2012-07-01 2011-07-01 true Impounding privately owned vehicles (POVs). 636.38 Section 636.38 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... action will be documented by an entry in the Military Police desk journal. (ii) The owner will be allowed...
32 CFR 636.38 - Impounding privately owned vehicles (POVs).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 4 2014-07-01 2013-07-01 true Impounding privately owned vehicles (POVs). 636.38 Section 636.38 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... action will be documented by an entry in the Military Police desk journal. (ii) The owner will be allowed...
32 CFR 636.38 - Impounding privately owned vehicles (POVs).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 4 2013-07-01 2013-07-01 false Impounding privately owned vehicles (POVs). 636.38 Section 636.38 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... action will be documented by an entry in the Military Police desk journal. (ii) The owner will be allowed...
2008-02-15
THIS IS A TEST OF THE 1ST STAGE RE-ENTRY VEHICLE. HEAT TESTING OF A 3% MODEL TO SUPPORT THE ARES/ CLV FIRST STAGE RE-ENTRY. THIS TEST OCCURRED AT ARNOLD AIR FORCE BASE, TENNESSEE. THIS TESTING SUPPORTS THE DEVELOPMENT OF THE CONSTELLATION/ARES PROJECT. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE.
A Multidisciplinary Performance Analysis of a Lifting-Body Single-Stage-to-Orbit Vehicle
NASA Technical Reports Server (NTRS)
Tartabini, Paul V.; Lepsch, Roger A.; Korte, J. J.; Wurster, Kathryn E.
2000-01-01
Lockheed Martin Skunk Works (LMSW) is currently developing a single-stage-to-orbit reusable launch vehicle called VentureStar(TM) A team at NASA Langley Research Center participated with LMSW in the screening and evaluation of a number of early VentureStar(TM) configurations. The performance analyses that supported these initial studies were conducted to assess the effect of a lifting body shape, linear aerospike engine and metallic thermal protection system (TPS) on the weight and performance of the vehicle. These performance studies were performed in a multidisciplinary fashion that indirectly linked the trajectory optimization with weight estimation and aerothermal analysis tools. This approach was necessary to develop optimized ascent and entry trajectories that met all vehicle design constraints. Significant improvements in ascent performance were achieved when the vehicle flew a lifting trajectory and varied the engine mixture ratio during flight. Also, a considerable reduction in empty weight was possible by adjusting the total oxidizer-to-fuel and liftoff thrust-to-weight ratios. However, the optimal ascent flight profile had to be altered to ensure that the vehicle could be trimmed in pitch using only the flow diverting capability of the aerospike engine. Likewise, the optimal entry trajectory had to be tailored to meet TPS heating rate and transition constraints while satisfying a crossrange requirement.
Parametric Study of Cantilever Plates Exposed to Supersonic and Hypersonic Flows
NASA Astrophysics Data System (ADS)
Sri Harsha, A.; Rizwan, M.; Kuldeep, S.; Giridhara Prasad, A.; Akhil, J.; Nagaraja, S. R.
2017-08-01
Analysis of hypersonic flows associated with re-entry vehicles has gained a lot of significance due to the advancements in Aerospace Engineering. An area that is studied extensively by researchers is the simultaneous reduction aerodynamic drag and aero heating in re-entry vehicles. Out of the many strategies being studied, the use of aerospikes at the stagnation point of the vehicle is found to give favourable results. The structural stability of the aerospike becomes important as it is exposed to very high pressures and temperatures. Keeping this in view, the deflection and vibration of an inclined cantilever plate in hypersonic flow is carried out using ANSYS. Steady state pressure distribution obtained from Fluent is applied as load to the transient structural module for analysis. After due validation of the methods, the effects of parameters like flow Mach number, plate inclination and plate thickness on the deflection and vibration are studied.
2nd International Planetary Probe Workshop
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla
2005-01-01
Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.
Status of Sample Return Propulsion Technology Development Under NASA's ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Glaab, Louis J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Peterson, Todd T.
2012-01-01
The In-Space Propulsion Technology (ISPT) program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. ISPT s sample return technology development areas are diverse. Sample Return Propulsion (SRP) addresses electric propulsion for sample return and low cost Discovery-class missions, propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and low technology readiness level (TRL) advanced propulsion technologies. The SRP effort continues work on HIVHAC thruster development to transition into developing a Hall-effect propulsion system for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks continues for sample return with direct applicability to a Mars Sample Return (MSR) mission with general applicability to all future planetary spacecraft. The Earth Entry Vehicle (EEV) work focuses on building a fundamental base of multi-mission technologies for Earth Entry Vehicles (MMEEV). The main focus of the Planetary Ascent Vehicles (PAV) area is technology development for the Mars Ascent Vehicle (MAV), which builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies
NASA Astrophysics Data System (ADS)
Amory, V.; Lhémery, A.
2008-02-01
Inspection of irregular components is problematical: maladjustment of transducer shoes to surfaces causes aberrations. Flexible phased-arrays (FPAs) designed at CEA LIST to maximize contact are driven by adapted delay laws to compensate for irregularities. Optimizing FPA requires simulation tools. The behavior of one element computed by FEM is observed at the surface and its radiation experimentally validated. Efforts for one element prevent from simulating a FPA by FEM. A model is proposed where each element behaves as nonuniform source of stresses. Exact and asymptotic formulas for Lamb problem are used as convolution kernels for longitudinal, transverse and head waves; the latter is of primary importance for angle-T-beam inspections.
GaAs MMIC elements in phased-array antennas
NASA Technical Reports Server (NTRS)
Leonard, Regis F.
1988-01-01
Over the last six years NASA Lewis Research Center has carried out a program aimed at the development of advanced monolithic microwave integrated circuit technology, principally for use in phased-array antenna applications. Arising out of the Advanced Communications Technology Satellite (ACTS) program, the initial targets of the program were chips which operated at 30 and 20 GHz. Included in this group of activities were monolithic power modules with an output of 2 watts at GHz, variable phase shifters at both 20 and 30 GHz, low noise technology at 30 GHz, and a fully integrated (phase shifter, variable gain amplifier, power amplifier) transmit module at 20 GHz. Subsequent developments are centered on NASA mission requirements, particularly Space Station communications systems and deep space data communications.
Modelling and restoration of ultrasonic phased-array B-scan images.
Ardouin, J P; Venetsanopoulos, A N
1985-10-01
A model is presented for the radio-frequency image produced by a B-scan (pulse-echo) ultrasound imaging system using a phased-array transducer. This type of scanner is widely used for real-time heart imaging. The model allows for dynamic focusing as well as an acoustic lens focusing the beam in the elevation plane. A result of the model is an expression to compute the space-variant point spread function (PSF) of the system. This is made possible by the use of a combination of Fresnel and Fraunhoffer approximations which are valid in the range of interest for practical applications. The PSF is used to design restoration filters in order to improve image resolution. The filters are then applied to experimental images of wires.
Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.
1985-01-01
Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.
Planetary/DOD entry technology flight experiments. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.
1976-01-01
The feasibility of using the space shuttle to launch planetary and DoD entry flight experiments was examined. The results of the program are presented in two parts: (1) simulating outer planet environments during an earth entry test, the prediction of Jovian and earth radiative heating dominated environments, mission strategy, booster performance and entry vehicle design, and (2) the DoD entry test needs for the 1980's, the use of the space shuttle to meet these DoD test needs, modifications of test procedures as pertaining to the space shuttle, modifications to the space shuttle to accommodate DoD test missions and the unique capabilities of the space shuttle. The major findings of this program are summarized.
Cubesat Application for Planetary Entry (CAPE) Missions: Micro-Reentry Capsule (MIRCA)
NASA Technical Reports Server (NTRS)
Esper, Jaime
2014-01-01
The Cubesat Application for Planetary Entry Missions (CAPE) concept describes a high-performing Cubesat system which includes a propulsion module and miniaturized technologies capable of surviving atmospheric entry heating, while reliably transmitting scientific and engineering data. The Micro Return Capsule (MIRCA) is CAPEs first planetary entry probe flight prototype. Within this context, this paper briefly describes CAPEs configuration and typical operational scenario, and summarizes ongoing work on the design and basic aerodynamic characteristics of the prototype MIRCA vehicle. CAPE not only opens the door to new planetary mission capabilities, it also offers relatively low-cost opportunities especially suitable to university participation.
Atmospheric reentry flight test of winged space vehicle
NASA Astrophysics Data System (ADS)
Inatani, Yoshifumi; Akiba, Ryojiro; Hinada, Motoki; Nagatomo, Makoto
A summary of the atmospheric reentry flight experiment of winged space vehicle is presented. The test was conducted and carried out by the Institute of Space and Astronautical Science (ISAS) in Feb. 1992 in Kagoshima Space Center. It is the first Japanese atmospheric reentry flight of the controlled lifting vehicle. A prime objective of the flight is to demonstrate a high speed atmospheric entry flight capability and high-angle-of-attack flight capability in terms of aerodynamics, flight dynamics and flight control of these kind of vehicles. The launch of the winged vehicle was made by balloon and solid propellant rocket booster which was also the first trial in Japan. The vehicle accomplishes the lfight from space-equivalent condition to the atmospheric flight condition where reaction control system (RCS) attitude stabilization and aerodynamic control was used, respectively. In the flight, the vehicle's attitude was measured by both an inertial measurement unit (IMU) and an air data sensor (ADS) which were employed into an auto-pilot flight control loop. After completion of the entry transient flight, the vehicle experienced unexpected instability during the atmospheric decelerating flight; however, it recovered the attitude orientation and completed the transonic flight after that. The latest analysis shows that it is due to the ADS measurement error and the flight control gain scheduling; what happened was all understood. Some details of the test and the brief summary of the current status of the post flight analysis are presented.
Conceptual design of an Orbital Debris Defense System
NASA Technical Reports Server (NTRS)
Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly
1994-01-01
Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.
IRVE-3 Post-Flight Reconstruction
NASA Technical Reports Server (NTRS)
Olds, Aaron D.; Beck, Roger; Bose, David; White, Joseph; Edquist, Karl; Hollis, Brian; Lindell, Michael; Cheatwood, F. N.; Gsell, Valerie; Bowden, Ernest
2013-01-01
The Inflatable Re-entry Vehicle Experiment 3 (IRVE-3) was conducted from the NASA Wallops Flight Facility on July 23, 2012. Launched on a Black Brant XI sounding rocket, the IRVE-3 research vehicle achieved an apogee of 469 km, deployed and inflated a Hypersonic Inflatable Aerodynamic Decelerator (HIAD), re-entered the Earth's atmosphere at Mach 10 and achieved a peak deceleration of 20 g's before descending to splashdown roughly 20 minutes after launch. This paper presents the filtering methodology and results associated with the development of the Best Estimated Trajectory of the IRVE-3 flight test. The reconstructed trajectory is compared against project requirements and pre-flight predictions of entry state, aerodynamics, HIAD flexibility, and attitude control system performance.
40 CFR 86.1849-01 - Right of entry.
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification testing, to translation of designs from the test stage to the production stage, or to vehicle (or... calibration of test equipment. (2) To inspect and make copies of any such records, designs, or other documents... Administrator to determine whether or not production motor vehicles conform to the conditions upon which a...
23 CFR 669.21 - Procedure for evaluating state compliance.
Code of Federal Regulations, 2010 CFR
2010-04-01
... automated file as evidence that proof of payment has been received before vehicles subject to the Federal... TRAFFIC OPERATIONS ENFORCEMENT OF HEAVY VEHICLE USE TAX § 669.21 Procedure for evaluating state compliance.... In lieu of retention of Schedule 1, states may make an appropriate entry in an automated file or on...
44 CFR 60.3 - Flood plain management criteria for flood-prone areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... improvements, that fully enclosed areas below the lowest floor that are usable solely for parking of vehicles... that they permit the automatic entry and exit of floodwaters. (6) Require that manufactured homes that... building standards. Such enclosed space shall be useable solely for parking of vehicles, building access...
44 CFR 60.3 - Flood plain management criteria for flood-prone areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... improvements, that fully enclosed areas below the lowest floor that are usable solely for parking of vehicles... that they permit the automatic entry and exit of floodwaters. (6) Require that manufactured homes that... building standards. Such enclosed space shall be useable solely for parking of vehicles, building access...
The Mission Accessibility of Near-Earth Asteroids
NASA Technical Reports Server (NTRS)
Barbee, Brent W.; Abell, Paul A.; Adamo, Daniel R.; Mazanek, Daniel D.; Johnson, Lindley N.; Yeomans, Donald K.; Chodas, Paul W.; Chamberlin, Alan B.; Benner, Lance A. M.; Taylor, Patrick;
2015-01-01
Astrodynamical Earth departure dates; mission v; mission duration; stay time; etc. Physical I NEO size(?); rotation rate; dust satellites environment; chemistry; etc. Architectural Launch vehicle(s); crew vehicle(s); habitat module(s); budget; etc. Operational Operations experience; abort options profiles; etc. Astrodynamical Accessibility is the starting point for understanding the options and opportunities available to us. Here we shall focus on. Astrodynamical Accessibility.2 Earth departure date between 2015-01-01 and 2040-12-31 Earth departure C3 60 km2s2. Total mission v 12 kms. The total v includes (1) the Earth departure maneuver from a 400 km altitude circular parking orbit, (2) the maneuver to match the NEAs velocity at arrival, (3) the maneuver to depart the NEA and, (4) if necessary, a maneuver to control the atmospheric re-entry speed during Earth return. Total round trip mission duration 450 days. Stay time at the NEA 8 days Earth atmospheric entry speed 12 kms at an altitude of 125 km. A near-Earth asteroid (NEA) that offers at least one trajectory solution meeting those criteria is classified as NHATS-compliant.
NASA Technical Reports Server (NTRS)
Blissit, J. A.
1986-01-01
Using analysis results from the post trajectory optimization program, an adaptive guidance algorithm is developed to compensate for density, aerodynamic and thrust perturbations during an atmospheric orbital plane change maneuver. The maneuver offers increased mission flexibility along with potential fuel savings for future reentry vehicles. Although designed to guide a proposed NASA Entry Research Vehicle, the algorithm is sufficiently generic for a range of future entry vehicles. The plane change analysis provides insight suggesting a straight-forward algorithm based on an optimized nominal command profile. Bank angle, angle of attack, and engine thrust level, ignition and cutoff times are modulated to adjust the vehicle's trajectory to achieve the desired end-conditions. A performance evaluation of the scheme demonstrates a capability to guide to within 0.05 degrees of the desired plane change and five nautical miles of the desired apogee altitude while maintaining heating constraints. The algorithm is tested under off-nominal conditions of + or -30% density biases, two density profile models, + or -15% aerodynamic uncertainty, and a 33% thrust loss and for various combinations of these conditions.
STS-52 Commander Wetherbee, in LES/LEH, during JSC WETF bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Commander James D. Wetherbee, fully outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), prepares for emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used to simulate a water landing.
STS-46 ESA MS Nicollier in life raft during water egress training at JSC WETF
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a one-person life raft during a launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
STS-46 MS Chang-Diaz floats in life raft during water egress training at JSC
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Franklin R. Chang-Diaz, wearing launch and entry suit (LES) and launch and entry helmet (LEH), relies on a one-person life raft to get him to 'safety' during a launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
Six-degree-of-freedom guidance and control-entry analysis of the HL-20
NASA Technical Reports Server (NTRS)
Powell, Richard W.
1993-01-01
The ability of the HL-20 lifting body to fly has been evaluated for an automated entry from atmospheric interface to landing. This evaluation was required to demonstrate that not only successful touchdown conditions would be possible for this low lift-to-drag-ratio vehicle, but also the vehicle would not exceed its design dynamic pressure limit of 400 psf during entry. This dynamic pressure constraint limit, coupled with limited available pitch-control authority at low supersonic speeds, restricts the available maneuvering capability for the HL-20 to acquire the runway. One result of this analysis was that this restrictive maneuvering capability does not allow the use of a model-following atmospheric entry-guidance algorithm, such as that used by the Space Shuttle, but instead requires a more adaptable guidance algorithm. Therefore, for this analysis, a predictor-corrector guidance algorithm was developed that would provide successful touchdown conditions while not violating the dynamic pressure constraint. A flight-control system was designed and incorporated, along with the predictor-corrector guidance algorithm, into a six-DOF simulation. which showed that the HL-20 remained controllable and could reach the landing site and execute a successful landing under all off-nominal conditions simulated.
Parametric entry corridors for lunar/Mars aerocapture missions
NASA Technical Reports Server (NTRS)
Ling, Lisa M.; Baseggio, Franco M.; Fuhry, Douglas P.
1991-01-01
Parametric atmospheric entry corridor data are presented for Earth and Mars aerocapture. Parameter ranges were dictated by the range of mission designs currently envisioned as possibilities for the Human Exploration Initiative (HEI). This data, while not providing a means for exhaustive evaluation of aerocapture performance, should prove to be a useful aid for preliminary mission design and evaluation. Entry corridors are expressed as ranges of allowable vacuum periapse altitude of the planetary approach hyperbolic orbit, with chart provided for conversion to an approximate flight path angle corridor at entry interface (125 km altitude). The corridor boundaries are defined by open-loop aerocapture trajectories which satisfy boundary constraints while utilizing the full aerodynamic control capability of the vehicle (i.e., full lift-up or full lift-down). Parameters examined were limited to those of greatest importance from an aerocapture performance standpoint, including the approach orbit hyperbolic excess velocity, the vehicle lift to drag ratio, maximum aerodynamic load factor limit, and the apoapse of the target orbit. The impact of the atmospheric density bias uncertainties are also included. The corridor data is presented in graphical format, and examples of the utilization of these graphs for mission design and evaluation are included.
Mission and Navigation Design for the 2009 Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
D'Amario, Louis A.
2008-01-01
NASA s Mars Science Laboratory mission will launch the next mobile science laboratory to Mars in the fall of 2009 with arrival at Mars occurring in the summer of 2010. A heat shield, parachute, and rocket-powered descent stage, including a sky crane, will be used to land the rover safely on the surface of Mars. The direction of the atmospheric entry vehicle lift vector will be controlled by a hypersonic entry guidance algorithm to compensate for entry trajectory errors and counteract atmospheric and aerodynamic dispersions. The key challenges for mission design are (1) develop a launch/arrival strategy that provides communications coverage during the Entry, Descent, and Landing phase either from an X-band direct-to-Earth link or from a Ultra High Frequency link to the Mars Reconnaissance Orbiter for landing latitudes between 30 deg North and 30 deg South, while satisfying mission constraints on Earth departure energy and Mars atmospheric entry speed, and (2) generate Earth-departure targets for the Atlas V-541 launch vehicle for the specified launch/arrival strategy. The launch/arrival strategy employs a 30-day baseline launch period and a 27-day extended launch period with varying arrival dates at Mars. The key challenges for navigation design are (1) deliver the spacecraft to the atmospheric entry interface point (Mars radius of 3522.2 km) with an inertial entry flight path angle error of +/- 0.20 deg (3 sigma), (2) provide knowledge of the entry state vector accurate to +/- 2.8 km (3 sigma) in position and +/- 2.0 m/s (3 sigma) in velocity for initializing the entry guidance algorithm, and (3) ensure a 99% probability of successful delivery at Mars with respect to available cruise stage propellant. Orbit determination is accomplished via ground processing of multiple complimentary radiometric data types: Doppler, range, and Delta-Differential One-way Ranging (a Very Long Baseline Interferometry measurement). The navigation strategy makes use of up to five interplanetary trajectory correction maneuvers to achieve entry targeting requirements. The requirements for cruise propellant usage and atmospheric entry targeting and knowledge are met with ample margins.
NASA CEV Reference Entry GN&C System and Analysis
NASA Technical Reports Server (NTRS)
Munday, S.; Madsen, C.; Broome, J.; Gay, R.; Tigges, M.; Strahan, A.
2007-01-01
As part of its overall objectives, the Orion spacecraft will be required to perform entry and Earth landing functions for Low Earth Orbit (LEO) and Lunar missions. Both of these entry scenarios will begin with separation of the Service Module (SM), making them unique from other Orion mission phases in that only the Command Module (CM) portion of the Crew Exploration Vehicle (CEV) will be involved, requiring a CM specific Guidance, Navigation and Control (GN&C) system. Also common to these mission scenarios will be the need for GN&C to safely return crew (or cargo) to earth within the dynamic thermal and structural constraints of entry and within acceptable accelerations on the crew, utilizing the limited aerodynamic performance of the CM capsule. The lunar return mission could additionally require an initial atmospheric entry designed to support a precision skip and second entry, all to maximize downrange performance and ensure landing in the United States. This paper describes the Entry GN&C reference design, developed by the NASA-led team, that supports these entry scenarios and that was used to validate the Orion System requirements. Description of the reference design will include an overview of the GN&C functions, avionics, and effectors and will relate these to the specific design drivers of the entry scenarios, as well as the desire for commonality in vehicle systems to support the different missions. The discussion will also include the requirement for an Emergency Entry capability beyond that of the nominal performance of the multi-string GNC system, intended to return the crew to the earth in a survivable but unguided manner. Finally, various analyses will be discussed, including those completed to support validation efforts of the current CEV requirements, along with those on-going and planned with the intention to further refine the requirements and to support design development work in conjunction with the prime contractor. Some of these ongoing analyses will include work to size effectors (jets) and fuel budgets, to refine skip entry concepts, to characterize navigation performance and uncertainties, to provide for SM disposal offshore and to identify requirements to support target site selection.
Comparison of transport properties models for numerical simulations of Mars entry vehicles
NASA Astrophysics Data System (ADS)
Hao, Jiaao; Wang, Jingying; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian
2017-01-01
Effects of two different models for transport properties, including the approximate model and the collision integral model, on hypersonic flow simulations of Mars entry vehicles are numerically investigated. A least square fitting is firstly performed using the best-available data of collision integrals for Martian atmosphere species within the temperature range of 300-20,000 K. Then, the performance of these two transport properties models are compared for an equilibrium Martian atmosphere gas mixture at 10 kPa and temperatures ranging from 1000 to 10,000 K. Finally, four flight conditions chosen from the trajectory of the Mars Pathfinder entry vehicle are numerically simulated. It is indicated that the approximate model is capable of accurately providing the distributions of species mass fractions and temperatures in the flowfield. Both models give similar translational-rotational and vibrational heat fluxes. However, the chemical diffusion heat fluxes predicted by the approximate model are significantly larger than the results computed by the collision integral model, particularly in the vicinity of the forebody stagnation point, whose maximum relative error of 15% for the super-catalytic case. The diffusion model employed in the approximate model is responsible to the discrepancy. In addition, the wake structure is largely unaffected by the transport properties models.
Venus cloud bobber mission: A long term survey of the Venusian surface
NASA Technical Reports Server (NTRS)
Wai, James; Derengowski, Cheryl; Lautzenhiser, Russ; Emerson, Matt; Choi, Yongho
1994-01-01
We have examined the Venus Balloon concept in order to further develop the ideas and concepts behind it, and to creatively apply them to the design of the major Venus Balloon components. This report presents our models of the vertical path taken by the Venus Balloon and the entry into Venusian atmosphere. It also details our designs of the balloon, gondola, heat exchanger, power generator, and entry module. A vehicle is designed for a ballistic entry into the Venusian atmosphere, and an atmospheric model is created. The model is then used to set conditions. The shape and material of the vehicle are optimized, and the dimensions of the vehicle are then determined. Equipment is chosen and detailed that will be needed to collect and transmit information and control the mission. A gondola is designed that will enable this sensitive electronic equipment to survive in an atmosphere of very high temperature and pressure. This shape and the material of the shell are optimized, and the size is minimized. Insulation and supporting structures are designed to protect the payload equipment and to minimize mass. A method of cooling the gondola at upper altitudes was established. Power needs of the gondola equipment are determined. Power generation options are discussed and two separate thermoelectric generation models are outlined.
Uniform Foam Crush Testing for Multi-Mission Earth Entry Vehicle Impact Attenuation
NASA Technical Reports Server (NTRS)
Patterson, Byron W.; Glaab, Louis J.
2012-01-01
Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, four different Rohacell foams are tested at three different, uniform, strain rates (approximately 0.17, approximately 100, approximately 13,600%/s). The primary data analysis method uses a global data smoothing technique in the frequency domain to remove noise and system natural frequencies. The results from the data indicate that the filter and smoothing technique are successful in identifying the foam crush event and removing aberrations. The effect of strain rate increases with increasing foam density. The 71-WF-HT foam may support Mars Sample Return requirements. Several recommendations to improve the drop tower test technique are identified.
Naganawa, S; Ito, T; Fukatsu, H; Ishigaki, T; Nakashima, T; Ichinose, N; Kassai, Y; Miyazaki, M
1998-09-01
To prospectively evaluate the sensitivity and specificity of magnetic resonance (MR) imaging in the inner ear with a long echo train, three-dimensional (3D), asymmetric Fourier-transform, fast spin-echo (SE) sequence with use of a dedicated quadrature-surface phased-array coil to detect vestibular schwannoma in the cerebellopontine angle and the internal auditory canal. In 205 patients (410 ears) with ear symptoms, 1.5-T MR imaging was performed with unenhanced 3D asymmetric fast SE and gadolinium-enhanced 3D gradient-recalled (SPGR) sequences with use of a quadrature surface phased-array coil. The 3D asymmetric fast SE images were reviewed by two radiologists, with the gadolinium-enhanced 3D SPGR images used as the standard of reference. Nineteen lesions were detected in the 410 ears (diameter range, 2-30 mm; mean, 10.5 mm +/- 6.4 [standard deviation]; five lesions were smaller than 5 mm). With 3D asymmetric fast SE, sensitivity, specificity, and accuracy, respectively, were 100%, 99.5%, and 99.5% for observer 1 and 100%, 99.7%, and 99.8% for observer 2. The unenhanced 3D asymmetric fast SE sequence with a quadrature-surface phased-array coli allows the reliable detection of vestibular schwannoma in the cerebellopontine angle and internal auditory canal.
Dregely, Isabel; Ruset, Iulian C.; Wiggins, Graham; Mareyam, Azma; Mugler, John P.; Altes, Talissa A.; Meyer, Craig; Ruppert, Kai; Wald, Lawrence L.; Hersman, F. William
2012-01-01
Hyperpolarized xenon-129 (HP Xe) has the potential to become a non-invasive contrast agent for lung MRI. In addition to its utility for imaging of ventilated airspaces, the property of xenon to dissolve in lung tissue and blood upon inhalation provides the opportunity to study gas exchange. Implementations of imaging protocols for obtaining regional parameters that exploit the dissolved phase are limited by the available signal-to-noise ratio (SNR), excitation homogeneity, and length of acquisition times. To address these challenges, a 32-channel receive-array coil complemented by an asymmetric birdcage transmit coil tuned to the HP Xe resonance at 3T was developed. First results of spin-density imaging in healthy subjects and subjects with obstructive lung disease demonstrated the improvements in image quality by high resolution ventilation images with high SNR. Parallel imaging performance of the phased-array coil was demonstrated by acceleration factors up to three in 2D acquisitions and up to six in 3D acquisitions. Transmit-field maps showed a regional variation of only 8% across the whole lung. The newly developed phased-array receive coil with the birdcage transmit coil will lead to an improvement in existing imaging protocols, but moreover enable the development of new, functional lung imaging protocols based on the improvements in excitation homogeneity, SNR, and acquisition speed. PMID:23132336
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.
2013-01-01
A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.
Boundary Layer Transition Correlations and Aeroheating Predictions for Mars Smart Lander
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Liechty, Derek S.
2002-01-01
Laminar and turbulent perfect-gas air, Navier-Stokes computations have been performed for a proposed Mars Smart Lander entry vehicle at Mach 6 over a free stream Reynolds number range of 6.9 x 10(exp 6)/m to 2.4 x 10(exp 7)/m (2.1 x 10(exp 6)/ft to 7.3 x 10(exp 6)/ft) for angles-of-attack of 0-deg, 11-deg, 16-deg, and 20-deg, and comparisons were made to wind tunnel heating data obtained a t the same conditions. Boundary layer edge properties were extracted from the solutions and used to correlate experimental data on the effects of heat-shield penetrations (bolt-holes where the entry vehicle would be attached to the propulsion module during transit to Mars) on boundary-layer transition. A non-equilibrium Martian-atmosphere computation was performed for the peak heating point on the entry trajectory in order to determine if the penetrations would produce boundary-layer transition by using this correlation.
Boundary Layer Transition Correlations and Aeroheating Predictions for Mars Smart Lander
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Liechty, Derek S.
2002-01-01
Laminar and turbulent perfect-gas air, Navier-Stokes computations have been performed for a proposed Mars Smart Lander entry vehicle at Mach 6 over a free stream Reynolds number range of 6.9 x 10(exp 6/m to 2.4 x 10(exp 7)m(2.1 x 10(exp 6)/ft to 7.3 x 10(exp 6)ft) for angles-of-attack of 0-deg, 11-deg, 16-deg, and 20-deg, and comparisons were made to wind tunnel heating data obtained at the same conditions. Boundary layer edge properties were extracted from the solutions and used to correlate experimental data on the effects of heat-shield penetrations (bolt-holes where the entry vehicle would be attached to the propulsion module during transit to Mars) on boundary-layer transition. A non-equilibrium Martian-atmosphere computation was performed for the peak heating point on the entry trajectory in order to determine if the penetrations would produce boundary-layer transition by using this correlation.
Space Shuttle guidance for multiple main engine failures during first stage
NASA Technical Reports Server (NTRS)
Sponaugle, Steven J.; Fernandes, Stanley T.
1987-01-01
This paper presents contingency abort guidance schemes recently developed for multiple Space Shuttle main engine failures during the first two minutes of flight (first stage). The ascent and entry guidance schemes greatly improve the possibility of the crew and/or the Orbiter surviving a first stage contingency abort. Both guidance schemes were required to meet certain structural and controllability constraints. In addition, the systems were designed with the flexibility to allow for seasonal variations in the atmosphere and wind. The ascent scheme guides the vehicle to a desirable, lofted state at solid rocket booster burnout while reducing the structural loads on the vehicle. After Orbiter separation from the solid rockets and the external tank, the entry scheme guides the Orbiter through one of two possible entries. If the proper altitude/range/velocity conditions have been met, a return-to-launch-site 'Split-S' maneuver may be attempted. Otherwise, a down-range abort to an equilibrium glide and subsequent crew bailout is performed.
Notes on Earth Atmospheric Entry for Mars Sample Return Missions
NASA Technical Reports Server (NTRS)
Rivell, Thomas
2006-01-01
The entry of sample return vehicles (SRVs) into the Earth's atmosphere is the subject of this document. The Earth entry environment for vehicles, or capsules, returning from the planet Mars is discussed along with the subjects of dynamics, aerodynamics, and heat transfer. The material presented is intended for engineers and scientists who do not have strong backgrounds in aerodynamics, aerothermodynamics and flight mechanics. The document is not intended to be comprehensive and some important topics are omitted. The topics considered in this document include basic principles of physics (fluid mechanics, dynamics and heat transfer), chemistry and engineering mechanics. These subjects include: a) fluid mechanics (aerodynamics, aerothermodynamics, compressible fluids, shock waves, boundary layers, and flow regimes from subsonic to hypervelocity; b) the Earth s atmosphere and gravity; c) thermal protection system design considerations; d) heat and mass transfer (convection, radiation, and ablation); e) flight mechanics (basic rigid body dynamics and stability); and f) flight- and ground-test requirements; and g) trajectory and flow simulation methods.
Progress in Payload Separation Risk Mitigation for a Deployable Venus Heat Shield
NASA Technical Reports Server (NTRS)
Smith, Brandon P.; Yount, Bryan C.; Venkatapathy, Ethiraj; Stern, Eric C.; Prabhu, Dinesh K.; Litton, Daniel K.
2013-01-01
A deployable decelerator known as the Adaptive Deployable Entry and Placement Technology (ADEPT) offers substantial science and mass savings for the Venus In Situ Explorer (VISE) mission. The lander and science payload must be separated from ADEPT during atmospheric entry. This paper presents a trade study of the separation system concept of operations and provides a conceptual design of the baseline: aft-separation with a subsonic parachute. Viability of the separation system depends on the vehicle's dynamic stability characteristics during deceleration from supersonic to subsonic speeds. A trajectory sensitivity study presented shows that pitch damping and Venusian winds drive stability prior to parachute deployment, while entry spin rate is not a driver of stability below Mach 5. Additionally, progress in free-flight CFD techniques capable of computing aerodynamic damping parameters is presented. Exploratory simulations of ADEPT at a constant speed of Mach number of 0.8 suggest the vehicle may have an oscillation limit cycle near 5 angle-of-attack. The proposed separation system conceptual design is thought to be viable.
Navigation Strategy for the Mars 2001 Lander Mission
NASA Technical Reports Server (NTRS)
Mase, Robert A.; Spencer, David A.; Smith, John C.; Braun, Robert D.
2000-01-01
The Mars Surveyor Program (MSP) is an ongoing series of missions designed to robotically study, map and search for signs of life on the planet Mars. The MSP 2001 project will advance the effort by sending an orbiter, a lander and a rover to the red planet in the 2001 opportunity. Each vehicle will carry a science payload that will Investigate the Martian environment on both a global and on a local scale. Although this mission will not directly search for signs of life, or cache samples to be returned to Earth, it will demonstrate certain enabling technologies that will be utilized by the future Mars Sample Return missions. One technology that is needed for the Sample Return mission is the capability to place a vehicle on the surface within several kilometers of the targeted landing site. The MSP'01 Lander will take the first major step towards this type of precision landing at Mars. Significant reduction of the landed footprint will be achieved through two technology advances. The first, and most dramatic, is hypersonic aeromaneuvering; the second is improved approach navigation. As a result, the guided entry will produce in a footprint that is only tens of kilometers, which is an order of magnitude improvement over the Pathfinder and Mars Polar Lander ballistic entries. This reduction will significantly enhance scientific return by enabling the potential selection of otherwise unreachable landing sites with unique geologic interest and public appeal. A landed footprint reduction from hundreds to tens of kilometers is also a milestone on the path towards human exploration of Mars, where the desire is to place multiple vehicles within several hundred meters of the planned landing site. Hypersonic aeromaneuvering is an extension of the atmospheric flight goals of the previous landed missions, Pathfinder and Mars Polar Lander (MPL), that utilizes aerodynamic lift and an autonomous guidance algorithm while in the upper atmosphere. The onboard guidance algorithm will control the direction of the lift vector, via bank angle modulation, to keep the vehicle on the desired trajectory. While numerous autonomous guidance algorithms have been developed for use during hypersonic flight at Earth, this will be the first flight of an autonomously directed lifting entry vehicle at Mars. However, without sufficient control and knowledge of the atmospheric entry conditions, the guidance algorithm will not perform effectively. The goal of the interplanetary navigation strategy is to deliver the spacecraft to the desired entry condition with sufficient accuracy and knowledge to enable satisfactory guidance algorithm performance. Specifically, the entry flight path angle must not exceed 0.27 deg. to a 3 sigma confidence level. Entry errors will contribute directly to the size of the landed footprint and the most significant component is entry flight path angle. The size of the entry corridor is limited on the shallow side by integrated heating constraints, and on the steep side by deceleration (g-load) and terminal descent propellant. In order to meet this tight constraint it is necessary to place a targeting maneuver seven hours prior to the time of entry. At this time the trajectory knowledge will be quite accurate, and the effects of maneuver execution errors will be small. The drawback is that entry accuracy is dependent on the success of this final late maneuver. Because propulsive maneuvers are critical events, it is desirable to minimize their occurrence and provide the flight team with as much response time as possible in the event of a spacecraft fault. A mission critical maneuver at Entry - 7 hours does not provide much fault tolerance, and it is desirable to provide a strategy that minimizes reliance on this maneuver. This paper will focus on the Improvements in interplanetary navigation that will decrease entry errors and will reduce the landed footprint, even in the absence of aeromaneuvering. The easiest to take advantage of are Improvements In the knowledge of the Mars ephemeris and gravity field due to the MGS and MSP'98 missions. Improvements In data collection and reduction techniques such as "precislon ranging' and near-simultaneous tracking will also be utilized. In addition to precise trajectory control, a robust strategy for communications and flight operations must also be demonstrated. The result Is a navigation and communications strategy on approach that utilizes optimal maneuver placement to take advantage of trajectory knowledge, minimizes risk for the flight operations team, is responsive to spacecraft hardware limitations, and achieves the entry corridor. The MSP2001 mission Is managed at JPL under the auspices of the Mars Exploration Directorate. The spacecraft flight elements are built and managed by Lockheed-Martin Astronautics in Denver, Colorado.
Behavior of HfB2-SiC Materials in Simulated Re-Entry Environments
NASA Technical Reports Server (NTRS)
Ellerby, Don; Beckman, Sarah; Irby, Edward; Johnson, Sylvia M.; Gunsman, Michael; Gasch, Matthew; Ridge, Jerry; Martinez, Ed; Squire, Tom; Olejniczak, Joe
2003-01-01
The objectives of this research are to: 1) Investigate the oxidation/ablation behavior of HfB2/SiC materials in simulated re-entry environments; 2) Use the arc jet test results to define appropriate use environments for these materials for use in vehicle design. The parameters to be investigated include: surface temperature, stagnation pressure, duration, number of cycles, and thermal stresses.
NASA Technical Reports Server (NTRS)
Tempelman, W. H.
1973-01-01
The navigation and control of the space shuttle during atmospheric entry are discussed. A functional flow diagram presenting the basic approach to the deorbit targeting problem is presented. The major inputs to be considered are: (1) vehicle state vector, (2) landing site location, (3) entry interface parameters, (4) earliest desired time of landing, and (5) maximum cross range. Mathematical models of the navigational procedures based on controlled thrust times are developed.
STS-52 Commander Wetherbee floats in life raft during JSC bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Commander James D. Wetherbee, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The bailout exercises utilize the WETF's 25-foot deep pool as the ocean for this water landing simulation.
40 CFR 86.091-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification testing, to translation of designs from the test stage to the production stage, or to vehicle (or...) In the case where a current production engine is modified for use in a certification vehicle (or as a... from a current production engine, a general description of the buildup of the engine (e.g...
2006-09-26
KENNEDY SPACE CENTER, FLA. - Following ribbon-cutting ceremony, workers and officials wait outside the west door to the Operations and Checkout Building for its reactivation as the entry into the crew exploration vehicle environment. During the rest of the decade, KSC will transition from launching space shuttles to launching new vehicles in NASA’s Vision For Space Exploration. Photo credit: NASA/Kim Shiflett
Center for Ground Vehicle Development and Integration
2011-04-22
UNCLASSIFIED OPSEC# 21798 CGVDI Organizational Chart CGVDI Director Project and Operations Management Project Management Operations Management Engineered...Metals Welding Assembly / Paint UNCLASSIFIED UNCLASSIFIED OPSEC# 21798 Project and Operations Management CGVDI serves as a single entry point to RDECOM...for ground vehicle system integration projects, as well as for managing cost, schedule, performance and risk. Project Management Operations
77 FR 75654 - Notice of Temporary Closures on Public Lands in Owyhee County, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-21
... signs at main entry points to the closed roads. This closure will be posted in the Boise District BLM... Management, Interior. ACTION: Notice of temporary road closure to motorized vehicle use and temporary area... River Birds of Prey National Conservation Area (NCA-BLM). Two roads will be closed to motorized vehicle...
Using School Gardening as a Vehicle for Critical and Creative Thinking in Health Education
ERIC Educational Resources Information Center
Ausherman, Judith A.; Ubbes, Valerie A.; Kowalski, Jacqueline
2014-01-01
This strategy is to provide health education teacher candidates with critical and creative thinking tools to explore gardening as a vehicle to integrate health education content with other subjects. According to the Competency-Based Framework for the Health Education Specialist (2010a), entry-level health educators should have skills and…
Discussion of flight experiments with an entry research vehicle
NASA Technical Reports Server (NTRS)
Potter, J. L.
1985-01-01
The focus of interest is the maneuvering flight of advanced entry vehicles operating at altitudes above 50 km and at velocities of 5 to 8 km/s. Information resulting in more accurate aerodynamic analysis is sought and measurement techniques that appear to be applicable are identified. Measurements discussed include: shock layer or boundary layer profiles of velocity, temperature, species mass fractions, and other gas properties associated with aerodynamic heating; surface energy transfer process; nonequilibrium flow processes and pressure distribution; separated, vortic leeside flow of nonequilibrium fluid; boundary layer transition on highly swept configurations; and shock and surface slip and gas/surface interaction. Further study should focus on evolving measurement techniques, installation requirements, and on identification of the portions of flights where successful results seem probable.
Earth recovery mode analysis for a Martian sample return mission
NASA Technical Reports Server (NTRS)
Green, J. P.
1978-01-01
The analysis has concerned itself with evaluating alternative methods of recovering a sample module from a trans-earth trajectory originating in the vicinity of Mars. The major modes evaluated are: (1) direct atmospheric entry from trans-earth trajectory; (2) earth orbit insertion by retropropulsion; and (3) atmospheric braking to a capture orbit. In addition, the question of guided vs. unguided entry vehicles was considered, as well as alternative methods of recovery after orbit insertion for modes (2) and (3). A summary of results and conclusions is presented. Analytical results for aerodynamic and propulsive maneuvering vehicles are discussed. System performance requirements and alternatives for inertial systems implementation are also discussed. Orbital recovery operations and further studies required to resolve the recovery mode issue are described.
Aerothermodynamic environment of a Titan aerocapture vehicle
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Chow, H.
1982-01-01
The extent of convective and radiative heating for a Titan aerocapture vehicle is investigated. The flow in the shock layer is assumed to be axisymmetric, steady, viscous, and compressible. It is further assumed that the gas is in chemical and local thermodynamic equilibrium and tangent slab approximation is used for the radiative transport. The effect of the slip boundary conditions on the body surface and at the shock wave are included in the analysis of high-altitude entry conditions. The implicit finite difference techniques is used to solve the viscous shock-layer equations for a 45 degree sphere cone at zero angle of attack. Different compositions for the Titan atmosphere are assumed, and results are obtained for the entry conditions specified by the Jet Propulsion Laboratory.
Lightweight Multifunctional Planetary Probe for Extreme Environment Exploration and Locomotion
NASA Technical Reports Server (NTRS)
Bayandor, Javid (Principal Investigator); Schroeder, Kevin; Samareh, Jamshid
2017-01-01
The demand to explore new worlds requires the development of advanced technologies that enable landed science on uncertain terrains or in hard to reach locations. As a result, contemporary Entry, Descent, Landing, (EDL) and additional locomotion (EDLL) profiles are becoming increasingly more complex, with the introduction of lifting/guided entries, hazard avoidance on descent, and a plethora of landing techniques including airbags and the skycrane maneuver. The inclusion of each of these subsystems into a mission profile is associated with a substantial mass penalty. This report explores the new all-in-one entry vehicle concept, TANDEM, a new combined EDLL concept, and compares it to the current state of the art EDL systems. The explored system is lightweight and collapsible and provides the capacity for lifting/guided entry, guided descent, hazard avoidance, omnidirectional impact protection and surface locomotion without the aid of any additional subsystems. This Phase I study explored: 1. The capabilities and feasibility of the TANDEM concept as an EDLL vehicle. 2. Extensive impact analysis to ensure mission success in unfavorable landing conditions, and safe landing in Tessera regions. 3. Development of a detailed design for a conceptual mission to Venus. As a result of our work it was shown that: 1. TANDEM provides additional benefits over the Adaptive, Deployable Entry Placement Technology (ADEPT) including guided descent and surface locomotion, while reducing the mass by 38% compared to the ADEPT-VITaL mission. 2. Demonstrated that the design of tensegrity structures, and TANDEM specifically, grows linearly with an increase in velocity, which was previously unknown. 3. Investigation of surface impact revealed a promising results that suggest a properly configured TANDEM vehicle can safely land and preform science in the Tessera regions, which was previously labeled by the Decadal Survey as, largely inaccessible despite its high scientific interest. This work has already resulted in a NASA TM and will be submitted to the Journal of Spacecraft and Rockets.
Large-Aperture Membrane Active Phased-Array Antennas
NASA Technical Reports Server (NTRS)
Karasik, Boris; McGrath, William; Leduc, Henry
2009-01-01
Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for this article, an 8 16 passive array (not including T/R modules) and a 2 4 active array (including T/R modules) had been demonstrated, and it was planned to fabricate and test larger arrays.
NASA Technical Reports Server (NTRS)
Millman, Daniel R.
2017-01-01
Air Data Systems (FADS) are becoming more prevalent on re-entry vehicles, as evi- denced by the Mars Science Laboratory and the Orion Multipurpose Crew Vehicle. A FADS consists of flush-mounted pressure transducers located at various locations on the fore-body of a flight vehicle or the heat shield of a re-entry capsule. A pressure model converts the pressure readings into useful air data quantities. Two algorithms for converting pressure readings to air data have become predominant- the iterative Least Squares State Estimator (LSSE) and the Triples Algorithm. What follows herein is a new algorithm that takes advantage of the best features of both the Triples Algorithm and the LSSE. This approach employs the potential flow model and strategic differencing of the Triples Algorithm to obtain the defective flight angles; however, the requirements on port placement are far less restrictive, allowing for configurations that are considered optimal for a FADS.
1961-01-01
This is a comparison illustration of the Redstone, Jupiter-C, and Mercury Redstone launch vehicles. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile. Originally developed as a nose cone re-entry test vehicle for the Jupiter intermediate range ballistic missile, the Jupiter-C was a modification of the Redstone missile and successfully launched the first American Satellite, Explorer-1, in orbit on January 31, 1958. The Mercury Redstone lifted off carrying the first American, astronaut Alan Shepard, in his Mercury spacecraft Freedom 7, on May 5, 1961.
Generic aerocapture atmospheric entry study, volume 1
NASA Technical Reports Server (NTRS)
1980-01-01
An atmospheric entry study to fine a generic aerocapture vehicle capable of missions to Mars, Saturn, and Uranus is reported. A single external geometry was developed through atmospheric entry simulations. Aerocapture is a system design concept which uses an aerodynamically controlled atmospheric entry to provide the necessary velocity depletion to capture payloads into planetary orbit. Design concepts are presented which provide the control accuracy required while giving thermal protection for the mission payload. The system design concepts consist of the following elements: (1) an extendable biconic aerodynamic configuration with lift to drag ratio between 1.0 and 2.0; (2) roll control system concepts to control aerodynamic lift and disturbance torques; (3) aeroshell design concepts capable of meeting dynamic pressure loads during aerocapture; and (4) entry thermal protection system design concepts to meet thermodynamic loads during aerocapture.
NASA Technical Reports Server (NTRS)
Smith, Kelly M.
2016-01-01
NASA is scheduled to launch the Orion spacecraft atop the Space Launch System on Exploration Mission 1 in late 2018. When Orion returns from its lunar sortie, it will encounter Earth's atmosphere with speeds in excess of 11 kilometers per second, and Orion will attempt its first precision-guided skip entry. A suite of flight software algorithms collectively called the Entry Monitor has been developed in order to enhance crew situational awareness and enable high levels of onboard autonomy. The Entry Monitor determines the vehicle capability footprint in real-time, provides manual piloting cues, evaluates landing target feasibility, predicts the ballistic instantaneous impact point, and provides intelligent recommendations for alternative landing sites if the primary landing site is not achievable. The primary engineering challenges of the Entry Monitor is in the algorithmic implementation in making a highly reliable, efficient set of algorithms suitable for onboard applications.
Maraia Capsule Flight Testing and Results for Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Sostaric, Ronald R.; Strahan, Alan L.
2016-01-01
The Maraia concept is a modest size (150 lb., 30" diameter) capsule that has been proposed as an ISS based, mostly autonomous earth return capability to function either as an Entry, Descent, and Landing (EDL) technology test platform or as a small on-demand sample return vehicle. A flight test program has been completed including high altitude balloon testing of the proposed capsule shape, with the purpose of investigating aerodynamics and stability during the latter portion of the entry flight regime, along with demonstrating a potential recovery system. This paper includes description, objectives, and results from the test program.
Sliding mode control for Mars entry based on extended state observer
NASA Astrophysics Data System (ADS)
Lu, Kunfeng; Xia, Yuanqing; Shen, Ganghui; Yu, Chunmei; Zhou, Liuyu; Zhang, Lijun
2017-11-01
This paper addresses high-precision Mars entry guidance and control approach via sliding mode control (SMC) and Extended State Observer (ESO). First, differential flatness (DF) approach is applied to the dynamic equations of the entry vehicle to represent the state variables more conveniently. Then, the presented SMC law can guarantee the property of finite-time convergence of tracking error, which requires no information on high uncertainties that are estimated by ESO, and the rigorous proof of tracking error convergence is given. Finally, Monte Carlo simulation results are presented to demonstrate the effectiveness of the suggested approach.
NASA Astrophysics Data System (ADS)
Soppa, Uwe; Görlach, Thomas; Roenneke, Axel Justus
2002-01-01
As a solution to meet a safety requirement to the future full scale space station infrastructure, the Crew Return/Rescue Vehicle (CRV) was supposed to supply the return capability for the complete ISS crew of 7 astronauts back to earth in case of an emergency. A prototype of such a vehicle named X-38 has been developed and built by NASA with European partnership (ESA, DLR). An series of aerial demonstrators (V13x) for tests of the subsonic TAEM phase and the parafoil descent and landing system has been flown by NASA from 1998 to 2001. A full scale unmanned space flight demonstrator (V201) has been built at JSC Houston and although the project has been stopped for budgetary reasons in 2002, it will hopefully still be flown in near future. The X-38 is a lifting body with hypersonic lift to drag ratio about 0.9. In comparison to the Space Shuttle Orbiter, this design provides less aerodynamic maneuvrability and a different actuator layout (divided body flap and winglet rudders instead as combined aileron and elevon in addition to thrust- ers for the early re-entry phase). Hence, the guidance and control concepts used onboard the shuttle orbiter had to be adapted and further developed for the application on the new vehicle. In the frame of the European share of the X-38 project and also of the German TETRA (TEchnol- ogy for future space TRAnsportation) project different GNC related contributions have been made: First, the primary flight control software for the autonomous guidance and control of the X-38 para- foil descent and landing phase has been developed, integrated and successfully flown on multiple vehicles and missions during the aerial drop test campaign conducted by NASA. Second, a real time X-38 vehicle simulator was provided to NASA which has also been used for the validation of a European re-entry guidance and control software (see below). According to the NASA verification and validation plan this simulator is supposed to be used as an independent vali- dation tool for the X-38 re-entry simulation and onboard software. Third, alternate guidance and control algorithms for the re-entry flight phase of X-38, using onboard flight path optimization for the guidance task and dynamic inversion control methods for attitude control have been developed. The resulting alternate guidance and control software shall be flown as a flight experiment onboard the V201 spaceflight test vehicle. Fourth, a fault tolerant computer similar to the one used onboard the ISS is planned to be integrated into the V201 spaceflight test vehicle as a host of the re-entry GNC software mentioned above. This paper will summarize the development and test phases of European guidance and control soft- ware and avionics elements for the different phases of the X-38 mission. Flight test results from the X38 aerial drop test campaigns will be presented and discussed. In addition, the flight experiment of the fault tolerant computer will be described.
1986-01-01
Columbia, which opened the era of the Space Transportation System with four orbital flight tests, is featured in re-entry in the emblem designed by the STS-61C crew representing the seven team members who manned the vehicle for its seventh STS mission. Gold lettering against black background honors the astronaut crewmembers on the delta pattern surrounding colorful re-entry shock waves, and the payload specialists are honored similarly below the sphere
STS-52 backup Payload Specialist Tryggvason during JSC bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, backup Payload Specialist Bjarni V. Tryggvason, wearing launch and entry suit (LES), checks his launch and entry helmet (LEH) fitting prior to participating in emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The WETF's 25-ft deep pool will serve as the ocean during this water landing simulation. Tryggvason represents the Canadian Space Agency (CSA).
STS-46 Pilot Allen and Payload Specialist Malerba in life rafts at JSC's WEFT
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, Pilot Andrew M. Allen (foreground) and Italian Payload Specialist Franco Malerba, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), float in one-person life rafts during a launch emergency egress (bailout) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. A SCUBA-equipped diver assists in the training activity.
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil
2010-01-01
Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver - flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.
Guidelines for Evaluating the Thermal Environment of Enclosed Spaces
2009-09-01
space. Three studies of concrete tanks and metal containers, the High Mobility Multipurpose Wheeled Vehicle; and the Bradley Fighting Vehicle, are...24 13 The initial CST-WMD training site was a concrete casting site. The teams practiced entry and evacuation...Environmental Medicine (USARIEM) studies. Examples are presented from three case studies: one that involved monitoring large concrete septic tanks
2006-09-26
KENNEDY SPACE CENTER, FLA. - Inside the Operations and Checkout Building, Center Director Jim Kennedy (second from right) joins workers and officials after the ceremony that reactivated the entry into this crew exploration vehicle (CEV) environment. During the rest of the decade, KSC will transition from launching space shuttles to launching new vehicles in NASA’s Vision For Space Exploration. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Sakurai, K.; Bindu, V. Hima; Niinomi, S.; Ota, M.; Maeno, K.
2011-05-01
In the development of aerospace technology the design of space vehicles is important in phase of reentry flight. The space vehicles reenter into the atmosphere with range of 6-8 km/s. The non-equilibrium flow with radiative heating from strongly shocked air ahead of the vehicles plays an important role on the heat flux to the wall surface structure as well as convective heating. The experimental data for re-entry analyses, however, have remained in classical level. Recent development of optical instruments enables us to have novel approach of diagnostics to the re-entry problems. We employ the CARS (Coherent Anti-Stokes Raman Spectroscopy) method for measurement of real gas temperatures of N2 with radiation of the strong shock wave. The CARS signal can be acquired even in the strong radiation area behind the strong shock waves. In addition, we try to use the CCD camera to obtain 2D images of total radiation simultaneously. The strong shock wave in front of the reentering space vehicles is experimentally realigned by free-piston, double-diaphragm shock tube with low density test gas.
Thermal Response Modeling System for a Mars Sample Return Vehicle
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Miles, Frank S.; Arnold, Jim (Technical Monitor)
2001-01-01
A multi-dimensional, coupled thermal response modeling system for analysis of hypersonic entry vehicles is presented. The system consists of a high fidelity Navier-Stokes equation solver (GIANTS), a two-dimensional implicit thermal response, pyrolysis and ablation program (TITAN), and a commercial finite-element thermal and mechanical analysis code (MARC). The simulations performed by this integrated system include hypersonic flowfield, fluid and solid interaction, ablation, shape change, pyrolysis gas eneration and flow, and thermal response of heatshield and structure. The thermal response of the heatshield is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal response of the entire vehicle can be obtained simultaneously. Representative computations for a flat-faced arc-jet test model and a proposed Mars sample return capsule are presented and discussed.
Thermal Response Modeling System for a Mars Sample Return Vehicle
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Milos, F. S.
2002-01-01
A multi-dimensional, coupled thermal response modeling system for analysis of hypersonic entry vehicles is presented. The system consists of a high fidelity Navier-Stokes equation solver (GIANTS), a two-dimensional implicit thermal response, pyrolysis and ablation program (TITAN), and a commercial finite element thermal and mechanical analysis code (MARC). The simulations performed by this integrated system include hypersonic flowfield, fluid and solid interaction, ablation, shape change, pyrolysis gas generation and flow, and thermal response of heatshield and structure. The thermal response of the heatshield is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal response of the entire vehicle can be obtained simultaneously. Representative computations for a flat-faced arc-jet test model and a proposed Mars sample return capsule are presented and discussed.
System Level Aerothermal Testing for the Adaptive Deployable Entry and Placement Technology (ADEPT)
NASA Technical Reports Server (NTRS)
Cassell, Alan; Gorbunov, Sergey; Yount, Bryan; Prabhu, Dinesh; de Jong, Maxim; Boghozian, Tane; Hui, Frank; Chen, Y.-K.; Kruger, Carl; Poteet, Carl;
2016-01-01
The Adaptive Deployable Entry and Placement Technology (ADEPT), a mechanically deployable entry vehicle technology, has been under development at NASA since 2011. As part of the technical maturation of ADEPT, designs capable of delivering small payloads (10 kg) are being considered to rapidly mature sub 1 m deployed diameter designs. The unique capability of ADEPT for small payloads comes from its ability to stow within a slender volume and deploy to achieve a mass efficient drag surface with a high heat rate capability. The low ballistic coefficient results in entry heating and mechanical loads that can be met by a revolutionary three-dimensionally woven carbon fabric supported by a deployable skeleton structure. This carbon fabric has test proven capability as both primary structure and payload thermal protection system. In order to rapidly advance ADEPTs technical maturation, the project is developing test methods that enable thermostructural design requirement verification of ADEPT designs at the system level using ground test facilities. Results from these tests are also relevant to larger class missions and help us define areas of focused component level testing in order to mature material and thermal response design codes. The ability to ground test sub 1 m diameter ADEPT configurations at or near full-scale provides significant value to the rapid maturation of this class of deployable entry vehicles. This paper will summarize arc jet test results, highlight design challenges, provide a summary of lessons learned and discuss future test approaches based upon this methodology.
Preliminary Study Using Forward Reaction Control System Jets During Space Shuttle Entry
NASA Technical Reports Server (NTRS)
Restrepo, Carolina; Valasek, John
2006-01-01
Failure or degradation of the flight control system, or hull damage, can lead to loss of vehicle control during entry. Possible failure scenarios are debris impact and wing damage that could result in a large aerodynamic asymmetry which cannot be trimmed out without additional yaw control. Currently the space shuttle uses aerodynamic control surfaces and Reaction Control System jets to control attitude. The forward jets are used for orbital maneuvering only, while the aft jets are used for yaw control during entry. This paper develops a controller for using the forward reaction control system jets as an additional control during entry, and assesses its value and feasibility during failure situations. Forward-aft jet blending logic is created, and implemented on a simplified model of the space shuttle entry flight control system. The model is validated and verified on the nonlinear, six degree-of-freedom Shuttle Engineering Simulator. A rudimentary human factors study was undertaken using the forward cockpit simulator at Johnson Space Center, to assess flying qualities of the new system and pilot workload. Results presented in the paper show that the combination of forward and aft jets provides useful additional yaw control, in addition to potential fuel savings and the ability to balance the use of the fuel in the forward and aft tanks to meet availability constraints of both forward and aft fuel tanks. Piloted simulation studies indicated that using both sets of jets while flying a damaged space shuttle reduces pilot workload, and makes the vehicle more responsive.
Mars 2020 Entry, Descent and Landing Instrumentation (MEDLI2)
NASA Technical Reports Server (NTRS)
Bose, Deepak; Wright, Henry; White, Todd; Schoenenberger, Mark; Santos, Jose; Karlgaard, Chris; Kuhl, Chris; Oishi, TOmo; Trombetta, Dominic
2016-01-01
This paper will introduce Mars Entry Descent and Landing Instrumentation (MEDLI2) on NASA's Mars2020 mission. Mars2020 is a flagship NASA mission with science and technology objectives to help answer questions about possibility of life on Mars as well as to demonstrate technologies for future human expedition. Mars2020 is scheduled for launch in 2020. MEDLI2 is a suite of instruments embedded in the heatshield and backshell thermal protection systems of Mars2020 entry vehicle. The objectives of MEDLI2 are to gather critical aerodynamics, aerothermodynamics and TPS performance data during EDL phase of the mission. MEDLI2 builds up the success of MEDLI flight instrumentation on Mars Science Laboratory mission in 2012. MEDLI instrumentation suite measured surface pressure and TPS temperature on the heatshield during MSL entry into Mars. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has highlighted extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. MEDLI2 expands the scope of instrumentation by focusing on quantities of interest not addressed in MEDLI suite. The type the sensors are expanded and their layout on the TPS modified to meet these new objectives. The paper will provide key motivation and governing requirements that drive the choice and the implementation of the new sensor suite. The implementation considerations of sensor selection, qualification, and demonstration of minimal risk to the host mission will be described. The additional challenges associated with mechanical accommodation, electrical impact, data storage and retrieval for MEDLI2 system, which extends sensors to backshell will also be described.
Batchu, S; Narasimhachar, H; Mayeda, J C; Hall, T; Lopez, J; Nguyen, T; Banister, R E; Lie, D Y C
2017-07-01
Doppler-based non-contact vital signs (NCVS) sensors can monitor heart rates, respiration rates, and motions of patients without physically touching them. We have developed a novel single-board Doppler-based phased-array antenna NCVS biosensor system that can perform robust overnight continuous NCVS monitoring with intelligent automatic subject tracking and optimal beam steering algorithms. Our NCVS sensor achieved overnight continuous vital signs monitoring with an impressive heart-rate monitoring accuracy of over 94% (i.e., within ±5 Beats-Per-Minute vs. a reference sensor), analyzed from over 400,000 data points collected during each overnight monitoring period of ~ 6 hours at a distance of 1.75 meters. The data suggests our intelligent phased-array NCVS sensor can be very attractive for continuous monitoring of low-acuity patients.
Phased-array of microcoils allows MR microscopy of ex vivo human skin samples at 9.4 T.
Göbel, K; Gruschke, O G; Leupold, J; Kern, J S; Has, C; Bruckner-Tuderman, L; Hennig, J; von Elverfeldt, D; Baxan, N; Korvink, J G
2015-02-01
The aim of this study was to demonstrate the feasibility of a custom-made phased-array microcoil within a 400 MHz animal system for the morphological characterization of human skin tissue in correlation with histopathology. A dedicated 7-channel microcoil-based MR detector arranged in a phased-array geometry was developed to combine the advantages of both a large field of view and a high signal-to-noise ratio. Standard gradient echo sequences were adapted for the characterization of skin morphology ex vivo. In this study, the feasibility of using this type of microdetector, combined with specially manufactured sample holders, to achieve high-resolution MR images of fresh and formalin-fixed, normal and hidradenitis suppurativa diseased skin was successfully demonstrated. The setup presented in this work allows reliable acquisitions of high-resolution images with in-plane resolution up to 25 × 25 μm², and 100 μm in the orthogonal direction, thereby allowing the differentiation of typical layers of the skin, sebaceous glands and hair follicle. This study demonstrates that MR microscopy on skin biopsies can be applied at low cost on a standard animal MR imaging system. The successful imaging of different skin structures ex vivo is a prerequisite for non-invasive, in vivo application of skin MR microscopy for accurate complementary disease diagnosis in dermatology. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A New 50 MHz Phased-Array Radar on Pohnpei: A Fresh Perspective on Equatorial Plasma Bubbles
NASA Astrophysics Data System (ADS)
Tsunoda, R. T.
2014-12-01
A new, phased-array antenna-steering capability has recently been added to an existing 50-MHz radar on Pohnpei, Federated States of Micronesia, in the central Pacific region. This radar, which we refer to as PAR-50, is capable of scanning in the vertical east-west plane, ±60° about the zenith. The alignment in the magnetic east-west direction allows detection of radar backscatter from small-scale irregularities that develop in the equatorial ionosphere, including those associated with equatorial plasma bubbles (EPBs). The coverage, about ±800 km in zonal distance, at an altitude of 500 km, is essentially identical to that provided by ALTAIR, a fully-steerable incoherent-scatter radar, which has been used in a number of studies of EPBs. Unlike ALTAIR, which has only been operated for several hours on a handful of selected nights, the PAR-50 has already been operated continuously, while performing repeated scans, since April 2014. In this presentation, we describe the PAR-50, then, compare it to ALTAIR and the Equatorial Atmospheric Radar (EAR); the latter is the only other phased-array system in use for equatorial studies. We then assess what we have learned about EPBs from backscatter radar measurements, and discuss how the PAR-50 can provide a fresh perspective to our understanding. Clearly, the ability to sort out the space-time ambiguities in EPB development from sequences of spatial maps of EPBs is crucial to our understanding of how EPBs develop.
NASA Technical Reports Server (NTRS)
Cooper, David M.; Arnold, James O.
1991-01-01
Aerobraking is one of the largest contributors to making both lunar and Mars missions affordable. The use of aerobraking/aeroassist over all propulsive approaches saves as much as 60 percent of the initial mass required in low earth orbit (LEO); thus, the number and size of earth to orbit launch vehicles is reduced. Lunar transfer vehicles (LTV), which will be used to transport personnel and materials from LEO to lunar outpost, will aerobrake into earth's atmosphere at approximately 11 km/sec on return from the lunar surface. Current plans for both manned and robotic missions to Mars use aerocapture during arrival at Mars and at return to Earth. At Mars, the entry velocities will range from about 6 to 9.5 km/sec, and at Earth the return velocity will be about 12.5 to 14 km/sec. These entry velocities depend on trajectories, flight dates, and mission scenarios and bound the range of velocities required for the current studies. In order to successfully design aerobrakes to withstand the aerodynamic forces and heating associated with these entry velocities, as well as to make them efficient, several critical technologies must be developed. These are vehicle concepts and configurations, aerothermodynamics, thermal protection system materials, and guidance, navigation, and control systems. The status of each of these technologies are described, and what must be accomplished in each area to meet the requirements of the Space Exploration Initiative is outlined.
Hypersonic vehicle control law development using H(infinity) and micron-synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.
1993-01-01
Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.
Flight-Path Characteristics for Decelerating From Supercircular Speed
NASA Technical Reports Server (NTRS)
Luidens, Roger W.
1961-01-01
Characteristics of the following six flight paths for decelerating from a supercircular speed are developed in closed form: constant angle of attack, constant net acceleration, constant altitude" constant free-stream Reynolds number, and "modulated roll." The vehicles were required to remain in or near the atmosphere, and to stay within the aerodynamic capabilities of a vehicle with a maximum lift-drag ratio of 1.0 and within a maximum net acceleration G of 10 g's. The local Reynolds number for all the flight paths for a vehicle with a gross weight of 10,000 pounds and a 600 swept wing was found to be about 0.7 x 10(exp 6). With the assumption of a laminar boundary layer, the heating of the vehicle is studied as a function of type of flight path, initial G load, and initial velocity. The following heating parameters were considered: the distribution of the heating rate over the vehicle, the distribution of the heat per square foot over the vehicle, and the total heat input to the vehicle. The constant G load path at limiting G was found to give the lowest total heat input for a given initial velocity. For a vehicle with a maximum lift-drag ratio of 1.0 and a flight path with a maximum G of 10 g's, entry velocities of twice circular appear thermo- dynamically feasible, and entries at velocities of 2.8 times circular are aerodynamically possible. The predominant heating (about 85 percent) occurs at the leading edge of the vehicle. The total ablated weight for a 10,000-pound-gross-weight vehicle decelerating from an initial velocity of twice circular velocity is estimated to be 5 percent of gross weight. Modifying the constant G load flight path by a constant-angle-of-attack segment through a flight- to circular-velocity ratio of 1.0 gives essentially a "point landing" capability but also results in an increased total heat input to the vehicle.
Trajectory Control for Vehicles Entering the Earth's Atmosphere at Small Flight Path Angles
NASA Technical Reports Server (NTRS)
Eggleston, John M.
1959-01-01
Methods of controlling the trajectories of high-drag-low-lift vehicles entering the earth's atmosphere at angles of attack near 90 deg and at initial entry angles up to 3 deg are studied. The trajectories are calculated for vehicles whose angle of attack can be held constant at some specified value or can be perfectly controlled as a function of some measured quantity along the trajectory. The results might be applied in the design of automatic control systems or in the design of instruments which will give the human pilot sufficient information to control his trajectory properly during an atmospheric entry. Trajectory data are compared on the basis of the deceleration, range, angle of attack, and, in some cases, the rate of descent. The aerodynamic heat-transfer rate and skin temperature of a vehicle with a simple heat-sink type of structure are calculated for trajectories made with several types of control functions. For the range of entry angles considered, it is found that the angle of attack can be controlled to restrict the deceleration down to an arbitrarily chosen level of 3g. All the control functions tried are successful in reducing the maximum deceleration to the desired level. However, in order to avoid a tendency for the deceleration to reach an initial peak decrease, and then reach a second peak, some anticipation is required in the control function so that the change in angle of attack will lead the change in deceleration. When the angle of attack is controlled in the aforementioned manner, the maximum rate of aerodynamic heat transfer to the skin is reduced, the maximum skin temperature of the vehicle is virtually unaffected, and the total heat absorbed is slightly increased. The increase in total heat can be minimized, however, by maintaining the maximum desired deceleration for as much of the trajectory as possible. From an initial angle of attack of 90 deg, the angle-of-attack requirements necessary to maintain constant values of deceleration (1g to 4g) and constant values of rate of descent (450 to 1,130 ft/sec) as long as it is aerodynamically practical are calculated and are found to be moderate in both magnitude and rate. Entry trajectories made with these types of control are presented and discussed.
NASA Technical Reports Server (NTRS)
Bose, Deepak; White, Todd; Schoenenberger, Mark; Karlgaard, Chris; Wright, Henry
2015-01-01
NASAs exploration and technology roadmaps call for capability advancements in Mars entry, descent, and landing (EDL) systems to enable increased landed mass, a higher landing precision, and a wider planetary access. It is also recognized that these ambitious EDL performance goals must be met while maintaining a low mission risk in order to pave the way for future human missions. As NASA is engaged in developing new EDL systems and technologies via testing at Earth, instrumentation of existing Mars missions is providing valuable engineering data for performance improvement, risk reduction, and an improved definition of entry loads and environment. The most notable recent example is the Mars Entry, Descent and Landing Instrument (MEDLI) suite hosted by Mars Science Laboratory for its entry in Aug 2012. The MEDLI suite provided a comprehensive dataset for Mars entry aerodynamics, aerothermodynamics and thermal protection system (TPS) performance. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, and transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has demonstrated extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. The presentation will introduce a follow-on MEDLI instrumentation suite (called MEDLI2) that is being developed for Mars-2020 mission. MEDLI2 has an enhanced scope that includes backshell instrumentation, a wider forebody coverage, and instruments that specifically target supersonic aerodynamics. Similar to MEDLI, MEDLI2 uses thermal plugs with embedded thermocouples and ports through the TPS to measure surface pressure. MEDLI2, however, also includes heat flux sensors in the backshell and a low range pressure transducer to measure afterbody pressure.
2011 Mars Science Laboratory Launch Period Design
NASA Technical Reports Server (NTRS)
Abilleira, Fernando
2011-01-01
The Mars Science Laboratory mission, set to launch in the fall of 2011, has the primary objective of landing the most advanced rover to date to the surface of Mars to assess whether Mars ever was, or still is today, able to sustain carbon-based life. Arriving at Mars in August 2012, the Mars Science Laboratory will also demonstrate the ability to deliver large payloads to the surface of Mars, land more accurately (than previous missions) in a 20-km by 25-km ellipse, and traverse up to 20 km. Following guided entry and parachute deployment, the spacecraft will descend on a parachute and a Powered Descent Vehicle to safely land the rover on the surface of Mars. The launch/arrival strategy is driven by several key requirements, which include: launch vehicle capability, atmosphere-relative entry speed, communications coverage during Entry, Descent and Landing, latitude accessibility, and dust storm season avoidance. Notable among these requirements is maintaining a telecommunications link from atmospheric entry to landing plus one minute, via a Direct-To-Earth X-band link and via orbital assets using an UHF link, to ensure that any failure during Entry, Descent and Landing can be reconstructed in case of a mission anomaly. Due to concerns related to the lifetime of the relay orbiters, two additional launch/arrival strategies have been developed to improve Entry, Descent, and Landing communications. This paper discusses the final launch/arrival strategy selected prior to the launch period down-selection that is scheduled to occur in August 2011. It is also important to note that this paper is an update to Ref. 1 in that it includes two new Type 1 launch periods and drops the Type 2 launch period that is no longer considered.
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Powell, R. W.
1979-01-01
Aft center-of-gravity locations dictated by the large number of rocket engines required has been a continuing problem of single-stage-to-orbit vehicles. Recent work at Langley has demonstrated that these aft center-of-gravity problems become more pronounced for the proposed heavy-lift mission, creating some unique design problems for both the SSTO and staged vehicle systems. During the course of this study, an effort was made to bring together automated vehicle design, wind-tunnel tests, and flight control analyses to assess the impact of longitudinal and lateral-directional instability, and control philosophy on entry vehicle design technology.
Subsonic Static and Dynamic Aerodynamics of Blunt Entry Vehicles
NASA Technical Reports Server (NTRS)
Mitcheltree, Robert A.; Fremaux, Charles M.; Yates, Leslie A.
1999-01-01
The incompressible subsonic aerodynamics of four entry-vehicle shapes with variable c.g. locations are examined in the Langley 20-Foot Vertical Spin Tunnel. The shapes examined are spherically-blunted cones with half-cone angles of 30, 45, and 60 deg. The nose bluntness varies between 0.25 and 0.5 times the base diameter. The Reynolds number based on model diameter for these tests is near 500,000. Quantitative data on attitude and location are collected using a video-based data acquisition system and reduced with a six deg-of-freedom inverse method. All of the shapes examined suffered from strong dynamic instabilities which could produced limit cycles with sufficient amplitudes to overcome static stability of the configuration. Increasing cone half-angle or nose bluntness increases drag but decreases static and dynamic stability.
NASA Technical Reports Server (NTRS)
Brown, C. A., Jr.; Campbell, J. F.; Tudor, D. H.
1971-01-01
An investigation was conducted to obtain flow properties in the wake of the Viking '75 entry vehicle at Mach numbers from 1.60 to 3.95 and at angles of attack of 0 deg and 5 deg. The wake flow properties were calculated from total and static pressures measured with a pressure rake at longitudinal stations varying from 1.0 to 8.39 body diameters and lateral stations varying from -0.42 to 3.0 body diameters. These measurements showed a a consistent trend throughout the range of Mach numbers and longitudinal distances and an increase in dynamic pressure with increasing downstream position.
NASA Technical Reports Server (NTRS)
Mizukaki, Toshiharu; Borg, Stephen E.; Danehy, Paul M.; Murman, Scott M.
2014-01-01
This paper presents the results of visualization of separated flow around a generic entry capsule that resembles the Apollo Command Module (CM) and the Orion Multi-Purpose Crew Vehicle (MPCV). The model was tested at flow speeds up to Mach 0.4 at a single angle of attack of 28 degrees. For manned spacecraft using capsule-shaped vehicles, certain flight operations such as emergency abort maneuvers soon after launch and flight just prior to parachute deployment during the final stages of entry, the command module may fly at low Mach number. Under these flow conditions, the separated flow generated from the heat-shield surface on both windward and leeward sides of the capsule dominates the wake flow downstream of the capsule. In this paper, flow visualization of the separated flow was conducted using the background-oriented schlieren (BOS) method, which has the capability of visualizing significantly separated wake flows without the particle seeding required by other techniques. Experimental results herein show that BOS has detection capability of density changes on the order of 10(sup-5).
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Braun, Robert D.; Russell, Ryan P.; Clark, Ian G.; Striepe, Scott A.
2012-01-01
Flight data from an entry, descent, and landing (EDL) sequence can be used to reconstruct the vehicle's trajectory, aerodynamic coefficients and the atmospheric profile experienced by the vehicle. Past Mars missions have contained instruments that do not provide direct measurement of the freestream atmospheric conditions. Thus, the uncertainties in the atmospheric reconstruction and the aerodynamic database knowledge could not be separated. The upcoming Mars Science Laboratory (MSL) will take measurements of the pressure distribution on the aeroshell forebody during entry and will allow freestream atmospheric conditions to be partially observable. This data provides a mean to separate atmospheric and aerodynamic uncertainties and is part of the MSL EDL Instrumentation (MEDLI) project. Methods to estimate the flight performance statistically using on-board measurements are demonstrated here through the use of simulated Mars data. Different statistical estimators are used to demonstrate which estimator best quantifies the uncertainties in the flight parameters. The techniques demonstrated herein are planned for application to the MSL flight dataset after the spacecraft lands on Mars in August 2012.
Instrumentation Of C-Sic Tiles To Quantify Their Mechanical Behavior During Atmospheric Re-Entry
NASA Astrophysics Data System (ADS)
Pereira, C.; Romano, R.; Walz, S.; Schwarz, R.; Fremont, E.; Girard, F.
2011-05-01
The windward surfaces of re-entry vehicles are exposed to large thermal gradients and pressure loadings which result in changes to the surface topology and high transient loading of fixation elements. In particular positive steps result in local aero-thermodynamic effects with increased thermal loading of the adjacent tiles. An objective of the in-flight instrumentation of IXV is to document the aerodynamic and thermal loads on the tiles including deflection and the evolution of steps along the vehicle. To this end a combination of high temperature strain gauges and thermocouples will be placed at the metallic stand-offs behind the highest loaded tiles and on one half of the nose cap attachments. The deflection at the edges of the tiles and the steps will be measured using linear variable differential sensors (L VDT). This paper presents background information, the rationale for the chosen measurement points, the design evolution and the validation of the instrumentation both in terms of functionality and ability to withstand the launch and re-entry environment of the IXV
Statistical Characteristics of Wrong-Way Driving Crashes on Illinois Freeways.
Zhou, Huaguo; Zhao, Jiguang; Pour-Rouholamin, Mahdi; Tobias, Priscilla A
2015-01-01
Driving the wrong way on freeways, namely wrong-way driving (WWD), has been found to be a major concern for more than 6 decades. The purpose of this study was to identify characteristics of this type of crash as well as to rank the locations/interchanges according to their vulnerability to WWD entries. The WWD crash data on Illinois freeways were statistically analyzed for a 6-year time period (2004 to 2009) from 3 aspects: crash, vehicle, and person. The temporal distributions, geographical distributions, roadway characteristics, and crash locations were analyzed for WWD crashes. The driver demographic information, physical condition, and injury severity were analyzed for wrong-way drivers. The vehicle characteristics, vehicle operation, and collision results were analyzed for WWD vehicles. A method was brought about to identify wrong-way entry points that was then used to develop a relative-importance technique and rank different interchange types in terms of potential WWD incidents. The findings revealed that a large proportion of WWD crashes occurred during the weekend from midnight to 5 a.m. Approximately 80% of WWD crashes were located in urban areas and nearly 70% of wrong-way vehicles were passenger cars. Approximately 58% of wrong-way drivers were driving under the influence (DUI). Of those, nearly 50% were confirmed to be impaired by alcohol, about 4% were impaired by drugs, and more than 3% had been drinking. The analysis of interchange ranking found that compressed diamond interchanges, single point diamond interchanges (SPDIs), partial cloverleaf interchanges, and freeway feeders had the highest wrong-way crash rates (wrong-way crashes per 100 interchanges per year). The findings of this study call for more attention to WWD crashes from different aspects such as driver age group, time of day, day of week, and DUI drivers. Based on the analysis results of WWD distance, the study explained why a 5-mile radius of WWD crash location should be studied for WWD fatal crashes with unknown entry points.
STS-47 Pilot Brown on OV-105's flight deck ten minutes after SSME cutoff
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Pilot Curtis L. Brown, Jr, is photographed at Endeavour's, Orbiter Vehicle (OV) 105's, pilot station about ten minutes after space shuttle main engine (SSME) cutoff on launch day. Brown smiles from inside the launch and entry suit (LES) and launch and entry helmet (LEH). In the background are the flight mirror assembly silhouetted against forward window W5, control panels, and a checklist.
STS-49 crew in JSC's FB Shuttle Mission Simulator (SMS) during simulation
NASA Technical Reports Server (NTRS)
1992-01-01
STS-49 Endeavour, Orbiter Vehicle (OV) 105, crewmembers participate in a simulation in JSC's Fixed Base (FB) Shuttle Mission Simulator (SMS) located in the Mission Simulation and Training Facility Bldg 5. Wearing launch and entry suits (LESs) and launch and entry helmets (LEH) and seated on the FB-SMS middeck are (left to right) Mission Specialist (MS) Thomas D. Akers, MS Kathryn C. Thornton, and MS Pierre J. Thuot.
STS-52 Mission Specialist Veach, in LES/LEH, during JSC WETF bailout exercise
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Charles Lacy Veach, wearing launch and entry suit (LES) and launch and entry helmet (LEH), smiles as he observes emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Veach waits his turn to be dropped into the WETF's 25-ft deep pool which will simulate the ocean during of his water landing.
STS-52 Mission Specialist Veach in life raft during JSC bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Charles Lacy Veach, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. SCUBA-equipped divers look on. The bailout exercises utilize the WETF's 25-foot deep pool as the ocean for this water landing simulation.
Supersonic Retropropulsion Technology Development in NASA's Entry, Descent, and Landing Project
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Berry, Scott A.; Rhode, Matthew N.; Kelb, Bil; Korzun, Ashley; Dyakonov, Artem A.; Zarchi, Kerry A.; Schauerhamer, Daniel G.; Post, Ethan A.
2012-01-01
NASA's Entry, Descent, and Landing (EDL) space technology roadmap calls for new technologies to achieve human exploration of Mars in the coming decades [1]. One of those technologies, termed Supersonic Retropropulsion (SRP), involves initiation of propulsive deceleration at supersonic Mach numbers. The potential benefits afforded by SRP to improve payload mass and landing precision make the technology attractive for future EDL missions. NASA's EDL project spent two years advancing the technological maturity of SRP for Mars exploration [2-15]. This paper summarizes the technical accomplishments from the project and highlights challenges and recommendations for future SRP technology development programs. These challenges include: developing sufficiently large SRP engines for use on human-scale entry systems; testing and computationally modelling complex and unsteady SRP fluid dynamics; understanding the effects of SRP on entry vehicle stability and controllability; and demonstrating sub-scale SRP entry systems in Earth's atmosphere.
Experimental Study Of SHEFEX II Hypersonic Aerodynamics And Canard Efficiency In H2K
NASA Astrophysics Data System (ADS)
Neeb, D.; Gulhan, A.
2011-05-01
One main objective of the DLR SHEFEX programme is to prove that sharp edged vehicles are capable of performing a re-entry into earth atmosphere by using a simple thermal protection system consisting of flat ceramic tiles. In comparison to blunt nose configurations like the Space shuttle, which are normally used for re-entry configurations, the SHEFEX TPS design is able to significantly reduce the costs and complexity of TPS structures and simultaneously increase the aerodynamic performance of the flight vehicle [1], [2]. To study its characteristics and perform several defined in-flight experiments during re-entry, the vehicle’s attitude will be controlled actively by canards [3]. In the framework of the SHEFEX II project an experimental investigation has been conducted in the hypersonic wind tunnel H2K to characterize the aerodynamic performance of the vehicle in hypersonic flow regime. The model has a modular design to enable the study of a variety of different influencing parameters. Its 4 circumferential canards have been made independently adjustable to account for the simulation of different manoeuvre conditions. To study the control behaviour of the vehicle and validate CFD data, a variation of canard deflections, angle of attack and angle of sideslip have been applied. Tests have been carried out at Mach 7 and 8.7 with a Reynolds number sensitivity study at the lower Mach number. The model was equipped with a six component internal balance to realize accurate coefficient measurements. The flow topology has been analyzed using Schlieren images. Beside general aerodynamic performance and canard efficiencies, flow phenomena like shock impingement on the canards could be determined by Schlieren images as well as by the derived coefficients.
Texting while driving: is speech-based text entry less risky than handheld text entry?
He, J; Chaparro, A; Nguyen, B; Burge, R J; Crandall, J; Chaparro, B; Ni, R; Cao, S
2014-11-01
Research indicates that using a cell phone to talk or text while maneuvering a vehicle impairs driving performance. However, few published studies directly compare the distracting effects of texting using a hands-free (i.e., speech-based interface) versus handheld cell phone, which is an important issue for legislation, automotive interface design and driving safety training. This study compared the effect of speech-based versus handheld text entries on simulated driving performance by asking participants to perform a car following task while controlling the duration of a secondary text-entry task. Results showed that both speech-based and handheld text entries impaired driving performance relative to the drive-only condition by causing more variation in speed and lane position. Handheld text entry also increased the brake response time and increased variation in headway distance. Text entry using a speech-based cell phone was less detrimental to driving performance than handheld text entry. Nevertheless, the speech-based text entry task still significantly impaired driving compared to the drive-only condition. These results suggest that speech-based text entry disrupts driving, but reduces the level of performance interference compared to text entry with a handheld device. In addition, the difference in the distraction effect caused by speech-based and handheld text entry is not simply due to the difference in task duration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fuel cells for vehicle applications in cars - bringing the future closer
NASA Astrophysics Data System (ADS)
Panik, Ferdinand
Among all alternative drive systems, the fuel cell electric propulsion system has the highest potential to compete with the internal combustion engine. For this reason, Daimler-Benz AG has entered into a co-operative alliance with Ballard Power Systems, with the objectives of bringing fuel cell vehicles to the market. Apart from the fuel cell itself, fuel cell vehicles require comprehensive system technology to provide fuel and air supply, cooling, energy management, electric and electronic functions. The system technology determines to a large extent the cost, weight, efficiency, performance and overall customer benefit of fuel cell vehicles. Hence, Daimler-Benz and Ballard are pooling their expertise in fuel cell system technology in a joint company, with the aim of bringing their fuel cell vehicular systems to the stage of maturity required for market entry as early as possible. Hydrogen-fuelled zero-emission fuel cell transit `buses' will be the first market segment addressed, with an emphasis on the North American and European markets. The first buses are already scheduled for delivery to customers in late 1997. Since a liquid fuel like methanol is easier to handle in passenger cars, fuel reforming technologies are developed and will shortly be demonstrated in a prototype, as well. The presentation will cover concepts of fuel cell vehicles with an emphasis on system technology, the related testing procedures and results as well as an outline of market entry strategies.
STS-44 crewmembers exit people mover after landing at EAFB, California
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 crewmembers, wearing launch and entry suits (LESs), exit people mover, a crew transport vehicle, after landing at Edwards Air Force Base (EAFB), California. Commander Frederick D. Gregory follows ground crew personnel down the stairway. Gregory leads Mission Specialist (MS) Mario Runco, Jr, and Payload Specialist Thomas J. Hennen. In the background, is Atlantis, Orbiter Vehicle (OV) 104, undergoing post flight servicing.
Evolved atmospheric entry corridor with safety factor
NASA Astrophysics Data System (ADS)
Liang, Zixuan; Ren, Zhang; Li, Qingdong
2018-02-01
Atmospheric entry corridors are established in previous research based on the equilibrium glide condition which assumes the flight-path angle to be zero. To get a better understanding of the highly constrained entry flight, an evolved entry corridor that considers the exact flight-path angle is developed in this study. Firstly, the conventional corridor in the altitude vs. velocity plane is extended into a three-dimensional one in the space of altitude, velocity, and flight-path angle. The three-dimensional corridor is generated by a series of constraint boxes. Then, based on a simple mapping method, an evolved two-dimensional entry corridor with safety factor is obtained. The safety factor is defined to describe the flexibility of the flight-path angle for a state within the corridor. Finally, the evolved entry corridor is simulated for the Space Shuttle and the Common Aero Vehicle (CAV) to demonstrate the effectiveness of the corridor generation approach. Compared with the conventional corridor, the evolved corridor is much wider and provides additional information. Therefore, the evolved corridor would benefit more to the entry trajectory design and analysis.
Orion Capsule Handling Qualities for Atmospheric Entry
NASA Technical Reports Server (NTRS)
Tigges, Michael A.; Bihari, Brian D.; Stephens, John-Paul; Vos, Gordon A.; Bilimoria, Karl D.; Mueller, Eric R.; Law, Howard G.; Johnson, Wyatt; Bailey, Randall E.; Jackson, Bruce
2011-01-01
Two piloted simulations were conducted at NASA's Johnson Space Center using the Cooper-Harper scale to study the handling qualities of the Orion Command Module capsule during atmospheric entry flight. The simulations were conducted using high fidelity 6-DOF simulators for Lunar Return Skip Entry and International Space Station Return Direct Entry flight using bank angle steering commands generated by either the Primary (PredGuid) or Backup (PLM) guidance algorithms. For both evaluations, manual control of bank angle began after descending through Entry Interface into the atmosphere until drogue chutes deployment. Pilots were able to use defined bank management and reversal criteria to accurately track the bank angle commands, and stay within flight performance metrics of landing accuracy, g-loads, and propellant consumption, suggesting that the pilotability of Orion under manual control is both achievable and provides adequate trajectory performance with acceptable levels of pilot effort. Another significant result of these analyses is the applicability of flying a complex entry task under high speed entry flight conditions relevant to the next generation Multi Purpose Crew Vehicle return from Mars and Near Earth Objects.
Advanced Key Technologies for Hot Control Surfaces in Space Re- Entry Vehicles
NASA Astrophysics Data System (ADS)
Dogigli, Michael; Pradier, Alain; Tumino, Giorgio
2002-01-01
(1)MAN Technologie AG, D- 86153 Augsburg, Germany (2,3) ESA, 2200 Noordwijk ZH, The Netherlands Current space re-entry vehicles (e.g. X-38 vehicle 201, the prototype of the International Space Station's Crew Return Vehicle (CRV)) require advanced control surfaces (so called body flaps). Such control surfaces allow the design of smaller and lighter vehicles as well as faster re-entries (compared to the US Shuttle). They are designed as light-weight structures that need no metallic parts, need no mass or volume consuming heat sinks to protect critical components (e.g. bearings) and that can be operated at temperatures of more than 1600 "C in air transferring high mechanical loads (dynamic 40 kN, static 70 kN) at the same time. Because there is a need for CRV and also for Reusable Launch Vehicles (RLV) in future, the European Space Agency (ESA) felt compelled to establish a "Future European Space Transportation and Investigation Program,, (FESTIP) and a "General Support for Technology Program,, (GSTP). One of the main goals of these programs was to develop and qualify key-technologies that are able to master the above mentioned challenging requirements for advanced hot control surfaces and that can be applied for different vehicles. In 1996 MAN Technologie has started the development of hot control surfaces for small lifting bodies in the national program "Heiü Strukturen,,. One of the main results of this program was that especially the following CMC (Ceramic Matrix Composite) key technologies need to be brought up to space flight standard: Complex CMC Structures, CMC Bearings, Metal-to-CMC Joining Technologies, CMC Fasteners, Oxidation Protection Systems and Static and Dynamic Seals. MAN Technologie was contracted by ESA to continue the development and qualification of these key technologies in the frame of the FESTIP and the GSTP program. Development and qualification have successfully been carried out. The key technologies have been applied for the X-38 vehicle 201 body flaps that have been designed, manufactured and qualified also by MAN Technologie in the frame of the national TETRA program ("Technologien fu zuku ftige Raum-Transportsysteme,,). A set of two body flaps will be delivered to NASA at the beginning of 2002 to be integrated into the vehicle 201. Based on development- and qualification tests, the paper describes main technical properties and features of these key technologies that at the same time represent the status of the art. In a qualification test (simultaneous application of thermal and mechanical loads with bearing movements in oxidising atmosphere) of a full scaled CMC bearing, five complete re-entries have been simulated successfully. The paper informs about applied mechanical load and temperature histories as well as about the number of intermittent bearing movements. The paper further informs about the complex CMC attachment structures (attachment of bearing into the body flap and load introduction) that have been qualified together with the CMC bearing. The attachment of the body flap to the vehicle's aft structure has also been qualified by tests in which also four re- entries have been simulated successfully. The attachment in principle is an interfacing structure between the "hot" (1600 "C) CMC body flap and the "cold,, (175 "C) metallic vehicle's aft structure that is able to transfer high me- chanical loads at high temperatures and minimise the heat flux through interfacing components in such way that the temperature difference of 1600 "C 175 "C = 1425 "C is brought down over a structure-length of only 200 mm. The paper informs about applied mechanical load and temperature histories and about the safety margins that have been demonstrated by rupture tests. Mechanical load carrying capacity and thermal resistance of ceramic fasteners have been demonstrated in several development tests which cover tension-, shear-, fatigue- and self locking-tests as well as tests with fastener assemblies representative for the body flaps. The reliability of these fasteners has also been demonstrated in the bearing and body flap qualification tests. In a comprehensive development test campaign, oxidation protection systems as well as repair methods have been developed and successfully applied for the body flap structure and components that reliably can be protected at least for four re-entries. The development of key technologies is continued in the national ASTRA program ("Basistechnologien fu keramische Hochtemperatur-Komponenten,,) and in international programs that among others focus on to improve the reusability of high temperature CMC components for RLVs.
Fully Printed High-Frequency Phased-Array Antenna on Flexible Substrate
NASA Technical Reports Server (NTRS)
Chen, Yihong; Lu, Xuejun
2010-01-01
To address the issues of flexible electronics needed for surface-to-surface, surface-to-orbit, and back-to-Earth communications necessary for manned exploration of the Moon, Mars, and beyond, a room-temperature printing process has been developed to create active, phased-array antennas (PAAs) on a flexible Kapton substrate. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proven feasible for phased-array antenna systems. The carrier mobility of an individual CNT is estimated to be at least 100,000 sq cm/V(dot)s. The CNT network in solution has carrier mobility as high as 46,770 sq cm/V(dot)s, and has a large current-density carrying capacity of approx. 1,000 mA/sq cm , which corresponds to a high carrying power of over 2,000 mW/ sq cm. Such high carrier mobility, and large current carrying capacity, allows the achievement of high-speed (>100 GHz), high-power, flexible electronic circuits that can be monolithically integrated on NASA s active phasedarray antennas for various applications, such as pressurized rovers, pressurized habitats, and spacesuits, as well as for locating beacon towers for lunar surface navigation, which will likely be performed at S-band and attached to a mobile astronaut. A fully printed 2-bit 2-element phasedarray antenna (PAA) working at 5.6 GHz, incorporating the CNT FETs as phase shifters, is demonstrated. The PAA is printed out at room temperature on 100-mm thick Kapton substrate. Four CNT FETs are printed together with microstrip time delay lines to function as a 2-bit phase shifter. The FET switch exhibits a switching speed of 0.2 ns, and works well for a 5.6-GHz RF signal. The operating frequency is measured to be 5.6 GHz, versus the state-of-the-art flexible FET operating frequency of 52 MHz. The source-drain current density is measured to be over 1,000 mA/sq cm, while the conventional organic FETs, and single carbon nanotube-based FETs, are typically in the mA to mA/sq cm range. The switching voltage used is 1.8 V, while the state-of-the-art flexible FET has a gate voltage around 50 V. The gate voltage can effectively control the source-drain current with an ON-OFF ratio of over 1,000 obtained at a low Vds bias of 1.8 V. The azimuth steering angles of PAA are measured at 0deg, -14.5deg, -30deg, and 48.6deg. The measured far-field patterns agree well with simulation results. The efficiency of the 2-bit 2-element PAA is measured to be 39 percent, including the loss of transmission line, FET switch, and coupling loss of RF probes. With further optimization, the efficiency is expected to be around 50-60 percent.
NASA Technical Reports Server (NTRS)
Cathcart, J. R.; Frank, A. J.; Massaglia, J. L.
1968-01-01
Computer program analyzes the entries and planetary trajectories of space vehicles. It obtains the equivalence of altitude and flight path angle, respectively, to acceleration load factor with respect to velocity for a given inertial velocity.
STS-29 Discovery, OV-103, crew on flight deck prepares for reentry
1989-03-18
STS029-24-004 (18 March 1989) --- STS-29 crewmembers, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), review checklists on Discovery, Orbiter Vehicle (OV) 103, flight deck. Commander Michael L. Coats is seated at the forward flight deck commanders station with Mission Specialist (MS) James F. Buchli on aft flight deck strapped in mission specialist seat. OV-103 makes its return after five days in space. Note color in forward windows W1, W2, W3 caused by friction of entry through the Earth's atmosphere. Personal Egress Air Pack (PEAP) is visible on pilots seat back.
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Wernet, Mark; Roeder, James; Kelsch, Richard; Witkowski, Al; Jones, Thomas
2009-01-01
Supersonic wind tunnel testing of Viking-type 0.8 m Disk-Gap-Band (DGB) parachutes was conducted in the NASA Glenn Research Center 10'x10' wind-tunnel. The tests were conducted in support of the Mars Science Laboratory Parachute Decelerator System development and qualification program. The aerodynamic coupling of the entry-vehicle wake to parachute flow-field is under investigation to determine the cause and functional dependence of a supersonic canopy breathing phenomenon referred to as area oscillations, characteristic of DGB's above Mach 1.5 operation. Four percent of full-scale parachutes (0.8 m) were constructed similar to the flight-article in material and construction techniques. The parachutes were attached to a 70-deg sphere-cone entry-vehicle to simulate the Mars flight configuration. The parachutes were tested in the wind-tunnel from Mach 2 to 2.5 in a Reynolds number range of 2x105 to 1x106, representative of a Mars deployment. Three different test configurations were investigated. In the first two configurations, the parachutes were constrained horizontally through the vent region to measure canopy breathing and wake interaction for fixed trim angles of 0 and 10 degrees from the free-stream. In the third configuration the parachute was unconstrained, permitted to trim and cone, similar to free-flight (but capsule motion is constrained), varying its alignment relative to the entry-vehicle wake. Non-intrusive test diagnostics were chosen to quantify parachute performance and provide insight into the flow field structure. An in-line loadcell provided measurement of unsteady and mean drag. Shadowgraph of the upstream parachute flow field was used to capture bow-shock motion and wake coupling. Particle image velocimetry provided first and second order flow field statistics over a planar region of the flow field, just upstream of the parachute. A photogrammetric technique was used to quantify fabric motion using multiple high speed video cameras to record the location in time and space of reflective targets placed on the canopy interior. The experimental findings including an updated drag model and the physical basis of the area oscillation phenomenon will be discussed.
Improved LTVMPC design for steering control of autonomous vehicle
NASA Astrophysics Data System (ADS)
Velhal, Shridhar; Thomas, Susy
2017-01-01
An improved linear time varying model predictive control for steering control of autonomous vehicle running on slippery road is presented. Control strategy is designed such that the vehicle will follow the predefined trajectory with highest possible entry speed. In linear time varying model predictive control, nonlinear vehicle model is successively linearized at each sampling instant. This linear time varying model is used to design MPC which will predict the future horizon. By incorporating predicted input horizon in each successive linearization the effectiveness of controller has been improved. The tracking performance using steering with front wheel and braking at four wheels are presented to illustrate the effectiveness of the proposed method.
Outer planet atmospheric entry probes - An overview of technology readiness
NASA Technical Reports Server (NTRS)
Vojvodich, N. S.; Reynolds, R. T.; Grant, T. L.; Nachtsheim, P. R.
1975-01-01
Entry probe systems for characterizing, by in situ measurements, the atmospheric properties, chemical composition, and cloud structure of the planets Saturn, Uranus, and Jupiter are examined from the standpoint of unique mission requirements, associated subsystem performance, and degree of commonality of design. Past earth entry vehicles (PAET) and current planetary spacecraft (Pioneer Venus probes and Viking lander) are assessed to identify the extent of potential subsystem inheritance, as well as to establish the significant differences, in both form and function, relative to outer planet requirements. Recent research results are presented and reviewed for the most critical probe technology areas, including: science accommodation, telecommunication, and entry heating and thermal protection. Finally presented is a brief discussion of the use of decision analysis techniques for quantifying various probe heat-shield test alternatives and performance risk.
Mars Science Laboratory Heatshield Flight Data Analysis
NASA Technical Reports Server (NTRS)
Mahzari, Milad; White, Todd
2017-01-01
NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.
NASA Astrophysics Data System (ADS)
Holland, Stephen D.; Song, Jun-Ho; Chimenti, D. E.; Roberts, Ron
2006-03-01
We demonstrate an array sensor method intended to locate leaks in manned spacecraft using leak-generated, structure-borne ultrasonic noise. We have developed and tested a method for sensing and processing leak noise to reveal the leak location involving the use of a 64-element phased-array. Cross-correlations of ultrasonic noise waveforms from a leak into vacuum have been used with a phased-array analysis to find the direction from the sensor to the leak. This method measures the propagation of guided ultrasonic Lamb waves passing under the PZT array sensor in the spacecraft skin structure. This paper will describe the custom-designed array with integrated electronics, as well as the performance of the array in prototype applications. We show that this method can be used to successfully locate leaks to within a few millimeters on a 0.6-m square aluminum plate.
Rocket experiment METS - Microwave Energy Transmission in Space
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Akiba, R.
A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.
Multiple-mouse MRI with multiple arrays of receive coils.
Ramirez, Marc S; Esparza-Coss, Emilio; Bankson, James A
2010-03-01
Compared to traditional single-animal imaging methods, multiple-mouse MRI has been shown to dramatically improve imaging throughput and reduce the potentially prohibitive cost for instrument access. To date, up to a single radiofrequency coil has been dedicated to each animal being simultaneously scanned, thus limiting the sensitivity, flexibility, and ultimate throughput. The purpose of this study was to investigate the feasibility of multiple-mouse MRI with a phased-array coil dedicated to each animal. A dual-mouse imaging system, consisting of a pair of two-element phased-array coils, was developed and used to achieve acceleration factors greater than the number of animals scanned at once. By simultaneously scanning two mice with a retrospectively gated cardiac cine MRI sequence, a 3-fold acceleration was achieved with signal-to-noise ratio in the heart that is equivalent to that achieved with an unaccelerated scan using a commercial mouse birdcage coil. (c) 2010 Wiley-Liss, Inc.
Mars Entry Atmospheric Data System Trajectory Reconstruction Algorithms and Flight Results
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark; Shidner, Jeremy; Munk, Michelle
2013-01-01
The Mars Entry Atmospheric Data System is a part of the Mars Science Laboratory, Entry, Descent, and Landing Instrumentation project. These sensors are a system of seven pressure transducers linked to ports on the entry vehicle forebody to record the pressure distribution during atmospheric entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. Specifically, angle of attack, angle of sideslip, dynamic pressure, Mach number, and freestream atmospheric properties are reconstructed from the measured pressures. Such data allows for the aerodynamics to become decoupled from the assumed atmospheric properties, allowing for enhanced trajectory reconstruction and performance analysis as well as an aerodynamic reconstruction, which has not been possible in past Mars entry reconstructions. This paper provides details of the data processing algorithms that are utilized for this purpose. The data processing algorithms include two approaches that have commonly been utilized in past planetary entry trajectory reconstruction, and a new approach for this application that makes use of the pressure measurements. The paper describes assessments of data quality and preprocessing, and results of the flight data reduction from atmospheric entry, which occurred on August 5th, 2012.
NASA Technical Reports Server (NTRS)
Tolson, Robert H.; Willcockson, William H.; Desai, Prasun N.; Thomas, Paige
2006-01-01
Shortly after landing on Mars, post-flight analysis of the "Spirit" entry data suggested that the vehicle experienced large, anomalistic oscillations in angle-of-attack starting at about M=6. Similar analysis for "Opportunity " found even larger oscillations starting immediately after maximum dynamic pressure at M=14. Where angles-of-attack of 1-2 degrees were expected from maximum dynamic pressure to drogue deployment, the reconstructions suggested 4 to 9 degrees. The next Mars lander, 2007 Phoenix project, was concerned enough to recommend further exploration of the anomalies. Detailed analysis of "Opportunity" data found significant anomalies in the hypersonic aerodynamic torques. The analysis showed that these torques were essentially fixed in the spinning vehicle. Nearly a year after landing, the "Oportunity" rover took pictures of its aeroshell on the surface, which showed that portions of the aeroshell thermal blanket assembly still remained. This blanket assembly was supposed to burn off very early in the entry. An analysis of the aeroshell photographs led to an estimate of the aerodynamic torques that the remnants could have produced. A comparison of two estimates of the aerodynamic torque perturbations (one extracted from telemetry data and the other from Mars surface photographs) showed exceptional agreement. Trajectory simulations using a simple data derived torque perturbation model provided rigid body motions similar to that observed during the "Opportunity" entry. Therefore, the case of the anomalistic attitude behavior for the "Opportunity" EDL is now considered closed and a suggestion is put forth that a similar event occurred for the "Spirit" entry as well.
An Automated Method to Compute Orbital Re-entry Trajectories with Heating Constraints
NASA Technical Reports Server (NTRS)
Zimmerman, Curtis; Dukeman, Greg; Hanson, John; Fogle, Frank R. (Technical Monitor)
2002-01-01
Determining how to properly manipulate the controls of a re-entering re-usable launch vehicle (RLV) so that it is able to safely return to Earth and land involves the solution of a two-point boundary value problem (TPBVP). This problem, which can be quite difficult, is traditionally solved on the ground prior to flight. If necessary, a nearly unlimited amount of time is available to find the 'best' solution using a variety of trajectory design and optimization tools. The role of entry guidance during flight is to follow the pre- determined reference solution while correcting for any errors encountered along the way. This guidance method is both highly reliable and very efficient in terms of onboard computer resources. There is a growing interest in a style of entry guidance that places the responsibility of solving the TPBVP in the actual entry guidance flight software. Here there is very limited computer time. The powerful, but finicky, mathematical tools used by trajectory designers on the ground cannot in general be converted to do the job. Non-convergence or slow convergence can result in disaster. The challenges of designing such an algorithm are numerous and difficult. Yet the payoff (in the form of decreased operational costs and increased safety) can be substantiaL This paper presents an algorithm that incorporates features of both types of guidance strategies. It takes an initial RLV orbital re-entry state and finds a trajectory that will safely transport the vehicle to Earth. During actual flight, the computed trajectory is used as the reference to be flown by a more traditional guidance method.
STS-56 Commander Cameron & Pilot Oswald at CCT hatch during JSC training
1992-12-01
STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron (right) and Pilot Stephen S. Oswald, wearing launch and entry suits (LESs), stand at the side hatch of the crew compartment trainer (CCT), a shuttle mockup, prior to entering the mockup. Once inside the CCT, they will don their launch and entry helmets (LEHs) and participate in emergency egress (bailout) procedures. The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.
STS-42 Commander Grabe in single person life raft during JSC egress exercises
NASA Technical Reports Server (NTRS)
1991-01-01
STS-42 Discovery, Orbiter Vehicle (OV) 103, Commander Ronald J. Grabe, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during launch emergency egress (bailout) exercises conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLB) antenna is extended through the life raft cover. SCUBA-equipped divers monitor egress exercises.
STS-52 MS Jemison, in LES/LEH, during JSC WETF bailout exercise
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Tamara E. Jernigan, wearing launch and entry suit (LES) and launch and entry helmet (LEH), listens to a briefing about water landings during an emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Jernigan waits her turn to be dropped into the WETF's 25-ft deep pool which will simulate the ocean during of her water landing.
STS-47 Commander Gibson and MS Apt in JSC WETF for bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Commander Robert L. Gibson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), listens to instructions before participating in launch emergency egress (bailout) exercises in JSC's Weightless Environment Trainining Facility (WETF) Bldg 29. Mission Specialist (MS) Jerome Apt, wearing LES and LES parachute, is seen in the background. This exercise is conducted in the WETF pool to simulate a water landing.
STS-55 MS3 Harris listens to technician during JSC WETF egress exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, listens to technician Karen Porter's instructions prior to launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Harris and other crewmembers practiced water bailout procedures.
Development of Supersonic Retro-Propulsion for Future Mars Entry, Descent, and Landing Systems
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Shidner, Jeremy D.; Studak, Joseph W.; Tiggers, Michael A.; Kipp, Devin M.; Prakash, Ravi; Trumble, Kerry A.; Dupzyk, Ian C.; Korzun, Ashley M.
2010-01-01
Recent studies have concluded that Viking-era entry system technologies are reaching their practical limits and must be succeeded by new methods capable of delivering large payloads (greater than 10 metric tons) required for human exploration of Mars. One such technology, termed Supersonic Retro-Propulsion, has been proposed as an enabling deceleration technique. However, in order to be considered for future NASA flight projects, this technology will require significant maturation beyond its current state. This paper proposes a roadmap for advancing the component technologies to a point where Supersonic Retro-Propulsion can be reliably used on future Mars missions to land much larger payloads than are currently possible using Viking-based systems. The development roadmap includes technology gates that are achieved through testing and/or analysis, culminating with subscale flight tests in Earth atmosphere that demonstrate stable and controlled flight. The component technologies requiring advancement include large engines capable of throttling, computational models for entry vehicle aerodynamic/propulsive force and moment interactions, aerothermodynamic environments modeling, entry vehicle stability and control methods, integrated systems engineering and analyses, and high-fidelity six degree-of-freedom trajectory simulations. Quantifiable metrics are also proposed as a means to gage the technical progress of Supersonic Retro-Propulsion. Finally, an aggressive schedule is proposed for advancing the technology through sub-scale flight tests at Earth by 2016.
Supersonic Aerodynamic Characteristics of Blunt Body Trim Tab Configurations
NASA Technical Reports Server (NTRS)
Korzun, Ashley M.; Murphy, Kelly J.; Edquist, Karl T.
2013-01-01
Trim tabs are aerodynamic control surfaces that can allow an entry vehicle to meet aerodynamic performance requirements while reducing or eliminating the use of ballast mass and providing a capability to modulate the lift-to-drag ratio during entry. Force and moment data were obtained on 38 unique, blunt body trim tab configurations in the NASA Langley Research Center Unitary Plan Wind Tunnel. The data were used to parametrically assess the supersonic aerodynamic performance of trim tabs and to understand the influence of tab area, cant angle, and aspect ratio. Across the range of conditions tested (Mach numbers of 2.5, 3.5, and 4.5; angles of attack from -4deg to +20deg; angles of sideslip from 0deg to +8deg), the effects of varying tab area and tab cant angle were found to be much more significant than effects from varying tab aspect ratio. Aerodynamic characteristics exhibited variation with Mach number and forebody geometry over the range of conditions tested. Overall, the results demonstrate that trim tabs are a viable approach to satisfy aerodynamic performance requirements of blunt body entry vehicles with minimal ballast mass. For a 70deg sphere-cone, a tab with 3% area of the forebody and canted approximately 35deg with no ballast mass was found to give the same trim aerodynamics as a baseline model with ballast mass that was 5% of the total entry mass.
Orion Entry, Descent, and Landing Simulation
NASA Technical Reports Server (NTRS)
Hoelscher, Brian R.
2007-01-01
The Orion Entry, Descent, and Landing simulation was created over the past two years to serve as the primary Crew Exploration Vehicle guidance, navigation, and control (GN&C) design and analysis tool at the National Aeronautics and Space Administration (NASA). The Advanced NASA Technology Architecture for Exploration Studies (ANTARES) simulation is a six degree-of-freedom tool with a unique design architecture which has a high level of flexibility. This paper describes the decision history and motivations that guided the creation of this simulation tool. The capabilities of the models within ANTARES are presented in detail. Special attention is given to features of the highly flexible GN&C architecture and the details of the implemented GN&C algorithms. ANTARES provides a foundation simulation for the Orion Project that has already been successfully used for requirements analysis, system definition analysis, and preliminary GN&C design analysis. ANTARES will find useful application in engineering analysis, mission operations, crew training, avionics-in-the-loop testing, etc. This paper focuses on the entry simulation aspect of ANTARES, which is part of a bigger simulation package supporting the entire mission profile of the Orion vehicle. The unique aspects of entry GN&C design are covered, including how the simulation is being used for Monte Carlo dispersion analysis and for support of linear stability analysis. Sample simulation output from ANTARES is presented in an appendix.
NASA Technical Reports Server (NTRS)
Barth, Andrew; Mamich, Harvey; Hoelscher, Brian
2015-01-01
The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.
NASA Astrophysics Data System (ADS)
Mazzaracchio, Antonio; Marchetti, Mario
2010-03-01
Implicit ablation and thermal response software was developed to analyse and size charring ablative thermal protection systems for entry vehicles. A statistical monitor integrated into the tool, which uses the Monte Carlo technique, allows a simulation to run over stochastic series. This performs an uncertainty and sensitivity analysis, which estimates the probability of maintaining the temperature of the underlying material within specified requirements. This approach and the associated software are primarily helpful during the preliminary design phases of spacecraft thermal protection systems. They are proposed as an alternative to traditional approaches, such as the Root-Sum-Square method. The developed tool was verified by comparing the results with those from previous work on thermal protection system probabilistic sizing methodologies, which are based on an industry standard high-fidelity ablation and thermal response program. New case studies were analysed to establish thickness margins on sizing heat shields that are currently proposed for vehicles using rigid aeroshells for future aerocapture missions at Neptune, and identifying the major sources of uncertainty in the material response.
3D 1H MRSI of brain tumors at 3.0 Tesla using an eight-channel phased-array head coil.
Osorio, Joseph A; Ozturk-Isik, Esin; Xu, Duan; Cha, Soonmee; Chang, Susan; Berger, Mitchel S; Vigneron, Daniel B; Nelson, Sarah J
2007-07-01
To implement proton magnetic resonance spectroscopic imaging (1H MRSI) at 3 Tesla (3T) using an eight-channel phased-array head coil in a population of brain-tumor patients. A total of 49 MRI/MRSI examinations were performed on seven volunteers and 34 patients on a 3T GE Signa EXCITE scanner using body coil excitation and reception with an eight-channel phased-array head coil. 1H MRSI was acquired using point-resolved spectroscopy (PRESS) volume selection and three-dimensional (3D) phase encoding using a 144-msec echo time (TE). The mean choline to N-acetyl aspartate ratio (Cho/NAA) was similar within regions of normal-appearing white matter (NAWM) in volunteers (0.5 +/- 0.04) and patients (0.6 +/- 0.1, P = 0.15). This ratio was significantly higher in regions of T2-hyperintensity lesion (T2L) relative to NAWM for patients (1.4 +/- 0.7, P = 0.001). The differences between metabolite intensities in lesions and NAWM were similar, but there was an increase in SNR of 1.95 when an eight-channel head coil was used at 3T vs. previous results at 1.5T. The realized increase in SNR means that clinically relevant data can be obtained in five to 10 minutes at 3T and used to predict the spatial extent of tumor in a manner similar to that previously used to acquire 1.5T data in 17 minutes. Copyright 2007 Wiley-Liss, Inc.
[Multiparametric 3T MRI in the routine staging of prostate cancer].
Largeron, J P; Galonnier, F; Védrine, N; Alfidja, A; Boyer, L; Pereira, B; Boiteux, J P; Kemeny, J L; Guy, L
2014-03-01
To analyse the detection ability of a multiparametric 3T MRI with phased-array coil in comparison with the pathological data provided by the prostatectomy specimens. Prospective study of 30 months, including 74 patients for whom a diagnosis of prostate cancer had been made on randomized prostate biopsies, and all eligible to a radical prostatectomy. They all underwent multiparametric 3T MRI with pelvic phased-array coil including T2-weighted imaging (T2W), dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) with an ADC mapping. Each gland was divided in octants. Three specific criteria have been sought (detection ability, capsular contact [CC] and extracapsular extension [ECE]), in comparison with the pathological data provided by the prostatectomy specimens. Five hundred and ninety-two octants were considered with 124 significant tumors (volume ≥ 0.1cm(3)). The general ability of tumor detection had a sensitivity, specificity, PPV and NPV respectively to 72.3%, 87.4%, 83.2% and 78.5%. The estimate of the CC and ECE had a high negative predictive power with specificities and VPN respectively to 96.4% and 95.4% for CC, and 97.5 and 97.7% for ECE. Multiparametric 3T MRI with pelvic phased-array coil appeared to be a reliable imaging technique in clinical and routine practice for the detection of localized prostate cancer. Estimation of the CC and millimeter ECE remains to be clarified, even if the negative predictive power for these parameters seems encouraging. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
40 CFR 600.005-81 - Maintenance of records and rights of entry.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and Carbon-Related Exhaust Emission Regulations for 1977 and Later Model Year Automobiles-General... headings including such extraordinary events as vehicle accidents or driver speeding citations or warnings...
Entry systems technology assessment
NASA Technical Reports Server (NTRS)
Gay, Archie
1993-01-01
The objectives are: (1) to establish aerothermal environments for hypersonic aerospace vehicles; (2) to develop thermostructural design concepts; (3) to obtain optimum thermostructural designs by performing trade studies; and (4) to identify areas for further development.
Space Shuttle stability and control flight test techniques
NASA Technical Reports Server (NTRS)
Cooke, D. R.
1980-01-01
A unique approach for obtaining vehicle aerodynamic characteristics during entry has been developed for the Space Shuttle. This is due to the high cost of Shuttle testing, the need to open constraints for operational flights, and the fact that all flight regimes are flown starting with the first flight. Because of uncertainties associated with predicted aerodynamic coefficients, nine flight conditions have been identified at which control problems could occur. A detailed test plan has been developed for testing at these conditions and is presented. Due to limited testing, precise computer initiated maneuvers are implemented. These maneuvers are designed to optimize the vehicle motion for determining aerodynamic coefficients. Special sensors and atmospheric measurements are required to provide stability and control flight data during an entire entry. The techniques employed in data reduction are proven programs developed and used at NASA/DFRC.
Xi, Z; Yao, M; Li, Y; Xie, C; Holst, J; Liu, T; Cai, S; Lao, Y; Tan, H; Xu, H-X; Dong, Q
2016-06-02
Cell cycle re-entry by quiescent cancer cells is an important mechanism for cancer progression. While high levels of c-MYC expression are sufficient for cell cycle re-entry, the modality to block c-MYC expression, and subsequent cell cycle re-entry, is limited. Using reversible quiescence rendered by serum withdrawal or contact inhibition in PTEN(null)/p53(WT) (LNCaP) or PTEN(null)/p53(mut) (PC-3) prostate cancer cells, we have identified a compound that is able to impede cell cycle re-entry through c-MYC. Guttiferone K (GUTK) blocked resumption of DNA synthesis and preserved the cell cycle phase characteristics of quiescent cells after release from the quiescence. In vehicle-treated cells, there was a rapid increase in c-MYC protein levels upon release from the quiescence. However, this increase was inhibited in the presence of GUTK with an associated acceleration in c-MYC protein degradation. The inhibitory effect of GUTK on cell cycle re-entry was significantly reduced in cells overexpressing c-MYC. The protein level of FBXW7, a subunit of E3 ubiquitin ligase responsible for degradation of c-MYC, was reduced upon the release from the quiescence. In contrast, GUTK stabilized FBXW7 protein levels during release from the quiescence. The critical role of FBXW7 was confirmed using siRNA knockdown, which impaired the inhibitory effect of GUTK on c-MYC protein levels and cell cycle re-entry. Administration of GUTK, either in vitro prior to transplantation or in vivo, suppressed the growth of quiescent prostate cancer cell xenografts. Furthermore, elevation of FBXW7 protein levels and reduction of c-MYC protein levels were found in the xenografts of GUTK-treated compared with vehicle-treated mice. Hence, we have identified a compound that is capable of impeding cell cycle re-entry by quiescent PTEN(null)/p53(WT) and PTEN(null)/p53(mut) prostate cancer cells likely by promoting c-MYC protein degradation through stabilization of FBXW7. Its usage as a clinical modality to prevent prostate cancer progression should be further evaluated.
Future Soldiers: Analysis of Entry-Level Performance Requirements and Their Predictors
2005-09-01
these future missions; "* New technology such as weapons, tools, and vehicles (e.g., robotics ) and the effect of technological change on personnel...Clusters 1. Close Combat 2. Non Line-of-Sight Fire 3. Surveillance, Intelligence, and Communications 4. Unmanned Vehicle/ Robotics Operator 5. Security...minimized with (a) new materials for ballistic protection, (b) new lethalities, and (c) exoskeletons /artificial muscles. • Infantrymen will experience better
Spaced-antenna wind estimation using an X-band active phased-array weather radar
NASA Astrophysics Data System (ADS)
Venkatesh, Vijay
Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and Doppler beam swinging methods. Based on a close-range winter storm data set, we find that the spaced-antenna and fine-resolution Doppler beam swinging retrievals are in qualitative agreement. The correlation between the spaced-antenna and fine-resolution Doppler beam swinging retrievals was 0.57. The lowered correlation coefficient was, in part, due to the high standard deviation of the DBS retrievals. At high wind-speeds, the spaced-antenna retrievals significantly departed from variational retrievals of mean baseline wind.
Sample Return Propulsion Technology Development Under NASA's ISPT Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Hahne, David; Pencil, Eric; Peterson, Todd; Munk, Michelle M.
2011-01-01
Abstract In 2009, the In-Space Propulsion Technology (ISPT) program was tasked to start development of propulsion technologies that would enable future sample return missions. Sample return missions can be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. As a result, ISPT s propulsion technology development needs are also broad, and include: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Multi-mission technologies for Earth Entry Vehicles (MMEEV), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The SRP area includes electric propulsion for sample return and low cost Discovery-class missions, and propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination. Initially the SRP effort will transition ongoing work on a High-Voltage Hall Accelerator (HIVHAC) thruster into developing a full HIVHAC system. SRP will also leverage recent lightweight propellant-tanks advancements and develop flight-qualified propellant tanks with direct applicability to the Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. ISPT s previous aerocapture efforts will merge with earlier Earth Entry Vehicles developments to form the starting point for the MMEEV effort. The first task under the Planetary Ascent Vehicles (PAV) effort is the development of a Mars Ascent Vehicle (MAV). The new MAV effort will leverage past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies. This paper will describe the state of ISPT project s propulsion technology development for future sample return missions.12
Aeronautical engineering, a special bibliography, September 1971 (supplement 10)
NASA Technical Reports Server (NTRS)
1971-01-01
This supplement to Aeronautical Engineering-A Special Bibliography (NASA SP-7037) lists 413 reports, journal articles, and other documents originally announced in September 1971 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the bibliography consists of a standard bibliographic citation accompanied by an abstract. The listing of the entries is arranged in two major sections, IAA Entries and STAR Entries in that order. The citations and abstracts are reproduced exactly as they appeared originally in IAA or STAR, including the original accession numbers from the respective announcement journals.
STS-114: Discovery Day 13 Mission Status Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
LeRoy Cain, STS-114 Ascent/Entry Flight Director, takes a solo stand with the Press in this briefing. He reports that the vehicle is in good shape, consumable status is excellent, and the shuttle crew is in high spirits and preparing for de-orbit and landing. LeRoy and his team have completed the entry system check up, flight control check up, reactor control system check up, and noted that all are at nominal performance; weather forecast is very good, the Entry team is ready and looking forward to de-orbit and landing at the Kennedy Space Center on Monday, August 8th. Re-entry, personal feelings, Columbia accident, data gathering, consumable situation, back up sites, weather, communication block out, night and day landing, and Commander Collin's piloting skills during night flight are some of the topics covered with the News media.
Application of the V-Gamma map to vehicle breakup analysis
NASA Technical Reports Server (NTRS)
Salama, Ahmed; McRonald, Angus; Ahmadi, Reza; LIng, Lisa; Accad, Elie; Kim, Alex
2003-01-01
The V-Gamma map consists of all possible pairs of speed and flight path angle at atmospheric entry interface for accidental Earth reentries resulting from steady misaligned burns, incomplete burns, or no burn.
Acceleration lane design for higher truck volumes.
DOT National Transportation Integrated Search
2008-12-09
The research project examined attributes associated with tractor-trailer trucks accelerating on freeway entry ramps and : entering the main traffic lanes. Data for this project were collected at five commercial vehicle weigh stations in : Arkansas an...
STS-28 Columbia, OV-102, terminal countdown demonstration test (TCDT) at KSC
1989-07-18
S89-41093 (9 Aug 1989) --- STS-28 Columbia, Orbiter Vehicle (OV) 102, mission specialist David C. Leestma relaxes in chair after donning launch and entry suit (LES) and launch and entry helmet (LEH). Technician in the background monitors LES systems. Leestma, along with fellow crewmembers, is participating in the terminal countdown demonstration test (TCDT) at the Kennedy Space Center (KSC) Operations and Checkout (O&C) Building. View provided by KSC with alternate number KSC-89PC-673.
STS-56 Commander Cameron and Pilot Oswald at CCT hatch during JSC training
NASA Technical Reports Server (NTRS)
1993-01-01
STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron (right) and Pilot Stephen S. Oswald, wearing launch and entry suits (LESs), stand at the side hatch of the crew compartment trainer (CCT), a shuttle mockup, prior to entering the mockup. Once inside the CCT, they will don their launch and entry helmets (LEHs) and participate in emergency egress (bailout) procedures. The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.
NASA Technical Reports Server (NTRS)
Sepka, Steven Andrew; Zarchi, Kerry Agnes; Maddock, Robert W.; Samareh, Jamshid A.
2011-01-01
Mass Estimating Relationships (MERs) have been developed for use in the Program to Optimize Simulated Trajectories II (POST2) as part of NASA's multi-mission Earth Entry Vehicle (MMEEV) concept. MERs have been developed for the thermal protection systems of PICA and of Carbon Phenolic atop Advanced Carbon-Carbon on the forebody and for SIRCA and Acusil II on the backshell. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed herein.
STS-42 crewmembers in LESs prepare for egress exercises in JSC's WETF Bldg 29
NASA Technical Reports Server (NTRS)
1991-01-01
STS-42 Discovery, Orbiter Vehicle (OV) 103, crewmembers, (left to right) Commander Ronald J. Grabe, Payload Specialist Roberta L. Bondar, and Pilot Stephen S. Oswald, participate in launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The crewmembers are outfitted in their launch and entry suits (LESs) and launch and entry helmets (LEHs) as they prepare for the simulated water landing using the WETF's 25 ft deep pool as the ocean.
STS-52 Pilot Baker, in LES/LEH, during JSC WETF bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Pilot Michael A. Baker smiles from under his launch and entry helmet (LEH) and from behind the communications carrier assembly (CCA) microphones as he adjusts his parachute harness. Baker, fully outfitted in a launch and entry suit (LES), prepares for emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used in this simulation of a water landing.
NASA Technical Reports Server (NTRS)
Sepka, Steven; Trumble, Kerry A.; Maddock, Robert W.; Samareh, Jamshid
2012-01-01
Mass Estimating Relationships (MERs) have been developed for use in the Program to Optimize Simulated Trajectories II (POST2) as part of NASA's multi-mission Earth Entry Vehicle (MMEEV) concept. MERs have been developed for the thermal protection systems of PICA and of Carbon Phenolic atop Advanced Carbon-Carbon on the forebody and for SIRCA and Acusil II on the backshell. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed herein.
STS-55 MS3 Harris in life raft during emergency egress exercises at JSC WETF
NASA Technical Reports Server (NTRS)
1992-01-01
Using a small single person life raft, STS-55 Mission Specialist 3 (MS3) Bernard A. Harris, Jr floats in the pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Harris, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), prepares to send a flare during this launch emergency egress (bailout) training session. STS-55 with the Spacelab Deutsche 2 (SL-D2) payload will fly aboard Columbia, Orbiter Vehicle (OV) 102, in 1993.
STS-65 Commander Cabana floats in life raft during WETF bailout exercise
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Commander Robert D. Cabana, suited in his launch and entry suit (LES) and launch and entry helmet, deploys a single person life raft during launch emergency egress (bailout) training at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Cabana will be joined by five other NASA astronauts and a Japanese payload specialist for the International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
Concepts and system design of a space emergency re-entry vehicle.
NASA Technical Reports Server (NTRS)
Huang, C. J.; Dickerson, S. L.
1971-01-01
Discussion of the spectrum of remedial concepts and realistic mission constraints. A vehicle design is presented which is offered as the 'best' solution among a number of alternative designs in terms of its cost effectiveness. The probability of the safe reentry and recovery of one to three stranded astronauts is 0.80. The vehicle is symmetrical and lenticular in shape, and exhibits a modest lift-to-drag ratio of 0.5, allowing it to reenter a two-skip trajectory with minimal gravity forces on the astronauts. Attitude control, voice and beacon communication, and impact attenuation are also provided. The vehicle could be delivered in a docked position on the Apollo Applications Program multiple docking adapter.
Attitude Control Performance of IRVE-3
NASA Technical Reports Server (NTRS)
Dillman, Robert A.; Gsell, Valerie T.; Bowden, Ernest L.
2013-01-01
The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission.
Microwave scanning beam approach and landing system phased array antenna volume I
DOT National Transportation Integrated Search
1973-02-01
The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....
Microwave scanning beam approach and landing system phased array antenna : volume II
DOT National Transportation Integrated Search
1973-02-01
The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2010-01-01
Recent, current, and planned NASA missions that employ blunt-body entry vehicles pose aerothermodynamic problems that challenge the state-of-the art of experimental and computational methods. The issues of boundary-layer transition and turbulent heating on the heat shield have become important in the designs of both the Mars Science Laboratory and Crew Exploration Vehicle. While considerable experience in these general areas exists, that experience is mainly derived from simple geometries; e.g. sharp-cones and flat-plates, or from lifting bodies such as the Space Shuttle Orbiter. For blunt-body vehicles, application of existing data, correlations, and comparisons is questionable because an all, or mostly, subsonic flow field is produced behind the bow shock, as compared to the supersonic (or even hypersonic) flow of other configurations. Because of the need for design and validation data for projects such as MSL and CEV, many new experimental studies have been conducted in the last decade to obtain detailed boundary-layer transition and turbulent heating data on this class of vehicle. In this paper, details of several of the test programs are reviewed. The laminar and turbulent data from these various test are shown to correlate in terms of edge-based Stanton and Reynolds number functions. Correlations are developed from the data for transition onset and turbulent heating augmentation as functions of momentum thickness Reynolds number. These correlation can be employed as engineering-level design and analysis tools.
Inflatable Emergency Atmospheric-Entry Vehicles
NASA Technical Reports Server (NTRS)
Jones, Jack; Hall, Jeffrey; Wu, Jiunn Jeng
2004-01-01
In response to the loss of seven astronauts in the Space Shuttle Columbia disaster, large, lightweight, inflatable atmospheric- entry vehicles have been proposed as means of emergency descent and landing for persons who must abandon a spacecraft that is about to reenter the atmosphere and has been determined to be unable to land safely. Such a vehicle would act as an atmospheric decelerator at supersonic speed in the upper atmosphere, and a smaller, central astronaut pod could then separate at lower altitudes and parachute separately to Earth. Astronaut-rescue systems that have been considered previously have been massive, and the cost of designing them has exceeded the cost of fabrication of a space shuttle. In contrast, an inflatable emergency-landing vehicle according to the proposal would have a mass between 100 and 200 kg, could be stored in a volume of approximately 0.2 to 0.4 cu m, and could likely be designed and built much less expensively. When fully inflated, the escape vehicle behaves as a large balloon parachute, or ballute. Due to very low mass-per-surface area, a large radius, and a large coefficient of drag, ballutes decelerate at much higher altitudes and with much lower heating rates than the space shuttle. Although the space shuttle atmospheric reentry results in surface temperatures of about 1,600 C, ballutes can be designed for maximum temperatures below 600 C. This allows ballutes to be fabricated with lightweight ZYLON(Registered TradeMark) or polybenzoxazole (PBO), or equivalent.
Backshell Radiative Heating on Human-Scale Mars Entry Vehicles
NASA Technical Reports Server (NTRS)
West,Thomas K., IV; Theisinger, John E.; Brune, Andrew J.; Johnston, Christopher O.
2017-01-01
This work quantifies the backshell radiative heating experienced by payloads on human- scale vehicles entering the Martian atmosphere. Three underlying configurations were studied: a generic sphere, a sphere-cone forebody with a cylindrical payload, and an ellipsled. Computational fluid dynamics simulations of the flow field and radiation were performed using the LAURA and HARA codes, respectively. Results of this work indicated the primary contributor to radiative heating is emission from the CO2 IR band system. Furthermore, the backshell radiation component of heating can persist lower than 2 km/s during entry and descent. For the sphere-cone configuration a peak heat flux of about 3.5 W/cm(exp. 2) was observed at the payload juncture during entry. At similar conditions, the ellipsled geometry experienced about 1.25 W/cm(exp. 2) on the backshell, but as much as 8 W/cm(exp. 2) on the base at very high angle of attack. Overall, this study sheds light on the potential magnitudes of backshell radiative heating that various configurations may experience. These results may serve as a starting point for thermal protection system design or configuration changes necessary to accommodate thermal radiation levels.
Hot-Air Jets/Ceramic Heat Exchangers/ Materials for Nose Cones and Reentry Vehicles
1957-09-07
L57-5383 Hot-air jets employing ceramic heat exchangers played an important role at Langley in the study of materials for ballistic missile nose cones and re-entry vehicles. Here a model is being tested in one of theses jets at 4000 degrees Fahrenheit in 1957. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 477.
2010-03-31
presented in the AFRL organized Aeroelastic Workshop in Sedona October 2008, and at the AVT-168 Symposium on Morphing Vehicles, Lisbon, Portugal April 2009...surface geometry. - Conventional deforming grid methods will fail at a point when the geometry change becomes large, no matter how good the method...Numb’ Martian Entry* Knudson number: Kn _ M.a GasKinetic parameter ASU . flttA TKHNOLOGY Overview • Ballute aeroelastic problem requires
2011-07-07
CAPE CANAVERAL, Fla. -- A media event was held on the grounds near the Press Site at NASA's Kennedy Space Center in Florida where a Multi-Purpose Crew Vehicle (MPCV) is on display. The MPCV is based on the Orion design requirements for traveling beyond low Earth orbit and will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. Seen here is Mark Geyer, Multi-Purpose Crew Vehicle program manager speaking to media during a question-and-answer session. Photo credit: NASA/Frankie Martin
Predicted and tested performance of durable TPS
NASA Technical Reports Server (NTRS)
Shideler, John L.
1992-01-01
The development of thermal protection systems (TPS) for aerospace vehicles involves combining material selection, concept design, and verification tests to evaluate the effectiveness of the system. The present paper reviews verification tests of two metallic and one carbon-carbon thermal protection system. The test conditions are, in general, representative of Space Shuttle design flight conditions which may be more or less severe than conditions required for future space transportation systems. The results of this study are intended to help establish a preliminary data base from which the designers of future entry vehicles can evaluate the applicability of future concepts to their vehicles.
Vehicle barrier with access delay
Swahlan, David J; Wilke, Jason
2013-09-03
An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.
A High-Heritage Blunt-Body Entry, Descent, and Landing Concept for Human Mars Exploration
NASA Technical Reports Server (NTRS)
Price, Humphrey; Manning, Robert; Sklyanskiy, Evgeniy; Braun, Robert
2016-01-01
Human-scale landers require the delivery of much heavier payloads to the surface of Mars than is possible with entry, descent, and landing (EDL) approaches used to date. A conceptual design was developed for a 10 m diameter crewed Mars lander with an entry mass of approx.75 t that could deliver approx.28 t of useful landed mass (ULM) to a zero Mars areoid, or lower, elevation. The EDL design centers upon use of a high ballistic coefficient blunt-body entry vehicle and throttled supersonic retro-propulsion (SRP). The design concept includes a 26 t Mars Ascent Vehicle (MAV) that could support a crew of 2 for approx.24 days, a crew of 3 for approx.16 days, or a crew of 4 for approx.12 days. The MAV concept is for a fully-fueled single-stage vehicle that utilizes a single pump-fed 250 kN engine using Mono-Methyl Hydrazine (MMH) and Mixed Oxides of Nitrogen (MON-25) propellants that would deliver the crew to a low Mars orbit (LMO) at the end of the surface mission. The MAV concept could potentially provide abort-to-orbit capability during much of the EDL profile in response to fault conditions and could accommodate return to orbit for cases where the MAV had no access to other Mars surface infrastructure. The design concept for the descent stage utilizes six 250 kN MMH/MON-25 engines that would have very high commonality with the MAV engine. Analysis indicates that the MAV would require approx.20 t of propellant (including residuals) and the descent stage would require approx.21 t of propellant. The addition of a 12 m diameter supersonic inflatable aerodynamic decelerator (SIAD), based on a proven flight design, was studied as an optional method to improve the ULM fraction, reducing the required descent propellant by approx.4 t.
A High-Heritage Blunt-Body Entry, Descent, and Landing Concept for Human Mars Exploration
NASA Technical Reports Server (NTRS)
Price, Humphrey; Manning, Robert; Sklyanskiy, Evgeniy; Braun, Robert
2016-01-01
Human-scale landers require the delivery of much heavier payloads to the surface of Mars than is possible with entry, descent, and landing (EDL) approaches used to date. A conceptual design was developed for a 10 m diameter crewed Mars lander with an entry mass of approx. 75 t that could deliver approx. 28 t of useful landed mass (ULM) to a zero Mars areoid, or lower, elevation. The EDL design centers upon use of a high ballistic coefficient blunt-body entry vehicle and throttled supersonic retro-propulsion (SRP). The design concept includes a 26 t Mars Ascent Vehicle (MAV) that could support a crew of 2 for approx. 24 days, a crew of 3 for approx.16 days, or a crew of 4 for approx.12 days. The MAV concept is for a fully-fueled single-stage vehicle that utilizes a single pump-fed 250 kN engine using Mono-Methyl Hydrazine (MMH) and Mixed Oxides of Nitrogen (MON-25) propellants that would deliver the crew to a low Mars orbit (LMO) at the end of the surface mission. The MAV concept could potentially provide abort-to-orbit capability during much of the EDL profile in response to fault conditions and could accommodate return to orbit for cases where the MAV had no access to other Mars surface infrastructure. The design concept for the descent stage utilizes six 250 kN MMH/MON-25 engines that would have very high commonality with the MAV engine. Analysis indicates that the MAV would require approx. 20 t of propellant (including residuals) and the descent stage would require approx. 21 t of propellant. The addition of a 12 m diameter supersonic inflatable aerodynamic decelerator (SIAD), based on a proven flight design, was studied as an optional method to improve the ULM fraction, reducing the required descent propellant by approx.4 t.
The design and realisation of the IXV Mission Analysis and Flight Mechanics
NASA Astrophysics Data System (ADS)
Haya-Ramos, Rodrigo; Blanco, Gonzalo; Pontijas, Irene; Bonetti, Davide; Freixa, Jordi; Parigini, Cristina; Bassano, Edmondo; Carducci, Riccardo; Sudars, Martins; Denaro, Angelo; Angelini, Roberto; Mancuso, Salvatore
2016-07-01
The Intermediate eXperimental Vehicle (IXV) is a suborbital re-entry demonstrator successfully launched in February 2015 focusing on the in-flight demonstration of a lifting body system with active aerodynamic control surfaces. This paper presents an overview of the Mission Analysis and Flight Mechanics of the IXV vehicle, which comprises computation of the End-to-End (launch to splashdown) design trajectories, characterisation of the Entry Corridor, assessment of the Mission Performances through Monte Carlo campaigns, contribution to the aerodynamic database, analysis of the Visibility and link budget from Ground Stations and GPS, support to safety analyses (off nominal footprints), specification of the Centre of Gravity box, selection of the Angle of Attack trim line to be flown and characterisation of the Flying Qualities performances. An initial analysis and comparison with the raw flight data obtained during the flight will be discussed and first lessons learned derived.
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Pitts, William C.; Araujo, Myrian; Zimmerman, R. S.
1988-01-01
Multilayer insulations (MIs) which will operate in the 500 to 1000 C temperature range are being considered for possible applications on aerospace vehicles subject to convective and radiative heating during atmospheric entry. The insulations described consist of ceramic fibers, insulations, and metal foils quilted together with ceramic thread. As these types of insulations have highly anisotropic properties, the total heat transfer characteristics must be determined. Data are presented on the thermal diffusivity and thermal conductivity of four types of MIs and are compared to the baseline Advanced Flexible Reusable Surface Insulation currently used on the Space Shuttle Orbiter. In addition, the high temperature properties of the fibers used in these MIs are discussed. The fibers investigated included silica and three types of aluminoborosilicate (ABS). Static tension tests were performed at temperatures up to 1200 C and the ultimate strain, tensile strength, and tensile modulus of single fibers were determined.
Subsonic Dynamic Stability Tests of a Sample Return Entry Vehicle
NASA Technical Reports Server (NTRS)
Fremaux, C. Michael; Johnson, R. Keith
2006-01-01
An investigation has been conducted in the NASA Langley 20-Foot Vertical Spin Tunnel (VST) to determine the subsonic dynamic stability characteristics of a proposed atmospheric entry vehicle for sample return missions. In particular, the effects of changes in aft-body geometry on stability were examined. Freeflying tests of a dynamically scaled model with various geometric features were conducted, including cases in which the model was perturbed to measure dynamic response. Both perturbed and non-perturbed runs were recorded as motion time histories using the VST optical data acquisition system and reduced for post-test analysis. In addition, preliminary results from a static force and moment test of a similar model in the Langley 12-Foot Low Speed Tunnel are presented. Results indicate that the configuration is dynamically stable for the baseline geometry, but exhibits degraded dynamic behavior for the geometry modifications tested.
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Pitts, William C.; Araujo, Myrian; Zimmerman, R. S.
1988-01-01
Multilayer insulations (MIs) which will operate in the 500 to 1000 C temperature range are being considered for possible applications on aerospace vehicles subject to convective and radiative heating during atmospheric entry. The insulations described consist of ceramic fibers, insulations, and metal foils quilted together with ceramic thread. As these types of insulations have highly anisotropic properties, the total heat transfer characteristics must be determined. Data are presented on the thermal diffusivity and thermal conductivity of four types of MIs and are compared to the baseline Advanced Flexible Reusable Surface Insulation currently used on the Space Shuttle Orbiter. In addition, the high temperature properties of the fibers used in these MIs are discussed. The fibers investigated included silica and three types of aluminoborosilicate (ABS). Static tension tests were performed at temperatures up to 1200 C and the ultimate strain, tensile strength, and tensile modulus of single fibers were determined.
NASA Technical Reports Server (NTRS)
Meyers, Valerie
2014-01-01
NASA has accumulated considerable experience in offgas testing of whole modules prior to their docking with the International Space Station (ISS). Since 1998, the Space Toxicology Office has performed offgas testing of the Lab module, both MPLM modules, US Airlock, Node 1, Node 2, Node 3, ATV1, HTV1, and three commercial vehicles. The goal of these tests is twofold: first, to protect the crew from adverse health effects of accumulated volatile pollutants when they first enter the module on orbit, and secondly, to determine the additional pollutant load that the ISS air revitalization systems must handle. In order to predict the amount of accumulated pollutants, the module is sealed for at least 1/5th the worst-case time interval that could occur between the last clean air purge and final hatch closure on the ground and the crew's first entry on orbit. This time can range from a few days to a few months. Typically, triplicate samples are taken at pre-planned times throughout the test. Samples are then analyzed by gas chromatography and mass spectrometry, and the rate of accumulation of pollutants is then extrapolated over time. The analytical values are indexed against 7-day spacecraft maximum allowable concentrations (SMACs) to provide a prediction of the total toxicity value (T-value) at the time of first entry. This T-value and the toxicological effects of specific pollutants that contribute most to the overall toxicity are then used to guide first entry operations. Finally, results are compared to first entry samples collected on orbit to determine the predictive ability of the ground-based offgas test.
An Automated Method to Compute Orbital Re-Entry Trajectories with Heating Constraints
NASA Technical Reports Server (NTRS)
Zimmerman, Curtis; Dukeman, Greg; Hanson, John; Fogle, Frank R. (Technical Monitor)
2002-01-01
Determining how to properly manipulate the controls of a re-entering re-usable launch vehicle (RLV) so that it is able to safely return to Earth and land involves the solution of a two-point boundary value problem (TPBVP). This problem, which can be quite difficult, is traditionally solved on the ground prior to flight. If necessary, a nearly unlimited amount of time is available to find the "best" solution using a variety of trajectory design and optimization tools. The role of entry guidance during flight is to follow the pre-determined reference solution while correcting for any errors encountered along the way. This guidance method is both highly reliable and very efficient in terms of onboard computer resources. There is a growing interest in a style of entry guidance that places the responsibility of solving the TPBVP in the actual entry guidance flight software. Here there is very limited computer time. The powerful, but finicky, mathematical tools used by trajectory designers on the ground cannot in general be made to do the job. Nonconvergence or slow convergence can result in disaster. The challenges of designing such an algorithm are numerous and difficult. Yet the payoff (in the form of decreased operational costs and increased safety) can be substantial. This paper presents an algorithm that incorporates features of both types of guidance strategies. It takes an initial RLV orbital re-entry state and finds a trajectory that will safely transport the vehicle to a Terminal Area Energy Management (TAEM) region. During actual flight, the computed trajectory is used as the reference to be flown by a more traditional guidance method.
Development of Phased-Array Ultrasonic Testing Acceptability Criteria : (Phase II)
DOT National Transportation Integrated Search
2014-10-01
The preliminary technical approach and scan plans developed during phase I of this research was implemented on testing four butt-weld specimens. The ray path analysis carried out to develop the scan plans and the preliminary data analysis indicated t...
Development of Phased-Array Ultrasonic Testing Acceptability Criteria : (Phase I)
DOT National Transportation Integrated Search
2014-10-01
Phase I of this research effort involved a review of the current state of the art of weld inspection using PAUT, development of the preliminary technical approach to inspecting CJP butt welds with and without transitions, fabrication of suitable test...
IXV re-entry demonstrator: Mission overview, system challenges and flight reward
NASA Astrophysics Data System (ADS)
Angelini, Roberto; Denaro, Angelo
2016-07-01
The Intermediate eXperimental Vehicle (IXV) is an advanced re-entry demonstrator vehicle aimed to perform in-flight experimentation of atmospheric re-entry enabling systems and technologies. The IXV integrates key technologies at the system level, with significant advancements on Europe's previous flying test-beds. The project builds on previous achievements at system and technology levels, and provides a unique and concrete way of establishing and consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention is paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight. Following the extensive detailed design, manufacturing, qualification, integration and testing of the flight segment and ground segment elements, IXV has performed a full successful flight on February 11th 2015. After the launch with the VEGA launcher form the CSG spaceport in French Guyana, IXV has performed a full nominal mission ending with a successful splashdown in the Pacific Ocean. During Flight Phase, the IXV space and ground segments worked perfectly, implementing the whole flight program in line with the commanded maneuvers and trajectory prediction, performing an overall flight of 34.400 km including 7.600 km with hot atmospheric re-entry in automatic guidance, concluding with successful precision landing at a distance of ~1 km from the target, including the wind drift acting on the parachute from an altitude of 4.5 km.
Venus Atmospheric Maneuverable Platform (VAMP)
NASA Astrophysics Data System (ADS)
Griffin, K.; Sokol, D.; Lee, G.; Dailey, D.; Polidan, R.
2013-12-01
We have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In 2012 we initiated a feasibility study for a semi-buoyant maneuverable vehicle that could operate in the upper atmosphere of Venus. In this presentation we report results from the ongoing study and plans for future analyses and prototyping to advance and refine the concept. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.
Roles of Engineering Correlations in Hypersonic Entry Boundary Layer Transition Prediction
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; King, Rudolph A.; Kergerise, Michael A.; Berry, Scott A.; Horvath, Thomas J.
2010-01-01
Efforts to design and operate hypersonic entry vehicles are constrained by many considerations that involve all aspects of an entry vehicle system. One of the more significant physical phenomenon that affect entry trajectory and thermal protection system design is the occurrence of boundary layer transition from a laminar to turbulent state. During the Space Shuttle Return To Flight activity following the loss of Columbia and her crew of seven, NASA's entry aerothermodynamics community implemented an engineering correlation based framework for the prediction of boundary layer transition on the Orbiter. The methodology for this implementation relies upon the framework of correlation techniques that have been in use for several decades. What makes the Orbiter boundary layer transition correlation implementation unique is that a statistically significant data set was acquired in multiple ground test facilities, flight data exists to assist in establishing a better correlation and the framework was founded upon state of the art chemical nonequilibrium Navier Stokes flow field simulations. The basic tenets that guided the formulation and implementation of the Orbiter Return To Flight boundary layer transition prediction capability will be reviewed as a recommended format for future empirical correlation efforts. The validity of this approach has since been demonstrated by very favorable comparison of recent entry flight testing performed with the Orbiter Discovery, which will be graphically summarized. These flight data can provide a means to validate discrete protuberance engineering correlation approaches as well as high fidelity prediction methods to higher confidence. The results of these Orbiter engineering and flight test activities only serve to reinforce the essential role that engineering correlations currently exercise in the design and operation of entry vehicles. The framework of information-related to the Orbiter empirical boundary layer transition prediction capability will be utilized to establish a fresh perspective on this role, to illustrate how quantitative statistical evaluations of empirical correlations can and should be used to assess accuracy and to discuss what the authors' perceive as a recent heightened interest in the application of high fidelity numerical modeling of boundary layer transition. Concrete results will also be developed related to empirical boundary layer transition onset correlations. This will include assessment of the discrete protuberance boundary layer transition onset data assembled for the Orbiter configuration during post-Columbia Return To Flight. Assessment of these data will conclude that momentum thickness Reynolds number based correlations have superior coefficients and uncertainty in comparison to roughness height based Reynolds numbers, aka Re(sub k) or Re(sub kk). In addition, linear regression results from roughness height Reynolds number based correlations will be evaluated, leading to a hypothesis that non-continuum effects play a role in the processes associated with incipient boundary layer transition on discrete protuberances.
Inflatable re-entry shield ready for test in space
NASA Astrophysics Data System (ADS)
2000-02-01
The Russian spacecraft Mars'96 for instance, which was launched in November 1996 but failed to reach its nominal orbit, carried two modules designed to land on that planet's surface. For the last part of the mission, an Inflatable Re-Entry and Descent Technology (IRDT) had been deployed. The main components of this system were an aerobraking and thermally protective shell, a densely packed inflating material and a pressurisation system. This technology is now considered applicable to other re-entry scenarios such as payload recovery from the International Space Station, planetary landers for science missions and atmospheric research. A demonstration mission on 9/10 February 2000 will evaluate the performance of this new technology before it is offered to potential users. A Russian Soyuz/Fregat launcher, lifting off from the Kazakh steppe near Baikonur, will provide a low-cost flight opportunity for the test vehicle, which is equipped with the inflatable heat shield and a sensor package developed by DaimlerChrysler Aerospace (DASA). After four orbits around the Earth, the test vehicle will be powered by the launcher's upper stage to re-enter the atmosphere for a landing the next day about 1800 km north-west of the launch site. During the mission, a number of technical parameters such as pressure, temperature and deceleration will be monitored and the inflation of the re-entry/descent structure observed. "From this novel technology, we are expecting a major breakthrough, to make re-entry of small payloads more and more reliable, simpler and less costly than traditional systems", explains Dieter Kassing, ESA's IRDT project manager. One of the main instruments on board the test vehicle is a sensor device developed by the University of Stuttgart for the determination of oxygen partial pressure in low Earth orbit and during re-entry. The scientific/technical investigations will be led by Dr. Ulrich Schoettle (Stuttgart University). Lionel Marraffa (ESA) will lead the evaluation of the IRDT's aerothermodynamic behaviour. DASA was responsible for integration of the sensor package and is ESA's co-investigator for evaluation of the application aspects of this new technology. In addition to the sensor package, the mission will accommodate a collection of special stones to study the physical and chemical modifications in sedimentary rocks, i.e. simulated meteorites, during atmospheric infall. Co-investors of this experiment are Dr. André Brack (CNRS, Orleans) and Dr. Gero Kurat (Vienna University). This experiment is being co-sponsored by ESA. The Russian/European Starsem launch company and NPO Lavochkin, the Russian company that developed the original IRDT technology, will be responsible for launch, orbit control, re-entry and recovery of the sensor package under contract with the International Science & Technology Centre (Moscow). ESA, the European Commission and DASA are co-funding this contract, contributing $600K each.
NASA Astrophysics Data System (ADS)
Lee, Greg; Polidan, Ronald; Ross, Floyd; Sokol, Daniel; Warwick, Steve
2015-11-01
Northrop Grumman and L’Garde have continued the development of a hypersonic entry, semi-buoyant, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere.The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieves this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. The mass savings realized by eliminating the heavy aeroshell allows significantly more payload to be accommodated by the platform for additional science collection and return.In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the mid-cloud layer of Venus’ atmosphere at night.Titan also offers an attractive operating environment, allowing LEAF designs that can target low or medium altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface or high resolution surface imaging. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.
NASA Astrophysics Data System (ADS)
Roshi, D. Anish; Shillue, W.; Simon, B.; Warnick, K. F.; Jeffs, B.; Pisano, D. J.; Prestage, R.; White, S.; Fisher, J. R.; Morgan, M.; Black, R.; Burnett, M.; Diao, J.; Ruzindana, M.; van Tonder, V.; Hawkins, L.; Marganian, P.; Chamberlin, T.; Ray, J.; Pingel, N. M.; Rajwade, K.; Lorimer, D. R.; Rane, A.; Castro, J.; Groves, W.; Jensen, L.; Nelson, J. D.; Boyd, T.; Beasley, A. J.
2018-05-01
A new 1.4 GHz, 19-element, dual-polarization, cryogenic phased-array feed (PAF) radio astronomy receiver has been developed for the Robert C. Byrd Green Bank Telescope (GBT) as part of the Focal L-band Array for the GBT (FLAG) project. Commissioning observations of calibrator radio sources show that this receiver has the lowest reported beam-formed system temperature (T sys) normalized by aperture efficiency (η) of any phased-array receiver to date. The measured T sys/η is 25.4 ± 2.5 K near 1350 MHz for the boresight beam, which is comparable to the performance of the current 1.4 GHz cryogenic single-feed receiver on the GBT. The degradation in T sys/η at ∼4‧ (required for Nyquist sampling) and ∼8‧ offsets from the boresight is, respectively, ∼1% and ∼20% of the boresight value. The survey speed of the PAF with seven formed beams is larger by a factor between 2.1 and 7 compared to a single-beam system, depending on the observing application. The measured performance, both in frequency and offset from the boresight, qualitatively agrees with predictions from a rigorous electromagnetic model of the PAF. The astronomical utility of the receiver is demonstrated by observations of the pulsar B0329+54 and an extended H II region, the Rosette Nebula. The enhanced survey speed with the new PAF receiver will enable the GBT to carry out exciting new science, such as more efficient observations of diffuse, extended neutral hydrogen emission from galactic inflows and searches for fast radio bursts.
Experimental and Computational Aerothermodynamics of a Mars Entry Vehicle
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
1996-01-01
An aerothermodynamic database has been generated through both experimental testing and computational fluid dynamics simulations for a 70 deg sphere-cone configuration based on the NASA Mars Pathfinder entry vehicle. The aerothermodynamics of several related parametric configurations were also investigated. Experimental heat-transfer data were obtained at hypersonic test conditions in both a perfect gas air wind tunnel and in a hypervelocity, high-enthalpy expansion tube in which both air and carbon dioxide were employed as test gases. In these facilities, measurements were made with thin-film temperature-resistance gages on both the entry vehicle models and on the support stings of the models. Computational results for freestream conditions equivalent to those of the test facilities were generated using an axisymmetric/2D laminar Navier-Stokes solver with both perfect-gas and nonequilibrium thermochemical models. Forebody computational and experimental heating distributions agreed to within the experimental uncertainty for both the perfect-gas and high-enthalpy test conditions. In the wake, quantitative differences between experimental and computational heating distributions for the perfect-gas conditions indicated transition of the free shear layer near the reattachment point on the sting. For the high enthalpy cases, agreement to within, or slightly greater than, the experimental uncertainty was achieved in the wake except within the recirculation region, where further grid resolution appeared to be required. Comparisons between the perfect-gas and high-enthalpy results indicated that the wake remained laminar at the high-enthalpy test conditions, for which the Reynolds number was significantly lower than that of the perfect-gas conditions.
Entry, Descent, and Landing for Human Mars Missions
NASA Technical Reports Server (NTRS)
Munk, Michelle M.; DwyerCianciolo, Alicia M.
2012-01-01
One of the most challenging aspects of a human mission to Mars is landing safely on the Martian surface. Mars has such low atmospheric density that decelerating large masses (tens of metric tons) requires methods that have not yet been demonstrated, and are not yet planned in future Mars missions. To identify the most promising options for Mars entry, descent, and landing, and to plan development of the needed technologies, NASA's Human Architecture Team (HAT) has refined candidate methods for emplacing needed elements of the human Mars exploration architecture (such as ascent vehicles and habitats) on the Mars surface. This paper explains the detailed, optimized simulations that have been developed to define the mass needed at Mars arrival to accomplish the entry, descent, and landing functions. Based on previous work, technology options for hypersonic deceleration include rigid, mid-L/D (lift-to-drag ratio) aeroshells, and inflatable aerodynamic decelerators (IADs). The hypersonic IADs, or HIADs, are about 20% less massive than the rigid vehicles, but both have their technology development challenges. For the supersonic regime, supersonic retropropulsion (SRP) is an attractive option, since a propulsive stage must be carried for terminal descent and can be ignited at higher speeds. The use of SRP eliminates the need for an additional deceleration system, but SRP is at a low Technology Readiness Level (TRL) in that the interacting plumes are not well-characterized, and their effect on vehicle stability has not been studied, to date. These architecture-level assessments have been used to define the key performance parameters and a technology development strategy for achieving the challenging mission of landing large payloads on Mars.
NASA Astrophysics Data System (ADS)
Li, Shuang; Peng, Yuming
2012-01-01
In order to accurately deliver an entry vehicle through the Martian atmosphere to the prescribed parachute deployment point, active Mars entry guidance is essential. This paper addresses the issue of Mars atmospheric entry guidance using the command generator tracker (CGT) based direct model reference adaptive control to reduce the adverse effect of the bounded uncertainties on atmospheric density and aerodynamic coefficients. Firstly, the nominal drag acceleration profile meeting a variety of constraints is planned off-line in the longitudinal plane as the reference model to track. Then, the CGT based direct model reference adaptive controller and the feed-forward compensator are designed to robustly track the aforementioned reference drag acceleration profile and to effectively reduce the downrange error. Afterwards, the heading alignment logic is adopted in the lateral plane to reduce the crossrange error. Finally, the validity of the guidance algorithm proposed in this paper is confirmed by Monte Carlo simulation analysis.
Predicting Air Quality at First Ingress into Vehicles Visiting the International Space Station.
Romoser, Amelia A; Scully, Robert R; Limero, Thomas F; De Vera, Vanessa; Cheng, Patti F; Hand, Jennifer J; James, John T; Ryder, Valerie E
2017-02-01
NASA regularly performs ground-based offgas tests (OGTs), which allow prediction of accumulated volatile pollutant concentrations at first entry on orbit, on whole modules and vehicles scheduled to connect to the International Space Station (ISS). These data guide crew safety operations and allow for estimation of ISS air revitalization systems impact from additional pollutant load. Since volatiles released from vehicle, module, and payload materials can affect crew health and performance, prediction of first ingress air quality is important. To assess whether toxicological risk is typically over or underpredicted, OGT and first ingress samples from 10 vehicles and modules were compared. Samples were analyzed by gas chromatography and gas chromatography-mass spectrometry. The rate of pollutant accumulation was extrapolated over time. Ratios of analytical values and Spacecraft Maximum Allowable Concentrations were used to predict total toxicity values (T-values) at first entry. Results were also compared by compound. Frequently overpredicted was 2-butanone (9/10), whereas propanal (6/10) and ethanol (8/10) were typically underpredicted, but T-values were not substantially affected. Ingress sample collection delay (estimated by octafluoropropane introduced from ISS atmosphere) and T-value prediction accuracy correlated well (R2 = 0.9008), highlighting the importance of immediate air sample collection and accounting for ISS air dilution. Importantly, T-value predictions were conservative 70% of the time. Results also suggest that T-values can be normalized to octafluoropropane levels to adjust for ISS air dilution at first ingress. Finally, OGT and ingress sampling has allowed small leaks in vehicle fluid systems to be recognized and addressed.Romoser AA, Scully RR, Limero TF, De Vera V, Cheng PF, Hand JJ, James JT, Ryder VE. Predicting air quality at first ingress into vehicles visiting the International Space Station. Aerosp Med Hum Perform. 2017; 88(2):104-113.
Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles
NASA Technical Reports Server (NTRS)
Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett
2016-01-01
There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.
Surface Hold Advisor Using Critical Sections
NASA Technical Reports Server (NTRS)
Law, Caleb Hoi Kei (Inventor); Hsiao, Thomas Kun-Lung (Inventor); Mittler, Nathan C. (Inventor); Couluris, George J. (Inventor)
2013-01-01
The Surface Hold Advisor Using Critical Sections is a system and method for providing hold advisories to surface controllers to prevent gridlock and resolve crossing and merging conflicts among vehicles traversing a vertex-edge graph representing a surface traffic network on an airport surface. The Advisor performs pair-wise comparisons of current position and projected path of each vehicle with other surface vehicles to detect conflicts, determine critical sections, and provide hold advisories to traffic controllers recommending vehicles stop at entry points to protected zones around identified critical sections. A critical section defines a segment of the vertex-edge graph where vehicles are in crossing or merging or opposite direction gridlock contention. The Advisor detects critical sections without reference to scheduled, projected or required times along assigned vehicle paths, and generates hold advisories to prevent conflicts without requiring network path direction-of-movement rules and without requiring rerouting, rescheduling or other network optimization solutions.
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Cianciolo, Alicia D.; Powell, Richard W.; Simonsen, Lisa C.; Tolson, Robert H.
2005-01-01
A trade study was conducted that compared various entry, descent, and landing technologies and concepts for placing an 1,800 kg payload on the surface of Mars. The purpose of this trade study was to provide data, and make recommendations, that could be used in making decisions regarding which new technologies and concepts should be pursued. Five concepts were investigated, each using a different combination of new technologies: 1) a Baseline concept using the least new technologies, 2) Aerocapture and Entry from Orbit, 3) Inflatable Aeroshell, 4) Mid L/D Aeroshell-A (high ballistic coefficient), and 5) Mid L/D Aeroshell-B (low ballistic coefficient). All concepts were optimized to minimize entry mass subject to a common set of key requirements. These key requirements were: A) landing a payload mass of 1,800 kg, B) landing at an altitude 2.5 km above the MOLA areoid, C) landing with a descent rate of 2.5 m/s, and D) using a single launch vehicle available within the NASA Expendable Launch Vehicle Contract without resorting to in-space assembly. Additional constraints were implemented, some common to all concepts and others specific to the new technologies used. Among the findings of this study are the following observations. Concepts using blunt-body aeroshells (1, 2, and 3 above) had entry masses between 4,028 kg and 4,123 kg. Concepts using mid L/D aeroshells (4 and 5 above) were significantly heavier with entry masses of 5,292 kg (concept 4) and 4,812 kg (concept 5). This increased weight was mainly due to the aeroshell. Based on a comparison of the concepts it was recommended that: 1) re-qualified and/or improved TPS materials be developed, 2) large subsonic parachutes be qualified. Aerocapture was identified as a promising concept, but system issues beyond the scope of this study need to be investigated. Inflatable aeroshells were identified as a promising new technology, but they require additional technology maturation work. For the class of missions investigated in this trade study, mid L/D aeroshells were not competitive on an entry mass basis as compared to blunt-body aeroshells.
Annotated bibliography on highway travel exposure research methods
DOT National Transportation Integrated Search
1978-01-01
This report contains 87 entries relating to issues, methods, and results of research concerned with the measurement of highway travel exposure to the risk of accident, many focusing specifically on the measurement of vehicle miles traveled as the den...
40 CFR 86.091-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.091-7... Enforcement Officers or EPA authorized representatives may proceed ex parte to obtain a warrant whether or not...
Aerothermodynamic optimization of Earth entry blunt body heat shields for Lunar and Mars return
NASA Astrophysics Data System (ADS)
Johnson, Joshua E.
A differential evolutionary algorithm has been executed to optimize the hypersonic aerodynamic and stagnation-point heat transfer performance of Earth entry heat shields for Lunar and Mars return manned missions with entry velocities of 11 and 12.5 km/s respectively. The aerothermodynamic performance of heat shield geometries with lift-to-drag ratios up to 1.0 is studied. Each considered heat shield geometry is composed of an axial profile tailored to fit a base cross section. Axial profiles consist of spherical segments, spherically blunted cones, and power laws. Heat shield cross sections include oblate and prolate ellipses, rounded-edge parallelograms, and blendings of the two. Aerothermodynamic models are based on modified Newtonian impact theory with semi-empirical correlations for convection and radiation. Multi-objective function optimization is performed to determine optimal trade-offs between performance parameters. Objective functions consist of minimizing heat load and heat flux and maximizing down range and cross range. Results indicate that skipping trajectories allow for vehicles with L/D = 0.3, 0.5, and 1.0 at lunar return flight conditions to produce maximum cross ranges of 950, 1500, and 3000 km respectively before Qs,tot increases dramatically. Maximum cross range increases by ˜20% with an increase in entry velocity from 11 to 12.5 km/s. Optimal configurations for all three lift-to-drag ratios produce down ranges up to approximately 26,000 km for both lunar and Mars return. Assuming a 10,000 kg mass and L/D = 0.27, the current Orion configuration is projected to experience a heat load of approximately 68 kJ/cm2 for Mars return flight conditions. For both L/D = 0.3 and 0.5, a 30% increase in entry vehicle mass from 10,000 kg produces a 20-30% increase in Qs,tot. For a given L/D, highly-eccentric heat shields do not produce greater cross range or down range. With a 5 g deceleration limit and L/D = 0.3, a highly oblate cross section with an eccentricity of 0.968 produces a 35% reduction in heat load over designs with zero eccentricity due to the eccentric heat shield's greater drag area that allows the vehicle to decelerate higher in the atmosphere. In this case, the heat shield's drag area is traded off with volumetric efficiency while fulfilling the given set of mission requirements. Additionally, the high radius-of-curvature of the spherical segment axial profile provides the best combination of heat transfer and aerodynamic performance for both entry velocities and a 5 g deceleration limit.
Electronic System for Preventing Airport Runway Incursions
NASA Technical Reports Server (NTRS)
Dabney, Richard; Elrod, Susan
2009-01-01
A proposed system of portable illuminated signs, electronic monitoring equipment, and radio-communication equipment for preventing (or taking corrective action in response to) improper entry of aircraft, pedestrians, or ground vehicles onto active airport runways is described. The main overall functions of the proposed system would be to automatically monitor aircraft ground traffic on or approaching runways and to generate visible and/or audible warnings to affected pilots, ground-vehicle drivers, and control-tower personnel when runway incursions take place.
NASA Technical Reports Server (NTRS)
Foster, T. F.; Grifall, W. J.; Martindale, W.
1975-01-01
Results of wind tunnel heat transfer tests of 0.0175-scale Rockwell International Space Shuttle Vehicle configurations for orbiter alone, tank alone, and orbiter plus external tank are presented. Body flap shielding of SSME's during simulated entry was investigated. The tests were conducted at Mach 8 for thirteen Reynolds number.
STS-27 Atlantis, OV-104, terminal countdown demonstration test (TCDT) at KSC
NASA Technical Reports Server (NTRS)
1988-01-01
STS-27 Atlantis, Orbiter Vehicle (OV) 104, crewmembers participate in the terminal countdown demonstration test (TCDT) at the Kennedy Space Center (KSC). Standing in front of the M113 tracked rescue vehicle (armored personnel carrier (APC)) are left to right Mission Specialist (MS) William M. Shepherd, Pilot Guy S. Gardner, Commander Robert L. Gibson, MS Richard M. Mullane, and MS Jerry L. Ross. Crewmembers are wearing orange partial pressure or launch and entry suits (LESs).
NASA Technical Reports Server (NTRS)
Stone, Henry W.; Edmonds, Gary O.
1995-01-01
Remotely controlled mobile robot used to locate, characterize, identify, and eventually mitigate incidents involving hazardous-materials spills/releases. Possesses number of innovative features, allowing it to perform mission-critical functions such as opening and unlocking doors and sensing for hazardous materials. Provides safe means for locating and identifying spills and eliminates risks of injury associated with use of manned entry teams. Current version of vehicle, called HAZBOT III, also features unique mechanical and electrical design enabling vehicle to operate safely within combustible atmosphere.
2006-09-26
KENNEDY SPACE CENTER, FLA. - A ribbon-cutting at NASA's Kennedy Space Center officially reactivated the Operations and Checkout Building's west door as entry to the crew exploration vehicle (CEV) environment. At the podium is Center Director Jim Kennedy, who is discussing KSC's transition from shuttle to CEV in the rest of the decade. During the rest of the decade, KSC will transition from launching space shuttles to launching new vehicles in NASA’s Vision For Space Exploration. Photo credit: NASA/Kim Shiflett
Advances in modeling aerodynamic decelerator dynamics.
NASA Technical Reports Server (NTRS)
Whitlock, C. H.
1973-01-01
The Viking entry vehicle uses a lines-first type of deployment in which the parachute, packed in a deployment bag, gets ejected rearward from the vehicle by a mortar. As the bag moves rearward, first the lines are unfurled and then the canopy. An analysis of the unfurling process is conducted, giving attention to longitudinal and rotational dynamics. It is shown that analytical modeling of aerodynamic systems provides significant information for a better understanding of the physics of the deployment process.
New Approach for Thermal Protection System of a Probe During Entry
NASA Technical Reports Server (NTRS)
Yendler, Boris; Poffenbarger, Nathan; Patel, Amisha; Bhave, Ninad; Papadopoulos, Periklis
2005-01-01
One of the biggest challenges for any thermal protection system (TPS) of a probe is to provide a sufficient barrier for heat generated during descent in order to keep the temperature inside of the probe low enough to support operational temperature of equipment. Typically, such a goal is achieved by having the ceramic tiles and blankets like on the Space Shuttle, silicon based ablators, or metallic systems to cover the probe external surface. This paper discusses the development of an innovative technique for TPS of the probe. It is proposed to use a novel TPS which comprises thermal management of the entry vehicle. It includes: a) absorption of the heat during heat pick load by a Phase Change Material (PCM), b) separation of the compartment which contains PCM from the rest of the space vehicle by a gap with a high thermal resistance, c) maintaining temperature of the internal wall of s/c cabin temperature by transfer heat from the internal wall to the "cold" side of the vehicle and to reject heat into the space during the flight and on a ground, d) utilization of an advanced heat pipe, so called Loop Heat Pipe to transfer heat from the cabin internal wall to the cold side of the s/c and to reject the heat into environment outside of the vehicle. A Loop Heat Pipe is capable of transferring heat against gravity