Sample records for vehicle frames

  1. Torsion bar stabilizer for a vehicle and method for mounting the stabilizer on the vehicle frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauber, C.J.

    This patent describes a method of mounting a stabilizing mechanism on a vehicle frame which is supported and biased on a suspension assembly at opposite sides of the frame. The frame includes overload stops riveted to opposite sides of the frame and the suspension assembly includes bracket assemblies which secure the vehicle's suspension springs to a wheel axle. The method comprises the following steps: removing an overload stop from each side of the vehicle frame; mounting a modified overload stop on each side of the frame which serves as both an overload stop and a support for the stabilizing mechanismmore » wherein the modified overload stop is mounted into the holes in the frame left from the removal of the overload stop; removing from each side of the vehicle the top bracket from the bracket assembly; inserting a modified top bracket into each bracket assembly wherein the top bracket assembly is modified to couple with the stabilizing mechanism; and mounting on the modified overload stops a torsion bar whose opposite ends are coupled to the modified top bracket by way of linkages.« less

  2. Vehicle for carrying an object of interest

    DOEpatents

    Zollinger, W.T.; Ferrante, T.A.

    1998-10-13

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

  3. Vehicle for carrying an object of interest

    DOEpatents

    Zollinger, W. Thor; Ferrante, Todd A.

    1998-01-01

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

  4. Design and strength analysis of a fertilizing and soil covering vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Heng-Hui; Zhang, Zheng-Yong; Liu, Yang; Zhu, Li-Kai; Chen, En-Wei

    2018-03-01

    In this paper, a kind of fertilizing and soil covering vehicle is designed with compact structure, easy control and substituting manual work to conduct the operations including fertilizing and soil covering. In accordance with movement, structure and loading feature of fertilizing and soil covering vehicle, parametric modeling is carried out for the frame part of this fertilizing and soil covering vehicle to define boundary conditions such as load, constraint, etc. when the frame is under the working condition of normal full load. ANSYS software is used to produce finite element model of frame, and to analyze and solve the model, so as to obtain stress and stain variation diagram of each part of frame under working condition of normal full load. The calculation result shows that: the structure of frame is able to meet the strength requirement, and the maximum value of stress is located at joint between frame and external hinge, which should be appropriately improved in thickening way. In addition, a larger deformation occurring at damper on lower part of hopper may be reduced by adding rib plate at damper on lower part of hopper. The research result of this paper provides the theoretical basis for the design of frame of fertilizing and soil covering vehicle, which has deep theoretical significance and application value.

  5. Low floor mass transit vehicle

    DOEpatents

    Emmons, J Bruce [Beverly Hills, MI; Blessing, Leonard J [Rochester, MI

    2004-02-03

    A mass transit vehicle includes a frame structure that provides an efficient and economical approach to providing a low floor bus. The inventive frame includes a stiff roof panel and a stiff floor panel. A plurality of generally vertical pillars extend between the roof and floor panels. A unique bracket arrangement is disclosed for connecting the pillars to the panels. Side panels are secured to the pillars and carry the shear stresses on the frame. A unique seating assembly that can be advantageously incorporated into the vehicle taking advantage of the load distributing features of the inventive frame is also disclosed.

  6. Strength analysis and lightweight research of a fertilizing and soil covering vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Heng-Hui; Zhang, Zheng-Yong; Liu, Yang; Xu, Hai-Ming; Chen, En-Wei

    2018-03-01

    In this paper, parametric modeling is carried out for the frame part of a kind of fertilizing and soil covering vehicle to define boundary conditions such as load, constraint, etc. when the frame is under the working condition of normal full load. ANSYS software is used to produce finite element model of frame, and to analyze and solve the model, so as to obtain stress and stain variation diagram of each part of frame under working condition of normal full load. The calculation result shows that: the structure of frame is able to meet the strength requirement, and the maximum value of stress is located at joint between frame and external hinge, which should be appropriately improved in thickening way. According to the result of finite element, the scheme with size optimization is employed to design the frame in lightweight way. The research result of this paper provides the theoretical basis for the design of frame of fertilizing and soil covering vehicle, which has deep theoretical significance and application value.

  7. Vehicle speed detection based on gaussian mixture model using sequential of images

    NASA Astrophysics Data System (ADS)

    Setiyono, Budi; Ratna Sulistyaningrum, Dwi; Soetrisno; Fajriyah, Farah; Wahyu Wicaksono, Danang

    2017-09-01

    Intelligent Transportation System is one of the important components in the development of smart cities. Detection of vehicle speed on the highway is supporting the management of traffic engineering. The purpose of this study is to detect the speed of the moving vehicles using digital image processing. Our approach is as follows: The inputs are a sequence of frames, frame rate (fps) and ROI. The steps are following: First we separate foreground and background using Gaussian Mixture Model (GMM) in each frames. Then in each frame, we calculate the location of object and its centroid. Next we determine the speed by computing the movement of centroid in sequence of frames. In the calculation of speed, we only consider frames when the centroid is inside the predefined region of interest (ROI). Finally we transform the pixel displacement into a time unit of km/hour. Validation of the system is done by comparing the speed calculated manually and obtained by the system. The results of software testing can detect the speed of vehicles with the highest accuracy is 97.52% and the lowest accuracy is 77.41%. And the detection results of testing by using real video footage on the road is included with real speed of the vehicle.

  8. 23 CFR 658.5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... truck tractors, each connected by a saddle to the frame or fifth wheel of the forward vehicle of the..., deck, or plate mounted behind the cab and forward of the fifth wheel on the frame of the power unit of... saddle to the frame or fifth wheel of the vehicle in front of it. The saddle is a mechanism that connects...

  9. 23 CFR 658.5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... truck tractors, each connected by a saddle to the frame or fifth wheel of the forward vehicle of the..., deck, or plate mounted behind the cab and forward of the fifth wheel on the frame of the power unit of... saddle to the frame or fifth wheel of the vehicle in front of it. The saddle is a mechanism that connects...

  10. 23 CFR 658.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... truck tractors, each connected by a saddle to the frame or fifth wheel of the forward vehicle of the..., deck, or plate mounted behind the cab and forward of the fifth wheel on the frame of the power unit of... saddle to the frame or fifth wheel of the vehicle in front of it. The saddle is a mechanism that connects...

  11. 23 CFR 658.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... truck tractors, each connected by a saddle to the frame or fifth wheel of the forward vehicle of the..., deck, or plate mounted behind the cab and forward of the fifth wheel on the frame of the power unit of... saddle to the frame or fifth wheel of the vehicle in front of it. The saddle is a mechanism that connects...

  12. Remotely detected vehicle mass from engine torque-induced frame twisting

    NASA Astrophysics Data System (ADS)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.

    2017-06-01

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.

  13. Underwater image mosaicking and visual odometry

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz; Tangirala, Sekhar; Sorber, Scott

    2017-05-01

    This paper summarizes the results of studies in underwater odometery using a video camera for estimating the velocity of an unmanned underwater vehicle (UUV). Underwater vehicles are usually equipped with sonar and Inertial Measurement Unit (IMU) - an integrated sensor package that combines multiple accelerometers and gyros to produce a three dimensional measurement of both specific force and angular rate with respect to an inertial reference frame for navigation. In this study, we investigate the use of odometry information obtainable from a video camera mounted on a UUV to extract vehicle velocity relative to the ocean floor. A key challenge with this process is the seemingly bland (i.e. featureless) nature of video data obtained underwater which could make conventional approaches to image-based motion estimation difficult. To address this problem, we perform image enhancement, followed by frame to frame image transformation, registration and mosaicking/stitching. With this approach the velocity components associated with the moving sensor (vehicle) are readily obtained from (i) the components of the transform matrix at each frame; (ii) information about the height of the vehicle above the seabed; and (iii) the sensor resolution. Preliminary results are presented.

  14. Crash fatality risk and unibody versus body-on-frame structure in SUVs.

    PubMed

    Ossiander, Eric M; Koepsell, Thomas D; McKnight, Barbara

    2014-09-01

    In crashes between cars and SUVs, car occupants are more likely to be killed than if they crashed with another car. An increasing proportion of SUVs are built with unibody, rather than truck-like body-on-frame construction. Unibody SUVs are generally lighter, less stiff, and less likely to roll over than body-on-frame SUVs, but whether unibody structure affects risk of death in crashes is unknown. To determine whether unibody SUVs differ from body-on-frame SUVs in the danger they pose to occupants of other vehicles and in the self-protection they offer to their own occupants. Case-control study of crashes between one compact SUV and one other passenger vehicle in the US during 1995-2008, in which the SUV was model year 1996-2006. Cases were all decedents in fatal crashes, one control was selected from each non-fatal crash. Occupants of passenger vehicles that crashed with compact unibody SUVs were at 18% lower risk of death compared to those that crashed with compact body-on-frame SUVs (adjusted odds ratio 0.82 (95% confidence interval 0.73-0.94)). Occupants of compact unibody SUVs were also at lower risk of death compared to occupants of body-on-frame SUVs (0.86 (0.72-1.02)). In two-vehicle collisions involving compact SUVs, unibody structure was associated with lower risk of death both in occupants of other vehicles in the crash, and in SUVs' own occupants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Terrain interaction with the quarter scale beam walker

    NASA Technical Reports Server (NTRS)

    Chun, Wendell H.; Price, S.; Spiessbach, A.

    1990-01-01

    Frame walkers are a class of mobile robots that are robust and capable mobility platforms. Variations of the frame walker robot are in commercial use today. Komatsu Ltd. of Japan developed the Remotely Controlled Underwater Surveyor (ReCUS) and Normed Shipyards of France developed the Marine Robot (RM3). Both applications of the frame walker concept satisfied robotic mobility requirements that could not be met by a wheeled or tracked design. One vehicle design concept that falls within this class of mobile robots is the walking beam. A one-quarter scale prototype of the walking beam was built by Martin Marietta to evaluate the potential merits of utilizing the vehicle as a planetary rover. The initial phase of prototype rover testing was structured to evaluate the mobility performance aspects of the vehicle. Performance parameters such as vehicle power, speed, and attitude control were evaluated as a function of the environment in which the prototype vehicle was tested. Subsequent testing phases will address the integrated performance of the vehicle and a local navigation system.

  16. Terrain Interaction With The Quarter Scale Beam Walker

    NASA Astrophysics Data System (ADS)

    Chun, Wendell H.; Price, R. S.; Spiessbach, Andrew J.

    1990-03-01

    Frame walkers are a class of mobile robots that are robust and capable mobility platforms. Variations of the frame walker robot are in commercial use today. Komatsu Ltd. of Japan developed the Remotely Controlled Underwater Surveyor (ReCUS) and Normed Shipyards of France developed the Marine Robot (RM3). Both applications of the frame walker concept satisfied robotic mobility requirements that could not be met by a wheeled or tracked design. One vehicle design concept that falls within this class of mobile robots is the walking beam. A one-quarter scale prototype of the walking beam was built by Martin Marietta to evaluate the potential merits of utilizing the vehicle as a planetary rover. The initial phase of prototype rover testing was structured to evaluate the mobility performance aspects of the vehicle. Performance parameters such as vehicle power, speed, and attitude control were evaluated as a function of the environment in which the prototype vehicle was tested. Subsequent testing phases will address the integrated performance of the vehicle and a local navigation system.

  17. 49 CFR 396.3 - Inspection, repair, and maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... systematically inspected, repaired, and maintained, all motor vehicles and intermodal equipment subject to its... affect safety of operation, including but not limited to, frame and frame assemblies, suspension systems... cause to be maintained, records for each motor vehicle they control for 30 consecutive days. Intermodal...

  18. Car Transfer and Wheelchair Loading Techniques in Independent Drivers with Paraplegia

    PubMed Central

    Haubert, Lisa Lighthall; Mulroy, Sara J.; Hatchett, Patricia E.; Eberly, Valerie J.; Maneekobkunwong, Somboon; Gronley, Joanne K.; Requejo, Philip S.

    2015-01-01

    Car transfers and wheelchair (WC) loading are crucial for independent community participation in persons with complete paraplegia from spinal cord injury, but are complex, physically demanding, and known to provoke shoulder pain. This study aimed to describe techniques and factors influencing car transfer and WC loading for individuals with paraplegia driving their own vehicles and using their personal WCs. Sedans were the most common vehicle driven (59%). Just over half (52%) of drivers place their right leg only into the vehicle prior to transfer. Overall, the leading hand was most frequently placed on the driver’s seat (66%) prior to transfer and the trailing hand was most often place on the WC seat (48%). Vehicle height influenced leading hand placement but not leg placement such that drivers of higher profile vehicles were more likely to place their hand on the driver’s seat than those who drove sedans. Body lift time was negatively correlated with level of injury and age and positively correlated with vehicle height and shoulder abduction strength. Drivers who transferred with their leading hand on the steering wheel had significantly higher levels of shoulder pain than those who placed their hand on the driver’s seat or overhead. The majority of participants used both hands (62%) to load their WC frame, and overall, most loaded their frame into the back (62%) vs. the front seat. Sedan drivers were more likely to load their frame into the front seat than drivers of higher profile vehicles (53 vs. 17%). Average time to load the WC frame (10.7 s) was 20% of the total WC loading time and was not related to shoulder strength, frame weight, or demographic characteristics. Those who loaded their WC frame into the back seat had significantly weaker right shoulder internal rotators. Understanding car transfers and WC loading in independent drivers is crucial to prevent shoulder pain and injury and preserve community participation. PMID:26442253

  19. 49 CFR 393.201 - Frames.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Frames. 393.201 Section 393.201 Transportation... SAFE OPERATION Frames, Cab and Body Components, Wheels, Steering, and Suspension Systems § 393.201 Frames. (a) The frame or chassis of each commercial motor vehicle shall not be cracked, loose, sagging or...

  20. Remotely detected vehicle mass from engine torque-induced frame twisting

    DOE PAGES

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; ...

    2017-06-08

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less

  1. Remotely detected vehicle mass from engine torque-induced frame twisting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less

  2. Assessment of railway wagon suspension characteristics

    NASA Astrophysics Data System (ADS)

    Soukup, Josef; Skočilas, Jan; Skočilasová, Blanka

    2017-05-01

    The article deals with assessment of railway wagon suspension characteristics. The essential characteristics of a suspension are represented by the stiffness constants of the equivalent springs and the eigen frequencies of the oscillating movements in reference to the main central inertia axes of a vehicle. The premise of the experimental determination of these characteristic is the knowledge of the gravity center position and the knowledge of the main central inertia moments of the vehicle frame. The vehicle frame performs the general spatial movement when the vehicle moves. An analysis of the frame movement generally arises from Euler's equations which are commonly used for the description of the spherical movement. This solution is difficult and it can be simplified by applying the specific assumptions. The eigen frequencies solutions and solutions of the suspension stiffness are presented in the article. The solutions are applied on the railway and road vehicles with the simplifying conditions. A new method which assessed the characteristics is described in the article.

  3. 49 CFR 178.338-13 - Supporting and anchoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... whole or in part the structural member used in place of a motor vehicle frame, the cargo tank or the... vehicle frame, the tank or jacket must be supported by external cradles, load rings, or longitudinal... subchapter), multiplied by the following factors. The effects of fatigue must also be considered in the...

  4. 24 CFR 3280.902 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... mechanism, frame, running gear assembly, and lights. (b) Drawbar and coupling mechanism means the rigid assembly, (usually an A frame) upon which is mounted a coupling mechanism, which connects the manufactured home's frame to the towing vehicle. (c) Frame means the fabricated rigid substructure which provides...

  5. 24 CFR 3280.902 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... mechanism, frame, running gear assembly, and lights. (b) Drawbar and coupling mechanism means the rigid assembly, (usually an A frame) upon which is mounted a coupling mechanism, which connects the manufactured home's frame to the towing vehicle. (c) Frame means the fabricated rigid substructure which provides...

  6. 24 CFR 3280.902 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... mechanism, frame, running gear assembly, and lights. (b) Drawbar and coupling mechanism means the rigid assembly, (usually an A frame) upon which is mounted a coupling mechanism, which connects the manufactured home's frame to the towing vehicle. (c) Frame means the fabricated rigid substructure which provides...

  7. 24 CFR 3280.902 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... mechanism, frame, running gear assembly, and lights. (b) Drawbar and coupling mechanism means the rigid assembly, (usually an A frame) upon which is mounted a coupling mechanism, which connects the manufactured home's frame to the towing vehicle. (c) Frame means the fabricated rigid substructure which provides...

  8. A Probability-Based Algorithm Using Image Sensors to Track the LED in a Vehicle Visible Light Communication System.

    PubMed

    Huynh, Phat; Do, Trong-Hop; Yoo, Myungsik

    2017-02-10

    This paper proposes a probability-based algorithm to track the LED in vehicle visible light communication systems using a camera. In this system, the transmitters are the vehicles' front and rear LED lights. The receivers are high speed cameras that take a series of images of the LEDs. ThedataembeddedinthelightisextractedbyfirstdetectingthepositionoftheLEDsintheseimages. Traditionally, LEDs are detected according to pixel intensity. However, when the vehicle is moving, motion blur occurs in the LED images, making it difficult to detect the LEDs. Particularly at high speeds, some frames are blurred at a high degree, which makes it impossible to detect the LED as well as extract the information embedded in these frames. The proposed algorithm relies not only on the pixel intensity, but also on the optical flow of the LEDs and on statistical information obtained from previous frames. Based on this information, the conditional probability that a pixel belongs to a LED is calculated. Then, the position of LED is determined based on this probability. To verify the suitability of the proposed algorithm, simulations are conducted by considering the incidents that can happen in a real-world situation, including a change in the position of the LEDs at each frame, as well as motion blur due to the vehicle speed.

  9. Prognostic framing of stakeholders' subjectivities: A case of all-terrain vehicle management on state public lands

    Treesearch

    Stanley T. Asah; David N. Bengston; Keith Wendt; Leif DeVaney

    2012-01-01

    Management of all-terrain vehicle (ATV) use on Minnesota state forest lands has a contentious history and land managers are caught between ATV riders, nonmotorized recreationists, private landowners, and environmental advocates. In this paper, we demonstrate the usefulness of framing distinct perspectives about ATV management on Minnesota state public forests,...

  10. Vision-based object detection and recognition system for intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Ran, Bin; Liu, Henry X.; Martono, Wilfung

    1999-01-01

    Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.

  11. Vehicle-triggered video compression/decompression for fast and efficient searching in large video databases

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.; Wu, Wencheng

    2013-03-01

    Video cameras are widely deployed along city streets, interstate highways, traffic lights, stop signs and toll booths by entities that perform traffic monitoring and law enforcement. The videos captured by these cameras are typically compressed and stored in large databases. Performing a rapid search for a specific vehicle within a large database of compressed videos is often required and can be a time-critical life or death situation. In this paper, we propose video compression and decompression algorithms that enable fast and efficient vehicle or, more generally, event searches in large video databases. The proposed algorithm selects reference frames (i.e., I-frames) based on a vehicle having been detected at a specified position within the scene being monitored while compressing a video sequence. A search for a specific vehicle in the compressed video stream is performed across the reference frames only, which does not require decompression of the full video sequence as in traditional search algorithms. Our experimental results on videos captured in a local road show that the proposed algorithm significantly reduces the search space (thus reducing time and computational resources) in vehicle search tasks within compressed video streams, particularly those captured in light traffic volume conditions.

  12. Vehicle counting system using real-time video processing

    NASA Astrophysics Data System (ADS)

    Crisóstomo-Romero, Pedro M.

    2006-02-01

    Transit studies are important for planning a road network with optimal vehicular flow. A vehicular count is essential. This article presents a vehicle counting system based on video processing. An advantage of such system is the greater detail than is possible to obtain, like shape, size and speed of vehicles. The system uses a video camera placed above the street to image transit in real-time. The video camera must be placed at least 6 meters above the street level to achieve proper acquisition quality. Fast image processing algorithms and small image dimensions are used to allow real-time processing. Digital filters, mathematical morphology, segmentation and other techniques allow identifying and counting all vehicles in the image sequences. The system was implemented under Linux in a 1.8 GHz Pentium 4 computer. A successful count was obtained with frame rates of 15 frames per second for images of size 240x180 pixels and 24 frames per second for images of size 180x120 pixels, thus being able to count vehicles whose speeds do not exceed 150 km/h.

  13. Smart tunnel: Docking mechanism

    NASA Technical Reports Server (NTRS)

    Schliesing, John A. (Inventor); Edenborough, Kevin L. (Inventor)

    1989-01-01

    A docking mechanism is presented for the docking of a space vehicle to a space station comprising a flexible tunnel frame structure which is deployable from the space station. The tunnel structure comprises a plurality of series connected frame sections, one end section of which is attached to the space station and the other end attached to a docking module of a configuration adapted for docking in the payload bay of the space vehicle. The docking module is provided with trunnions, adapted for latching engagement with latches installed in the vehicle payload bay and with hatch means connectable to a hatch of the crew cabin of the space vehicle. Each frame section comprises a pair of spaced ring members, interconnected by actuator-attenuator devices which are individually controllable by an automatic control means to impart relative movement of one ring member to the other in six degrees of freedom of motion. The control means includes computer logic responsive to sensor signals of range and attitude information, capture latch condition, structural loads, and actuator stroke for generating commands to the onboard flight control system and the individual actuator-attenuators to deploy the tunnel to effect a coupling with the space vehicle and space station after coupling. A tubular fluid-impervious liner, preferably fabric, is disposed through the frame sections of a size sufficient to accommodate the passage of personnel and cargo.

  14. Single-Frame Terrain Mapping Software for Robotic Vehicles

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.

    2011-01-01

    This software is a component in an unmanned ground vehicle (UGV) perception system that builds compact, single-frame terrain maps for distribution to other systems, such as a world model or an operator control unit, over a local area network (LAN). Each cell in the map encodes an elevation value, terrain classification, object classification, terrain traversability, terrain roughness, and a confidence value into four bytes of memory. The input to this software component is a range image (from a lidar or stereo vision system), and optionally a terrain classification image and an object classification image, both registered to the range image. The single-frame terrain map generates estimates of the support surface elevation, ground cover elevation, and minimum canopy elevation; generates terrain traversability cost; detects low overhangs and high-density obstacles; and can perform geometry-based terrain classification (ground, ground cover, unknown). A new origin is automatically selected for each single-frame terrain map in global coordinates such that it coincides with the corner of a world map cell. That way, single-frame terrain maps correctly line up with the world map, facilitating the merging of map data into the world map. Instead of using 32 bits to store the floating-point elevation for a map cell, the vehicle elevation is assigned to the map origin elevation and reports the change in elevation (from the origin elevation) in terms of the number of discrete steps. The single-frame terrain map elevation resolution is 2 cm. At that resolution, terrain elevation from 20.5 to 20.5 m (with respect to the vehicle's elevation) is encoded into 11 bits. For each four-byte map cell, bits are assigned to encode elevation, terrain roughness, terrain classification, object classification, terrain traversability cost, and a confidence value. The vehicle s current position and orientation, the map origin, and the map cell resolution are all included in a header for each map. The map is compressed into a vector prior to delivery to another system.

  15. Removable Window System for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Grady, James P. (Inventor)

    2015-01-01

    A window system for a platform comprising a window pane, a retention frame, and a biasing system. The window pane may be configured to contact a sealing system. The retention frame may be configured to contact the sealing system and hold the window pane against the support frame. The biasing system may be configured to bias the retention frame toward the support frame while the support frame and the retention frame are in a configuration that holds the window pane. Removal of the biasing system may cause the retention frame and the window pane to be removable.

  16. Radar Sensing for Intelligent Vehicles in Urban Environments

    PubMed Central

    Reina, Giulio; Johnson, David; Underwood, James

    2015-01-01

    Radar overcomes the shortcomings of laser, stereovision, and sonar because it can operate successfully in dusty, foggy, blizzard-blinding, and poorly lit scenarios. This paper presents a novel method for ground and obstacle segmentation based on radar sensing. The algorithm operates directly in the sensor frame, without the need for a separate synchronised navigation source, calibration parameters describing the location of the radar in the vehicle frame, or the geometric restrictions made in the previous main method in the field. Experimental results are presented in various urban scenarios to validate this approach, showing its potential applicability for advanced driving assistance systems and autonomous vehicle operations. PMID:26102493

  17. Radar Sensing for Intelligent Vehicles in Urban Environments.

    PubMed

    Reina, Giulio; Johnson, David; Underwood, James

    2015-06-19

    Radar overcomes the shortcomings of laser, stereovision, and sonar because it can operate successfully in dusty, foggy, blizzard-blinding, and poorly lit scenarios. This paper presents a novel method for ground and obstacle segmentation based on radar sensing. The algorithm operates directly in the sensor frame, without the need for a separate synchronised navigation source, calibration parameters describing the location of the radar in the vehicle frame, or the geometric restrictions made in the previous main method in the field. Experimental results are presented in various urban scenarios to validate this approach, showing its potential applicability for advanced driving assistance systems and autonomous vehicle operations.

  18. Approach for counting vehicles in congested traffic flow

    NASA Astrophysics Data System (ADS)

    Tan, Xiaojun; Li, Jun; Liu, Wei

    2005-02-01

    More and more image sensors are used in intelligent transportation systems. In practice, occlusion is always a problem when counting vehicles in congested traffic. This paper tries to present an approach to solve the problem. The proposed approach consists of three main procedures. Firstly, a new algorithm of background subtraction is performed. The aim is to segment moving objects from an illumination-variant background. Secondly, object tracking is performed, where the CONDENSATION algorithm is used. This can avoid the problem of matching vehicles in successive frames. Thirdly, an inspecting procedure is executed to count the vehicles. When a bus firstly occludes a car and then the bus moves away a few frames later, the car will appear in the scene. The inspecting procedure should find the "new" car and add it as a tracking object.

  19. Weight optimization of an aerobrake structural concept for a lunar transfer vehicle

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.; Unal, Resit; Rowell, Lawrence F.; Rehder, John J.

    1992-01-01

    An aerobrake structural concept for a lunar transfer vehicle was weight optimized through the use of the Taguchi design method, finite element analyses, and element sizing routines. Six design parameters were chosen to represent the aerobrake structural configuration. The design parameters included honeycomb core thickness, diameter-depth ratio, shape, material, number of concentric ring frames, and number of radial frames. Each parameter was assigned three levels. The aerobrake structural configuration with the minimum weight was 44 percent less than the average weight of all the remaining satisfactory experimental configurations. In addition, the results of this study have served to bolster the advocacy of the Taguchi method for aerospace vehicle design. Both reduced analysis time and an optimized design demonstrated the applicability of the Taguchi method to aerospace vehicle design.

  20. Automatic vehicle counting using background subtraction method on gray scale images and morphology operation

    NASA Astrophysics Data System (ADS)

    Adi, K.; Widodo, A. P.; Widodo, C. E.; Pamungkas, A.; Putranto, A. B.

    2018-05-01

    Traffic monitoring on road needs to be done, the counting of the number of vehicles passing the road is necessary. It is more emphasized for highway transportation management in order to prevent efforts. Therefore, it is necessary to develop a system that is able to counting the number of vehicles automatically. Video processing method is able to counting the number of vehicles automatically. This research has development a system of vehicle counting on toll road. This system includes processes of video acquisition, frame extraction, and image processing for each frame. Video acquisition is conducted in the morning, at noon, in the afternoon, and in the evening. This system employs of background subtraction and morphology methods on gray scale images for vehicle counting. The best vehicle counting results were obtained in the morning with a counting accuracy of 86.36 %, whereas the lowest accuracy was in the evening, at 21.43 %. Differences in morning and evening results are caused by different illumination in the morning and evening. This will cause the values in the image pixels to be different.

  1. Minimum stiffness criteria for ring frame stiffeners of space launch vehicles

    NASA Astrophysics Data System (ADS)

    Friedrich, Linus; Schröder, Kai-Uwe

    2016-12-01

    Frame stringer-stiffened shell structures show high load carrying capacity in conjunction with low structural mass and are for this reason frequently used as primary structures of aerospace applications. Due to the great number of design variables, deriving suitable stiffening configurations is a demanding task and needs to be realized using efficient analysis methods. The structural design of ring frame stringer-stiffened shells can be subdivided into two steps. One, the design of a shell section between two ring frames. Two, the structural design of the ring frames such that a general instability mode is avoided. For sizing stringer-stiffened shell sections, several methods were recently developed, but existing ring frame sizing methods are mainly based on empirical relations or on smeared models. These methods do not mandatorily lead to reliable designs and in some cases the lightweight design potential of stiffened shell structures can thus not be exploited. In this paper, the explicit physical behaviour of ring frame stiffeners of space launch vehicles at the onset of panel instability is described using mechanical substitute models. Ring frame stiffeners of a stiffened shell structure are sized applying existing methods and the method suggested in this paper. To verify the suggested method and to demonstrate its potential, geometrically non-linear finite element analyses are performed using detailed finite element models.

  2. Exterior view of the ISS taken during a session of EVA

    NASA Image and Video Library

    2011-07-12

    ISS028-E-016274 (12 July 2011) --- Parked vehicles on the International Space Station are a constant scene, often numbering several at a time. Here, a Russian Soyuz is seen in the foreground and a Russian Progress supply ship in the background. The Permanent Multipurpose Module is at the bottom of the frame. Out of frame, another vehicle -- the space shuttle Atlantis --is also parked to the orbital outpost, as its four STS-135 crewmembers work inside the station and shuttle.

  3. Improving vehicle tracking rate and speed estimation in dusty and snowy weather conditions with a vibrating camera

    PubMed Central

    Yaghoobi Ershadi, Nastaran

    2017-01-01

    Traffic surveillance systems are interesting to many researchers to improve the traffic control and reduce the risk caused by accidents. In this area, many published works are only concerned about vehicle detection in normal conditions. The camera may vibrate due to wind or bridge movement. Detection and tracking of vehicles is a very difficult task when we have bad weather conditions in winter (snowy, rainy, windy, etc.), dusty weather in arid and semi-arid regions, at night, etc. Also, it is very important to consider speed of vehicles in the complicated weather condition. In this paper, we improved our method to track and count vehicles in dusty weather with vibrating camera. For this purpose, we used a background subtraction based strategy mixed with an extra processing to segment vehicles. In this paper, the extra processing included the analysis of the headlight size, location, and area. In our work, tracking was done between consecutive frames via a generalized particle filter to detect the vehicle and pair the headlights using the connected component analysis. So, vehicle counting was performed based on the pairing result, with Centroid of each blob we calculated distance between two frames by simple formula and hence dividing it by the time between two frames obtained from the video. Our proposed method was tested on several video surveillance records in different conditions such as dusty or foggy weather, vibrating camera, and in roads with medium-level traffic volumes. The results showed that the new proposed method performed better than our previously published method and other methods, including the Kalman filter or Gaussian model, in different traffic conditions. PMID:29261719

  4. Improving vehicle tracking rate and speed estimation in dusty and snowy weather conditions with a vibrating camera.

    PubMed

    Yaghoobi Ershadi, Nastaran

    2017-01-01

    Traffic surveillance systems are interesting to many researchers to improve the traffic control and reduce the risk caused by accidents. In this area, many published works are only concerned about vehicle detection in normal conditions. The camera may vibrate due to wind or bridge movement. Detection and tracking of vehicles is a very difficult task when we have bad weather conditions in winter (snowy, rainy, windy, etc.), dusty weather in arid and semi-arid regions, at night, etc. Also, it is very important to consider speed of vehicles in the complicated weather condition. In this paper, we improved our method to track and count vehicles in dusty weather with vibrating camera. For this purpose, we used a background subtraction based strategy mixed with an extra processing to segment vehicles. In this paper, the extra processing included the analysis of the headlight size, location, and area. In our work, tracking was done between consecutive frames via a generalized particle filter to detect the vehicle and pair the headlights using the connected component analysis. So, vehicle counting was performed based on the pairing result, with Centroid of each blob we calculated distance between two frames by simple formula and hence dividing it by the time between two frames obtained from the video. Our proposed method was tested on several video surveillance records in different conditions such as dusty or foggy weather, vibrating camera, and in roads with medium-level traffic volumes. The results showed that the new proposed method performed better than our previously published method and other methods, including the Kalman filter or Gaussian model, in different traffic conditions.

  5. 49 CFR 393.203 - Cab and body components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NECESSARY FOR SAFE OPERATION Frames, Cab and Body Components, Wheels, Steering, and Suspension Systems § 393... a roof exit. (b) Bolts or brackets securing the cab or the body of the vehicle to the frame shall...

  6. [Effects of frame of reference on the judgments of whole-body vibration intensity].

    PubMed

    Suzuki, H

    1997-02-01

    Although the concept of the term 'riding comfort' is ambiguous, in the present paper it means a perceptual experience derived from the vibrational factors of a running railway vehicle. When we regard riding comfort evaluation as a perceptual judgment process, we must consider that what is perceived is dependent not only on the physical properties of the stimuli, but also on the frame of reference. The purpose of the present study is to examine the effect of the frame on the judgments of vibration intensity in the anchoring effect paradigm. Using the four-axis vibration apparatus, we conducted experiments for eighty subjects, in which frequencies and lateral accelerations of vibrations were changed. As the result, we found a clear anchoring effect. This suggests that we must take into consideration effects of frame of reference in terms of riding comfort criterion of railway vehicles.

  7. Multitask assessment of roads and vehicles network (MARVN)

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Yi, Meng; Cai, Yiran; Blasch, Erik; Sullivan, Nichole; Sheaff, Carolyn; Chen, Genshe; Ling, Haibin

    2018-05-01

    Vehicle detection in wide area motion imagery (WAMI) has drawn increasing attention from the computer vision research community in recent decades. In this paper, we present a new architecture for vehicle detection on road using multi-task network, which is able to detect and segment vehicles, estimate their pose, and meanwhile yield road isolation for a given region. The multi-task network consists of three components: 1) vehicle detection, 2) vehicle and road segmentation, and 3) detection screening. Segmentation and detection components share the same backbone network and are trained jointly in an end-to-end way. Unlike background subtraction or frame differencing based methods, the proposed Multitask Assessment of Roads and Vehicles Network (MARVN) method can detect vehicles which are slowing down, stopped, and/or partially occluded in a single image. In addition, the method can eliminate the detections which are located at outside road using yielded road segmentation so as to decrease the false positive rate. As few WAMI datasets have road mask and vehicles bounding box anotations, we extract 512 frames from WPAFB 2009 dataset and carefully refine the original annotations. The resulting dataset is thus named as WAMI512. We extensively compare the proposed method with state-of-the-art methods on WAMI512 dataset, and demonstrate superior performance in terms of efficiency and accuracy.

  8. Proposed test method for and evaluation of wheelchair seating system (WCSS) crashworthiness.

    PubMed

    van Roosmalen, L; Bertocci, G; Ha, D R; Karg, P; Szobota, S

    2000-01-01

    Safety of motor vehicle seats is of great importance in providing crash protection to the occupant. An increasing number of wheelchair users use their wheelchairs as motor vehicle seats when traveling. A voluntary standard requires that compliant wheelchairs be dynamically sled impact tested. However, testing to evaluate the crashworthiness of add-on wheelchair seating systems (WCSS) independent of their wheelchair frame is not addressed by this standard. To address this need, this study developed a method to evaluate the crash-worthiness of WCSS with independent frames. Federal Motor Vehicle Safety Standards (FMVSS) 207 test protocols, used to test the strength of motor vehicle seats, were modified and used to test the strength of three WCSS. Forward and rearward loads were applied at the WCSS center of gravity (CGSS), and a moment was applied at the uppermost point of the seat back. Each of the three tested WCSS met the strength requirements of FMVSS 207. Wheelchair seat-back stiffness was also investigated and compared to motor vehicle seat-back stiffness.

  9. Study on the frame body structure of micro-electric vehicle based on frontal crash safety

    NASA Astrophysics Data System (ADS)

    Lu, Yaoquan; Zhang, Sanchuan

    2017-08-01

    In order to research the safety of skeleton type body of micro-electric vehicles in the frontal collision, the method of finite element modeling and simulation are used to analyze frame body that is fitted with the energy absorption structure, the simulation results show that On the basis of absorbing the most energy and the least of body acceleration, the absorbent structure parameters can be optimized, the optimized parameters are length 180 mm, wall thickness 3 mm and materials Q460.

  10. New Web Services for Broader Access to National Deep Submergence Facility Data Resources Through the Interdisciplinary Earth Data Alliance

    NASA Astrophysics Data System (ADS)

    Ferrini, V. L.; Grange, B.; Morton, J. J.; Soule, S. A.; Carbotte, S. M.; Lehnert, K.

    2016-12-01

    The National Deep Submergence Facility (NDSF) operates the Human Occupied Vehicle (HOV) Alvin, the Remotely Operated Vehicle (ROV) Jason, and the Autonomous Underwater Vehicle (AUV) Sentry. These vehicles are deployed throughout the global oceans to acquire sensor data and physical samples for a variety of interdisciplinary science programs. As part of the EarthCube Integrative Activity Alliance Testbed Project (ATP), new web services were developed to improve access to existing online NDSF data and metadata resources. These services make use of tools and infrastructure developed by the Interdisciplinary Earth Data Alliance (IEDA) and enable programmatic access to metadata and data resources as well as the development of new service-driven user interfaces. The Alvin Frame Grabber and Jason Virtual Van enable the exploration of frame-grabbed images derived from video cameras on NDSF dives. Metadata available for each image includes time and vehicle position, data from environmental sensors, and scientist-generated annotations, and data are organized and accessible by cruise and/or dive. A new FrameGrabber web service and service-driven user interface were deployed to offer integrated access to these data resources through a single API and allows users to search across content curated in both systems. In addition, a new NDSF Dive Metadata web service and service-driven user interface was deployed to provide consolidated access to basic information about each NDSF dive (e.g. vehicle name, dive ID, location, etc), which is important for linking distributed data resources curated in different data systems.

  11. An efficient background modeling approach based on vehicle detection

    NASA Astrophysics Data System (ADS)

    Wang, Jia-yan; Song, Li-mei; Xi, Jiang-tao; Guo, Qing-hua

    2015-10-01

    The existing Gaussian Mixture Model(GMM) which is widely used in vehicle detection suffers inefficiency in detecting foreground image during the model phase, because it needs quite a long time to blend the shadows in the background. In order to overcome this problem, an improved method is proposed in this paper. First of all, each frame is divided into several areas(A, B, C and D), Where area A, B, C and D are decided by the frequency and the scale of the vehicle access. For each area, different new learning rate including weight, mean and variance is applied to accelerate the elimination of shadows. At the same time, the measure of adaptive change for Gaussian distribution is taken to decrease the total number of distributions and save memory space effectively. With this method, different threshold value and different number of Gaussian distribution are adopted for different areas. The results show that the speed of learning and the accuracy of the model using our proposed algorithm surpass the traditional GMM. Probably to the 50th frame, interference with the vehicle has been eliminated basically, and the model number only 35% to 43% of the standard, the processing speed for every frame approximately has a 20% increase than the standard. The proposed algorithm has good performance in terms of elimination of shadow and processing speed for vehicle detection, it can promote the development of intelligent transportation, which is very meaningful to the other Background modeling methods.

  12. Trajectory Generation by Piecewise Spline Interpolation

    DTIC Science & Technology

    1976-04-01

    Lx) -a 0 + atx + aAx + x (21)0 1 2 3 and the coefficients are obtained from Equation (20) as ao m fl (22)i al " fi, (23) S3(fi + I f ) 2fj + fj+ 1 (24...reference frame to the vehicle fixed frame is pTO’ 0TO’ OTO’ *TO where a if (gZv0 - A >- 0 aCI (64) - azif (gzv0- AzvO < 0 These rotations may be...velocity frame axes directions (velocity frame from the output frame) aO, al , a 2 , a 3 Coefficients of the piecewise cubic polynomials [B ] Tridiagonal

  13. 33. DETAILS OF SAMPLE SUPPORT FRAME ASSEMLBY, LIFTING LUG, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. DETAILS OF SAMPLE SUPPORT FRAME ASSEMLBY, LIFTING LUG, AND SAMPLE CARRIER ROD. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-5. INEL INDEX CODE NUMBER: 075 0701 60 851 151979. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  14. Modelling of structural flexiblity in multibody railroad vehicle systems

    NASA Astrophysics Data System (ADS)

    Escalona, José L.; Sugiyama, Hiroyuki; Shabana, Ahmed A.

    2013-07-01

    This paper presents a review of recent research investigations on the computer modelling of flexible bodies in railroad vehicle systems. The paper will also discuss the influence of the structural flexibility of various components, including the wheelset, the truck frames, tracks, pantograph/catenary systems, and car bodies, on the dynamics of railroad vehicles. While several formulations and computer techniques for modelling structural flexibility are discussed in this paper, a special attention is paid to the floating frame of reference formulation which is widely used and leads to reduced-order finite-element models for flexible bodies by employing component modes synthesis techniques. Other formulations and numerical methods such as semi-analytical approaches, absolute nodal coordinate formulation, finite-segment method, boundary elements method, and discrete elements method are also discussed. This investigation is motivated by the fact that the structural flexibility can have a significant effect on the overall dynamics of railroad vehicles, ride comfort, vibration suppression and noise level reduction, lateral stability, track response to vehicle forces, stress analysis, wheel-rail contact forces, wear and crashworthiness.

  15. Structural optimization of a motorcycle chassis by pattern search algorithm

    NASA Astrophysics Data System (ADS)

    Scappaticci, Lorenzo; Bartolini, Nicola; Guglielmino, Eugenio; Risitano, Giacomo

    2017-08-01

    Changes to the technical regulations of the motorcycle racing world classes introduced the new Moto2 category. The vehicles are prototypes that use single-brand tyres and engines derived from series production, supplied by a single manufacturer. The stability and handling of the vehicle are highly dependent on the geometric properties of the chassis. The performance of a racing motorcycle chassis can be primarily evaluated in terms of weight and stiffness. The aim of this work is to maximize the performance of a tubular frame designed for a motorcycle racing in the Moto2 category. The goal is the implementation of an optimization algorithm that acts on the dimensions of the single pipes of the frame and involves the design of an objective function to minimize the weight of the frame by controlling its stiffnesses.

  16. Analysis of the mechanism of injury in non-fatal vehicle-to-pedestrian and vehicle-to-bicyclist frontal crashes in Sweden.

    PubMed

    Öman, Mikael; Fredriksson, Rikard; Bylund, Per-Olof; Björnstig, Ulf

    2016-12-01

    The aim of this paper is to analyse and compare injuries and injury sources in pedestrian and bicyclist non-fatal real-life frontal passengercar crashes, considering in what way pedestrian injury mitigation systems also might be adequate for bicyclists. Data from 203 non-fatal vehicle-to-pedestrian and vehicle-to-bicyclist crashes from 1997 through 2006 in a city in northern Sweden were analysed by use of the hospitals injury data base in addition to interviews with the injured. In vehicle-to-pedestrian crashes (n = 103) head and neck injuries were in general due to hitting the windscreen frame, while in vehicle-to-bicycle crashes (n = 100) head and neck injuries were typically sustained by ground impact. Abdominal, pelvic and thoracic injuries in pedestrians and thoracic injuries in bicyclists were in general caused by impacting the bonnet. In vehicle-to-pedestrian crashes, energy reducing airbags at critical impact points with low yielding ability on the car, as the bonnet and the windscreen frame, might reduce injuries. As vehicle-to-bicyclist crashes occurred mostly in good lighting conditions and visibility and the ground impact causing almost four times as many injuries as an impact to the different regions of the car, crash avoidance systems as well as separating bicyclists from motor traffic, may contribute to mitigate these injuries.

  17. 76 FR 34215 - Notice of Department of Energy-Quadrennial Technology Review Capstone Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Council of Advisors on Science & Technology. This Administration's national energy goals are to: Reduce..., 2011)], the Department requested public comment on the questions related to the DOE-QTR and the framing... framing document: In the mobile sector, these are vehicle efficiency, electrification, and advanced fuels...

  18. An Expert Vision System for Autonomous Land Vehicle Road Following.

    DTIC Science & Technology

    1988-01-01

    TR-138, Center for Automa- tioii Hesearch, University of Maryland, July 1985. ’Miinskyl Minsky , Marvin , "A Framework for Representing Knowledge", in...relationships, frames have been chosen to model objects , Minsky ]. A frame is a data structure containing a set of slots (or attributes) which en- capsulate

  19. Computer modeling and simulation analysis of bearing capacity after reinforcement of underground frame structure

    NASA Astrophysics Data System (ADS)

    Dai, Yan

    2018-04-01

    With the increasing development of urban scale, the application of the underground frame structure is becoming more and more extensive. But because of the unreasonable setup, it hinders public transportation. Therefore, it is an effective solution to reinforce the underground frame structure and make it bear the traffic load. The simulation calculation of the reinforced underground frame structure is carried out in this paper. The conclusion is obtained that the structure satisfies the load of vehicle and the load of the crowd.

  20. Red-light running violation prediction using observational and simulator data.

    PubMed

    Jahangiri, Arash; Rakha, Hesham; Dingus, Thomas A

    2016-11-01

    In the United States, 683 people were killed and an estimated 133,000 were injured in crashes due to running red lights in 2012. To help prevent/mitigate crashes caused by running red lights, these violations need to be identified before they occur, so both the road users (i.e., drivers, pedestrians, etc.) in potential danger and the infrastructure can be notified and actions can be taken accordingly. Two different data sets were used to assess the feasibility of developing red-light running (RLR) violation prediction models: (1) observational data and (2) driver simulator data. Both data sets included common factors, such as time to intersection (TTI), distance to intersection (DTI), and velocity at the onset of the yellow indication. However, the observational data set provided additional factors that the simulator data set did not, and vice versa. The observational data included vehicle information (e.g., speed, acceleration, etc.) for several different time frames. For each vehicle approaching an intersection in the observational data set, required data were extracted from several time frames as the vehicle drew closer to the intersection. However, since the observational data were inherently anonymous, driver factors such as age and gender were unavailable in the observational data set. Conversely, the simulator data set contained age and gender. In addition, the simulator data included a secondary (non-driving) task factor and a treatment factor (i.e., incoming/outgoing calls while driving). The simulator data only included vehicle information for certain time frames (e.g., yellow onset); the data did not provide vehicle information for several different time frames while vehicles were approaching an intersection. In this study, the random forest (RF) machine-learning technique was adopted to develop RLR violation prediction models. Factor importance was obtained for different models and different data sets to show how differently the factors influence the performance of each model. A sensitivity analysis showed that the factor importance to identify RLR violations changed when data from different time frames were used to develop the prediction models. TTI, DTI, the required deceleration parameter (RDP), and velocity at the onset of a yellow indication were among the most important factors identified by both models constructed using observational data and simulator data. Furthermore, in addition to the factors obtained from a point in time (i.e., yellow onset), valuable information suitable for RLR violation prediction was obtained from defined monitoring periods. It was found that period lengths of 2-6m contributed to the best model performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Robust object matching for persistent tracking with heterogeneous features.

    PubMed

    Guo, Yanlin; Hsu, Steve; Sawhney, Harpreet S; Kumar, Rakesh; Shan, Ying

    2007-05-01

    This paper addresses the problem of matching vehicles across multiple sightings under variations in illumination and camera poses. Since multiple observations of a vehicle are separated in large temporal and/or spatial gaps, thus prohibiting the use of standard frame-to-frame data association, we employ features extracted over a sequence during one time interval as a vehicle fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles. Furthermore, since our domain is aerial video tracking, in order to deal with poor image quality and large resolution and quality variations, our approach employs robust alignment and match measures for different stages of vehicle matching. Most notably, we employ a heterogeneous collection of features such as lines, points, and regions in an integrated matching framework. Heterogeneous features are shown to be important. Line and point features provide accurate localization and are employed for robust alignment across disparate views. The challenges of change in pose, aspect, and appearances across two disparate observations are handled by combining a novel feature-based quasi-rigid alignment with flexible matching between two or more sequences. However, since lines and points are relatively sparse, they are not adequate to delineate the object and provide a comprehensive matching set that covers the complete object. Region features provide a high degree of coverage and are employed for continuous frames to provide a delineation of the vehicle region for subsequent generation of a match measure. Our approach reliably delineates objects by representing regions as robust blob features and matching multiple regions to multiple regions using Earth Mover's Distance (EMD). Extensive experimentation under a variety of real-world scenarios and over hundreds of thousands of Confirmatory Identification (CID) trails has demonstrated about 95 percent accuracy in vehicle reacquisition with both visible and Infrared (IR) imaging cameras.

  2. The ac propulsion system for an electric vehicle, phase 1

    NASA Astrophysics Data System (ADS)

    Geppert, S.

    1981-08-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  3. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  4. Dynamic behavior of particles in spacecraft

    NASA Technical Reports Server (NTRS)

    Perrine, B. S.

    1981-01-01

    The behavior of particles relative to a spacecraft frame of reference was examined. Significant spatial excursions of particles in space can occur relative to the spacecraft frame of reference as a result of drag deceleration of the vehicle. These vehicle excursions tend to be large as time increases. Thus, if the particle is required to remain in a specified volume, constraints may be required. Thus, for example, in levitation experiments it may be extremely difficult to turn off the forces of constraint which keep the particles in a specified region. This means experiments which are sensitive to disturbances may be very difficult to perform if perturbation forces are required to be absent.

  5. Preliminary structural design of a lunar transfer vehicle aerobrake. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.

    1992-01-01

    An aerobrake concept for a Lunar transfer vehicle was weight optimized through the use of the Taguchi design method, structural finite element analyses and structural sizing routines. Six design parameters were chosen to represent the aerobrake structural configuration. The design parameters included honeycomb core thickness, diameter to depth ratio, shape, material, number of concentric ring frames, and number of radial frames. Each parameter was assigned three levels. The minimum weight aerobrake configuration resulting from the study was approx. half the weight of the average of all twenty seven experimental configurations. The parameters having the most significant impact on the aerobrake structural weight were identified.

  6. KENNEDY SPACE CENTER, FLA. - The camera installed on the aft skirt of a solid rocket booster is seen here, framed by the railing. The installation is in preparation for a vibration test of the Mobile Launcher Platform with SRBs and external tank mounted. The MLP will roll from one bay to another in the Vehicle Assembly Building.

    NASA Image and Video Library

    2003-11-06

    KENNEDY SPACE CENTER, FLA. - The camera installed on the aft skirt of a solid rocket booster is seen here, framed by the railing. The installation is in preparation for a vibration test of the Mobile Launcher Platform with SRBs and external tank mounted. The MLP will roll from one bay to another in the Vehicle Assembly Building.

  7. Design of cryogenic tanks for space vehicles shell structures analytical modeling

    NASA Technical Reports Server (NTRS)

    Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.

    1991-01-01

    The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.

  8. Online Aerial Terrain Mapping for Ground Robot Navigation.

    PubMed

    Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin

    2018-02-20

    This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle's overhead view to inform the ground vehicle's path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles.

  9. 75 FR 31836 - Withdrawal of Regulatory Guidance Concerning the Federal Motor Carrier Safety Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... intended to prohibit welding on vehicle frames constructed of certain types of steel that are weakened by the welding process. However, the previous wording was overly restrictive. To address this issue, paragraph (d) now allows welding which is performed in accordance with the vehicle manufacturer's...

  10. Evaluation of a metal fuselage frame selectively reinforced with filamentary composites for space shuttle application

    NASA Technical Reports Server (NTRS)

    Oken, S.; Skoumal, D. E.; Straayer, J. W.

    1974-01-01

    The development of metal structures reinforced with filamentary composites as a weight saving feature of the space shuttle components is discussed. A frame was selected for study that was representative of the type of construction used in the bulk frames of the orbiter vehicle. Theoretical and experimental investigations were conducted. Component tests were performed to evaluate the critical details used in the designs and to provide credibility to the weight saving results. A model frame was constructed of the reinforced metal material to provide a final evaluation of the construction under realistic load conditions.

  11. Harnessing Wind Power in Moving Reference Frames with Application to Vehicles

    NASA Astrophysics Data System (ADS)

    Goushcha, Oleg; Felicissimo, Robert; Danesh-Yazdi, Amir; Andreopoulos, Yiannis

    2017-11-01

    The extraction of wind power from unique configurations embedded in moving vehicles by using micro-turbine devices has been investigated. In such moving environments, the specific power of the air motion is much greater and less intermittent than in stationary wind turbines anchored to the ground in open atmospheric conditions. In a translational frame of reference, the rate of work done by the drag force acting on the wind harnessing device due the relative motion of air should be taken into account in the overall performance evaluation through an energy balance. A device with a venting tube has been tested that connects a high-pressure stagnating flow region in the front of the vehicle with a low-pressure region at its rear. Our analysis identified two key areas to focus on for potentially significant rewards: (1) Vehicles with high energy conversion efficiency which require a high mass flow rate through the venting duct, and (2) low efficiency vehicles with wakes, which will be globally affected by the introduction of the venting duct device in a manner that reduces their drag so that there is a net gain in power generation.

  12. Unique digital imagery interface between a silicon graphics computer and the kinetic kill vehicle hardware-in-the-loop simulator (KHILS) wideband infrared scene projector (WISP)

    NASA Astrophysics Data System (ADS)

    Erickson, Ricky A.; Moren, Stephen E.; Skalka, Marion S.

    1998-07-01

    Providing a flexible and reliable source of IR target imagery is absolutely essential for operation of an IR Scene Projector in a hardware-in-the-loop simulation environment. The Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) at Eglin AFB provides the capability, and requisite interfaces, to supply target IR imagery to its Wideband IR Scene Projector (WISP) from three separate sources at frame rates ranging from 30 - 120 Hz. Video can be input from a VCR source at the conventional 30 Hz frame rate. Pre-canned digital imagery and test patterns can be downloaded into stored memory from the host processor and played back as individual still frames or movie sequences up to a 120 Hz frame rate. Dynamic real-time imagery to the KHILS WISP projector system, at a 120 Hz frame rate, can be provided from a Silicon Graphics Onyx computer system normally used for generation of digital IR imagery through a custom CSA-built interface which is available for either the SGI/DVP or SGI/DD02 interface port. The primary focus of this paper is to describe our technical approach and experience in the development of this unique SGI computer and WISP projector interface.

  13. Vehicle autonomous localization in local area of coal mine tunnel based on vision sensors and ultrasonic sensors

    PubMed Central

    Yang, Wei; You, Kaiming; Li, Wei; Kim, Young-il

    2017-01-01

    This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel’s global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point’s plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel. PMID:28141829

  14. Vehicle autonomous localization in local area of coal mine tunnel based on vision sensors and ultrasonic sensors.

    PubMed

    Xu, Zirui; Yang, Wei; You, Kaiming; Li, Wei; Kim, Young-Il

    2017-01-01

    This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel's global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point's plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel.

  15. 77 FR 14495 - Certain New Pneumatic Off-the-Road Tires From the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... counterbalanced lift truck is a rigid framed, engine- powered machine with lift arms that has additional weight...; \\7\\ (2) construction vehicles and equipment, including earthmover articulated dump products, rigid frame haul trucks,\\8\\ front end loaders,\\9\\ dozers,\\10\\ lift trucks, straddle carriers,\\11\\ graders,\\12...

  16. Missions and Vehicle Concepts for Modern, Propelled, Lighter-than-Air Vehicles

    DTIC Science & Technology

    1985-02-01

    to he well-suited to airship capabilities, The third reason is the recent proposal of many new and innovative airship concepts, Finally, there is the...cases, have Initiated development of flight test and demonstration vehicles. It is the purpose of this volume to survey the results of these act vities...Several gas cells were arrayed longitudinally with the frame. These cells were free to expand and contract, thereby allowing for pressure and

  17. Dragging of inertial frames.

    PubMed

    Ciufolini, Ignazio

    2007-09-06

    The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth.

  18. 49 CFR 178.345-6 - Supports and anchoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.345-6 Supports and anchoring. (a) A cargo tank with a frame not integral to the cargo tank must have the tank secured by restraining devices to..., or turning of the cargo tank motor vehicle. The design calculations of the support elements must...

  19. 49 CFR 178.345-6 - Supports and anchoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.345-6 Supports and anchoring. (a) A cargo tank with a frame not integral to the cargo tank must have the tank secured by restraining devices to..., or turning of the cargo tank motor vehicle. The design calculations of the support elements must...

  20. 49 CFR 178.345-6 - Supports and anchoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.345-6 Supports and anchoring. (a) A cargo tank with a frame not integral to the cargo tank must have the tank secured by restraining devices to..., or turning of the cargo tank motor vehicle. The design calculations of the support elements must...

  1. 49 CFR 178.345-6 - Supports and anchoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.345-6 Supports and anchoring. (a) A cargo tank with a frame not integral to the cargo tank must have the tank secured by restraining devices to..., or turning of the cargo tank motor vehicle. The design calculations of the support elements must...

  2. Online Aerial Terrain Mapping for Ground Robot Navigation

    PubMed Central

    Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin

    2018-01-01

    This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle’s overhead view to inform the ground vehicle’s path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles. PMID:29461496

  3. Navy Littoral Combat Ship (LCS) Program: Oversight Issues and Options for Congress

    DTIC Science & Technology

    2007-07-18

    including unmanned vehicles (UVs). The basic version of the LCS, without any mission packages, is referred to as the LCS sea frame. The first LCS was...Littoral Combat Ship (LCS). The LCS is a small, fast ship that uses modular “plug-and- fight” mission packages, including unmanned vehicles (UVs). The...fight” mission packages, including unmanned vehicles (UVs). Rather than being a multimission ship like the Navy’s current large surface combatants

  4. Hybrid Vehicles

    DTIC Science & Technology

    2008-12-08

    chassis) by a ground strap, wire, welded connection or other suitable low-resistance mechanical connection. Case ground connectors routed from other...environment of a hybrid electric vehicle. Alternative temperature measuring transducers, e.g., thermistors , should be considered when thermocouples are...A 3. Is the ground connection to the chassis or frame mechanically secured by one of the following methods? a. Secured to a spot- welded

  5. Lunar Roving Vehicle gets speed workout by Astronaut John Young

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle (LRV) gets a speed workout by Astronaut John W. Young in the 'Grand Prix' run during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This view is a frame from motion picture film exposed by a 16mm Maurer camera held by Astronaut Charels M. Duke Jr.

  6. 49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... damage; and (3) Be installed in a manner that prevents it from contacting the vehicle's exhaust system or... connections. All connections for air, vacuum, or hydraulic braking systems shall be installed so as to ensure... may be used for connections between towed and towing motor vehicles or between the frame of a towed...

  7. Methods of Real Time Image Enhancement of Flash LIDAR Data and Navigating a Vehicle Using Flash LIDAR Data

    NASA Technical Reports Server (NTRS)

    Vanek, Michael D. (Inventor)

    2014-01-01

    A method for creating a digital elevation map ("DEM") from frames of flash LIDAR data includes generating a first distance R(sub i) from a first detector i to a first point on a surface S(sub i). After defining a map with a mesh THETA having cells k, a first array S(k), a second array M(k), and a third array D(k) are initialized. The first array corresponds to the surface, the second array corresponds to the elevation map, and the third array D(k) receives an output for the DEM. The surface is projected onto the mesh THETA, so that a second distance R(sub k) from a second point on the mesh THETA to the detector can be found. From this, a height may be calculated, which permits the generation of a digital elevation map. Also, using sequential frames of flash LIDAR data, vehicle control is possible using an offset between successive frames.

  8. Testing of Lightweight Fuel Cell Vehicles System at Low Speeds with Energy Efficiency Analysis

    NASA Astrophysics Data System (ADS)

    Mustaffa, Muhammad Rizuwan B.; Mohamed, Wan Ahmad Najmi B. Wan

    2013-12-01

    A fuel cell vehicle power train mini test bench was developed which consists of a 1 kW open cathode hydrogen fuel cell, electric motor, wheel, gearing system, DC/DC converter and vehicle control system (VCS). Energy efficiency identification and energy flow evaluation is a useful tool in identifying a detail performance of each component and sub-systems in a fuel cell vehicle system configuration. Three artificial traction loads was simulated at 30 kg, 40 kg and 50 kg force on a single wheel drive configuration. The wheel speed range reported here covers from idle to 16 km/h (low speed range) as a preliminary input in the research work frame. The test result shows that the system efficiency is 84.5 percent when the energy flow is considered from the fuel cell to the wheel and 279 watts of electrical power was produced by the fuel cell during that time. Dynamic system responses was also identified as the load increases beyond the motor traction capabilities where the losses at the converter and motor controller increased significantly as it tries to meet the motor traction power demands. This work is currently being further expanded within the work frame of developing a road-worthy fuel cell vehicle.

  9. Electrical leakage detection circuit

    DOEpatents

    Wild, Arthur

    2006-09-05

    A method is provided for detecting electrical leakage between a power supply and a frame of a vehicle or machine. The disclosed method includes coupling a first capacitor between a frame and a first terminal of a power supply for a predetermined period of time. The current flowing between the frame and the first capacitor is limited to a predetermined current limit. It is determined whether the voltage across the first capacitor exceeds a threshold voltage. A first output signal is provided when the voltage across the capacitor exceeds the threshold voltage.

  10. Aluminum automotive space frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    Design of aluminum structures is to a new topic. Aircraft makers have successfully solved difficult structural problems with a high degree of understanding and reliability. Other transportation modes such as trucks, trailers, and railcars have faced structural problems with some emphasis on high- and low-cycle fatigue of welded aluminum structures. However, the automotive market places stringent engineering demands on materials and superimposes demanding cost constraints. A project was instituted at Reynolds Metals Co. to investigate the opportunities for the cost-effective application of aluminum to automotive spaceframes. Several areas were recognized as key to the success of this application. They were:more » equivalent or superior structural stiffness of the assembly to existing steel unibody and/or steel spaceframe vehicles; effective joining of spaceframe members; equivalent or superior crashworthiness of the assembly; weight savings; flexibility; and low-cost approach aimed at effective manufacturing. To gain experience with the key aspects in a practical environment, the experience of current builders of steel tube frame chassis was explored. These chassis are typically used in low-volume vehicles requiring torsional stiffness, excellent crashworthiness, and exterior body-style flexibility. A model was developed using finite element methods that accurately predicts mass and stiffness of frames. An effective aluminum space frame was generated which was 7.5% stiffer and more than 20% lighter than the steel frame, with stresses kept below the fatigue limit for aluminum welds.« less

  11. Progressively Communicating Rich Telemetry from Autonomous Underwater Vehicles via Relays

    DTIC Science & Technology

    2012-06-01

    wireless sensor networks using an autonomous underwater vehicle. In Robotics and...communication over multiple kilometers. In addition to wireless com- munication methods , the recently developed Nereus[12] vehicle at WHOI spools out...A P T U R E M e ss a g e s P ro ce ss / T h re a d M a n a g e m e n t C o n fi g u ra ti o n P a rs in g Network Manager Frame Scheduling

  12. Acoustic guide for noise-transmission testing of aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, Rimas (Inventor)

    1987-01-01

    Selective testing of aircraft or other vehicular components without requiring disassembly of the vehicle or components was accomplished by using a portable guide apparatus. The device consists of a broadband noise source, a guide to direct the acoustic energy, soft sealing insulation to seal the guide to the noise source and to the vehicle component, and noise measurement microphones, both outside the vehicle at the acoustic guide output and inside the vehicle to receive attenuated sound. By directing acoustic energy only to selected components of a vehicle via the acoustic guide, it is possible to test a specific component, such as a door or window, without picking up extraneous noise which may be transmitted to the vehicle interior through other components or structure. This effect is achieved because no acoustic energy strikes the vehicle exterior except at the selected component. Also, since the test component remains attached to the vehicle, component dynamics with vehicle frame are not altered.

  13. Four-Wheel Vehicle Suspension System

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.

    1990-01-01

    Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension of chassis of vehicle while maintaining four-point contact with uneven terrain. Provides stability against tipping of four-point rectangular base, without rocking contact to which rigid four-wheel frame susceptible. Similar to six-wheel suspension system described in "Articulated Suspension Without Springs" (NPO-17354).

  14. 49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... may be used for connections between towed and towing motor vehicles or between the frame of a towed... in a spring guard or similar device which prevents the tubing from kinking at the fitting at which it is attached to the vehicle; and (2) The spring guard or similar device has at least 51 mm (2 inches...

  15. A study on obstacle detection method of the frontal view using a camera on highway

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Quang; Park, Jeonghyeon; Seo, Changjun; Kim, Heungseob; Boo, Kwangsuck

    2018-03-01

    In this work, we introduce an approach to detect vehicles for driver assistance, or warning system. For driver assistance system, it must detect both lanes (left and right side lane), and discover vehicles ahead of the test vehicle. Therefore, in this study, we use a camera, it is installed on the windscreen of the test vehicle. Images from the camera are used to detect three lanes, and detect multiple vehicles. In lane detection, line detection and vanishing point estimation are used. For the vehicle detection, we combine the horizontal and vertical edge detection, the horizontal edge is used to detect the vehicle candidates, and then the vertical edge detection is used to verify the vehicle candidates. The proposed algorithm works with of 480 × 640 image frame resolution. The system was tested on the highway in Korea.

  16. An innovative multi dof TMD system for motorcycle handlebars designed to reduce structural vibrations and human exposure

    NASA Astrophysics Data System (ADS)

    Agostoni, S.; Cheli, F.; Leo, E.; Pezzola, M.

    2012-08-01

    Motor vehicle ride comfort is mainly affected by reciprocating engine inertia unbalances. These forces are transmitted to the driver through the main frame, the engine mounts, and the auxiliary sub systems—all components with which he physically comes into contact. On-road traction vehicle engines are mainly characterized by transient exercise. Thus, an excitation frequency range from 800 RPM (≈15 Hz for stationary vehicles) up to 15,000 RPM (≈250 Hz as a cut off condition) occurs. Several structural resonances are induced by the unbalancing forces spectrum, thus exposing the driver to amplified vibrations. The aim of this research is to reduce driver vibration exposure, by acting on the modal response of structures with which the driver comes into contact. An experimental methodology, capable of identifying local vibration modes was developed. The application of this methodology on a reference vehicle allows us to detect if/when/how the above mentioned resonances are excited. Numerical models were used to study structural modifications. In this article, a handlebar equipped with an innovative multi reciprocating tuned mass damper was optimized. All structural modifications were designed, developed and installed on a vehicle. Modal investigations were then performed in order to predict modification efficiency. Furthermore, functional solution efficiency was verified during sweep tests performed on a target vehicle, by means of a roller bench capable of replicating on-road loads. Three main investigation zones of the vehicle were detected and monitored using accelerometers: (1) engine mounts, to characterize vibration emissions; (2) bindings connecting the engine to the frame, in order to detect vibration transfer paths, with particular attention being paid to local dynamic amplifications due to compliances and (3) the terminal components with which the driver comes into contact.

  17. Road simulation for four-wheel vehicle whole input power spectral density

    NASA Astrophysics Data System (ADS)

    Wang, Jiangbo; Qiang, Baomin

    2017-05-01

    As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.

  18. Lunar Roving Vehicle gets speed workout by Astronaut John Young

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle (LRV) gets a speed workout by Astronaut John W. Young in the 'Grand Prix' run during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. Note the front wheels of the LRV are off the ground. This view is a frame from motion picture film exposed by a 16mm Maurer camera held by Astronaut Charles M. Duke Jr.

  19. Base flow investigation of the Apollo AS-202 Command Module

    NASA Astrophysics Data System (ADS)

    Walpot, Louis M. G.; Wright, Michael J.; Noeding, Peter; Schrijer, Ferry

    2012-01-01

    A major contributor to the overall vehicle mass of re-entry vehicles is the afterbody thermal protection system. This is due to the large acreage (equal or bigger than that of the forebody) to be protected. The present predictive capabilities for base flows are comparatively lower than those for windward flowfields and offer therefore a substantial potential for improving the design of future re-entry vehicles. To that end, it is essential to address the accuracy of high fidelity CFD tools exercised in the US and EU, which motivates a thorough investigation of the present status of hypersonic flight afterbody heating. This paper addresses the predictive capabilities of afterbody flow fields of re-entry vehicles investigated in the frame of the NATO/RTO-RTG-043 task group. First, the verification of base flow topologies on the basis of available wind-tunnel results performed under controlled supersonic conditions (i.e. cold flows devoid of reactive effects) is performed. Such tests address the detailed characterization of the base flow with particular emphasis on separation/reattachment and their relation to Mach number effects. The tests have been performed on an Apollo-like re-entry capsule configuration. Second, the tools validated in the frame of the previous effort are exercised and appraised against flight-test data collected during the Apollo AS-202 re-entry.

  20. Lunar material transport vehicle

    NASA Technical Reports Server (NTRS)

    Fisher, Charles D.; Lyons, Douglas; Wilkins, W. Allen, Jr.; Whitehead, Harry C., Jr.

    1988-01-01

    The proposed vehicle, the Lunar Material Transport Vehicle (LMTV), has a mission objective of efficient lunar soil material transport. The LMTV was designed to meet a required set of performance specifications while operating under a given set of constraints. The LMTV is essentially an articulated steering, double-ended dump truck. The vehicle moves on four wheels and has two identical chassis halves. Each half consists of a chassis frame, a material bucket, two wheels with integral curvilinear synchronous motors, a fuel cell and battery arrangement, an electromechanically actuated dumping mechanism, and a powerful microprocessor. The vehicle, as designed, is capable of transporting up to 200 cu ft of material over a one mile round trip per hour. The LMTV is capable of being operated from a variety of sources. The vehicle has been designed as simply as possible with attention also given to secondary usage of components.

  1. STS-43 TDRS-E during preflight processing at KSC's VPF

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-43 Tracking and Data Relay Satellite E (TDRS-E) undergoes preflight processing in the Kennedy Space Center's (KSC's) Vertical Processing Facility (VPF) before being loaded into a payload canister for transfer to the launch pad and eventually into Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB). This side of the TDRS-E will rest at the bottom of the PLB therefore the airborne support equipment (ASE) forward frame keel pin (at center of spacecraft) and the umbilical boom running between the two ASE frames are visible. The solar array panels are covered with protective TRW shields. Above the shields the stowed antenna and solar sail are visible. The inertial upper stage (IUS) booster is the white portion of the spacecraft and rests in the ASE forward frame and ASE aft frame tilt actuator (AFTA) frame (at the bottom of the IUS). The IUS booster nozzle extends beyond the AFTA frame. View provided by KSC with alternate number KSC-91PC-1079.

  2. Analytical Finite Element Simulation Model for Structural Crashworthiness Prediction

    DOT National Transportation Integrated Search

    1974-02-01

    The analytical development and appropriate derivations are presented for a simulation model of vehicle crashworthiness prediction. Incremental equations governing the nonlinear elasto-plastic dynamic response of three-dimensional frame structures are...

  3. TANDIR: projectile warning system using uncooled bolometric technology

    NASA Astrophysics Data System (ADS)

    Horovitz-Limor, Z.; Zahler, M.

    2007-04-01

    Following the demand for affordable, various range and light-weight protection against ATGM's, Elisra develops a cost-effective passive IR system for ground vehicles. The system is based on wide FOV uncooled bolometric sensors with full azimuth coverage and a lightweight processing & control unit. The system design is based on the harsh environmental conditions. The basic algorithm discriminates the target from its clutter and predicts the time to impact (TTI) and the target aiming direction with relation to vehicle. The current detector format is 320*240 pixels and frame rate is 60 Hz, Spectral response is on Far Infrared (8-14μ). The digital video output has 14bit resolution & wide dynamic range. Future goal is to enhance detection performance by using large format uncooled detector (640X480) with improved sensitivity and higher frame rates (up to 120HZ).

  4. A parallel implementation of a multisensor feature-based range-estimation method

    NASA Technical Reports Server (NTRS)

    Suorsa, Raymond E.; Sridhar, Banavar

    1993-01-01

    There are many proposed vision based methods to perform obstacle detection and avoidance for autonomous or semi-autonomous vehicles. All methods, however, will require very high processing rates to achieve real time performance. A system capable of supporting autonomous helicopter navigation will need to extract obstacle information from imagery at rates varying from ten frames per second to thirty or more frames per second depending on the vehicle speed. Such a system will need to sustain billions of operations per second. To reach such high processing rates using current technology, a parallel implementation of the obstacle detection/ranging method is required. This paper describes an efficient and flexible parallel implementation of a multisensor feature-based range-estimation algorithm, targeted for helicopter flight, realized on both a distributed-memory and shared-memory parallel computer.

  5. Personnel emergency carrier vehicle

    NASA Technical Reports Server (NTRS)

    Owens, Lester J. (Inventor); Fedor, Otto H. (Inventor)

    1987-01-01

    A personnel emergency carrier vehicle is disclosed which includes a vehicle frame supported on steerable front wheels and driven rear wheels. A supply of breathing air is connected to quick connect face mask coupling and umbilical cord couplings for supplying breathing air to an injured worker or attendant either with or without a self-contained atmospheric protection suit for protection against hazardous gases at an accident site. A non-sparking hydraulic motion is utilized to drive the vehicle and suitable direction and throttling controls are provided for controlling the delivery of a hydraulic driving fluid from a pressurized hydraulic fluid accumulator. A steering axis is steerable through a handle to steer the front wheels through a linkage assembly.

  6. The effect of load and thickness variation on stress analysis of monocoque frame of electric city car using FEM

    NASA Astrophysics Data System (ADS)

    Makhrojan, Agus; Suprihadi, Agus; Budi, Sigit Setijo; Jamari, J.; Ismail, Rifky

    2017-01-01

    The electric car is transportation which growing and constantly put through improvisation vehicle design. One of the structural components of the electric car which holds a major role is a frame. The purpose of this study is to get monocoque frame design which lightweight and powerful for a city car with two passengers that was able to improve the efficiency of the battery voltage source. Monocoque frame should be able to accept the normal loads such as the weight of batteries, passenger, and body. The most important thing, monocoque frame should also be able to protect the driver and passengers in the event of a collision. Mild steel was chosen for the design because it is easy to obtain and reasonable price as well as easy to shaped for two-seater electric car. FEM (finite element method) was used to determine stress determination and rigidity of the monocoque frame when receiving a static load. The results show that the monocoque frame was still able to withstand the required loads with minimal deflection.

  7. Cryogenic performance of slotted brazed Rene 41 honeycomb panels

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Swegle, A. R.

    1982-01-01

    Two brazed Rene 41 honeycomb panels that would incorporate a frame element were designed, fabricated and tested. The panels were representative of the lower surface of an advanced space transportation vehicle. The first panel was a two span panel supported by a center frame and on edges parallel to it. The second panel was a two span panel supported by a center frame and on edges parallel to it. The second panel was a three span panel supported on two frames and on edges parallel to the frames. Each panel had its outer skin slotted to reduce the thermal stresses of the panel skins. The first panel was tested under simulated boost conditions that included liquid hydrogen exposure of the frame and inner skin and radiant heat to 478K on the outer skins. The first panel was tested to investigate the effect of thermal stresses in skins and core caused by the panel being restrained by a cold integral frame and to observe the effects of frost formation and possible liquid air development in and around outer skin slots.

  8. Mitigation of Explosive Blast Effects on Vehicle Floorboard

    DTIC Science & Technology

    2008-07-01

    dimensions as the first frame. The floorboard, hull, and frames are fastened to one another by eighteen 3/8 in stainless steel bolts, as shown in Figure...1.5]. When the buried charge is detonated, soil and hot gas are ejected from the sand bed creating a crater . The soil is ejected at supersonic...a short interval of time. The ejected sand, the resulting crater , and the target can form a sort of enclosure around the high pressure explosive

  9. Earth Observations taken by Expedition 41 crewmember

    NASA Image and Video Library

    2014-09-13

    ISS041-E-013683 (13 Sept. 2014) --- Photographed with a mounted automated camera, this is one of a number of images featuring the European Space Agency?s Automated Transfer Vehicle (ATV-5 or Georges Lemaitre) docked with the International Space Station. Except for color changes, the images are almost identical. The variation in color from frame to frame is due to the camera?s response to the motion of the orbital outpost, relative to the illumination from the sun.

  10. Earth Observations taken by Expedition 41 crewmember

    NASA Image and Video Library

    2014-09-13

    ISS041-E-013687 (13 Sept. 2014) --- Photographed with a mounted automated camera, this is one of a number of images featuring the European Space Agency?s Automated Transfer Vehicle (ATV-5 or Georges Lemaitre) docked with the International Space Station. Except for color changes, the images are almost identical. The variation in color from frame to frame is due to the camera?s response to the motion of the orbital outpost, relative to the illumination from the sun.

  11. Earth Observations taken by Expedition 41 crewmember

    NASA Image and Video Library

    2014-09-13

    ISS041-E-013693 (13 Sept. 2014) --- Photographed with a mounted automated camera, this is one of a number of images featuring the European Space Agency?s Automated Transfer Vehicle (ATV-5 or Georges Lemaitre) docked with the International Space Station. Except for color changes, the images are almost identical. The variation in color from frame to frame is due to the camera?s response to the motion of the orbital outpost, relative to the illumination from the sun.

  12. Dynamics of omnidirectional unmanned rescue vehicle with mecanum wheels

    NASA Astrophysics Data System (ADS)

    Typiak, Andrzej; Łopatka, Marian Janusz; Rykała, Łukasz; Kijek, Magdalena

    2018-01-01

    The work presents the dynamic equations of motion of a unmanned six-wheeled vehicle with mecanum wheels for rescue applications derived with the of Lagrange equations of the second kind with multipliers. Analysed vehicle through using mecanum wheels has three degrees of freedom and can move on a flat ground in any direction with any configuration of platform's frame. In order to derive dynamic equations of motion of mentioned object, kinetic potential of the system and generalized forces affecting the system are determined. The results of a solution of inverse dynamics problem are also published.

  13. Application of the Augmented Operator Function Model for Developing Cognitive Metrics in Persistent Surveillance

    DTIC Science & Technology

    2013-09-26

    vehicle-lengths between frames. The low specificity of object detectors in WAMI means all vehicle detections are treated equally. Motion clutter...timing of the anomaly . If an anomaly was detected , recent activity would have a priority over older activity. This is due to the reasoning that if the...this could be a potential anomaly detected . Other baseline activities include normal work hours, religious observance times and interactions between

  14. On-Line Point Positioning with Single Frame Camera Data

    DTIC Science & Technology

    1992-03-15

    tion algorithms and methods will be found in robotics and industrial quality control. 1. Project data The project has been defined as "On-line point...development and use of the OLT algorithms and meth- ods for applications in robotics , industrial quality control and autonomous vehicle naviga- tion...Of particular interest in robotics and autonomous vehicle navigation is, for example, the task of determining the position and orientation of a mobile

  15. Determination of vehicle density from traffic images at day and nighttime

    NASA Astrophysics Data System (ADS)

    Mehrübeoğlu, Mehrübe; McLauchlan, Lifford

    2007-02-01

    In this paper we extend our previous work to address vehicle differentiation in traffic density computations1. The main goal of this work is to create vehicle density history for given roads under different weather or light conditions and at different times of the day. Vehicle differentiation is important to account for connected or otherwise long vehicles, such as trucks or tankers, which lead to over-counting with the original algorithm. Average vehicle size in pixels, given the magnification within the field of view for a particular camera, is used to separate regular cars and long vehicles. A separate algorithm and procedure have been developed to determine traffic density after dark when the vehicle headlights are turned on. Nighttime vehicle recognition utilizes blob analysis based on head/taillight images. The high intensity of vehicle lights are identified in binary images for nighttime vehicle detection. The stationary traffic image frames are downloaded from the internet as they are updated. The procedures are implemented in MATLAB. The results of both nighttime traffic density and daytime long vehicle identification algorithms are described in this paper. The determination of nighttime traffic density, and identification of long vehicles at daytime are improvements over the original work1.

  16. Intelligent mobility for robotic vehicles in the army after next

    NASA Astrophysics Data System (ADS)

    Gerhart, Grant R.; Goetz, Richard C.; Gorsich, David J.

    1999-07-01

    The TARDEC Intelligent Mobility program addresses several essential technologies necessary to support the army after next (AAN) concept. Ground forces in the AAN time frame will deploy robotic unmanned ground vehicles (UGVs) in high-risk missions to avoid exposing soldiers to both friendly and unfriendly fire. Prospective robotic systems will include RSTA/scout vehicles, combat engineering/mine clearing vehicles, indirect fire artillery and missile launch platforms. The AAN concept requires high on-road and off-road mobility, survivability, transportability/deployability and low logistics burden. TARDEC is developing a robotic vehicle systems integration laboratory (SIL) to evaluate technologies and their integration into future UGV systems. Example technologies include the following: in-hub electric drive, omni-directional wheel and steering configurations, off-road tires, adaptive tire inflation, articulated vehicles, active suspension, mine blast protection, detection avoidance and evasive maneuver. This paper will describe current developments in these areas relative to the TARDEC intelligent mobility program.

  17. Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing

    NASA Astrophysics Data System (ADS)

    Salami, E.; Ganesan, P. B.; Ward, T. A.; Viyapuri, R.; Romli, F. I.

    2016-10-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. There are still many technological challenges involved with designing the BMAV. One of these is designing the ultra-lightweight materials and structures for the wings that have enough mechanical strength to withstand continuous flapping at high frequencies. Insects achieve this by having chitin-based, wing frame structures that encompass a thin, film membrane. The main objectives of this study are to design a biodegradable BMAV wing (inspired from the dragonfly) and analyze its mechanical properties. The dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. A chitosan nanocomposite film membrane was applied to the BMAV wing frames through casting method. Its mechanical performance was analyzed using universal testing machine (UTM). This analysis indicates that the tensile strength and Young's modulus of the wing with a membrane is nearly double that of the wing without a membrane, which allow higher wing beat frequencies and deflections that in turn enable a greater lifting performance.

  18. Large-scale machine learning and evaluation platform for real-time traffic surveillance

    NASA Astrophysics Data System (ADS)

    Eichel, Justin A.; Mishra, Akshaya; Miller, Nicholas; Jankovic, Nicholas; Thomas, Mohan A.; Abbott, Tyler; Swanson, Douglas; Keller, Joel

    2016-09-01

    In traffic engineering, vehicle detectors are trained on limited datasets, resulting in poor accuracy when deployed in real-world surveillance applications. Annotating large-scale high-quality datasets is challenging. Typically, these datasets have limited diversity; they do not reflect the real-world operating environment. There is a need for a large-scale, cloud-based positive and negative mining process and a large-scale learning and evaluation system for the application of automatic traffic measurements and classification. The proposed positive and negative mining process addresses the quality of crowd sourced ground truth data through machine learning review and human feedback mechanisms. The proposed learning and evaluation system uses a distributed cloud computing framework to handle data-scaling issues associated with large numbers of samples and a high-dimensional feature space. The system is trained using AdaBoost on 1,000,000 Haar-like features extracted from 70,000 annotated video frames. The trained real-time vehicle detector achieves an accuracy of at least 95% for 1/2 and about 78% for 19/20 of the time when tested on ˜7,500,000 video frames. At the end of 2016, the dataset is expected to have over 1 billion annotated video frames.

  19. APOLLO XVII EXTRAVEHICULAR ACTIVITY (EVA) - SCIENTIST-ASTRONAUT HARRISON H. SCHMITT - MOON

    NASA Image and Video Library

    1972-12-13

    S73-22871 (13 Dec. 1972) --- Scientist-astronaut Harrison H. Schmitt is photographed standing next to a huge, split lunar boulder during the third Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site. The Lunar Roving Vehicle (LRV), which transported Schmitt and Eugene A. Cernan to this extravehicular station from their Lunar Module (LM), is seen in the background. The mosaic is made from two frames from Apollo 17 Hasselblad magazine 140. The two frames were photographed by Cernan.

  20. Rat Model of Brain Injury to Occupants of Vehicles Targeted by Land Mines: Mitigation by Elastomeric Frame Designs.

    PubMed

    Tchantchou, Flaubert; Puche, Adam A; Leiste, Ulrich; Fourney, William; Blanpied, Thomas A; Fiskum, Gary

    2018-05-15

    Many victims of blast traumatic brain injury (TBI) are occupants of vehicles targeted by land mines. A rat model of under-vehicle blast TBI was used to test the hypothesis that the ensuing neuropathology and altered behavior are mitigated by vehicle frame designs that dramatically reduce blast-induced acceleration (G force). Male rats were restrained on an aluminum platform that was accelerated vertically at up to 2850g, in response to detonation of an explosive positioned under a second platform in contact with the top via different structures. The presence of elastomeric, polyurea-coated aluminum cylinders between the platforms reduced acceleration by 80% to 550g compared with 2350g with uncoated cylinders. Moreover, 67% of rats exposed to 2850g, and 20% of those exposed to 2350g died immediately after blast, whereas all rats subjected to 550g blast survived. Assays for working memory (Y maze) and anxiety (Plus maze) were conducted for up to 28 days. Rats were euthanized at 24 h or 29 days, and their brains were used for histopathology and neurochemical measurements. Rats exposed to 2350g blasts exhibited increased cleaved caspase-3 immunoreactive neurons in the hippocampus. There was also increased vascular immunoglobulin (Ig)G effusion and F4/80 immunopositive macrophages/microglia. Blast exposure reduced hippocampal levels of synaptic proteins Bassoon and Homer-1, which were associated with impaired performance in the Y maze and the Plus maze tests. These changes observed after 2350g blasts were reduced or eliminated with the use of polyurea-coated cylinders. Such advances in vehicle designs should aid in the development of the next generation of blast-resistant vehicles.

  1. License Plate Recognition System for Indian Vehicles

    NASA Astrophysics Data System (ADS)

    Sanap, P. R.; Narote, S. P.

    2010-11-01

    We consider the task of recognition of Indian vehicle number plates (also called license plates or registration plates in other countries). A system for Indian number plate recognition must cope with wide variations in the appearance of the plates. Each state uses its own range of designs with font variations between the designs. Also, vehicle owners may place the plates inside glass covered frames or use plates made of nonstandard materials. These issues compound the complexity of automatic number plate recognition, making existing approaches inadequate. We have developed a system that incorporates a novel combination of image processing and artificial neural network technologies to successfully locate and read Indian vehicle number plates in digital images. Commercial application of the system is envisaged.

  2. Adaptive Noise Suppression Using Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Kozel, David; Nelson, Richard

    1996-01-01

    A signal to noise ratio dependent adaptive spectral subtraction algorithm is developed to eliminate noise from noise corrupted speech signals. The algorithm determines the signal to noise ratio and adjusts the spectral subtraction proportion appropriately. After spectra subtraction low amplitude signals are squelched. A single microphone is used to obtain both eh noise corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoice frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Applications include the emergency egress vehicle and the crawler transporter.

  3. The Warrior Heritage. A Study of Rhodesia.

    DTIC Science & Technology

    1980-05-01

    And then, seconds before impact and certain death, the patrol rises to its feet and, standing shoulder to shoulder, the men shout their last defiance...are the Tusker-Kudu- Rhino series and the Puma-Hippo series. Vehicles of the first series are made from the standard Land Rover, long wheel base frame...bolts. The basic vehicle thus created is then surmounted 92 with either a Rhino , Kudu or Tusker body. Tuskers have a drum-like roll bar cage, covered with

  4. STS-122 Crew Members during Post Insertion / Deorbit Prepreparation in Building 9 NW

    NASA Image and Video Library

    2007-03-20

    JSC2007-E-14482 (20 March 2007) --- Jerry L. Ross (center), chief, vehicle integration test office, poses for a photo with astronauts Stanley G. Love (left), European Space Agency's (ESA) Hans Schlegel, Leland D. Melvin and Rex J. Walheim, STS-122 mission specialists, as they prepare for a post insertion/de-orbit training session in one of the full-scale trainers (out of frame) in the Space Vehicle Mockup Facility at Johnson Space Center.

  5. Improved segmentation of occluded and adjoining vehicles in traffic surveillance videos

    NASA Astrophysics Data System (ADS)

    Juneja, Medha; Grover, Priyanka

    2013-12-01

    Occlusion in image processing refers to concealment of any part of the object or the whole object from view of an observer. Real time videos captured by static cameras on roads often encounter overlapping and hence, occlusion of vehicles. Occlusion in traffic surveillance videos usually occurs when an object which is being tracked is hidden by another object. This makes it difficult for the object detection algorithms to distinguish all the vehicles efficiently. Also morphological operations tend to join the close proximity vehicles resulting in formation of a single bounding box around more than one vehicle. Such problems lead to errors in further video processing, like counting of vehicles in a video. The proposed system brings forward efficient moving object detection and tracking approach to reduce such errors. The paper uses successive frame subtraction technique for detection of moving objects. Further, this paper implements the watershed algorithm to segment the overlapped and adjoining vehicles. The segmentation results have been improved by the use of noise and morphological operations.

  6. Power train and emission control: allocation procedure by OBD-II system for automotive technology

    NASA Astrophysics Data System (ADS)

    Kalita, Porag

    2017-06-01

    OBD-II, systems were designed to maintain low emissions of in use vehicles, including light and medium duty vehicles. In 1989, the California code of Regulations (CCR) known as OBD - II was adopted by the California Air Resource Board (CARB) and the objective to reduce hydrocarbon (HC) emission caused by malfunction of the vehicles emission control systems. OBD-II provides additional information to engineer for diagnosis and repair of emissions related problems. OBD-II, standardizes on the amount of memory (Freeze Frame) it uses to store the readings of the vehicle sensor when it logs on emission related Intermittent Trouble code (IT). The intent of OBD-II, systems is to detect most vehicle malfunctions when performance of a power train component or system deteriorates to the point that the vehicle’s HC emission exceed standard. The vehicle operator is notified at the time when the vehicle begins to marginally exceed emission standards, by illuminating the Malfunctions Indicator Light (MIL).

  7. Ground Contact Modeling for the Morpheus Test Vehicle Simulation

    NASA Technical Reports Server (NTRS)

    Cordova, Luis

    2014-01-01

    The Morpheus vertical test vehicle is an autonomous robotic lander being developed at Johnson Space Center (JSC) to test hazard detection technology. Because the initial ground contact simulation model was not very realistic, it was decided to improve the model without making it too computationally expensive. The first development cycle added capability to define vehicle attachment points (AP) and to keep track of their states in the lander reference frame (LFRAME). These states are used with a spring damper model to compute an AP contact force. The lateral force is then overwritten, if necessary, by the Coulomb static or kinetic friction force. The second development cycle added capability to use the PolySurface class as the contact surface. The class can load CAD data in STL (Stereo Lithography) format, and use the data to compute line of sight (LOS) intercepts. A polygon frame (PFRAME) is computed from the facet intercept normal and used to convert the AP state to PFRAME. Three flat plane tests validate the transitions from kinetic to static, static to kinetic, and vertical impact. The hazardous terrain test will be used to test for visual reasonableness. The improved model is numerically inexpensive, robust, and produces results that are reasonable.

  8. Ground Contact Modeling for the Morpheus Test Vehicle Simulation

    NASA Technical Reports Server (NTRS)

    Cordova, Luis

    2013-01-01

    The Morpheus vertical test vehicle is an autonomous robotic lander being developed at Johnson Space Center (JSC) to test hazard detection technology. Because the initial ground contact simulation model was not very realistic, it was decided to improve the model without making it too computationally expensive. The first development cycle added capability to define vehicle attachment points (AP) and to keep track of their states in the lander reference frame (LFRAME). These states are used with a spring damper model to compute an AP contact force. The lateral force is then overwritten, if necessary, by the Coulomb static or kinetic friction force. The second development cycle added capability to use the PolySurface class as the contact surface. The class can load CAD data in STL (Stereo Lithography) format, and use the data to compute line of sight (LOS) intercepts. A polygon frame (PFRAME) is computed from the facet intercept normal and used to convert the AP state to PFRAME. Three flat plane tests validate the transitions from kinetic to static, static to kinetic, and vertical impact. The hazardous terrain test will be used to test for visual reasonableness. The improved model is numerically inexpensive, robust, and produces results that are reasonable.

  9. Unmanned Vehicle Guidance Using Video Camera/Vehicle Model

    NASA Technical Reports Server (NTRS)

    Sutherland, T.

    1999-01-01

    A video guidance sensor (VGS) system has flown on both STS-87 and STS-95 to validate a single camera/target concept for vehicle navigation. The main part of the image algorithm was the subtraction of two consecutive images using software. For a nominal size image of 256 x 256 pixels this subtraction can take a large portion of the time between successive frames in standard rate video leaving very little time for other computations. The purpose of this project was to integrate the software subtraction into hardware to speed up the subtraction process and allow for more complex algorithms to be performed, both in hardware and software.

  10. Aerial video mosaicking using binary feature tracking

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2015-05-01

    Unmanned Aerial Vehicles are becoming an increasingly attractive platform for many applications, as their cost decreases and their capabilities increase. Creating detailed maps from aerial data requires fast and accurate video mosaicking methods. Traditional mosaicking techniques rely on inter-frame homography estimations that are cascaded through the video sequence. Computationally expensive keypoint matching algorithms are often used to determine the correspondence of keypoints between frames. This paper presents a video mosaicking method that uses an object tracking approach for matching keypoints between frames to improve both efficiency and robustness. The proposed tracking method matches local binary descriptors between frames and leverages the spatial locality of the keypoints to simplify the matching process. Our method is robust to cascaded errors by determining the homography between each frame and the ground plane rather than the prior frame. The frame-to-ground homography is calculated based on the relationship of each point's image coordinates and its estimated location on the ground plane. Robustness to moving objects is integrated into the homography estimation step through detecting anomalies in the motion of keypoints and eliminating the influence of outliers. The resulting mosaics are of high accuracy and can be computed in real time.

  11. HOTOL breathes fire to orbit

    NASA Astrophysics Data System (ADS)

    Donaldson, P.

    1986-11-01

    After defining the general operational principles of the 'HOTOL' horizontal takeoff and landing single-stage-to-orbit launch vehicle, a development status assessment is presented for the airframe structure, aerodynamic configuration, guidance and avionics, operational and market economics, and launch preparation/mission abort provisions that are currently envisaged by the HOTOL manufacturers. Attention is given to the competitiveness of HOTOL vis a vis the ESA Ariane V/Hermes and NASA 'Heavylift Shuttle' launch vehicles, which are expected to become operational in a similar time-frame.

  12. Flight evidence of spacecraft surface contamination rate enhancement by spacecraft charging obtained with a quartz crystal microbalance

    NASA Technical Reports Server (NTRS)

    Clark, D. M.; Hall, D. F.

    1980-01-01

    The significance of the fraction of the mass outgassed by a negatively charged space vehicle which is ionized within the vehicle plasma sheath and electrostatically reattracted to the space vehicle was determined. The ML-12 retarding potential analyzer/temperature controlled quartz crystal microbalances (RPA/TQCMs) distinguishes between charged and neutral molecules and investigates contamination mass transport mechanism. Two long term, quick look flight data sets indicate that on the average a significant fraction of mass arriving at one RPA/TQCM is ionized. It is assumed that vehicle frame charging during these periods was approximately uniformly distributed in degree and frequency. It is shown that electrostatic reattraction of ionized molecules is an important contamination mechanism at and near geosynchronous altitudes.

  13. Fully EMU suited MS Peterson and MS Musgrave in airlock

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Fully extravehicular mobility unit (EMU) suited Mission Specialist (MS) Peterson (wearing glasses) and MS Musgrave with service and cooling umbilical (SCU) connected to their displays and control modules (DCMs) participate in airlock prebreathe procedures. Three-fourths of the STS-6 astronaut crew appear in this unusual 35mm frame exposed in the airlock of the Earth-orbiting Challenger, Orbiter Vehicle (OV) 099. Musgrave's helmet visor encompasses all the action in the frame. Peterson is reflected on the right side of Musgrave's visor with Pilot Bobko, wearing conventional onboard clothing and photographing, the activity appearing at the center of the frame. The reversed numbers (1 and 2) in the mirrored image represents the extravehicular activity (EVA) designations for the two mission specialists.

  14. The Social Construction and Framing of Tailpipe Emissions in the Media

    DOT National Transportation Integrated Search

    2012-08-15

    The reduction of tailpipe emissions is a critical issue in the U.S. Vehicle emissions containing carbon monoxide, particulate matter, and nitrogen oxides degrade the quality of air and damage lung and heart function. Urban areas in the northeast and ...

  15. Spatial filtering velocimeter for vehicle navigation with extended measurement range

    NASA Astrophysics Data System (ADS)

    He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu

    2015-05-01

    The idea of using spatial filtering velocimeter is proposed to provide accurate velocity information for vehicle autonomous navigation system. The presented spatial filtering velocimeter is based on a CMOS linear image sensor. The limited frame rate restricts high speed measurement of the vehicle. To extend measurement range of the velocimeter, a method of frequency shifting is put forward. Theoretical analysis shows that the frequency of output signal can be reduced and the measurement range can be doubled by this method when the shifting direction is set the same with that of image velocity. The approach of fast Fourier transform (FFT) is employed to obtain the power spectra of the spatially filtered signals. Because of limited frequency resolution of FFT, a frequency spectrum correction algorithm, called energy centrobaric correction, is used to improve the frequency resolution. The correction accuracy energy centrobaric correction is analyzed. Experiments are carried out to measure the moving surface of a conveyor belt. The experimental results show that the maximum measurable velocity is about 800deg/s without frequency shifting, 1600deg/s with frequency shifting, when the frame rate of the image is about 8117 Hz. Therefore, the measurement range is doubled by the method of frequency shifting. Furthermore, experiments were carried out to measure the vehicle velocity simultaneously using both the designed SFV and a laser Doppler velocimeter (LDV). The measurement results of the presented SFV are coincident with that of the LDV, but with bigger fluctuation. Therefore, it has the potential of application to vehicular autonomous navigation.

  16. Adaptive-Repetitive Visual-Servo Control of Low-Flying Aerial Robots via Uncalibrated High-Flying Cameras

    NASA Astrophysics Data System (ADS)

    Guo, Dejun; Bourne, Joseph R.; Wang, Hesheng; Yim, Woosoon; Leang, Kam K.

    2017-08-01

    This paper presents the design and implementation of an adaptive-repetitive visual-servo control system for a moving high-flying vehicle (HFV) with an uncalibrated camera to monitor, track, and precisely control the movements of a low-flying vehicle (LFV) or mobile ground robot. Applications of this control strategy include the use of high-flying unmanned aerial vehicles (UAVs) with computer vision for monitoring, controlling, and coordinating the movements of lower altitude agents in areas, for example, where GPS signals may be unreliable or nonexistent. When deployed, a remote operator of the HFV defines the desired trajectory for the LFV in the HFV's camera frame. Due to the circular motion of the HFV, the resulting motion trajectory of the LFV in the image frame can be periodic in time, thus an adaptive-repetitive control system is exploited for regulation and/or trajectory tracking. The adaptive control law is able to handle uncertainties in the camera's intrinsic and extrinsic parameters. The design and stability analysis of the closed-loop control system is presented, where Lyapunov stability is shown. Simulation and experimental results are presented to demonstrate the effectiveness of the method for controlling the movement of a low-flying quadcopter, demonstrating the capabilities of the visual-servo control system for localization (i.e.,, motion capturing) and trajectory tracking control. In fact, results show that the LFV can be commanded to hover in place as well as track a user-defined flower-shaped closed trajectory, while the HFV and camera system circulates above with constant angular velocity. On average, the proposed adaptive-repetitive visual-servo control system reduces the average RMS tracking error by over 77% in the image plane and over 71% in the world frame compared to using just the adaptive visual-servo control law.

  17. A Region Tracking-Based Vehicle Detection Algorithm in Nighttime Traffic Scenes

    PubMed Central

    Wang, Jianqiang; Sun, Xiaoyan; Guo, Junbin

    2013-01-01

    The preceding vehicles detection technique in nighttime traffic scenes is an important part of the advanced driver assistance system (ADAS). This paper proposes a region tracking-based vehicle detection algorithm via the image processing technique. First, the brightness of the taillights during nighttime is used as the typical feature, and we use the existing global detection algorithm to detect and pair the taillights. When the vehicle is detected, a time series analysis model is introduced to predict vehicle positions and the possible region (PR) of the vehicle in the next frame. Then, the vehicle is only detected in the PR. This could reduce the detection time and avoid the false pairing between the bright spots in the PR and the bright spots out of the PR. Additionally, we present a thresholds updating method to make the thresholds adaptive. Finally, experimental studies are provided to demonstrate the application and substantiate the superiority of the proposed algorithm. The results show that the proposed algorithm can simultaneously reduce both the false negative detection rate and the false positive detection rate.

  18. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    PubMed

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  19. Conformal Cryogenic Tank Trade Study for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin

    1999-01-01

    Future reusable launch vehicles may be lifting bodies with non-circular cross section like the proposed Lockheed-Martin VentureStar(tm). Current designs for the cryogenic tanks of these vehicles are dual-lobed and quad-lobed tanks which are packaged more efficiently than circular tanks, but still have low packaging efficiencies with large gaps existing between the vehicle outer mold line and the outer surfaces of the tanks. In this study, tanks that conform to the outer mold line of a non-circular vehicle were investigated. Four structural concepts for conformal cryogenic tanks and a quad-lobed tank concept were optimized for minimum weight designs. The conformal tank concepts included a sandwich tank stiffened with axial tension webs, a sandwich tank stiffened with transverse tension webs, a sandwich tank stiffened with rings and tension ties, and a sandwich tank stiffened with orthogrid stiffeners and tension ties. For each concept, geometric parameters (such as ring frame spacing, the number and spacing of tension ties or webs, and tank corner radius) and internal pressure loads were varied and the structure was optimized using a finite-element-based optimization procedure. Theoretical volumetric weights were calculated by dividing the weight of the barrel section of the tank concept and its associated frames, webs and tension ties by the volume it circumscribes. This paper describes the four conformal tank concepts and the design assumptions utilized in their optimization. The conformal tank optimization results included theoretical weights, trends and comparisons between the concepts, are also presented, along with results from the optimization of a quad-lobed tank. Also, the effects of minimum gauge values and non-optimum weights on the weight of the optimized structure are described in this paper.

  20. Current control of PMSM based on maximum torque control reference frame

    NASA Astrophysics Data System (ADS)

    Ohnuma, Takumi

    2017-07-01

    This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.

  1. Preceding Vehicle Detection and Tracking Adaptive to Illumination Variation in Night Traffic Scenes Based on Relevance Analysis

    PubMed Central

    Guo, Junbin; Wang, Jianqiang; Guo, Xiaosong; Yu, Chuanqiang; Sun, Xiaoyan

    2014-01-01

    Preceding vehicle detection and tracking at nighttime are challenging problems due to the disturbance of other extraneous illuminant sources coexisting with the vehicle lights. To improve the detection accuracy and robustness of vehicle detection, a novel method for vehicle detection and tracking at nighttime is proposed in this paper. The characteristics of taillights in the gray level are applied to determine the lower boundary of the threshold for taillights segmentation, and the optimal threshold for taillight segmentation is calculated using the OTSU algorithm between the lower boundary and the highest grayscale of the region of interest. The candidate taillight pairs are extracted based on the similarity between left and right taillights, and the non-vehicle taillight pairs are removed based on the relevance analysis of vehicle location between frames. To reduce the false negative rate of vehicle detection, a vehicle tracking method based on taillights estimation is applied. The taillight spot candidate is sought in the region predicted by Kalman filtering, and the disturbed taillight is estimated based on the symmetry and location of the other taillight of the same vehicle. Vehicle tracking is completed after estimating its location according to the two taillight spots. The results of experiments on a vehicle platform indicate that the proposed method could detect vehicles quickly, correctly and robustly in the actual traffic environments with illumination variation. PMID:25195855

  2. Preceding vehicle detection and tracking adaptive to illumination variation in night traffic scenes based on relevance analysis.

    PubMed

    Guo, Junbin; Wang, Jianqiang; Guo, Xiaosong; Yu, Chuanqiang; Sun, Xiaoyan

    2014-08-19

    Preceding vehicle detection and tracking at nighttime are challenging problems due to the disturbance of other extraneous illuminant sources coexisting with the vehicle lights. To improve the detection accuracy and robustness of vehicle detection, a novel method for vehicle detection and tracking at nighttime is proposed in this paper. The characteristics of taillights in the gray level are applied to determine the lower boundary of the threshold for taillights segmentation, and the optimal threshold for taillight segmentation is calculated using the OTSU algorithm between the lower boundary and the highest grayscale of the region of interest. The candidate taillight pairs are extracted based on the similarity between left and right taillights, and the non-vehicle taillight pairs are removed based on the relevance analysis of vehicle location between frames. To reduce the false negative rate of vehicle detection, a vehicle tracking method based on taillights estimation is applied. The taillight spot candidate is sought in the region predicted by Kalman filtering, and the disturbed taillight is estimated based on the symmetry and location of the other taillight of the same vehicle. Vehicle tracking is completed after estimating its location according to the two taillight spots. The results of experiments on a vehicle platform indicate that the proposed method could detect vehicles quickly, correctly and robustly in the actual traffic environments with illumination variation.

  3. 34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT FRAME. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-4. INEL INDEX CODE NUMBER: 075 0701 60 851 151978. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  4. The application of high-speed TV-holography to time-resolved vibration measurements

    NASA Astrophysics Data System (ADS)

    Buckberry, C.; Reeves, M.; Moore, A. J.; Hand, D. P.; Barton, J. S.; Jones, J. D. C.

    1999-10-01

    We describe an electronic speckle pattern interferometer (ESPI) system that has enabled non-harmonic vibrations to be measured with μs temporal resolution. The short exposure period and high framing rate of a high-speed camera at up to 40,500 frames per second allow low-power CW laser illumination and fibre-optic beam delivery to be used, rather than the high peak power pulsed lasers normally used in ESPI for transient measurement. The technique has been demonstrated in the laboratory and tested in preliminary industrial trials. The ability to measure vibration with high spatial and temporal resolution, which is not provided by techniques such as scanning laser vibrometry, has many applications in manufacturing design, and in an illustrative application described here revealed previously unmeasured “rocking” vibrations of a car door. It has been possible to make the measurement on the door as part of a complete vehicle standing on its own tyres, wheels and suspension, and where the excitation was generated by the running of the vehicle's own engine.

  5. Moving object localization using optical flow for pedestrian detection from a moving vehicle.

    PubMed

    Hariyono, Joko; Hoang, Van-Dung; Jo, Kang-Hyun

    2014-01-01

    This paper presents a pedestrian detection method from a moving vehicle using optical flows and histogram of oriented gradients (HOG). A moving object is extracted from the relative motion by segmenting the region representing the same optical flows after compensating the egomotion of the camera. To obtain the optical flow, two consecutive images are divided into grid cells 14 × 14 pixels; then each cell is tracked in the current frame to find corresponding cell in the next frame. Using at least three corresponding cells, affine transformation is performed according to each corresponding cell in the consecutive images, so that conformed optical flows are extracted. The regions of moving object are detected as transformed objects, which are different from the previously registered background. Morphological process is applied to get the candidate human regions. In order to recognize the object, the HOG features are extracted on the candidate region and classified using linear support vector machine (SVM). The HOG feature vectors are used as input of linear SVM to classify the given input into pedestrian/nonpedestrian. The proposed method was tested in a moving vehicle and also confirmed through experiments using pedestrian dataset. It shows a significant improvement compared with original HOG using ETHZ pedestrian dataset.

  6. Tracks for Eastern/Western European Future Launch Vehicles Cooperation

    NASA Astrophysics Data System (ADS)

    Eymar, Patrick; Bertschi, Markus

    2002-01-01

    exclusively upon Western European elements indigenously produced. Yet some private initiatives took place successfully in the second half of the nineties (Eurockot and Starsem) bringing together companies from Western and Eastern Europe. Evolution of these JV's are already envisioned. But these ventures relied mostly on already existing vehicles. broadening the bases in order to enlarge the reachable world market appears attractive, even if structural difficulties are complicating the process. had recently started to analyze, with KSRC counterparts how mixing Russian and Western European based elements would provide potential competitive edges. and RKA in the frame of the new ESA's Future Launch Preparatory Programme (FLPP). main technical which have been considered as the most promising (reusable LOx/Hydrocarbon engine, experimental reentry vehicles or demonstrators and reusable launch vehicle first stage or booster. international approach. 1 patrick.eymar@lanceurs.aeromatra.com 2

  7. Extended mission/lunar rover, executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The design project selected to be undertaken by the 1991/92 Aerospace Design Group was that of conceptually designing an Extended Mission Rover for use on the Lunar Surface. This vehicle would serve the function as a mobile base of sorts, and be able to provide future astronauts with a mobile 'shirt-sleeve' self-sufficient living and working environment. Some of the proposed missions would be planetary surface exploration, construction and maintenance, hardware set-up and in-situ resource experimentation. The need for this type of vehicle has already been declared in the Stafford Group's report on the future of America's Space Program, entitled 'America at the Threshold: America's Space Exploration Initiative'. In the four architectures described within the report, the concept of a pressurized vehicle occurred multiple times. The approximate time frame that this vehicle would be put into use is 2010-2030.

  8. Long-Term Tracking of a Specific Vehicle Using Airborne Optical Camera Systems

    NASA Astrophysics Data System (ADS)

    Kurz, F.; Rosenbaum, D.; Runge, H.; Cerra, D.; Mattyus, G.; Reinartz, P.

    2016-06-01

    In this paper we present two low cost, airborne sensor systems capable of long-term vehicle tracking. Based on the properties of the sensors, a method for automatic real-time, long-term tracking of individual vehicles is presented. This combines the detection and tracking of the vehicle in low frame rate image sequences and applies the lagged Cell Transmission Model (CTM) to handle longer tracking outages occurring in complex traffic situations, e.g. tunnels. The CTM model uses the traffic conditions in the proximities of the target vehicle and estimates its motion to predict the position where it reappears. The method is validated on an airborne image sequence acquired from a helicopter. Several reference vehicles are tracked within a range of 500m in a complex urban traffic situation. An artificial tracking outage of 240m is simulated, which is handled by the CTM. For this, all the vehicles in the close proximity are automatically detected and tracked to estimate the basic density-flow relations of the CTM model. Finally, the real and simulated trajectories of the reference vehicles in the outage are compared showing good correspondence also in congested traffic situations.

  9. Musculoskeletal disorder risk as a function of vehicle rotation angle during assembly tasks.

    PubMed

    Ferguson, Sue A; Marras, Williams S; Gary Allread, W; Knapik, Gregory G; Vandlen, Kimberly A; Splittstoesser, Riley E; Yang, Gang

    2011-07-01

    Musculoskeletal disorders (MSD) are costly and common problem in automotive manufacturing. The research goal was to quantify MSD exposure as a function of vehicle rotation angle and region during assembly tasks. The study was conducted at the Center for Occupational Health in Automotive Manufacturing (COHAM) Laboratory. Twelve subjects participated in the study. The vehicle was divided into seven regions, (3 interior, 2 underbody and 2 engine regions) representative of work areas during assembly. Three vehicle rotation angles were examined for each region. The standard horizontal assembly condition (0° rotation) was the reference frame. Exposure was assessed on the spine loads and posture, shoulder posture and muscle activity, neck posture and muscle activity as well as wrist posture. In all regions, rotating the vehicle reduced musculoskeletal exposure. In five of the seven regions 45° of vehicle rotation represented the position that reduced MSD exposure most. Two of the seven regions indicated 90° of vehicle rotation had the greatest impact for reducing MSD exposure. This study demonstrated that vehicle rotation shows promise for reducing exposure to risk factors for MDS during automobile assembly tasks. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. Random Access Frame (RAF) System Neutral Buoyancy Evaluations

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Polit-Casillas, Raul; Akin, David L.; McBryan, Katherine; Carlsen, Christopher

    2015-01-01

    The Random Access Frame (RAF) concept is a system for organizing internal layouts of space habitats, vehicles, and outposts. The RAF system is designed as a more efficient improvement over the current International Standard Payload Rack (ISPR) used on the International Space Station (ISS), which was originally designed to allow for swapping and resupply by the Space Shuttle. The RAF system is intended to be applied in variable gravity or microgravity environments. This paper discusses evaluations and results of testing the RAF system in a neutral buoyancy facility simulating low levels of gravity that might be encountered in a deep space environment.

  11. Vehicle Maneuver Detection with Accelerometer-Based Classification.

    PubMed

    Cervantes-Villanueva, Javier; Carrillo-Zapata, Daniel; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F

    2016-09-29

    In the mobile computing era, smartphones have become instrumental tools to develop innovative mobile context-aware systems. In that sense, their usage in the vehicular domain eases the development of novel and personal transportation solutions. In this frame, the present work introduces an innovative mechanism to perceive the current kinematic state of a vehicle on the basis of the accelerometer data from a smartphone mounted in the vehicle. Unlike previous proposals, the introduced architecture targets the computational limitations of such devices to carry out the detection process following an incremental approach. For its realization, we have evaluated different classification algorithms to act as agents within the architecture. Finally, our approach has been tested with a real-world dataset collected by means of the ad hoc mobile application developed.

  12. Light-weight sandwich panel honeycomb core with hybrid carbon-glass fiber composite skin for electric vehicle application

    NASA Astrophysics Data System (ADS)

    Cahyono, Sukmaji Indro; Widodo, Angit; Anwar, Miftahul; Diharjo, Kuncoro; Triyono, Teguh; Hapid, A.; Kaleg, S.

    2016-03-01

    The carbon fiber reinforced plastic (CFRP) composite is relative high cost material in current manufacturing process of electric vehicle body structure. Sandwich panels consisting polypropylene (PP) honeycomb core with hybrid carbon-glass fiber composite skin were investigated. The aim of present paper was evaluate the flexural properties and bending rigidity of various volume fraction carbon-glass fiber composite skins with the honeycomb core. The flexural properties and cost of panels were compared to the reported values of solid hybrid Carbon/Glass FRP used for the frame body structure of electric vehicle. The finite element model of represented sandwich panel was established to characterize the flexural properties of material using homogenization technique. Finally, simplified model was employed to crashworthiness analysis for engine hood of the body electric vehicle structure. The good cost-electiveness of honeycomb core with hybrid carbon-glass fiber skin has the potential to be used as a light-weight alternative material in body electric vehicle fabricated.

  13. Multi-material size optimization of a ladder frame chassis

    NASA Astrophysics Data System (ADS)

    Baker, Michael

    The Corporate Average Fuel Economy (CAFE) is an American fuel standard that sets regulations on fuel economy in vehicles. This law ultimately shapes the development and design research for automakers. Reducing the weight of conventional cars offers a way to improve fuel efficiency. This research investigated the optimality of an automobile's ladder frame chassis (LFC) by conducting multi-objective optimization on the LFC in order to reduce the weight of the chassis. The focus of the design and optimization was a ladder frame chassis commonly used for mass production light motor vehicles with an open-top rear cargo area. This thesis is comprised of two major sections. The first looked to perform thickness optimization in the outer walls of the ladder frame. In the second section, many multi-material distributions, including steel and aluminium varieties, were investigated. A simplified model was used to do an initial hand calculation analysis of the problem. This was used to create a baseline validation to compare the theory with the modeling. A CAD model of the LFC was designed. From the CAD model, a finite element model was extracted and joined using weld and bolt connectors. Following this, a linear static analysis was performed to look at displacement and stresses when subjected to loading conditions that simulate harsh driving conditions. The analysis showed significant values of stress and displacement on the ends of the rails, suggesting improvements could be made elsewhere. An optimization scheme was used to find the values of an all steel frame an optimal thickness distribution was found. This provided a 13% weight reduction over the initial model. To advance the analysis a multi-material approach was used to push the weight savings even further. Several material distributions were analyzed and the lightest utilized aluminium in all but the most strenuous subjected components. This enabled a reduction in weight of 15% over the initial model, equivalent to approximately 1 mile per gallon (MPG) in fuel economy.

  14. Method for Enhancing a Three Dimensional Image from a Plurality of Frames of Flash LIDAR Data

    NASA Technical Reports Server (NTRS)

    Bulyshev, Alexander (Inventor); Vanek, Michael D. (Inventor); Amzajerdian, Farzin (Inventor)

    2013-01-01

    A method for enhancing a three dimensional image from frames of flash LIDAR data includes generating a first distance R(sub i) from a first detector i to a first point on a surface S(sub i). After defining a map with a mesh theta having cells k, a first array S(k), a second array M(k), and a third array D(k) are initialized. The first array corresponds to the surface, the second array corresponds to the elevation map, and the third array D(k) receives an output for the DEM. The surface is projected onto the mesh theta, so that a second distance R(sub k) from a second point on the mesh theta to the detector can be found. From this, a height may be calculated, which permits the generation of a digital elevation map. Also, using sequential frames of flash LIDAR data, vehicle control is possible using an offset between successive frames.

  15. Fender Bender Physics.

    ERIC Educational Resources Information Center

    Bevin, Roy Q.; Raudebaugh, Robert A.

    This book is based on an integrated approach to science and technology and targets middle schools students. Each unit includes a teacher's guide and eight science activities. Units include: (1) "The Mousetrap Car"; (2) "The CO2 Car"; and (3) "The Space Frame Vehicle". Supplemental materials consist of seven readings including: (1) "Brainstorming";…

  16. 29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, CABLE CHASE, SHIELDING TANK AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-1. INEL INDEX CODE NUMBER: 075 0701 851 151970. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  17. Two Dimensional Positioning and Heading Solution for Flying Vehicles using a Line-Scanning Laser Radar (LADAR)

    DTIC Science & Technology

    2011-03-24

    6 2.4.1 Reference Frames . . . . . . . . . . . . . . . . . 6 2.4.2 Line and Feature Extraction . . . . . . . . . . . 7 2.4.3 SLAM ...Positioning System . . . . . . . . . . . . . . . . . . 1 LADAR Laser Radar . . . . . . . . . . . . . . . . . . . . . . . . . . 1 LiDAR Light Detection and...Ranging . . . . . . . . . . . . . . . . 2 SLAM Simultaneous Localization and Mapping . . . . . . . . . . 2 ANT Advanced Navigation Technology

  18. 75 FR 17590 - Federal Motor Vehicle Safety Standards; Roof Crush Resistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... FURTHER INFORMATION CONTACT: For non-legal issues, you may call Christopher J. Wiacek, NHTSA Office of Crashworthiness Standards, telephone 202-366-4801. For legal issues, you may call J. Edward Glancy, NHTSA Office... assemblage consisting, at a minimum, of chassis (including the frame) structure, power train, steering system...

  19. Trajectory-based visual localization in underwater surveying missions.

    PubMed

    Burguera, Antoni; Bonin-Font, Francisco; Oliver, Gabriel

    2015-01-14

    We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV) with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF), which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures) between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF). Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates.

  20. Real-time people and vehicle detection from UAV imagery

    NASA Astrophysics Data System (ADS)

    Gaszczak, Anna; Breckon, Toby P.; Han, Jiwan

    2011-01-01

    A generic and robust approach for the real-time detection of people and vehicles from an Unmanned Aerial Vehicle (UAV) is an important goal within the framework of fully autonomous UAV deployment for aerial reconnaissance and surveillance. Here we present an approach for the automatic detection of vehicles based on using multiple trained cascaded Haar classifiers with secondary confirmation in thermal imagery. Additionally we present a related approach for people detection in thermal imagery based on a similar cascaded classification technique combining additional multivariate Gaussian shape matching. The results presented show the successful detection of vehicle and people under varying conditions in both isolated rural and cluttered urban environments with minimal false positive detection. Performance of the detector is optimized to reduce the overall false positive rate by aiming at the detection of each object of interest (vehicle/person) at least once in the environment (i.e. per search patter flight path) rather than every object in each image frame. Currently the detection rate for people is ~70% and cars ~80% although the overall episodic object detection rate for each flight pattern exceeds 90%.

  1. Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.

    1996-01-01

    A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.

  2. Summary of 2006 to 2010 FPMU Measurements of International Space Station Frame Potential Variations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Wright, Kenneth H., Jr.; Chandler, Michael O.; Coffey, Victoria N.; Craven, Paul D.; Schneider, Todd A.; Parker, Linda N.; Ferguson, Dale C.; Koontz, Steve L.; Alred, John W.

    2010-01-01

    Electric potential variations on the International Space Station (ISS) structure in low Earth orbit are dominated by contributions from interactions of the United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment and inductive potentials generated by motion of the large vehicle across the Earth?s magnetic field. The Floating Potential Measurement Unit (FPMU) instrument suite comprising two Langmuir probes, a plasma impedance probe, and a floating potential probe was deployed in August 2006 for use in characterizing variations in ISS potential, the state of the ionosphere along the ISS orbit and its effect on ISS charging, evaluating effects of payloads and visiting vehicles, and for supporting ISS plasma hazard assessments. This presentation summarizes observations of ISS frame potential variations obtained from the FPMU from deployment in 2006 through the current time. We first describe ISS potential variations due to current collection by solar arrays in the day time sector of the orbit including eclipse exit and entry charging events, potential variations due to plasma environment variations in the equatorial anomaly, and visiting vehicles docked to the ISS structure. Next, we discuss potential variations due to inductive electric fields generated by motion of the vehicle across the geomagnetic field and the effects of external electric fields in the ionosphere. Examples of night time potential variations at high latitudes and their possible relationship to auroral charging are described and, finally, we demonstrate effects on the ISS potential due to European Space Agency and US plasma contactor devices.

  3. Dynamic stability of an aerodynamically efficient motorcycle

    NASA Astrophysics Data System (ADS)

    Sharma, Amrit; Limebeer, David J. N.

    2012-08-01

    Motorcycles exhibit two potentially dangerous oscillatory modes known as 'wobble' and 'weave'. The former is reminiscent of supermarket castor shimmy, while the latter is a low frequency 'fish-tailing' motion that involves a combination of rolling, yawing, steering and side-slipping motions. These unwanted dynamic features, which can occur when two-wheeled vehicles are operated at speed, have been studied extensively. The aim of this paper is to use mathematical analysis to identify important stability trends in the on-going design of a novel aerodynamically efficient motorcycle known as the ECOSSE Spirit ES1. A mathematical model of the ES1 is developed using a multi-body dynamics software package called VehicleSim [Anon, VehicleSim Lisp Reference Manual Version 1.0, Mechanical Simulation Corporation, 2008. Available at http://www.carsim.com]. This high-fidelity motorcycle model includes realistic tyre-road contact geometry, a comprehensive tyre model, tyre relaxation and a flexible frame. A parameter set representative of a modern high-performance machine and rider is used. Local stability is investigated via the eigenvalues of the linearised models that are associated with equilibrium points of interest. A comprehensive study of the effects of frame flexibilities, acceleration, aerodynamics and tyre variations is presented, and an optimal passive steering compensator is derived. It is shown that the traditional steering damper cannot be used to stabilise the ES1 over its entire operating speed range. A simple passive compensator, involving an inerter is proposed. Flexibility can be introduced deliberately into various chassis components to change the stability characteristics of the vehicle; the implications of this idea are studied.

  4. A Vision-Based Driver Nighttime Assistance and Surveillance System Based on Intelligent Image Sensing Techniques and a Heterogamous Dual-Core Embedded System Architecture

    PubMed Central

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system. PMID:22736956

  5. A vision-based driver nighttime assistance and surveillance system based on intelligent image sensing techniques and a heterogamous dual-core embedded system architecture.

    PubMed

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system.

  6. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Joshua A.; Riddle, Matthew E.; Graziano, Diane J.

    2015-08-12

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of siliconmore » carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015–2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2–20 billion GJ depending on market adoption dynamics.« less

  7. A Maneuvering Flight Noise Model for Helicopter Mission Planning

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Rau, Robert; May, Benjamin; Hobbs, Christopher

    2015-01-01

    A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the Quasi-Static Acoustic Mapping (Q-SAM) method to a database of acoustic spheres generated using the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission-planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch up and roll maneuvers, with good agreement between the measured data and the FRAME-QS model.

  8. The cost of noise reduction for departure and arrival operations of commercial tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Faulkner, H. B.; Swan, W. M.

    1976-01-01

    The relationship between direct operating cost (DOC) and noise annoyance due to a departure and an arrival operation was developed for commercial tilt rotor aircraft. This was accomplished by generating a series of tilt rotor aircraft designs to meet various noise goals at minimum DOC. These vehicles ranged across the spectrum of possible noise levels from completely unconstrained to the quietest vehicles that could be designed within the study ground rules. Optimization parameters were varied to find the minimum DOC. This basic variation was then extended to different aircraft sizes and technology time frames.

  9. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, andmore » BEVs range from 300-350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.« less

  10. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.

    PubMed

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Mark; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J

    2018-02-20

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ∼450 gCO 2 e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H 2 FCEVs, and BEVs range from 300-350 gCO 2 e/mi. Future vehicle efficiency gains are expected to reduce emissions to ∼350 gCO 2 /mi for ICEVs and ∼250 gCO 2e /mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.

  11. 49 CFR 178.338-13 - Supporting and anchoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the structural member used in place of a motor vehicle frame, the cargo tank or the jacket must be... for the supports and load-bearing tank or jacket, and the support attachments must include beam stress... uses the weight of the cargo tank and its attachments when filled to the design weight of the lading...

  12. Conceptual design study of a 1985 commercial STOL tilt rotor transport

    NASA Technical Reports Server (NTRS)

    Widdison, C. A.; Magee, J. P.; Alexander, H. R.

    1974-01-01

    Results of conceptual engineering design studies of a STOL tilt rotor commercial aircraft for the 1985 time frame are presented. The details of aircraft size, performance, flying qualities, noise, and cost are included. The savings in terms of fuel economy resulting from STOL operations compared with VTOL vehicles are determined.

  13. 36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT FRAME AND SUPPORT PLATFORM, AND SAFETY MECHANISM ASSEMBLY (SPRING-LOADED HINGE). F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-1. INEL INDEX CODE NUMBER: 075 0701 60 851 151975. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  14. 30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF SOUTH SIDE OF FACILITY, INCLUDING BUNKER, CABLE CHASE, SHIELDING TANK, AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-2. INEL INDEX CODE NUMBER: 075 0701 851 151971. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  15. 29 CFR 1917.44 - General rules applicable to vehicles. 4

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... shall first be deflated by valve core removal; and (ix) Before assembly, wheel components shall be... outside the frame of the device for any wheel position within the device. When the wheel assembly is... trailer road wheels prior to disconnection of the trailer and until braking is again provided. Section 49...

  16. 29 CFR 1917.44 - General rules applicable to vehicles. 4

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... shall first be deflated by valve core removal; and (ix) Before assembly, wheel components shall be... outside the frame of the device for any wheel position within the device. When the wheel assembly is... trailer road wheels prior to disconnection of the trailer and until braking is again provided. Section 49...

  17. 29 CFR 1917.44 - General rules applicable to vehicles. 4

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... shall first be deflated by valve core removal; and (ix) Before assembly, wheel components shall be... outside the frame of the device for any wheel position within the device. When the wheel assembly is... trailer road wheels prior to disconnection of the trailer and until braking is again provided. Section 49...

  18. BEAM: A Finite Element Program for the Collapse Analysis of Vehicle Structures

    DTIC Science & Technology

    1994-06-01

    deflects a latera: d&stance 8, its bending stresses are increased. Nor can BEAM account for the reduction of plastic moment capacity due to axial loads...Figure 9: The load -displacement curve for Frame 4, comparing elastic-, rigid plastuc and Sttq’ BI-Step analyses with experimental results. The

  19. Automation of POST Cases via External Optimizer and "Artificial p2" Calculation

    NASA Technical Reports Server (NTRS)

    Dees, Patrick D.; Zwack, Mathew R.; Michelson, Diane K.

    2017-01-01

    During conceptual design speed and accuracy are often at odds. Specifically in the realm of launch vehicles, optimizing the ascent trajectory requires a larger pool of analytical power and expertise. Experienced analysts working on familiar vehicles can produce optimal trajectories in a short time frame, however whenever either "experienced" or "familiar " is not applicable the optimization process can become quite lengthy. In order to construct a vehicle agnostic method an established global optimization algorithm is needed. In this work the authors develop an "artificial" error term to map arbitrary control vectors to non-zero error by which a global method can operate. Two global methods are compared alongside Design of Experiments and random sampling and are shown to produce comparable results to analysis done by a human expert.

  20. Hypersonic Wind Tunnel Test of a Flare-type Membrane Aeroshell for Atmospheric Entry Capsules

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Koyama, Masashi; Kimura, Yusuke; Suzuki, Kojiro; Abe, Takashi; Koichi Hayashi, A.

    A flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system. In this study, hypersonic wind tunnel tests were carried out to investigate the behavior, aerodynamic characteristics and aerodynamic heating environment in hypersonic flow for a previously developed capsule-type vehicle with a flare-type membrane aeroshell made of ZYLON textile sustained by a rigid torus frame. Two different models with different flare angles (45º and 60º) were tested to experimentally clarify the effect of flare angle. Results indicate that flare angle of aeroshell has significant and complicate effect on flow field and aerodynamic heating in hypersonic flow at Mach 9.45 and the flare angle is very important parameter for vehicle design with the flare-type membrane aeroshell.

  1. A Polar Initial Alignment Algorithm for Unmanned Underwater Vehicles

    PubMed Central

    Yan, Zheping; Wang, Lu; Wang, Tongda; Zhang, Honghan; Zhang, Xun; Liu, Xiangling

    2017-01-01

    Due to its highly autonomy, the strapdown inertial navigation system (SINS) is widely used in unmanned underwater vehicles (UUV) navigation. Initial alignment is crucial because the initial alignment results will be used as the initial SINS value, which might affect the subsequent SINS results. Due to the rapid convergence of Earth meridians, there is a calculation overflow in conventional initial alignment algorithms, making conventional initial algorithms are invalid for polar UUV navigation. To overcome these problems, a polar initial alignment algorithm for UUV is proposed in this paper, which consists of coarse and fine alignment algorithms. Based on the principle of the conical slow drift of gravity, the coarse alignment algorithm is derived under the grid frame. By choosing the velocity and attitude as the measurement, the fine alignment with the Kalman filter (KF) is derived under the grid frame. Simulation and experiment are realized among polar, conventional and transversal initial alignment algorithms for polar UUV navigation. Results demonstrate that the proposed polar initial alignment algorithm can complete the initial alignment of UUV in the polar region rapidly and accurately. PMID:29168735

  2. Uncooled detectors optimized for unattended applications

    NASA Astrophysics Data System (ADS)

    Malkinson, E.; Fraenkel, A.; Mizrahi, U.; Ben-Ezra, M.; Bikov, L.; Adin, A.; Zabar, Y.; Seter, D.; Kopolovich, Z.

    2005-10-01

    SCD has recently presented an uncooled detector product line based on the high-end VOx bolometer technology. The first FPA launched, named BIRD - short for Bolometer Infra Red Detector, is a 384x288 (or 320x240) configurable format with 25μm pitch. Typical NETD values for these FPAs range at 50mK with an F/1 aperture and 60 Hz frame rate. These detectors also exhibit a relatively fast thermal time constant of approximately 10 msec, as reported previously. In this paper, the special features of BIRD optimized for unattended sensor applications are presented and discussed. Unattended surveillance using sensors on unattended aerial vehicles (UAV's) or micro air vehicles (MAV's) , unattended ground vehicles (UGV's) or unattended ground sensor (UGS) are growing applications for uncooled detectors. This is due to their low power consumption, low weight, negligible acoustic noise and reduced price. On the other hand, uncooled detectors are vulnerable to ambient drift. Even minor temperature fluctuations are manifested as fixed pattern noise (FPN). As a result, frequent, shutter operation must be applied, with the risk of blocking the scenery in critical time frames and loosing information for various scenarios. In order to increase the time span between shutter operations, SCD has incorporated various features within the FPA and supporting algorithms. This paper will discuss these features and present some illustrative examples. Minimum power consumption is another critical issue for unattended applications. SCD has addressed this topic by introducing the "Power Save" concept. For very low power applications or for TEC-less (Thermo-Electric-Cooler) applications, the flexible dilution architecture enables the system to operate the detector at a number of formats. This, together with a smooth frame rate and format transition capability turns SCD's uncooled detector to be well suited for unattended applications. These issues will be described in detail as well.

  3. Augmentation of Rocket Propulsion: Physical Limits

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1996-01-01

    Rocket propulsion is not ideal when the propellant is not ejected at a unique velocity in an inertial frame. An ideal velocity distribution requires that the exhaust velocity vary linearly with the velocity of the vehicle in an inertial frame. It also requires that the velocity distribution variance as a thermodynamic quantity be minimized. A rocket vehicle with an inert propellant is not optimal, because it does not take advantage of the propellant mass for energy storage. Nor is it logical to provide another energy storage device in order to realize variable exhaust velocity, because it would have to be partly unfilled at the beginning of the mission. Performance is enhanced by pushing on the surrounding because it increases the reaction mass and decreases the reaction jet velocity. This decreases the fraction of the energy taken away by the propellant and increases the share taken by the payload. For an optimal model with the propellant used as fuel, the augmentation realized by pushing on air is greatest for vehicles with a low initial/final mass ratio. For a typical vehicle in the Earth's atmosphere, the augmentation is seen mainly at altitudes below about 80 km. When drag is taken into account, there is a well-defined optimum size for the air intake. Pushing on air has the potential to increase the performance of rockets which pass through the atmosphere. This is apart from benefits derived from "air breathing", or using the oxygen in the atmosphere to reduce the mass of an on-board oxidizer. Because of the potential of these measures, it is vital to model these effects more carefully and explore technology that may realize their advantages.

  4. Ventriloquising the Voice: Writing in the University

    ERIC Educational Resources Information Center

    Fulford, Amanda

    2009-01-01

    In this paper I consider one aspect of how student writing is supported in the university. I focus on the use of the "writing frame", questioning its status as a vehicle for facilitating student voice, and in the process questioning how that notion is itself understood. I illustrate this by using examples from the story of the 1944 Hollywood film…

  5. 76 FR 31354 - Notice of Issuance of Final Determination Concerning the Transit Connect Electric Vehicle

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... base without a powertrain or exhaust components, and consists of a frame, body, axles, and wheels. The... substantially transformed in the U.S. and considered products of the U.S. The U.S. assembly occurs at various stations. The assembly stations at AM General, the manufacturing subcontractor, are described as follows...

  6. Apollo 16 liftoff

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The huge, 363-feet tall Apollo 16 (Spacecraft 113/Lunar Module 11/Saturn 511) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:54:00.569 p.m., April 16, 1972. The launch is framed on the left by a large piece of dead wood in a body of water near the launch pad.

  7. Motion control of rigid bodies in SE(3)

    NASA Astrophysics Data System (ADS)

    Roza, Ashton

    This thesis investigates the control of motion for a general class of vehicles that rotate and translate in three-space, and are propelled by a thrust vector which has fixed direction in body frame. The thesis addresses the problems of path following and position control. For path following, a feedback linearization controller is presented that makes the vehicle follow an arbitrary closed curve while simultaneously allowing the designer to specify the velocity profile of the vehicle on the path and its heading. For position control, a two-stage approach is presented that decouples position control from attitude control, allowing for a modular design and yielding almost global asymptotic stability of any desired hovering equilibrium. The effectiveness of the proposed method is verified both in simulation and experimentally by means of a hardware-in-the-loop setup emulating a co-axial helicopter.

  8. Joining and reinforcing a composite bumper beam and a composite crush can for a vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Elisabeth; Decker, Leland; Armstrong, Dale

    A front bumper beam and crush can (FBCC) system is provided for a vehicle. A bumper beam has an interior surface with a plurality of ribs extending therefrom. The ribs and the interior surface are made of a chopped fiber composite and cooperate to engage a crush can. The chopped fiber composite reinforces the engaging surfaces of the crush can and the interior surface of the bumper beam. The crush can has a tubular body made of a continuous fiber composite. The crush can has outwardly-extending flanges at an end spaced away from the bumper beam. The flanges are atmore » least partially provided with a layer of chopped fiber composite to reinforce a joint between the outwardly-extending flange and the vehicle frame.« less

  9. STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment

    NASA Image and Video Library

    1988-09-29

    During STS-26, inertial upper stage (IUS) with the tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is raised into deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). ASE aft frame tilt actuator (AFTA) table supports the IUS as it is positioned in the PLB and the ASE umbilical boom drifts away from IUS toward ASE forward cradle. TDRS-C solar array panels (in stowed configuration) are visible on top of the IUS. In the background are the orbital maneuvering system (OMS) pods and the Earth's limb.

  10. INFLIGHT (CREW ACTIVITY) - STS-2 - OUTER SPACE

    NASA Image and Video Library

    1981-11-16

    S81-39573 (12-14 Nov. 1981) --- This photograph was taken during a two-and a fourth-day stay in Earth orbit by astronauts Joe H. Engle, here shaving, and Richard H. Truly, photographer for this frame. A portion of that time was spent in the living area of middeck portion of the 122-ft-long (37 meters) vehicle as the astronauts ate, slept and took care of hygiene matters here. An onboard fire extinguisher is in upper right corner. Partially out of the frame at right edge is a photograph of George W. S. Abbey, Director of Flight Operations at Johnson Space Center. Engle is attired in an onboard constant wear type garment. Photo credit: NASA

  11. Kurs antenna on the Progress

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14451 (22 Feb. 2007) --- A close-up view of the Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module was photographed during a session of extravehicular activity (EVA) on Feb. 22, 2007. During the 6-hour, 18-minute spacewalk, astronaut Michael E. Lopez-Alegria (out of frame), Expedition 14 commander and NASA space station science officer; and cosmonaut Mikhail Tyurin (out of frame), flight engineer representing Russia's Federal Space Agency, were able to retract the stuck antenna which did not properly retract when the Progress docked to the station on Oct. 26, 2006. Moving the antenna was necessary to ensure it would not interfere with the undocking scheduled in April.

  12. Ares I-X Flight Test Vehicle Similitude to the Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Smith, R. Marshall; Campbell, John R., Jr.; Taylor, Terry L.

    2008-01-01

    The Ares I-X Flight Test Vehicle is the first in a series of flight test vehicles that will take the Ares I Crew Launch Vehicle design from development to operational capability. The test flight is scheduled for April 2009, relatively early in the Ares I design process so that data obtained from the flight can impact the design of Ares I before its Critical Design Review. Because of the short time frame (relative to new launch vehicle development) before the Ares I-X flight, decisions about the flight test vehicle design had to be made in order to complete analysis and testing in time to manufacture the Ares I-X vehicle hardware elements. This paper describes the similarities and differences between the Ares I-X Flight Test Vehicle and the Ares I Crew Launch Vehicle. Areas of comparison include the outer mold line geometry, aerosciences, trajectory, structural modes, flight control architecture, separation sequence, and relevant element differences. Most of the outer mold line differences present between Ares I and Ares I-X are minor and will not have a significant effect on overall vehicle performance. The most significant impacts are related to the geometric differences in Orion Crew Exploration Vehicle at the forward end of the stack. These physical differences will cause differences in the flow physics in these areas. Even with these differences, the Ares I-X flight test is poised to meet all five primary objectives and six secondary objectives. Knowledge of what the Ares I-X flight test will provide in similitude to Ares I as well as what the test will not provide is important in the continued execution of the Ares I-X mission leading to its flight and the continued design and development of Ares I.

  13. 46 CFR Appendix A to Part 520 - Standard Terminology and Codes

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DTB Firkin FIR Flo-Bin FLO Frame FRM Flask FSK Forward Reel FWR Garment on Hanger GOH Heads of Beef... Private Vehicle POV Pipe Rack PRK Quarters of Beef QTR Rail (semiconductor) RAL Rack RCK Reel REL Roll ROL Reverse Reel RVR Sack SAK Shook SHK Sides of Beef SID Skid SKD Skid, Elev, Lift Trk SKE Sleeve SLV Spin...

  14. 46 CFR Appendix A to Part 520 - Standard Terminology and Codes

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... DTB Firkin FIR Flo-Bin FLO Frame FRM Flask FSK Forward Reel FWR Garment on Hanger GOH Heads of Beef... Private Vehicle POV Pipe Rack PRK Quarters of Beef QTR Rail (semiconductor) RAL Rack RCK Reel REL Roll ROL Reverse Reel RVR Sack SAK Shook SHK Sides of Beef SID Skid SKD Skid, Elev, Lift Trk SKE Sleeve SLV Spin...

  15. 46 CFR Appendix A to Part 520 - Standard Terminology and Codes

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... DTB Firkin FIR Flo-Bin FLO Frame FRM Flask FSK Forward Reel FWR Garment on Hanger GOH Heads of Beef... Private Vehicle POV Pipe Rack PRK Quarters of Beef QTR Rail (semiconductor) RAL Rack RCK Reel REL Roll ROL Reverse Reel RVR Sack SAK Shook SHK Sides of Beef SID Skid SKD Skid, Elev, Lift Trk SKE Sleeve SLV Spin...

  16. 46 CFR Appendix A to Part 520 - Standard Terminology and Codes

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... DTB Firkin FIR Flo-Bin FLO Frame FRM Flask FSK Forward Reel FWR Garment on Hanger GOH Heads of Beef... Private Vehicle POV Pipe Rack PRK Quarters of Beef QTR Rail (semiconductor) RAL Rack RCK Reel REL Roll ROL Reverse Reel RVR Sack SAK Shook SHK Sides of Beef SID Skid SKD Skid, Elev, Lift Trk SKE Sleeve SLV Spin...

  17. 46 CFR Appendix A to Part 520 - Standard Terminology and Codes

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DTB Firkin FIR Flo-Bin FLO Frame FRM Flask FSK Forward Reel FWR Garment on Hanger GOH Heads of Beef... Private Vehicle POV Pipe Rack PRK Quarters of Beef QTR Rail (semiconductor) RAL Rack RCK Reel REL Roll ROL Reverse Reel RVR Sack SAK Shook SHK Sides of Beef SID Skid SKD Skid, Elev, Lift Trk SKE Sleeve SLV Spin...

  18. 75 FR 68448 - Revisions to In-Use Testing for Heavy-Duty Diesel Engines and Vehicles; Emissions Measurement and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ....915 To Allow the Use of ECM Fuel Rate To Determine NTE Mass Emission Rate We are taking this... (ECM) along with other information, including the CO 2 , CO, and hydrocarbon emissions to calculate the... nonroad diesel engines will be equipped with ECMs that report fuel flow within the time frame proposed for...

  19. 5. CONSTRUCTION PROGRESS VIEW OF ASSEMBLY USED TO RAISE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. CONSTRUCTION PROGRESS VIEW OF ASSEMBLY USED TO RAISE AND LOWER FUEL ELEMENTS. TAKEN FROM TOP OF SHIELDING TANK WITH CAMERA POINTING TOWARDS BOTTOM OF TANK. SHOWS LADDER, SQUARE LIFTING FRAME, FUEL ELEMENT HOLDERS, AND CABLE CYLINDERS. INEL PHOTO NUMBER 65-5434, TAKEN OCTOBER 20, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  20. Airlock Battery Charge module

    NASA Image and Video Library

    2008-06-06

    S124-E-006862 (6 June 2008) --- One of a series of digital still images documenting the Japanese Experiment Module, or JEM, also called Kibo, in its new home on the International Space Station, this view depicts Kibo's exterior in the distance, joined in the frame by some not so permanent hardware. The pictured components include the visiting Space Shuttle Discovery and a Russian Progress resupply vehicle.

  1. Unberthed HTV-5 grappled by SSRMS

    NASA Image and Video Library

    2015-09-28

    The unberthed Kounotori H-II Transfer Vehicle 5 (HTV-5) is grappled by the Canadarm2 Space Station Remote Manipulator System (SSRMS) prior to its release for reentry. This image is part of a time lapse sequence (iss045e125963 through iss045e126960) taken at a rate of 12 frames per minute. Image was released by astronaut on social media.

  2. Utility of A Satellite Vehicle For Reconnaissance.

    DTIC Science & Technology

    1951-04-01

    8217Cents& Oblique oblique frame$~ below Wowe.. sc h malic 01 to passing - ~ power9 th~rough 0011’s E ~nca r Sec enIA0onn, ~1 VOO 6 Escapldmle"’ ElectricO ...Fig. 26-Gyro precession require the use of a computer of the type associated with auto -pilots. Such a mechanism should not be difficult to develop but

  3. Impact of Non-Gaussian Error Volumes on Conjunction Assessment Risk Analysis

    NASA Technical Reports Server (NTRS)

    Ghrist, Richard W.; Plakalovic, Dragan

    2012-01-01

    An understanding of how an initially Gaussian error volume becomes non-Gaussian over time is an important consideration for space-vehicle conjunction assessment. Traditional assumptions applied to the error volume artificially suppress the true non-Gaussian nature of the space-vehicle position uncertainties. For typical conjunction assessment objects, representation of the error volume by a state error covariance matrix in a Cartesian reference frame is a more significant limitation than is the assumption of linearized dynamics for propagating the error volume. In this study, the impact of each assumption is examined and isolated for each point in the volume. Limitations arising from representing the error volume in a Cartesian reference frame is corrected by employing a Monte Carlo approach to probability of collision (Pc), using equinoctial samples from the Cartesian position covariance at the time of closest approach (TCA) between the pair of space objects. A set of actual, higher risk (Pc >= 10 (exp -4)+) conjunction events in various low-Earth orbits using Monte Carlo methods are analyzed. The impact of non-Gaussian error volumes on Pc for these cases is minimal, even when the deviation from a Gaussian distribution is significant.

  4. Extended image differencing for change detection in UAV video mosaics

    NASA Astrophysics Data System (ADS)

    Saur, Günter; Krüger, Wolfgang; Schumann, Arne

    2014-03-01

    Change detection is one of the most important tasks when using unmanned aerial vehicles (UAV) for video reconnaissance and surveillance. We address changes of short time scale, i.e. the observations are taken in time distances from several minutes up to a few hours. Each observation is a short video sequence acquired by the UAV in near-nadir view and the relevant changes are, e.g., recently parked or moved vehicles. In this paper we extend our previous approach of image differencing for single video frames to video mosaics. A precise image-to-image registration combined with a robust matching approach is needed to stitch the video frames to a mosaic. Additionally, this matching algorithm is applied to mosaic pairs in order to align them to a common geometry. The resulting registered video mosaic pairs are the input of the change detection procedure based on extended image differencing. A change mask is generated by an adaptive threshold applied to a linear combination of difference images of intensity and gradient magnitude. The change detection algorithm has to distinguish between relevant and non-relevant changes. Examples for non-relevant changes are stereo disparity at 3D structures of the scene, changed size of shadows, and compression or transmission artifacts. The special effects of video mosaicking such as geometric distortions and artifacts at moving objects have to be considered, too. In our experiments we analyze the influence of these effects on the change detection results by considering several scenes. The results show that for video mosaics this task is more difficult than for single video frames. Therefore, we extended the image registration by estimating an elastic transformation using a thin plate spline approach. The results for mosaics are comparable to that of single video frames and are useful for interactive image exploitation due to a larger scene coverage.

  5. The effect of motion and signalling on drivers' ability to predict intentions of other road users.

    PubMed

    Lee, Yee Mun; Sheppard, Elizabeth

    2016-10-01

    Failure in making the correct judgment about the intention of an approaching vehicle at a junction could lead to a collision. This paper investigated the impact of dynamic information on drivers' judgments about the intentions of approaching cars and motorcycles, and whether a valid or invalid signal was provided was also manipulated. Participants were presented with videoclips of vehicles approaching a junction which terminated immediately before the vehicle made any manoeuvre, or images of the final frame of each video. They were asked to judge whether or not the vehicle would turn. Drivers were better in judging the manoeuvre of approaching vehicles in dynamic than static stimuli, for both vehicle types. Drivers were better in judging the manoeuvre of cars than motorcycles for videos, but not for photographs. Drivers were also better in judging the manoeuvre of approaching vehicles when a valid signal was provided than an invalid signal, demonstrating the importance of providing a valid signal while driving. However, drivers were still somewhat successful in their judgments in most of the conditions with an invalid signal, suggesting that drivers were able to focus on other cues to intention. Finally, given that dynamic stimuli more closely reflect the demands of real-life driving there may be a need for drivers to adopt a more cautious approach while inferring a motorcyclist's intentions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The use of visual cues for vehicle control and navigation

    NASA Technical Reports Server (NTRS)

    Hart, Sandra G.; Battiste, Vernol

    1991-01-01

    At least three levels of control are required to operate most vehicles: (1) inner-loop control to counteract the momentary effects of disturbances on vehicle position; (2) intermittent maneuvers to avoid obstacles, and (3) outer-loop control to maintain a planned route. Operators monitor dynamic optical relationships in their immediate surroundings to estimate momentary changes in forward, lateral, and vertical position, rates of change in speed and direction of motion, and distance from obstacles. The process of searching the external scene to find landmarks (for navigation) is intermittent and deliberate, while monitoring and responding to subtle changes in the visual scene (for vehicle control) is relatively continuous and 'automatic'. However, since operators may perform both tasks simultaneously, the dynamic optical cues available for a vehicle control task may be determined by the operator's direction of gaze for wayfinding. An attempt to relate the visual processes involved in vehicle control and wayfinding is presented. The frames of reference and information used by different operators (e.g., automobile drivers, airline pilots, and helicopter pilots) are reviewed with particular emphasis on the special problems encountered by helicopter pilots flying nap of the earth (NOE). The goal of this overview is to describe the context within which different vehicle control tasks are performed and to suggest ways in which the use of visual cues for geographical orientation might influence visually guided control activities.

  7. Video Guidance Sensor for Surface Mobility Operations

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R.; Fischer, Richard; Bryan, Thomas; Howell, Joe; Howard, Ricky; Peters, Bruce

    2008-01-01

    Robotic systems and surface mobility will play an increased role in future exploration missions. Unlike the LRV during Apollo era which was an astronaut piloted vehicle future systems will include teleoperated and semi-autonomous operations. The tasks given to these vehicles will run the range from infrastructure maintenance, ISRU, and construction to name a few. A common task that may be performed would be the retrieval and deployment of trailer mounted equipment. Operational scenarios may require these operations to be performed remotely via a teleoperated mode,or semi-autonomously. This presentation describes the on-going project to adapt the Automated Rendezvous and Capture (AR&C) sensor developed at the Marshall Space Flight Center for use in an automated trailer pick-up and deployment operation. The sensor which has been successfully demonstrated on-orbit has been mounted on an iRobot/John Deere RGATOR autonomous vehicle for this demonstration which will be completed in the March 2008 time-frame.

  8. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  9. Air actuated clutch for four wheel drive vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clohessy, K.E.

    1986-12-09

    A control system is described for selectively engaging and disengaging a vehicle wheel and a vehicle drive mechanism comprising; a spindle having inside and outside rotative support surfaces, the spindle adapted to be mounted to a vehicle frame, an axle portion rotatably supported on the inside support surface, and drive means for selectively and rotatively driving the axle portion relative to the spindle; a wheel hub assembly adapted to carry a vehicle wheel, the hub assembly rotatively supported on the outside support surface of the spindle; a sealed expansion chamber defined in part by the spindle, the axle portion, themore » hub assembly and a movable wall carried by the hub assembly, venting means venting the outer side of the movable wall to atmospheric pressure, the clutch ring engaged by the movable wall for movement of the clutch ring with movement of the movable wall as induced by a pressure difference generated within the chamber, and pressurizing means for selectively pressurizing and depressurizing the expansion chamber to thereby selectively shift the clutch ring between the positions of interlocking the axle portion and hub assembly and unlocking the axle portion and hub assembly.« less

  10. Model Update of a Micro Air Vehicle (MAV) Flexible Wing Frame with Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.; Waszak, Martin R.; Morgan, Benjamin G.

    2004-01-01

    This paper describes a procedure to update parameters in the finite element model of a Micro Air Vehicle (MAV) to improve displacement predictions under aerodynamics loads. Because of fabrication, materials, and geometric uncertainties, a statistical approach combined with Multidisciplinary Design Optimization (MDO) is used to modify key model parameters. Static test data collected using photogrammetry are used to correlate with model predictions. Results show significant improvements in model predictions after parameters are updated; however, computed probabilities values indicate low confidence in updated values and/or model structure errors. Lessons learned in the areas of wing design, test procedures, modeling approaches with geometric nonlinearities, and uncertainties quantification are all documented.

  11. U.S. Virgin Islands Transportation Petroleum Reduction Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.

    2011-09-01

    This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks themore » projects according to cost, petroleum reduction, time frame, and popularity.« less

  12. On-Board Entry Trajectory Planning Expanded to Sub-orbital Flight

    NASA Technical Reports Server (NTRS)

    Lu, Ping; Shen, Zuojun

    2003-01-01

    A methodology for on-board planning of sub-orbital entry trajectories is developed. The algorithm is able to generate in a time frame consistent with on-board environment a three-degree-of-freedom (3DOF) feasible entry trajectory, given the boundary conditions and vehicle modeling. This trajectory is then tracked by feedback guidance laws which issue guidance commands. The current trajectory planning algorithm complements the recently developed method for on-board 3DOF entry trajectory generation for orbital missions, and provides full-envelope autonomous adaptive entry guidance capability. The algorithm is validated and verified by extensive high fidelity simulations using a sub-orbital reusable launch vehicle model and difficult mission scenarios including failures and aborts.

  13. LAUNCH (SOLID ROCKET BOOSTER [SRB]) - STS-1

    NASA Image and Video Library

    1981-04-12

    S81-30505 (12 April 1981) --- Separation of space shuttle Columbia?s external tank, photographed by motion picture cameras in the umbilical bays, occurred following the shutdown of the vehicle?s three main engines. Columbia?s cameras were able to record the bottom side of the tank as the orbiter headed toward its Earth-orbital mission with astronauts John W. Young and Robert L. Crippen aboard and the fuel tank fell toward Earth, passing through the atmosphere rapidly. Liquid oxygen and liquid hydrogen umbilical connectors can be seen at the bottom of the tank. For orientation, the photo should be held with the rounded end at bottom of the frame. Photo credit: NASA

  14. STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment

    NASA Image and Video Library

    1988-09-29

    During STS-26, inertial upper stage (IUS) with tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is positioned into its proper deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). In the foreground, the ASE forward cradle is visible. The IUS is mounted in the ASE aft frame tilt actuator (AFTA) table. TDRS-C components in stowed configuration include solar array panels, TDRS single access #1 and #2, TDRS SGL, and S-Band omni antenna. In the background are the orbital maneuvering system (OMS) pods, the Earth's cloud-covered surface, and the Earth's limb.

  15. Sensor fusion of cameras and a laser for city-scale 3D reconstruction.

    PubMed

    Bok, Yunsu; Choi, Dong-Geol; Kweon, In So

    2014-11-04

    This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale) in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate.

  16. An Application for Driver Drowsiness Identification based on Pupil Detection using IR Camera

    NASA Astrophysics Data System (ADS)

    Kumar, K. S. Chidanand; Bhowmick, Brojeshwar

    A Driver drowsiness identification system has been proposed that generates alarms when driver falls asleep during driving. A number of different physical phenomena can be monitored and measured in order to detect drowsiness of driver in a vehicle. This paper presents a methodology for driver drowsiness identification using IR camera by detecting and tracking pupils. The face region is first determined first using euler number and template matching. Pupils are then located in the face region. In subsequent frames of video, pupils are tracked in order to find whether the eyes are open or closed. If eyes are closed for several consecutive frames then it is concluded that the driver is fatigued and alarm is generated.

  17. STS-135 crew during Ingress/Egress Timeline training in building 9NW space station mockups

    NASA Image and Video Library

    2011-04-29

    JSC2011-E-043876 (29 April 2011) --- NASA astronauts Sandy Magnus and Rex Walheim (mostly out of frame at right), both STS-135 mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Photo credit: NASA

  18. Using Digital Counterstories as Multimodal Pedagogy among South African Pre-Service Student Educators to Produce Stories of Resistance

    ERIC Educational Resources Information Center

    Gachago, Daniela; Cronje, Franci; Ivala, Eunice; Condy, Janet; Chigona, Agnes

    2014-01-01

    While digital storytelling has entered higher education as a vehicle to reflect on issues of identity and difference, there is a paucity of research framed by a critical perspective unpacking underlying power structures in the classroom. This study reports on an ongoing project in a South African pre-service Teacher Education course in which…

  19. From the Frozen Wilderness to the Moody Sea: Rural Space, Girlhood and Popular Pedagogy

    ERIC Educational Resources Information Center

    Gottschall, Kristina

    2014-01-01

    This paper turns to debates in post-critical public pedagogy to focus on how a small body of films might potentially work as vehicles for teaching and learning about youth, gender and space. It is argued that representations of the rural shape what is possible for girlhood, being both enabling and constraining for the subject. Framed by discourses…

  20. STS-95 Discovery rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Morning shadows frame the orbiter Discovery on its rollover from the Orbiter Processing Facility Bay 2 to the Vehicle Assembly Building. The orbiter displays the recently painted NASA logo, termed the 'meatball,' on its left wing and both sides of the fuselage. Discovery (OV-103) is scheduled for its 25th flight, from Launch Pad 39B, on Oct. 29, 1998, for the STS-95 mission.

  1. Automation of Sensor Control in Uninhabited Aerial Vehicles

    DTIC Science & Technology

    2015-07-01

    were otherwise performed manually reduces workload and mitigates high workload situations. On the other hand, it has been suggested that the...that automation may help mitigate high workload (Lee, 2008) it would have been interesting if both sets of authors additionally assessed when...frames would result in the sensor view flickering between two views. In support of this, VBS2 initialisation parameters were adjusted to prevent

  2. Speaking and Listening across the Primary Curriculum: An Entry to Improved Learning and a Focus for CPD

    ERIC Educational Resources Information Center

    Westgate, David; Hughes, Maureen

    2015-01-01

    This paper reports on the initial stage of an exploratory project based in six primary schools in Newcastle upon Tyne (UK)--and on plans for its extension. The potential value of the project as a curricular initiative is set out, from both practical and research perspectives. Its framing as a vehicle for the continuous professional development…

  3. Practical Efficiency of Photovoltaic Panel Used for Solar Vehicles

    NASA Astrophysics Data System (ADS)

    Koyuncu, T.

    2017-08-01

    In this experimental investigation, practical efficiency of semi-flexible monocrystalline silicon solar panel used for a solar powered car called “Firat Force” and a solar powered minibus called “Commagene” was determined. Firat Force has 6 solar PV modules, a maintenance free long life gel battery pack, a regenerative brushless DC electric motor and Commagene has 12 solar PV modules, a maintenance free long life gel battery pack, a regenerative brushless DC electric motor. In addition, both solar vehicles have MPPT (Maximum power point tracker), ECU (Electronic control unit), differential, instrument panel, steering system, brake system, brake and gas pedals, mechanical equipments, chassis and frame. These two solar vehicles were used for people transportation in Adiyaman city, Turkey, during one year (June 2010-May 2011) of test. As a result, the practical efficiency of semi-flexible monocrystalline silicon solar panel used for Firat Force and Commagene was determined as 13 % in despite of efficiency value of 18% (at 1000 W/m2 and 25 °C ) given by the producer company. Besides, the total efficiency (from PV panels to vehicle wheel) of the system was also defined as 9%.

  4. Development of a numerical model for vehicle-bridge interaction analysis of railway bridges

    NASA Astrophysics Data System (ADS)

    Kim, Hee Ju; Cho, Eun Sang; Ham, Jun Su; Park, Ki Tae; Kim, Tae Heon

    2016-04-01

    In the field of civil engineering, analyzing dynamic response was main concern for a long time. These analysis methods can be divided into moving load analysis method and moving mass analysis method, and formulating each an equation of motion has recently been studied after dividing vehicles and bridges. In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations for motion. Also, 3 dimensional accurate numerical models was developed by KTX-vehicle in order to analyze dynamic response characteristics. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 18 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by PSD functions of the Federal Railroad Administration (FRA).

  5. Development of a frontal small overlap crashworthiness evaluation test.

    PubMed

    Sherwood, Christopher P; Mueller, Becky C; Nolan, Joseph M; Zuby, David S; Lund, Adrian K

    2013-01-01

    Small overlap frontal crashes are those in which crash forces are applied outboard of the vehicle's longitudinal frame rails. In-depth analyses of crashes indicate that such crashes account for a significant proportion of frontal crashes with seriously injured occupants. The objective of this research was to evaluate possible barrier crash tests that could be used to evaluate the crashworthiness of vehicles across a spectrum of small overlap crash types. Sixteen full-scale vehicle tests were conducted using 3 midsize passenger vehicles in up to 6 different test configurations, including vehicle-to-vehicle and barrier tests. All vehicles were tested at 64 km/h with an instrumented Hybrid III midsize male driver dummy. All test configurations resulted in primary loading of the wheel, suspension system, and hinge pillar. Vehicles underwent substantial lateral movement during the crash, which varied by crash configuration. The occupant compartments had significant intrusion, particularly to the most outboard structures. Inboard movement of the steering wheel in combination with outboard movement of the dummies (due to the lateral vehicle motion) caused limited interaction with the frontal air bag in most cases. When assessing overall crashworthiness (based on injury measures, structural deformation, and occupant kinematics), one vehicle had superior performance in each crash configuration. This was confirmation that the countermeasures benefiting performance in a single small overlap test also will provide a benefit in other crash configurations. Based on these test results, the Insurance Institute for Highway Safety has developed a small overlap crashworthiness evaluation with the following characteristics: a rigid flat barrier with a 150-mm corner radius, 25 percent overlap, 64 km/h test speed, and a Hybrid III midsize male driver dummy.

  6. Design, Fabrication, and Testing of a Hopper Spacecraft Simulator

    NASA Astrophysics Data System (ADS)

    Mucasey, Evan Phillip Krell

    A robust test bed is needed to facilitate future development of guidance, navigation, and control software for future vehicles capable of vertical takeoff and landings. Specifically, this work aims to develop both a hardware and software simulator that can be used for future flight software development for extra-planetary vehicles. To achieve the program requirements of a high thrust to weight ratio with large payload capability, the vehicle is designed to have a novel combination of electric motors and a micro jet engine is used to act as the propulsion elements. The spacecraft simulator underwent several iterations of hardware development using different materials and fabrication methods. The final design used a combination of carbon fiber and fiberglass that was cured under vacuum to serve as the frame of the vehicle which provided a strong, lightweight platform for all flight components and future payloads. The vehicle also uses an open source software development platform, Arduino, to serve as the initial flight computer and has onboard accelerometers, gyroscopes, and magnetometers to sense the vehicles attitude. To prevent instability due to noise, a polynomial kalman filter was designed and this fed the sensed angles and rates into a robust attitude controller which autonomously control the vehicle' s yaw, pitch, and roll angles. In addition to the hardware development of the vehicle itself, both a software simulation and a real time data acquisition interface was written in MATLAB/SIMULINK so that real flight data could be taken and then correlated to the simulation to prove the accuracy of the analytical model. In result, the full scale vehicle was designed and own outside of the lab environment and data showed that the software model accurately predicted the flight dynamics of the vehicle.

  7. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  8. Closed-form integrator for the quaternion (euler angle) kinematics equations

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A. (Inventor)

    2000-01-01

    The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.

  9. Characterisation of the human-seat coupling in response to vibration.

    PubMed

    Kim, Eunyeong; Fard, Mohammad; Kato, Kazuhito

    2017-08-01

    Characterising the coupling between the occupant and vehicle seat is necessary to understand the transmission of vehicle seat vibration to the human body. In this study, the vibration characteristics of the human body coupled with a vehicle seat were identified in frequencies up to 100 Hz. Transmissibilities of three volunteers seated on two different vehicle seats were measured under multi-axial random vibration excitation. The results revealed that the human-seat system vibration was dominated by the human body and foam below 10 Hz. Major coupling between the human body and the vehicle seat-structure was observed in the frequency range of 10-60 Hz. There was local coupling of the system dominated by local resonances of seat frame and seat surface above 60 Hz. Moreover, the transmissibility measured on the seat surface between the human and seat foam is suggested to be a good method of capturing human-seat system resonances rather than that measured on the human body in high frequencies above 10 Hz.Practitioner Summary: The coupling characteristics of the combined human body and vehicle seat system has not yet been fully understood in frequencies of 0.5-100 Hz. This study shows the human-seat system has distinctive dynamic coupling characteristics in three different frequency regions: below 10 Hz, 10-60 Hz, and above 60 Hz.

  10. STS-134 crew during EVA TPS Overview training in the TPS/PABF

    NASA Image and Video Library

    2009-12-15

    JSC2009-E-284895 (15 Dec. 2009) --- NASA astronauts Gregory H. Johnson (left), STS-134 pilot; along with astronauts Michael Fincke, Greg Chamitoff and Andrew Feustel (mostly out of frame), all mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center.

  11. iss014e14500

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14500 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  12. Russian Extravehicular Activity (EVA) 17A.

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14467 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  13. iss014e14502

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14502 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  14. Lopez-Alegria during EVA 17A

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14561 (22 Feb. 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Lopez-Alegria and cosmonaut Mikhail Tyurin (out of frame), flight engineer representing Russia's Federal Space Agency, were able to retract a stuck antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  15. Russian Extravehicular Activity (EVA) 17A.

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14469 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  16. Prospects for Classifying Complex Imagery Using a Self-Organizing Neural Network

    DTIC Science & Technology

    1989-01-11

    complex imagery. In his original re- port, Fukushima demonstrated that this system could discriminate between simple alphabetical characters...on a VAX-8600 minicomputer. Wire frame models of three different vehicles were used to test the properties which Fukushima had demonstrated. The...Table No. Page 3-1 Parameters for Training on Three Input Images 14 3-2 Trained Results 17 vn 1. INTRODUCTION The Neocognitron of Fukushima [2

  17. Sensing, Navigation and Reasoning Technologies for the DARPA Urban Challenge

    DTIC Science & Technology

    2007-12-31

    from the Applanix hardware and processed the data to account for state jumps. It then broadcast the world and local frame coordinate for the vehicle...contiguous series of control tactics, as requested by the Control. 22 Team Caltech Sensing and Mapping Subsystem Health Monitor Applanix (GPS and IMU...California Institute of Technology, Big Dog Ventures, Northrop Grumman Corporation, Mohr Davidow Ventures and Applanix Inc. The authors would also

  18. Efficient Feature Extraction and Likelihood Fusion for Vehicle Tracking in Low Frame Rate Airborne Video

    DTIC Science & Technology

    2010-07-01

    imagery, persistent sensor array I. Introduction New device fabrication technologies and heterogeneous embedded processors have led to the emergence of a...geometric occlusions between target and sensor , motion blur, urban scene complexity, and high data volumes. In practical terms the targets are small...distributed airborne narrow-field-of-view video sensor networks. Airborne camera arrays combined with com- putational photography techniques enable the

  19. Guidance of Autonomous Aerospace Vehicles for Vertical Soft Landing using Nonlinear Control Theory

    DTIC Science & Technology

    2015-08-11

    Measured and Kalman filter Estimate of the Roll Attitude of the Quad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4...and faster Hart- ley et al. [2013]. With availability of small, light, high fidelity sensors (Inertial Measurement Units IMU ) and processors on board...is a product of inverse of rotation matrix and inertia matrix for the quad frame. Since both the matrix are invertible at all times except when roll

  20. Terrain Aided Navigation for Remus Autonomous Underwater Vehicle

    DTIC Science & Technology

    2014-06-01

    22  Figure 11.  Several successive sonar pings displayed together in the LTP frame .............23  Figure 12.  The linear interpolation of...the sonar pings from Figure 11 .............................24  Figure 13.  SIR particle filter algorithm, after [19... ping —  |p k ky x .........46  Figure 26.  Correlation probability distributions for four different sonar images ..............47  Figure 27.  Particle

  1. Helicopter Non-Unique Trim Strategies for Blade-Vortex Interaction (BVI) Noise Reduction

    DTIC Science & Technology

    2016-01-22

    levels of harmonic rotor noise are one of the key technical barriers preventing the widespread public acceptance of helicopters for commercial...transportation. Blade-Vortex Interaction (BVI) is one such mechanism of rotor noise. BVI noise is a problem for civilian helicopter terminal area...non-rotating frame) on the vehicle trim which in turn affects noise generation. For example, conventional single main rotor helicopters commonly

  2. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  3. Shoulder torques resulting from luggage handling tasks in non-inertial frames.

    PubMed

    Shippen, James; May, Barbara

    2018-05-18

    This paper reports on the torques developed in the shoulder joint experienced by occupants of moving vehicles during manual handling tasks. Handling heavy weights can cause musculoskeletal injuries, especially if handling is done with arms extended or at high levels. The aim of the study was to measure the longitudinal and lateral accelerations in a variety of passenger vehicles together with the postures of subjects lifting luggage onto storage shelves. This data enabled the application of inverse dynamics methods in a non-inertial reference frame to calculate the shoulder joint torques. The subjects lifted 3 pieces of luggage of masses of 5 kg, 10 kg and 14 kg onto shelving which were at heights of 1.2 m, 1.6 m and 1.8 m. The movement of subjects was measured using a 12 camera, 3-dimensional optical tracking system. The subjects stood on force plates to measure the ground reaction forces. Sixty-three trials were completed, although 9 trials were aborted because subjects felt unable to complete the task. It was found that the shoulder torques exceeded the levels recommend by the UK Health and Safety Executive for manual handling. A lift assistance device is suggested to reduce the shoulder torques required for luggage handling.

  4. Three-Dimensional Modeling of Aircraft High-Lift Components with Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2016-01-01

    Vehicle Sketch Pad (OpenVSP) is a parametric geometry modeler that has been used extensively for conceptual design studies of aircraft, including studies using higher-order analysis. OpenVSP can model flap and slat surfaces using simple shearing of the airfoil coordinates, which is an appropriate level of complexity for lower-order aerodynamic analysis methods. For three-dimensional analysis, however, there is not a built-in method for defining the high-lift components in OpenVSP in a realistic manner, or for controlling their complex motions in a parametric manner that is intuitive to the designer. This paper seeks instead to utilize OpenVSP's existing capabilities, and establish a set of best practices for modeling high-lift components at a level of complexity suitable for higher-order analysis methods. Techniques are described for modeling the flap and slat components as separate three-dimensional surfaces, and for controlling their motion using simple parameters defined in the local hinge-axis frame of reference. To demonstrate the methodology, an OpenVSP model for the Energy-Efficient Transport (EET) AR12 wind-tunnel model has been created, taking advantage of OpenVSP's Advanced Parameter Linking capability to translate the motions of the high-lift components from the hinge-axis coordinate system to a set of transformations in OpenVSP's frame of reference.

  5. Paresev in flight with pilot Milt Thompson

    NASA Technical Reports Server (NTRS)

    1964-01-01

    This movie clip runs 37 seconds in length and begins with a shot from the chase plane of NASA Dryden test pilot Milt Thompson at the controls of the Paresev, then the onboard view from the pilot's seat and finally bringing the Paresev in for a landing on the dry lakebed at Edwards AFB. The Paresev (Paraglider Rescue Vehicle) was an indirect outgrowth of kite-parachute studies by NACA Langley engineer Francis M. Rogallo. In early 1960's the 'Rogallo wing' seemed an excellent means of returning a spacecraft to Earth. The delta wing design was patented by Mr. Rogallo. In May 1961, Robert R. Gilruth, director of the NASA Space Task Group, requested studies of an inflatable Rogallo-type 'Parawing' for spacecraft. Several companies responded; North American Aviation, Downey, California, produced the most acceptable concept and development was contracted to that company. In November 1961 NASA Headquarters launched a paraglider development program, with Langley doing wind tunnel studies and the NASA Flight Research Center supporting the North American test program. The North American concept was a capsule-type vehicle with a stowed 'parawing' that could be deployed and controlled from within for a landing more like an airplane instead of a 'splash down' in the ocean. The logistics became enormous and the price exorbitant, plus NASA pilots and engineers felt some baseline experience like building a vehicle and flying a Parawing should be accomplished first. The Paresev (Paraglider Research Vehicle) was used to gain in-flight experience with four different membranes (wings), and was not used to develop the more complicated inflatable deployment system. The Paresev was designed by Charles Richard, of the Flight Research Center Vehicle and System Dynamics Branch, with the rest of the team being: engineers, Richard Klein, Gary Layton, John Orahood, and Joe Wilson; from the Maintenance and Manufacturing Branch: Frank Fedor, LeRoy Barto; Victor Horton as Project Manager, with Gary Layton becoming Project Manager later on in the program. Mr. Paul Bikle, Director of the Center, gave instructions that were short and to the point: build a single-seat Paraglider and 'do it quick and cheap.' The Paresev was unpowered, the 'fuselage,' an open framework fabricated of welded 4130 steel tubing, was referred to as a `space frame.' The keel and leading edges of the wings were constructed of 2 1/2-inch diameter aluminum tubing. The leading edge sweep angle was held constant at 50 degrees by a rigid spreader bar. Additional wing structure fabricated of steel tubing ensured structural integrity. Seven weeks after the project was initiated the team rolled out the Paresev 1. It resembled a grown-up tricycle, with a rudimentary seat, an angled tripod mast, and, perched on top of the mast, a Rogallo-type parawing. The pilot sat out in the open, strapped in the seat, with no enclosure of any kind. He controlled the descent rate by tilting the wing fore and aft, and turned by tilting the wing from side to side with a control stick that came from overhead. NASA registered the Paresev, the first NASA research airplane to be constructed totally 'in-house,' with the Federal Aviation Administration on February 12, 1962. Flight testing started immediately. There was one space frame built called the Paresev that used four different wing types. Paresev 1 had a linen membrane, with the control stick coming from overhead in front of the pilots seat. Paresev 1A had a regulation control stick and a Dacron membrane. Paresev 1B had a smaller Dacron membrane with the space frame remaining the same. Paresev 1C used a half-scale version of the inflatable Gemini parawing with a small change to the space frame. All 'space frames,' regardless of the parawing configuration, had a shield with 'Paresev 1-A' and the NASA meatball on the front of the vehicle. After the space frame was completed a sailmaker was asked to sew the wing membrane according to the planform developed by NASA Flight Research Center personnel. He suggested using Dacron instead of the linen fabric chosen, but yielded to the engineer's specifications. A nylon bolt rope was attached in the trailing edge of the 150-square-foot wing membrane. The rope was unrestrained except at the wing tips and was therefore free to equalize the load between the two lobes of the wing. This worked reasonably well, but flight tests proved the wing to be too flexible with it flapping and bulging in alarming ways. The poor membrane design led to trailing edge flutter, with longitudinal and lateral stick forces being severe. A number of different rigging modifications to improve the flying characteristics were tried, but very few were successful and none were predictable. Everything seemed to affect stick forces in the worst way. The fifth flight aloft lasted 10 seconds. On a ground tow the Paresev and pilot fell 10 feet. Considerable damage was done to the Paresev with the pilot, Bruce Peterson, being taken to the base hospital. Injuries sustained by the pilot were not serious. After this accident the Paresev was extensively rebuilt and renamed, Paresev-1A. PARESEV 1-A The sailmaker was asked again to construct a 150-square-foot membrane the way he wanted to. The resulting wing membrane had excellent contours in flight and was made from 6-ounce Dacron. The space frame was rebuilt with more sophistication than the Paresev 1 had been. The shock absorbers were Ford automotive parts, the wing universal joint was a 1948 Pontiac part, and the tires and wheels were from a Cessna 175 aircraft. The overhead stick was replaced with a stick and pulley arrangement that operated more like conventional aircraft controls. This vehicle had much improved stick forces and handling qualities. The instrumentation used to obtain data was quite crude, partially as a result of the desire to keep the program simple and low in cost and also because there was no onboard power. To measure performance, technicians installed a large alpha vane on the wing apex with a scale at the trailing edge that the pilot could read directly. A curved bubble level measured the vehicle attitude, and a Fairchild camera recorded the glide slope. PARESEV 1-B The Paresev 1-B used the Paresev 1-A space frame with a smaller Dacron wing (100 square feet) and was flight tested to evaluate its handling qualities with lower lift-to-drag values. One project NASA engineer described its gliding ability as 'pretty scary.' PARESEV 1-C The space frame of this vehicle remained almost unchanged from the earlier vehicles. However, a new control box gave the pilot the ability to increase or decrease the nitrogen in the inflatable wing supports to compensate for the changing density of the air. Two bottles of nitrogen provided an extra supply of nitrogen. The vehicle featured an inflatable wing. Actually the whole wing was not inflatable; the three chambers that acted as spars and supported the wing inflated. The center spar ran fore and aft and measured 191 inches; two other inflatable spars formed the leading edges. These three compartments were filled with nitrogen under pressure to make them rigid. The Paresev in this configuration was expected to closely approximate the aerodynamic characteristics that would be encountered with the Gemini space capsule, only with a parawing extended. The Paresev was very unstable in flight with this configuration. The first Paresev flights began with tows across the dry lakebed, in 1962, using a NASA vehicle, an International Harvester carry-all (6 cylinder). Eventually ground and airtows were done using a Stearman sport biplane (450 horsepower), a Piper Super Cub (150-180 horsepower), Cessna L-19 (200 horsepower Bird Dog) and a Boeing-Vertol HC-1A. Speed range of the Paresev was about 35 to 65 miles per hour. The Paresev completed nearly 350 flights during a research program from 1962 until 1964. Pilots flying the Paresev included NASA pilots Milton Thompson, Bruce Peterson, and Neil Armstrong from Dryden, Robert Champine from Langley, and Gus Grissom, astronaut, plus North American test pilot Charles Hetzel. The Paresev was legally transferred to the National Air and Space Museum of the Smithsonian Institute, Washington, D.C. Despite its looks, the Paresev was a useful research aircraft that helped develop a new way to fly. Although the Rogallo wing was never used on a spacecraft, it revolutionized the sport of hang gliding, and a different but related kind of wing will be used on the X-38 technology demonstrator for a crew return vehicle from the International Space Station.

  6. Vehicle Detection for RCTA/ANS (Autonomous Navigation System)

    NASA Technical Reports Server (NTRS)

    Brennan, Shane; Bajracharya, Max; Matthies, Larry H.; Howard, Andrew B.

    2012-01-01

    Using a stereo camera pair, imagery is acquired and processed through the JPLV stereo processing pipeline. From this stereo data, large 3D blobs are found. These blobs are then described and classified by their shape to determine which are vehicles and which are not. Prior vehicle detection algorithms are either targeted to specific domains, such as following lead cars, or are intensity- based methods that involve learning typical vehicle appearances from a large corpus of training data. In order to detect vehicles, the JPL Vehicle Detection (JVD) algorithm goes through the following steps: 1. Take as input a left disparity image and left rectified image from JPLV stereo. 2. Project the disparity data onto a two-dimensional Cartesian map. 3. Perform some post-processing of the map built in the previous step in order to clean it up. 4. Take the processed map and find peaks. For each peak, grow it out into a map blob. These map blobs represent large, roughly vehicle-sized objects in the scene. 5. Take these map blobs and reject those that do not meet certain criteria. Build descriptors for the ones that remain. Pass these descriptors onto a classifier, which determines if the blob is a vehicle or not. The probability of detection is the probability that if a vehicle is present in the image, is visible, and un-occluded, then it will be detected by the JVD algorithm. In order to estimate this probability, eight sequences were ground-truthed from the RCTA (Robotics Collaborative Technology Alliances) program, totaling over 4,000 frames with 15 unique vehicles. Since these vehicles were observed at varying ranges, one is able to find the probability of detection as a function of range. At the time of this reporting, the JVD algorithm was tuned to perform best at cars seen from the front, rear, or either side, and perform poorly on vehicles seen from oblique angles.

  7. Structure-From for Calibration of a Vehicle Camera System with Non-Overlapping Fields-Of in AN Urban Environment

    NASA Astrophysics Data System (ADS)

    Hanel, A.; Stilla, U.

    2017-05-01

    Vehicle environment cameras observing traffic participants in the area around a car and interior cameras observing the car driver are important data sources for driver intention recognition algorithms. To combine information from both camera groups, a camera system calibration can be performed. Typically, there is no overlapping field-of-view between environment and interior cameras. Often no marked reference points are available in environments, which are a large enough to cover a car for the system calibration. In this contribution, a calibration method for a vehicle camera system with non-overlapping camera groups in an urban environment is described. A-priori images of an urban calibration environment taken with an external camera are processed with the structure-frommotion method to obtain an environment point cloud. Images of the vehicle interior, taken also with an external camera, are processed to obtain an interior point cloud. Both point clouds are tied to each other with images of both image sets showing the same real-world objects. The point clouds are transformed into a self-defined vehicle coordinate system describing the vehicle movement. On demand, videos can be recorded with the vehicle cameras in a calibration drive. Poses of vehicle environment cameras and interior cameras are estimated separately using ground control points from the respective point cloud. All poses of a vehicle camera estimated for different video frames are optimized in a bundle adjustment. In an experiment, a point cloud is created from images of an underground car park, as well as a point cloud of the interior of a Volkswagen test car is created. Videos of two environment and one interior cameras are recorded. Results show, that the vehicle camera poses are estimated successfully especially when the car is not moving. Position standard deviations in the centimeter range can be achieved for all vehicle cameras. Relative distances between the vehicle cameras deviate between one and ten centimeters from tachymeter reference measurements.

  8. An Innovative Procedure for Calibration of Strapdown Electro-Optical Sensors Onboard Unmanned Air Vehicles

    PubMed Central

    Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio; Rispoli, Attilio

    2010-01-01

    This paper presents an innovative method for estimating the attitude of airborne electro-optical cameras with respect to the onboard autonomous navigation unit. The procedure is based on the use of attitude measurements under static conditions taken by an inertial unit and carrier-phase differential Global Positioning System to obtain accurate camera position estimates in the aircraft body reference frame, while image analysis allows line-of-sight unit vectors in the camera based reference frame to be computed. The method has been applied to the alignment of the visible and infrared cameras installed onboard the experimental aircraft of the Italian Aerospace Research Center and adopted for in-flight obstacle detection and collision avoidance. Results show an angular uncertainty on the order of 0.1° (rms). PMID:22315559

  9. Earth Observation

    NASA Image and Video Library

    2014-06-23

    ISS040-E-017377 (23 June 2014) --- One of the Expedition 40 crew members aboard the International Space Station recorded this image showing several states in the USA and a small part of Mexico, including Baja California, on June 23, 2014. Parts of Nevada are visible in the bottom of the frame. The area in the Mojave Desert where many space shuttle missions successfully ended is visible near the scene's center. The Gulf of Cortez and several hundred miles of the Pacific coast line of Mexico and California are visible in the top portion of the photo. The heavily populated Los Angeles Basin is just above the Mojave site of shuttle landings, with the San Diego area partially obscured by the docked Russian Soyuz vehicle in the foreground. The Salton Sea is just above left center frame.

  10. How Community Organizing Promotes Health Equity, And How Health Equity Affects Organizing.

    PubMed

    Pastor, Manuel; Terriquez, Veronica; Lin, May

    2018-03-01

    Public health scholarship increasingly recognizes community organizing as a vehicle for unleashing the collective power necessary to uproot socioeconomic inequities at the core of health disparities. In this article we reverse the analytical focus from how organizing can affect health equity, and we consider how the frame of health equity has shaped grassroots organizing. Using evidence from a range of cases in California, we suggest that the health equity frame can guide and justify grassroots groups' efforts to improve the health outcomes of marginalized populations; connect issues such as housing and school discipline to health; and provide a rationale for community organizing groups to directly address the trauma experienced by their own members and staff, who often come from communities at risk for poor health outcomes.

  11. Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.

    2012-01-01

    The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.

  12. Investigation of kinematic features for dismount detection and tracking

    NASA Astrophysics Data System (ADS)

    Narayanaswami, Ranga; Tyurina, Anastasia; Diel, David; Mehra, Raman K.; Chinn, Janice M.

    2012-05-01

    With recent changes in threats and methods of warfighting and the use of unmanned aircrafts, ISR (Intelligence, Surveillance and Reconnaissance) activities have become critical to the military's efforts to maintain situational awareness and neutralize the enemy's activities. The identification and tracking of dismounts from surveillance video is an important step in this direction. Our approach combines advanced ultra fast registration techniques to identify moving objects with a classification algorithm based on both static and kinematic features of the objects. Our objective was to push the acceptable resolution beyond the capability of industry standard feature extraction methods such as SIFT (Scale Invariant Feature Transform) based features and inspired by it, SURF (Speeded-Up Robust Feature). Both of these methods utilize single frame images. We exploited the temporal component of the video signal to develop kinematic features. Of particular interest were the easily distinguishable frequencies characteristic of bipedal human versus quadrupedal animal motion. We examine limits of performance, frame rates and resolution required for human, animal and vehicles discrimination. A few seconds of video signal with the acceptable frame rate allow us to lower resolution requirements for individual frames as much as by a factor of five, which translates into the corresponding increase of the acceptable standoff distance between the sensor and the object of interest.

  13. Media response to colon cancer campaigns in Switzerland 2005-2007: regional newspapers are the most reliable among the printed media.

    PubMed

    Wang-Buholzer, Carine F; Lomazzi, Marta; Borisch, Bettina

    2010-06-24

    Health campaigns are frequently covered by printed media, but coverage is not homogeneous across different types of newspapers. Switzerland as a multilinguistic country with many newspapers offers a good field for study. A better understanding of how printed media report on national campaigns against colon cancer in the three main linguistic regions may help to improve future public health interventions. Therefore, we analyzed articles published between 2005 and 2007 during the campaigns "Darmkrebs-nie?" and "Self-Care" in the German, French and Italian regions of Switzerland. Some 65% of articles reporting on colon cancer were in German, 23% and 12% were in French and Italian respectively. During the campaign, topics linked to colon cancer were increasingly covered by the media. Regional newspapers (66%) reported significantly more about colon cancer and produced the most detailed articles.Both gain- and loss-framed messages have been used by journalists, whereas the campaigns used merely gain-framed messages. Latin (French and Italian) newspapers mixed gain- and loss-framed messages in the same articles, while German articles mainly used a single frame throughout. Swiss-German papers reported more about the topic and the reporting was quantitatively and qualitatively more prominent in regional papers. The press followed the campaigns closely only during the period of campaigning, with high coverage. We propose to consider the regional press as an important vehicle of health information. Moreover, slight differences in framing can be observed between German and Latin articles.

  14. The Development and Implementation of the Kennedy Space Center Umbilical Clearance Tool

    NASA Technical Reports Server (NTRS)

    Chesnutt, David

    2016-01-01

    In preparation for NASAs upcoming Space Launch System program, the Kennedy Space Center is currently developing subsystems to provide fuel, purges and communications to the flight vehicle, known as umbilicals. It is vital to the crew and mission that these umbilicals release at T-0 without re-contacting the vehicle as it is accelerating from the launch pad. To help ensure this requirement is met by the program, a methodology of evaluating the moving bodies was developed and implemented into a tool using MATLAB. The tool, known as the KSC Umbilical Clearance Tool, takes a given elevation of interest and an umbilical retract profile within the plane to evaluate the clearance between the umbilical arm and thousands of independent flight vehicle drift profiles from a Monte Carlo analysis. The presentation will delve into the challenges associated with developing and implementing the tool framed in the context of evaluating the clearance for one of the SLS umbilicals.

  15. Feasibility of a GNSS-Probe for Creating Digital Maps of High Accuracy and Integrity

    NASA Astrophysics Data System (ADS)

    Vartziotis, Dimitris; Poulis, Alkis; Minogiannis, Alexandros; Siozos, Panayiotis; Goudas, Iraklis; Samson, Jaron; Tossaint, Michel

    The “ROADSCANNER” project addresses the need for increased accuracy and integrity Digital Maps (DM) utilizing the latest developments in GNSS, in order to provide the required datasets for novel applications, such as navigation based Safety Applications, Advanced Driver Assistance Systems (ADAS) and Digital Automotive Simulations. The activity covered in the current paper is the feasibility study, preliminary tests, initial product design and development plan for an EGNOS enabled vehicle probe. The vehicle probe will be used for generating high accuracy, high integrity and ADAS compatible digital maps of roads, employing a multiple passes methodology supported by sophisticated refinement algorithms. Furthermore, the vehicle probe will be equipped with pavement scanning and other data fusion equipment, in order to produce 3D road surface models compatible with standards of road-tire simulation applications. The project was assigned to NIKI Ltd under the 1st Call for Ideas in the frame of the ESA - Greece Task Force.

  16. Rate determination from vector observations

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.

    1993-01-01

    Vector observations are a common class of attitude data provided by a wide variety of attitude sensors. Attitude determination from vector observations is a well-understood process and numerous algorithms such as the TRIAD algorithm exist. These algorithms require measurement of the line of site (LOS) vector to reference objects and knowledge of the LOS directions in some predetermined reference frame. Once attitude is determined, it is a simple matter to synthesize vehicle rate using some form of lead-lag filter, and then, use it for vehicle stabilization. Many situations arise, however, in which rate knowledge is required but knowledge of the nominal LOS directions are not available. This paper presents two methods for determining spacecraft angular rates from vector observations without a priori knowledge of the vector directions. The first approach uses an extended Kalman filter with a spacecraft dynamic model and a kinematic model representing the motion of the observed LOS vectors. The second approach uses a 'differential' TRIAD algorithm to compute the incremental direction cosine matrix, from which vehicle rate is then derived.

  17. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell

    1998-01-01

    Analytical and experimental studies conducted at the NASA Langley Research Center for investigating integrated cryogenic propellant tank systems for a Reusable Launch Vehicle are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, Thermal Protection System (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  18. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell W.

    2005-01-01

    Analytical and experimental studies conducted at the NASA, Langley Research Center (LaRC) for investigating integrated cryogenic propellant tank systems for a reusable launch vehicle (RLV) are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, thermal protection system (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  19. KSC-2009-5962

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. – Two of the lightning towers frame the Ares I-X test rocket as it takes off from Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT Oct. 28. NASA’s Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/ Sandra Joseph and Kevin O'Connell

  20. Traffic signs recognition for driving assistance

    NASA Astrophysics Data System (ADS)

    Sai Sangram Reddy, Yatham; Karthik, Devareddy; Rana, Nikunj; Jasmine Pemeena Priyadarsini, M.; Rajini, G. K.; Naseera, Shaik

    2017-11-01

    In the current circumstances with the innovative headway, we must be able to provide assistance to the driving in recognising the traffic signs on the roads. At present time, many reviews are being directed moving in the direction of the usage of a keen Traffic Systems. One field of this exploration is driving support systems, and many reviews are being directed to create frameworks which distinguish and perceive street signs in front of the vehicle, and afterward utilize the data to advise the driver or to even control the vehicle by implementing this system on self-driving vehicles. In this paper we propose a method to detect the traffic sign board in a frame using HAAR cascading and then identifying the sign on it. The output may be either given out in voice or can be displayed as per the driver’s convenience. Each of the Traffic Sign is recognised using a database of images of symbols used to train the KNN classifier using open CV libraries.

  1. Autonomous Reconfigurable Control Allocation (ARCA) for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hodel, A. S.; Callahan, Ronnie; Jackson, Scott (Technical Monitor)

    2002-01-01

    The role of control allocation (CA) in modern aerospace vehicles is to compute a command vector delta(sub c) is a member of IR(sup n(sub a)) that corresponding to commanded or desired body-frame torques (moments) tou(sub c) = [L M N](sup T) to the vehicle, compensating for and/or responding to inaccuracies in off-line nominal control allocation calculations, actuator failures and/or degradations (reduced effectiveness), or actuator limitations (rate/position saturation). The command vector delta(sub c) may govern the behavior of, e.g., acrosurfaces, reaction thrusters, engine gimbals and/or thrust vectoring. Typically, the individual moments generated in response to each of the n(sub a) commands does not lie strictly in the roll, pitch, or yaw axes, and so a common practice is to group or gang actuators so that a one-to-one mapping from torque commands tau(sub c) actuator commands delta(sub c) may be achieved in an off-line computed CA function.

  2. Nested Autonomy for Unmanned Marine Vehicles with MOOS-IvP

    DTIC Science & Technology

    2010-01-01

    standard XML format. As an example, Figure 26 shows the collaborative, mul- tistatic MCM mission by the Unicorn and Macrura Bluefin- 21 AUVs during SWAMSI... Unicorn and Macrura perform synchronized swimming maintaining a constant bistatic angle of 60 deg relative to a proud cylin- drical target (cp...Pianosa, Italy, July–August 2008: The upper left frame shows the Unicorn BF21 AUV with towed DURIP array being deployed from NRV Alliance. The upper

  3. KSC-06pd0257

    NASA Image and Video Library

    2006-02-09

    KENNEDY SPACE CENTER, FLA. - The thermal protection system blanket insulation (foreground) has been hand-sewn onto a frame before being installed inside Endeavour's Reinforced Carbon-Carbon nose cap, seen in the background, in the NASA Kennedy Space Center Orbiter Processing Facility bay 2. Made of a woven ceramic fabric, the special blankets are used to help insulate the vehicle's nose cap and protect it from the extreme temperatures it will face during a mission. Photo credit: NASA/Jack Pfaller.

  4. Lopez-Alegria during EVA 17A

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14523 (22 Feb. 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Lopez-Alegria and cosmonaut Mikhail Tyurin (out of frame), flight engineer representing Russia's Federal Space Agency, were able to retract a stuck Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  5. Lopez-Alegria during EVA 17A

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14531 (22 Feb. 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Lopez-Alegria and cosmonaut Mikhail Tyurin (out of frame), flight engineer representing Russia's Federal Space Agency, were able to retract a stuck Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  6. Humans, Intelligent Technology, and Their Interface: A Study of Brown’s Point

    DTIC Science & Technology

    2017-12-01

    known about the role of drivers. When combining humans and intelligent technology (machines), such as self-driving vehicles, how people think about...disrupt the entire transportation industry and potentially change how society moves people and goods. The findings of the investigation are likely...The power of suggestion is very important to understand and consider when framing and bringing meaning to new technology, which points to looking at

  7. Innovative Alternatives to Lifting Overturned Military Vehicles

    DTIC Science & Technology

    2014-04-25

    NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) United States Air Force Academy,Washington,DC,20301 8...PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...Initial testing of the prototype involved using a SATEC load frame to apply a load. As previously stated, during the first test the design failed

  8. Compression Strength of Composite Primary Structural Components

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.; Starnes, James H., Jr. (Technical Monitor)

    2000-01-01

    The focus of research activities under NASA Grant NAG-1-2035 was the response and failure of thin-walled structural components. The research is applicable to the primary load carrying structure of flight vehicles, with particular emphasis on fuselage and wing'structure. Analyses and tests were performed that are applicable to the following structural components an aft pressure bulkhead, or a composite pressure dome, pressure cabin damage containment, and fuselage frames subject to crash-type loads.

  9. Hybrid Aircraft for Heavy Lift / High Speed Strategic Mobility

    DTIC Science & Technology

    2011-04-01

    Those advancements that reduce onboard power requirements are beneficial, whether high efficiency lighting or computing, innovative cargo management ...of operations projected to become more common in the 2035 time frame. This paper proposes that the US military procure a new class of vehicle to...first attempt to fly a HA was made by Alberto Santos-Dumont, a Brazilian living in France and a pioneer in the controlled flight of airships. In 1905

  10. Evaluation of ATV Track Systems for Winter Mountain Operations

    DTIC Science & Technology

    2011-06-01

    charge utile. Importance des résultats et perspectives : Selon ces essais limités, comparativement à une motoneige moderne, les VTT à chenilles...of this document, but the products seem similar in design , with subtle differences in frame, suspension, track depth, etc. Each of the companies sell...because the transmission of this vehicle seems to be designed for high-speed operation, rather than low-speed torque. It should also be noted that the

  11. Optimal Sensor-Based Motion Planning for Autonomous Vehicle Teams

    DTIC Science & Technology

    2017-03-01

    calculated for non -dimensional ranges with Equation (3.26) and DU = 100 meters (shown at right) are equivalent to propagation loss calculated for 72 0 100...sensor and uniform target PDF, both choices are equivalent and the probability of non -detection equals the fraction of un- searched area. Time...feasible. Another goal is maximizing sensor performance in the presence of uncertainty. Optimal control provides a useful frame- work for solving these

  12. The Use of Meta-Level Control for Coordination in a Distributed Problem Solving Network,

    DTIC Science & Technology

    1983-01-01

    crucial aspect of the design organizational structuring in coordinating the local activity of achs decentralized network control policies. It is...TEMTED EXflD.MENTS WITn and ratings of the subgoals." Threshold values indicating ORGANIZATIONAL STRUCIURING IkeA usaw lani of a subal are specif’ied in...the monitoring are. This environmental vehicle, approximate position, time frame, and belief. The scenario was designed to test the networks ability

  13. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  14. Supercapacitors for the energy management of electric vehicles

    NASA Astrophysics Data System (ADS)

    Faggioli, Eugenio; Rena, Piergeorgio; Danel, Veronique; Andrieu, X.; Mallant, Ronald; Kahlen, Hans

    The integration of the on-board energy source of an electrically propelled vehicle with a supercapacitor bank (SB) as a peak power unit, can lead to substantial benefits in terms of electric vehicle performances, battery life and energy economy. Different architectures may be envisaged, to be chosen according to technical-economical trade-off. A research activity, supported by the European Community in the frame of the Joule III program and titled `Development of Supercapacitors for Electric Vehicles' (contract JOE3-CT95-0001), has been in progress since the beginning of 1996. The partners involved are SAFT (project leader), Alcatel Alsthom Research (France), Centro Ricerche Fiat (Italy), University of Kaiserslautern (Germany), Danionics (DK) and ECN (Netherlands). Its objective is to develop a SB and its electronic control and to integrate them in two different full-scale traction systems, supplied, respectively, by sealed lead traction batteries and by a fuel cell system. Through the bench tests, it will be possible to evaluate the impact of the SB on both traction systems. In this paper, a project overview will be given; the power management strategy principles, the supercapacitor's control electronic devices, the system's architecture and the supercapacitor's requirements on the base of the simulation results, will be examined.

  15. Low-Cost MEMS Sensors and Vision System for Motion and Position Estimation of a Scooter

    PubMed Central

    Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio

    2013-01-01

    The possibility to identify with significant accuracy the position of a vehicle in a mapping reference frame for driving directions and best-route analysis is a topic which is attracting a lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate position, orientation and velocity of the system with high measurement rates. In this work we test a system which uses low-cost sensors, based on Micro Electro-Mechanical Systems (MEMS) technology, coupled with information derived from a video camera placed on a two-wheel motor vehicle (scooter). In comparison to a four-wheel vehicle; the dynamics of a two-wheel vehicle feature a higher level of complexity given that more degrees of freedom must be taken into account. For example a motorcycle can twist sideways; thus generating a roll angle. A slight pitch angle has to be considered as well; since wheel suspensions have a higher degree of motion compared to four-wheel motor vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a “Vespa” scooter; which can be used as alternative to the “classical” approach based on GPS/INS sensor integration. Position and orientation of the scooter are obtained by integrating MEMS-based orientation sensor data with digital images through a cascade of a Kalman filter and a Bayesian particle filter. PMID:23348036

  16. Low-Cost MEMS sensors and vision system for motion and position estimation of a scooter.

    PubMed

    Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio

    2013-01-24

    The possibility to identify with significant accuracy the position of a vehicle in a mapping reference frame for driving directions and best-route analysis is a topic which is attracting a lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate position, orientation and velocity of the system with high measurement rates. In this work we test a system which uses low-cost sensors, based on Micro Electro-Mechanical Systems (MEMS) technology, coupled with information derived from a video camera placed on a two-wheel motor vehicle (scooter). In comparison to a four-wheel vehicle; the dynamics of a two-wheel vehicle feature a higher level of complexity given that more degrees of freedom must be taken into account. For example a motorcycle can twist sideways; thus generating a roll angle. A slight pitch angle has to be considered as well; since wheel suspensions have a higher degree of motion compared to four-wheel motor vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a "Vespa" scooter; which can be used as alternative to the "classical" approach based on GPS/INS sensor integration. Position and orientation of the scooter are obtained by integrating MEMS-based orientation sensor data with digital images through a cascade of a Kalman filter and a Bayesian particle filter.

  17. Unique research challenges for high-speed civil transports

    NASA Technical Reports Server (NTRS)

    Jackson, Charlie M., Jr.; Morris, E. K., Jr.

    1988-01-01

    Market growth and technological advances are expected to lead to a generation of long-range transports that cruise at supersonic or even hypersonic speeds. Current NASA/industry studies will define the market windows in terms of time frame, Mach number, and technology requirements for these aircraft. Initial results indicate that, for the years 2000 to 2020, economically attractive vehicles could have a cruise speed up to Mach 6. The resulting research challenges are unique. They must be met with technologies that will produce commercially successful and environmentally compatible vehicles where none have existed. Several important areas of research were identified for the high-speed civil transports. Among these are sonic boom, takeoff noise, thermal management, lightweight structures with long life, unique propulsion concepts, unconventional fuels, and supersonic laminar flow.

  18. Unique research challenges for high-speed civil transports

    NASA Technical Reports Server (NTRS)

    Jackson, Charlie M., Jr.; Morris, Charles E. K., Jr.

    1987-01-01

    Market growth and technological advances are expected to lead to a generation of long-range transports that cruise at supersonic or even hypersonic speeds. Current NASA/industry studies will define the market windows in terms of time frame, Mach number, and technology requirements for these aircraft. Initial results indicate that, for the years 2000 to 2020, economically attractive vehicles could have a cruise speed up to Mach 6. The resulting research challenges are unique. They must be met with technologies that will produce commercially successful and environmentally compatible vehicles where none have existed. Several important areas of research were identified for the high-speed civil transports. Among these are sonic boom, takeoff noise, thermal management, lightweight structures with long life, unique propulsion concepts, unconventional fuels, and supersonic laminar flow.

  19. Application of the ABC helicopter to the emergency medical service role

    NASA Technical Reports Server (NTRS)

    Levine, L. S.

    1981-01-01

    Attention is called to the use of helicopters in transporting the sick and injured to medical facilities. It is noted that the helicopter's speed of response and delivery increases patient survival rates and may reduce the cost of medical care and its burden on society. Among the vehicle characteristics desired for this use are a cruising speed of 200 knots, a single engine hover capability at 10,000 ft, and an absence of a tail rotor. Three designs for helicopters incorporating such new technologies as digital/optical control systems, all composite air-frames, and third-generation airfoils are presented. A sensitivity analysis is conducted to show the effect of design speed, mission radius, and single engine hover capability on vehicle weight, fuel consumption, operating costs, and productivity.

  20. Development of a Large Field of View Shadowgraph System for a 16 Ft. Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Talley, Michael A.; Jones, Stephen B.; Goodman, Wesley L.

    2000-01-01

    A large field of view shadowgraph flow visualization system for the Langley 16 ft. Transonic Tunnel (16 ft.TT) has been developed to provide fast, low cost, aerodynamic design concept evaluation capability to support the development of the next generation of commercial and military aircraft and space launch vehicles. Key features of the 16 ft. TT shadowgraph system are: (1) high resolution (1280 X 1024) digital snap shots and sequences; (2) video recording of shadowgraph at 30 frames per second; (3) pan, tilt, & zoom to find and observe flow features; (4) one microsecond flash for freeze frame images; (5) large field of view approximately 12 X 6 ft; and (6) a low maintenance, high signal/noise ratio, retro-reflective screen to allow shadowgraph imaging while test section lights are on.

  1. A new laser-ranged satellite for General Relativity and space geodesy: II. Monte Carlo simulations and covariance analyses of the LARES 2 experiment

    NASA Astrophysics Data System (ADS)

    Ciufolini, Ignazio; Pavlis, Erricos C.; Sindoni, Giampiero; Ries, John C.; Paolozzi, Antonio; Matzner, Richard; Koenig, Rolf; Paris, Claudio

    2017-08-01

    In the previous paper we have introduced the LARES 2 space experiment. The LARES 2 laser-ranged satellite is planned for a launch in 2019 with the new VEGA C launch vehicle of the Italian Space Agency (ASI), ESA and ELV. The main objectives of the LARES 2 experiment are accurate measurements of General Relativity, gravitational and fundamental physics and accurate determinations in space geodesy and geodynamics. In particular LARES 2 is aimed to achieve a very accurate test of frame-dragging, an intriguing phenomenon predicted by General Relativity. Here we report the results of Monte Carlo simulations and covariance analyses fully confirming an error budget of a few parts in one thousand in the measurement of frame-dragging with LARES 2 as calculated in our previous paper.

  2. Correction of projective distortion in long-image-sequence mosaics without prior information

    NASA Astrophysics Data System (ADS)

    Yang, Chenhui; Mao, Hongwei; Abousleman, Glen; Si, Jennie

    2010-04-01

    Image mosaicking is the process of piecing together multiple video frames or still images from a moving camera to form a wide-area or panoramic view of the scene being imaged. Mosaics have widespread applications in many areas such as security surveillance, remote sensing, geographical exploration, agricultural field surveillance, virtual reality, digital video, and medical image analysis, among others. When mosaicking a large number of still images or video frames, the quality of the resulting mosaic is compromised by projective distortion. That is, during the mosaicking process, the image frames that are transformed and pasted to the mosaic become significantly scaled down and appear out of proportion with respect to the mosaic. As more frames continue to be transformed, important target information in the frames can be lost since the transformed frames become too small, which eventually leads to the inability to continue further. Some projective distortion correction techniques make use of prior information such as GPS information embedded within the image, or camera internal and external parameters. Alternatively, this paper proposes a new algorithm to reduce the projective distortion without using any prior information whatsoever. Based on the analysis of the projective distortion, we approximate the projective matrix that describes the transformation between image frames using an affine model. Using singular value decomposition, we can deduce the affine model scaling factor that is usually very close to 1. By resetting the image scale of the affine model to 1, the transformed image size remains unchanged. Even though the proposed correction introduces some error in the image matching, this error is typically acceptable and more importantly, the final mosaic preserves the original image size after transformation. We demonstrate the effectiveness of this new correction algorithm on two real-world unmanned air vehicle (UAV) sequences. The proposed method is shown to be effective and suitable for real-time implementation.

  3. Development of a real-time prediction model of driver behavior at intersections using kinematic time series data.

    PubMed

    Tan, Yaoyuan V; Elliott, Michael R; Flannagan, Carol A C

    2017-09-01

    As connected autonomous vehicles (CAVs) enter the fleet, there will be a long period when these vehicles will have to interact with human drivers. One of the challenges for CAVs is that human drivers do not communicate their decisions well. Fortunately, the kinematic behavior of a human-driven vehicle may be a good predictor of driver intent within a short time frame. We analyzed the kinematic time series data (e.g., speed) for a set of drivers making left turns at intersections to predict whether the driver would stop before executing the turn. We used principal components analysis (PCA) to generate independent dimensions that explain the variation in vehicle speed before a turn. These dimensions remained relatively consistent throughout the maneuver, allowing us to compute independent scores on these dimensions for different time windows throughout the approach to the intersection. We then linked these PCA scores to whether a driver would stop before executing a left turn using the random intercept Bayesian additive regression trees. Five more road and observable vehicle characteristics were included to enhance prediction. Our model achieved an area under the receiver operating characteristic curve (AUC) of 0.84 at 94m away from the center of an intersection and steadily increased to 0.90 by 46m away from the center of an intersection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A quantitative content analysis of UK newsprint coverage of proposed legislation to prohibit smoking in private vehicles carrying children.

    PubMed

    Patterson, Chris; Semple, Sean; Wood, Karen; Duffy, Sheila; Hilton, Shona

    2015-08-08

    Mass media representations of health issues influence public perceptions of those issues. Despite legislation prohibiting smoking in public spaces, second-hand smoke (SHS) remains a health risk in the United Kingdom (UK). Further legislation might further limit children's exposure to SHS by prohibiting smoking in private vehicles carrying children. This research was designed to determine how UK national newspapers represented the debate around proposed legislation to prohibit smoking in private vehicles carrying children. Quantitative analysis of the manifest content of 422 articles about children and SHS published in UK and Scottish newspapers between 1st January 2003 and 16th February 2014. Researchers developed a coding frame incorporating emergent themes from the data. Each article was double-coded. The frequency of relevant articles rose and fell in line with policy debate events. Children were frequently characterised as victims of SHS, and SHS was associated with various health risks. Articles discussing legislation targeting SHS in private vehicles carrying children presented supportive arguments significantly more frequently than unsupportive arguments. The relatively positive representation of legislation prohibiting smoking in vehicles carrying children is favourable to policy advocates, and potentially indicative of likely public acceptance of legislation. Our findings support two lessons that public health advocates may consider: the utility of presenting children as a vulnerable target population, and the possibility of late surges in critical arguments preceding policy events.

  5. On-Board Detection of Pedestrian Intentions

    PubMed Central

    Fang, Zhijie; Vázquez, David

    2017-01-01

    Avoiding vehicle-to-pedestrian crashes is a critical requirement for nowadays advanced driver assistant systems (ADAS) and future self-driving vehicles. Accordingly, detecting pedestrians from raw sensor data has a history of more than 15 years of research, with vision playing a central role. During the last years, deep learning has boosted the accuracy of image-based pedestrian detectors. However, detection is just the first step towards answering the core question, namely is the vehicle going to crash with a pedestrian provided preventive actions are not taken? Therefore, knowing as soon as possible if a detected pedestrian has the intention of crossing the road ahead of the vehicle is essential for performing safe and comfortable maneuvers that prevent a crash. However, compared to pedestrian detection, there is relatively little literature on detecting pedestrian intentions. This paper aims to contribute along this line by presenting a new vision-based approach which analyzes the pose of a pedestrian along several frames to determine if he or she is going to enter the road or not. We present experiments showing 750 ms of anticipation for pedestrians crossing the road, which at a typical urban driving speed of 50 km/h can provide 15 additional meters (compared to a pure pedestrian detector) for vehicle automatic reactions or to warn the driver. Moreover, in contrast with state-of-the-art methods, our approach is monocular, neither requiring stereo nor optical flow information. PMID:28946632

  6. Vision Assisted Navigation for Miniature Unmanned Aerial Vehicles (MAVs)

    DTIC Science & Technology

    2009-11-01

    commanded to orbit a target of known location. The error in target geolocation is shown for 200 frames with filtering (dashed line) and without (solid...so the performance of the filter was determined by using the estimated poses to solve a geolocation problem. An MAV flying at an altitude of 70 meters... geolocation as well as significantly reducing the short-term variance in the estimates based on the GPS/IMU alone. Due to the nature of the autopilot

  7. Uncooled long-wave infrared hyperspectral imaging

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G. (Inventor)

    2006-01-01

    A long-wave infrared hyperspectral sensor device employs a combination of an interferometer with an uncooled microbolometer array camera to produce hyperspectral images without the use of bulky, power-hungry motorized components, making it suitable for UAV vehicles, small mobile platforms, or in extraterrestrial environments. The sensor device can provide signal-to-noise ratios near 200 for ambient temperature scenes with 33 wavenumber resolution at a frame rate of 50 Hz, with higher results indicated by ongoing component improvements.

  8. Emergency Interventions After Severe Traumatic Brain Injury in Rats: Effect on Neuropathology and Functional Outcome

    DTIC Science & Technology

    2000-01-01

    placed in a stereotaxic frame and a left parietal craniotomy was performed. The dura and bone flap were left in place until immediately before CCI. A...microtransducer) was inserted through a burr hole in the frontal bone into the contralateral (right) frontal cortex at the time of craniotomy ...immediately after injury) or vehicle. A separate sham group (all surgery including craniotomy , but no TBI was also studied. Brain temperature maintained at

  9. Large-Area Visually Augmented Navigation for Autonomous Underwater Vehicles

    DTIC Science & Technology

    2005-06-01

    constrain position drift . Correction of errors in position and orientation are made each time the mosaic is updated, which occurs every Lth video frame. They...are the greatest strength of a VAN methodology. It is these measurements which help to correct dead-reckoned drift error and enforce recovery of a...systems. [INSTRUMENT [VARIABLE I INTENAL? I UPDATE RATE PRECISION FRANGE J DRIFT Acoustic Altimeter Z - Altitude yes varies: 0.1-10 Hz 0.01-1.0 m varies

  10. The Origins of the Golden Hour of Medical Care and Its Applicability to Combat Medicine

    DTIC Science & Technology

    2015-06-12

    Joint Publication (United States Department of Defense) KIA Killed In Action MASH Mobile Army Surgical Hospital MAST Military Assistance to Safety...evacuation time as defined above is synonymous with “the Golden Hour” time frame. Killed in Action, ( KIA ), and Died of Wounds, (DOW): Killed in action...vehicle accidents alone within the continental United States than the entire number of United States KIA in eleven years of conflict in the Vietnam War

  11. Enabling Technologies for Nano Air Vehicles

    DTIC Science & Technology

    2009-02-10

    herein or on supporting documents. ~\\ CQA H ACCEPTANCE of listed Items hBs been made by me or under my supervision and they conform to contract...to carry out a mission. The propulsion system must be capable; of demon- strating highly efficient conversion of stored energy to thrust to propel the...frequencies were 20, 30, 35, 40, and 45 Hz. An aluminum frame was constructed in order to allow for the easy relocation of the cameras to various vantage

  12. Forecast communication through the newspaper Part 2: perceptions of uncertainty

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.

    2015-04-01

    In the first part of this review, I defined the media filter and how it can operate to frame and blame the forecaster for losses incurred during an environmental disaster. In this second part, I explore the meaning and role of uncertainty when a forecast, and its basis, is communicated through the response and decision-making chain to the newspaper, especially during a rapidly evolving natural disaster which has far-reaching business, political, and societal impacts. Within the media-based communication system, there remains a fundamental disconnect of the definition of uncertainty and the interpretation of the delivered forecast between various stakeholders. The definition and use of uncertainty differs especially between scientific, media, business, and political stakeholders. This is a serious problem for the scientific community when delivering forecasts to the public though the press. As reviewed in Part 1, the media filter can result in a negative frame, which itself is a result of bias, slant, spin, and agenda setting introduced during passage of the forecast and its uncertainty through the media filter. The result is invariably one of anger and fury, which causes loss of credibility and blaming of the forecaster. Generation of a negative frame can be aided by opacity of the decision-making process that the forecast is used to support. The impact of the forecast will be determined during passage through the decision-making chain where the precautionary principle and cost-benefit analysis, for example, will likely be applied. Choice of forecast delivery format, vehicle of communication, syntax of delivery, and lack of follow-up measures can further contribute to causing the forecast and its role to be misrepresented. Follow-up measures to negative frames may include appropriately worded press releases and conferences that target forecast misrepresentation or misinterpretation in an attempt to swing the slant back in favor of the forecaster. Review of meteorological, public health, media studies, social science, and psychology literature opens up a vast and interesting library that is not obvious to the volcanologist at a first glance. It shows that forecasts and their uncertainty can be phrased and delivered, and followed-up upon, in a manner that reduces the chance of message distortion. The mass-media delivery vehicle requires careful tracking because the potential for forecast distortion can result in a frame that the scientific response is "absurd", "confused", "shambolic", or "dysfunctional." This can help set up a "frightened", "frustrated", "angry", even "furious" reaction to the forecast and forecaster.

  13. Base Flow Investigation of the Apollo AS-202 Command Module. Chapter 6

    NASA Technical Reports Server (NTRS)

    Walpot, Louis M. G.; Wright, Michael J.; Noeding, Peter; Schrijer, Ferry

    2011-01-01

    In recent years, both Europe and the US are developing hypersonic research and operational vehicles. These include (re)entry capsules (both ballistic and lifting) and lifting bodies such as ExoMars, EXPERT, ARV, CEV and IXV. The research programs are meant to enable technology and engineering capabilities to support during the next decade the development of affordable (possibly reusable) space transportation systems as well as hypersonic weapons systems for time critical targets. These programs have a broad range of goals, ranging from the qualification of thermal protection systems, the assessment of RCS performances, the development of GNC algorithms, to the full demonstration of the performance and operability of the integrated vehicles. Since the aerothermodynamic characteristics influence nearly all elements of the vehicle design, the accurate prediction of the aerothermal environment is a prerequisite for the design of efficient hypersonic systems. Significant uncertainties in the prediction of the hypersonic aerodynamic and the aerothermal loads can lead to conservative margins in the design of the vehicle including its Outer Mould Line (OML), thermal protection system, structure, and required control system robustness. The current level of aerothermal prediction uncertainties results therefore in reduced vehicle performances (e.g., sub-optimal payload to mass ratio, increased operational constraints). On the other hand, present computational capabilities enable the simulation of three dimensional flow fields with complex thermo-chemical models over complete trajectories and ease the validation of these tools by, e.g., reconstruction of detailed wind tunnel tests performed under identified and controlled conditions (flow properties and vehicle attitude in particular). These controlled conditions are typically difficult to achieve when performing in flight measurements which in turn results in large associated measurement uncertainties. Similar problems arise when attempting to rebuild measurements performed in "hot" ground facilities, where the difficulty level is increased by the addition of the free-flow characterization itself. The implementation of ever more sophisticated thermochemical models is no obvious cure to the aforementioned problems since their effect is often overwhelmed by the large measurement uncertainties incurred in both flight and ground high enthalpy facilities. Concurrent to the previous considerations, a major contributor to the overall vehicle mass of re-entry vehicles is the afterbody thermal protection system. This is due to the large acreage (equal or bigger than that of the forebody) to be protected. The present predictive capabilities for base flows are comparatively lower than those for windward flowfields and offer therefore a substantial potential for improving the design of future re-entry vehicles. To that end, it is essential to address the accuracy of high fidelity CFD tools exercised in the US and EU, which motivates a thorough investigation of the present status of hypersonic flight afterbody heating. This paper addresses the predictive capabilities of after body flow fields of re-entry vehicles investigated in the frame of the NATO/RTO - RTG-043 Task Group and is structured as follows: First, the verification of base flow topologies on the basis of available wind-tunnel results performed under controlled supersonic conditions (i.e., cold flows devoid of reactive effects) is performed. Such tests address the detailed characterization of the base flow with particular emphasis on separation/reattachment and their relation to Mach number effects. The tests have been performed on an Apollo-like re-entry capsule configuration. Second, the tools validated in the frame of the previous effort are exercised and appraised against flight-test data collected during the Apollo AS-202 re-entry.

  14. The dynamics and control of solar-sail spacecraft in displaced lunar orbits

    NASA Astrophysics Data System (ADS)

    Wawrzyniak, Geoffrey George

    Trajectory generation for any spacecraft mission application typically involves either well-developed analytical approximations or a linearization with respect to a known solution. Such approximations are based on the well-understood dynamics of behavior in the system. However, when two or more large bodies (e.g., the Earth and the Moon or the Sun, the Earth and the Moon) are present, trajectories in the multi-body gravitational field can evolve chaotically. The problem is further complicated when an additional force from a solar sail is included. Solar sail trajectories are often developed in a Sun-centered reference frame in which the sunlight direction is fixed. New challenges arise when modeling a solar-sail trajectory in a reference frame attached to the Earth and the Moon (a frame that rotates in inertial space). Advantages accrue from geometry and symmetry properties that are available in this Earth--Moon reference frame, but the Sun location and the sunlight direction change with time. Current trajectory design tools can reveal many solutions within these regimes. Recent work using numerical boundary value problem (BVP) solvers has demonstrated great promise for uncovering additional and, sometimes, "better" solutions to problems in spacecraft trajectory design involving solar sails. One such approach to solving BVPs is the finite-difference method. Derivatives that appear in the differential equations are replaced with their respective finite differences and evaluated at node points along the trajectory. The solution process is iterative. A candidate solution, such as an offset circle or a point, is discretized into nodes, and the equations that represent the relationships at the nodes are solved simultaneously. Finite-difference methods (FDMs) exploit coarse initial approximations and, with the system constraints (such as the continuous visibility of the spacecraft from a point on the lunar surface), to develop orbital solutions in regions where the structure of the solution space is not well known. Because of their simplicity and speed, the FDM is used to populate a survey to assist in the understanding of the available design space. Trajectories generated by FDMs can also be used to initialize other nonlinear BVP solvers. Any solution is only as accurate as the model used to generate it, especially when the trajectory is dynamically unstable, certainly the case when an orbit is purposefully offset from the Moon. Perturbations, such as unmodeled gravitational forces, variations in the solar flux, as well as mis-modeling of the sail and bus properties, all shift the spacecraft off the reference trajectory and, potentially, into a regime from which the vehicle is unrecoverable. Therefore, some type of flight-path control is required to maintain the vehicle near the reference path. Reference trajectories, supplied by FDMs, are used to develop guidance algorithms based on other, more accurate, numerical procedures, such as multiple shooting. The primary motivation of this investigation is to determine what level of technology is required to displace a solar sail spacecraft sufficiently such that a vehicle equipped with a sail supplies a continuous relay between the Earth and an outpost at the lunar south pole. To accomplish this objective, numerical methods to generate reference orbits that meet mission constraints are examined, as well as flight-path control strategies to ensure that a sailcraft follows those reference trajectories. A survey of the design space is also performed to highlight vehicle-performance and ground-based metrics critical to a mission that monitors the lunar south pole at all times. Finally, observations about the underlying dynamical structure of solar sail motion in a multi-body system are summarized.

  15. Automated driving and autonomous functions on road vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. J.; Lidberg, M.

    2015-07-01

    In recent years, road vehicle automation has become an important and popular topic for research and development in both academic and industrial spheres. New developments have received extensive coverage in the popular press, and it may be said that the topic has captured the public imagination. Indeed, the topic has generated interest across a wide range of academic, industry and governmental communities, well beyond vehicle engineering; these include computer science, transportation, urban planning, legal, social science and psychology. While this follows a similar surge of interest - and subsequent hiatus - of Automated Highway Systems in the 1990s, the current level of interest is substantially greater, and current expectations are high. It is common to frame the new technologies under the banner of 'self-driving cars' - robotic systems potentially taking over the entire role of the human driver, a capability that does not fully exist at present. However, this single vision leads one to ignore the existing range of automated systems that are both feasible and useful. Recent developments are underpinned by substantial and long-term trends in 'computerisation' of the automobile, with developments in sensors, actuators and control technologies to spur the new developments in both industry and academia. In this paper, we review the evolution of the intelligent vehicle and the supporting technologies with a focus on the progress and key challenges for vehicle system dynamics. A number of relevant themes around driving automation are explored in this article, with special focus on those most relevant to the underlying vehicle system dynamics. One conclusion is that increased precision is needed in sensing and controlling vehicle motions, a trend that can mimic that of the aerospace industry, and similarly benefit from increased use of redundant by-wire actuators.

  16. Ask not what nature can do for you: A critique of ecosystem services as a communication strategy

    USGS Publications Warehouse

    Bekessy, Sarah A.; Runge, Michael C.; Kusmanoff, Alex; Keith, David A.; Wintle, Brendan A.

    2018-01-01

    Given the urgent need to raise public awareness on biodiversity issues, we review the effectiveness of “ecosystem services” as a frame for promoting biodiversity conservation. Since its inception as a communications tool in the 1970s, the concept of ecosystem services has become pervasive in biodiversity policy. While the goal of securing ecosystem services is absolutely legitimate, we argue that it has had limited success as a vehicle for securing public interest and support for nature, which is crucial to securing long-term social mandates for protection. Emerging evidence suggests that focusing on ecosystem services rather than the intrinsic value of nature is unlikely to be effective in bolstering public support for nature conservation. Theory to guide effective communication about nature is urgently needed. In the mean-time, communicators should reflect on their objectives and intended audience and revisit the way nature is framed to ensure maximum resonance.

  17. LARES: A new mission to improve the measurement of lense-thirring effect with Satellite Laser Ranging

    NASA Astrophysics Data System (ADS)

    Pavlis, E. C.; Ciufolini, I.; Paolozzi, A.

    2012-12-01

    LARES, Laser Relativity Satellite, is a spherical laser-ranged satellite, passive and covered with retroreflectors. It will be launched with ESA's new launch vehicle VEGA (ESA-ELV-ASI-AVIO) in early 2012. Its orbital elements will be: inclination 70° ± 1, semi-major axis 7830 km and near zero eccentricity. Its weight is about 387 kg and its radius 18.2 cm. It will be the single known most dense body orbiting Earth in the solar system, and the non-gravitational perturbations will be minimized by its very small 'cross-section-to-mass' ratio. The main objective of the LARES satellite is a test of the frame-dragging effect, a consequence of the gravitomagnetic field predicted by Einstein's theory of General Relativity. Together with the orbital data from LAGEOS and LAGEOS 2, it will allow a measurement of frame-dragging with an accuracy of a few percent.

  18. Real-Time Optimization for use in a Control Allocation System to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Leonard, Michael W.

    2013-01-01

    Integration of the Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) System into the control system of a Short Takeoff and Landing Mobility Concept Vehicle simulation presents a challenge because the CAPIO formulation requires that constrained optimization problems be solved at the controller operating frequency. We present a solution that utilizes a modified version of the well-known L-BFGS-B solver. Despite the iterative nature of the solver, the method is seen to converge in real time with sufficient reliability to support three weeks of piloted runs at the NASA Ames Vertical Motion Simulator (VMS) facility. The results of the optimization are seen to be excellent in the vast majority of real-time frames. Deficiencies in the quality of the results in some frames are shown to be improvable with simple termination criteria adjustments, though more real-time optimization iterations would be required.

  19. Object Tracking and Target Reacquisition Based on 3-D Range Data for Moving Vehicles

    PubMed Central

    Lee, Jehoon; Lankton, Shawn; Tannenbaum, Allen

    2013-01-01

    In this paper, we propose an approach for tracking an object of interest based on 3-D range data. We employ particle filtering and active contours to simultaneously estimate the global motion of the object and its local deformations. The proposed algorithm takes advantage of range information to deal with the challenging (but common) situation in which the tracked object disappears from the image domain entirely and reappears later. To cope with this problem, a method based on principle component analysis (PCA) of shape information is proposed. In the proposed method, if the target disappears out of frame, shape similarity energy is used to detect target candidates that match a template shape learned online from previously observed frames. Thus, we require no a priori knowledge of the target’s shape. Experimental results show the practical applicability and robustness of the proposed algorithm in realistic tracking scenarios. PMID:21486717

  20. Chemiluminescent methods and instruments for monitoring of the atmosphere and satellite validation on board of research aircrafts and unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Sitnikova, Vera; Ulanovsky, Alexey; Sokolov, Alexey

    The results of development of instruments based on heterophase chemiluminescence for measurements of space distribution of ozone and nitrogen oxides concentrations on board of research aircrafts and unmanned aerial vehicles carried out in Central Aerological Observatory are presented. Some results of atmospheric investigations on board of research aircrafts M55 “Geophysica” (Russia) and “Falcon” (Germany) carried out using developed instruments in frame of international projects are demonstrated. Small and low power instruments based on chemiluminescent principle for UAV are developed. The results of measurements on board of UAV are shown. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes etc.

  1. Hypersonic Research Vehicle (HRV) real-time flight test support feasibility and requirements study. Part 2: Remote computation support for flight systems functions

    NASA Technical Reports Server (NTRS)

    Rediess, Herman A.; Hewett, M. D.

    1991-01-01

    The requirements are assessed for the use of remote computation to support HRV flight testing. First, remote computational requirements were developed to support functions that will eventually be performed onboard operational vehicles of this type. These functions which either cannot be performed onboard in the time frame of initial HRV flight test programs because the technology of airborne computers will not be sufficiently advanced to support the computational loads required, or it is not desirable to perform the functions onboard in the flight test program for other reasons. Second, remote computational support either required or highly desirable to conduct flight testing itself was addressed. The use is proposed of an Automated Flight Management System which is described in conceptual detail. Third, autonomous operations is discussed and finally, unmanned operations.

  2. Telemetry packetization for improved mission operations. [instrument packages for Space Shuttle mission operations data management

    NASA Technical Reports Server (NTRS)

    Greene, E. P.

    1976-01-01

    The requirements for mission-operations data management will accelerate sharply when the Space Transportation System (i.e., Space Shuttle) becomes the primary vehicle for research from space. These demands can be satisfied most effectively by providing a higher-level source encoding function within the spaceborne vehicle. An Instrument Telemetry Packet (ITP) concept is described which represents an alternative to the conventional multiplexed telemetry frame approach for acquiring spaceborne instrument data. By providing excellent data-integrity protection at the source and a variable instrument bandwidth capability, this ITP concept represents a significant improvement over present data acquisition procedures. Realignments in the ground telemetry processing functions are described which are intended to take advantage of the ITP concept and to make the data management system more responsive to the scientific investigators.

  3. CLV First Stage Design, Development, Test and Evaluation

    NASA Technical Reports Server (NTRS)

    Burt, Richard K.; Brasfield, F.

    2006-01-01

    The Crew Launch Vehicle (CLV) is an integral part of NASA's Exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster first stage derived from the current Space Shuttle SRB, a LOX/hydrogen liquid fueled second stage utilizing a derivative of the Space Shuttle Main Engine (SSME) for propulsion, and a Crew Exploration Vehicle (GEV) composed of Command and Service Modules. This paper deals with current DDT&E planning for the CLV first stage solid rocket booster. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.

  4. Optimal integer resolution for attitude determination using global positioning system signals

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Markley, F. Landis; Lightsey, E. Glenn

    1998-01-01

    In this paper, a new motion-based algorithm for GPS integer ambiguity resolution is derived. The first step of this algorithm converts the reference sightline vectors into body frame vectors. This is accomplished by an optimal vectorized transformation of the phase difference measurements. The result of this transformation leads to the conversion of the integer ambiguities to vectorized biases. This essentially converts the problem to the familiar magnetometer-bias determination problem, for which an optimal and efficient solution exists. Also, the formulation in this paper is re-derived to provide a sequential estimate, so that a suitable stopping condition can be found during the vehicle motion. The advantages of the new algorithm include: it does not require an a-priori estimate of the vehicle's attitude; it provides an inherent integrity check using a covariance-type expression; and it can sequentially estimate the ambiguities during the vehicle motion. The only disadvantage of the new algorithm is that it requires at least three non-coplanar baselines. The performance of the new algorithm is tested on a dynamic hardware simulator.

  5. Injury severity data for front and second row passengers in frontal crashes.

    PubMed

    Atkinson, Theresa; Leszek Gawarecki; Tavakoli, Massoud

    2016-06-01

    The data contained here were obtained from the National Highway Transportation Safety Administration׳s National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) for the years 2008-2014. This publically available data set monitors motor vehicle crashes in the United States, using a stratified random sample frame, resulting in information on approximately 5000 crashes each year that can be utilized to create national estimates for crashes. The NASS-CDS data sets document vehicle, crash, and occupant factors. These data can be utilized to examine public health, law enforcement, roadway planning, and vehicle design issues. The data provided in this brief are a subset of crash events and occupants. The crashes provided are exclusively frontal crashes. Within these crashes, only restrained occupants who were seated in the right front seat position or the second row outboard seat positions were included. The front row and second row data sets were utilized to construct occupant pairs crashes where both a right front seat occupant and a second row occupant were available. Both unpaired and paired data sets are provided in this brief.

  6. Evaluation of wheelchair sling seat and sling back crashworthiness.

    PubMed

    Ha, D; Bertocci, G; Karg, P; Deemer, E

    2002-07-01

    Many wheelchairs are used as vehicle seats by those who cannot transfer to a vehicle seat. Although ANSI/RESNA WC-19 has been recently adopted as a standard to evaluate crashworthiness of the wheelchairs used as motor vehicle seats, replacement or after-market seats may not be tested to this standard. This study evaluated the crashworthiness of two specimens each of three unique sling backs and three unique sling seats using a static test procedure intended to simulate crash loading conditions. To pass the test, a sling back is required to withstand a 2290 lb load, and a sling seat should be capable of withstanding a 3750 lb load. All, but two sling back specimens which failed at 1567 lb and 1787 lb, withstood the test criterion load. Two of six tested sling seats failed to pass the test: one failed at 3123 lb and the other failed to sustain the load for 5 s although it reached the test criterion load. Most of the failures occurred at the seams of the side openings of upholsteries where the wheelchair frame inserts for attachment.

  7. Injury severity data for front and second row passengers in frontal crashes

    PubMed Central

    Atkinson, Theresa; Leszek Gawarecki; Tavakoli, Massoud

    2016-01-01

    The data contained here were obtained from the National Highway Transportation Safety Administration׳s National Automotive Sampling System – Crashworthiness Data System (NASS-CDS) for the years 2008–2014. This publically available data set monitors motor vehicle crashes in the United States, using a stratified random sample frame, resulting in information on approximately 5000 crashes each year that can be utilized to create national estimates for crashes. The NASS-CDS data sets document vehicle, crash, and occupant factors. These data can be utilized to examine public health, law enforcement, roadway planning, and vehicle design issues. The data provided in this brief are a subset of crash events and occupants. The crashes provided are exclusively frontal crashes. Within these crashes, only restrained occupants who were seated in the right front seat position or the second row outboard seat positions were included. The front row and second row data sets were utilized to construct occupant pairs crashes where both a right front seat occupant and a second row occupant were available. Both unpaired and paired data sets are provided in this brief. PMID:27077084

  8. Benefit from NASA

    NASA Image and Video Library

    1999-06-01

    Two scientists at NASA's Marshall Space Flight Center,atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image Stabilization and Registration (VISAR). VISAR may help law enforcement agencies catch criminals by improving the quality of video recorded at crime scenes. In this photograph, the single frame at left, taken at night, was brightened in order to enhance details and reduce noise or snow. To further overcome the video defects in one frame, Law enforcement officials can use VISAR software to add information from multiple frames to reveal a person. Images from less than a second of videotape were added together to create the clarified image at right. VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. The software can be used for defense application by improving recornaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.

  9. Remote driving with reduced bandwidth communication

    NASA Technical Reports Server (NTRS)

    Depiero, Frederick W.; Noell, Timothy E.; Gee, Timothy F.

    1993-01-01

    Oak Ridge National Laboratory has developed a real-time video transmission system for low bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black and white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports teleoperation of a high mobility multipurpose wheeled vehicle at speeds up to 15 mph on a moguled dirt track. Video compression is achieved by using Laplacian image pyramids and a combination of classical techniques. Certain subbands of the image pyramid are transmitted by using interframe differencing with a periodic refresh to aid in bandwidth reduction. Images are also foveated to concentrate image detail in a steerable region. The system supports dynamic video quality adjustments between frame rate, image detail, and foveation rate. A typical configuration for the system used during driving has a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of less than 1s.

  10. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA's Marshall Space Flight Center,atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image Stabilization and Registration (VISAR). VISAR may help law enforcement agencies catch criminals by improving the quality of video recorded at crime scenes. In this photograph, the single frame at left, taken at night, was brightened in order to enhance details and reduce noise or snow. To further overcome the video defects in one frame, Law enforcement officials can use VISAR software to add information from multiple frames to reveal a person. Images from less than a second of videotape were added together to create the clarified image at right. VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. The software can be used for defense application by improving recornaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.

  11. Fluorescent Microscope System to Monitor Real-Time Interactions between Focused Ultrasound, Echogenic Drug Delivery Vehicles, and Live Cell Membranes

    PubMed Central

    Ibsen, Stuart; Benchimol, Michael; Esener, Sadik

    2012-01-01

    Rapid development in the field of ultrasound triggered drug delivery has made it essential to study the real-time interaction between the membranes of live cells and the membranes of echogenic delivery vehicles under exposure to focused ultrasound. The objective of this work was to design an analysis system that combined fluorescent imagining, high speed videography, and definable pulse sequences of focused ultrasound to allow for real time observations of both cell and vehicle membranes. Documenting the behavior of the membranes themselves has not previously been possible due to limitations with existing optical systems used to understand the basic physics of microbubble/ultrasound interaction and the basic interaction between microbubbles and cells. The performance of this new system to monitor membrane behavior was demonstrated by documenting the modes of vehicle fragmentation at different ultrasound intensity levels. At 1.5 MPa the membranes were shown to completely fragment while at intensities below 1 MPa there is a popping and slow unfolding. The interaction between these vehicles and cell membranes was also documented by the removal of fluorescent particles from the surfaces of live cells out to 20 μm from the microbubble location. The fluid flow created by microstreaming around ensonated microbubbles was documented at video recording speeds from 60 to 18,000 frames per second. This information about membrane behavior allows the chemical and physical properties of the drug delivery vehicle to be designed along with the ultrasound pulse sequence to cause the most efficient drug delivery. PMID:22749476

  12. Fluorescent microscope system to monitor real-time interactions between focused ultrasound, echogenic drug delivery vehicles, and live cell membranes.

    PubMed

    Ibsen, Stuart; Benchimol, Michael; Esener, Sadik

    2013-01-01

    Rapid development in the field of ultrasound triggered drug delivery has made it essential to study the real-time interaction between the membranes of live cells and the membranes of echogenic delivery vehicles under exposure to focused ultrasound. The objective of this work was to design an analysis system that combined fluorescent imagining, high speed videography, and definable pulse sequences of focused ultrasound to allow for real time observations of both cell and vehicle membranes. Documenting the behavior of the membranes themselves has not previously been possible due to limitations with existing optical systems used to understand the basic physics of microbubble/ultrasound interaction and the basic interaction between microbubbles and cells. The performance of this new system to monitor membrane behavior was demonstrated by documenting the modes of vehicle fragmentation at different ultrasound intensity levels. At 1.5MPa the membranes were shown to completely fragment while at intensities below 1MPa the membranes pop open and slowly unfold. The interaction between these vehicles and cell membranes was also documented by the removal of fluorescent particles from the surfaces of live cells out to 20μm from the microbubble location. The fluid flow created by microstreaming around ensonated microbubbles was documented at video recording speeds from 60 to 18,000 frames per second. This information about membrane behavior allows the chemical and physical properties of the drug delivery vehicle to be designed along with the ultrasound pulse sequence to cause the most efficient drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, James Gerald

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensivemore » experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.« less

  14. A simple approach to a vision-guided unmanned vehicle

    NASA Astrophysics Data System (ADS)

    Archibald, Christopher; Millar, Evan; Anderson, Jon D.; Archibald, James K.; Lee, Dah-Jye

    2005-10-01

    This paper describes the design and implementation of a vision-guided autonomous vehicle that represented BYU in the 2005 Intelligent Ground Vehicle Competition (IGVC), in which autonomous vehicles navigate a course marked with white lines while avoiding obstacles consisting of orange construction barrels, white buckets and potholes. Our project began in the context of a senior capstone course in which multi-disciplinary teams of five students were responsible for the design, construction, and programming of their own robots. Each team received a computer motherboard, a camera, and a small budget for the purchase of additional hardware, including a chassis and motors. The resource constraints resulted in a simple vision-based design that processes the sequence of images from the single camera to determine motor controls. Color segmentation separates white and orange from each image, and then the segmented image is examined using a 10x10 grid system, effectively creating a low resolution picture for each of the two colors. Depending on its position, each filled grid square influences the selection of an appropriate turn magnitude. Motor commands determined from the white and orange images are then combined to yield the final motion command for video frame. We describe the complete algorithm and the robot hardware and we present results that show the overall effectiveness of our control approach.

  15. Real-Time Lane Region Detection Using a Combination of Geometrical and Image Features

    PubMed Central

    Cáceres Hernández, Danilo; Kurnianggoro, Laksono; Filonenko, Alexander; Jo, Kang Hyun

    2016-01-01

    Over the past few decades, pavement markings have played a key role in intelligent vehicle applications such as guidance, navigation, and control. However, there are still serious issues facing the problem of lane marking detection. For example, problems include excessive processing time and false detection due to similarities in color and edges between traffic signs (channeling lines, stop lines, crosswalk, arrows, etc.). This paper proposes a strategy to extract the lane marking information taking into consideration its features such as color, edge, and width, as well as the vehicle speed. Firstly, defining the region of interest is a critical task to achieve real-time performance. In this sense, the region of interest is dependent on vehicle speed. Secondly, the lane markings are detected by using a hybrid color-edge feature method along with a probabilistic method, based on distance-color dependence and a hierarchical fitting model. Thirdly, the following lane marking information is extracted: the number of lane markings to both sides of the vehicle, the respective fitting model, and the centroid information of the lane. Using these parameters, the region is computed by using a road geometric model. To evaluate the proposed method, a set of consecutive frames was used in order to validate the performance. PMID:27869657

  16. Evaluation of H.264/AVC over IEEE 802.11p vehicular networks

    NASA Astrophysics Data System (ADS)

    Rozas-Ramallal, Ismael; Fernández-Caramés, Tiago M.; Dapena, Adriana; García-Naya, José Antonio

    2013-12-01

    The capacity of vehicular networks to offer non-safety services, like infotainment applications or the exchange of multimedia information between vehicles, have attracted a great deal of attention to the field of Intelligent Transport Systems (ITS). In particular, in this article we focus our attention on IEEE 802.11p which defines enhancements to IEEE 802.11 required to support ITS applications. We present an FPGA-based testbed developed to evaluate H.264/AVC (Advanced Video Coding) video transmission over vehicular networks. The testbed covers some of the most common situations in vehicle-to-vehicle and roadside-to-vehicle communications and it is highly flexible, allowing the performance evaluation of different vehicular standard configurations. We also show several experimental results to illustrate the quality obtained when H.264/AVC encoded video is transmitted over IEEE 802.11p networks. The quality is measured considering two important parameters: the percentage of recovered group of pictures and the frame quality. In order to improve performance, we propose to substitute the convolutional channel encoder used in IEEE 802.11p for a low-density parity-check code encoder. In addition, we suggest a simple strategy to decide the optimum number of iterations needed to decode each packet received.

  17. Lunar construction utility vehicle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The lunar construction utility vehicle (LCUV) is an all-purpose construction vehicle which will aid in the robotic assembly of a lunar outpost. The LCUV will have the following capabilities: (1) must be self supporting including repairs; (2) must offload itself from a lunar lander; (3) must be telerobotic and semi-autonomous; (4) must be able to transport one space station common module; (5) must allow for man-rated operation; and (6) must be able to move lunar regolith for site preparation. This study recommends the use of an elastic tracked vehicle. Detailed material analyses of most of the LCUV components were accomplished. The body frame, made of pinned truss elements, was stress analyzed using NASTRAN. A track connection system was developed; however, kinematic and stress analyses are still required. This design recommends the use of hydrogen-oxygen fuel cells for power. Thermal control has proven to be a problem which may be the most challenging technically. A tentative solution has been proposed which utilizes an onboard and towable radiator. Detailed study of the heat dissipation requirements is needed to finalize radiator sizing. Preliminary work on a man-rated cabin has begun; however, this is not required during the first mission phase of the LCUV. Finally, still in the conceptual phases, are the communication, navigation and mechanical arm systems.

  18. KSC-03pd0775

    NASA Image and Video Library

    2003-03-19

    KENNEDY SPACE CENTER, FLA. - Framed by the NASA insignia, on the outside of the Vehicle Assembly Building, this osprey stares out from the nest it has built on top of speakers in a nearby parking lot. Known as a fish hawk, the osprey selects sites of opportunity, from trees and telephone poles to rocks or even flat ground. In the United States it is found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and nearby Merritt Island National Wildlife Refuge.

  19. KSC-03pd0776

    NASA Image and Video Library

    2003-03-19

    KENNEDY SPACE CENTER, Fla. - Framed by the NASA insignia, on the outside of the Vehicle Assembly Building, this osprey stares out from the nest it has built on top of speakers in a nearby parking lot. Known as a fish hawk, the osprey selects sites of opportunity, from trees and telephone poles to rocks or even flat ground. In the United States it is found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and nearby Merritt Island National Wildlife Refuge.

  20. Conceptual engineering design studies of 1985-era commercial VTOL and STOL transports that utilize rotors

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Clark, R. D.; Widdison, C. A.

    1975-01-01

    Conceptual design studies are summarized of tandem-rotor helicopter and tilt-rotor aircraft for a short haul transport mission in the 1985 time frame. Vertical takeoff designs of both configurations are discussed, and the impact of external noise criteria on the vehicle designs, performance, and costs are shown. A STOL design for the tilt-rotor configuration is reported, and the effect of removing the vertical takeoff design constraints on the design parameters, fuel economy, and operating cost is discussed.

  1. Launch - Apollo XIV - Lunar Landing Mission - KSC

    NASA Image and Video Library

    1971-01-31

    S71-18398 (31 Jan. 1971) --- The huge, 363-feet tall Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida at 4:03:02 p.m. (EST), Jan. 31, 1971, on a lunar landing mission. This view is framed by moss-covered dead trees in the dark foreground. Aboard the Apollo 14 spacecraft were astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  2. MMC M509 Temperature Test

    NASA Image and Video Library

    1971-03-10

    S71-18399 (31 Jan. 1971) --- The huge, 363-feet tall Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida at 4:03:02 p.m. (EST), Jan. 31, 1971, on a lunar landing mission. This view is framed by moss-covered dead trees in the dark foreground. Aboard the Apollo 14 spacecraft were astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  3. Vice President Mike Pence Visits Kennedy Space Center

    NASA Image and Video Library

    2017-07-06

    Kennedy Space Center Bob Cabana, left, and NASA's Acting Administrator Robert Lightfoot, right present Vice President Mike Pence with a framed plaque. On the back of the plaque are patches from each of Cabana's four space shuttle mission, STS-88, STS-53, STS-65, STS-41, and an inscription thanking the Vice President for his support of NASA. During his visit to Kennedy, the Vice President spoke inside the iconic Vehicle Assembly Building, where he thanked employees for advancing American leadership in space.

  4. Passive Detection of Gases in the Atmosphere. Case Study: Remote Sensing of SO(2) in the UV Using LINUS

    DTIC Science & Technology

    2002-12-01

    COSPEC and FLYSPEC. (From: Mares, 2002) 32 Figure 4.13. FLYSPEC sample data frame collected at Kilauea Volcano , Hawaii in March 2002. (From: Mares...March 2002 at Kilauea Volcano , Hawaii . (From: Mares, 2002) .................. 33 Figure 4.15. UV sensors used in the detection of volcanic SO2. (From... Kilauea Volcano , Hawaii from 1995 to 1997 showed that the vehicle-based measurements were 1.3-2 times greater than the tripod-based. That

  5. Saturn Apollo Program

    NASA Image and Video Library

    1964-12-01

    The fuel tank assembly of the Saturn V S-IC (first) stage supported with the aid of a C frame on the transporter was readied to be transported to the Marshall Space Flight Center, building 4705. The fuel tank carried kerosene (RP-1) as its fuel. The S-IC stage utilized five F-1 engines that used kerosene and liquid oxygen as propellant and each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  6. Semi-autonomous unmanned ground vehicle control system

    NASA Astrophysics Data System (ADS)

    Anderson, Jonathan; Lee, Dah-Jye; Schoenberger, Robert; Wei, Zhaoyi; Archibald, James

    2006-05-01

    Unmanned Ground Vehicles (UGVs) have advantages over people in a number of different applications, ranging from sentry duty, scouting hazardous areas, convoying goods and supplies over long distances, and exploring caves and tunnels. Despite recent advances in electronics, vision, artificial intelligence, and control technologies, fully autonomous UGVs are still far from being a reality. Currently, most UGVs are fielded using tele-operation with a human in the control loop. Using tele-operations, a user controls the UGV from the relative safety and comfort of a control station and sends commands to the UGV remotely. It is difficult for the user to issue higher level commands such as patrol this corridor or move to this position while avoiding obstacles. As computer vision algorithms are implemented in hardware, the UGV can easily become partially autonomous. As Field Programmable Gate Arrays (FPGAs) become larger and more powerful, vision algorithms can run at frame rate. With the rapid development of CMOS imagers for consumer electronics, frame rate can reach as high as 200 frames per second with a small size of the region of interest. This increase in the speed of vision algorithm processing allows the UGVs to become more autonomous, as they are able to recognize and avoid obstacles in their path, track targets, or move to a recognized area. The user is able to focus on giving broad supervisory commands and goals to the UGVs, allowing the user to control multiple UGVs at once while still maintaining the convenience of working from a central base station. In this paper, we will describe a novel control system for the control of semi-autonomous UGVs. This control system combines a user interface similar to a simple tele-operation station along with a control package, including the FPGA and multiple cameras. The control package interfaces with the UGV and provides the necessary control to guide the UGV.

  7. Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring.

    PubMed

    Liu, Duo-Neng; Hou, Zhong-Xi; Guo, Zheng; Yang, Xi-Xiang; Gao, Xian-Zhong

    2017-01-30

    Albatrosses can make use of the dynamic soaring technique extracting energy from the wind field to achieve large-scale movement without a flap, which stimulates interest in effortless flight with small unmanned aerial vehicles (UAVs). However, mechanisms of energy harvesting in terms of the energy transfer from the wind to the flyer (albatross or UAV) are still indeterminate and controversial when using different reference frames in previous studies. In this paper, the classical four-phase Rayleigh cycle, includes sequentially upwind climb, downwind turn, downwind dive and upwind turn, is introduced in analyses of energy gain with the albatross's equation of motions and the simulated trajectory in dynamic soaring. Analytical and numerical results indicate that the energy gain in the air-relative frame mostly originates from large wind gradients at lower part of the climb and dive, while the energy gain in the inertial frame comes from the lift vector inclined to the wind speed direction during the climb, dive and downwind turn at higher altitude. These two energy-gain mechanisms are not equivalent in terms of energy sources and reference frames but have to be simultaneously satisfied in terms of the energy-neutral dynamic soaring cycle. For each reference frame, energy-loss phases are necessary to connect energy-gain ones. Based on these four essential phases in dynamic soaring and the albatrosses' flight trajectory, different dynamic soaring patterns are schematically depicted and corresponding optimal trajectories are computed. The optimal dynamic soaring trajectories are classified into two closed patterns including 'O' shape and '8' shape, and four travelling patterns including 'Ω' shape, 'α' shape, 'C' shape and 'S' shape. The correlation among these patterns are analysed and discussed. The completeness of the classification for different patterns is confirmed by listing and summarising dynamic soaring trajectories shown in studies over the past decades.

  8. Vehicle tracking in wide area motion imagery from an airborne platform

    NASA Astrophysics Data System (ADS)

    van Eekeren, Adam W. M.; van Huis, Jasper R.; Eendebak, Pieter T.; Baan, Jan

    2015-10-01

    Airborne platforms, such as UAV's, with Wide Area Motion Imagery (WAMI) sensors can cover multiple square kilometers and produce large amounts of video data. Analyzing all data for information need purposes becomes increasingly labor-intensive for an image analyst. Furthermore, the capacity of the datalink in operational areas may be inadequate to transfer all data to the ground station. Automatic detection and tracking of people and vehicles enables to send only the most relevant footage to the ground station and assists the image analysts in effective data searches. In this paper, we propose a method for detecting and tracking vehicles in high-resolution WAMI images from a moving airborne platform. For the vehicle detection we use a cascaded set of classifiers, using an Adaboost training algorithm on Haar features. This detector works on individual images and therefore does not depend on image motion stabilization. For the vehicle tracking we use a local template matching algorithm. This approach has two advantages. In the first place, it does not depend on image motion stabilization and it counters the inaccuracy of the GPS data that is embedded in the video data. In the second place, it can find matches when the vehicle detector would miss a certain detection. This results in long tracks even when the imagery is of low frame-rate. In order to minimize false detections, we also integrate height information from a 3D reconstruction that is created from the same images. By using the locations of buildings and roads, we are able to filter out false detections and increase the performance of the tracker. In this paper we show that the vehicle tracks can also be used to detect more complex events, such as traffic jams and fast moving vehicles. This enables the image analyst to do a faster and more effective search of the data.

  9. Cambering effects on Rapidly-Prototyped, Highly-Flexible Membrane Wings

    NASA Astrophysics Data System (ADS)

    Pepley, David; Wrist, Andrew; Hubner, Paul

    2014-11-01

    Much of the inspiration for micro air vehicle (MAV) design comes from animals, likes bats, which use membrane wings for flying and gliding at low Reynolds numbers. Previous research has shown that membrane wings are more aerodynamically efficient than rigid wings. This is a result of both time-average cambering of the membrane and dynamic interaction with the shear layer. In most of the previous research, the membrane was attached to a flat (uncambered) frame. Traditional airfoil theory suggests that the cambering of wings improves aerodynamic efficiency and endurance. This research analyzed the effects of cambering the frames on wing efficiency and endurance. Six different cambered membrane wings with an aspect ratio of two, each with two cells with an aspect ratio of one, were 3-D printed using an Objet30 Pro and tested in a low-speed wind tunnel at 10 m/s (Re = 50,000). A NACA 4504 profile was used as a baseline with the frame thickness, percent camber, and maximum camber location being altered for comparison. The lift, drag, and pitching moment of the cambered and flat wings were recorded using a load cell. Results showed that cambering the frame of membrane wings increases aerodynamic and endurance efficiency at low Re. The effects of altering the camber, increasing the batten thickness, and changing the max camber location on aerodynamic and endurance efficiency were also examined. Special thanks to the National Science Foundation for research funding.

  10. KENNEDY SPACE CENTER, FLA. - As the crawler transporter slowly moves the Mobile Launcher Platform (MLP) out of the Vehicle Assembly Building, the two solid rocket boosters on top are framed in the doorway. The move is in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - As the crawler transporter slowly moves the Mobile Launcher Platform (MLP) out of the Vehicle Assembly Building, the two solid rocket boosters on top are framed in the doorway. The move is in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  11. A First Look at the Upcoming SISO Space Reference FOM

    NASA Technical Reports Server (NTRS)

    Crues, Edwin; Dexter, Dan; Madden, Michael; Garro, Alfred; Vankov, Alexander; Skuratovskiy, Anton; Moller, Bjorn

    2016-01-01

    Simulation is increasingly used in the space domain for several purposes. One example is analysis and engineering, from the mission level down to individual systems and subsystems. Another example is training of space crew and flight controllers. Several distributed simulations have been developed for example for docking vehicles with the ISS and for mission training, in many cases with participants from several nations. Space based scenarios are also used in the "Simulation Exploration Experience", SISO's university outreach program. We have thus realized that there is a need for a distributed simulation interoperability standard for data exchange within the space domain. Based on these experiences, SISO is developing a Space Reference FOM. Members of the product development group come from several countries and contribute experiences from projects within NASA, ESA and other organizations. Participants represent government, academia and industry. The first version will focus on handling of time and space. The Space Reference FOM will provide the following: (i) a flexible positioning system using reference frames for arbitrary bodies in space, (ii) a naming conventions for well known reference frames, (iii) definitions of common time scales, (iv) federation agreements for common types of time management with focus on time stepped simulation, and (v) support for physical entities, such as space vehicles and astronauts. The Space Reference FOM is expected to make collaboration politically, contractually and technically easier. It is also expected to make collaboration easier to manage and extend.

  12. 3D range-gated super-resolution imaging based on stereo matching for moving platforms and targets

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Wang, Xinwei; Zhou, Yan

    2017-11-01

    3D range-gated superresolution imaging is a novel 3D reconstruction technique for target detection and recognition with good real-time performance. However, for moving targets or platforms such as airborne, shipborne, remote operated vehicle and autonomous vehicle, 3D reconstruction has a large error or failure. In order to overcome this drawback, we propose a method of stereo matching for 3D range-gated superresolution reconstruction algorithm. In experiment, the target is a doll of Mario with a height of 38cm at the location of 34m, and we obtain two successive frame images of the Mario. To confirm our method is effective, we transform the original images with translation, rotation, scale and perspective, respectively. The experimental result shows that our method has a good result of 3D reconstruction for moving targets or platforms.

  13. The cost of noise reduction in commercial tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Faulkner, H. B.

    1974-01-01

    The relationship between direct operating cost (DOC) and departure noise annoyance was developed for commercial tilt rotor aircraft. This was accomplished by generating a series of tilt rotor aircraft designs to meet various noise goals at minimum DOC. These vehicles were spaced across the spectrum of possible noise levels from completely unconstrained to the quietest vehicle that could be designed within the study ground rules. A group of optimization parameters were varied to find the minimum DOC while other inputs were held constant and some external constraints were met. This basic variation was then extended to different aircraft sizes and technology time frames. It was concluded that reducing noise annoyance by designing for lower rotor tip speeds is a very promising avenue for future research and development. It appears that the cost of halving the annoyance compared to an unconstrained design is insignificant and the cost of halving the annoyance again is small.

  14. Ares 1 First Stage Design, Development, Test, and Evaluation

    NASA Technical Reports Server (NTRS)

    Williams, Tom; Cannon, Scott

    2006-01-01

    The Ares I Crew Launch Vehicle (CLV) is an integral part of NASA s exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster (SRB) first stage derived from the current Space Shuttle SRB, a liquid oxygen/hydrogen fueled second stage utilizing a derivative of the Apollo upper stage engine for propulsion, and a Crew Exploration Vehicle (CEV) composed of command and service modules. This paper deals with current design, development, test, and evaluation planning for the CLV first stage SRB. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.

  15. Performance Assessment of Refractory Concrete Used on the Space Shuttle's Launch Pad

    NASA Technical Reports Server (NTRS)

    Trejo, David; Calle, Luz Marina; Halman, Ceki

    2005-01-01

    The John F. Kennedy Space Center (KSC) maintains several facilities for launching space vehicles. During recent launches it has been observed that the refractory concrete materials that protect the steel-framed flame duct are breaking away from this base structure and are being projected at high velocities. There is significant concern that these projected pieces can strike the launch complex or space vehicle during the launch, jeopardizing the safety of the mission. A qualification program is in place to evaluate the performance of different refractory concretes and data from these tests have been used to assess the performance of the refractory concretes. However, there is significant variation in the test results, possibly making the existing qualification test program unreliable. This paper will evaluate data from past qualification tests, identify potential key performance indicators for the launch complex, and will recommend a new qualification test program that can be used to better qualify refractory concrete.

  16. VEGA Launch Vehicle: VV02 Flight Campaign Thermal Analysis

    NASA Astrophysics Data System (ADS)

    Moroni, D.; Perugini, P.; Mancini, R.; Bonnet, M.

    2014-06-01

    A reliable tool for the prediction of temperature trends vs. time during the operative timeline of a launcher represents one of the key elements for the qualification of a launch vehicle itself.The correct evaluation of the thermal behaviour during the mission, both for the launcher elements (structures, electronic items, tanks, motors...) and for the Payloads carried by the same Launcher, is one of the preliminary activities to be performed before a flight campaign.For such scope AVIO constructed a Thermal Mathematical Model (TMM) by means of the ESA software "ESATAN Thermal Modelling Suite (TMS)" [1] used for the prediction of the temperature trends both on VV01 (VEGA LV Qualification Flight) and VV02 (First VEGA LV commercial flight) with successfully results in terms of post-flight comparison with the sensor data outputs.Aim of this paper is to show the correlation obtained by AVIO VEGA LV SYS TMM in the frame of VV02 Flight.

  17. Wide-Baseline Stereo-Based Obstacle Mapping for Unmanned Surface Vehicles

    PubMed Central

    Mou, Xiaozheng; Wang, Han

    2018-01-01

    This paper proposes a wide-baseline stereo-based static obstacle mapping approach for unmanned surface vehicles (USVs). The proposed approach eliminates the complicated calibration work and the bulky rig in our previous binocular stereo system, and raises the ranging ability from 500 to 1000 m with a even larger baseline obtained from the motion of USVs. Integrating a monocular camera with GPS and compass information in this proposed system, the world locations of the detected static obstacles are reconstructed while the USV is traveling, and an obstacle map is then built. To achieve more accurate and robust performance, multiple pairs of frames are leveraged to synthesize the final reconstruction results in a weighting model. Experimental results based on our own dataset demonstrate the high efficiency of our system. To the best of our knowledge, we are the first to address the task of wide-baseline stereo-based obstacle mapping in a maritime environment. PMID:29617293

  18. Dynamic modelling and experimental validation of three wheeled tilting vehicles

    NASA Astrophysics Data System (ADS)

    Amati, Nicola; Festini, Andrea; Pelizza, Luigi; Tonoli, Andrea

    2011-06-01

    The present paper describes the study of the stability in the straight running of a three-wheeled tilting vehicle for urban and sub-urban mobility. The analysis was carried out by developing a multibody model in the Matlab/SimulinkSimMechanics environment. An Adams-Motorcycle model and an equivalent analytical model were developed for the cross-validation and for highlighting the similarities with the lateral dynamics of motorcycles. Field tests were carried out to validate the model and identify some critical parameters, such as the damping on the steering system. The stability analysis demonstrates that the lateral dynamic motions are characterised by vibration modes that are similar to that of a motorcycle. Additionally, it shows that the wobble mode is significantly affected by the castor trail, whereas it is only slightly affected by the dynamics of the front suspension. For the present case study, the frame compliance also has no influence on the weave and wobble.

  19. Advanced Manned Launch System (AMLS) study

    NASA Technical Reports Server (NTRS)

    Ehrlich, Carl F., Jr.; Potts, Jack; Brown, Jerry; Schell, Ken; Manley, Mary; Chen, Irving; Earhart, Richard; Urrutia, Chuck; Randolph, Ray; Morris, Jim

    1992-01-01

    To assure national leadership in space operations and exploration in the future, NASA must be able to provide cost effective and operationally efficient space transportation. Several NASA studies and the joint NASA/DoD Space Transportation Architecture Studies (STAS) have shown the need for a multi-vehicle space transportation system with designs driven by enhanced operations and low costs. NASA is currently studying an advanced manned launch system (AMLS) approach to transport crew and cargo to the Space Station Freedom. Several single and multiple stage systems from air-breathing to all-rocket concepts are being examined in a series of studies potential replacements for the Space Shuttle launch system in the 2000-2010 time frame. Rockwell International Corporation, under contract to the NASA Langley Research Center, has analyzed a two-stage all-rocket concept to determine whether this class of vehicles is appropriate for the AMLS function. The results of the pre-phase A study are discussed.

  20. A Field Data Analysis of Risk Factors Affecting the Injury Risks in Vehicle-To-Pedestrian Crashes

    PubMed Central

    Zhang, Guanjun; Cao, Libo; Hu, Jingwen; Yang, King H.

    2008-01-01

    The head, torso, and lower extremity are the most commonly injured body regions during vehicle-to-pedestrian crashes. A total of 312 cases were selected from the National Automotive Sampling System (NASS) Pedestrian Crash Data Study (PCDS) database to investigate factors affecting the likelihood of sustaining MAIS 3+, AIS 3+ head, AIS 3+ torso, and AIS 2+ lower extremity injuries during vehicle-to-pedestrian frontal crashes. The inclusion criteria were pedestrians: (a) aged 14 years or older, (b) with a height of 1.5 m and taller, and (c) who were injured in an upright standing position via vehicle frontal collision. The injury odds ratios (ORs) calculated from logistic regression analyses were used to evaluate the association between selected injury predictors and the odds of sustaining pedestrian head, torso, and lower extremity injuries. These predictors included a crash factor (impact speed), pedestrian factors (age, gender, height, and weight), and vehicle factors (front bumper central height, front bumper lead, ground to front/top transition point height (FTTPH), and rear hood opening distance (RHOD)). Results showed that impact speed was a statistically significant predictor for head, torso, and lower extremity injury odds, as expected. Comparison of people 65 years of age and older to young adults aged 14 to 64 showed that age was also a significant predictor for torso (p<0.001, OR=23.8) and lower extremity (p=0.020, OR=2.44) injury odds, but not for head injuries (p=0.661). Vehicles with higher FTTPH and more vertical frontal structures were aggressive to pedestrians, especially regarding injuries to the torso. A very short RHOD would be more likely to lead the pedestrian to impact the windshield and windshield frame, thus increasing the head injury risk. PMID:19026237

  1. M2-F1 lifting body and Paresev 1B on ramp

    NASA Technical Reports Server (NTRS)

    1963-01-01

    In this photo of the M2-F1 lifting body and the Paresev 1B on the ramp, the viewer sees two vehicles representing different approaches to building a research craft to simulate a spacecraft able to land on the ground instead of splashing down in the ocean as the Mercury capsules did. The M2-F1 was a lifting body, a shape able to re-enter from orbit and land. The Paresev (Paraglider Research Vehicle) used a Rogallo wing that could be (but never was) used to replace a conventional parachute for landing a capsule-type spacecraft, allowing it to make a controlled landing on the ground. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C-47 aircraft and released. These initial car-tow tests produced enough flight data about the M2-F1 to proceed with flights behind the C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. A small solid landing rocket, referred to as the 'instant L/D rocket,' was installed in the rear base of the M2-F1. This rocket, which could be ignited by the pilot, provided about 250 pounds of thrust for about 10 seconds. The rocket could be used to extend the flight time near landing if needed. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation, and the U.S. Air Force's X-24 program, with an X-24A and -B built by Martin. The Lifting Body program also heavily influenced the Space Shuttle program. The M2-F1 program demonstrated the feasibility of the lifting body concept for horizontal landings of atmospheric entry vehicles. It also demonstrated a procurement and management concept for prototype flight test vehicles that produced rapid results at very low cost (approximately $50,000, excluding salaries of government employees assigned to the project). The Paresev (Paraglider Rescue Vehicle) was an indirect outgrowth of kite-parachute studies by NACA Langley engineer Francis M. Rogallo. In the early 1960s the 'Rogallo wing' seemed an excellent means of returning a spacecraft to Earth. The delta wing design was patented by Mr. Rogallo. In May 1961, Robert R. Gilruth, director NASA's Space Task Group, requested studies of an inflatable Rogallo-type 'Parawing' for spacecraft. Several companies responded; North American Aviation produced the most acceptable concept and development was contracted to that company. In November 1961 NASA Headquarters launched a paraglider development program, with Langely doing wind-tunnel studies and the NASA Flight Research Center supporting the North American test program. The North American concept was a capsule type vehicle with a stowed 'parawing' that could be deployed and controlled from within for a landing more like an airplane instead of a 'splash down' in the ocean as was the practice in the Mercury and later the Gemini and Apollo programs. The logistics became enormous and the price exorbitant, besides which, NASA pilots and engineers felt some baseline experience like building a vehicle and flying a Parawing should be accomplished first. The Paresev (Paraglider Research Vehicle) was used to gain in-flight experience with four different membranes (wings) and was not used to develop the more complicated inflatable deployment system. The Paresev was designed by Charles Richard, of the Flight Research Center's Vehicle and System Dynamics Branch, with the rest of the team being: engineers Richard Klein, Gary Layton, John Orahood, and Joe Wilson; Frank Fedor and LeRoy Barto from the Maintenance and Manufacturing Branch; Project Manager Victor Horton, with Gary Layton becoming Project Manager later on in the Program. Mr. Paul Bikle, Director of the Center, gave instructions that were short and to the point: build a single-seat Paraglider and 'do it quick and cheap.' The Paresev was unpowered, the 'fuselage' an open framework fabricated of welded 4130 steel tubing referred to as a `space frame.' The keel and leading edges of the wings were constructed of 2 1/2-inch diameter aluminum tubing. The leading edge sweep angle was held constant at 50 degrees by a rigid spreader bar. Additional wing structure fabricated of steel tubing ensured structural integrity. Seven weeks after the project was initiated the team rolled out the Paresev 1. It resembled a grown-up tricycle, with a rudimentary seat, an angled tripod mast, and, perched on top of the mast, a Rogallo-type parawing. The pilot sat out in the open, strapped in the seat, with no enclosure of any kind. He controlled the descent rate by tilting the wing fore and aft, and turned by tilting the wing from side to side with a control stick that came from overhead. NASA registered the Paresev, the first NASA research airplane to be constructed totally 'in-house,' with the Federal Aviation Administration on February 12, 1962. Flight testing started immediately. There was one space frame built called the Paresev that used four different wing types. Paresev 1 had a linen membrane, with the control stick coming from overhead in front of the pilots seat. Paresev 1A had a regulation control stick and a Dacron membrane. Paresev 1B had a smaller Dacron membrane with the space frame remaining the same. Paresev 1C used a half-scale version of the inflatable Gemini parawing with a small change to the space frame. All `space frames,' regardless of the parawing configuration, had a shield with 'Paresev 1-A' and the NASA meatball on the front of the vehicle. PARESEV-1 After the space frame was completed a sailmaker was asked to sew the wing membrane according to the planform developed by NASA Flight Research Center personnel. He suggested using Dacron instead of the linen fabric chosen, but yielded to the engineers' specs. A nylon bolt rope was attached in the trailing edge of the 150-square-foot wing membrane. The rope was unrestrained except at the wing tips and was therefore free to equalize the load between the two lobes of the wing. This worked reasonably well, but flight tests proved the wing to be too flexible with it flapping and bulging in alarming ways. The poor membrane design led to trailing edge flutter, with longitudinal and lateral stick forces being severe. A number of different rigging modifications to improve the flying characteristics were tried, but very few were successful and none were predictable. Everything seemed to affect stick forces in the worst way. The fifth flight aloft lasted 10 seconds. On a ground tow the Paresev and pilot fell 10 feet. Considerable damage was done to the Paresev with the pilot, Bruce Peterson, being taken to the base hospital. Injuries sustained by the pilot were not serious. After this accident the Paresev was extensively rebuilt and renamed, Paresev-1A. PARESEV 1-A The sailmaker was asked again to construct a 150-square-foot membrane the way he wanted to. The resulting wing membrane had excellent contours in flight and was made from 6 ounce Dacron. The space frame was rebuilt with more sophistication than the Paresev 1 had. The shock absorbers were Ford automotive parts, the wing universal joint was a 1948 Pontiac part, and the tires and wheels were from a Cessna 175 aircraft. The overhead stick was replaced with a stick and pulley arrangement that operated more like conventional aircraft controls. This vehicle had much improved stick forces and handling qualities. The instrumentation used to obtain data was quite crude, partially as a result of the desire to keep the program simple and low in cost and also because there was no onboard power. To measure performance, technicians installed a large alpha vane on the wing apex with a scale at the trailing edge that the pilot could read directly. A curved bubble level measured the vehicle's attitude, and a Fairchild camera recorded the glide slope PARESEV 1-B The Paresev 1-B used the Paresev 1-A space frame with a smaller Dacron wing (100 square feet) and was flight tested to evaluate its handling qualities with lower lift-to-drag values. One NASA project engineer described its gliding ability as 'pretty scary.' PARESEV 1-C The space frame of the vehicle remained almost unchanged from the earlier vehicles. However, a new control box gave the pilot the ability to increase or decrease the nitrogen in the inflatable wing supports to compensate for the changing density of the air. Two bottles of nitrogen provided an extra supply of nitrogen. The vehicle featured a partially inflatable wing. The whole wing was not inflatable; the three chambers that acted as spars and supported the wing inflated. The center spar ran fore and aft and measured 191 inches; two other inflatable spars formed the leading edges. These three compartments were filled with nitrogen under pressure to make them rigid. The Paresev in this configuration was expected to closely approximate the aerodynamic characteristics that would be encountered with the Gemini space capsule with a parawing extended. The Paresev was very unstable in flight with this configuration. The first Paresev flights began with tows across the dry lakebed, in 1962, using a NASA vehicle, an International Harvester carry-all (6 cylinder). Eventually ground and airtows were done using a Stearman sport biplane (450 hp), a Piper Super Cub (150-180 hp), Cessna L-19 (200 hp Bird Dog) and a Boeing-Vertol HC-1A. Speed range of the Paresev was about 35-65 mph. The Paresev completed nearly 350 flights during a research program from 1962 until 1964. Pilots flying the Paresev included NASA pilots Milton Thompson, Bruce Peterson, and Neil Armstrong from Dryden, Robert Champine from Langley, and astronaut Gus Grissom, plus North American test pilot Charles Hetzel. The Paresev was legally transferred to the National Air and Space Museum of the Smithsonian Institute, Washington, D.C. Despite its looks, the Paresev was a useful research aircraft that helped develop a new way to fly. Although the Rogallo wing was never used on a spacecraft, it revolutionized the sport of hang gliding, and a different but related kind of wing will be used on the X-38 technology demonstrator for a crew return vehicle from the International space station.

  2. Investigation of the effects of sleeper-passing impacts on the high-speed train

    NASA Astrophysics Data System (ADS)

    Wu, Xingwen; Cai, Wubin; Chi, Maoru; Wei, Lai; Shi, Huailong; Zhu, Minhao

    2015-12-01

    The sleeper-passing impact has always been considered negligible in normal conditions, while the experimental data obtained from a High-speed train in a cold weather expressed significant sleeper-passing impacts on the axle box, bogie frame and car body. Therefore, in this study, a vertical coupled vehicle/track dynamic model was developed to investigate the sleeper-passing impacts and its effects on the dynamic performance of the high-speed train. In the model, the dynamic model of vehicle is established with 10 degrees of freedom. The track model is formulated with two rails supported on the discrete supports through the finite element method. The contact forces between the wheel and rail are estimated using the non-linear Hertz contact theory. The parametric studies are conducted to analyse effects of both the vehicle speeds and the discrete support stiffness on the sleeper-passing impacts. The results show that the sleeper-passing impacts become extremely significant with the increased support stiffness of track, especially when the frequencies of sleeper-passing impacts approach to the resonance frequencies of wheel/track system. The damping of primary suspension can effectively lower the magnitude of impacts in the resonance speed ranges, but has little effect on other speed ranges. Finally, a more comprehensively coupled vehicle/track dynamic model integrating with a flexible wheel set is developed to discuss the sleeper-passing-induced flexible vibration of wheel set.

  3. A framework for activity detection in wide-area motion imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Reid B; Ruggiero, Christy E; Morrison, Jack D

    2009-01-01

    Wide-area persistent imaging systems are becoming increasingly cost effective and now large areas of the earth can be imaged at relatively high frame rates (1-2 fps). The efficient exploitation of the large geo-spatial-temporal datasets produced by these systems poses significant technical challenges for image and video analysis and data mining. In recent years there has been significant progress made on stabilization, moving object detection and tracking and automated systems now generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, the tracking performance at this scale, is unreliable and average track length is much smallermore » than the average vehicle route. This is a limiting factor for applications which depend heavily on track identity, i.e. tracking vehicles from their points of origin to their final destination. In this paper we propose and investigate a framework for wide-area motion imagery (W AMI) exploitation that minimizes the dependence on track identity. In its current form this framework takes noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle meetings) as output. The framework can be used to focus and direct human users and additional computation, and suggests a path towards high-level content extraction by learning from the human-in-the-loop.« less

  4. Laser Propulsion for LOTV Space Missions

    NASA Astrophysics Data System (ADS)

    Rezunkov, Yuri A.

    2004-03-01

    Advanced Space Propulsion-Investigation Committee (ASPIC) of the Japan Society for Aeronautics and Space Sciences (JSASS) selected the Laser Orbital Transfer Vehicle (LOTV) project for development of non-chemical space propulsion systems that have a capability to sustain expanded human space activities in the 21st century. This talk is presenting an analysis of the laser propulsion researches made within the frames of the ISTC Project 1801 as applied to the LOTV Project. The study includes the development of techniques for low-thrust maneuvers of the spacecraft to achieve geostationary orbits.

  5. Vice President Mike Pence Visits Kennedy Space Center

    NASA Image and Video Library

    2017-07-06

    Kennedy Space Center Bob Cabana, left, and NASA's Acting Administrator Robert Lightfoot, right present Vice President Mike Pence with a framed plaque. At the top is an illustration featuring NASA's efforts to explore Mars. Also included is the flag of the Vice President's home state of Indiana that was flown on the SpaceX Commercial Resupply Services-10 flight in February and March this year. During his visit to Kennedy, the Vice President spoke inside the iconic Vehicle Assembly Building, where he thanked employees for advancing American leadership in space.

  6. Landing - STS-2 - Edwards AFB (EAFB), CA

    NASA Image and Video Library

    1981-11-16

    S81-39564 (14 Nov. 1981) --- This view of the space shuttle Columbia (STS-2) was made with a hand-held 70mm camera in the rear station of the T-38 chase plane. Mission specialist/astronaut Kathryn D. Sullivan exposed the frame as astronauts Joe N. Engle and Richard H. Truly aboard the Columbia guided the vehicle to an unpowered but smooth landing on the desert area of Edwards Air Force base in California. The picture provides a good view of the underside of the returning spacecraft. Photo credit: NASA

  7. Expedition 32 FE Acaba poses for a photo in the Cupola

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010613 (27 July 2012) --- NASA astronaut Joe Acaba is pictured in the International Space Station?s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide (out of frame), both Expedition 32 flight engineers, used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  8. LAUNCH - APOLLO 9 - CAPE

    NASA Image and Video Library

    1969-03-03

    S69-25862 (3 March 1969) --- Framed by palm trees in the foreground, the Apollo 9 (Spacecraft 104/Lunar Module 3/ Saturn 504) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC) at 11 a.m. (EST), March 3, 1969. Aboard the spacecraft are astronauts James A. McDivitt, commander; David R. Scott, command module pilot; and Russell L. Schweickart, lunar module pilot. The Apollo 9 mission will evaluate spacecraft lunar module systems performance during manned Earth-orbital flight. Apollo 9 is the second manned Saturn V mission.

  9. A Novel Real-Time Reference Key Frame Scan Matching Method.

    PubMed

    Mohamed, Haytham; Moussa, Adel; Elhabiby, Mohamed; El-Sheimy, Naser; Sesay, Abu

    2017-05-07

    Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions' environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems.

  10. Noninvasive Thermometry Assisted by a Dual Function Ultrasound Transducer for Mild Hyperthermia

    PubMed Central

    Lai, Chun-Yen; Kruse, Dustin E.; Caskey, Charles F.; Stephens, Douglas N.; Sutcliffe, Patrick L.; Ferrara, Katherine W.

    2010-01-01

    Mild hyperthermia is increasingly important for the activation of temperature-sensitive drug delivery vehicles. Noninvasive ultrasound thermometry based on a 2-D speckle tracking algorithm was examined in this study. Here, a commercial ultrasound scanner, a customized co-linear array transducer, and a controlling PC system were used to generate mild hyperthermia. Because the co-linear array transducer is capable of both therapy and imaging at widely separated frequencies, RF image frames were acquired during therapeutic insonation and then exported for off-line analysis. For in vivo studies in a mouse model, before temperature estimation, motion correction was applied between a reference RF frame and subsequent RF frames. Both in vitro and in vivo experiments were examined; in the in vitro and in vivo studies, the average temperature error had a standard deviation of 0.7°C and 0.8°C, respectively. The application of motion correction improved the accuracy of temperature estimation, where the error range was −1.9 to 4.5°C without correction compared with −1.1 to 1.0°C following correction. This study demonstrates the feasibility of combining therapy and monitoring using a commercial system. In the future, real-time temperature estimation will be incorporated into this system. PMID:21156363

  11. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  12. Head posture measurements among work vehicle drivers and implications for work and workplace design.

    PubMed

    Eklund, J; Odenrick, P; Zettergren, S; Johansson, H

    1994-04-01

    An increased risk of musculoskeletal disorders, e.g. from the neck region, has been found among professional drivers of work vehicles. The purpose of this study was to identify causes of postural load and implications for vehicle design and work tasks. A second purpose was to develop the methods for measurement and analysis of head postures. Field measurements of head postures for drivers of fork lift trucks, forestry machines, and cranes were carried out. The equipment used was an electric goniometer measurement system, containing a mechanical transmission between the head and the upper trunk. Methods for data presentation and quantification were developed. The results showed that rotatable and movable driver cabins improved head postures and viewing angles substantially. Narrow window frame structures and large, optimally-placed windows were also advantageous. The steering wheel, controls, and a high backrest restricted shoulder rotation, which increased head rotation in unfavourable viewing angles. Improved workspace layouts and work organization factors such as job enlargement decreased the influence of strenuous postures. The results also showed that head postures should be analysed in two or three dimensions simultaneously, otherwise the postures taken will be underestimated in relation to the maximal voluntary movement.

  13. Structural Configuration Analysis of Crew Exploration Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.

    2006-01-01

    Structural configuration modeling and finite element analysis of crew exploration vehicle (CEV) concepts are presented. In the structural configuration design approach, parametric solid models of the pressurized shell and tanks are developed. The CEV internal cabin pressure is same as in the International Space Station (ISS) to enable docking with the ISS without an intermediate airlock. Effects of this internal pressure load on the stress distribution, factor of safety, mass and deflections are investigated. Uniform 7 mm thick skin shell, 5 mm thick shell with ribs and frames, and isogrid skin construction options are investigated. From this limited study, the isogrid construction appears to provide most strength/mass ratio. Initial finite element analysis results on the service module tanks are also presented. These rapid finite element analyses, stress and factor of safety distribution results are presented as a part of lessons learned and to build up a structural mass estimation and sizing database for future technology support. This rapid structural analysis process may also facilitate better definition of the vehicles and components for rapid prototyping. However, these structural analysis results are highly conceptual and exploratory in nature and do not reflect current configuration designs being conducted at the program level by NASA and industry.

  14. Optimizing a neural network for detection of moving vehicles in video

    NASA Astrophysics Data System (ADS)

    Fischer, Noëlle M.; Kruithof, Maarten C.; Bouma, Henri

    2017-10-01

    In the field of security and defense, it is extremely important to reliably detect moving objects, such as cars, ships, drones and missiles. Detection and analysis of moving objects in cameras near borders could be helpful to reduce illicit trading, drug trafficking, irregular border crossing, trafficking in human beings and smuggling. Many recent benchmarks have shown that convolutional neural networks are performing well in the detection of objects in images. Most deep-learning research effort focuses on classification or detection on single images. However, the detection of dynamic changes (e.g., moving objects, actions and events) in streaming video is extremely relevant for surveillance and forensic applications. In this paper, we combine an end-to-end feedforward neural network for static detection with a recurrent Long Short-Term Memory (LSTM) network for multi-frame analysis. We present a practical guide with special attention to the selection of the optimizer and batch size. The end-to-end network is able to localize and recognize the vehicles in video from traffic cameras. We show an efficient way to collect relevant in-domain data for training with minimal manual labor. Our results show that the combination with LSTM improves performance for the detection of moving vehicles.

  15. Robust Lane Sensing and Departure Warning under Shadows and Occlusions

    PubMed Central

    Tapia-Espinoza, Rodolfo; Torres-Torriti, Miguel

    2013-01-01

    A prerequisite for any system that enhances drivers' awareness of road conditions and threatening situations is the correct sensing of the road geometry and the vehicle's relative pose with respect to the lane despite shadows and occlusions. In this paper we propose an approach for lane segmentation and tracking that is robust to varying shadows and occlusions. The approach involves color-based clustering, the use of MSAC for outlier removal and curvature estimation, and also the tracking of lane boundaries. Lane boundaries are modeled as planar curves residing in 3D-space using an inverse perspective mapping, instead of the traditional tracking of lanes in the image space, i.e., the segmented lane boundary points are 3D points in a coordinate frame fixed to the vehicle that have a depth component and belong to a plane tangent to the vehicle's wheels, rather than 2D points in the image space without depth information. The measurement noise and disturbances due to vehicle vibrations are reduced using an extended Kalman filter that involves a 6-DOF motion model for the vehicle, as well as measurements about the road's banking and slope angles. Additional contributions of the paper include: (i) the comparison of textural features obtained from a bank of Gabor filters and from a GMRF model; and (ii) the experimental validation of the quadratic and cubic approximations to the clothoid model for the lane boundaries. The results show that the proposed approach performs better than the traditional gradient-based approach under different levels of difficulty caused by shadows and occlusions. PMID:23478598

  16. Motion estimation by integrated low cost system (vision and MEMS) for positioning of a scooter "Vespa"

    NASA Astrophysics Data System (ADS)

    Guarnieri, A.; Milan, N.; Pirotti, F.; Vettore, A.

    2011-12-01

    In the automotive sector, especially in these last decade, a growing number of investigations have taken into account electronic systems to check and correct the behavior of drivers, increasing road safety. The possibility to identify with high accuracy the vehicle position in a mapping reference frame for driving directions and best-route analysis is also another topic which attracts lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate time by time the position, orientation and velocity of the system. To this aim low cost GPS and MEMS (sensors can be used. In comparison to a four wheel vehicle, the dynamics of a two wheel vehicle (e.g. a scooter) feature a higher level of complexity. Indeed more degrees of freedom must be taken into account to describe the motion of the latter. For example a scooter can twist sideways, thus generating a roll angle. A slight pitch angle has to be considered as well, since wheel suspensions have a higher degree of motion with respect to four wheel vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a motorcycle ("Vespa" scooter), which can be used as alternative to the "classical" approach based on the integration of GPS and INS sensors. Position and orientation of the scooter are derived from MEMS data and images acquired by on-board digital camera. A Bayesian filter provides the means for integrating the data from MEMS-based orientation sensor and the GPS receiver.

  17. Vehicle classification in WAMI imagery using deep network

    NASA Astrophysics Data System (ADS)

    Yi, Meng; Yang, Fan; Blasch, Erik; Sheaff, Carolyn; Liu, Kui; Chen, Genshe; Ling, Haibin

    2016-05-01

    Humans have always had a keen interest in understanding activities and the surrounding environment for mobility, communication, and survival. Thanks to recent progress in photography and breakthroughs in aviation, we are now able to capture tens of megapixels of ground imagery, namely Wide Area Motion Imagery (WAMI), at multiple frames per second from unmanned aerial vehicles (UAVs). WAMI serves as a great source for many applications, including security, urban planning and route planning. These applications require fast and accurate image understanding which is time consuming for humans, due to the large data volume and city-scale area coverage. Therefore, automatic processing and understanding of WAMI imagery has been gaining attention in both industry and the research community. This paper focuses on an essential step in WAMI imagery analysis, namely vehicle classification. That is, deciding whether a certain image patch contains a vehicle or not. We collect a set of positive and negative sample image patches, for training and testing the detector. Positive samples are 64 × 64 image patches centered on annotated vehicles. We generate two sets of negative images. The first set is generated from positive images with some location shift. The second set of negative patches is generated from randomly sampled patches. We also discard those patches if a vehicle accidentally locates at the center. Both positive and negative samples are randomly divided into 9000 training images and 3000 testing images. We propose to train a deep convolution network for classifying these patches. The classifier is based on a pre-trained AlexNet Model in the Caffe library, with an adapted loss function for vehicle classification. The performance of our classifier is compared to several traditional image classifier methods using Support Vector Machine (SVM) and Histogram of Oriented Gradient (HOG) features. While the SVM+HOG method achieves an accuracy of 91.2%, the accuracy of our deep network-based classifier reaches 97.9%.

  18. Modeling of video compression effects on target acquisition performance

    NASA Astrophysics Data System (ADS)

    Cha, Jae H.; Preece, Bradley; Espinola, Richard L.

    2009-05-01

    The effect of video compression on image quality was investigated from the perspective of target acquisition performance modeling. Human perception tests were conducted recently at the U.S. Army RDECOM CERDEC NVESD, measuring identification (ID) performance on simulated military vehicle targets at various ranges. These videos were compressed with different quality and/or quantization levels utilizing motion JPEG, motion JPEG2000, and MPEG-4 encoding. To model the degradation on task performance, the loss in image quality is fit to an equivalent Gaussian MTF scaled by the Structural Similarity Image Metric (SSIM). Residual compression artifacts are treated as 3-D spatio-temporal noise. This 3-D noise is found by taking the difference of the uncompressed frame, with the estimated equivalent blur applied, and the corresponding compressed frame. Results show good agreement between the experimental data and the model prediction. This method has led to a predictive performance model for video compression by correlating various compression levels to particular blur and noise input parameters for NVESD target acquisition performance model suite.

  19. The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hanga

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hangar at NASA's Dryden flight Research Center, Edwards, California. The elongated 247-foot span lightweight aircraft, resting on its ground maneuvering dolly, stretched almost the full length of the 300-foot long hangar while on display during a visit of NASA Administrator Sean O'Keefe and other NASA officials on Jan. 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on Aug. 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  20. COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego; hide

    2017-01-01

    The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.

  1. VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-15

    VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  2. Hyper III on ramp, front view

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Hyper III was a low-cost test vehicle for an advanced lifting-body shape. Like the earlier M2-F1, it was a 'homebuilt' research aircraft, i.e., built at the Flight Research Center (FRC), later redesignated the Dryden Flight Research Center. It had a steel-tube frame covered with Dacron, a fiberglass nose, sheet aluminum fins, and a wing from an HP-11 sailplane. Construction was by volunteers at the FRC. Although the Hyper III was to be flown remotely in its initial tests, it was fitted with a cockpit for a pilot. On the Hyper III's only flight, it was towed aloft attached to a Navy SH-3 helicopter by a 400-foot cable. NASA research pilot Bruce Peterson flew the SH-3. After he released the Hyper III from the cable, NASA research pilot Milt Thompson flew the vehicle by radio control until the final approach when Dick Fischer took over control using a model-airplane radio-control box. The Hyper III flared, then landed and slid to a stop on Rogers Dry Lakebed. The Flight Research Center (FRC--as Dryden was named from 1959 until 1976) already had experience with testing small-scale aircraft using model-airplane techniques, but the first true remotely piloted research vehicle was the Hyper III, which flew only once in December 1969. At that time, the Center was engaged in flight research with a variety of reentry shapes called lifting bodies, and there was a desire both to expand the flight research experience with maneuverable reentry vehicles, including a high-performance, variable-geometry craft, and to investigate a remotely piloted flight research technique that made maximum use of a research pilot's skill and experience by placing him 'in the loop' as if he were in the cockpit. (There have been, as yet, no female research pilots assigned to Dryden.) The Hyper III as originally conceived was a stiletto-shaped lifting body that had resulted from a study at NASA's Langley Research Center in Hampton, Virginia. It was one of a number of hypersonic, cross-range reentry vehicles studied at Langley. (Hypersonic means Mach 5--five times the speed of sound--or faster; cross-range means able to fly a considerable distance to the left or right of the initial reentry path.) The FRC added a small, deployable, skewed wing to compensate for the shape's extremely low glide ratio. Shop personnel built the 32-foot-long Hyper III and covered its tubular frame with dacron, aluminum, and fiberglass, for about $6,500. Hyper III employed the same '8-ball' attitude indicator developed for control-room use when flying the X-15, two model-airplane receivers to command the vehicle's hydraulic controls, and a telemetry system (surplus from the X-15 program) to transmit 12 channels of data to the ground not only for display and control but for data analysis. Dropped from a helicopter at 10,000 feet, Hyper III flew under the control of research pilot Milt Thompson to a near landing using instruments for control. When the vehicle was close to the ground, he handed the vehicle off to experienced model pilot Dick Fischer for a visual landing using standard controls. The flight demonstrated the feasibility of remotely piloting research vehicles and, among other things, that control of the vehicle in roll was much better than predicted and that the vehicle had a much lower lift-to-drag ratio than predicted (a maximum of 4.0 rather than 5.0). Pilot Milt Thompson exhibited some suprising reactions during the Hyper III flight; he behaved as if he were in the cockpit of an actual research aircraft. 'I was really stimulated emotionally and physically in exactly the same manner that I have been during actual first flights.' 'Flying the Hyper III from a ground cockpit was just as dramatic as an actual flight in any of the other vehicles....responsibility rather than fear of personal safety is the real emotional driver. I have never come out of a simulator emtionally and physically tired as is often the case after a test flight in a research aircraft. I was emotionally and physically tired after a 3-minute flight of the Hyper III.'

  3. Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes

    NASA Astrophysics Data System (ADS)

    Honkavaara, Eija; Rosnell, Tomi; Oliveira, Raquel; Tommaselli, Antonio

    2017-12-01

    A recent revolution in miniaturised sensor technology has provided markets with novel hyperspectral imagers operating in the frame format principle. In the case of unmanned aerial vehicle (UAV) based remote sensing, the frame format technology is highly attractive in comparison to the commonly utilised pushbroom scanning technology, because it offers better stability and the possibility to capture stereoscopic data sets, bringing an opportunity for 3D hyperspectral object reconstruction. Tuneable filters are one of the approaches for capturing multi- or hyperspectral frame images. The individual bands are not aligned when operating a sensor based on tuneable filters from a mobile platform, such as UAV, because the full spectrum recording is carried out in the time-sequential principle. The objective of this investigation was to study the aspects of band registration of an imager based on tuneable filters and to develop a rigorous and efficient approach for band registration in complex 3D scenes, such as forests. The method first determines the orientations of selected reference bands and reconstructs the 3D scene using structure-from-motion and dense image matching technologies. The bands, without orientation, are then matched to the oriented bands accounting the 3D scene to provide exterior orientations, and afterwards, hyperspectral orthomosaics, or hyperspectral point clouds, are calculated. The uncertainty aspects of the novel approach were studied. An empirical assessment was carried out in a forested environment using hyperspectral images captured with a hyperspectral 2D frame format camera, based on a tuneable Fabry-Pérot interferometer (FPI) on board a multicopter and supported by a high spatial resolution consumer colour camera. A theoretical assessment showed that the method was capable of providing band registration accuracy better than 0.5-pixel size. The empirical assessment proved the performance and showed that, with the novel method, most parts of the band misalignments were less than the pixel size. Furthermore, it was shown that the performance of the band alignment was dependent on the spatial distance from the reference band.

  4. Curiosity Observes Whirlwinds Carrying Martian Dust

    NASA Image and Video Library

    2017-02-27

    Dust devils dance in the distance in this frame from a sequence of images taken by the Navigation Camera on NASA's Curiosity Mars rover on Feb. 12, 2017, during the summer afternoon of the rover's 1,607th Martian day, or sol. Within a broader context view, the rectangular area outlined in black was imaged multiple times over a span of several minutes to check for dust devils. Images from the period with most activity are shown in the inset area. The images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated and not fully proportional in this animation. One dust devil appears at the right edge of the inset -- toward the south from the rover -- in the first few frames. Another appears on the left -- toward south-southeast -- later in the sequence. Contrast has been modified to make frame-to-frame changes easier to see. A black frame is added between repeats of the sequence. Portions of Curiosity are visible in the foreground. The cylindrical UHF (ultra-high frequency) antenna on the left is used for sending data to Mars orbiters, which relay the data to Earth. The angled planes to the right of this antenna are fins of the rover's radioisotope thermoelectric generator, which provides the vehicle's power. The post with a knob on top at right is a low-gain, non-directional antenna that can be used for receiving transmissions from Earth, as backup to the main high-gain antenna (not shown here) used for that purpose. On Mars as on Earth, dust devils are whirlwinds that result from sunshine warming the ground, prompting convective rising of air that has gained heat from the ground. Observations of Martian dust devils provide information about wind directions and interaction between the surface and the atmosphere. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21482

  5. The role of conspicuity in preventing bicycle crashes involving a motor vehicle

    PubMed Central

    Woodward, Alistair; Ameratunga, Shanthi

    2015-01-01

    Background: Bicycle use, despite its proven health and other benefits, is rarely part of everyday travel for many people due to the perceived risk of injury from collision crashes. This article investigated the role of physical vs. attention conspicuity in preventing bicycle crashes involving a motor vehicle in New Zealand. Methods: The Taupo Bicycle Study involved 2590 adult cyclists recruited in 2006 (43.1% response rate) and followed for bicycle crash outcomes through linkage to four national databases. A composite measure of physical conspicuity was created using latent class analysis based on the use of fluorescent colours, lights and reflective materials, and the main colour of top, helmet and bike frame. Attention conspicuity was assessed based on regional differences in travel patterns and the amount of riding in a bunch. Cox regression modelling for repeated events was performed with multivariate adjustments. Results: During a median follow-up period of 6.4 years, 162 participants experienced 187 bicycle–motor vehicle crashes. The crash risk was not predicted by the four latent classes identified and the amount of bunch riding but was higher in Auckland, the region with the lowest level of bicycle use relative to car use. In subgroup analyses, compared to other latent classes, the most physically conspicuous group had a higher risk in Auckland but a lower risk in other regions. Conclusion: Conspicuity aids may not be effective in preventing bicycle–motor vehicle crashes in New Zealand, particularly in Auckland, where attention conspicuity is low. PMID:25085469

  6. Medical Systems Engineering to Support Mars Mission Crew Autonomy

    NASA Technical Reports Server (NTRS)

    Antonsen, Erik; Mindock, Jennifer

    2017-01-01

    Human spaceflight missions to Mars face exceptionally challenging resource limitations that far exceed those faced before. Increasing transit times, decreasing opportunity for resupply, communications challenges, and extended time to evacuate a crew to definitive medical care dictate a level of crew autonomy in medical care that is beyond the current medical model. To approach this challenge, a medical systems engineering approach is proposed that relies on a clearly articulated Concept of Operations and risk analysis tools that are in development at NASA. This paper proposes an operational clinical model with key terminology and concepts translated to a controls theory paradigm to frame a common language between clinical and engineering teams. This common language will be used for design and validation of an exploration medical system that is fully integrated into a Mars transit vehicle. This approach merges medical simulation, human factors evaluation techniques, and human-in-the-loop testing in ground based analogs to tie medical hardware and software subsystem performance and overall medical system functionality to metrics of operational medical autonomy. Merging increases in operational clinical autonomy with a more restricted vehicle system resource scenario in interplanetary spaceflight will require an unprecedented level of medical and engineering integration. Full integration of medical capabilities into a Mars vehicle system may require a new approach to integrating medical system design and operations into the vehicle Program structure. Prior to the standing-up of a Mars Mission Program, proof of concept is proposed through the Human Research Program.

  7. Bay of Naples, Italy

    NASA Image and Video Library

    1981-04-14

    STS001-13-442 (14 April 1981) --- This photograph showing much of Italy was taken with a handheld 70mm camera from 276 kilometers above Earth as the NASA space shuttle Columbia and its crew were marking their last few hours in space on the historic first space mission utilizing a reusable vehicle. Included in the area of the frame are Golfo de Napoli, Napoli (Naples), Castellammare, Amalfi, Capri, Sorrento, Mt. Vesuvius and the ruins of Pompei. Astronauts John W. Young and Robert L. Crippen exposed eight magazines of color 70mm film during their two and one-third days in Earth orbit. Photo credit: NASA

  8. STS-31 Hubble Space Telescope (HST) pre-deployment procedures aboard OV-103

    NASA Image and Video Library

    1990-04-24

    During STS-31, the Hubble Space Telescope (HST) grappled by the remote manipulator system (RMS) end effector is held in appendage deploy position above Discovery, Orbiter Vehicle (OV) 103. The solar array (SA) bistem cassette has been released from its latch fittings. The bistem spreader bars begin to unfurl the SA wing. The secondary deployment mechanism (SDM) handle is visible at the SA end. Stowed against either side of the HST System Support Module (SSM) forward shell are the high-gain antennae (HGA). Puerto Rico and the Dominican Republic are recognizable at the left of the frame.

  9. APOLLO SOYUZ TEST PROJECT [ASTP] SPACECRAFT FULL SCALE MODEL

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Model of docked Apollo and Soyuz spacecraft in the foreground and skylight in the Vehicle Assembly Building high bay frame the second stage of the Saturn 1B booster that will launch the United States ASTP mission as a crane raises it prior to its mating with the Saturn 1B first stage. Mating of the Saturn 1B first and second stages was completed this morning. The U. S. ASTP launch with mission commander Thomas Stafford, command module pilot Vance Brand and docking module pilot Donald Slayton is scheduled at 3:50 p.m. EDT July 15.

  10. 4K Video of Colorful Liquid in Space

    NASA Image and Video Library

    2015-10-09

    Once again, astronauts on the International Space Station dissolved an effervescent tablet in a floating ball of water, and captured images using a camera capable of recording four times the resolution of normal high-definition cameras. The higher resolution images and higher frame rate videos can reveal more information when used on science investigations, giving researchers a valuable new tool aboard the space station. This footage is one of the first of its kind. The cameras are being evaluated for capturing science data and vehicle operations by engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama.

  11. System of technical vision for autonomous unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Bondarchuk, A. S.

    2018-05-01

    This paper is devoted to the implementation of image recognition algorithm using the LabVIEW software. The created virtual instrument is designed to detect the objects on the frames from the camera mounted on the UAV. The trained classifier is invariant to changes in rotation, as well as to small changes in the camera's viewing angle. Finding objects in the image using particle analysis, allows you to classify regions of different sizes. This method allows the system of technical vision to more accurately determine the location of the objects of interest and their movement relative to the camera.

  12. Fundamentals of satellite navigation

    NASA Astrophysics Data System (ADS)

    Stiller, A. H.

    The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.

  13. Detail view of the port side of the aft fuselage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the port side of the aft fuselage of the Orbiter Discovery in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center with a lifting frame attached to the aft attach points of the orbiter. In this view, the Orbiter Maneuvering/Reaction Control Systems pod is in place. Also note the darker-colored trapezoidal aft fuselage access door and the T-0 umbilical panel to its right in the view. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. Expedition 32 FE Hoshide poses for a photo in the Cupola

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010583 (27 July 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide is pictured near the windows in the International Space Station?s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Hoshide and NASA astronaut Joe Acaba (out of frame), both Expedition 32 flight engineers, used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  15. Expedition 32 FE Hoshide poses for a photo in the Cupola

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010615 (27 July 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide is pictured in the Cupola of the International Space Station during rendezvous operations with the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3). Hoshide and NASA astronaut Joe Acaba (out of frame), both Expedition 32 flight engineers, used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  16. Replacement of steel parts with extruded aluminum alloys in an automobile

    NASA Astrophysics Data System (ADS)

    Daggula, Manikantha Reddy

    Over the past years, vehicle emissions have shown a negative impact on environment and human health. A new strategy has been used by automakers to reduce a vehicle's weight which significantly reduce fuel consumption and C02 emissions. A very light car consumes very less fuel as it needs to overcome less inertia, decreasing the required power to movie the vehicle. Reducing weight is the easiest way to increase fuel economy and making it by just 10% can increase its efficiency 6 to 8 percent. For a normal scale 80% of vehicles weight is shared among chassis, power train and other exterior components. Almost 60% of the vehicles weight is comprised of steel and the remaining is with cast and extruded aluminum and magnesium alloys. Our main aim is to look for the parts like Fuel tank holder, Fuel filler neck, Turbo inlet assembly, and Brake lines, Dash board frame which are made from steel and replace them with extruded aluminum alloys, to analyze a conventional rear wheel aluminum drive shaft and replace it with a new design and with a new aluminum alloy. The current project involves dismantling an automobile and looking for feasible steel parts and making samples, analyzing the hardness of the samples. These parts are optimally analyzed using Ansys Finite element analysis tool, these parts are subjected to the constraints such as three-point bending, tensile testing, hydrostatic pressure and also torsional stress action on the drive shaft, the deformation and stress are observed in these parts. The results show the current steel parts can be replaced with 3000 series aluminum alloy and the drive shaft can be replaced with new design with 6061-T6 Al-alloy which decreases 25% of the shaft weight.

  17. The Extended Mission Rover (EMR)

    NASA Technical Reports Server (NTRS)

    Shields, W.; Halecki, Anthony; Chung, Manh; Clarke, Ken; Frankle, Kevin; Kassemkhani, Fariba; Kuhlhoff, John; Lenzini, Josh; Lobdell, David; Morgan, Sam

    1992-01-01

    A key component in ensuring America's status as a leader in the global community is its active pursuit of space exploration. On the twentieth anniversary of Apollo 11, President George Bush challenged the nation to place a man on the moon permanently and to conduct human exploration of Mars in the 21st century. The students of the FAMU/FSU College of Engineering hope to make a significant contribution to this challenge, America's Space Exploration Initiative (SEI), with their participation in the NASA/USRA Advanced Design Program. The project selected by the 1991/1992 Aerospace Design group is the design of an Extended Mission Rover (EMR) for use on the lunar surface. This vehicle will serve as a mobile base to provide future astronauts with a 'shirt-sleeve' living and working environment. Some of the proposed missions are planetary surface exploration, construction and maintenance, hardware setup, and in situ resource experimentation. This vehicle will be put into use in the 2010-2030 time frame.

  18. Reducing greenhouse gas emissions for climate stabilization: framing regional options.

    PubMed

    Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.

  19. Industrial Fermentation of Auxenochlorella protothecoides for Production of Biodiesel and Its Application in Vehicle Diesel Engines.

    PubMed

    Xiao, Yibo; Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2015-01-01

    Microalgae-derived biodiesel has been regarded as a promising alternative for fossil diesel. However, the commercial production of microalgal biodiesel was halted due to its high cost. Here, we presented a pilot study on the industrial production of algal biodiesel. We began with the heterotrophic cultivation of Auxenochlorella protothecoides in a 60-m(3) fermentor that produced biomass at 3.81 g L(-1) day(-1) with a neutral lipid content at 51%. Next, we developed plate-frame filter, natural drying, and ball milling methods to harvest, dry, and extract oil from the cells at low cost. Additionally, algal biodiesel was produced for a vehicle engine test, which indicated that the microalgal biodiesel was comparable to fossil diesel but resulted in fewer emissions of particulate matter, carbon monoxide, and hydrocarbon. Altogether, our data suggested that the heterotrophic fermentation of A. protothecoides could have the potential for the future industrial production of biodiesel.

  20. Sloped terrain segmentation for autonomous drive using sparse 3D point cloud.

    PubMed

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Jeong, Young-Sik; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame.

  1. ECN-2301

    NASA Image and Video Library

    1969-09-10

    The Hyper III was a low-cost test vehicle for an advanced lifting-body shape. Like the earlier M2-F1, it was a "homebuilt" research aircraft, i.e., built at the Flight Research Center (FRC), later redesignated the Dryden Flight Research Center. It had a steel-tube frame covered with Dacron, a fiberglass nose, sheet aluminum fins, and a wing from an HP-11 sailplane. Construction was by volunteers at the FRC. Although the Hyper III was to be flown remotely in its initial tests, it was fitted with a cockpit for a pilot. On the Hyper III's only flight, it was towed aloft attached to a Navy SH-3 helicopter by a 400-foot cable. NASA research pilot Bruce Peterson flew the SH-3. After he released the Hyper III from the cable, NASA research pilot Milt Thompson flew the vehicle by radio control until the final approach when Dick Fischer took over control using a model-airplane radio-control box. The Hyper III flared, then landed and slid to a stop on Rogers Dry Lakebed.

  2. Vertical bending strength and torsional rigidity analysis of formula student car chassis

    NASA Astrophysics Data System (ADS)

    Hazimi, Hashfi; Ubaidillah, Setiyawan, Adi Eka Putra; Ramdhani, Hanief Cahya; Saputra, Murnanda Zaesy; Imaduddin, Fitrian

    2018-02-01

    Formula Society of Automotive Engineers (FSAE) is a competition for students to construct formula student car. One of an essential part of a formula student car is its chassis. Chassis is an internal vehicle frame which holds all another part of the vehicle and secures the driver. The team have to design their chassis and tests their design to achieve the best chassis that fulfill the regulation. This paper contains chassis design from Bengawan FSAE Team and some FEA tests to find out the Tensile Strength, Torsional Rigidity, and Von Misses Stress of Formula SAE car. Torsional rigidity was found by applying the static torsional test. The results from torsional rigidity test are a maximum deformation of 9.9512 mm with 1.7064 safety factor, and 35.935 MPa maximum Von Misses Stress. Moreover, then the result of the vertical bending strength test is 8.1214 mm max deformation with safety factor 4.2717, and 29.226 MPa maximum Von Misses Stress.

  3. Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display

    NASA Astrophysics Data System (ADS)

    Nelson, Scott A.

    1994-06-01

    The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.

  4. Industrial Fermentation of Auxenochlorella protothecoides for Production of Biodiesel and Its Application in Vehicle Diesel Engines

    PubMed Central

    Xiao, Yibo; Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2015-01-01

    Microalgae-derived biodiesel has been regarded as a promising alternative for fossil diesel. However, the commercial production of microalgal biodiesel was halted due to its high cost. Here, we presented a pilot study on the industrial production of algal biodiesel. We began with the heterotrophic cultivation of Auxenochlorella protothecoides in a 60-m3 fermentor that produced biomass at 3.81 g L−1 day−1 with a neutral lipid content at 51%. Next, we developed plate-frame filter, natural drying, and ball milling methods to harvest, dry, and extract oil from the cells at low cost. Additionally, algal biodiesel was produced for a vehicle engine test, which indicated that the microalgal biodiesel was comparable to fossil diesel but resulted in fewer emissions of particulate matter, carbon monoxide, and hydrocarbon. Altogether, our data suggested that the heterotrophic fermentation of A. protothecoides could have the potential for the future industrial production of biodiesel. PMID:26539434

  5. Space station propulsion requirements study

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  6. InPRO: Automated Indoor Construction Progress Monitoring Using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Hamledari, Hesam

    In this research, an envisioned automated intelligent robotic solution for automated indoor data collection and inspection that employs a series of unmanned aerial vehicles (UAV), entitled "InPRO", is presented. InPRO consists of four stages, namely: 1) automated path planning; 2) autonomous UAV-based indoor inspection; 3) automated computer vision-based assessment of progress; and, 4) automated updating of 4D building information models (BIM). The works presented in this thesis address the third stage of InPRO. A series of computer vision-based methods that automate the assessment of construction progress using images captured at indoor sites are introduced. The proposed methods employ computer vision and machine learning techniques to detect the components of under-construction indoor partitions. In particular, framing (studs), insulation, electrical outlets, and different states of drywall sheets (installing, plastering, and painting) are automatically detected using digital images. High accuracy rates, real-time performance, and operation without a priori information are indicators of the methods' promising performance.

  7. V-Alert: Description and Validation of a Vulnerable Road User Alert System in the Framework of a Smart City.

    PubMed

    Hernandez-Jayo, Unai; De-la-Iglesia, Idoia; Perez, Jagoba

    2015-07-29

    V-Alert is a cooperative application to be deployed in the frame of Smart Cities with the aim of reducing the probability of accidents involving Vulnerable Road Users (VRU) and vehicles. The architecture of V-Alert combines short- and long-range communication technologies in order to provide more time to the drivers and VRU to take the appropriate maneuver and avoid a possible collision. The information generated by mobile sensors (vehicles and cyclists) is sent over this heterogeneous communication architecture and processed in a central server, the Drivers Cloud, which is in charge of generating the messages that are shown on the drivers' and cyclists' Human Machine Interface (HMI). First of all, V-Alert has been tested in a simulated scenario to check the communications architecture in a complex scenario and, once it was validated, all the elements of V-Alert have been moved to a real scenario to check the application reliability. All the results are shown along the length of this paper.

  8. Emphasis on High Power Lithium Ion Technology for Pulse-Load Operations: Terrestrial Developments Potential Benefits to Space Application

    NASA Astrophysics Data System (ADS)

    Fusalba, Florence; Chami, Marianne; Rey, Marlene; Moreau, Gilles; Reynier, Yvan; Azais, Philippe

    2014-08-01

    Currently Li-ion batteries are preferred to supply space missions owing to their large energy density. However, these batteries are designed for standard missions without high-power pulsed payloads, therefore for low C-rates profiles, and do not answer the needs of high- power space applications. More enhanced power sources compatible with extended thermal environment are therefore needed for some space applications like next generation launchers or radar satellites. It is believed that synergy between terrestrial and space sectors could foster the avoidance of multiple financing for the development of similar technologies and systems, as well as dual-use of facilities, providing some real applications for synergy. CEA experienced terrestrial requirements for Hybrid Electric Vehicle applications, start & stop, e-buses and other larger vehicles. In this frame, materials especially designed for high power needs, new cells conception and recently hybrid supercapacitors developments at CEA are discussed as potential solutions for space high power feature.

  9. Pictorial communication in virtual and real environments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor)

    1991-01-01

    Papers about the communication between human users and machines in real and synthetic environments are presented. Individual topics addressed include: pictorial communication, distortions in memory for visual displays, cartography and map displays, efficiency of graphical perception, volumetric visualization of 3D data, spatial displays to increase pilot situational awareness, teleoperation of land vehicles, computer graphics system for visualizing spacecraft in orbit, visual display aid for orbital maneuvering, multiaxis control in telemanipulation and vehicle guidance, visual enhancements in pick-and-place tasks, target axis effects under transformed visual-motor mappings, adapting to variable prismatic displacement. Also discussed are: spatial vision within egocentric and exocentric frames of reference, sensory conflict in motion sickness, interactions of form and orientation, perception of geometrical structure from congruence, prediction of three-dimensionality across continuous surfaces, effects of viewpoint in the virtual space of pictures, visual slant underestimation, spatial constraints of stereopsis in video displays, stereoscopic stance perception, paradoxical monocular stereopsis and perspective vergence. (No individual items are abstracted in this volume)

  10. A Novel Real-Time Reference Key Frame Scan Matching Method

    PubMed Central

    Mohamed, Haytham; Moussa, Adel; Elhabiby, Mohamed; El-Sheimy, Naser; Sesay, Abu

    2017-01-01

    Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions’ environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems. PMID:28481285

  11. A Macintosh-Based Scientific Images Video Analysis System

    NASA Technical Reports Server (NTRS)

    Groleau, Nicolas; Friedland, Peter (Technical Monitor)

    1994-01-01

    A set of experiments was designed at MIT's Man-Vehicle Laboratory in order to evaluate the effects of zero gravity on the human orientation system. During many of these experiments, the movements of the eyes are recorded on high quality video cassettes. The images must be analyzed off-line to calculate the position of the eyes at every moment in time. To this aim, I have implemented a simple inexpensive computerized system which measures the angle of rotation of the eye from digitized video images. The system is implemented on a desktop Macintosh computer, processes one play-back frame per second and exhibits adequate levels of accuracy and precision. The system uses LabVIEW, a digital output board, and a video input board to control a VCR, digitize video images, analyze them, and provide a user friendly interface for the various phases of the process. The system uses the Concept Vi LabVIEW library (Graftek's Image, Meudon la Foret, France) for image grabbing and displaying as well as translation to and from LabVIEW arrays. Graftek's software layer drives an Image Grabber board from Neotech (Eastleigh, United Kingdom). A Colour Adapter box from Neotech provides adequate video signal synchronization. The system also requires a LabVIEW driven digital output board (MacADIOS II from GW Instruments, Cambridge, MA) controlling a slightly modified VCR remote control used mainly to advance the video tape frame by frame.

  12. Automated multiple target detection and tracking in UAV videos

    NASA Astrophysics Data System (ADS)

    Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie

    2010-04-01

    In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.

  13. Localization and Tracking of Submerged Phytoplankton Bloom Patches by an Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Godin, M. A.; Ryan, J. P.; Zhang, Y.; Bellingham, J. G.

    2012-12-01

    Observing plankton in their drifting frame of reference permits effective studies of marine ecology from the perspective of microscopic life itself. By minimizing variation caused simply by advection, observations in a plankton-tracking frame of reference focus measurement capabilities on the processes that influence the life history of populations. Further, the patchy nature of plankton populations motivates use of sensor data in real-time to resolve patch boundaries and adapt observing resources accordingly. We have developed capabilities for population-centric plankton observation and sampling by autonomous underwater vehicles (AUVs). Our focus has been on phytoplankton populations, both because of their ecological significance - as the core of the oceanic food web and yet potentially harmful under certain bloom conditions, as well as the accessibility of their signal to simple optical sensing. During the first field deployment of these capabilities in 2010, we tracked a phytoplankton patch containing toxigenic diatoms and found that their toxicity correlated with exposure to resuspended sediments. However, this first deployment was labor intensive as the AUV drove in a pre-programmed pattern centered around a patch-marking drifter; it required a boat deployment of the patch-marking drifter and required full-time operators to periodically estimate of the position of the patch with respect to the drifter and adjust the AUV path accordingly. In subsequent field experiments during 2011 and 2012, the Tethys-class long-range AUVs ran fully autonomous patch tracking algorithms which detected phytoplankton patches and continually updated estimates of each patch center by driving adaptive patterns through the patch. Iterations of the algorithm were generated to overcome the challenges of tracking advecting and evolving patches while minimizing human involvement in vehicle control. Such fully autonomous monitoring will be necessary to perform long-term in-situ observation of the full growth and decay cycle of bloom patches. Doing so will enhance our understanding of the temporal and spatial dynamics of bloom patches and the observable conditions that lead to bloom formation, ultimately improving our ability to predict the evolution of harmful algal blooms (HABs) and provide warnings for the fishing and tourism industries.

  14. Science strategy for human exploration of Mars.

    PubMed

    Stoker, C R; McKay, C P; Haberle, R M; Andersen, D T

    1992-01-01

    The scientific objectives of Mars exploration can be framed within the overarching theme of exploring Mars as another home for life, both for evidence of past or present life on Mars, and as a potential future home for human life. The two major areas of research within this theme are: 1) determining the relationship between planetary evolution, climate change, and life, and 2) determining the habitability of Mars. Within this framework, this paper discusses the exploration objectives for exobiology, climatology and atmospheric science, geology, and martian resource assessment. Human exploration will proceed in four major phases: 1) Precursor missions which will obtain environmental knowledge necessary for human exploration, 2) Emplacement phase which includes the first few human landings where crews will explore the local area of the landing site; 3) Consolidation phase missions where a permanent base will be constructed and crews will be capable of detailed exploration over regional scales; 4) Utilization phase, in which a continuously occupied permanent Mars base exists and humans will be capable of detailed global exploration of the martian surface. The phases of exploration differ primarily in the range and capabilities of human mobility. In the emplacement phase, an unpressurized rover, similar to the Apollo lunar rover, will be used and will have a range of a few tens of kilometers. In the Consolidation phase, mobility will be via a pressurized all-terrain vehicle capable of expeditions from the base site of several weeks duration. In the Utilization phase, humans will be capable of several months long expeditions to any point on the surface of Mars using a suborbital rocket equipped with habitat, lab, and return vehicle. Because of human mobility limitations, it is important to extend the range and duration of exploration in all phases by using teleoperated rover vehicles. Site selection for human missions to Mars must consider the multi-decade time frame of these four phases. We suggest that operations in the first two phases be focused in the regional area containing the Coprates Quadrangle and adjacent areas.

  15. Comparison of different detection methods for persistent multiple hypothesis tracking in wide area motion imagery

    NASA Astrophysics Data System (ADS)

    Hartung, Christine; Spraul, Raphael; Schuchert, Tobias

    2017-10-01

    Wide area motion imagery (WAMI) acquired by an airborne multicamera sensor enables continuous monitoring of large urban areas. Each image can cover regions of several square kilometers and contain thousands of vehicles. Reliable vehicle tracking in this imagery is an important prerequisite for surveillance tasks, but remains challenging due to low frame rate and small object size. Most WAMI tracking approaches rely on moving object detections generated by frame differencing or background subtraction. These detection methods fail when objects slow down or stop. Recent approaches for persistent tracking compensate for missing motion detections by combining a detection-based tracker with a second tracker based on appearance or local context. In order to avoid the additional complexity introduced by combining two trackers, we employ an alternative single tracker framework that is based on multiple hypothesis tracking and recovers missing motion detections with a classifierbased detector. We integrate an appearance-based similarity measure, merge handling, vehicle-collision tests, and clutter handling to adapt the approach to the specific context of WAMI tracking. We apply the tracking framework on a region of interest of the publicly available WPAFB 2009 dataset for quantitative evaluation; a comparison to other persistent WAMI trackers demonstrates state of the art performance of the proposed approach. Furthermore, we analyze in detail the impact of different object detection methods and detector settings on the quality of the output tracking results. For this purpose, we choose four different motion-based detection methods that vary in detection performance and computation time to generate the input detections. As detector parameters can be adjusted to achieve different precision and recall performance, we combine each detection method with different detector settings that yield (1) high precision and low recall, (2) high recall and low precision, and (3) best f-score. Comparing the tracking performance achieved with all generated sets of input detections allows us to quantify the sensitivity of the tracker to different types of detector errors and to derive recommendations for detector and parameter choice.

  16. An Efficient and Robust Moving Shadow Removal Algorithm and Its Applications in ITS

    NASA Astrophysics Data System (ADS)

    Lin, Chin-Teng; Yang, Chien-Ting; Shou, Yu-Wen; Shen, Tzu-Kuei

    2010-12-01

    We propose an efficient algorithm for removing shadows of moving vehicles caused by non-uniform distributions of light reflections in the daytime. This paper presents a brand-new and complete structure in feature combination as well as analysis for orientating and labeling moving shadows so as to extract the defined objects in foregrounds more easily in each snapshot of the original files of videos which are acquired in the real traffic situations. Moreover, we make use of Gaussian Mixture Model (GMM) for background removal and detection of moving shadows in our tested images, and define two indices for characterizing non-shadowed regions where one indicates the characteristics of lines and the other index can be characterized by the information in gray scales of images which helps us to build a newly defined set of darkening ratios (modified darkening factors) based on Gaussian models. To prove the effectiveness of our moving shadow algorithm, we carry it out with a practical application of traffic flow detection in ITS (Intelligent Transportation System)—vehicle counting. Our algorithm shows the faster processing speed, 13.84 ms/frame, and can improve the accuracy rate in 4% ~ 10% for our three tested videos in the experimental results of vehicle counting.

  17. Application of parallelized software architecture to an autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Shakya, Rahul; Wright, Adam; Shin, Young Ho; Momin, Orko; Petkovsek, Steven; Wortman, Paul; Gautam, Prasanna; Norton, Adam

    2011-01-01

    This paper presents improvements made to Q, an autonomous ground vehicle designed to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2010 IGVC, Q was upgraded with a new parallelized software architecture and a new vision processor. Improvements were made to the power system reducing the number of batteries required for operation from six to one. In previous years, a single state machine was used to execute the bulk of processing activities including sensor interfacing, data processing, path planning, navigation algorithms and motor control. This inefficient approach led to poor software performance and made it difficult to maintain or modify. For IGVC 2010, the team implemented a modular parallel architecture using the National Instruments (NI) LabVIEW programming language. The new architecture divides all the necessary tasks - motor control, navigation, sensor data collection, etc. into well-organized components that execute in parallel, providing considerable flexibility and facilitating efficient use of processing power. Computer vision is used to detect white lines on the ground and determine their location relative to the robot. With the new vision processor and some optimization of the image processing algorithm used last year, two frames can be acquired and processed in 70ms. With all these improvements, Q placed 2nd in the autonomous challenge.

  18. The feasibility test of state-of-the-art face detection algorithms for vehicle occupant detection

    NASA Astrophysics Data System (ADS)

    Makrushin, Andrey; Dittmann, Jana; Vielhauer, Claus; Langnickel, Mirko; Kraetzer, Christian

    2010-01-01

    Vehicle seat occupancy detection systems are designed to prevent the deployment of airbags at unoccupied seats, thus avoiding the considerable cost imposed by the replacement of airbags. Occupancy detection can also improve passenger comfort, e.g. by activating air-conditioning systems. The most promising development perspectives are seen in optical sensing systems which have become cheaper and smaller in recent years. The most plausible way to check the seat occupancy by occupants is the detection of presence and location of heads, or more precisely, faces. This paper compares the detection performances of the three most commonly used and widely available face detection algorithms: Viola- Jones, Kienzle et al. and Nilsson et al. The main objective of this work is to identify whether one of these systems is suitable for use in a vehicle environment with variable and mostly non-uniform illumination conditions, and whether any one face detection system can be sufficient for seat occupancy detection. The evaluation of detection performance is based on a large database comprising 53,928 video frames containing proprietary data collected from 39 persons of both sexes and different ages and body height as well as different objects such as bags and rearward/forward facing child restraint systems.

  19. Influence of methane emissions and vehicle efficiency on the climate implications of heavy-duty natural gas trucks.

    PubMed

    Camuzeaux, Jonathan R; Alvarez, Ramón A; Brooks, Susanne A; Browne, Joshua B; Sterner, Thomas

    2015-06-02

    While natural gas produces lower carbon dioxide emissions than diesel during combustion, if enough methane is emitted across the fuel cycle, then switching a heavy-duty truck fleet from diesel to natural gas can produce net climate damages (more radiative forcing) for decades. Using the Technology Warming Potential methodology, we assess the climate implications of a diesel to natural gas switch in heavy-duty trucks. We consider spark ignition (SI) and high-pressure direct injection (HPDI) natural gas engines and compressed and liquefied natural gas. Given uncertainty surrounding several key assumptions and the potential for technology to evolve, results are evaluated for a range of inputs for well-to-pump natural gas loss rates, vehicle efficiency, and pump-to-wheels (in-use) methane emissions. Using reference case assumptions reflecting currently available data, we find that converting heavy-duty truck fleets leads to damages to the climate for several decades: around 70-90 years for the SI cases, and 50 years for the more efficient HPDI. Our range of results indicates that these fuel switches have the potential to produce climate benefits on all time frames, but combinations of significant well-to-wheels methane emissions reductions and natural gas vehicle efficiency improvements would be required.

  20. On-line self-learning time forward voltage prognosis for lithium-ion batteries using adaptive neuro-fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Fleischer, Christian; Waag, Wladislaw; Bai, Ziou; Sauer, Dirk Uwe

    2013-12-01

    The battery management system (BMS) of a battery-electric road vehicle must ensure an optimal operation of the electrochemical storage system to guarantee for durability and reliability. In particular, the BMS must provide precise information about the battery's state-of-functionality, i.e. how much dis-/charging power can the battery accept at current state and condition while at the same time preventing it from operating outside its safe operating area. These critical limits have to be calculated in a predictive manner, which serve as a significant input factor for the supervising vehicle energy management (VEM). The VEM must provide enough power to the vehicle's drivetrain for certain tasks and especially in critical driving situations. Therefore, this paper describes a new approach which can be used for state-of-available-power estimation with respect to lowest/highest cell voltage prediction using an adaptive neuro-fuzzy inference system (ANFIS). The estimated voltage for a given time frame in the future is directly compared with the actual voltage, verifying the effectiveness and accuracy of a relative voltage prediction error of less than 1%. Moreover, the real-time operating capability of the proposed algorithm was verified on a battery test bench while running on a real-time system performing voltage prediction.

  1. Immersive viewing engine

    NASA Astrophysics Data System (ADS)

    Schonlau, William J.

    2006-05-01

    An immersive viewing engine providing basic telepresence functionality for a variety of application types is presented. Augmented reality, teleoperation and virtual reality applications all benefit from the use of head mounted display devices that present imagery appropriate to the user's head orientation at full frame rates. Our primary application is the viewing of remote environments, as with a camera equipped teleoperated vehicle. The conventional approach where imagery from a narrow field camera onboard the vehicle is presented to the user on a small rectangular screen is contrasted with an immersive viewing system where a cylindrical or spherical format image is received from a panoramic camera on the vehicle, resampled in response to sensed user head orientation and presented via wide field eyewear display, approaching 180 degrees of horizontal field. Of primary interest is the user's enhanced ability to perceive and understand image content, even when image resolution parameters are poor, due to the innate visual integration and 3-D model generation capabilities of the human visual system. A mathematical model for tracking user head position and resampling the panoramic image to attain distortion free viewing of the region appropriate to the user's current head pose is presented and consideration is given to providing the user with stereo viewing generated from depth map information derived using stereo from motion algorithms.

  2. Large scale track analysis for wide area motion imagery surveillance

    NASA Astrophysics Data System (ADS)

    van Leeuwen, C. J.; van Huis, J. R.; Baan, J.

    2016-10-01

    Wide Area Motion Imagery (WAMI) enables image based surveillance of areas that can cover multiple square kilometers. Interpreting and analyzing information from such sources, becomes increasingly time consuming as more data is added from newly developed methods for information extraction. Captured from a moving Unmanned Aerial Vehicle (UAV), the high-resolution images allow detection and tracking of moving vehicles, but this is a highly challenging task. By using a chain of computer vision detectors and machine learning techniques, we are capable of producing high quality track information of more than 40 thousand vehicles per five minutes. When faced with such a vast number of vehicular tracks, it is useful for analysts to be able to quickly query information based on region of interest, color, maneuvers or other high-level types of information, to gain insight and find relevant activities in the flood of information. In this paper we propose a set of tools, combined in a graphical user interface, which allows data analysts to survey vehicles in a large observed area. In order to retrieve (parts of) images from the high-resolution data, we developed a multi-scale tile-based video file format that allows to quickly obtain only a part, or a sub-sampling of the original high resolution image. By storing tiles of a still image according to a predefined order, we can quickly retrieve a particular region of the image at any relevant scale, by skipping to the correct frames and reconstructing the image. Location based queries allow a user to select tracks around a particular region of interest such as landmark, building or street. By using an integrated search engine, users can quickly select tracks that are in the vicinity of locations of interest. Another time-reducing method when searching for a particular vehicle, is to filter on color or color intensity. Automatic maneuver detection adds information to the tracks that can be used to find vehicles based on their behavior.

  3. Flow detection via sparse frame analysis for suspicious event recognition in infrared imagery

    NASA Astrophysics Data System (ADS)

    Fernandes, Henrique C.; Batista, Marcos A.; Barcelos, Celia A. Z.; Maldague, Xavier P. V.

    2013-05-01

    It is becoming increasingly evident that intelligent systems are very bene¯cial for society and that the further development of such systems is necessary to continue to improve society's quality of life. One area that has drawn the attention of recent research is the development of automatic surveillance systems. In our work we outline a system capable of monitoring an uncontrolled area (an outside parking lot) using infrared imagery and recognizing suspicious events in this area. The ¯rst step is to identify moving objects and segment them from the scene's background. Our approach is based on a dynamic background-subtraction technique which robustly adapts detection to illumination changes. It is analyzed only regions where movement is occurring, ignoring in°uence of pixels from regions where there is no movement, to segment moving objects. Regions where movement is occurring are identi¯ed using °ow detection via sparse frame analysis. During the tracking process the objects are classi¯ed into two categories: Persons and Vehicles, based on features such as size and velocity. The last step is to recognize suspicious events that may occur in the scene. Since the objects are correctly segmented and classi¯ed it is possible to identify those events using features such as velocity and time spent motionless in one spot. In this paper we recognize the suspicious event suspicion of object(s) theft from inside a parked vehicle at spot X by a person" and results show that the use of °ow detection increases the recognition of this suspicious event from 78:57% to 92:85%.

  4. Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol.

    PubMed

    Kasturi, Rangachar; Goldgof, Dmitry; Soundararajan, Padmanabhan; Manohar, Vasant; Garofolo, John; Bowers, Rachel; Boonstra, Matthew; Korzhova, Valentina; Zhang, Jing

    2009-02-01

    Common benchmark data sets, standardized performance metrics, and baseline algorithms have demonstrated considerable impact on research and development in a variety of application domains. These resources provide both consumers and developers of technology with a common framework to objectively compare the performance of different algorithms and algorithmic improvements. In this paper, we present such a framework for evaluating object detection and tracking in video: specifically for face, text, and vehicle objects. This framework includes the source video data, ground-truth annotations (along with guidelines for annotation), performance metrics, evaluation protocols, and tools including scoring software and baseline algorithms. For each detection and tracking task and supported domain, we developed a 50-clip training set and a 50-clip test set. Each data clip is approximately 2.5 minutes long and has been completely spatially/temporally annotated at the I-frame level. Each task/domain, therefore, has an associated annotated corpus of approximately 450,000 frames. The scope of such annotation is unprecedented and was designed to begin to support the necessary quantities of data for robust machine learning approaches, as well as a statistically significant comparison of the performance of algorithms. The goal of this work was to systematically address the challenges of object detection and tracking through a common evaluation framework that permits a meaningful objective comparison of techniques, provides the research community with sufficient data for the exploration of automatic modeling techniques, encourages the incorporation of objective evaluation into the development process, and contributes useful lasting resources of a scale and magnitude that will prove to be extremely useful to the computer vision research community for years to come.

  5. VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is ready to be lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-15

    VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is ready to be lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  6. VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  7. VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-16

    VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  8. VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-15

    VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  9. VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  10. VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it can be seen the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it can be seen the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  11. VANDENBERG AFB, CALIF. - Workers on the mobile service tower at Space Launch Complex 2, Vandenberg Air Force Base, Calif., check the Delta II rocket’s second stage as it is mated with the first stage. The Delta II is the launch vehicle for the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - Workers on the mobile service tower at Space Launch Complex 2, Vandenberg Air Force Base, Calif., check the Delta II rocket’s second stage as it is mated with the first stage. The Delta II is the launch vehicle for the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

  12. VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is prepared for lifting up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-16

    VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is prepared for lifting up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  13. VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  14. VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is raised to a vertical position at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-15

    VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is raised to a vertical position at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  15. VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  16. VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it is the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it is the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  17. VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-16

    VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  18. VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted off the transporter after its arrival on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted off the transporter after its arrival on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  19. Architectural design for a low cost FPGA-based traffic signal detection system in vehicles

    NASA Astrophysics Data System (ADS)

    López, Ignacio; Salvador, Rubén; Alarcón, Jaime; Moreno, Félix

    2007-05-01

    In this paper we propose an architecture for an embedded traffic signal detection system. Development of Advanced Driver Assistance Systems (ADAS) is one of the major trends of research in automotion nowadays. Examples of past and ongoing projects in the field are CHAMELEON ("Pre-Crash Application all around the vehicle" IST 1999-10108), PREVENT (Preventive and Active Safety Applications, FP6-507075, http://www.prevent-ip.org/) and AVRT in the US (Advanced Vision-Radar Threat Detection (AVRT): A Pre-Crash Detection and Active Safety System). It can be observed a major interest in systems for real-time analysis of complex driving scenarios, evaluating risk and anticipating collisions. The system will use a low cost CCD camera on the dashboard facing the road. The images will be processed by an Altera Cyclone family FPGA. The board does median and Sobel filtering of the incoming frames at PAL rate, and analyzes them for several categories of signals. The result is conveyed to the driver. The scarce resources provided by the hardware require an architecture developed for optimal use. The system will use a combination of neural networks and an adapted blackboard architecture. Several neural networks will be used in sequence for image analysis, by reconfiguring a single, generic hardware neural network in the FPGA. This generic network is optimized for speed, in order to admit several executions within the frame rate. The sequence will follow the execution cycle of the blackboard architecture. The global, blackboard architecture being developed and the hardware architecture for the generic, reconfigurable FPGA perceptron will be explained in this paper. The project is still at an early stage. However, some hardware implementation results are already available and will be offered in the paper.

  20. Newsprint coverage of smoking in cars carrying children: a case study of public and scientific opinion driving the policy debate.

    PubMed

    Hilton, Shona; Wood, Karen; Bain, Josh; Patterson, Chris; Duffy, Sheila; Semple, Sean

    2014-10-29

    Media content has been shown to influence public understandings of second-hand smoke. Since 2007 there has been legislation prohibiting smoking in all enclosed public places throughout the United Kingdom (UK). In the intervening period, interest has grown in considering other policy interventions to further reduce the harms of second-hand smoke exposure. This study offers the first investigation into how the UK newsprint media are framing the current policy debate about the need for smoke-free laws to protect children from the harms of second-hand smoke exposure whilst in vehicles. Qualitative content analysis was conducted on relevant articles from six UK and three Scottish national newspapers. Articles published between 1st January 2004 and 16th February 2014 were identified using the electronic database Nexis UK. A total of 116 articles were eligible for detailed coding and analysis that focused on the harms of second-hand smoke exposure to children in vehicles. Comparing the period of 2004-2007 and 2008-2014 there has been an approximately ten-fold increase in the number of articles reporting on the harms to children of second-hand smoke exposure in vehicles. Legislative action to prohibit smoking in vehicles carrying children was largely reported as necessary, enforceable and presented as having public support. It was commonly reported that whilst people were aware of the general harms associated with second-hand smoke, drivers were not sufficiently aware of how harmful smoking around children in the confined space of the vehicle could be. The increased news reporting on the harms of second-hand smoke exposure to children in vehicles and recent policy debates indicate that scientific and public interest in this issue has grown over the past decade. Further, advocacy efforts might draw greater attention to the success of public-space smoke-free legislation which has promoted a change in attitudes, behaviours and social norms. Efforts might also specifically highlight the particular issue of children's developmental vulnerability to second-hand smoke exposure, the dangers posed by smoking in confined spaces such as vehicles, and the appropriate measures that should be taken to reduce the risk of harm.

  1. STS-56 Earth observation of Perth in Western Australia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is probably the best view of Perth in Western Australia. (For orientation purposes, note that the coastline runs north and south). The major feature on the coast is the large estuary of the Swan River. The large port city of Perth is situated on the north bank and the smaller city of Freemantle on the south bank by the sea. Smaller seaside towns trail off north and south of this center of urban life. Inland lies a prominent escarpment, more than 600 feet high, seen running down the middle of the view and dividing the lighter-colored coastal lowlands from the highlands where dark-colored tree savanna and desert scrub dominates the land. The Moore River can be seen entering the sea at the top of the frame. Rottnest Island is visible in the sea and Garden Island near bottom edge of the frame. Perth is the largest economic center in Western Australia. It receives natural gas from an offshore field hundreds of miles

  2. A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES2 space experiment

    NASA Astrophysics Data System (ADS)

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C.; Sindoni, Giampiero; Koenig, Rolf; Ries, John C.; Matzner, Richard; Gurzadyan, Vahe; Penrose, Roger; Rubincam, David; Paris, Claudio

    2017-08-01

    We introduce the LARES 2 space experiment recently approved by the Italian Space Agency (ASI). The LARES 2 satellite is planned for launch in 2019 with the new VEGA C launch vehicle of ASI, ESA and ELV. The orbital analysis of LARES 2 experiment will be carried out by our international science team of experts in General Relativity, theoretical physics, space geodesy and aerospace engineering. The main objectives of the LARES 2 experiment are gravitational and fundamental physics, including accurate measurements of General Relativity, in particular a test of frame-dragging aimed at achieving an accuracy of a few parts in a thousand, i.e., aimed at improving by about an order of magnitude the present state-of-the-art and forthcoming tests of this general relativistic phenomenon. LARES 2 will also achieve determinations in space geodesy. LARES 2 is an improved version of the LAGEOS 3 experiment, proposed in 1984 to measure frame-dragging and analyzed in 1989 by a joint ASI and NASA study.

  3. The role of conspicuity in preventing bicycle crashes involving a motor vehicle.

    PubMed

    Tin Tin, Sandar; Woodward, Alistair; Ameratunga, Shanthi

    2015-06-01

    Bicycle use, despite its proven health and other benefits, is rarely part of everyday travel for many people due to the perceived risk of injury from collision crashes. This article investigated the role of physical vs. attention conspicuity in preventing bicycle crashes involving a motor vehicle in New Zealand. The Taupo Bicycle Study involved 2590 adult cyclists recruited in 2006 (43.1% response rate) and followed for bicycle crash outcomes through linkage to four national databases. A composite measure of physical conspicuity was created using latent class analysis based on the use of fluorescent colours, lights and reflective materials, and the main colour of top, helmet and bike frame. Attention conspicuity was assessed based on regional differences in travel patterns and the amount of riding in a bunch. Cox regression modelling for repeated events was performed with multivariate adjustments. During a median follow-up period of 6.4 years, 162 participants experienced 187 bicycle-motor vehicle crashes. The crash risk was not predicted by the four latent classes identified and the amount of bunch riding but was higher in Auckland, the region with the lowest level of bicycle use relative to car use. In subgroup analyses, compared to other latent classes, the most physically conspicuous group had a higher risk in Auckland but a lower risk in other regions. Conspicuity aids may not be effective in preventing bicycle-motor vehicle crashes in New Zealand, particularly in Auckland, where attention conspicuity is low. © The Author 2014. Published by Oxford University Press on behalf of the European Public Health Association.

  4. Investigation into the vibration of metro bogies induced by rail corrugation

    NASA Astrophysics Data System (ADS)

    Ling, Liang; Li, Wei; Foo, Elbert; Wu, Lei; Wen, Zefeng; Jin, Xuesong

    2017-01-01

    The current research of rail corrugation mainly focuses on the mechanisms of its formation and development. Compared with the root causes and development mechanisms, the wheel-rail impacts, the fatigue failure of vehicle-track parts, and the loss of ride comfort due to rail corrugation should also be taken into account. However, the influences of rail corrugation on vehicle and track vibration, and failure of vehicle and track structural parts are barely discussed in the literature. This paper presents an experimental and numerical investigation of the structural vibration of metro bogies caused by rail corrugation. Extensive experiments are conducted to investigate the effects of short-pitch rail corrugation on the vibration accelerations of metro bogies. A dynamic model of a metro vehicle coupled with a concrete track is established to study the influence of rail corrugation on the structural vibration of metro bogies. The field test results indicate that the short-pitch rail corrugation generates strong vibrations on the axle-boxes and the bogie frames, therefore, accelerates the fatigue failure of the bogie components. The numerical results show that short-pitch rail corrugation may largely reduce the fatigue life of the coil spring, and improving the damping value of the primary vertical dampers is likely to reduce the strong vibration induced by short-pitch rail corrugation. This research systematically studies the effect of rail corrugation on the vibration of metro bogies and proposes some remedies for mitigating strong vibrations of metro bogies and reducing the incidence of failure in primary coil springs, which would be helpful in developing new metro bogies and track maintenance procedures.

  5. Earth observations taken during STS-1 mission

    NASA Image and Video Library

    2009-06-24

    STS001-13-443 (12-14 April 1981) --- This photograph showing much of Italy was taken with a hand-held 70mm camera from 276 kilometers above Earth as the NASA space shuttle Columbia and its crew were marking their last few hours in space on the historic first space mission utilizing a reusable vehicle. Included in the area of the frame are Golfo de Napoli, Napoli (Naples), Castellammare, Amalfi, Capri, Sorrento, Mt. Vesuvius and the ruins of Pompei. Astronauts John W. Young and Robert L. Crippen exposed eight magazines of color 70mm film during their two-and-one-third days in Earth orbit. Photo credit: NASA

  6. Reference equations of motion for automatic rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Henderson, David M.

    1992-01-01

    The analysis presented in this paper defines the reference coordinate frames, equations of motion, and control parameters necessary to model the relative motion and attitude of spacecraft in close proximity with another space system during the Automatic Rendezvous and Capture phase of an on-orbit operation. The relative docking port target position vector and the attitude control matrix are defined based upon an arbitrary spacecraft design. These translation and rotation control parameters could be used to drive the error signal input to the vehicle flight control system. Measurements for these control parameters would become the bases for an autopilot or feedback control system (FCS) design for a specific spacecraft.

  7. Camera Image Transformation and Registration for Safe Spacecraft Landing and Hazard Avoidance

    NASA Technical Reports Server (NTRS)

    Jones, Brandon M.

    2005-01-01

    Inherent geographical hazards of Martian terrain may impede a safe landing for science exploration spacecraft. Surface visualization software for hazard detection and avoidance may accordingly be applied in vehicles such as the Mars Exploration Rover (MER) to induce an autonomous and intelligent descent upon entering the planetary atmosphere. The focus of this project is to develop an image transformation algorithm for coordinate system matching between consecutive frames of terrain imagery taken throughout descent. The methodology involves integrating computer vision and graphics techniques, including affine transformation and projective geometry of an object, with the intrinsic parameters governing spacecraft dynamic motion and camera calibration.

  8. Software Graphics Processing Unit (sGPU) for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    McCabe, Mary; Salazar, George; Steele, Glen

    2015-01-01

    A graphics processing capability will be required for deep space missions and must include a range of applications, from safety-critical vehicle health status to telemedicine for crew health. However, preliminary radiation testing of commercial graphics processing cards suggest they cannot operate in the deep space radiation environment. Investigation into an Software Graphics Processing Unit (sGPU)comprised of commercial-equivalent radiation hardened/tolerant single board computers, field programmable gate arrays, and safety-critical display software shows promising results. Preliminary performance of approximately 30 frames per second (FPS) has been achieved. Use of multi-core processors may provide a significant increase in performance.

  9. Civil Uses of Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Aderhold, J. R.; Gordon, G.; Scott, G. W.

    1976-01-01

    The economic, technical, and environmental implications of remotely piloted vehicles (RVP) are examined. The time frame is 1980-85. Representative uses are selected; detailed functional and performance requirements are derived for RPV systems; and conceptual system designs are devised. Total system cost comparisons are made with non-RPV alternatives. The potential market demand for RPV systems is estimated. Environmental and safety requirements are examined, and legal and regulatory concerns are identified. A potential demand for 2,000-11,000 RVP systems is estimated. Typical cost savings of 25 to 35% compared to non-RPV alternatives are determined. There appear to be no environmental problems, and the safety issue appears manageable.

  10. Dynamics and Control of a Disordered System in Space

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.

    2013-01-01

    In this paper, we present some ideas regarding the modeling, dynamics and control aspects of granular spacecraft. Granular spacecraft are complex multibody systems composed of a spatially disordered distribution of a large number of elements, for instance a cloud of N grains in orbit, with N greater than 10(exp 3). These grains can be large (Cubesat-size) or small (mm-size), and can be active, i.e., a fully equipped vehicle capable sensing their own position and attitude, and enabled with propulsion means, or entirely passive. The ultimate objective would be to study the behavior of the single grains and of large ensembles of grains in orbit and to identify ways to guide and control the shape of a cloud composed of these grains so that it can perform a useful function in space, for instance, as an element of an optical imaging system for astrophysical applications. This concept, in which the aperture does not need to be continuous and monolithic, would increase the aperture size several times compared to large NASA observatories such as ATLAST, allowing for a true Terrestrial Planet Imager that would be able to resolve exo-planet details and do meaningful spectroscopy on distant world. In the paper, we address the modeling and autonomous operation of a distributed assembly (the cloud) of large numbers of highly miniaturized space-borne elements (the grains). A multi-scale, multi-physics model is proposed of the dynamics of the cloud in orbit, as well as a control law for cloud shape maintenance, and preliminary simulation studies yield an estimate of the computational effort, indicating a scale factor of approximately N(exp 1.4) as a function of the number of grains. A granular spacecraft can be defined as a collection of a large number of space-borne elements (in the 1000s) designed and controlled such that a desirable collective behavior emerges, either from the interactions among neighboring grains, and/or between the grains and the environment. In this paper, each grain is considered to be a highly miniaturized spacecraft which has limited size and mass, hence it has limited actuation, limited propulsive capability, limited power, limited sensing, limited communication, limited computational resources, limited range of motion, limited lifetime, and may be expendable. The modeling and dynamics of clouds of vehicles is more challenging than with conventional vehicles because we are faced with a probabilistic vehicle composed of a large number of physically disconnected vehicles. First, different scales of motion occur simultaneously in a cloud: translations and rotations of the cloud as a whole (macro-dynamics), relative rotation and translation of one cloud member with respect to another (meso-dynamics), and individual cloud member dynamics (micro-dynamics). Second, the control design needs to be tolerant of the system complexity, of the system architecture (centralized vs. decentralized large scale system control) as well as robust to un-modeled dynamics and noise sources. Figure 1, top left, shows the kinematic parameters of a 1000 element cloud in orbit. The motion of the system is described with respect to a local vertical-local horizontal (LV-LH) orbiting reference frame (x,y,z)=F(sub ORF) of origin O(sub ORF) which rotates with mean motion omega and orbital semi-major axis R(sub 0). The orbital geometry at the initial time is defined in terms of its six orbital elements, and the orbital dynamics equation for point O(sub ORF) is propagated forward in time under the influence of the gravitational field of the primary and other external perturbations, described below. The origin of this frame coincides with the initial position of the center of mass of the system, and the coordinate axes are z along the local vertical, x toward the flight direction, and y in the orbit normal direction. The assumptions we used to model the dynamics are as follows: 1) The inertial frame is fixed at Earth's center. 2) The orbiting Frame ORF follows Keplerian orbit. 3) the cloud system dynamics is referred to ORF. 4) the attitude of each grain uses the principal body frame as body fixed frame. 5) the atmosphere is assumed to be rigidly rotating with the Earth. Regarding the grains forming the cloud: 1) each grain is modeled as a rigid body; 2) a simple attitude estimator provides attitude estimates, 3) a simple guidance logic commands the position and attitude of each grain, 4) a simple local feedback controller based on PD control of local states is used to stabilize the attitude of the vehicle. Regarding the cloud: 1) the cloud as a whole is modeled as an equivalent rigid body in orbit, and 2) an associated graph establishes agent connectivity and enables coupling between modes of motion at the micro and macro scales; 3) a simple guidance and estimation logic is modeled to estimate and command the attitude of this equivalent rigid body; 4) a cloud shape maintenance controller is based on the dynamics of a stable virtual truss in the orbiting frame. Regarding the environmental perturbations acting on the cloud: 1) a non-spherical gravity field including JO (Earth's spherical field) zonal component, J2 (Earth's oblateness) and J3 zonal components is implemented; 2) atmospheric drag is modeled with an exponential model; 3) solar pressure is modeled assuming the Sun is inertially fixed; and 4) the Earth's magnetic field is model using an equivalent dipole model. The equations of motion are written in a referential system with respect to the origin of the orbiting frame and the state is propagated forward in time using an incremental predictor-corrector scheme. A representative cloud with varying number of grains is simulated to identify the limitations in computation time as the number of grains grows. We derive a control law to track a desired surface in the ORF (equivalently to maintain a reference cloud shape) by defining an error from a desired surface shape, and designing a control law that is exponentially stable and reduces the tracking error to zero. Figure 1 (top right) shows a comparison of various requirements for simulation of single spacecraft vs. granular spacecraft, indicating the high degree of complexity that needs to be taken into consideration. The ORF components of control force required by one of the grains is, for this particular case, in the micro-Newton range. However, no attempt has been made yet to reconfigure (or re-orient) the cloud configuration internally, for which forces in the milli-Newton level are expected, depending on the time required to do the reconfiguration. Figure 1, bottom, shows the computation time as a function of the number of grains, indicating an order N(exp 1.43) scaling on a 8 Gb, 1067 MHz RAM MacOSX computer with a 3.06 GHz Intel Core 2 Duo processor. With this metric, the same simulation for a system of N=1000 grains would take 5.4 hours, and 146 hours (i.e., 6 days) for a system with N=10,000 grains. Therefore, efficient ways to simulate this complex system, where not only the time scales of natural system dynamics, but also the sampling times of the Guidance, Navigation, and Control are included, remain to be explored. Additional details on the cloud modeling, dynamics, and control will be described in the paper.

  11. A navigation and control system for an autonomous rescue vehicle in the space station environment

    NASA Technical Reports Server (NTRS)

    Merkel, Lawrence

    1991-01-01

    A navigation and control system was designed and implemented for an orbital autonomous rescue vehicle envisioned to retrieve astronauts or equipment in the case that they become disengaged from the space station. The rescue vehicle, termed the Extra-Vehicular Activity Retriever (EVAR), has an on-board inertial measurement unit ahd GPS receivers for self state estimation, a laser range imager (LRI) and cameras for object state estimation, and a data link for reception of space station state information. The states of the retriever and objects (obstacles and the target object) are estimated by inertial state propagation which is corrected via measurements from the GPS, the LRI system, or the camera system. Kalman filters are utilized to perform sensor fusion and estimate the state propagation errors. Control actuation is performed by a Manned Maneuvering Unit (MMU). Phase plane control techniques are used to control the rotational and translational state of the retriever. The translational controller provides station-keeping or motion along either Clohessy-Wiltshire trajectories or straight line trajectories in the LVLH frame of any sufficiently observed object or of the space station. The software was used to successfully control a prototype EVAR on an air bearing floor facility, and a simulated EVAR operating in a simulated orbital environment. The design of the navigation system and the control system are presented. Also discussed are the hardware systems and the overall software architecture.

  12. The GNC Measurement System for the Automated Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Roux, Y.; da Cunha, P.

    The Automated Transfer Vehicle (ATV) is a European Space Agency (ESA) funded spacecraft developed by EADS Space Transportation as prime contractor for the space segment together with major European industrial partners, in the frame of the International Space Station (ISS). Its mission objective is threefold : to supply the station with fret and propellant, to reboost ISS to a higher orbit and to dispose of waste from the station. The ATV first flight, called Jules Verne and planned on 2005, will be the first European Vehicle to perform an orbital rendezvous. The GNC Measurement System (GMS) is the ATV on board function in charge of the measurement data collection and preconditioning for the navigation, guidance and control (GNC) algorithms. The GMS is made up of hardware which are the navigation sensors (with a certain level of hardware redundancy for each of them), and of an on-board software that manages, monitors and performs consistency checks to detect and isolate potential sensor failures. The GMS relies on six kinds of navigation sensors, used during various phases of the mission : the gyrometers assembly (GYRA), the accelerometers assembly (ACCA), the star trackers (STR), the GPS receivers, the telegoniometers (TGM) and the videometers (VDM), the last two being used for the final rendezvous phase. The GMS function is developed by EADS Space Transportation together with other industrial partners: EADS Astrium, EADS Sodern, Laben and Dasa Jena Optronik.

  13. Modeling and simulation of dust behaviors behind a moving vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Jingfang

    Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust behaviors. In addition, I introduce a temporal smoothing technique to eliminate the jagged effect caused by large simulation time. Several algorithms are used to speed up the simulation. For example, pre-calculated tables and display lists are created to replace some of the most commonly used functions, scripts and processes. The performance study shows that both time and space costs of the algorithms are linear in the number of particles in the system. On a Silicon Graphics Octane, three vehicles with 20,000 particles run at 6-8 frames per second on average. This speed does not include the extra calculations of convergence of the numerical integration for fluid dynamics which usually takes about 4-5 minutes to achieve steady state.

  14. Performing Frame Transformations to Correctly Stream Position Data

    NASA Astrophysics Data System (ADS)

    Franco, Tom

    Unmanned Aerial Vehicles (UAV) are starting to become a more common occurrence today. What started off as highly classified military weapons with little known information, have become part of everyday life for the common individual. UAV's still carry a great deal of importance in paving the way for unmanned flight. UAV's hold major potential for many amazing technological advances within the near future. Drones have become such a common backyard toy for individuals all over the world as well as the way of the future. Major corporations, such as Amazon, are starting to test drones for delivering small packages. Uber has stated that they want to get to the point where cars will be self-driving, already implementing their testing facility for self-driving cars. It is crazy to think that if an order from amazon is processed, it could arrive at the desired destination the same day within minutes of being processed. To get to that point, there is a lot to consider. First, and most importantly, the drone must be largely autonomous with no minimal human control. The drone also must be able to communicate effectively and relay its position to some sort of tracking device, whether it be a GPS signal or software. How would it go about this? What sort of factors make this possible fantasy of the future a tangible reality? The drone must communicate with numerous devices, be in the proper orientation and have the data being streamed be associated with the proper direction. Since there are a variety of potential directions for the drone to move, odds are there will be some sort of data conversion involved. When testing turbomachinery, sensors used to be placed on the rotating piece of machinery and frame transformations were done to relay the data from the rotating frame to that of the inertial frame. Using this concept, exploring the use of frame transformations to relay position data is conducted. Once explore, testing can be conducted to collect data and once the data is analyzed, it should be clear to determine if the data conversion has been properly integrated.

  15. Advanced Information Processing System (AIPS)-based fault tolerant avionics architecture for launch vehicles

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1990-01-01

    An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.

  16. Alcohol, illegal drugs, violent crime, and traffic-related and other unintended injuries in U.S. local and national news.

    PubMed

    Slater, Michael D; Long, Marilee; Ford, Valerie L

    2006-11-01

    The present study seeks to establish the extent to which media coverage acknowledges alcohol's contribution to violent crime as well as to motor vehicle injuries and other injury incidents. The study content-analyzes a unique sample, closely approximating national representativeness, of local and national television news, local newspapers, and national magazines randomly sampled during a 2-year period. Alcohol's role in violent crime and, to a lesser extent, in motor vehicle and other injury incidents is underreported relative to available estimates regarding alcohol-attributable fractions. Relative frequency of various news frames for coverage of alcohol and illegal drugs and differences in coverage of alcohol and illegal drugs as a function of the type of story and news medium are described. The underreporting in the United States of alcohol's contribution to serious and fatal injury from these causes may reduce public perceptions of alcohol-related risks, potentially influencing behavior, including public support of alcohol-control policies. This provides an opportunity for media-advocacy approaches to improve public health content of news coverage.

  17. Sloped Terrain Segmentation for Autonomous Drive Using Sparse 3D Point Cloud

    PubMed Central

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame. PMID:25093204

  18. KSC-2013-4164

    NASA Image and Video Library

    2013-11-20

    VAN HORN, Texas – Blue Origin’s test stand, back right, is framed by a wind mill at the company’s West Texas facility. The company used this test stand to fire its powerful new hydrogen- and oxygen-fueled American rocket engine, the BE-3. The engine fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Lauren Harnett

  19. On-field mounting position estimation of a lidar sensor

    NASA Astrophysics Data System (ADS)

    Khan, Owes; Bergelt, René; Hardt, Wolfram

    2017-10-01

    In order to retrieve a highly accurate view of their environment, autonomous cars are often equipped with LiDAR sensors. These sensors deliver a three dimensional point cloud in their own co-ordinate frame, where the origin is the sensor itself. However, the common co-ordinate system required by HAD (Highly Autonomous Driving) software systems has its origin at the center of the vehicle's rear axle. Thus, a transformation of the acquired point clouds to car co-ordinates is necessary, and thereby the determination of the exact mounting position of the LiDAR system in car coordinates is required. Unfortunately, directly measuring this position is a time-consuming and error-prone task. Therefore, different approaches have been suggested for its estimation which mostly require an exhaustive test-setup and are again time-consuming to prepare. When preparing a high number of LiDAR mounted test vehicles for data acquisition, most approaches fall short due to time or money constraints. In this paper we propose an approach for mounting position estimation which features an easy execution and setup, thus making it feasible for on-field calibration.

  20. Experience of the ARGO autonomous vehicle

    NASA Astrophysics Data System (ADS)

    Bertozzi, Massimo; Broggi, Alberto; Conte, Gianni; Fascioli, Alessandra

    1998-07-01

    This paper presents and discusses the first results obtained by the GOLD (Generic Obstacle and Lane Detection) system as an automatic driver of ARGO. ARGO is a Lancia Thema passenger car equipped with a vision-based system that allows to extract road and environmental information from the acquired scene. By means of stereo vision, obstacles on the road are detected and localized, while the processing of a single monocular image allows to extract the road geometry in front of the vehicle. The generality of the underlying approach allows to detect generic obstacles (without constraints on shape, color, or symmetry) and to detect lane markings even in dark and in strong shadow conditions. The hardware system consists of a PC Pentium 200 Mhz with MMX technology and a frame-grabber board able to acquire 3 b/w images simultaneously; the result of the processing (position of obstacles and geometry of the road) is used to drive an actuator on the steering wheel, while debug information are presented to the user on an on-board monitor and a led-based control panel.

  1. The Effects of Including Piezoelectric Film as Part of a Wing Surface

    NASA Astrophysics Data System (ADS)

    Sappo, Charlotte

    2014-11-01

    Micro air vehicles (MAVs) are size- and weight-restricted, unmanned, flying vehicles that often exploit biology for inspiration. Membrane wings, one commonly employed biological adaptation, improves aerodynamic efficiency. These efficiency gains are due to the passive deformations and vibrations of the membrane. Piezoelectric films have the potential to further utilize these vibrations through the conversion of this motion into measureable electrical energy. In this investigation, an amplifier circuit was designed to measure the charge generated by a flexible polyvinylidene fluoride (PVDF) film adhered to a rectangular wing frame (aspect ratio of 2). The trailing edge was unattached and free to vibrate. The circuit consisted of two charge amplifiers, to convert the high impedance charge of the piezoelectric film into an output voltage, and an instrumentation amplifier, to reject common-mode noise. Amplifying and filtering the output signal appropriately, through the use of the feedback capacitance and resistance, was discovered to be of the utmost importance for this endeavor. Results from shaker and wind tunnels tests are presented. NSF ECE Grant 1358991 supported the first author as a REU student.

  2. V-Alert: Description and Validation of a Vulnerable Road User Alert System in the Framework of a Smart City

    PubMed Central

    Hernandez-Jayo, Unai; De-la-Iglesia, Idoia; Perez, Jagoba

    2015-01-01

    V-Alert is a cooperative application to be deployed in the frame of Smart Cities with the aim of reducing the probability of accidents involving Vulnerable Road Users (VRU) and vehicles. The architecture of V-Alert combines short- and long-range communication technologies in order to provide more time to the drivers and VRU to take the appropriate maneuver and avoid a possible collision. The information generated by mobile sensors (vehicles and cyclists) is sent over this heterogeneous communication architecture and processed in a central server, the Drivers Cloud, which is in charge of generating the messages that are shown on the drivers’ and cyclists’ Human Machine Interface (HMI). First of all, V-Alert has been tested in a simulated scenario to check the communications architecture in a complex scenario and, once it was validated, all the elements of V-Alert have been moved to a real scenario to check the application reliability. All the results are shown along the length of this paper. PMID:26230695

  3. Panorama parking assistant system with improved particle swarm optimization method

    NASA Astrophysics Data System (ADS)

    Cheng, Ruzhong; Zhao, Yong; Li, Zhichao; Jiang, Weigang; Wang, Xin'an; Xu, Yong

    2013-10-01

    A panorama parking assistant system (PPAS) for the automotive aftermarket together with a practical improved particle swarm optimization method (IPSO) are proposed in this paper. In the PPAS system, four fisheye cameras are installed in the vehicle with different views, and four channels of video frames captured by the cameras are processed as a 360-deg top-view image around the vehicle. Besides the embedded design of PPAS, the key problem for image distortion correction and mosaicking is the efficiency of parameter optimization in the process of camera calibration. In order to address this problem, an IPSO method is proposed. Compared with other parameter optimization methods, the proposed method allows a certain range of dynamic change for the intrinsic and extrinsic parameters, and can exploit only one reference image to complete all of the optimization; therefore, the efficiency of the whole camera calibration is increased. The PPAS is commercially available, and the IPSO method is a highly practical way to increase the efficiency of the installation and the calibration of PPAS in automobile 4S shops.

  4. Aerodynamic analysis of an isolated vehicle wheel

    NASA Astrophysics Data System (ADS)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  5. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hervas, Jaime Rubio; Tang, Hui; Reyhanoglu, Mahmut

    2014-12-10

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative tomore » an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.« less

  6. Using the stated preference technique for eliciting valuations: the role of the payment vehicle.

    PubMed

    Gyrd-Hansen, Dorte

    2013-10-01

    At the core of the stated preference method is choice of payment vehicle. Since payment vehicle is an intrinsic characteristic of a good, the choice of payment vehicle will naturally impact on the valuation of the good. Typical payment vehicles applied in the context of health are income tax levies, out-of-pocket payments at the point of consumption or private health insurance premiums. Where out-of-pocket payments will elicit use value only, private health insurance premiums will also disclose option value, i.e. the utility of knowing that one has access to a healthcare service should one need it. Income tax levies will disclose what in this paper is referred to as citizen's preferences, i.e. individual preferences that include use value, option value as well as (caring) externalities. This paper advocates that researchers design stated preference studies that encompass all relevant dimensions of value, and that serious thought is given to choice of payment vehicle. However, it is important to acknowledge that choice of payment vehicle has other potential implications for valuations. Payment vehicle and provider of services may be strongly linked in people's minds. If respondents implicitly associate a specific type of provider with a certain type of payment vehicle, it is important that any misperception is corrected by way of a precise description of the good being valued. Further, a pertinent issue is the extent to which respondents 'protest' to the stated preference question and how we should deal with these 'protesters'. No agreement currently exists about the procedure used to separate genuine zero values from protest values, nor about the treatment of protest responses in subsequent analyses. Beliefs are strongly associated with protesting, and exclusion of protest bids may therefore exclude individuals who have strong preferences for a payment vehicle. If it is acknowledged that payment vehicle is an intrinsic component of a good, exclusion of respondents who exhibit specific viewpoints may result in biased welfare estimates. Yet another issue is the presence of self-consciousness amongst respondents. If people derive utility from saying they are willing to pay for a public good (social desirability bias or warm glow), this potentially drives a wedge between people's stated value for a good in a survey and people's value for a good provided to them from the government. Tax payments are more binding than out-of-pocket payments. Payment towards public health programs via income tax may therefore generate lower consumer surplus than if the intervention was financed out-of-pocket with the option of opting out both in terms of participation as well as financially. Finally, only a few studies have looked at the impact of frequency of payments. The effect of temporal framing is clearly potentially important and at the same time an unavoidable component of the payment vehicle, yet it remains at present unexplored.

  7. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization

    NASA Technical Reports Server (NTRS)

    Williams, C. H.; Spurlock, O. F.

    2014-01-01

    From the late 1960's through 1997, the leadership of NASA's Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRC's primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the code's operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960's is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the Atlas/Centaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUP's many major impacts on launches are discussed including Intelsat, Voyager, Pioneer Venus, HEAO, Galileo, and Cassini.

  8. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization

    NASA Technical Reports Server (NTRS)

    Spurlock, O. Frank; Williams, Craig H.

    2015-01-01

    From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on launches are discussed including Intelsat, Voyager, Pioneer Venus, HEAO, Galileo, and Cassini.

  9. Grid Fin Stabilization of the Orion Launch Abort Vehicle

    NASA Technical Reports Server (NTRS)

    Pruzan, Daniel A.; Mendenhall, Michael R.; Rose, William C.; Schuster, David M.

    2011-01-01

    Wind tunnel tests were conducted by Nielsen Engineering & Research (NEAR) and Rose Engineering & Research (REAR) in conjunction with the NASA Engineering & Safety Center (NESC) on a 6%-scale model of the Orion launch abort vehicle (LAV) configured with four grid fins mounted near the base of the vehicle. The objectives of these tests were to 1) quantify LAV stability augmentation provided by the grid fins from subsonic through supersonic Mach numbers, 2) assess the benefits of swept grid fins versus unswept grid fins on the LAV, 3) determine the effects of the LAV abort motors on grid fin aerodynamics, and 4) generate an aerodynamic database for use in the future application of grid fins to small length-to-diameter ratio vehicles similar to the LAV. The tests were conducted in NASA Ames Research Center's 11x11-foot transonic wind tunnel from Mach 0.5 through Mach 1.3 and in their 9x7-foot supersonic wind tunnel from Mach 1.6 through Mach 2.5. Force- and moment-coefficient data were collected for the complete vehicle and for each individual grid fin as a function of angle of attack and sideslip angle. Tests were conducted with both swept and unswept grid fins with the simulated abort motors (cold jets) off and on. The swept grid fins were designed with a 22.5deg aft sweep angle for both the frame and the internal lattice so that the frontal projection of the swept fins was the same as for the unswept fins. Data from these tests indicate that both unswept and swept grid fins provide significant improvements in pitch stability as compared to the baseline vehicle over the Mach number range investigated. The swept fins typically provide improved stability as compared to the unswept fins, but the performance gap diminished as Mach number was increased. The aerodynamic performance of the fins was not observed to degrade when the abort motors were turned on. Results from these tests indicate that grid fins can be a robust solution for stabilizing the Orion LAV over a wide range of operating conditions.

  10. Design of Dual-Road Transportable Portal Monitoring System for Visible Light and Gamma-Ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnowski, Thomas Paul; Cunningham, Mark F; Goddard Jr, James Samuel

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they entermore » and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third alignment camera for motion compensation and are mounted on a 50 deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.« less

  11. Design of dual-road transportable portal monitoring system for visible light and gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, E. Craig; Chesser, J.; Marchant, W.

    2010-04-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third "alignment" camera for motion compensation and are mounted on a 50' deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  12. Water-Column Stratification Observed along an AUV-Tracked Isotherm

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Messié, M.; Ryan, J. P.; Kieft, B.; Stanway, M. J.; Hobson, B.; O'Reilly, T. C.; Raanan, B. Y.; Smith, J. M.; Chavez, F.

    2016-02-01

    Studies of marine physical, chemical and microbiological processes benefit from observing in a Lagrangian frame of reference, i.e. drifting with ambient water. Because these processes can be organized relative to specific density or temperature ranges, maintaining observing platforms within targeted environmental ranges is an important observing strategy. We have developed a novel method to enable a Tethys-class long-range autonomous underwater vehicle (AUV) (which has a propeller and a buoyancy engine) to track a target isotherm in buoyancy-controlled drift mode. In this mode, the vehicle shuts off its propeller and autonomously detects the isotherm and stays with it by actively controlling the vehicle's buoyancy. In the June 2015 CANON (Controlled, Agile, and Novel Observing Network) Experiment in Monterey Bay, California, AUV Makai tracked a target isotherm for 13 hours to study the coastal upwelling system. The tracked isotherm started from 33 m depth, shoaled to 10 m, and then deepened to 29 m. The thickness of the tracked isotherm layer (within 0.3°C error from the target temperature) increased over this duration, reflecting weakened stratification around the isotherm. During Makai's isotherm tracking, another long-range AUV, Daphne, acoustically tracked Makai on a circular yo-yo trajectory, measuring water-column profiles in Makai's vicinity. A wave glider also acoustically tracked Makai, providing sea surface measurements on the track. The presented method is a new approach for studying water-column stratification, but requires careful analysis of the temporal and spatial variations mingled in the vehicles' measurements. We will present a synthesis of the water column's stratification in relation to the upwelling conditions, based on the in situ measurements by the mobile platforms, as well as remote sensing and mooring data.

  13. Design And Ground Testing For The Expert PL4/PL5 'Natural And Roughness Induced Transition'

    NASA Astrophysics Data System (ADS)

    Masutti, Davie; Chazot, Olivier; Donelli, Raffaele; de Rosa, Donato

    2011-05-01

    Unpredicted boundary layer transition can impact dramatically the stability of the vehicle, its aerodynamic coefficients and reduce the efficiency of the thermal protection system. In this frame, ESA started the EXPERT (European eXPErimental Reentry Testbed) program to pro- vide and perform in-flight experiments in order to obtain aerothermodynamic data for the validation of numerical models and of ground-to-flight extrapolation methodologies. Considering the boundary layer transition investigation, the EXPERT vehicle is equipped with two specific payloads, PL4 and PL5, concerning respectively the study of the natural and roughness induced transition. The paper is a survey on the design process of these two in-flight experiments and it covers the major analyses and findings encountered during the development of the payloads. A large amount of transition criteria have been investigated and used to estimate either the dangerousness of the height of the distributed roughness, arising due to nose erosion, or the effectiveness of height of the isolated roughness element forcing the boundary layer transition. Supporting the PL4 design, linear stability computations and CFD analyses have been performed by CIRA on the EXPERT flight vehicle to determine the amplification factor of the boundary layer instabilities at different point of the re-entry trajectory. Ground test experiments regarding the PL5 are carried on in the Mach 6 VKI H3 Hypersonic Wind Tunnel with a Reynolds numbers ranging from 18E6/m to 26E6/m. Infrared measurements (Stanton number) and flow visualization are used on a 1/16 scaled model of the EXPERT vehicle and a flat plate to validate the Potter and Whitfield criterion as a suitable methodology for ground-to-flight extrapolation and the payload design.

  14. Advanced Key Technologies for Hot Control Surfaces in Space Re- Entry Vehicles

    NASA Astrophysics Data System (ADS)

    Dogigli, Michael; Pradier, Alain; Tumino, Giorgio

    2002-01-01

    (1)MAN Technologie AG, D- 86153 Augsburg, Germany (2,3) ESA, 2200 Noordwijk ZH, The Netherlands Current space re-entry vehicles (e.g. X-38 vehicle 201, the prototype of the International Space Station's Crew Return Vehicle (CRV)) require advanced control surfaces (so called body flaps). Such control surfaces allow the design of smaller and lighter vehicles as well as faster re-entries (compared to the US Shuttle). They are designed as light-weight structures that need no metallic parts, need no mass or volume consuming heat sinks to protect critical components (e.g. bearings) and that can be operated at temperatures of more than 1600 "C in air transferring high mechanical loads (dynamic 40 kN, static 70 kN) at the same time. Because there is a need for CRV and also for Reusable Launch Vehicles (RLV) in future, the European Space Agency (ESA) felt compelled to establish a "Future European Space Transportation and Investigation Program,, (FESTIP) and a "General Support for Technology Program,, (GSTP). One of the main goals of these programs was to develop and qualify key-technologies that are able to master the above mentioned challenging requirements for advanced hot control surfaces and that can be applied for different vehicles. In 1996 MAN Technologie has started the development of hot control surfaces for small lifting bodies in the national program "Heiü Strukturen,,. One of the main results of this program was that especially the following CMC (Ceramic Matrix Composite) key technologies need to be brought up to space flight standard: Complex CMC Structures, CMC Bearings, Metal-to-CMC Joining Technologies, CMC Fasteners, Oxidation Protection Systems and Static and Dynamic Seals. MAN Technologie was contracted by ESA to continue the development and qualification of these key technologies in the frame of the FESTIP and the GSTP program. Development and qualification have successfully been carried out. The key technologies have been applied for the X-38 vehicle 201 body flaps that have been designed, manufactured and qualified also by MAN Technologie in the frame of the national TETRA program ("Technologien fu zuku ftige Raum-Transportsysteme,,). A set of two body flaps will be delivered to NASA at the beginning of 2002 to be integrated into the vehicle 201. Based on development- and qualification tests, the paper describes main technical properties and features of these key technologies that at the same time represent the status of the art. In a qualification test (simultaneous application of thermal and mechanical loads with bearing movements in oxidising atmosphere) of a full scaled CMC bearing, five complete re-entries have been simulated successfully. The paper informs about applied mechanical load and temperature histories as well as about the number of intermittent bearing movements. The paper further informs about the complex CMC attachment structures (attachment of bearing into the body flap and load introduction) that have been qualified together with the CMC bearing. The attachment of the body flap to the vehicle's aft structure has also been qualified by tests in which also four re- entries have been simulated successfully. The attachment in principle is an interfacing structure between the "hot" (1600 "C) CMC body flap and the "cold,, (175 "C) metallic vehicle's aft structure that is able to transfer high me- chanical loads at high temperatures and minimise the heat flux through interfacing components in such way that the temperature difference of 1600 "C 175 "C = 1425 "C is brought down over a structure-length of only 200 mm. The paper informs about applied mechanical load and temperature histories and about the safety margins that have been demonstrated by rupture tests. Mechanical load carrying capacity and thermal resistance of ceramic fasteners have been demonstrated in several development tests which cover tension-, shear-, fatigue- and self locking-tests as well as tests with fastener assemblies representative for the body flaps. The reliability of these fasteners has also been demonstrated in the bearing and body flap qualification tests. In a comprehensive development test campaign, oxidation protection systems as well as repair methods have been developed and successfully applied for the body flap structure and components that reliably can be protected at least for four re-entries. The development of key technologies is continued in the national ASTRA program ("Basistechnologien fu keramische Hochtemperatur-Komponenten,,) and in international programs that among others focus on to improve the reusability of high temperature CMC components for RLVs.

  15. Examining the relative effectiveness of different message framing strategies for child passenger safety: recommendations for increased comprehension and compliance.

    PubMed

    Will, Kelli England; Decina, Lawrence E; Maple, Erin L; Perkins, Amy M

    2015-06-01

    Age-appropriate child restraints and rear seating dramatically reduce injury in vehicle crashes. Yet parents and caregivers struggle to comply with child passenger safety (CPS) recommendations, and frequently make mistakes when choosing and installing restraints. The purpose of this research was to evaluate various methods of framing CPS recommendations, and to examine the relative effectiveness on parents' knowledge, attitudes, and behavioral intentions related to best practices and proper use of child restraints. Emphasis framing is a persuasion technique that involves placing focus on specific aspects of the content in order to encourage or discourage certain interpretations of the content. A 5 (flyer group) X 2 (time) randomized experiment was conducted in which 300 parent participants answered a pre-survey, viewed one of four flyer versions or a no-education control version, and completed a post-survey. Surveys measured CPS knowledge, attitudes, perceptions of efficacy and risk, and behavioral intentions. The four flyers compared in this study all communicated the same CPS recommendations, but several versions were tested which each employed a different emphasis frame: (1) recommendations organized by the natural progression of seat types; (2) recommendations which focused on avoiding premature graduation; (3) recommendations which explained the risk-reduction rationale behind the information given; or (4) recommendations which were organized by age. In a fifth no-education (control) condition, participants viewed marketing materials. Analyses of covariance and pairwise comparisons indicated the risk-reduction rationale flyer outperformed other flyers for many subscales, and significantly differed from no-education control for the most subscales, including restraint selection, back seat knowledge, rear-facing knowledge and attitudes, total efficacy, overall attitudes, and stated intentions. This research provides insight for increasing caregiver understanding and compliance with CPS information. Recommendations for the field include communicating the rationale behind the information given, using behavior-based directives in headers, avoiding age-based headers, and incorporating back-seat positioning directives throughout. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Micro-Tubular Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.

    2004-01-01

    Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.

  17. Space Shuttle Upgrades: Long Life Alkaline Fuel Cell

    NASA Technical Reports Server (NTRS)

    McCurdy, Kerri

    2004-01-01

    NASA has utilized the alkaline fuel cell technology to provide electrical power for manned launch vehicles such as Gemini, Apollo, and the Space Shuttle. The current Shuttle alkaline fuel cells are procured from UTC Fuel Cells, a United Technologies Company. The alkaline fuel cells are very reliable but the operating life is limited to 2600 hours due to voltage degradation of the individual cells. The main limiting factor in the life of the cells is corrosion of the cell's fiberglass/epoxy frame by the aqueous potassium hydroxide electrolyte. To reduce operating costs, the orbiter program office approved the Long Life Alkaline Fuel Cell (LLAFC) program as a shuttle upgrade in 1999 to increase the operating life of the fuel cell powerplant to 5000 hours. The LLAFC program incorporates improving the cell by extending the length of the corrosion path, which reduces the cell frame corrosion. UTCFC performed analysis to understand the fundamental mechanisms that drive the cell frame corrosion. The analysis indicated that the corrosion path started along the bond line between the cathode and the cell frame. Analysis also showed that the oxygen available at the cathode, the catalyst on the electrode, and the electrode substrate all supported or intensified the corrosion. The new cell design essentially doubled the corrosion path to mitigate the problem. A 10-cell stack was tested for 5000 hours during the development phase of this program to verify improved cell performance. A complete 96-cell stack was then tested for 5000 hours during the full manned-space qualification phase of this program. Additional upgrades to the powerplant under this program are: replacing the aluminum body in the pressure regulator with stainless steel to reduce corrosion, improving stack insulator plate with improved resistance to stress failure and improved temperature capability, and replacing separator plate elastomer seals with a more durable material and improved seal retention.

  18. 1st Stage Separation Aerodynamics Of VEGA Launcher

    NASA Astrophysics Data System (ADS)

    Genito, M.; Paglia, F.; Mogavero, A.; Barbagallo, D.

    2011-05-01

    VEGA is an European launch vehicle under development by the Prime Contractor ELV S.p.A. in the frame of an ESA contract. It is constituted by four stages, dedicated to the scientific/commercial market of small satellites (300 ÷ 2500 kg) into Low Earth Orbits, with inclinations ranging from 5.2° up to Sun Synchronous Orbits and with altitude ranging from 300 to 1500 km. Aim of this paper is to present a study of flow field due to retro-rockets impingement during the 1st stage VEGA separation phase. In particular the main goal of the present work is to present the aerodynamic activities performed for the justification of the separation phase.

  19. Landing - STS-2 - Edwards AFB (EAFB), CA

    NASA Image and Video Library

    1981-11-16

    S81-39563 (14 Nov. 1981) --- This view of the space shuttle Columbia (STS-2) was made with a hand-held 70mm camera in the rear station of the T-38 chase plane. Mission specialist/astronaut Kathryn D. Sullivan exposed the frame as astronauts Joe N. Engle and Richard H. Truly aboard the Columbia guided the vehicle to an unpowered but smooth landing on the desert area of Edwards Air Force base in California. The view provides a good study of the high temperature protection material on the underside of the spacecraft which is exposed to the friction on the atmospheric entry on the return to Earth. Also note trails from the wing tips. Photo credit: NASA

  20. Evaluation of coated columbium alloy heat shields for space shuttle thermal protection system application. Volume 3, phase 3: Full size TPS evaluation

    NASA Technical Reports Server (NTRS)

    Baer, J. W.; Black, W. E.

    1974-01-01

    The thermal protection system (TPS), designed for incorporation with space shuttle orbiter systems, consists of one primary heat shield thermally and structurally isolated from the test fixture by eight peripheral guard panels, all encompassing an area of approximately 12 sq ft. TPS components include tee-stiffened Cb 752/R-512E heat shields, bi-metallic support posts, panel retainers, and high temperature insulation blankets. The vehicle primary structure was simulated by a titanium skin, frames, and stiffeners. Test procedures, manufacturing processes, and methods of analysis are fully documented. For Vol. 1, see N72-30948; for Vol. 2, see N74-15660.

  1. KSC-05PD-0565

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, a digital still camera has been mounted in the External Tank (ET) umbilical well on the aft end of Space Shuttle Discovery. The camera is being used to obtain and downlink high-resolution images of the disconnect point on the ET following ET separation from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  2. KSC-05PD-0562

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, workers check the digital still camera they will mount in the External Tank (ET) umbilical well on the aft end of Space Shuttle Discovery. The camera is being used to obtain and downlink high-resolution images of the disconnect point on the ET following the tank's separation from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  3. KSC-05PD-0564

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, a worker mounts a digital still camera in the External Tank (ET) umbilical well on the aft end of Space Shuttle Discovery. The camera is being used to obtain and downlink high-resolution images of the disconnect point on the ET following the ET separation from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  4. KSC-05PD-0561

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, workers prepare a digital still camera they will mount in the External Tank (ET) umbilical well on the aft end of Space Shuttle Discovery. The camera is being used to obtain and downlink high-resolution images of the disconnect point on the ET following its separation from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  5. KSC-05PD-0563

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, workers prepare a digital still camera they will mount in the External Tank (ET) umbilical well on the aft end of Space Shuttle Discovery. The camera is being used to obtain and downlink high-resolution images of the disconnect point on the ET following the ET separation from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  6. Analysis to feature-based video stabilization/registration techniques within application of traffic data collection

    NASA Astrophysics Data System (ADS)

    Sadat, Mojtaba T.; Viti, Francesco

    2015-02-01

    Machine vision is rapidly gaining popularity in the field of Intelligent Transportation Systems. In particular, advantages are foreseen by the exploitation of Aerial Vehicles (AV) in delivering a superior view on traffic phenomena. However, vibration on AVs makes it difficult to extract moving objects on the ground. To partly overcome this issue, image stabilization/registration procedures are adopted to correct and stitch multiple frames taken of the same scene but from different positions, angles, or sensors. In this study, we examine the impact of multiple feature-based techniques for stabilization, and we show that SURF detector outperforms the others in terms of time efficiency and output similarity.

  7. An Improved Vision-based Algorithm for Unmanned Aerial Vehicles Autonomous Landing

    NASA Astrophysics Data System (ADS)

    Zhao, Yunji; Pei, Hailong

    In vision-based autonomous landing system of UAV, the efficiency of target detecting and tracking will directly affect the control system. The improved algorithm of SURF(Speed Up Robust Features) will resolve the problem which is the inefficiency of the SURF algorithm in the autonomous landing system. The improved algorithm is composed of three steps: first, detect the region of the target using the Camshift; second, detect the feature points in the region of the above acquired using the SURF algorithm; third, do the matching between the template target and the region of target in frame. The results of experiment and theoretical analysis testify the efficiency of the algorithm.

  8. Methodologies to determine forces on bones and muscles of body segments during exercise, employing compact sensors suitable for use in crowded space vehicles

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    1994-01-01

    A complete description of an instrumented ergometer system, including the sensors, the data acquisition system, and the methodologies to calculate the kinematic parameters were initially developed at Tulane University. This work was continued by the PI at NASA Johnson Space Center, where a flight ergometer was instrumented and tested during a KC-135 Zero-Gravity flight. The sensors that form part of the system include EMG probes and accelerometers mounted on the subject using the ergometer, load cells to measure pedal forces, and encoders to measure position and orientation of the pedal (foot). Currently, data from the flight test is being analyzed and processed to calculate the kinematic parameters of the individual. The formulation developed during the initial months of the grant will be used for this purpose. The system's components are compact (all sensors are very small). A salient feature of the system and associated methodology to determine the kinematics is that although it uses accelerometers, position is not determined by integration. Position is determined by determining the angle of two frames of reference for which acceleration at one point is known in coordinates of both frames.

  9. Performance-based regulation: enterprise responsibility for reducing death, injury, and disease caused by consumer products.

    PubMed

    Sugarman, Stephen D

    2009-12-01

    This article offers a bold new idea for confronting the staggering level of death, injury, and disease caused by five consumer products: cigarettes, alcohol, guns, junk food, and motor vehicles. Business leaders try to frame these negative outcomes as "collateral damage" that is someone else's problem. That framing not only is morally objectionable but also overlooks the possibility that, with proper prodding, industry could substantially lessen these public health disasters. I seek to reframe the public perception of who is responsible and propose to deploy a promising approach called "performance-based regulation" to combat the problem. Performance-based regulation would impose on manufacturers a legal obligation to reduce the negative social costs of their products. Rather than involving them in litigation or forcing them to operate differently (as "command-and-control" regimes do), performance-based regulation allows the firms to determine how best to decrease bad public health consequences. Like other public health strategies, performance-based regulation focuses on those who are far more likely than individual consumers to achieve real gains. Analogous to a tax on causing harm that exceeds a threshold level, performance-based regulation seeks to harness private initiative in pursuit of the public good.

  10. 3D indoor modeling using a hand-held embedded system with multiple laser range scanners

    NASA Astrophysics Data System (ADS)

    Hu, Shaoxing; Wang, Duhu; Xu, Shike

    2016-10-01

    Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.

  11. Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing

    PubMed Central

    Henkel, Patrick

    2017-01-01

    Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform’s coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing. PMID:28594369

  12. Road sign recognition with fuzzy adaptive pre-processing models.

    PubMed

    Lin, Chien-Chuan; Wang, Ming-Shi

    2012-01-01

    A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance.

  13. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.

    2014-02-01

    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.

  14. Acoustic and vibrational damping in porous solids.

    PubMed

    Göransson, Peter

    2006-01-15

    A porous solid may be characterized as an elastic-viscoelastic and acoustic-viscoacoustic medium. For a flexible, open cell porous foam, the transport of energy is carried both through the sound pressure waves propagating through the fluid in the pores, and through the elastic stress waves carried through the solid frame of the material. For a given situation, the balance between energy dissipated through vibration of the solid frame, changes in the acoustic pressure and the coupling between the waves varies with the topological arrangement, choice of material properties, interfacial conditions, etc. Engineering of foams, i.e. designs built on systematic and continuous relationships between polymer chemistry, processing, micro-structure, is still a vision for the future. However, using state-of-the-art simulation techniques, multiple layer arrangements of foams may be tuned to provide acoustic and vibrational damping at a low-weight penalty. In this paper, Biot's modelling of porous foams is briefly reviewed from an acoustics and vibrations perspective with a focus on the energy dissipation mechanisms. Engineered foams will be discussed in terms of results from simulations performed using finite element solutions. A layered vehicle-type structure is used as an example.

  15. No more business as usual: enticing companies to sharply lower the public health costs of the products they sell.

    PubMed

    Sugarman, S

    2009-03-01

    Cigarettes, alcohol, junk food and motor vehicles cause a staggeringly high level of death, injury and disease. Business leaders from the industries that make these products currently try to frame these negative outcomes as 'collateral damage' that is someone else's problem. That framing is not only morally objectionable, but also overlooks the possibility that, with proper prodding, industry could substantially mitigate these public health disasters. A promising regulatory tool called 'performance-based regulation' is a new approach to combating the problem. Simply put, performance-based regulation would impose a legal obligation on manufacturers to reduce their negative social costs. Rather than suing the firms for damages, or telling them how they should run their businesses differently (as typical 'command and control' regimes do), performance-based regulation allows the firms to determine how best to decrease today's negative public health consequences. Like other public health strategies, performance-based regulation shifts the focus away from individual consumers on to those who are far more likely to achieve real public health gains. Analogous to a tax on causing harm that exceeds a threshold level, performance-based regulation seeks to harness private initiative in pursuit of the public good.

  16. Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing.

    PubMed

    Henkel, Patrick

    2017-06-08

    Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform's coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing.

  17. Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models

    PubMed Central

    Lin, Chien-Chuan; Wang, Ming-Shi

    2012-01-01

    A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance. PMID:22778650

  18. STS-56 Earth observation of Perth in Western Australia

    NASA Image and Video Library

    1993-04-17

    STS-56 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is probably the best view of Perth in Western Australia. (For orientation purposes, note that the coastline runs north and south). The major feature on the coast is the large estuary of the Swan River. The large port city of Perth is situated on the north bank and the smaller city of Freemantle on the south bank by the sea. Smaller seaside towns trail off north and south of this center of urban life. Inland lies a prominent escarpment, more than 600 feet high, seen running down the middle of the view and dividing the lighter-colored coastal lowlands from the highlands where dark-colored tree savanna and desert scrub dominates the land. The Moore River can be seen entering the sea at the top of the frame. Rottnest Island is visible in the sea and Garden Island near bottom edge of the frame. Perth is the largest economic center in Western Australia. It receives natural gas from an offshore field hundreds of miles to the north. It lies 3,400 kilometers west of Sydney on the opposite side of this island continent.

  19. The ARTEMIS European driving cycles for measuring car pollutant emissions.

    PubMed

    André, Michel

    2004-12-01

    In the past 10 years, various work has been undertaken to collect data on the actual driving of European cars and to derive representative real-world driving cycles. A compilation and synthesis of this work is provided in this paper. In the frame of the European research project: ARTEMIS, this work has been considered to derive a set of reference driving cycles. The main objectives were as follows: to derive a common set of reference real-world driving cycles to be used in the frame of the ARTEMIS project but also in the frame of on-going national campaigns of pollutant emission measurements, to ensure the compatibility and integration of all the resulting emission data in the European systems of emission inventory; to ensure and validate the representativity of the database and driving cycles by comparing and taking into account all the available data regarding driving conditions; to include in three real-world driving cycles (urban, rural road and motorway) the diversity of the observed driving conditions, within sub-cycles allowing a disaggregation of the emissions according to more specific driving conditions (congested and free-flow urban). Such driving cycles present a real advantage as they are derived from a large database, using a methodology that was widely discussed and approved. In the main, these ARTEMIS driving cycles were designed using the available data, and the method of analysis was based to some extent on previous work. Specific steps were implemented. The study includes characterisation of driving conditions and vehicle uses. Starting conditions and gearbox use are also taken into account.

  20. Greater focus needed on methane leakage from natural gas infrastructure.

    PubMed

    Alvarez, Ramón A; Pacala, Stephen W; Winebrake, James J; Chameides, William L; Hamburg, Steven P

    2012-04-24

    Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH(4) leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH(4) losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas.

  1. Greater focus needed on methane leakage from natural gas infrastructure

    PubMed Central

    Alvarez, Ramón A.; Pacala, Stephen W.; Winebrake, James J.; Chameides, William L.; Hamburg, Steven P.

    2012-01-01

    Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. PMID:22493226

  2. SHARK: Flight Results of an UHTC-Based Nose Related to USV Hot Structures

    NASA Astrophysics Data System (ADS)

    Gardi, R.; Del Vecchio, A.; Russo, G.; Marino, G.

    2011-05-01

    In the frame of USV program, CIRA is developing different projects aimed to develop new technologies for the future hypersonic vehicles. One of these technological projects is Sharp Hot Structures (SHS) and it is aimed to the realization of innovative thermo- structures, based on innovative material solution, able to sustain the heat loads generated during the hypersonic flight. Because the slender configuration of the USV program vehicles, SHS is focused on sharp geometries, like sharp leading edges and sharp nose cones. CIRA, for many years, is investigating the effectiveness of ultra high temperature ceramic materials (UHTC) by means of numerical simulations, ground testing in plasma torch and in SCIROCCO, the 70MW plasma wind tunnel (PWT) facility at CIRA. More recently CIRA is moving the experimentation in real flight environment, boarding UHTC components on the re-entering space capsules EXPERT and SHARK. The former is a European experimental test bed boarding a couple of UHTC fins, already qualified and integrated on the vehicle. SHARK is a 20kg capsule launched on March the 26th 2010 from Kiruna with the European sounding rocker Maxus-8. During the ascent parabola, the capsule was released and successfully executed its 15 minutes ballistic flight and then re-entered in the atmosphere from a 700km altitude. The capsule has been recovered on July the 1st and all data have been acquired. All the instrumentation worked nicely and the data acquisition continued even after the landing, confirming the robustness of the design.

  3. Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing

    NASA Astrophysics Data System (ADS)

    Salami, E.; Montazer, E.; Ward, T. A.; Ganesan, P. B.

    2017-06-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings.

  4. Earth Observations taken by STS-122 Crewmember

    NASA Image and Video Library

    2008-02-10

    S122-E-007690 (10 Feb. 2008) --- An almost nadir view of the John F. Kennedy Space Center (KSC) was provided by one of STS-122 crewmembers with a digital camera. KSC is the NASA space vehicle launch facility and launch control center (spaceport) on Merritt Island, Brevard County, Florida. The site is near Cape Canaveral, between Miami and Jacksonville. It is 34 miles (55 kilometers) long and around 6 miles (10 kilometers) wide, covering 219 square miles (567 square kilometers). Because much of KSC is a restricted area and only 9 percent of the land is developed, the site also serves as an important wildlife sanctuary; Mosquito Lagoon, Indian River, Merritt Island Wildlife Refuge and Canaveral National Seashore are also features of this area. Pictured just below center is Launch Complex 39, with the roadway leading to the giant Vehicle Assembly Building (VAB), 3 miles (5 kilometers) to the west (above) of the two launch pads. Located 5 miles (8 kilometers) south is the KSC industrial area, where many of the Center's support facilities and the administrative Headquarters Building are located. The Shuttle Landing Facility can be seen northwest of the VAB, in frame center.

  5. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    NASA Astrophysics Data System (ADS)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  6. Dispatch Control with PEV Charging and Renewables for Multiplayer Game Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Nathan; Johnson, Brian; McJunkin, Timothy

    This paper presents a demand response model for a hypothetical microgrid that integrates renewable resources and plug-in electric vehicle (PEV) charging systems. It is assumed that the microgrid has black start capability and that external generation is available for purchase while grid connected to satisfy additional demand. The microgrid is developed such that in addition to renewable, non-dispatchable generation from solar, wind and run of the river hydroelectric resources, local dispatchable generation is available in the form of small hydroelectric and moderately sized gas and coal fired facilities. To accurately model demand, the load model is separated into independent residential,more » commercial, industrial, and PEV charging systems. These are dispatched and committed based on a mixed integer linear program developed to minimize the cost of generation and load shedding while satisfying constraints associated with line limits, conservation of energy, and ramp rates of the generation units. The model extends a research tool to longer time frames intended for policy setting and educational environments and provides a realistic and intuitive understanding of beneficial and challenging aspects of electrification of vehicles combined with integration of green electricity production.« less

  7. Hybrid Wing-Body (HWB) Pressurized Fuselage Modeling, Analysis, and Design for Weight Reduction

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2012-01-01

    This paper describes the interim progress for an in-house study that is directed toward innovative structural analysis and design of next-generation advanced aircraft concepts, such as the Hybrid Wing-Body (HWB) and the Advanced Mobility Concept-X flight vehicles, for structural weight reduction and associated performance enhancement. Unlike the conventional, skin-stringer-frame construction for a cylindrical fuselage, the box-type pressurized fuselage panels in the HWB undergo significant deformation of the outer aerodynamic surfaces, which must be minimized without significant structural weight penalty. Simple beam and orthotropic plate theory is first considered for sizing, analytical verification, and possible equivalent-plate analysis with appropriate simplification. By designing advanced composite stiffened-shell configurations, significant weight reduction may be possible compared with the sandwich and ribbed-shell structural concepts that have been studied previously. The study involves independent analysis of the advanced composite structural concepts that are presently being developed by The Boeing Company for pressurized HWB flight vehicles. High-fidelity parametric finite-element models of test coupons, panels, and multibay fuselage sections, were developed for conducting design studies and identifying critical areas of potential failure. Interim results are discussed to assess the overall weight/strength advantages.

  8. Exploiting Software Tool Towards Easier Use And Higher Efficiency

    NASA Astrophysics Data System (ADS)

    Lin, G. H.; Su, J. T.; Deng, Y. Y.

    2006-08-01

    In developing countries, using data based on instrument made by themselves in maximum extent is very important. It is not only related to maximizing science returns upon prophase investment -- deep accumulations in every aspects but also science output. Based on the idea, we are exploiting a software (called THDP: Tool of Huairou Data Processing). It is used for processing a series of issues, which is met necessary in processing data. This paper discusses its designed purpose, functions, method and specialities. The primary vehicle for general data interpretation is through various techniques of data visualization, techniques of interactive. In the software, we employed Object Oriented approach. It is appropriate to the vehicle. it is imperative that the approach provide not only function, but do so in as convenient a fashion as possible. As result of the software exploiting, it is not only easier to learn data processing for beginner and more convenienter to need further improvement for senior but also increase greatly efficiency in every phrases include analyse, parameter adjusting, result display. Under frame of virtual observatory, for developing countries, we should study more and newer related technologies, which can advance ability and efficiency in science research, like the software we are developing

  9. Study of a Steel’s Energy Absorption System for Heavy Quadricycles and Nonlinear Explicit Dynamic Analysis of its Behavior under Impact by FEM

    PubMed Central

    López Campos, José Ángel; Segade Robleda, Abraham; Vilán Vilán, José Antonio; García Nieto, Paulino José; Blanco Cordero, Javier

    2015-01-01

    Current knowledge of the behavior of heavy quadricycles under impact is still very poor. One of the most significant causes is the lack of energy absorption in the vehicle frame or its steel chassis structure. For this reason, special steels (with yield stresses equal to or greater than 350 MPa) are commonly used in the automotive industry due to their great strain hardening properties along the plastic zone, which allows good energy absorption under impact. This paper presents a proposal for a steel quadricycle energy absorption system which meets the percentages of energy absorption for conventional vehicles systems. This proposal is validated by explicit dynamics simulation, which will define the whole problem mathematically and verify behavior under impact at speeds of 40 km/h and 56 km/h using the finite element method (FEM). One of the main consequences of this study is that this FEM–based methodology can tackle high nonlinear problems like this one with success, avoiding the need to carry out experimental tests, with consequent economical savings since experimental tests are very expensive. Finally, the conclusions from this innovative research work are given. PMID:28793607

  10. Study of a Steel's Energy Absorption System for Heavy Quadricycles and Nonlinear Explicit Dynamic Analysis of its Behavior under Impact by FEM.

    PubMed

    López Campos, José Ángel; Segade Robleda, Abraham; Vilán Vilán, José Antonio; García Nieto, Paulino José; Blanco Cordero, Javier

    2015-10-10

    Current knowledge of the behavior of heavy quadricycles under impact is still very poor. One of the most significant causes is the lack of energy absorption in the vehicle frame or its steel chassis structure. For this reason, special steels (with yield stresses equal to or greater than 350 MPa) are commonly used in the automotive industry due to their great strain hardening properties along the plastic zone, which allows good energy absorption under impact. This paper presents a proposal for a steel quadricycle energy absorption system which meets the percentages of energy absorption for conventional vehicles systems. This proposal is validated by explicit dynamics simulation, which will define the whole problem mathematically and verify behavior under impact at speeds of 40 km/h and 56 km/h using the finite element method (FEM). One of the main consequences of this study is that this FEM-based methodology can tackle high nonlinear problems like this one with success, avoiding the need to carry out experimental tests, with consequent economical savings since experimental tests are very expensive. Finally, the conclusions from this innovative research work are given.

  11. Enhanced Video-Oculography System

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.; MacDougall, Hamish G.

    2009-01-01

    A previously developed video-oculography system has been enhanced for use in measuring vestibulo-ocular reflexes of a human subject in a centrifuge, motor vehicle, or other setting. The system as previously developed included a lightweight digital video camera mounted on goggles. The left eye was illuminated by an infrared light-emitting diode via a dichroic mirror, and the camera captured images of the left eye in infrared light. To extract eye-movement data, the digitized video images were processed by software running in a laptop computer. Eye movements were calibrated by having the subject view a target pattern, fixed with respect to the subject s head, generated by a goggle-mounted laser with a diffraction grating. The system as enhanced includes a second camera for imaging the scene from the subject s perspective, and two inertial measurement units (IMUs) for measuring linear accelerations and rates of rotation for computing head movements. One IMU is mounted on the goggles, the other on the centrifuge or vehicle frame. All eye-movement and head-motion data are time-stamped. In addition, the subject s point of regard is superimposed on each scene image to enable analysis of patterns of gaze in real time.

  12. An object detection and tracking system for unmanned surface vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Xiao, Yang; Fang, Zhiwen; Zhang, Naiwen; Wang, Li; Li, Tao

    2017-10-01

    Object detection and tracking are critical parts of unmanned surface vehicles(USV) to achieve automatic obstacle avoidance. Off-the-shelf object detection methods have achieved impressive accuracy in public datasets, though they still meet bottlenecks in practice, such as high time consumption and low detection quality. In this paper, we propose a novel system for USV, which is able to locate the object more accurately while being fast and stable simultaneously. Firstly, we employ Faster R-CNN to acquire several initial raw bounding boxes. Secondly, the image is segmented to a few superpixels. For each initial box, the superpixels inside will be grouped into a whole according to a combination strategy, and a new box is thereafter generated as the circumscribed bounding box of the final superpixel. Thirdly, we utilize KCF to track these objects after several frames, Faster-RCNN is again used to re-detect objects inside tracked boxes to prevent tracking failure as well as remove empty boxes. Finally, we utilize Faster R-CNN to detect objects in the next image, and refine object boxes by repeating the second module of our system. The experimental results demonstrate that our system is fast, robust and accurate, which can be applied to USV in practice.

  13. Simulation Development and Analysis of Crew Vehicle Ascent Abort

    NASA Technical Reports Server (NTRS)

    Wong, Chi S.

    2016-01-01

    NASA's Commercial Crew Program is an integral step in its journey to Mars as it would expedite development of space technologies and open up partnership with U.S. commercial companies. NASA reviews and independent assessment of Commercial Crew Program is fundamental to its success, and being able to model a commercial crew vehicle in a simulation rather than conduct a live test would be a safer, faster, and less expensive way to assess and certify the capabilities of the vehicle. To this end, my project was to determine the feasibility of using a simulation tool named SOMBAT version 2.0 to model a multiple parachute system for Commercial Crew Program simulation. The main tasks assigned to me were to debug and test the main parachute system model, (capable of simulating one to four main parachute bodies), and to utilize a graphical program to animate the simulation results. To begin tackling the first task, I learned how to use SOMBAT by familiarizing myself with its mechanics and by understanding the methods used to tweak its various parameters and outputs. I then used this new knowledge to set up, run, and analyze many different situations within SOMBAT in order to explore the limitations of the parachute model. Some examples of parameters that I varied include the initial velocity and orientation of the falling capsule, the number of main parachutes, and the location where the parachutes were attached to the capsule. Each parameter changed would give a different output, and in some cases, would expose a bug or limitation in the model. A major bug that I discovered was the inability of the model to handle any number of parachutes other than three. I spent quite some time trying to debug the code logically, but was unable to figure it out until my mentor taught me that digital simulation limitations can occur when some approximations are mistakenly assumed for certain in a physical system. This led me to the realization that unlike in all of the programming classes I have taken thus far that focus on pure logic, simulation code focuses on mimicking the physical world with some approximation and can have inaccuracies or numerical instabilities. Learning from my mistake, I adopted new methods to analyze these different simulations. One method the student used was to numerically plot various physical parameters using MATLAB to confirm the mechanical behavior of the system in addition to comparing the data to the output from a separate simulation tool called FAST. By having full control over what was being outputted from the simulation, I could choose which parameters to change and to plot as well as how to plot them, allowing for an in depth analysis of the data. Another method of analysis was to convert the output data into a graphical animation. Unlike the numerical plots, where all of the physical components were displayed separately, this graphical display allows for a combined look at the simulation output that makes it much easier for one to see the physical behavior of the model. The process for converting SOMBAT output for EDGE graphical display had to be developed. With some guidance from other EDGE users, I developed a process and created a script that would easily allow one to display simulations graphically. Another limitation with the SOMBAT model was the inability for the capsule to have the main parachutes instantly deployed with a large angle between the air speed vector and the chutes drag vector. To explore this problem, I had to learn about different coordinate frames used in Guidance, Navigation & Control (J2000, ECEF, ENU, etc.) to describe the motion of a vehicle and about Euler angles (e.g. Roll, Pitch, Yaw) to describe the orientation of the vehicle. With a thorough explanation from my mentor about the description of each coordinate frame, as well as how to use a directional cosine matrix to transform one frame to another, I investigated the problem by simulating different capsule orientations. In the end, I was able to show that this limitation could be avoided if the capsule is initially oriented antiparallel to its velocity vector.

  14. Replacement of Atlantis', OV-104's, right orbital maneuvering system pod

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Atlantis', Orbiter Vehicle (OV) 104's, right orbital maneuvering system (OMS) pod (RP01) is placed in a checkout cell at Kennedy Space Center's (KSC's) Hypergolic Maintenance Facility (HMF). Technicians steady OMS mounted on ground handling cart as third technician, standing on ladder, secures support frame. At the HMF, a group of specially-equipped buildings in the KSC Industrial Area, the OMS pods are undergoing extensive processing, including removal of certain components that will undergo modification at vendor facilities prior to the Shuttle's return to flight. The OMS pods are bolted to the aft fuselage of the orbiter and contain the engines and thrusters used to maneuver the spaceship in orbit. View provided by KSC with alternate number KSC-87PC-93.

  15. Using ARINC 818 Avionics Digital Video Bus (ADVB) for military displays

    NASA Astrophysics Data System (ADS)

    Alexander, Jon; Keller, Tim

    2007-04-01

    ARINC 818 Avionics Digital Video Bus (ADVB) is a new digital video interface and protocol standard developed especially for high bandwidth uncompressed digital video. The first draft of this standard, released in January of 2007, has been advanced by ARINC and the aerospace community to meet the acute needs of commercial aviation for higher performance digital video. This paper analyzes ARINC 818 for use in military display systems found in avionics, helicopters, and ground vehicles. The flexibility of ARINC 818 for the diverse resolutions, grayscales, pixel formats, and frame rates of military displays is analyzed as well as the suitability of ARINC 818 to support requirements for military video systems including bandwidth, latency, and reliability. Implementation issues relevant to military displays are presented.

  16. Destination: Space

    NASA Image and Video Library

    2016-05-20

    RS-25 rocket engine No. 2059 is removed from the A-1 Test Stand at Stennis Space Center on May 19, 2016. The engine was tested March 10 on the stand and is ready for use on NASA’s new Space Launch System (SLS) vehicle. NASA is developing the SLS to carry humans deeper into space than ever before. The SLS core stage will be powered by four RS-25 engines. Engine No. 2059 is scheduled for use on the first crewed SLS mission, Exploration Mission-2, which will carry American astronauts beyond low-Earth orbit for the first time since 1972. The photo above shows the engine, as well as the yellow thrust frame adapter above it, which holds the engine in place for testing.

  17. XBox Input -Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-10-03

    Contains class for connecting to the Xbox 360 controller, displaying the user inputs {buttons, triggers, analog sticks), and controlling the rumble motors. Also contains classes for converting the raw Xbox 360 controller inputs into meaningful commands for the following objects: • Robot arms - Provides joint control and several tool control schemes • UGV's - Provides translational and rotational commands for "skid-steer" vehicles • Pan-tilt units - Provides several modes of control including velocity, position, and point-tracking • Head-mounted displays (HMO)- Controls the viewpoint of a HMO • Umbra frames - Controls the position andorientation of an Umbra posrot objectmore » • Umbra graphics window - Provides several modes of control for the Umbra OSG window viewpoint including free-fly, cursor-focused, and object following.« less

  18. KSC-07pd0562

    NASA Image and Video Library

    2007-03-04

    KENNEDY SPACE CENTER, FLA. -- As it rolls back to the Vehicle Assembly Building, Space Shuttle Atlantis, atop the mobile launcher platform, is framed in the photo by winter-stripped branches topped by spring blossoms. In the VAB, the shuttle will be examined for hail damage. A severe thunderstorm with golf ball-sized hail caused divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April. Photo credit: NASA/Amanda Diller

  19. Mobile continuous lunar excavation

    NASA Technical Reports Server (NTRS)

    Paterson, John L.

    1992-01-01

    A novel approach to the concept of lunar mining and the use of in situ oxygen, metallics, and ceramics is presented. The EVA time required to set up, relocate, and maintain equipment, as well as the cost per pound of shipping the mining and processing equipment to the moon are considered. The proposed soil fracturing/loading mechanisms are all based loosely on using the Apollo Lunar Roving Vehicle (LRV) Frame. All use motor driven tracks for mobility in the forward/reverse and left/right direction. All mechanisms employ the concept of rototillers which are attached to a gantry which, through the use of motor-driven lead screws, provide the rototillers with an up/down capability. A self-reactant excavator, a local mass enhanced excavator, and a soil reactant excavator are illustrated.

  20. STS-26 crewmembers in Hawaiian shirts and sunglasses pose for group portrait

    NASA Image and Video Library

    1988-10-02

    STS026-09-008 (3 Oct 1988) --- STS-26 crewmembers wear Hawaiian attire (brightly colored shirts with bold prints) and sunglasses while giving the "thumbs up" signal as they pay tribute to the Hawaii tracking station during an unscheduled television (TV) downlink. On Discovery's, Orbiter Vehicle (OV) 103's, middeck are (left to right) Mission Specialist (MS) John M. Lounge, holding onto open airlock hatch, MS David C. Hilmers, wearing red shirt, Commander Frederick H. Hauck, wearing white shirt and positioned in center of crew, MS George D. Nelson, and Pilot Richard O. Covey (lower right corner of the frame). The shirts were given to the crewmembers by the Kennedy Space Center (KSC) Loud and Proud Team.

Top