The Environmental Protection Agency (EPA) is issuing a final rule representing the next step in establishing a voluntary nationwide program to make new cars significantly cleaner burning than today’s current cars.
DOT National Transportation Integrated Search
2016-08-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is developing a suite of CV applications, or apps, that utilize vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V) and Vehicle to everything (V2...
DOT National Transportation Integrated Search
2016-09-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program intends to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to reduce...
DOT National Transportation Integrated Search
2016-09-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...
DOT National Transportation Integrated Search
2016-09-13
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
Hybrid Vehicle Program. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1984-06-01
This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
...EPA and NHTSA are issuing this joint Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint Final Rule is consistent with the National Fuel Efficiency Policy announced by President Obama on May 19, 2009, responding to the country's critical need to address global climate change and to reduce oil consumption. EPA is finalizing greenhouse gas emissions standards under the Clean Air Act, and NHTSA is finalizing Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended. These standards apply to passenger cars, light-duty trucks, and medium-duty passenger vehicles, covering model years 2012 through 2016, and represent a harmonized and consistent National Program. Under the National Program, automobile manufacturers will be able to build a single light-duty national fleet that satisfies all requirements under both programs while ensuring that consumers still have a full range of vehicle choices. NHTSA's final rule also constitutes the agency's Record of Decision for purposes of its National Environmental Policy Act (NEPA) analysis.
Connected vehicle pilot deployment program phase 1 : lessons learned : final report.
DOT National Transportation Integrated Search
2017-01-30
The Connected Vehicle Pilot Deployment (CV Pilots) Program seeks to spur innovation among early adopters of connected vehicle application concepts. Pilot deployment awards were given to three sites, New York City, Wyoming, and Tampa, FL. The CV pilot...
Study 2.5 final report. DORCA computer program. Volume 5: Analysis report
NASA Technical Reports Server (NTRS)
Campbell, N.
1972-01-01
A modification of the Dynamic Operational Requirements and Cost Analysis Program to perform traffic analyses of the automated satellite program is described. Inherent in the analyses of the automated satellite program was the assumption that a number of vehicles were available to perform any or all of the missions within the satellite program. The objective of the modification was to select a vehicle or group of vehicles for performing all of the missions at the lowest possible cost. A vehicle selection routine and the capability to simulate ground based vehicle operational modes were incorporated into the program.
The National LEV program demonstrates how cooperative, partnership efforts can produce a smarter, cheaper program that reduces regulatory burden while increasing protection of the environment and public health.
Integrated vehicle-based safety systems field operational test final program report.
DOT National Transportation Integrated Search
2011-06-01
"This document presents results from the light-vehicle and heavy-truck field operational tests performed as part of the Integrated Vehicle-Based Safety Systems (IVBSS) program. The findings are the result of analyses performed by the University of Mi...
Integrated Vehicle-Based Safety Systems Field Operational Test : Final Program Report
DOT National Transportation Integrated Search
2011-06-01
This document presents results from the light-vehicle and heavy-truck field operational tests performed as part of the Integrated Vehicle-Based Safety Systems (IVBSS) program. The findings are the result of analyses performed by the University of Mic...
DOT National Transportation Integrated Search
2010-05-07
Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint : Final Rule is consistent with the National Fuel Efficiency Policy announce...
Thermoelectric Waste Heat Recovery Program for Passenger Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jovovic, Vladimir
2015-12-31
Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed moremore » modest potential.« less
40 CFR 51.365 - Data collection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... test start time and the time final emission scores are determined; (6) Vehicle Identification Number... enforcement of an I/M program. The program shall gather test data on individual vehicles, as well as quality... equipment is required or those test procedures relying upon a vehicle's OBD system). (a) Test data. The goal...
40 CFR 51.365 - Data collection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... test start time and the time final emission scores are determined; (6) Vehicle Identification Number... enforcement of an I/M program. The program shall gather test data on individual vehicles, as well as quality... equipment is required or those test procedures relying upon a vehicle's OBD system). (a) Test data. The goal...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
...EPA and NHTSA, on behalf of the Department of Transportation, are each finalizing rules to establish a comprehensive Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for on-road heavy-duty vehicles, responding to the President's directive on May 21, 2010, to take coordinated steps to produce a new generation of clean vehicles. NHTSA's final fuel consumption standards and EPA's final carbon dioxide (CO2) emissions standards are tailored to each of three regulatory categories of heavy-duty vehicles: Combination Tractors; Heavy-duty Pickup Trucks and Vans; and Vocational Vehicles. The rules include separate standards for the engines that power combination tractors and vocational vehicles. Certain rules are exclusive to the EPA program. These include EPA's final hydrofluorocarbon standards to control leakage from air conditioning systems in combination tractors, and pickup trucks and vans. These also include EPA's final nitrous oxide (N2O) and methane (CH4) emissions standards that apply to all heavy- duty engines, pickup trucks and vans. EPA's final greenhouse gas emission standards under the Clean Air Act will begin with model year 2014. NHTSA's final fuel consumption standards under the Energy Independence and Security Act of 2007 will be voluntary in model years 2014 and 2015, becoming mandatory with model year 2016 for most regulatory categories. Commercial trailers are not regulated in this phase of the Heavy-Duty National Program. The agencies estimate that the combined standards will reduce CO2 emissions by approximately 270 million metric tons and save 530 million barrels of oil over the life of vehicles sold during the 2014 through 2018 model years, providing over $7 billion in net societal benefits, and $49 billion in net societal benefits when private fuel savings are considered. EPA is also finalizing provisions allowing light-duty vehicle manufacturers to use CO2 credits to meet the light-duty vehicle N2O and CH4 standards, technical amendments to the fuel economy provisions for light-duty vehicles, and a technical amendment to the criteria pollutant emissions requirements for certain switch locomotives.
EPA is announcing its final determination that reduction of new motor vehicle emissions throughout the Northeast Ozone Transport Region (OTR) is necessary to mitigate the effects of air pollution transport.
Site operator program final report for fiscal years 1992 through 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francfort, J.E.; Bassett, R.R.; Birasco, S.
The Site Operator Program was an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed at the Idaho National Engineering and Environmental Laboratory. The Program`s goals included the field evaluation of electric vehicles in real-world applications and environments; the support of electric vehicle technology advancement; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of electric vehicles. This report covers Program activities from 1992 to 1996. The Site Operator Program ended in September 1996, when it was superseded by the Field Operations Program. Electric vehicle testingmore » included baseline performance testing, which was performed in conjunction with EV America. The baseline performance parameters included acceleration, braking, range, energy efficiency, and charging time. The Program collected fleet operations data on electric vehicles operated by the Program`s thirteen partners, comprising electric utilities, universities, and federal agencies. The Program`s partners had over 250 electric vehicles, from vehicle converters and original equipment manufacturers, in their operating fleets. Test results are available via the World Wide Web site at http://ev.inel.gov/sop.« less
DOT National Transportation Integrated Search
2016-08-11
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
EPA and National Highway Traffic SafetyAdministration (NHTSA) are each finalizing rules to establish a comprehensive Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for onroad heavy-duty vehicles.
Idea Project Final Report, Laser Vehicle Detector-Classifier
DOT National Transportation Integrated Search
1995-11-28
WEIGH-IN-MOTION OR WIM, COMMERCIAL VEHICLE OPERATIONS OR CVO : THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM, WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFAC...
40 CFR 85.1509 - Final admission of modification and test vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Final admission of modification and test vehicles. 85.1509 Section 85.1509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor...
EPA and NHTSA, on behalf of the Department of Transportation, have each finalized rules to establish a comprehensive Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for heavy-duty highway vehicles.
DOT National Transportation Integrated Search
2016-07-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is part of a national effort to advance CV technologies by deploying, demonstrating, testing and offering lessons learned for future deployers. The THE...
DOT National Transportation Integrated Search
2016-03-14
The Performance Measurement and Evaluation Support Plan for the Connected Vehicle Pilot Deployment Program Phase 1, Tampa Hillsborough Expressway Authority, outlines the goals and objectives for the Pilot as well as the proposed performance metrics. ...
Heavy and overweight vehicle brake testing : combination six-axle, final report.
DOT National Transportation Integrated Search
2017-05-01
The Heavy and Overweight Vehicle Brake Testing (HOVBT) program exists in order to provide information about the effect of gross vehicle weight (GVW) and on braking performance testing included service brake stopping distance tests, constant-pressure ...
Spacecraft rendezvous operational considerations affecting vehicle systems design and configuration
NASA Astrophysics Data System (ADS)
Prust, Ellen E.
One lesson learned from Orbiting Maneuvering Vehicle (OMV) program experience is that Design Reference Missions must include an appropriate balance of operations and performance inputs to effectively drive vehicle systems design and configuration. Rendezvous trajectory design is based on vehicle characteristics (e.g., mass, propellant tank size, and mission duration capability) and operational requirements, which have evolved through the Gemini, Apollo, and STS programs. Operational constraints affecting the rendezvous final approach are summarized. The two major objectives of operational rendezvous design are vehicle/crew safety and mission success. Operational requirements on the final approach which support these objectives include: tracking/targeting/communications; trajectory dispersion and navigation uncertainty handling; contingency protection; favorable sunlight conditions; acceptable relative state for proximity operations handover; and compliance with target vehicle constraints. A discussion of the ways each of these requirements may constrain the rendezvous trajectory follows. Although the constraints discussed apply to all rendezvous, the trajectory presented in 'Cargo Transfer Vehicle Preliminary Reference Definition' (MSFC, May 1991) was used as the basis for the comments below.
DOT National Transportation Integrated Search
1995-05-14
THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFACE TRANSPORTATION. IT FOCUSES ON PRODUCTS AND RESULT FOR THE DEVELOP...
X-43A Final Flight Observations
NASA Technical Reports Server (NTRS)
Grindle, Laurie
2011-01-01
The presentation will provide an overview of the final flight of the NASA X-43A project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The first flight, conducted on June 2, 2001, was unsuccessful and resulted in a nine-month mishap investigation. A two-year return to flight effort ensued and concluded when the second Mach 7 flight was successfully conducted on March 27, 2004. The third and final flight, which occurred on November 16, 2004, was the first Mach 10 flight demonstration of an airframe-integrated, scramjet-powered, hypersonic vehicle. As such, the final flight presented first time technical challenges in addition to final flight project closeout concerns. The goals and objectives for the third flight as well as those for the project will be presented. The configuration of the Hyper-X stack including the X-43A, Hyper-X launch vehicle, and Hyper-X research vehicle adapter wil also be presented. Mission differences, vehicle modifications and lessons learned from the first and second flights as they applied to the third flight will also be discussed. Although X-43A flight 3 was always planned to be the final flight of the X-43A project, the X-43 program had two other vehicles and corresponding flight phases in X-43C and X-43B. Those other projects never manifested under the X-43 banner and X-43A flight 3 also became the final flight of X-43 program.
NASA Technical Reports Server (NTRS)
McCurry, J. B.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. The basic period of performance of the TA-2 contract was from May 1992 through May 1993. No-cost extensions were exercised on the contract from June 1993 through July 1995. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 3, provides a work breakdown structure dictionary, user's guide for the parametric life cycle cost estimation tool, and final report developed by ECON, Inc., under subcontract to Lockheed Martin on TA-2 for the analysis of heavy lift launch vehicle concepts.
DOT National Transportation Integrated Search
1978-01-01
This report deals with the Periodic Motor Vehicle Inspection Management Evaluation System software documentation and implementation procedures. A companion report entitled "A Management System for Evaluating the Virginia Periodic Motor Vehicle Inspec...
75 FR 70670 - Final Vehicle Safety Rulemaking and Research Priority Plan 2010-2013
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... management tool as well as a means to communicate to the public NHTSA's highest priorities to meet the Nation's motor vehicle safety challenges. Among them are programs and projects involving rollover crashes... in this plan. This plan lists the programs and projects the agency anticipates working on even though...
DOT National Transportation Integrated Search
2011-09-01
The aim of this research was to develop a comprehensive inattention mitigation component of a behavior-based safety program (IM-BBS) in commercial motor vehicle operations that increases road safety. A key focus was on the use of real-time inattentio...
DOT National Transportation Integrated Search
2016-08-04
This document is the Task 7 Application Deployment Plan deliverable for the New York City Connected Vehicle Pilot Deployment. It describes the process that the deployment team will follow to acquire and test the connected vehicle safety applications....
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-06-01
In September 1986 a contract was signed between Chloride Silent Power Limited (CSPL) and Sandia National Laboratories (SNL) entitled ``Sodium Sulfur Electric Vehicle Battery Engineering Program``. The aim of the cost shared program was to advance the state of the art of sodium sulfur batteries for electric vehicle propulsion. Initially, the work statement was non-specific in regard to the vehicle to be used as the design and test platform. Under a separate contract with the DOE, Ford Motor Company was designing an advanced electric vehicle drive system. This program, called the ETX II, used a modified Aerostar van for itsmore » platform. In 1987, the ETX II vehicle was adopted for the purposes of this contract. This report details the development and testing of a series of battery designs and concepts which led to the testing, in the US, of three substantial battery deliverables.« less
40 CFR 85.1505 - Final admission of certified vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 85.1505 Section 85.1505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor Vehicles and Motor... vehicle or engine from the previous test (e.g., adjusting the RPM, timing, air-to-fuel ratio, etc.) other...
NASA Technical Reports Server (NTRS)
Freeman, Delman C., Jr.; Reubush, Daivd E.; McClinton, Charles R.; Rausch, Vincent L.; Crawford, J. Larry
1997-01-01
This paper provides an overview of NASA's Hyper-X Program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an overview of the flight test program, research objectives, approach, schedule and status. Substantial experimental database and concept validation have been completed. The program is currently concentrating on the first, Mach 7, vehicle development, verification and validation in preparation for wind-tunnel testing in 1998 and flight testing in 1999. Parallel to this effort the Mach 5 and 10 vehicle designs are being finalized. Detailed analytical and experimental evaluation of the Mach 7 vehicle at the flight conditions is nearing completion, and will provide a database for validation of design methods once flight test data are available.
ERIC Educational Resources Information Center
McCutcheon, R. W.; And Others
To determine whether current automotive mechanic training programs provide adequate exposure to the knowledge and skills needed to properly service and repair motor vehicles, data were gathered on the tasks, service and repair establishments, job market, labor force, and training programs. Primary sources of data are reports prepared by various…
Phase I of the Near Term Hybrid Passenger Vehicle Development Program. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
The results of Phase I of the Near-Term Hybrid Vehicle Program are summarized. This phase of the program ws a study leading to the preliminary design of a 5-passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis. This report presents the following: overall summary of the Phase I activity; summary of the individual tasks; summary of the hybrid vehicle design; summary of the alternative design options; summary of the computer simulations; summary of the economic analysis; summary of the maintenance and reliability considerations; summary of the design for crash safety;more » and bibliography.« less
NYPA/TH!NK Clean Commute Program Final Report - Inception through December 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Francfort; Don Karner
The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric transportation in urban applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations, where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK city vehicles is located at the commuters’ private residences as well as seven train stations. Ford leased at total of 97 TH!NK city electric vehicles to commuters from Westchester, Putnam, Rockland, Queens, Nassau, and Suffolkmore » counties for $199 per month. First Clean Commute Program vehicle deliveries occurred late in 2001, with data collection commencing in February 2002. Through May, 2004, 24 of the lessees have returned their vehicles to Ford and no longer participate in the Clean Commute Program. Reasons given for leaving the Program include relocation out of the Program area, change in employment status, change in commuting status, and, in a few cases, dissatisfaction with the vehicle. Additionally, 13 vehicles were returned to Ford when the lease was completed. In August 2002, Ford announced that it was ceasing production of the TH!NK city and would not extend any TH!NK city leases. Mileage accumulation dropped in the last quarter of the program as vehicle leases were returned to Ford. The impact of the program overall was significant as participants in the Clean Commute Program drove their vehicles over 406,074 miles, avoiding the use of over 18,887 gallons of gasoline. During the active portion of the program, the TH!NK city vehicles were driven an average of between 180 and 230 miles per month. Over 95% of all trips taken with the TH!NK city vehicles replaced trips previously taken in gasoline vehicles. This report covers the period from Program inception through December 2004.« less
Hyper-X: Flight Validation of Hypersonic Airbreathing Technology
NASA Technical Reports Server (NTRS)
Rausch, Vincent L.; McClinton, Charles R.; Crawford, J. Larry
1997-01-01
This paper provides an overview of NASA's focused hypersonic technology program, i.e. the Hyper-X program. This program is designed to move hypersonic, air breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. This paper presents some history leading to the flight test program, research objectives, approach, schedule and status. Substantial experimental data base and concept validation have been completed. The program is concentrating on Mach 7 vehicle development, verification and validation in preparation for wind tunnel testing in 1998 and flight testing in 1999. It is also concentrating on finalization of the Mach 5 and 10 vehicle designs. Detailed evaluation of the Mach 7 vehicle at the flight conditions is nearing completion, and will provide a data base for validation of design methods once flight test data are available.
Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Lee Kenneth
2017-03-01
This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.
Development history of the Hybrid Test Vehicle
NASA Technical Reports Server (NTRS)
Trummel, M. C.; Burke, A. F.
1983-01-01
Phase I of a joint Department of Energy/Jet Propulsion Laboratory Program undertook the development of the Hybrid Test Vehicle (HTV), which has subsequently progressed through design, fabrication, and testing and evaluation phases. Attention is presently given to the design and test experience gained during the HTV development program, and a discussion is presented of the design features and performance capabilities of the various 'mule' vehicles, devoted to the separate development of engine microprocessor control, vehicle structure, and mechanical components, whose elements were incorporated into the final HTV design. Computer projections of the HTV's performance are given.
Road Weather Management Program : connected vehicle-infrastructure research. Final Report
DOT National Transportation Integrated Search
2016-04-30
This report provides insight into how existing vehicle sensor data (e.g., location, heading, road surface and atmospheric conditions) can be utilized by the CVI environment to support transportation safety through road-weather applications. Of specia...
NASA Technical Reports Server (NTRS)
Traversi, M.; Piccolo, R.
1980-01-01
Tradeoff study activities and the analysis process used are described with emphasis on (1) review of the alternatives; (2) vehicle architecture; and (3) evaluation of the propulsion system alternatives; interim results are presented for the basic hybrid vehicle characterization; vehicle scheme development; propulsion system power and transmission ratios; vehicle weight; energy consumption and emissions; performance; production costs; reliability, availability and maintainability; life cycle costs, and operational quality. The final vehicle conceptual design is examined.
Direct Final Rule for Heavy-Duty Highway Program: Revisions for Emergency Vehicles
Revises the heavy-duty diesel regulations to enable emergency vehicles to perform mission-critical life-saving work without risking that abnormal conditions of the emission control system could lead to decreased engine power, speed or torque.
Heavy and overweight vehicle brake testing : combination five-axle tractor-flatbed, final report
DOT National Transportation Integrated Search
2017-05-01
The Federal Motor Carrier Safety Administration (FMCSA), in coordination with the Federal Highway Administration (FHWA), sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gros...
Vehicle infrastructure integration proof of concept : technical description--vehicle : final report
DOT National Transportation Integrated Search
2009-05-19
This report provides the technical description of the VII system developed for the Cooperative Agreement VII Program between the USDOT and the VII Consortium. The basic architectural elements are summarized and detailed descriptions of the hardware a...
DOT National Transportation Integrated Search
2016-08-01
This document describes the process and status of developing and implementing agreements, contracts and subcontracts among partner organizations in the New York City Connected Vehicle Pilot Deployment (NYC CVPD). Details include the work elements as ...
Stress and fatigue effects of driving longer combination vehicles
DOT National Transportation Integrated Search
2000-07-01
This Tech Brief summarizes the final report of a study by the same title, which was conducted as a part of a major program by the Federal Highway Administration to investigate commercial driver fatigue in commercial motor vehicle (CMV) operations. Th...
DOT National Transportation Integrated Search
2002-03-01
The Commercial Vehicle Information Systems and Networks Model Deployment Initiative (CVISN MDI) is funded by the Intelligent Transportation Systems Joint Program Office (ITS JPO) and managed by the Federal Motor Carrier Safety Administration (FMCSA),...
DOT National Transportation Integrated Search
2000-12-01
This paper brings together the findings of activities that addressed the impacts of nontechnical barriers and constraints that might impede the progress of Intelligent Transportation Systems (ITS) programs. It discusses how the planning and deploymen...
DOT National Transportation Integrated Search
2016-08-01
This document describes the System Requirements Specification (SyRS) for the Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment. This SyRS describes the current system requirements derived from the user needs, Conc...
The $2000 Electric Powertrain Option-1 Program. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-06-01
This report describes the tasks accomplished as part of Northrop Grumman's TRP $2000 Electric Powertrain Option-1 program. Northrop Grumman has strived to achieve technology advances and development considered as high priority to the success of future electric vehicles. Northrop Grumman has achieved the intent of the program by taking several steps toward reducing the cost of the electric vehicle powertrain, demonstrating technologies in the form of hardware and introducing enhancements into production that are consistent with the needs of the market.
Small Upper Stage Basic Program Final Report
1991-08-27
design of the SUS. During storage, the SUS shall3 be required to withstand environments as specified in 3.2.5.1. Environmental protection shall be...accomplish this goal, a launch vehicle survey was conducted to establish the current LV capability and environments with respect to small satellites...4 Launch Vehicle Shock Environment ...................................................................... 2-4 2-5 Launch Vehicle Sound Pressure
Ares I-X: First Flight of a New Era
NASA Technical Reports Server (NTRS)
Davis, Stephen R.; Askins, Bruce R.
2010-01-01
Since 2005, NASA s Constellation Program has been designing, building, and testing the next generation of launch and space vehicles to carry humans beyond low-Earth orbit (LEO). The Ares Projects at Marshall Space Flight Center (MSFC) are developing the Ares I crew launch vehicle and Ares V cargo launch vehicle. On October 28, 2009, the first development flight test of the Ares I crew launch vehicle, Ares I-X, lifted off from a launch pad at Kennedy Space Center (KSC) on successful suborbital flight. Basing exploration launch vehicle designs on Ares I-X information puts NASA one step closer to full-up "test as you fly," a best practice in vehicle design. Although the final Constellation Program architecture is under review, the Ares I-X data and experience in vehicle design and operations can be applied to any launch vehicle. This paper presents the mission background as well as results and lessons learned from the flight.
DOT National Transportation Integrated Search
2016-07-12
This document describes the Performance Measurement and Evaluation Support Plan for the New York City Department of Transportation New York City (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. The report documents the performance metrics tha...
DOT National Transportation Integrated Search
2016-05-18
This document describes the Security Management Operating Concept (SMOC) for the New York City Department of Transportation (NYCDOT) Connected Vehicle Pilot Deployment (CVPD) Project. This SMOC outlines the security mechanisms that will be used to pr...
DOT National Transportation Integrated Search
1995-08-01
INTELLIGENT VEHICLE INITIATIVE OR IVI : THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. :...
Evaporative Emissions from In-Use Vehicles: Test Fleet Expansion (CRC E-77-2b) Final Report
Report describes the ongoing investigation into the evaporative emission performance of aging light-duty vehicles. The objective was to add additional data to the Coordinating Research Council's (CRC) E-77-2 evaporative emission/permeation test program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugliese, S.M.
1977-02-01
In Phase I of the Research Safety Vehicle Program (RSV), preliminary design and performance specifications were developed for a mid-1980's vehicle that integrates crashworthiness and occupant safety features with material resource conservation, economy, and producibility. Phase II of the program focused on development of the total vehicle design via systems engineering and integration analyses. As part of this effort, it was necessary to continuously review the Phase I recommended performance specification in relation to ongoing design/test activities. This document contains the results of analyses of the Phase I specifications. The RSV is expected to satisfy all of the producibility andmore » safety related specifications, i.e., handling and stability systems, crashworthiness, occupant protection, pedestrian/cyclist protection, etc.« less
DOT National Transportation Integrated Search
2009-05-01
In 2005, the US Department of Transportation (DOT) initiated a program to develop and test a 5.9GHzbased : Vehicle Infrastructure Integration (VII) proof of concept (POC). The POC was implemented in the northwest : suburbs of Detroit, Michigan. Th...
DOT National Transportation Integrated Search
2016-09-09
This document describes the Deployment Readiness Summary for the New York City (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. It demonstrates the completion of Task 1-12 deliverables of Phase 1 by the NYC team. The document also addresses h...
Shuttle Derived In-Line Heavy Lift Vehicle
NASA Technical Reports Server (NTRS)
Greenwood, Terry; Twichell, Wallace; Ferrari, Daniel; Kuck, Frederick
2005-01-01
This paper introduces an evolvable Space Shuttle derived family of launch vehicles. It details the steps in the evolution of the vehicle family, noting how the evolving lift capability compares with the evolving lift requirements. A system description is given for each vehicle. The cost of each development stage is described. Also discussed are demonstration programs, the merits of the SSME vs. an expendable rocket engine (RS-68), and finally, the next steps needed to refine this concept.
NASA Technical Reports Server (NTRS)
Houck, J. A.
1980-01-01
This paper describes the work being done at the National Aeronautics and Space Administration's Langley Research Center on the development of a mission simulator for use in the Terminal Configured Vehicle Program. A brief description of the goals and objectives of the Terminal Configured Vehicle Program is presented. A more detailed description of the Mission Simulator, in its present configuration, and its components is provided. Finally, a description of the first research study conducted in the Mission Simulator is presented along with a discussion of some preliminary results from this study.
Space transfer vehicle concepts and requirements study. Volume 2, book 3: STV system interfaces
NASA Technical Reports Server (NTRS)
Weber, Gary A.
1991-01-01
This report presents the results of systems analyses and conceptual design of space transfer vehicles (STV). The missions examined included piloted and unpiloted lunar outpost support and spacecraft servicing, and unpiloted payload delivery to various earth and solar orbits. The study goal was to examine the mission requirements and provide a decision data base for future programmatic development plans. The final lunar transfer vehicles provided a wide range of capabilities and interface requirements while maintaining a constant payload mission model. Launch vehicle and space station sensitivity was examined, with the final vehicles as point design covering the range of possible options. Development programs were defined and technology readiness levels for different options were determined. Volume 1 presents the executive summary, volume 2 provides the study results, and volume 3 the cost and WBS data.
Leadership Development Program Final Project
NASA Technical Reports Server (NTRS)
Parrish, Teresa C.
2016-01-01
TOSC is NASA's prime contractor tasked to successfully assemble, test, and launch the EM1 spacecraft. TOSC success is highly dependent on design products from the other NASA Programs manufacturing and delivering the flight hardware; Space Launch System(SLS) and Multi-Purpose Crew Vehicle(MPCV). Design products directly feed into TOSC's: Procedures, Personnel training, Hardware assembly, Software development, Integrated vehicle test and checkout, Launch. TOSC senior management recognized a significant schedule risk as these products are still being developed by the other two (2) programs; SVE and ACE positions were created.
2011-07-21
CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), Mission Convoy Commander Tim Obrien strategies with NASA managers and convoy crew members during a prelanding meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), NASA Administrator Charles Bolden discusses strategies with NASA managers and convoy crew members during a prelanding convoy meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- The Convoy Command Center vehicle is positioned on the Shuttle Landing Facility (SLF) at NASA's Kennedy Space Center in Florida awaiting the landing of space shuttle Atlantis. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Seen here is Chris Hasselbring, USA Operations Manager. Securing the space shuttle fleet's place in history, Atlantis marks the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Ben Smegelsky
Study of emissions from light-duty vehicles in Denver. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-08-31
A sample of 300 light-duty vehicles normally operated in the Denver metropolitan area was tested for emissions and fuel economy. The vehicles were from the 1978 through 1982 model years and included both passenger cars and light-duty trucks. One purpose of the program was to gather information for calculations and projections of ambient air quality. Another purpose was to assemble data on current model year vehicles for use in the support of Inspection/Maintenance and other regulatory programs. The vehicles were tested for exhaust emissions utilizing the Federal Test Procedure, the Highway Fuel Economy Test (HFET), and four short mode tests.more » 125 vehicles from the 1980-82 model years received an evaporative emission test using the sealed housing evaporative determination (SHED) technique. Other actions were taken in relation to each vehicle tested. These included an engine and emission control system maladjustment/disablement and status inspection, driveability evaluations, and owner interviews to obtain vehicle maintenance and usage data.« less
Idea Project Final Report, Passive Optical Lane Position Monitor
DOT National Transportation Integrated Search
1996-01-01
INTELLIGENT VEHICLE INITIATIVE OR IVI : THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM, WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFACE TRANSPORTATION. IT FOCUS...
Expendable launch vehicle transportation for the space station
NASA Technical Reports Server (NTRS)
Corban, Robert R.
1988-01-01
Logistics transportation will be a critical element in determining the Space Station Freedom's level of productivity and possible evolutionary options. The current program utilizes the Space Shuttle as the only logistics support vehicle. Augmentation of the total transportation capability by expendable launch vehicles (ELVs) may be required to meet demanding requirements and provide for enhanced manifest flexibility. The total operational concept from ground operations to final return of support hardware or its disposal is required to determine the ELV's benefits and impacts to the Space Station Freedom program. The characteristics of potential medium and large class ELVs planned to be available in the mid-1990's (both U.S. and international partners' vehicles) indicate a significant range of possible transportation systems with varying degrees of operational support capabilities. The options available for development of a support infrastructure in terms of launch vehicles, logistics carriers, transfer vehicles, and return systems is discussed.
DOT National Transportation Integrated Search
1991-07-01
Oregon has twelve pavement test sites that are part of the Strategic Highway Research Program (SHRP), Long Term Pavement Performance (LTPP) studies. Part of the data gathering on these sites involves vehicle weight and classification. This pilot proj...
DOT National Transportation Integrated Search
2003-09-26
This report on the Evaluation Methods and Lessons Learned for the Mn/DOT Intelligent Vehicle Initiative (IVI) Field Operational Test (FOT) documents the goals and objectives, research approach, methods, and findings of a program to measure the feasib...
Development for SSV on a parallel processing system (PARAGON)
NASA Astrophysics Data System (ADS)
Gothard, Benny M.; Allmen, Mark; Carroll, Michael J.; Rich, Dan
1995-12-01
A goal of the surrogate semi-autonomous vehicle (SSV) program is to have multiple vehicles navigate autonomously and cooperatively with other vehicles. This paper describes the process and tools used in porting UGV/SSV (unmanned ground vehicle) autonomous mobility and target recognition algorithms from a SISD (single instruction single data) processor architecture (i.e., a Sun SPARC workstation running C/UNIX) to a MIMD (multiple instruction multiple data) parallel processor architecture (i.e., PARAGON-a parallel set of i860 processors running C/UNIX). It discusses the gains in performance and the pitfalls of such a venture. It also examines the merits of this processor architecture (based on this conceptual prototyping effort) and programming paradigm to meet the final SSV demonstration requirements.
NASA Technical Reports Server (NTRS)
McCurry, J.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-06-01
This report documents the second phase of the Remote Operated Vehicle with CO{sub 2} Blasting (ROVCO{sub 2}) Program. The ROVCO{sub 2} Program`s goal is to develop and demonstrate a tool to improve the productivity of concrete floor decontamination. The second phase integrated non-developmental subsystems on to the ROVCO{sub 2} system and performed quantitative decontamination effectiveness, productivity, and reliability testings. The report documents these development activities and the analysis of cost and performance. The results show that the ROVCO{sub 2} system is an efficient decontamination tool.
Feasibility study of a campus-based bikesharing program at UNLV : final report.
DOT National Transportation Integrated Search
2017-07-01
Bikesharing systems have been deployed worldwide as a transportation demand management strategy to encourage active modes and reduce single-occupant vehicle travel. These systems have been deployed at universities, both as part of a city program or a...
Idea Project Final Report, Three-In-One Vehicle Operator Sensor
DOT National Transportation Integrated Search
1995-09-30
THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFACE TRANSPORTATION. IT FOCUSES ON PRODUCTS AND RESULT FOR THE DEVELOP...
2011-07-21
CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), Kennedy Center Director Bob Cabana speaks with Closeout Crew lead Travis Thompson (left), and STS-135 Assistant Launch Director Pete Nickolenko during a prelanding convoy meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- The Convoy Command Center vehicle is positioned on the Shuttle Landing Facility (SLF) at NASA's Kennedy Space Center in Florida awaiting the landing of space shuttle Atlantis. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Accompanying the command convoy team are STS-135 Assistant Launch Director Pete Nickolenko (right), NASA astronaut Janet Kavandi and Chris Hasselbring, USA Operations Manager (left). Securing the space shuttle fleet's place in history, Atlantis marks the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Ben Smegelsky
Constellation Program Thermal and Environmental Control and Life Support System Status: 2009 - 2010
NASA Technical Reports Server (NTRS)
Williams, David E.; Carrasquillo, Robyn L.; Bagdigian, Robert M.
2009-01-01
The Constellation Program (CxP) consists of spacecrafts, launch vehicles, and support systems to execute the Exploration Architecture. The Program is currently divided into three distinct phases. The first phase is to develop a vehicle to provide limited cargo resupply capability and allow crew member rotation to the International Space Station (ISS). The second phase is to support the return of humans to the moon. The final phase is currently envisioned to allow the delivery of humans and cargo to Mars for an extended time. To implement this phased approach the CxP is currently working on the first vehicle and support systems to replace the Space Shuttle and allow continued access to space. This paper provides a summary of the CxP Thermal and Environmental Control and Life Support (ECLS) work that that has occurred across the different parts of the Program in support of these three phases over the past year.
DOT National Transportation Integrated Search
1996-05-31
THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFACE TRANSPORTATION. IT FOCUSES ON PRODUCTS AND RESULT FOR THE DEVELOP...
X-45A Air Vehicle #1 during flight #13, with weapons bay door open
2003-02-21
The DARPA/U.S. Air Force X-45A Unmanned Combat Air Vehicle (UCAV) system demonstration program completed the first phase of demonstrations, known as Block I, on Feb. 28, 2003. The final Block I activities included two flights at Dryden, during which safe operation of the weapons bay door was verified at 35,000 feet and speeds of Mach 0.75, the maximum planned altitude and speed for the two X-45A demonstrator vehicles.
ERIC Educational Resources Information Center
McCutcheon, R. W.; And Others
A perennial problem facing vocational educators is the need to correlate required on-the-job skills and knowledge with the instruction in the corresponding vocational education program. Using this as an objective, data were gathered on current automotive mechanic training programs by reviewing selected government reports and related literature and…
Advanced vehicle concepts systems and design analysis studies
NASA Technical Reports Server (NTRS)
Waters, Mark H.; Huynh, Loc C.
1994-01-01
The work conducted by the ELORET Institute under this Cooperative Agreement includes the modeling of hypersonic propulsion systems and the evaluation of hypersonic vehicles in general and most recently hypersonic waverider vehicles. This work in hypersonics was applied to the design of a two-stage to orbit launch vehicle which was included in the NASA Access to Space Project. Additional research regarded the Oblique All-Wing (OAW) Project at NASA ARC and included detailed configuration studies of OAW transport aircraft. Finally, work on the modeling of subsonic and supersonic turbofan engines was conducted under this research program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
The standard mass emission (Federal Test Procedure) was performed for determination of the effects of inspection and maintenance on a sample of passenger cars operating in the Houston area. This sample was also used for obtaining abbreviated emission test (short cycle test), fuel economy, and emission component system maladjustment and disablement and other data. Four-hundred eighty vehicles were inspected under the program: one-hundred from the 1980 model year, one-hundred 1979 vehicles, one-hundred 1978 vehicles, sixty 1977 vehicles, sixty 1976 vehicles and sixty from the 1975 model year. Both domestic and imported auto makes were examined. All vehicles which failed anmore » initial inspection, a total of 206 vehicles, were subject to a baseline and set of replicate test sequences comprised of the FTP, the 50 Cruise Test, the Highway Fuel Economy Test, the Loaded Two Mode Test and the Four Speed Idle Test. A prescribed maintenance step preceded each of the replicate sequences. Failed vehicles were further subject to an emission control system maladjustment/disablement and status inspection, driveability evaluations and owner-interviews to obtain vehicle maintenance and useage data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ausherman, V.K.; Khadikar, A.V.; Syson, S.R.
1981-09-01
The objective of the RSV Program was to provide research and test data applicable to the automobile safety performance requirements for the mid-1980s, and to evaluate the compatibility of these requirements with environmental policies, efficient energy utilization, and consumer economic considerations.
Contractor point of view for system development and test program
NASA Technical Reports Server (NTRS)
Koide, F. K.; Ringer, D. E.; Earl, C. E.
1981-01-01
Industry's practice of testing space qualified hardware is examined. An overview of the Global Positioning System (GPS) Test Program is discussed from the component level to the sub-system compatibility tests with the space vehicle and finally to the launch site tests, all related to the Rubidium clock.
Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent
NASA Technical Reports Server (NTRS)
Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.
2008-01-01
For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.
Wireless roadside inspection phase II : final report : [technology brief].
DOT National Transportation Integrated Search
2014-04-01
The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is demonstrating the feasibility and value of electronically assessing truck and motorcoach driver and vehicle safety. Electronic assessments (or WRIs)...
Research and Development of High-Power and High-Energy Electrochemical Storage Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
No, author
2014-04-30
The accomplishments and technology progressmade during the U.S. Department of Energy (DOE) Cooperative Agreement No. DE-FC26- 05NT42403 (duration: July 11, 2005 through April 30, 2014, funded for $125 million in cost- shared research) are summarized in this Final Technical Report for a total of thirty-seven (37) collaborative programs organized by the United States Advanced Battery Consortium, LLC (USABC). The USABC is a partnership, formed in 1991, between the three U.S. domestic automakers Chrysler, Ford, and General Motors, to sponsor development of advanced high-performance batteries for electric and hybrid electric vehicle applications. The USABC provides a unique opportunity for developers tomore » leverage their resources in combination with those of the automotive industry and the Federal government. This type of pre-competitive cooperation minimizes duplication of effort and risk of failure, and maximizes the benefits to the public of the government funds. A major goal of this program is to promote advanced battery development that can lead to commercialization within the domestic, and as appropriate, the foreign battery industry. A further goal of this program is to maintain a consortium that engages the battery manufacturers with the automobile manufacturers and other key stakeholders, universities, the National Laboratories, and manufacturers and developers that supply critical materials and components to the battery industry. Typically, the USABC defines and establishes consensus goals, conducts pre-competitive, vehicle-related research and development (R&D) in advanced battery technology. The R&D carried out by the USABC is an integral part of the DOE’s effort to develop advanced transportation technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use domestically produced fuels. The USABC advanced battery development plan has the following three focus areas: 1. Existing technology validation, implementation, and cost reduction. 2. Identification of the next viable technology with emphasis on the potential to meet USABC cost and operating temperature range goals. 3. Support high-risk, high-reward battery technology R&D. Specific to the Cooperative Agreement DE- FC26-05NT42403, addressing High-Energy and High Power Energy Storage Technologies, the USABC focus was on understanding and addressing the following factors (listed in priority of effort): • Cost: Reducing the current cost of lithium- ion batteries (currently about 2-3 times the FreedomCAR target ($20/kW). • Low Temperature Performance: Improving the discharge power and removing lithium plating during regenerative braking. • Calendar Life: Achieving 15-year life and getting accurate life prediction. • Abuse Tolerance: Developing a system level tolerance to overcharge, crush, and high temperature exposure. This Final Technical Report compilation is submitted in fulfillment of the subject Cooperative Agreement, and is intended to serve as a ready-reference for the outcomes of following eight categories of projects conducted by the USABC under award from the DOE’s Energy Efficiency and Renewable Energy ) Vehicle Technologies Program: USABC DoE Final Report – DoE Cooperative Agreement DE-FC26-95EE50425 8 Protected Information 1. Electric Vehicle (EV) (Section A of this report) 2. Hybrid Electric Vehicle (HEV) (Section B 3. Plug-In Hybrid Electric Vehicle (PHEV) (Section C) 4. Low-Energy Energy Storage Systems (LEESS) (Section D) 5. Technology Assessment Program (TAP) (Section E) 6. Ultracapacitors (Section F) 7. 12 Volt Start-Stop (Section G) 8. Separators (Section H) The report summarizes the main areas of activity undertaken in collaboration with the supplier community and the National Laboratories. Copies of the individual supplier final reports are available upon request. Using project gap analysis versus defined USABC goals in each area, the report documents known technology limits and provides direction on future areas of technology and performance needs for vehicle applications. The report was developed using information such as program plans, gap analysis charts, quarterly reports and final project reports submitted by the developers. The public benefit served by this USABC program is that it continues the development of critical advanced battery technology that is needed to make electric, hybrid electric, and fuel cell vehicles attractive to a wide segment of the vehicle market. This will allow for a substantial savings in petroleum fuel use as these vehicles are introduced into the nation’s transportation system. It will also allow a sharp reduction in automotive air pollution emissions in critical areas that are currently classified as non-attainment by the Environmental Protection Agency. This program will also help ensure the long term health and viability of the U.S. Battery and Ultracapacitor Manufacturing Industry. The goals of eight categories of projects follow and summarization of each of the project’s accomplishments are in sequence of the list above.« less
Wireless roadside inspection phase II : final report.
DOT National Transportation Integrated Search
2014-03-01
The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is demonstrating the feasibility and value of electronically assessing truck and motorcoach driver and vehicle safety at least 25 times more often than...
Earth orbital teleoperator mobility system evaluation program
NASA Technical Reports Server (NTRS)
Brye, R. G.; Shields, N. L., Jr.; Kirkpatrick, M., III
1977-01-01
The proximity translation and final docking of the space teleoperator evaluation vehicle (STEV) with large mass and small mass satellites was studied. Operations that may be performed by the STEV during the shuttle experiments are approximated.
Final Environmental Impact Statement Evolved Expendable Launch Vehicle Program
1998-04-01
source, permit application compliance, permit issuance, renewal and revision, and permit review by the U.S. EPA and any affected states. Because...Quality Standards NH3 = ammonia NOx = nitrogen oxides OSHA = Occupational Safety and Health Administration PEL = Permissible Exposure Level ppm = parts...NO or NO2 incremental concentrations during an abort were predicted by REEDM for only the DIV-S vehicle configuration. Ammonia was predicted by REEDM
Simic, Vladimir; Dimitrijevic, Branka
2015-02-01
An interval linear programming approach is used to formulate and comprehensively test a model for optimal long-term planning of vehicle recycling in the Republic of Serbia. The proposed model is applied to a numerical case study: a 4-year planning horizon (2013-2016) is considered, three legislative cases and three scrap metal price trends are analysed, availability of final destinations for sorted waste flows is explored. Potential and applicability of the developed model are fully illustrated. Detailed insights on profitability and eco-efficiency of the projected contemporary equipped vehicle recycling factory are presented. The influences of the ordinance on the management of end-of-life vehicles in the Republic of Serbia on the vehicle hulks procuring, sorting generated material fractions, sorted waste allocation and sorted metals allocation decisions are thoroughly examined. The validity of the waste management strategy for the period 2010-2019 is tested. The formulated model can create optimal plans for procuring vehicle hulks, sorting generated material fractions, allocating sorted waste flows and allocating sorted metals. Obtained results are valuable for supporting the construction and/or modernisation process of a vehicle recycling system in the Republic of Serbia. © The Author(s) 2015.
Dual-Shaft Electric Propulsion (DSEP) Technology Development Program
NASA Astrophysics Data System (ADS)
1992-08-01
The background, progress, and current state of the DOE-sponsored Advanced Dual-Shaft Electric Propulsion Technology Development are presented. Three electric-drive vehicles were build as conversions of a commercial gasoline-powered van, using program-designed components and systems as required. The vehicles were tested primarily on dynamometer or test tract. Component and system testing represented a major portion of the development effort. Test data are summarized in this report, and an Appendix contains the final component design specifications. This major programmatic concerns were the traction battery, the battery management system, the dc-to-ac inverter, the drive motor, the transaxle and its ancillary equipment, and the vehicle controller. Additional effort was devoted to vehicle-related equipment: gear selector, power steering, power brakes, accelerator, dashboard instrumentation, and heater. Design, development, and test activities are reported for each of these items, together with an appraisal (lessons learned) and recommendations for possible further work. Other programmatic results include a Cost and Commercialization Analysis, a Reliability and Hazards Analysis Study, Technical Recommendations for Next-Generation Development, and an assessment of overall program efforts.
Development and flight test of a deployable precision landing system
NASA Technical Reports Server (NTRS)
Sim, Alex G.; Murray, James E.; Neufeld, David C.; Reed, R. Dale
1994-01-01
A joint NASA Dryden Flight Research Facility and Johnson Space Center program was conducted to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of entry from space that included a precision landing. The feasibility of this system was studied using a flight model of a spacecraft in the generic shape of a flattened biconic that weighed approximately 150 lb and was flown under a commercially available, ram-air parachute. Key elements of the vehicle included the Global Positioning System guidance for navigation, flight control computer, ultrasonic sensing for terminal altitude, electronic compass, and onboard data recording. A flight test program was used to develop and refine the vehicle. This vehicle completed an autonomous flight from an altitude of 10,000 ft and a lateral offset of 1.7 miles that resulted in a precision flare and landing into the wind at a predetermined location. At times, the autonomous flight was conducted in the presence of winds approximately equal to vehicle airspeed. Several novel techniques for computing the winds postflight were evaluated. Future program objectives are also presented.
2009-10-27
CAPE CANAVERAL, Fla. - Workers on Launch Pad 39B at NASA's Kennedy Space Center in Florida make final preparations for launch of the Constellation Program's 327-foot-tall Ares I-X rocket. The rotating service structure and the arms of the vehicle stabilization system will be moved from around the rocket for liftoff. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Zhao, Dang-Jun; Song, Zheng-Yu
2017-08-01
This study proposes a multiphase convex programming approach for rapid reentry trajectory generation that satisfies path, waypoint and no-fly zone (NFZ) constraints on Common Aerial Vehicles (CAVs). Because the time when the vehicle reaches the waypoint is unknown, the trajectory of the vehicle is divided into several phases according to the prescribed waypoints, rendering a multiphase optimization problem with free final time. Due to the requirement of rapidity, the minimum flight time of each phase index is preferred over other indices in this research. The sequential linearization is used to approximate the nonlinear dynamics of the vehicle as well as the nonlinear concave path constraints on the heat rate, dynamic pressure, and normal load; meanwhile, the convexification techniques are proposed to relax the concave constraints on control variables. Next, the original multiphase optimization problem is reformulated as a standard second-order convex programming problem. Theoretical analysis is conducted to show that the original problem and the converted problem have the same solution. Numerical results are presented to demonstrate that the proposed approach is efficient and effective.
South Dakota ITS/CVO business plan : final business plan
DOT National Transportation Integrated Search
1998-01-18
This report defines an Intelligent Transportation Systems/Commercial Vehicle Operations (ITS/CVO) program for the State of South Dakota. Structured as a business plan, the document includes the following components: 1) description of the current CVO ...
HEUS-RS applications study, volume 2
NASA Technical Reports Server (NTRS)
1972-01-01
The final report of a High Energy Upper Stage Restartable Solid (HEUS-RS) Applications Study is presented. The material deals with launch program cost comparisons associated with meeting NASA mission model requirements with several different launch vehicle approaches.
Wireless roadside inspection phase II evaluation final report.
DOT National Transportation Integrated Search
2011-06-01
The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is demonstrating the feasibility and value of electronically assessing truck and coach driver and vehicle safety at least 25 times more often than is p...
NASA/MOD Operations Impacts from Shuttle Program
NASA Technical Reports Server (NTRS)
Fitzpatrick, Michael; Mattes, Gregory; Grabois, Michael; Griffith, Holly
2011-01-01
Operations plays a pivotal role in the success of any human spaceflight program. This paper will highlight some of the core tenets of spaceflight operations from a systems perspective and use several examples from the Space Shuttle Program to highlight where the success and safety of a mission can hinge upon the preparedness and competency of the operations team. Further, awareness of the types of operations scenarios and impacts that can arise during human crewed space missions can help inform design and mission planning decisions long before a vehicle gets into orbit. A strong operations team is crucial to the development of future programs; capturing the lessons learned from the successes and failures of a past program will allow for safer, more efficient, and better designed programs in the future. No matter how well a vehicle is designed and constructed, there are always unexpected events or failures that occur during space flight missions. Preparation, training, real-time execution, and troubleshooting are skills and values of the Mission Operations Directorate (MOD) flight controller; these operational standards have proven invaluable to the Space Shuttle Program. Understanding and mastery of these same skills will be required of any operations team as technology advances and new vehicles are developed. This paper will focus on individual Space Shuttle mission case studies where specific operational skills, techniques, and preparedness allowed for mission safety and success. It will detail the events leading up to the scenario or failure, how the operations team identified and dealt with the failure and its downstream impacts. The various options for real-time troubleshooting will be discussed along with the operations team final recommendation, execution, and outcome. Finally, the lessons learned will be summarized along with an explanation of how these lessons were used to improve the operational preparedness of future flight control teams.
ERIC Educational Resources Information Center
McPherson, Kenard; And Others
Instructional modules for driver education programs were prepared to improve safe driving knowledge, attitudes, and performances of 16- to 18-year-old drivers. These modules were designed to provide supplementary instruction in five content areas critical to the safe and efficient operation of motor vehicles by young drivers--speed management,…
HVEPS Scramjet-Driven MHD Power Demonstration Test Results (Preprint)
2007-06-01
an outer annulus which provides the flow passage for the liquid NaK. Final fabrication and assembly of the seeding system was completed at UTRC as...ABSTRACT The Air Force sponsored Hypersonic Vehicle Electric Power System (HVEPS) program was a research program to develop scramjet driven...magnetohydrodynamic (MHD) power for an advanced high power, airborne electric power system . This program has been active for the past five years with various
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzies, K.T.; Randel, M.A.; Quill, A.L.
1989-01-01
The U.S. Army Biomedical Research and Development Laboratory defined an extensive research program to address the generation of potentially toxic propellant combustion products in crew compartments of armored vehicles during weapons firing. The major objectives of the research were (1) to determine the presence and concentration of propellant combustion products, (2) to determine potential crew exposure to these combustion products, and (3) to assess the efficacy of field monitoring in armored vehicles. To achieve these goals, air monitoring was conducted in selected armored vehicle types, i.e., M109, M60, M3, M1, at several Army installations.
Testing of Twin Linear Aerospike XRS-2200 Engine
NASA Technical Reports Server (NTRS)
2001-01-01
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
2001-08-06
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
Site Operator technical report. Final report (1992--1996)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
The Southern California Edison Company (SCE) and the US Department of Energy (DOE) entered into cooperative agreement No. DE-FC07-91ID13077 on August 23, 1991, which expired on August 3, 1996. This cooperative agreement provided SCE with DOE cofunding for participation in the DOE`s Electric and Hybrid Vehicle Site Operator Program. In return, SCE provided the DOE with quarterly progress reports which include operating and maintenance data for the electric (EVs) vehicles in SCE`s fleet. Herein is SCE`s final report for the 1992 to 1996 agreement period. As of September 1, 1996 the SCE fleet had 65 electric vehicles in service. Amore » total of 578,200 miles had been logged. During the agreement period, SCE sent the DOE a total of 19 technical reports (Appendix B). This report summarizes the technical achievements which took place during a long, productive and rewarding, relationship with the DOE.« less
DOT National Transportation Integrated Search
1994-10-01
THE RUN-OFF-ROAD COLLISION AVOIDANCE USING LVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES.
Final evaluation report for the CAPITAL-ITS operational test and demonstration program
DOT National Transportation Integrated Search
1997-05-01
The CAPITAL project was undertaken to assess the viability of using cellular-based traffic probes as a wide area vehicular traffic surveillance technique. From the test, cellular technology demonstrated the technical potential to provide vehicle spee...
DOT National Transportation Integrated Search
1997-09-01
The United States Department of Transportations (USDOTs) National ITS Program : Plan describes the national strategy for deploying advanced technologies and services into our : transportation system. To emphasize the need-driven (rather than te...
NASA Astrophysics Data System (ADS)
Matuszak, Zbigniew; Bartosz, Michał; Barta, Dalibor
2016-09-01
In the article are characterized two network methods (critical path method - CPM and program evaluation and review technique - PERT). On the example of an international furniture company's product, it presented the exemplification of methods to transport cargos (furniture elements). Moreover, the study showed diagrams for transportation of cargos from individual components' producers to the final destination - the showroom. Calculations were based on the transportation of furniture elements via small commercial vehicles.
Wireless Sensor Needs in the Space Shuttle and CEV Structures Communities
NASA Technical Reports Server (NTRS)
James, George H., III
2007-01-01
This presentation will clarify some of the structural measurement needs of NASA's Space Shuttle and Crew Exploration Vehicles. Emerging technologies in wireless sensor systems can be of some advantage in both Programs. The presentation will address how wireless instrumentation has helped in the past and what has gone unmeasured on Shuttle due to various limitations. Finally, it will address the needs of the CEV program that can be met with reliable wireless systems, if modular avionics interfaces are provided to accommodate the usual evolving needs of an ambitious space vehicle development program. Examples of the advantages of flight data to support flight certification engineering analyses and of areas where add-on wireless instrumentation can be used will be shown. Without flight instrumentation, it is necessary to retain the conservative assumptions used in the design process. It will be shown how the lessons learned on Space Shuttle for wired and wireless structural measurements apply to the Orion Crew Exploration Vehicle (CEV), which is currently being designed.
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Bill McArthur, (left) Space Shuttle Program Orbiter Projects manager; John Casper, Assistant Space Shuttle Program manager; John Shannon, Space Shuttle Program manager and Canadian Space Agency astronaut Chris Hadfield attend a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Maity, Arnab; Padhi, Radhakant; Mallaram, Sanjeev; Mallikarjuna Rao, G.; Manickavasagam, M.
2016-10-01
A new nonlinear optimal and explicit guidance law is presented in this paper for launch vehicles propelled by solid motors. It can ensure very high terminal precision despite not having the exact knowledge of the thrust-time curve apriori. This was motivated from using it for a carrier launch vehicle in a hypersonic mission, which demands an extremely narrow terminal accuracy window for the launch vehicle for successful initiation of operation of the hypersonic vehicle. The proposed explicit guidance scheme, which computes the optimal guidance command online, ensures the required stringent final conditions with high precision at the injection point. A key feature of the proposed guidance law is an innovative extension of the recently developed model predictive static programming guidance with flexible final time. A penalty function approach is also followed to meet the input and output inequality constraints throughout the vehicle trajectory. In this paper, the guidance law has been successfully validated from nonlinear six degree-of-freedom simulation studies by designing an inner-loop autopilot as well, which enhances confidence of its usefulness significantly. In addition to excellent nominal results, the proposed guidance has been found to have good robustness for perturbed cases as well.
The development and flight test of a deployable precision landing system for spacecraft recovery
NASA Technical Reports Server (NTRS)
Sim, Alex G.; Murray, James E.; Neufeld, David C.; Reed, R. Dale
1993-01-01
A joint NASA Dryden Flight Research Facility and Johnson Space Center program was conducted to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of entry from space that included a precision landing. The feasibility of this system was studied using a flight model of a spacecraft in the generic shape of a flattened biconic which weighed approximately 150 lb and was flown under a commercially available, ram-air parachute. Key elements of the vehicle included the Global Positioning System guidance for navigation, flight control computer, ultrasonic sensing for terminal altitude, electronic compass, and onboard data recording. A flight test program was used to develop and refine the vehicle. This vehicle completed an autonomous flight from an altitude of 10,000 ft and a lateral offset of 1.7 miles which resulted in a precision flare and landing into the wind at a predetermined location. At times, the autonomous flight was conducted in the presence of winds approximately equal to vehicle airspeed. Several techniques for computing the winds postflight were evaluated. Future program objectives are also presented.
NASA Technical Reports Server (NTRS)
Levack, Daniel J. H.
2000-01-01
The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.
Remote sensing of on-road vehicle emissions: Mechanism, applications and a case study from Hong Kong
NASA Astrophysics Data System (ADS)
Huang, Yuhan; Organ, Bruce; Zhou, John L.; Surawski, Nic C.; Hong, Guang; Chan, Edward F. C.; Yam, Yat Shing
2018-06-01
Vehicle emissions are a major contributor to air pollution in cities and have serious health impacts to their inhabitants. On-road remote sensing is an effective and economic tool to monitor and control vehicle emissions. In this review, the mechanism, accuracy, advantages and limitations of remote sensing were introduced. Then the applications and major findings of remote sensing were critically reviewed. It was revealed that the emission distribution of on-road vehicles was highly skewed so that the dirtiest 10% vehicles accounted for over half of the total fleet emissions. Such findings highlighted the importance and effectiveness of using remote sensing for in situ identification of high-emitting vehicles for further inspection and maintenance programs. However, the accuracy and number of vehicles affected by screening programs were greatly dependent on the screening criteria. Remote sensing studies showed that the emissions of gasoline and diesel vehicles were significantly reduced in recent years, with the exception of NOx emissions of diesel vehicles in spite of greatly tightened automotive emission regulations. Thirdly, the experience and issues of using remote sensing for identifying high-emitting vehicles in Hong Kong (where remote sensing is a legislative instrument for enforcement purposes) were reported. That was followed by the first time ever identification and discussion of the issue of frequent false detection of diesel high-emitters using remote sensing. Finally, the challenges and future research directions of on-road remote sensing were elaborated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzies, K.T.; Randel, M.A.; Quill, A.L.
1989-01-01
The U.S. Army Biomedical Research and Development Laboratory defined an extensive research program to address the generation of potentially toxic propellant combustion products in crew compartments of armored vehicles during weapons firing. The major objectives of the research were: (1) to determine the presence and concentration of propellant combustion products, (2) to determine potential crew exposure to these combustion products, and (3) to assess the efficacy of field monitoring in armored vehicles. To achieve these goals, air monitoring was conducted in selected armored vehicle types, i.e., M109, M60, M3, M1, at several Army installations. Auxiliary information concerning the specific munitionsmore » fired and the Training and Doctrine Command (TRADOC) or Forces Command (FORSCOM) firing scenarios was collected so that a comparison of pollutant concentrations generated by specific weapons both within vehicle types and between vehicle types could be made.« less
A review of design issues specific to hypersonic flight vehicles
NASA Astrophysics Data System (ADS)
Sziroczak, D.; Smith, H.
2016-07-01
This paper provides an overview of the current technical issues and challenges associated with the design of hypersonic vehicles. Two distinct classes of vehicles are reviewed; Hypersonic Transports and Space Launchers, their common features and differences are examined. After a brief historical overview, the paper takes a multi-disciplinary approach to these vehicles, discusses various design aspects, and technical challenges. Operational issues are explored, including mission profiles, current and predicted markets, in addition to environmental effects and human factors. Technological issues are also reviewed, focusing on the three major challenge areas associated with these vehicles: aerothermodynamics, propulsion, and structures. In addition, matters of reliability and maintainability are also presented. The paper also reviews the certification and flight testing of these vehicles from a global perspective. Finally the current stakeholders in the field of hypersonic flight are presented, summarizing the active programs and promising concepts.
Research safety vehicle, Phase II. Volume I. Executive summary. Final report jul 75-dec 76
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struble, D.
1976-12-01
Volume I summarizes the results of the Minicars Research Safety Vehicle Phase II program, as detailed in Volumes II and III. Phase I identified trends leading to the desired national social goals of the mid-1980's in vehicle crashworthiness, crash avoidance, damageability, pedestrian safety, fuel economy, emissions and cost, and characterized an RSV to satisfy them. In Phase II an RSV prototype was designed, developed and tested to demonstrate the feasibility of meeting these goals simultaneously. Although further refinement is necessary to assure operational validity, in all categories the results meet or exceed the most advanced performance specified by The Presidentialmore » Task Force on Motor Vehicle Goals beyond 1980.« less
TOP 01-1-011B Vehicle Test Facilities at Aberdeen Test Center and Yuma Test Center
2017-12-12
TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 01-1-011B Vehicle Test Facilities at Aberdeen... Test Center and Yuma Test Center 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHORS 5d. PROJECT NUMBER 5e... Test Center 400 Colleran Road Aberdeen Proving Ground, MD 21005-5059 U.S. Army Yuma Proving Ground Yuma Test Center 301 C. Street Yuma, AZ
2012-03-01
Vehicle UAS Unmanned Aircraft System UCAV Unmanned Combat Air Vehicles xvii UNS Universal Needs Statement USMC United States Marine Corps VLC ...she helped motivate me to finish this project—as challenging as it may be to work under the conditions set by an infant. And, finally, thanks to...In every aspect of program management, the DoD acquisition workforce is constantly challenged to balance cost, schedule, and performance. In a
Development of a School Bus Fuel System Integrity Compliance Procedure. Final Report.
ERIC Educational Resources Information Center
Morrow, G. W.; Johnson, N. B.
This report presents a program that derived a compliance test procedure for school buses with a gross vehicle weight of 10,000 pounds or greater. The objective of this program was to evaluate Fuel System Integrity (FMVSS 301) in relation to school buses, conduct a limited state-of-the-art survey and run full-scale dynamic tests to produce an…
Low-lift-to-drag-ratio approach and landing studies using a CV-990 airplane
NASA Technical Reports Server (NTRS)
Kock, B. M.; Fulton, F. L.; Drinkwater, F. J., III
1972-01-01
The results are presented of a flight-test program utilizing a CV-990 airplane, flow in low-lift-to-drag-ratio (L/D) configurations, to simulate terminal area operation, approach, and landing of large unpowered vehicles. The results indicate that unpowered approaches and landings are practical with vehicles of the size and performance characteristics of the proposed shuttle vehicle. Low L/D landings provided touchdown dispersion patterns acceptable for operation on runways of reasonable length. The dispersion pattern was reduced when guidance was used during the final approach. High levels of pilot proficiency were not required for acceptable performance.
Identifying at-risk drivers : a survey of state programs : final report.
DOT National Transportation Integrated Search
1990-01-01
Motor vehicle administrators have long realized that certain drivers present more of safety problem than others. Tests of static visual acuity, knowledge of the rules of the road, and on-the-road driving performance are used to ensure that each drive...
Support to 2nd Generation RLV Propulsion Project Office
NASA Technical Reports Server (NTRS)
Lee, Thomas J.
2002-01-01
In this final report regarding support to the second generation RLV (Reusable Launch Vehicle) propulsion project office, a list of tasks accomplished is presented. During this period, Lee & Associates, LLC participated in numerous Systems Requirements Reviews (SRR) related to the Cobra development program.
75 FR 22532 - Federal Motor Vehicle Safety Standards; Cargo Carrying Capacity
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... That Can Be Added to a Vehicle After Final Vehicle Certification and Before First Retail Sale Without.... When weight is added between final vehicle certification and first retail sale, the load carrying... final vehicle certification and before first retail sale without triggering a requirement to re-label...
76 FR 17808 - Final Vehicle Safety Rulemaking and Research Priority Plan 2011-2013
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-31
... [Docket No. NHTSA-2009-0108] Final Vehicle Safety Rulemaking and Research Priority Plan 2011- 2013 AGENCY... availability. SUMMARY: This document announces the availability of the Final NHTSA Vehicle Safety and Fuel.... This Priority Plan is an update to the Final Vehicle Safety Rulemaking and Research Priority Plan 2009...
LACIE performance predictor final operational capability program description, volume 1
NASA Technical Reports Server (NTRS)
1976-01-01
The program EPHEMS computes the orbital parameters for up to two vehicles orbiting the earth for up to 549 days. The data represents a continuous swath about the earth, producing tables which can be used to determine when and if certain land segments will be covered. The program GRID processes NASA's climatology tape to obtain the weather indices along with associated latitudes and longitudes. The program LUMP takes substrata historical data and sample segment ID, crop window, crop window error and statistical data, checks for valid input parameters and generates the segment ID file, crop window file and the substrata historical file. Finally, the System Error Executive (SEE) Program checks YES error and truth data, CAMS error data, and signature extension data for validity and missing elements. A message is printed for each error found.
DOT National Transportation Integrated Search
1994-10-01
THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. : THIS REPORT DESCRIBES AND DOCUMENTS ...
DOT National Transportation Integrated Search
1995-06-01
THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. : THIS REPORT DESCRIBES AND DOCUMENTS ...
DOT National Transportation Integrated Search
1995-09-01
THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. : THIS REPORT DOCUMENTS THE RORSIM COM...
Potential Technology Transfer to the DoD Unmanned Ground Vehicle Program.
1996-10-01
Germany. This process combines x-ray lithography, galvanic casting, and micromolding technology and can be used to produce a variety of sensors and...whether circulation is being obstructed by atherosclerosis . Finally, work is being done at the University of Minnesota on a microrobotic device
Mirzaeinejad, Hossein; Mirzaei, Mehdi; Rafatnia, Sadra
2018-06-11
This study deals with the enhancement of directional stability of vehicle which turns with high speeds on various road conditions using integrated active steering and differential braking systems. In this respect, the minimum usage of intentional asymmetric braking force to compensate the drawbacks of active steering control with small reduction of vehicle longitudinal speed is desired. To this aim, a new optimal multivariable controller is analytically developed for integrated steering and braking systems based on the prediction of vehicle nonlinear responses. A fuzzy programming extracted from the nonlinear phase plane analysis is also used for managing the two control inputs in various driving conditions. With the proposed fuzzy programming, the weight factors of the control inputs are automatically tuned and softly changed. In order to simulate a real-world control system, some required information about the system states and parameters which cannot be directly measured, are estimated using the Unscented Kalman Filter (UKF). Finally, simulations studies are carried out using a validated vehicle model to show the effectiveness of the proposed integrated control system in the presence of model uncertainties and estimation errors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
National Report on the NASA Sounding Rocket and Balloon Programs
NASA Technical Reports Server (NTRS)
Eberspeaker, Philip; Fairbrother, Debora
2013-01-01
The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to conduct supersonic decelerator tests. An overview of NASA's Sounding Rockets and Balloon Operations, Technology Development and Science support activities will be presented.
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, John Casper, Assistant Space Shuttle Program manager and Kennedy Center Director Bob Cabana talk with each other during a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
Pressure fed thrust chamber technology program
NASA Technical Reports Server (NTRS)
Dunn, Glenn M.
1992-01-01
This is the final report for the Pressure Fed Technology Program. It details the design, fabrication and testing of subscale hardware which successfully characterized LOX/RP combustion for a low cost pressure fed design. The innovative modular injector design is described in detail as well as hot-fire test results which showed excellent performance. The program summary identifies critical LOX/RP design issues that have been resolved by this testing, and details the low risk development requirements for a low cost engine for future Expendable Launch Vehicles (ELVi).
DOT National Transportation Integrated Search
1998-12-01
There is widespread perception among various trucking industry representatives and observers that commercial motor vehicle (CMV) operators are frequently forced to violate the Federal hours-of-service (HOS) regulations because of the tightness of the...
2nd Generation Reusable Launch Vehicle (2G RLV). Revised
NASA Technical Reports Server (NTRS)
Matlock, Steve; Sides, Steve; Kmiec, Tom; Arbogast, Tim; Mayers, Tom; Doehnert, Bill
2001-01-01
This is a revised final report and addresses all of the work performed on this program. Specifically, it covers vehicle architecture background, definition of six baseline engine cycles, reliability baseline (space shuttle main engine QRAS), and component level reliability/performance/cost for the six baseline cycles, and selection of 3 cycles for further study. This report further addresses technology improvement selection and component level reliability/performance/cost for the three cycles selected for further study, as well as risk reduction plans, and recommendation for future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzies, K.T.; Randel, M.A.; Quill, A.L.
1989-01-01
The U.S. Army Biomedical Research and Development Laboratory defined an extensive research program to address the generation of potentially toxic propellant combustion products in crew compartments of armored vehicles during weapons firing. The major objectives of the research were (1) to determine the presence and concentration of propellant combustion products, (2) to determine potential crew exposure to these combustion products, and (3) to assess the efficacy of field monitoring in armored vehicles. To achieve these goals, air monitoring was conducted in selected armored vehicle types, i.e., M109, M60, M3, M1, at several Army installations. Auxiliary information concerning the specific munitionsmore » fired and the Training and Doctrine Command (TRADOC) or Forces Command (FORSCOM) firing scenarios was collected so that a comparison of pollutant concentrations generated by specific weapons both within vehicle types and between vehicle types could be made.« less
Ares I-X: First Step in a New Era of Exploration
NASA Technical Reports Server (NTRS)
Davis, Stephan R.
2010-01-01
Since 2005, NASA's Constellation Program has been designing, building, and testing the next generation of launch and space vehicles to carry humans beyond low-Earth orbit (LEO). On October 28, 2009, the Ares Projects successfully launched the first suborbital development flight test of the Ares I crew launch vehicle, Ares I-X, from Kennedy Space Center (KSC). Although the final Constellation Program architecture is under review, data and lessons obtained from Ares I-X can be applied to any launch vehicle. This presentation will discuss the mission background and future impacts of the flight. Ares I is designed to carry up to four astronauts to the International Space Station (ISS). It also can be used with the Ares V cargo launch vehicle for a variety of missions beyond LEO. The Ares I-X development flight test was conceived in 2006 to acquire early engineering, operations, and environment data during liftoff, ascent, and first stage recovery. Engineers are using the test flight data to improve the Ares I design before its critical design review the final review before manufacturing of the flight vehicle begins. The Ares I-X flight test vehicle incorporated a mix of flight and mockup hardware, reflecting a similar length and mass to the operational vehicle. It was powered by a four-segment SRB from the Space Shuttle inventory, and was modified to include a fifth, spacer segment that made the booster approximately the same size as the five-segment SRB. The Ares I-X flight closely approximated flight conditions the Ares I will experience through Mach 4.5, performing a first stage separation at an altitude of 125,000 feet and reaching a maximum dynamic pressure ("Max Q") of approximately 850 pounds per square foot. The Ares I-X Mission Management Office (MMO) was organized functionally to address all the major test elements, including: first stage, avionics, and roll control (Marshall Space Flight Center); upper stage simulator (Glenn Research Center); crew module/launch abort system simulator (Langley Research Center); and ground systems and operations (KSC). Interfaces between vehicle elements and vehicle-ground elements, as well as environment analyses were performed by a systems engineering and integration team at Langley. Experience and lessons learned from these integrated product teams area are already being integrated into the Ares Projects to support the next generation of exploration launch vehicles.
Simulation of an Air Cushion Vehicle
1977-03-01
Massachusetts 02139 ! DDC Niov 219T March 1977 Final Report for Period January 1975 - December 1976 DOD DISTRIBUTION STATEMENT Approved for public...or in ,art is permitted for any purpose of the United States Government. II II JI UNCLASSI FIED SECURITY CLASSIFICATiON OF TIlS PAGE flWhen Dato...overflow Floating point fault Decimal arithmetic fault Watch Dog timer runout 186 NAVTRAEQUIPCEN 75-C-0057- 1 PROGRAM ENi\\TRY Initial Program - LOAD Inhibit
Optimization methods applied to hybrid vehicle design
NASA Technical Reports Server (NTRS)
Donoghue, J. F.; Burghart, J. H.
1983-01-01
The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.
The US - European Cooperation in the X-38 and CRV Programs
NASA Astrophysics Data System (ADS)
Sygulla, D.; Sabath, D.; Püttmann, N.; Schmid, V.; Caporicci, M.; Anderson, B.
2002-01-01
The European participation in the US X-38 program was initiated in 1997 and is realized by contributions from two European programs, by ESA's "Applied Reentry Technology Program", (ARTP) and the German/DLR "Technologies for Future Space Transportation Systems" (TETRA) program. The space agencies of USA, Europe and Germany have established two Memoranda of Understanding - NASA-ESA and NASA-DLR - for the European participation in the X-38 Program to deliver flight hard- and software in exchange to a re-entry flight opportunity with Vehicle 201 (V201). By October 2002 all European contributions to V201 of the X-38 program will be delivered to NASA JSC. Vehicle 201 represents the orbital test vehicle of the experimental vehicle family, developed and built from 1996 onwards by NASA at Johnson Space Center, JSC in Houston. The X-38 Program was initiated by NASA to prepare and develop the Crew Return Vehicle (CRV) with Vehicle 201 as prototype. NASA conducts the overall X-38 vehicle system engineering and integration, intended to provide the launch of the vehicle 201 with the Space Shuttle and will deliver flight data for post-flight analysis and assessment to DLR and ESA. The German national project TETRA (Technologies for future Space Transportation Systems) and the European ARTP (Applied Re-entry Technology Programme) are providing engineering support for design, analysis, system engineering and layout as well as delivering essential flight hard- and software: CMC Body flaps and CMC nose assembly from TETRA; rudders, CMC leading edges, landing gears and major elements of the V201 primary structure from ARTP. Since both programmes contribute in cooperation the major part of the aerodynamic database is generated, the flexible external insulation is developed and manufactured, and advanced sensors and data acquisition systems are built. The parts for V201 have been developed, fulfill the requirements, are qualified for flight and they are in the process of being integrated on the vehicle X- 38 V201. There will be no exchange of funds since the delivery of contributions and the flight opportunity are parts of a barter agreement. Presently NASA is assembling the vehicle's structure in preparation of the structural vehicle test in 2002. In the following period all major subsystems will be included and checked out before the envisaged orbital test flight of V201. The Shuttle Columbia will set it free in orbit and after an autonomous reentry flight it is proposed to glide towards Australia, hanging on the largest parafoil ever been built (7.500 square feet). Parallel to the final installation of all flight systems in V201, it was foreseen to develop the CRV using most of the systems of V201, provided the critical cost situation on the International Space Station can be solved. In this case the CRV would be used from about 2008/2009 as `ambulance - lifeboat' and/or as `return vehicle' for the crew of the International Space Station. Manifold contributions from European companies could be provided for the CRV: All in all this paper will give an overview about the programs X-38, CRV, TETRA and ARTP, as well as an overview about the status of the development of flight hard- and software for the reusable vehicle X-38 V201. *)CMC Ceramic Matrix Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andon, J.; Dodson, E.; Khadilkar, A.
1975-06-01
Current passenger car usage patterns and factors influencing usage are analyzed and projections of usage patterns in the mid-1980's are made. Current available data on six categories of vehicle accidents are analyzed and projections made of national accident patterns in the mid-80's; the effect of potential reductions in these projections as a result of safety programs and other factors related to driving safety are estimated. Based on the usage and accident projections, the characteristics of an RSV (weighing under 3,000 lbs C.W.) for operation in the mid-1980 traffic environment are described. A recommended set of specifications for the RSV aremore » developed considering the potential safety payoff accruing to an increased level of safety performance, the need for energy conservation, availability of material resources, and changes in vehicle mix. (An executive summary of this report is presented in Volume I).« less
Kennedy Space Center's Command and Control System - "Toasters to Rocket Ships"
NASA Technical Reports Server (NTRS)
Lougheed, Kirk; Mako, Cheryle
2011-01-01
This slide presentation reviews the history of the development of the command and control system at Kennedy Space Center. From a system that could be brought to Florida in the trunk of a car in the 1950's. Including the development of larger and more complex launch vehicles with the Apollo program where human launch controllers managed the launch process with a hardware only system that required a dedicated human interface to perform every function until the Apollo vehicle lifted off from the pad. Through the development of the digital computer that interfaced with ground launch processing systems with the Space Shuttle program. Finally, showing the future control room being developed to control the missions to return to the moon and Mars, which will maximize the use of Commercial-Off-The Shelf (COTS) hardware and software which was standards based and not tied to a single vendor. The system is designed to be flexible and adaptable to support the requirements of future spacecraft and launch vehicles.
DOT National Transportation Integrated Search
2016-06-30
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
STS-335 crew during Soyuz Flight Plan training
2010-11-30
JSC2010-E-193582 (30 Nov. 2010) --- NASA astronaut Chris Ferguson, STS-135 commander, participates in a training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 crew during Soyuz Flight Plan training
2010-11-30
JSC2010-E-193583 (30 Nov. 2010) --- NASA astronaut Doug Hurley, STS-135 pilot, participates in a training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-25
... proposed color scheme and general design so that the two agencies' labels could work together as a... Programs AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: In two recent actions... Damage d. Addressing Non-English Speakers e. Portable Fuel Containers f. Color, Size, Shape, Font, and...
Interaction of railway vehicles with track in cross-winds
NASA Astrophysics Data System (ADS)
Xu, Y. L.; Ding, Q. S.
2006-04-01
This paper presents a framework for simulating railway vehicle and track interaction in cross-wind. Each 4-axle vehicle in a train is modeled by a 27-degree-of-freedom dynamic system. Two parallel rails of a track are modeled as two continuous beams supported by a discrete-elastic foundation of three layers with sleepers and ballasts included. The vehicle subsystem and the track subsystem are coupled through contacts between wheels and rails based on contact theory. Vertical and lateral rail irregularities simulated using an inverse Fourier transform are also taken into consideration. The simulation of steady and unsteady aerodynamic forces on a moving railway vehicle in cross-wind is then discussed in the time domain. The Hilber Hughes Taylor α-method is employed to solve the nonlinear equations of motion of coupled vehicle and track systems in cross-wind. The proposed framework is finally applied to a railway vehicle running on a straight track substructure in cross-wind. The safety and comfort performance of the moving vehicle in cross-wind are discussed. The results demonstrate that the proposed framework and the associated computer program can be used to investigate interaction problems of railway vehicles with track in cross-wind.
Recovery Act Final Project Report -- Transportation Electrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogineni, Kumar
2013-12-31
ChargePoint America demonstrated the viability, economic and environmental benefits of an electric vehicle-charging infrastructure. Electric vehicles (EVs) and plug-in electric vehicles (PHEVs) arrived in late 2010, there was a substantial lack of infrastructure to support these vehicles. ChargePoint America deployed charging infrastructure in ten (10) metropolitan regions in coordination with vehicle deliveries targeting those same regions by our OEM partners: General Motors, Nissan, Fisker Automotive, Ford, smart USA, and BMW. The metropolitan regions include Central Texas (Austin/San Antonio), Bellevue/Redmond (WA), Southern Michigan, Los Angeles area (CA), New York Metro (NY), Central Florida (Orlando/Tampa), Sacramento (CA), San Francisco/San Jose (CA), Washingtonmore » DC and Boston (MA). ChargePoint America installed more than 4,600 Level 2 (220v) SAE J1772™ UL listed networked charging ports in home, public and commercial locations to support approximately 2000 program vehicles. ChargePoint collected data to analyze how individuals, businesses and local governments used their vehicles. Understanding driver charging behavior patterns will provide the DoE with critical information as EV adoption increases in the United States.« less
Role of research aircraft in technology development
NASA Technical Reports Server (NTRS)
Szalai, K. J.
1984-01-01
The United States's aeronautical research program has been rich in the use of research aircraft to explore new flight regimes, develop individual aeronautical concepts, and investigate new vehicle classes and configurations. This paper reviews the NASA supercritical wing, digital fly-by-wire, HiMAT, and AD-1 oblique-wing flight research programs, and draws from these examples general conclusions regarding the role and impact of research aircraft in technology development. The impact of a flight program on spinoff technology is also addressed. The secondary, serendipitous results are often highly significant. Finally, future research aircraft programs are examined for technology trends and expected results.
Preliminary subsystem designs for the Assured Crew Return Vehicle (ACRV), volume 1
NASA Technical Reports Server (NTRS)
1990-01-01
A series of design studies is presented concerning the Assured Crew Return Vehicle (ACRV) for Space Station Freedom. Four alternate designs are presented for the ACRV braking and landing system. Options presented include: ballistic and lifting body reentries; the use of high-lift, high-payload aerodynamic decelerators, as well as conventional parachutes; landing systems designed for water landings, land landings, or both; and an aerial recovery system. All four design options presented combine some or all of the above attributes, and all meet performance requirements established by the ACRV Program Office. Two studies of ACRV growth options are also presented. Use of the ACRV or a similarly designed vehicle in several roles for possible future space missions is discussed, along with the required changes to a basic ACRV to allow it to perform these missions optimally. The outcome of these studies is a set of recommendations to the ACRV Program Office describing the vehicle characteristics of the basic ACRV which lend themselves most readily to be adapted for use in other missions. Finally, the impacts on the design of the ACRV due to its role as a medical emergency vehicle were studied and are presented. The use of the ACRV in this manner will impact its shape, internal configuration, and equipment.
Pressure fed thrust chamber technology program
NASA Technical Reports Server (NTRS)
Dunn, Glen M.
1992-01-01
This is the final report for the Pressure Fed Technology Program. It details the design, fabrication, and testing of subscale hardware which successfully characterized Liquid Oxygen Rocket Propulsion (LOX/RP) combustion for low cost pressure fed design. The innovative modular injector design is described in detail as well as hot-fire test results which showed excellent performance. The program summary identifies critical LOX/RP design issues that have been resolved in this testing, and details the low risk development requirements for low cost engines for future Expandable Launch Vehicles (ELV).
Vehicle Support Posts Installation onto Mobile Launcher
2017-05-25
At NASA's Kennedy Space Center in Florida, construction workers on the deck of the mobile launcher install the final four vehicle support posts. A total of eight support posts are being installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.
Vehicle Support Posts Installation onto Mobile Launcher
2017-05-25
At NASA's Kennedy Space Center in Florida, the final four vehicle support posts are being installed on the deck of the mobile launcher. A total of eight support posts are being installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.
Cryogenic fluid management program at MSFC
NASA Technical Reports Server (NTRS)
Schmidt, G. R.; Hastings, L. J.
1990-01-01
Cryogenic fluid management (CFM) is an important aspect in the design and operation of spacecraft propellant systems. Consequently, it represents a key technology in the development of future vehicles for orbital transfer, lunar transit and manned interplanetary (i.e., Mars) missions. Because of Marshall Space Flight Center's (MSFC's) leading role in the definition of such vehicles, the center is currently managing and conducting a variety of tests to support development of this technology. The purpose of this paper is to summarize these activities and present their status within the context of CFM technology requirements. The first section reviews MSFC's role, identifies the major emphases and thrusts of its program, and presents the overall schedule. The final part comprises the bulk of the report, and describes at length the objectives, approach and status of each project.
NASA Technical Reports Server (NTRS)
Levak, Daniel
1993-01-01
The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F-1A Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results, and the program cost estimates are described in more detail in Volume 1 - Executive Summary and in individual Final Task Reports.
Final Environmental Impact Statement for the Galileo Mission (Tier 2)
NASA Technical Reports Server (NTRS)
1989-01-01
This Final Environmental Impact Statement (FEIS) addresses the proposed action of completing the preparation and operation of the Galileo spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle in October 1989, and the alternative of canceling further work on the mission. The Tier 1 (program level) EIS (NASA 1988a) considered the Titan IV launch vehicle as an alternative booster stage for launch in May 1991 or later. The May 1991 Venus launch opportunity is considered a planetary back-up for the Magellan (Venus Radar Mapper) mission, the Galileo mission, and the Ulysses mission. Plans were underway to enable the use of a Titan IV launch vehicle for the planetary back-up. However, in November 1988, the U.S. Air Force, which procures the Titan IV for NASA, notified NASA that it could not provide a Titan IV vehicle for the May 1991 launch opportunity due to high priority Department of Defense requirements. Consequently, NASA terminated all mission planning for the Titan IV planetary back-up. A minimum of 3 years is required to implement mission-specific modifications to the basic Titan IV launch configuration; therefore, insufficient time is available to use a Titan IV vehicle in May 1991. Thus, the Titan IV launch vehicle is no longer a feasible alternative to the STS/Inertial Upper Stage (IUS) for the May 1991 launch opportunity.
Targetting and guidance program documentation. [a user's manual
NASA Technical Reports Server (NTRS)
Harrold, E. F.; Neyhard, J. F.
1974-01-01
A FORTRAN computer program was developed which automatically targets two and three burn rendezvous missions and performs feedback guidance using the GUIDE algorithm. The program was designed to accept a large class of orbit specifications and to automatically choose a two or three burn mission depending upon the time alignment of the vehicle and target. The orbits may be specified as any combination of circular and elliptical orbits and may be coplanar or inclined, but must be aligned coaxially with their perigees in the same direction. The program accomplishes the required targeting by repeatedly converging successively more complex missions. It solves the coplanar impulsive version of the mission, then the finite burn coplanar mission, and finally, the full plane change mission. The GUIDE algorithm is exercised in a feedback guidance mode by taking the targeted solution and moving the vehicle state step by step ahead in time, adding acceleration and navigational errors, and reconverging from the perturbed states at fixed guidance update intervals. A program overview is presented, along with a user's guide which details input, output, and the various subroutines.
NASA Astrophysics Data System (ADS)
Wang, Y. S.; Shen, G. Q.; Xing, Y. F.
2014-03-01
Based on the artificial neural network (ANN) technique, an objective sound quality evaluation (SQE) model for synthesis annoyance of vehicle interior noises is presented in this paper. According to the standard named GB/T18697, firstly, the interior noises under different working conditions of a sample vehicle are measured and saved in a noise database. Some mathematical models for loudness, sharpness and roughness of the measured vehicle noises are established and performed by Matlab programming. Sound qualities of the vehicle interior noises are also estimated by jury tests following the anchored semantic differential (ASD) procedure. Using the objective and subjective evaluation results, furthermore, an ANN-based model for synthetical annoyance evaluation of vehicle noises, so-called ANN-SAE, is developed. Finally, the ANN-SAE model is proved by some verification tests with the leave-one-out algorithm. The results suggest that the proposed ANN-SAE model is accurate and effective and can be directly used to estimate sound quality of the vehicle interior noises, which is very helpful for vehicle acoustical designs and improvements. The ANN-SAE approach may be extended to deal with other sound-related fields for product quality evaluations in SQE engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Morrow; Dimitri Hochard; Jeff Wishart
2011-09-01
Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in themore » further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, N.; Davis, S.
1979-07-01
Performance and handling tests on the Calspan RSV were performed in Italy by the Istituto Sperimentale Auto E Motori (ISAM) and in West Germany by Volkswagenwerk AG Wolfsburg. The ISAM tests evaluated the Calspan RSV in the areas of fuel economy, vehicle response, braking and handling, and driver environment. The Volkswagen tests evaluated the Calspan RSV in the areas of braking, steering, handling, and overturning immunity. The ISAM tests are unlike any previously used to evaluate American vehicles. Therefore, the Calspan RSV results are compared to those of ten European cars which had undergone identical tests. The Volkswagen test proceduresmore » were identical to those specified in the Research Safety Vehicle program. The Calspan RSV results are compared to the RSV specifications for these tests.« less
Solar Thermal Utility-Scale Joint Venture Program (USJVP) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANCINI,THOMAS R.
2001-04-01
Several years ago Sandia National Laboratories developed a prototype interior robot [1] that could navigate autonomously inside a large complex building to aid and test interior intrusion detection systems. Recently the Department of Energy Office of Safeguards and Security has supported the development of a vehicle that will perform limited security functions autonomously in a structured exterior environment. The goal of the first phase of this project was to demonstrate the feasibility of an exterior robotic vehicle for security applications by using converted interior robot technology, if applicable. An existing teleoperational test bed vehicle with remote driving controls was modifiedmore » and integrated with a newly developed command driving station and navigation system hardware and software to form the Robotic Security Vehicle (RSV) system. The RSV, also called the Sandia Mobile Autonomous Navigator (SANDMAN), has been successfully used to demonstrate that teleoperated security vehicles which can perform limited autonomous functions are viable and have the potential to decrease security manpower requirements and improve system capabilities.« less
2008-11-01
Configuration ................................ 23 Figure 18: Wake at 15 MPH for AOA = 6, 20 degrees...27 Figure 19: Wake at 35 MPH for AOA = 6, 20 degrees ............................................................... 28 Figure 20: Wake ...several different manners beginning with alpha (angle of attack) sweeps, then Q (velocity) sweeps, and finally randomized testing. Solid and wake
DOT National Transportation Integrated Search
2016-10-01
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
1965-03-01
The hydrogen-powered second stage is being lowered into place during the final phase of fabrication of the Saturn V moon rocket at North American's Seal Beach, California facility. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
DOT National Transportation Integrated Search
2016-10-01
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
DOT National Transportation Integrated Search
2016-06-29
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
Final Report of the Project "T & N Bucks." 1979-80.
ERIC Educational Resources Information Center
Old Bridge Township Board of Education, NJ.
During the 1979-80 school year, the Old Bridge Township School District promoted and implemented a career education program. Its chief aim was to expand career education from the middle school into the elementary and special education divisions. The project was used as a vehicle to enhance career education, expand and involve elementary teachers,…
NASA Technical Reports Server (NTRS)
1983-01-01
The economic factors involved in the design and utilization of the space station are investigated. Topics include the economic benefits associated with research and production, the orbit transfer vehicle, and satellite servicing. Program costs and design options are examined. The possibilities of financing from the private sector are discussed.
2001-12-01
Explosive Test Site Program Definition and Risk Reduction Permissible Exposure Limit Program Executive Office Propellants, Explosives, and...each test vehicle is flown in the captive mode and critical systems are functioned to further remove risk of failure due to the flight environment...of other inferior missiles would require a larger number of missiles, at increased procurement costs and risk to aircraft and crew, in order to
Study of emissions from passenger cars in six cities, FY79. Volume I. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
The standard mass emission test (Federal Test Procedure) was performed for emission factors determination on samples of passenger cars operating in Los Angeles, Houston, Denver, Phoenix, St. Louis and Washington, DC. These samples were also used for obtaining abbreviated emission test (short cycle test), fuel economy test, emission related maintenance and other data. Two-thousand forty-two (2,042) vehicles were tested under the program. The FTP and the Highway Fuel Economy Test were performed on all vehicles at all sites. Some vehicles which exceed Federal standards (excluding the Houston site) were subjected to a restorative maintenance evaluation. The evaluation employed in Losmore » Angeles was designed to address three-way catalyst technology. Some vehicles in all but the Los Angeles site were used to evaluate commercial repair facility performance in relation to idle speed and mixture adjustments. Other actions were taken in relation to each vehicle tested. These included an emission control system maladjustment/disablement and status inspection driveability evaluations and owner interviews to obtain vehicle maintenance and usage data.« less
Design study of toroidal traction CVT for electric vehicles
NASA Technical Reports Server (NTRS)
Raynard, A. E.; Kraus, J.; Bell, D. D.
1980-01-01
The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.
Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles
2007-01-30
KENNEDY SPACE CENTER, FLA. -- Employees and guests are seated in the Operations and Checkout (O&C) Building high bay for the ceremony commemorating the bay's transition for use by the Constellation Program. Originally built to process space vehicles in the Apollo era, the O&C Building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's human spaceflight vehicle of the future, will be capable of transporting four crewmembers for lunar missions and later will support crew transfers for Mars missions. Each Orion spacecraft also may be used to support up to six crewmembers to the International Space Station after the space shuttle is retired in 2010. Design, development and construction of Orion's components will be performed by Lockheed Martin for NASA at facilities throughout the country. Photo credit: NASA/Kim Shiflett
Robust Road Condition Detection System Using In-Vehicle Standard Sensors.
Castillo Aguilar, Juan Jesús; Cabrera Carrillo, Juan Antonio; Guerra Fernández, Antonio Jesús; Carabias Acosta, Enrique
2015-12-19
The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.
Robust Road Condition Detection System Using In-Vehicle Standard Sensors
Castillo Aguilar, Juan Jesús; Cabrera Carrillo, Juan Antonio; Guerra Fernández, Antonio Jesús; Carabias Acosta, Enrique
2015-01-01
The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method. PMID:26703605
NASA Technical Reports Server (NTRS)
Rediess, Herman A.; Hewett, M. D.
1991-01-01
The requirements are assessed for the use of remote computation to support HRV flight testing. First, remote computational requirements were developed to support functions that will eventually be performed onboard operational vehicles of this type. These functions which either cannot be performed onboard in the time frame of initial HRV flight test programs because the technology of airborne computers will not be sufficiently advanced to support the computational loads required, or it is not desirable to perform the functions onboard in the flight test program for other reasons. Second, remote computational support either required or highly desirable to conduct flight testing itself was addressed. The use is proposed of an Automated Flight Management System which is described in conceptual detail. Third, autonomous operations is discussed and finally, unmanned operations.
Study of Alternate Space Shuttle Concepts. Volume 2. Part 1: Concept Analysis and Definition
NASA Technical Reports Server (NTRS)
1971-01-01
Three different space shuttle systems have been defined and analyzed. The first is a stage-and-one-half system optimized to meet program requirements. The second is a two-stage, fully reusable system also designed to meet program requirements. The third is a convertible system which operates initially as a stage-and-one-half system and is subsequently converted to a two-stage, fully reusable system by reconfiguration of the orbiter vehicle and development of a booster vehicle. The design and performance of this third system must necessarily be compromised somewhat to facilitate the conversion. For each system, the applicable requirements, ground rules, and assumptions are defined. The characteristics of each system are listed and a detailed description and analysis of the system are presented. Finally, a cost analysis for the system is given.
NASA Technical Reports Server (NTRS)
Matlock, Steve
2001-01-01
This is the final report and addresses all of the work performed on this program. Specifically, it covers vehicle architecture background, definition of six baseline engine cycles, reliability baseline (space shuttle main engine QRAS), and component level reliability/performance/cost for the six baseline cycles, and selection of 3 cycles for further study. This report further addresses technology improvement selection and component level reliability/performance/cost for the three cycles selected for further study, as well as risk reduction plans, and recommendation for future studies.
Orion Post-Landing Crew Thermal Control Modeling and Analysis Results
NASA Technical Reports Server (NTRS)
Cross, Cynthia D.; Bue, Grant; Rains, George E.
2009-01-01
In a vehicle constrained by mass and power, it is necessary to ensure that during the process of reducing hardware mass and power that the health and well being of the crew is not compromised in the design process. To that end, it is necessary to ensure that in the final phase of flight - recovery, that the crew core body temperature remains below the crew cognitive deficit set by the Constellation program. This paper will describe the models used to calculate the thermal environment of the spacecraft after splashdown as well as the human thermal model used to calculate core body temperature. Then the results of these models will be examined to understand the key drivers for core body temperature. Finally, the analysis results will be used to show that additional cooling capability must be added to the vehicle to ensure crew member health post landing.
Operation of the Lectric Leopard. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, I.O.
1981-07-01
The vehicle selected for the demonstration project is a Lectric Leopard built by US Electricar Corporation. The vehicle was unable to fulfill the intentions of the program because of continuous failures in the control system and an inability of the factory to fix them. Our requests to obtain circuit diagrams of the system so that we could make repairs ourselves were turned down, stating that this information was proprietary. The vehicle was demonstrated three times, to a student audience, Public Service Electric and Gas Company Day at Stevens and the Rotary Club of Hoboken; but because of the large amountsmore » of downtime the vehicle only accumulated 900 miles over a one year period. In May 1981 we were informed that in a frontal barrier test, the rear batteries had broken loose delivering a second impact on the driver and dumping several gallons of acid into the occupant compartment. On the advise of DOE the vehicle has not been used since. If Stevens is permitted to keep the vehicle it is our intent to make it the subject of several student senior design projects to make the vehicle safe for use by containerizing the rear batteries.« less
On March 24, 1993 EPA finalized a new test procedure to measure evaporative emissions from motor vehicles. The amendments modify several of the test procedure’s tolerances, equipment specifications, and procedural steps.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-08
... thresholds. \\2\\ 75 FR 31559. As we committed to do in the Tailoring Rule, we have been exploring a variety of... Corporate Average Fuel Economy Standards; Final Rule,'' 75 FR 25,324 (May 7, 2010) (the Light-duty Vehicle... announced a plan to explore streamlining techniques that could make the permitting programs more efficient...
2005-09-06
affected surface water, 3) adversely affected groundwater quantity or quality, or 4) caused a need that exceeded the existing potable supply or...goby is from Tillas Slough (mouth of the Smith River) in Del Norte County, south to Colonel Louis D. Van Mullem, Jr. (1-8-96-F/C-29) 5 Agua Hedionda
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Canadian Space Agency astronaut Chris Hadfield address the attendees at a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Roger Elliot with United Space Alliance addresses the attendees at a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Center Director Bob Cabana speaks to the attendees at a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for
, and economic benefits. As of December 31, 2011, the deployed vehicles funded by the DOE ARRA award a minimum of 68 jobs. SCAQMD plans to provide a final estimate of the job benefits in the first additional benefits from its participation in the SCAQMD drayage truck program: "I think there are
STS-335 crew training, Tool/Repair Kits with instructor Jeff Stone
2010-11-03
JSC2010-E-183222 (3 Nov. 2010) --- NASA astronaut Chris Ferguson, STS-135 commander, is pictured during a tools and repair kits training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 crew training, Tool/Repair Kits with instructor Jeff Stone
2010-11-03
JSC2010-E-183228 (3 Nov. 2010) --- NASA astronaut Sandy Magnus, STS-135 mission specialist, participates in a tools and repair kits training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 crew training, Tool/Repair Kits with instructor Jeff Stone
2010-11-03
JSC2010-E-183239 (3 Nov. 2010) --- NASA astronaut Rex Walheim, STS-135 mission specialist, participates in a tools and repair kits training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 crew training, Tool/Repair Kits with instructor Jeff Stone
2010-11-03
JSC2010-E-183214 (3 Nov. 2010) --- NASA astronaut Sandy Magnus, STS-135 mission specialist, participates in a tools and repair kits training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 crew training, Tool/Repair Kits with instructor Jeff Stone
2010-11-03
JSC2010-E-183218 (3 Nov. 2010) --- NASA astronaut Chris Ferguson, STS-135 commander, is pictured during a tools and repair kits training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 crew training, Tool/Repair Kits with instructor Jeff Stone
2010-11-03
JSC2010-E-183232 (3 Nov. 2010) --- NASA astronaut Doug Hurley, STS-135 pilot, participates in a tools and repair kits training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 crew training, Tool/Repair Kits with instructor Jeff Stone
2010-11-03
JSC2010-E-183226 (3 Nov. 2010) --- NASA astronaut Rex Walheim, STS-135 mission specialist, participates in a tools and repair kits training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 crew training, Tool/Repair Kits with instructor Jeff Stone
2010-11-03
JSC2010-E-183223 (3 Nov. 2010) --- NASA astronaut Doug Hurley, STS-135 pilot, is pictured during a tools and repair kits training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 crew training, Tool/Repair Kits with instructor Jeff Stone
2010-11-03
JSC2010-E-183215 (3 Nov. 2010) --- NASA astronaut Rex Walheim, STS-135 mission specialist, participates in a tools and repair kits training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
Upgraded automotive gas turbine engine design and development program, volume 2
NASA Technical Reports Server (NTRS)
Wagner, C. E. (Editor); Pampreen, R. C. (Editor)
1979-01-01
Results are presented for the design and development of an upgraded engine. The design incorporated technology advancements which resulted from development testing on the Baseline Engine. The final engine performance with all retro-fitted components from the development program showed a value of 91 HP at design speed in contrast to the design value of 104 HP. The design speed SFC was 0.53 versus the goal value of 0.44. The miss in power was primarily due to missing the efficiency targets of small size turbomachinery. Most of the SFC deficit was attributed to missed goals in the heat recovery system relative to regenerator effectiveness and expected values of heat loss. Vehicular fuel consumption, as measured on a chassis dynamometer, for a vehicle inertia weight of 3500 lbs., was 15 MPG for combined urban and highway driving cycles. The baseline engine achieved 8 MPG with a 4500 lb. vehicle. Even though the goal of 18.3 MPG was not achieved with the upgraded engine, there was an improvement in fuel economy of 46% over the baseline engine, for comparable vehicle inertia weight.
Space shuttle flying qualities and criteria assessment
NASA Technical Reports Server (NTRS)
Myers, T. T.; Johnston, D. E.; Mcruer, Duane T.
1987-01-01
Work accomplished under a series of study tasks for the Flying Qualities and Flight Control Systems Design Criteria Experiment (OFQ) of the Shuttle Orbiter Experiments Program (OEX) is summarized. The tasks involved review of applicability of existing flying quality and flight control system specification and criteria for the Shuttle; identification of potentially crucial flying quality deficiencies; dynamic modeling of the Shuttle Orbiter pilot/vehicle system in the terminal flight phases; devising a nonintrusive experimental program for extraction and identification of vehicle dynamics, pilot control strategy, and approach and landing performance metrics, and preparation of an OEX approach to produce a data archive and optimize use of the data to develop flying qualities for future space shuttle craft in general. Analytic modeling of the Orbiter's unconventional closed-loop dynamics in landing, modeling pilot control strategies, verification of vehicle dynamics and pilot control strategy from flight data, review of various existent or proposed aircraft flying quality parameters and criteria in comparison with the unique dynamic characteristics and control aspects of the Shuttle in landing; and finally a summary of conclusions and recommendations for developing flying quality criteria and design guides for future Shuttle craft.
2007-01-30
KENNEDY SPACE CENTER, FLA. -- Russell Romanella, director of the International Space Station/Payload Processing Directorate at Kennedy Space Center, addresses guests and attendees in the Operations and Checkout (O&C) Building high bay in the ceremony commemorating the bay's transition for use by the Constellation Program. Seated on the dais at right are Cleon Lacefield, Lockheed Martin program manager; Thad Altman, representative of the State of Florida; Bill Parsons, Kennedy Space Center director; Steve Koller, executive director of Space Florida; and Skip Hatfield, Orion Project manager. Originally built to process space vehicles in the Apollo era, the O&C Building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's human spaceflight vehicle of the future, will be capable of transporting four crewmembers for lunar missions and later will support crew transfers for Mars missions. Each Orion spacecraft also may be used to support up to six crewmembers to the International Space Station after the space shuttle is retired in 2010. Design, development and construction of Orion's components will be performed by Lockheed Martin for NASA at facilities throughout the country. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1991-01-01
This document presents trade studies and reference concept designs accomplished during a study of Space Transfer Concepts and Analyses for Exploration Missions (STCAEM). This volume contains the major top level trades, level 2 trades conducted in support of NASA's Lunar/Mars Exploration Program Office, and a synopsis of the vehicles for different propulsion systems under trade consideration. The vehicles are presented in more detail in other volumes of this report. Book 1 of Volume 1 covers the following analyses: lunar/Mars commonality trades, lunar/Mars mission operations, and Mars transfer systems.
Human-Rated Space Vehicle Backup Flight Systems
NASA Technical Reports Server (NTRS)
Davis, Jeffrey A.; Busa, Joseph L.
2004-01-01
Human rated space vehicles have historically employed a Backup Flight System (BFS) for the main purpose of mitigating the loss of the primary avionics control system. Throughout these projects, however, the underlying philosophy and technical implementation vary greatly. This paper attempts to coalesce each of the past space vehicle program's BFS design and implementation methodologies with the accompanying underlining philosophical arguments that drove each program to such decisions. The focus will be aimed at Mercury, Gemini, Apollo, and Space Shuttle However, the ideologies and implementation of several commercial and military aircraft are incorporated as well to complete the full breadth view of BFS development across the varying industries. In particular to the non-space based vehicles is the notion of deciding not to utilize a BFS. A diverse analysis of BFS to primary system benefits in terms of reliability against all aspects of project development are reviewed and traded. The risk of engaging the BFS during critical stages of flight (e.g. ascent and entry), the level of capability of the BFS (subset capability of main system vs. equivalent system), and the notion of dissimilar hardware and software design are all discussed. Finally, considerations for employing a BFS on future human-rated space missions are reviewed in light of modern avionics architectures and mission scenarios implicit in exploration beyond low Earth orbit.
2007-01-30
KENNEDY SPACE CENTER, FLA. -- After a ceremony to commemorate the transition of the historic Operations and Checkout (O&C) Building high bay for use by the Constellation Program, representatives from NASA, Lockheed Martin, Space Florida and the state of Florida look at the banner, unfurled by Kennedy Space Center Director Bill Parsons (center), spotlighting the Orion crew exploration vehicle that will be assembled in the O&C. From left are Russell Romanella, director of the International Space Station/Payload Processing Directorate at Kennedy Space Center; Thad Altman, representative of the State of Florida; Cleon Lacefield, Lockheed Martin program manager; Parsons; Steve Koller, executive director of Space Florida (turned away); and Skip Hatfield, Orion Project manager. Originally built to process space vehicles in the Apollo era, the O&C Building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's human spaceflight vehicle of the future, will be capable of transporting four crewmembers for lunar missions and later will support crew transfers for Mars missions. Each Orion spacecraft also may be used to support up to six crewmembers to the International Space Station after the space shuttle is retired in 2010. Design, development and construction of Orion's components will be performed by Lockheed Martin for NASA at facilities throughout the country. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1979-01-01
A description and listing is presented of two computer programs: Hybrid Vehicle Design Program (HYVELD) and Hybrid Vehicle Simulation Program (HYVEC). Both of the programs are modifications and extensions of similar programs developed as part of the Electric and Hybrid Vehicle System Research and Development Project.
77 FR 73039 - Notice of Issuance of Final Determination Concerning Vantage Electric Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... Determination Concerning Vantage Electric Vehicles AGENCY: U.S. Customs and Border Protection, Department of... of Vantage Vehicle electric trucks and vans. Based upon the facts presented, CBP has concluded in the final determination that the United States is the country of origin of the Vantage Vehicle EVX1000 and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
...-Road Vehicle Management Plan, Wrangell-St. Elias National Park and Preserve AGENCY: National Park... a Final Environmental Impact Statement (FEIS) on Off-Road Vehicle Management in the Nabesna District... preferred alternative and four action alternatives for management of off-road vehicles in the Nabesna...
76 FR 44829 - Federal Motor Vehicle Safety Standards; Air Brake Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
... [Docket No. NHTSA-2009-0175] RIN 2127-AK84 Federal Motor Vehicle Safety Standards; Air Brake Systems... final rule that amended the Federal motor vehicle safety standard for air brake systems by requiring... July 27, 2009, NHTSA published a final rule in the Federal Register amending Federal Motor Vehicle...
Lean Gasoline System Development for Fuel Efficient Small Cars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Stuart R.
2013-11-25
The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economymore » of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.« less
NASA Technical Reports Server (NTRS)
1971-01-01
Computational techniques were developed and assimilated for the design optimization. The resulting computer program was then used to perform initial optimization and sensitivity studies on a typical thermal protection system (TPS) to demonstrate its application to the space shuttle TPS design. The program was developed in Fortran IV for the CDC 6400 but was subsequently converted to the Fortran V language to be used on the Univac 1108. The program allows for improvement and update of the performance prediction techniques. The program logic involves subroutines which handle the following basic functions: (1) a driver which calls for input, output, and communication between program and user and between the subroutines themselves; (2) thermodynamic analysis; (3) thermal stress analysis; (4) acoustic fatigue analysis; and (5) weights/cost analysis. In addition, a system total cost is predicted based on system weight and historical cost data of similar systems. Two basic types of input are provided, both of which are based on trajectory data. These are vehicle attitude (altitude, velocity, and angles of attack and sideslip), for external heat and pressure loads calculation, and heating rates and pressure loads as a function of time.
A set-covering based heuristic algorithm for the periodic vehicle routing problem.
Cacchiani, V; Hemmelmayr, V C; Tricoire, F
2014-01-30
We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011) [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems.
A set-covering based heuristic algorithm for the periodic vehicle routing problem
Cacchiani, V.; Hemmelmayr, V.C.; Tricoire, F.
2014-01-01
We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011) [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems. PMID:24748696
Wireless Roadside Inspection Proof of Concept Test Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capps, Gary J; Franzese, Oscar; Knee, Helmut E
2009-03-01
The U.S. Department of Transportation (DOT) FMCSA commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the condition of the vehicles and their drivers. It is hypothesized that these inspections will: -- Increase safety -- Decrease the number of unsafe commercial vehicles on the road; -- Increase efficiency -- Speed up the inspection process, enabling more inspections to occur, at least on par with the number of weight inspections; -- Improve effectiveness --more » Reduce the probability of drivers bypassing CMV inspection stations and increase the likelihood that fleets will attempt to meet the safety regulations; and -- Benefit industry -- Reduce fleet costs, provide good return-on-investment, minimize wait times, and level the playing field. The WRI Program is defined in three phases which are: Phase 1: Proof of Concept Test (POC) Testing of commercially available off-the-shelf (COTS) or near-COTS technology to validate the wireless inspection concept. Phase 2: Pilot Test Safety technology maturation and back office system integration Phase 3: Field Operational Test Multi-vehicle testing over a multi-state instrumented corridor This report focuses on Phase 1 efforts that were initiated in March, 2006. Technical efforts dealt with the ability of a Universal Wireless Inspection System (UWIS) to collect driver, vehicle, and carrier information; format a Safety Data Message Set from this information; and wirelessly transmit a Safety Data Message Set to a roadside receiver unit or mobile enforcement vehicle.« less
DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization
NASA Technical Reports Server (NTRS)
Williams, C. H.; Spurlock, O. F.
2014-01-01
From the late 1960's through 1997, the leadership of NASA's Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRC's primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the code's operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960's is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the Atlas/Centaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUP's many major impacts on launches are discussed including Intelsat, Voyager, Pioneer Venus, HEAO, Galileo, and Cassini.
DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization
NASA Technical Reports Server (NTRS)
Spurlock, O. Frank; Williams, Craig H.
2015-01-01
From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on launches are discussed including Intelsat, Voyager, Pioneer Venus, HEAO, Galileo, and Cassini.
A green vehicle routing problem with customer satisfaction criteria
NASA Astrophysics Data System (ADS)
Afshar-Bakeshloo, M.; Mehrabi, A.; Safari, H.; Maleki, M.; Jolai, F.
2016-12-01
This paper develops an MILP model, named Satisfactory-Green Vehicle Routing Problem. It consists of routing a heterogeneous fleet of vehicles in order to serve a set of customers within predefined time windows. In this model in addition to the traditional objective of the VRP, both the pollution and customers' satisfaction have been taken into account. Meanwhile, the introduced model prepares an effective dashboard for decision-makers that determines appropriate routes, the best mixed fleet, speed and idle time of vehicles. Additionally, some new factors evaluate the greening of each decision based on three criteria. This model applies piecewise linear functions (PLFs) to linearize a nonlinear fuzzy interval for incorporating customers' satisfaction into other linear objectives. We have presented a mixed integer linear programming formulation for the S-GVRP. This model enriches managerial insights by providing trade-offs between customers' satisfaction, total costs and emission levels. Finally, we have provided a numerical study for showing the applicability of the model.
Simulating an underwater vehicle self-correcting guidance system with Simulink
NASA Astrophysics Data System (ADS)
Fan, Hui; Zhang, Yu-Wen; Li, Wen-Zhe
2008-09-01
Underwater vehicles have already adopted self-correcting directional guidance algorithms based on multi-beam self-guidance systems, not waiting for research to determine the most effective algorithms. The main challenges facing research on these guidance systems have been effective modeling of the guidance algorithm and a means to analyze the simulation results. A simulation structure based on Simulink that dealt with both issues was proposed. Initially, a mathematical model of relative motion between the vehicle and the target was developed, which was then encapsulated as a subsystem. Next, steps for constructing a model of the self-correcting guidance algorithm based on the Stateflow module were examined in detail. Finally, a 3-D model of the vehicle and target was created in VRML, and by processing mathematical results, the model was shown moving in a visual environment. This process gives more intuitive results for analyzing the simulation. The results showed that the simulation structure performs well. The simulation program heavily used modularization and encapsulation, so has broad applicability to simulations of other dynamic systems.
Optimization for Service Routes of Pallet Service Center Based on the Pallet Pool Mode
He, Shiwei; Song, Rui
2016-01-01
Service routes optimization (SRO) of pallet service center should meet customers' demand firstly and then, through the reasonable method of lines organization, realize the shortest path of vehicle driving. The routes optimization of pallet service center is similar to the distribution problems of vehicle routing problem (VRP) and Chinese postman problem (CPP), but it has its own characteristics. Based on the relevant research results, the conditions of determining the number of vehicles, the one way of the route, the constraints of loading, and time windows are fully considered, and a chance constrained programming model with stochastic constraints is constructed taking the shortest path of all vehicles for a delivering (recycling) operation as an objective. For the characteristics of the model, a hybrid intelligent algorithm including stochastic simulation, neural network, and immune clonal algorithm is designed to solve the model. Finally, the validity and rationality of the optimization model and algorithm are verified by the case. PMID:27528865
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
...This final rule announces NHTSA's determination that there are no new model year (MY) 2011 light duty truck lines subject to the parts-marking requirements of the Federal motor vehicle theft prevention standard because they have been determined by the agency to be high-theft or because they have a majority of interchangeable parts with those of a passenger motor vehicle line. This final rule also identifies those vehicle lines that have been granted an exemption from the parts-marking requirements because the vehicles are equipped with antitheft devices determined to meet certain statutory criteria.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
...This final rule announces NHTSA's determination that there are no new model year (MY) 2012 light duty truck lines subject to the parts-marking requirements of the Federal motor vehicle theft prevention standard because they have been determined by the agency to be high-theft or because they have a majority of interchangeable parts with those of a passenger motor vehicle line. This final rule also identifies those vehicle lines that have been granted an exemption from the parts-marking requirements because the vehicles are equipped with antitheft devices determined to meet certain statutory criteria.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
...This final rule announces NHTSA's determination that there are no new model year (MY) 2014 light duty truck lines subject to the parts-marking requirements of the Federal motor vehicle theft prevention standard because they have been determined by the agency to be high-theft or because they have a majority of interchangeable parts with those of a passenger motor vehicle line. This final rule also identifies those vehicle lines that have been granted an exemption from the parts-marking requirements because the vehicles are equipped with antitheft devices determined to meet certain statutory criteria.
2010-07-01
Final Environmental Assessment 22 Several invasive exotic plant species are also found on the station , particularly in disturbed areas such as...Department of Transportation EA Environmental Assessment Ec Debris Casualty Area EELV Evolved Expendable Launch Vehicle EIS Environmental Impact...Canaveral Air Force Station (CCAFS) in Florida (FL). This Environmental Assessment (EA) documents the results of a study of the potential
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Canadian Space Agency astronaut Chris Hadfield (left) and NASA astronaut Gregory C. Johnson attend a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, United Space Alliance employees gather and hold up a banner at a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
2011-07-07
Warren Hinson, a NASA Emergency Response Team (ERT) member, keeps an eye out while flying near the Vehicle Assembly Building (VAB) prior to the launch of space shuttle Atlantis, STS-135, Friday, July 8, 2011, at Kennedy Space Center in Cape Canaveral, Fla. The launch of Atlantis, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
STS-335 crew training, Tool/Repair Kits with instructor Jeff Stone
2010-11-03
JSC2010-E-183213 (3 Nov. 2010) --- NASA astronauts Chris Ferguson (left), STS-135 commander; and Rex Walheim, mission specialist, participate in a tools and repair kits training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 crew training, Tool/Repair Kits with instructor Jeff Stone
2010-11-03
JSC2010-E-183217 (3 Nov. 2010) --- NASA astronauts Doug Hurley (right), STS-135 pilot; and Rex Walheim, mission specialist, participate in a tools and repair kits training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
Damage Arresting Composites for Shaped Vehicles - Phase II Final Report
NASA Technical Reports Server (NTRS)
Velicki, Alex; Yovanof, Nicolette; Baraja, Jaime; Linton, Kim; Li, Victor; Hawley, Arthur; Thrash, Patrick; DeCoux, Steve; Pickell, Robert
2011-01-01
This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration. In addition to the analytical studies, a three specimen test program was also completed to assess the concept under axial tension loading, axial compression loading, and internal pressure loading.
Spacecraft Charging Issues for Launch Vehicles
NASA Technical Reports Server (NTRS)
Buhler, Janessa L.; Minow, Joseph I.; Trout, Dawn H.
2014-01-01
Spacecraft charging is well known threat to successful long term spacecraft operations and instrument reliability in orbits that spend significant time in hot electron environments. In recent years, spacecraft charging has increasingly been recognized as a potentially significant engineering issue for launch vehicles used to deploy spacecraft using (a) low Earth orbit (LEO), high inclination flight trajectories that pass through the auroral zone, (b) geostationary transfer orbits that require exposures to the hot electron environments in the Earths outer radiation belts, and (c) LEO escape trajectories using multiple phasing orbits through the Earths radiation belts while raising apogee towards a final Earth escape geometry. Charging becomes an issue when significant areas of exposed insulating materials or ungrounded conductors are used in the launch vehicle design or the payload is designed for use in a benign charging region beyond the Earths magnetosphere but must survive passage through the strong charging regimes of the Earths radiation belts. This presentation will first outline the charging risks encountered on typical launch trajectories used to deploy spacecraft into Earth orbit and Earth escape trajectories. We then describe the process used by NASAs Launch Services Program to evaluate when surface and internal charging is a potential risk to a NASA mission. Finally, we describe the options for mitigating charging risks including modification of the launch vehicle andor payload design and controlling the risk through operational launch constraints to avoid significant charging environments.
Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities
NASA Technical Reports Server (NTRS)
Micol, J. R.
1998-01-01
Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.
NASA Technical Reports Server (NTRS)
1971-01-01
Individualized program direct costs for each satellite program are presented. This breakdown provides the activity level dependent costs for each satellite program. The activity level dependent costs, or, more simply, program direct costs, are comprised of the total payload costs (as these costs are strictly program dependent) and the direct launch vehicle costs. Only those incremental launch vehicle costs associated directly with the satellite program are considered. For expendable launch vehicles the direct costs include the vehicle investment hardware costs and the launch operations costs. For the reusable STS vehicles the direct costs include only the launch operations, recovery operations, command and control, vehicle maintenance, and propellant support. The costs associated with amortization of reusable vehicle investment, RDT&E range support, etc., are not included.
41 CFR 101-26.501-9 - Centralized motor vehicle leasing program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Centralized motor vehicle...-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 101-26.501-9 Centralized motor vehicle leasing program. GSA has a centralized leasing program to provide an additional source of motor vehicle support to...
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
Achieving integrated convoys: cargo unmanned ground vehicle development and experimentation
NASA Astrophysics Data System (ADS)
Zych, Noah; Silver, David; Stager, David; Green, Colin; Pilarski, Thomas; Fischer, Jacob
2013-05-01
The Cargo UGV project was initiated in 2010 with the aim of developing and experimenting with advanced autonomous vehicles capable of being integrated unobtrusively into manned logistics convoys. The intent was to validate two hypotheses in complex, operationally representative environments: first, that unmanned tactical wheeled vehicles provide a force protection advantage by creating standoff distance to warfighters during ambushes or improvised explosive device attacks; and second, that these UGVs serve as force multipliers by enabling a single operator to control multiple unmanned assets. To assess whether current state-of-the-art autonomous vehicle technology was sufficiently capable to permit resupply missions to be executed with decreased risk and reduced manpower, and to assess the effect of UGVs on customary convoy tactics, the Marine Corps Warfighting Laboratory and the Joint Ground Robotics Enterprise sponsored Oshkosh Defense and the National Robotics Engineering Center to equip two standard Marine Corps cargo trucks for autonomous operation. This paper details the system architecture, hardware implementation, and software modules developed to meet the vehicle control, perception, and planner requirements compelled by this application. Additionally, the design of a custom human machine interface and an accompanying training program are described, as is the creation of a realistic convoy simulation environment for rapid system development. Finally, results are conveyed from a warfighter experiment in which the effectiveness of the training program for novice operators was assessed, and the impact of the UGVs on convoy operations was observed in a variety of scenarios via direct comparison to a fully manned convoy.
UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Paul
This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programsmore » from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davis's existing GATE centers have become the campus's research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.« less
Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Miller, Charles G.
1998-01-01
Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamics and physical processes, is the genesis for the design and development of advanced space transportation vehicles and provides crucial information to other disciplines such as structures, materials, propulsion, avionics, and guidance, navigation and control. Sources of aerothermodynamic information are ground-based facilities, Computational Fluid Dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this aerothermodynamic triad provides the optimum aerothermodynamic design to safely satisfy mission requirements while reducing design conservatism, risk and cost. The iterative aerothermodynamic process for initial screening/assessment of aerospace vehicle concepts, optimization of aerolines to achieve/exceed mission requirements, and benchmark studies for final design and establishment of the flight data book are reviewed. Aerothermodynamic methodology centered on synergism between ground-based testing and CFD predictions is discussed for various flow regimes encountered by a vehicle entering the Earth s atmosphere from low Earth orbit. An overview of the resources/infrastructure required to provide accurate/creditable aerothermodynamic information in a timely manner is presented. Impacts on Langley s aerothermodynamic capabilities due to recent programmatic changes such as Center reorganization, downsizing, outsourcing, industry (as opposed to NASA) led programs, and so forth are discussed. Sample applications of these capabilities to high Agency priority, fast-paced programs such as Reusable Launch Vehicle (RLV)/X-33 Phases I and 11, X-34, Hyper-X and X-38 are presented and lessons learned discussed. Lastly, enhancements in ground-based testing/CFD capabilities necessary to partially/fully satisfy future requirements are addressed.
Operational Considerations and Comparisons of the Saturn, Space Shuttle and Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Cruzen, Craig; Chavers, Greg; Wittenstein, Jerry
2009-01-01
The United States (U.S.) space exploration policy has directed the National Aeronautics and Space Administration (NASA) to retire the Space Shuttle and to replace it with a new generation of space transportation systems for crew and cargo travel to the International Space Station, the Moon, Mars, and beyond. As part of the Constellation Program, engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama are working to design and build the Ares I, the first of two large launch vehicles to return humans to the Moon. A deliberate effort is being made to ensure a high level of operability in order to significantly increase safety and availability as well as reduce recurring costs of this new launch vehicle. It is the Ares Project's goal to instill operability as part of the requirements development, design and operations of the vehicle. This paper will identify important factors in launch vehicle design that affect the operability and availability of the system. Similarities and differences in operational constraints will also be compared between the Saturn V, Space Shuttle and current Ares I design. Finally, potential improvements in operations and operability for large launch vehicles will be addressed. From the examples presented, the paper will discuss potential improvements for operability for future launch vehicles.
An adaptable, low cost test-bed for unmanned vehicle systems research
NASA Astrophysics Data System (ADS)
Goppert, James M.
2011-12-01
An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.
Reducing school bus/light-vehicle conflicts through connected vehicle communications : final report.
DOT National Transportation Integrated Search
2016-09-15
This project aimed to develop and test a concept for improving the safety of school bus transportation using connected vehicle technology. The project consisted of three key steps that led to a final road study: 1) conducting focus groups with light ...
1967-01-01
NASA used barges for transporting full-sized stages for the Saturn I, Saturn IB, and Saturn V vehicles between the Marshall Space Flight Center (MSFC), the manufacturing plant at the Michoud Assembly Facility (MAF), the Mississippi Test Facility for testing, and the Kennedy Space Center. The barges traveled from the MSFC dock to the MAF, a total of 1,086.7 miles up the Tennessee River and down the Mississippi River. The barges also transported the assembled stages of the Saturn vehicle from the MAF to the Kennedy Space Center, a total of 932.4 miles along the Gulf of Mexico and up along the Atlantic Ocean, for the final assembly and the launch. This photograph shows the barge Orion at the MSFC dock.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... infrastructure, nonroad equipment, and emerging technologies related to those electric drive vehicles. As... for investment in an emerging technology relating to any'' of the enumerated electric drive vehicles... Fuel Transportation Program (AFTP or Program), by including EISA-specified electric drive vehicles and...
NYPA/TH!NK Clean Commute Program Report – Inception Through May 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Karner; James Francfort; Randall Solomon
The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric vehicles for transportation in urban applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations, where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK city vehicles is located at the commuters’ private residences as well as seven train stations. Ford leased 97 TH!NK city electric vehicles to commuters from Westchester, Putnam, Rockland, Queens, Nassau, and Suffolk countiesmore » for $199 per month per vehicle. The first Clean Commute Program vehicle deliveries occurred late in 2001, with data collection commencing in February 2002. Through May 2004, 24 of the lessees have returned their vehicles to Ford and no longer participate in the Clean Commute Program. Reasons given for returning the vehicles include relocation out of the Program area, change in employment status, change in commuting status, and, in a few cases, dissatisfaction with the vehicle. Additionally, 13 vehicles have been returned to Ford as their leases have completed. In August 2002, Ford announced that it was ceasing production of the TH!NK city and would not extend any TH!NK city leases. Through May 2004, participants in the Clean Commute Program have driven their vehicles over 370,000 miles, avoiding the use of over 17,000 gallons of gasoline. The TH!NK city vehicles are driven an average of between 180 and 230 miles per month, and over 95% of all trips taken with the TH!NK city vehicles replace trips previously taken in gasoline vehicles. This report covers the period from Program inception through May 2004.« less
Cooperative Control of Multiple Unmanned Autonomous Vehicles
2005-06-03
I I Final Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cooperative Control of Multiple Unmanned Autonomous Vehicles F49620-01-1-0337 6. AUTHOR(S... Autonomous Vehicles Final Report Kendall E. Nygard Department of Computer Science and Operations Research North Dakota State University Fargo, ND 58105-5164
A study of emissions from passenger cars in six cities. Volume B. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
This is the second of two volumes presenting results from a series of exhaust emission and fuel economy tests performed on a representative sample of vehicles in six U.S. cities. Data presented in the following sections are generated in appendix form as part of a contract with the EPA to perform work for the FY 77 Passenger Car Emission Factor Program. Volume B includes the balance of individual vehicle data derived from the Two Speed Idle and Federal Three Mode tests. It also includes the results of Vehicle Driveability Evaluations, Maladjustment and Disablement Inspections, tire inspections and a listing ofmore » comparative mileage data. Information presented in Volume B should not be interpreted without the benefit of additional descriptive data presented in Volume A as both volumes comprise the results of a single work effort and are not intended to be considered separately.« less
Research on motor rotational speed measurement in regenerative braking system of electric vehicle
NASA Astrophysics Data System (ADS)
Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua
2016-01-01
Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.
2009-01-26
CAPE CANAVERAL, Fla. – Representatives from NASA, Lockheed Martin, Space Florida and the state of Florida participate in a ceremony at NASA's Kennedy Space Center in Florida to mark the completion of renovations on the historic Operations and Checkout Building high bay for use by the Constellation Program. At right, Richard Harris, with Lockheed Martin, describes activities that will take place in the building. Originally built to process space vehicles in the Apollo era, the building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's future human spaceflight vehicle, will be capable of transporting four crew members to the moon and later will support crew transfers to Mars. The Orion spacecraft also will be used to transport crew members to the International Space Station after space shuttles are retired in 2010. The first operational launch of Orion atop an Ares I rocket is planned for 2015. Photo credit: NASA/Dimitri Gerondidakis
2009-01-26
CAPE CANAVERAL, Fla. – Representatives from NASA, Lockheed Martin, Space Florida and the state of Florida participate in a ceremony at NASA's Kennedy Space Center in Florida to mark the completion of renovations on the historic Operations and Checkout Building high bay for use by the Constellation Program. At left, Richard Harris, with Lockheed Martin, describes activities that will take place in the building. Originally built to process space vehicles in the Apollo era, the building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's future human spaceflight vehicle, will be capable of transporting four crew members to the moon and later will support crew transfers to Mars. The Orion spacecraft also will be used to transport crew members to the International Space Station after space shuttles are retired in 2010. The first operational launch of Orion atop an Ares I rocket is planned for 2015. Photo credit: NASA/Dimitri Gerondidakis
1968-12-19
Pictured from left to right, the Apollo 9 astronauts, James A. McDivitt, David R. Scott, and Russell L. Schweickart, pause in front of the Apollo/Saturn V space vehicle that would launch the Apollo 8 crew. The launch of the Apollo 9 (Saturn V launch vehicle, SA-504) took place on March 3, 1968. The Apollo 9 spacecraft, in the lunar mission configuration, was tested in Earth orbit. The mission was designed to rehearse all the steps and reproduce all the events of the Apollo 11 mission with the exception of the lunar touchdown, stay, and liftoff. The command and service modules, and the lunar module were used in flight procedures identical to those that would later take similar vehicles to the Moon, and a landing. The flight mechanics, mission support systems, communications, and recording of data were tested in a final round of verification. Astronauts Scott and Schweickart conducted Extravehicular Activity during this mission.
The Role of Flight Experiments in the Development of Cryogenic Fluid Management Technologies
NASA Technical Reports Server (NTRS)
Chato, David J.
2006-01-01
This paper reviews the history of cryogenic fluid management technology development and infusion into both the Saturn and Centaur vehicles. Ground testing and analysis proved inadequate to demonstrate full scale performance. As a consequence flight demonstration with a full scale vehicle was required by both the Saturn and Centaur programs to build confidence that problems were addressed. However; the flight vehicles were highly limited on flight instrumentation and the flight demonstration locked-in the design without challenging the function of design elements. Projects reviewed include: the Aerobee Sounding Rocket Cryogenic Fluid Management (CFM) tests which served as a valuable stepping stone to flight demonstration and built confidence in the ability to handle hydrogen in low gravity; the Saturn IVB Fluid Management Qualification flight test; the Atlas Centaur demonstration flights to develop two burn capability; and finally the Titan Centaur two post mission flight tests.
STS-335 crew training, EVA TPS Overview with instructor John Ray
2010-11-03
JSC2010-E-183521 (3 Nov. 2010) --- NASA astronaut Chris Ferguson, STS-135 commander, participates in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
NASA/USRA advanced design program
NASA Technical Reports Server (NTRS)
1992-01-01
This report analyzes and presents a preliminary design for an experimental hypersonic vehicle. This plane will have a cruise speed of Mach 12 for one minute at an altitude of 120,000 feet. The major design areas of aerodynamics, propulsion, and weights are discussed in depth. An elementary analysis of thermal protection, trajectory, and cost is also presented. Finally, a discussion of future plans and recommendations is given, and overall conclusions are drawn.
ERIC Educational Resources Information Center
Knezevich, Stephen J.
The primary objectives of the study were to develop a model for a National Academy for School Executives (NASE), to determine the receptivity of school administrators to such a program, and to determine the feasibility of implementing the model within the near future. Four academic task forces studied the structural elements, fiscal requirements,…
STS-335 crew training, Tool/Repair Kits with instructor Jeff Stone
2010-11-03
JSC2010-E-183216 (3 Nov. 2010) --- NASA astronauts Chris Ferguson (left), STS-135 commander; Doug Hurley (right), pilot; and Rex Walheim, mission specialist, participate in a tools and repair kits training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 crew training, Tool/Repair Kits with instructor Jeff Stone
2010-11-03
JSC2010-E-183219 (3 Nov. 2010) --- NASA astronauts Chris Ferguson (center), STS-135 commander; Sandra Magnus and Rex Walheim, both mission specialists, participate in a tools and repair kits training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
2007-01-30
KENNEDY SPACE CENTER, FLA. -- Skip Hatfield, Orion Project manager, addresses guests and attendees in the Operations and Checkout (O&C) Building high bay in the ceremony commemorating the bay's transition for use by the Constellation Program. Seated on the dais at right are representatives from NASA, Lockheed Martin, Space Florida and the state of Florida: Russell Romanella, director of the International Space Station/Payload Processing Directorate at Kennedy Space Center, Cleon Lacefield, Lockheed Martin program manager; Thad Altman, representative of the State of Florida; Bill Parsons, director of Kennedy Space Center; and Steve Koller, executive director of Space Florida. Originally built to process space vehicles in the Apollo era, the O&C Building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's human spaceflight vehicle of the future, will be capable of transporting four crewmembers for lunar missions and later will support crew transfers for Mars missions. Each Orion spacecraft also may be used to support up to six crewmembers to the International Space Station after the space shuttle is retired in 2010. Design, development and construction of Orion's components will be performed by Lockheed Martin for NASA at facilities throughout the country. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Koryanov, V.; Kazakovtsev, V.; Harri, A.-M.; Heilimo, J.; Haukka, H.; Aleksashkin, S.
2015-10-01
This research work is devoted to analysis of angular motion of the landing vehicle (LV) with an inflatable braking device (IBD), taking into account the influence of the wind load on the final stage of the movement. Using methods to perform a calculation of parameters of angular motion of the landing vehicle with an inflatable braking device based on the availability of small asymmetries, which are capable of complex dynamic phenomena, analyzes motion of the landing vehicle at the final stage of motion in the atmosphere.
NASA Technical Reports Server (NTRS)
1972-01-01
Volume 2 of the final report on the B-70 aircraft study is presented here. The B-70 Program, at the onset, was a full weapon system capable of sustained Mach 3 flight for the major portion of its design missions. The weapon system was to enter the SAC inventory as an RS-70 with the first intercontinental resonnaissance/bomber wing scheduled to go operational in July, 1964. After several redirections, a two XB-70 air vehicle program emerged with its prime objective being to demonstrate the technical feasibility of sustained Mach 3 flight. This section describes the original Weapon System 110A concepts, the evolution of the RS-70 design, and the XB-70 air vehicles which demonstrated the design, fabrication, and technical feasibility of long range Mach 3 flights at high altitude. The data presented shows that a very large step forward in the state-of-the-art of manned aircraft design was achieved during the B-70 development program and that advances were made and incorporated in every area, including design, materials application, and manufacturing techniques.
Structural technology challenges for evolutionary growth of Space Station Freedom
NASA Technical Reports Server (NTRS)
Doiron, Harold H.
1990-01-01
A proposed evolutionary growth scenario for Space Station Freedom was defined recently by a NASA task force created to study requirements for a Human Exploration Initiative. The study was an initial response to President Bush's July 20, 1989 proposal to begin a long range program of human exploration of space including a permanently manned lunar base and a manned mission to Mars. This growth scenario evolves Freedom into a critical transportation node to support lunar and Mars missions. The growth scenario begins with the Assembly Complete configuration and adds structure, power, and facilities to support a Lunar Transfer Vehicle (LTV) verification flight. Evolutionary growth continues to support expendable, then reusable LTV operations, and finally, LTV and Mars Transfer Vehicle (MTV) operations. The significant structural growth and additional operations creating new loading conditions will present new technological and structural design challenges in addition to the considerable technology requirements of the baseline Space Station Freedom program. Several structural design and technology issues of the baseline program are reviewed and related technology development required by the growth scenario is identified.
Minimum fuel coplanar aeroassisted orbital transfer using collocation and nonlinear programming
NASA Technical Reports Server (NTRS)
Shi, Yun Yuan; Young, D. H.
1991-01-01
The fuel optimal control problem arising in coplanar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) without plane change. The basic approach here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the coplanar aeroassisted HEO to LEO orbit transfer consists of three phases. In the first phase, the transfer begins with a deorbit impulse at HEO which injects the vehicle into a elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and drag modulation to satisfy heating constraints and to exit the atmosphere with the desired flight path angle and velocity so that the apogee of the exit orbit is the altitude of the desired LEO. Finally, the second impulse is required to circularize the orbit at LEO. The performance index is maximum final mass. Simulation results show that the coplanar aerocapture is quite different from the case where orbital plane changes are made inside the atmosphere. In the latter case, the vehicle has to penetrate deeper into the atmosphere to perform the desired orbital plane change. For the coplanar case, the vehicle needs only to penetrate the atmosphere deep enough to reduce the exit velocity so the vehicle can be captured at the desired LEO. The peak heating rates are lower and the entry corridor is wider. From the thermal protection point of view, the coplanar transfer may be desirable. Parametric studies also show the maximum peak heating rates and the entry corridor width are functions of maximum lift coefficient. The problem is solved using a direct optimization technique which uses piecewise polynomial representation for the states and controls and collocation to represent the differential equations. This converts the optimal control problem into a nonlinear programming problem which is solved numerically by using a modified version of NPSOL. Solutions were obtained for the described problem for cases with and without heating constraints. The method appears to be more robust than other optimization methods. In addition, the method can handle complex dynamical constraints.
Crash pulse optimization for occupant protection at various impact velocities.
Ito, Daisuke; Yokoi, Yusuke; Mizuno, Koji
2015-01-01
Vehicle deceleration has a large influence on occupant kinematic behavior and injury risks in crashes, and the optimization of the vehicle crash pulse that mitigates occupant loadings has been the subject of substantial research. These optimization research efforts focused on only high-velocity impact in regulatory or new car assessment programs though vehicle collisions occur over a wide range of velocities. In this study, the vehicle crash pulse was optimized for various velocities with a genetic algorithm. Vehicle deceleration was optimized in a full-frontal rigid barrier crash with a simple spring-mass model that represents the vehicle-occupant interaction and a Hybrid III 50th percentile male multibody model. To examine whether the vehicle crash pulse optimized at the high impact velocity is useful for reducing occupant loading at all impact velocities less than the optimized velocity, the occupant deceleration was calculated at various velocities for the optimized crash pulse determined at a high speed. The optimized vehicle deceleration-deformation characteristics that are effective for various velocities were investigated with 2 approaches. The optimized vehicle crash pulse at a single impact velocity consists of a high initial impulse followed by zero deceleration and then constant deceleration in the final stage. The vehicle deceleration optimized with the Hybrid III model was comparable to that determined from the spring-mass model. The optimized vehicle deceleration-deformation characteristics determined at a high speed did not necessarily lead to an occupant deceleration reduction at a lower velocity. The maximum occupant deceleration at each velocity was normalized by the maximum deceleration determined in the single impact velocity optimization. The resulting vehicle deceleration-deformation characteristic was a square crash pulse. The objective function was defined as the number of injuries, which was the product of the number of collisions at the velocity and the probability of occupant injury. The optimized vehicle deceleration consisted of a high deceleration in the initial phase, a small deceleration in the middle phase, and then a high deceleration in the final phase. The optimized vehicle crash pulse at a single impact velocity is effective for reducing occupant deceleration in a crash at the specific impact velocity. However, the crash pulse does not necessarily lead to occupant deceleration reduction at a lower velocity. The optimized vehicle deceleration-deformation characteristics, which are effective for all impact velocities, depend on the weighting of the occupant injury measures at each impact velocity.
Recent Advances and Applications in Cryogenic Propellant Densification Technology
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
2000-01-01
This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiRenzo, J.F.; Rubin, R.B.
1978-03-01
The report was prepared in accordance with Section 108(f) of the Clean Air Act, as amended, August 1977. It is intended to assist urban areas in developing State Implementation Plans and integrating their transportation system management and air quality planning programs as required by FHWA, UMTA, and EPA. The report analyzes the air quality, travel, energy consumption, economic, and cost impacts of three types of transportation programs: priority treatment for high occupancy vehicles on freeways and arterials; areawide carpool and vanpool programs; and transit fare reductions and service improvements. Important factors (e.g., meteorological conditions, traffic volumes and speeds, and changesmore » in modal choice) likely to influence air quality and emissions for the above programs are also analyzed.« less
NASA Technical Reports Server (NTRS)
Ables, Brett
2014-01-01
Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile mission scope.
2016-05-01
UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS
The calibration and flight test performance of the space shuttle orbiter air data system
NASA Technical Reports Server (NTRS)
Dean, A. S.; Mena, A. L.
1983-01-01
The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.
ETX-I: First-generation single-shaft electric propulsion system program. Volume 2: Battery
NASA Astrophysics Data System (ADS)
1988-06-01
The overall objective of this research and development program was to advance ac powertrain technology for electric vehicles (EV). The program focused on the design, build, test, and refinement of an experimental advanced electric vehicle powertrain suitable for packaging in a Ford Escort or equivalent-size vehicle. A Mercury LN7 was subsequently selected for the test bed vehicle. Although not part of the initial contract, the scope of the ETX-I Program was expanded in 1983 to encompass the development of advanced electric vehicle batteries compatible with the ETX-I powertrain and vehicle test bed. The intent of the battery portion of the ETX-I Program was to apply the best available battery technology based on existing battery developments. The battery effort was expected to result in a practical scale-up of base battery technologies to the vehicle battery subsystem level. With the addition of the battery activity, the ETX-I Program became a complete proof-of-concept ac propulsion system technology development program. In this context, the term propulsion system is defined as all components and subsystems (from the driver input to the vehicle wheels) that are required to store energy on board the vehicle and, using that energy, to provide controlled motive power to the vehicle. This report, Volume 2, describes the battery portion of the ETX-I Program. The powertrain effort is reported in Volume 1.
Defence R&D Canada's autonomous intelligent systems program
NASA Astrophysics Data System (ADS)
Digney, Bruce L.; Hubbard, Paul; Gagnon, Eric; Lauzon, Marc; Rabbath, Camille; Beckman, Blake; Collier, Jack A.; Penzes, Steven G.; Broten, Gregory S.; Monckton, Simon P.; Trentini, Michael; Kim, Bumsoo; Farell, Philip; Hopkin, Dave
2004-09-01
The Defence Research and Development Canada's (DRDC has been given strategic direction to pursue research to increase the independence and effectiveness of military vehicles and systems. This has led to the creation of the Autonomous Intelligent Systems (AIS) prgram and is notionally divide into air, land and marine vehicle systems as well as command, control and decision support systems. This paper presents an overarching description of AIS research issues, challenges and directions as well as a nominal path that vehicle intelligence will take. The AIS program requires a very close coordination between research and implementation on real vehicles. This paper briefly discusses the symbiotic relationship between intelligence algorithms and implementation mechanisms. Also presented are representative work from two vehicle specific research program programs. Work from the Autonomous Air Systems program discusses the development of effective cooperate control for multiple air vehicle. The Autonomous Land Systems program discusses its developments in platform and ground vehicle intelligence.
PECASE: Soaring Mechanisms for Flapping-Wing Micro Air Vehicles
2015-03-31
2015 2. REPORT TYPE Final 4. TITLE AND SUBTITLE PECASE: Soaring mechanisms for flapping - wing micro air vehicles 6. AUTHOR(S) Robert J. Wood 3...N00014-10-1-0684 Award Title: "PECASE: Soaring mechanisms for flapping - wing micro air vehicles" [previous award: N00014-08-1-0919, "Hovering Control for...Insect-Inspired Flapping - Wing Micro Air Vehicles"] Final report a. Scientific and Technical Objectives The Harvard Microrobotics Lab has
2016-12-14
The Architectural and Transportation Barriers Compliance Board (Access Board or Board) is issuing a final rule that revises its existing accessibility guidelines for non-rail vehicles--namely, buses, over-the-road buses, and vans--acquired or remanufactured by entities covered by the Americans with Disabilities Act. The revised guidelines ensure that such vehicles are readily accessible to, and usable by, individuals with disabilities. The U.S. Department of Transportation (DOT) is required to revise its accessibility standards for transportation vehicles acquired or remanufactured by entities covered by the Americans with Disabilities Act (ADA) to be consistent with the final rule.
2012 DOE Vehicle Technologies Program Annual Merit Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The 2012 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting was held May 14-18, 2012 in Crystal City, Virginia. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Program: a total of 309 individual activities were reviewed for Vehicle Technologies, by a total of 189 reviewers. A total of 1,473 individual review responses were received for the technical reviews.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ausherman, V.K.; Khadikar, A.V.; Syson, S.R.
1981-09-01
The objective of the RSV Program was to provide research and test data applicable to the automobile safety performance requirements for the mid-1980s, and to evaluate the compatibility of these requirements with environmental policies, efficient energy utilization, and consumer economic considerations. The RSV Program has demonstrated that it is possible to make cars much safer than they are presently. It has produced automobile designs that are consistent, at affordable cost, with the national objectives for fuel economy and environmental protection. It has indicated, at least to a limited degree, that the technological findings are applicable, at varying levels, to amore » variety of car designs. And it has provided evidence that these findings can be wrapped in a package of considerable appeal to the public. This Final Report is a comprehensive compilation of the findings of the Phase III efforts of Minicars, Inc. It describes the design and testing of the RSV systems, and the performance levels achieved.« less
Simic, Vladimir
2016-06-01
As the number of end-of-life vehicles (ELVs) is estimated to increase to 79.3 million units per year by 2020 (e.g., 40 million units were generated in 2010), there is strong motivation to effectively manage this fast-growing waste flow. Intensive work on management of ELVs is necessary in order to more successfully tackle this important environmental challenge. This paper proposes an interval-parameter chance-constraint programming model for end-of-life vehicles management under rigorous environmental regulations. The proposed model can incorporate various uncertainty information in the modeling process. The complex relationships between different ELV management sub-systems are successfully addressed. Particularly, the formulated model can help identify optimal patterns of procurement from multiple sources of ELV supply, production and inventory planning in multiple vehicle recycling factories, and allocation of sorted material flows to multiple final destinations under rigorous environmental regulations. A case study is conducted in order to demonstrate the potentials and applicability of the proposed model. Various constraint-violation probability levels are examined in detail. Influences of parameter uncertainty on model solutions are thoroughly investigated. Useful solutions for the management of ELVs are obtained under different probabilities of violating system constraints. The formulated model is able to tackle a hard, uncertainty existing ELV management problem. The presented model has advantages in providing bases for determining long-term ELV management plans with desired compromises between economic efficiency of vehicle recycling system and system-reliability considerations. The results are helpful for supporting generation and improvement of ELV management plans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
..., trailer, low-speed vehicle), and the vehicle's Vehicle Identification Number or ``VIN.'' The certification... Motor Vehicles (Except the Vehicle Identification Number). NHTSA's request for the extension of this... format and contents labels that manufacturers are required to affix to motor vehicles manufactured for...
STS-335 crew training, EVA TPS Overview with instructor John Ray
2010-11-03
JSC2010-E-183519 (3 Nov. 2010) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus, mission specialist, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
2012-03-01
if these areas had been established by August 7, 1977. These areas are defined as mandatmy Class I areas, while all other attainment or...redesignate cettain areas as (non-mandatmy) PSD Class I areas (e.g. , a national park or national wildemess area established after August 7, 1977...facilities, vehicle maintenance facilities, etc. Family housing, temporary housing, trailer comts Dormitories, Visiting Officers Quruters, Visiting
1970-06-01
This image depicts the Apollo 16 mission astronauts John Young (right) and Charles Duke (left) in pressure suits during a final crew training on the Lunar Roving Vehicle (LRV) at the Marshall Space Flight Center (MSFC), building 4619. Developed by the MSFC, the LRV was the lightweight electric car designed to increase the range of mobility and productivity of astronauts on the lunar surface. It was used on the last three Apollo missions; Apollo 15, Apollo 16, and Apollo 17.
Guidance/Navigation Requirements Study Final Report. Volume III. Appendices
1978-04-30
shown Figure G-2. The free-flight simulation program FFSIM uses quaternions to calculate the body attitude as a function of time. To calculate the...the lack of open-loop damping, the existence of a feedback controller which will stabilize the closed-loon system depends upon the satisfaction of a...re-entry vehicle has dynamic pecularitles which tend to discourage the use of "linear-quadratic" feedback regulators in guidance. The disadvantageous
Training and Human Factors Research in Military Systems. A Final Report
1989-05-01
Combat vehicle Human factors/ identification (CVI), Operational test and evaluatio (Continued) 19. ABSTRACT (Continue on reverse if necessaty and...prepared on the management of CVI for service schools (1985). * A videotape entitled "Training for Combat" was prepared as an update for the CVI and TAATS...media, and the effects of image motion on CVI training performance. Future Developments The ART -Fort Hood TAATS program was terminated in 1987, and
Range Image Processing for Local Navigation of an Autonomous Land Vehicle.
1986-09-01
such as doing long term exploration missions on the surface of the planets which mankind may wish to investigate . Certainly, mankind will soon return...intelligence programming, walking technology, and vision sensors to name but a few. 10 The purpose of this thesis will be to investigate , by simulation...bitmap graphics, both of which are important to this simulation. Finally, the methodology for displaying the symbolic information generated by the
78 FR 52997 - Connected Vehicle Research Program Public Meeting; Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... DEPARTMENT OF TRANSPORTATION Connected Vehicle Research Program Public Meeting; Notice of Public... overview of the ITS JPO Connected Vehicle research program. The meeting will take place September 24 to 26... . The public meeting is the best opportunity to learn details about the Connected Vehicle research...
The presentation discussed the dependence of nitric oxide (NO) emissions on vehicle load, bases on results from an instrumented-vehicle program. The accuracy and feasibility of modal emissions models depend on algorithms to allocate vehicle emissions based on a vehicle operation...
Final design report of a personnel launch system and a family of heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Tupa, James; Merritt, Debbie; Riha, David; Burton, Lee; Kubinski, Russell; Drake, Kerry; Mann, Darrin; Turner, Ken
1991-01-01
The objective was to design both a Personnel Launch System (PLS) and a family of Heavy Lift Launch Vehicles (FHLLVs) that provide low cost and efficient operation in missions not suited for the Shuttle. The PLS vehicle is designed primarily for space station crew rotation and emergency crew return. The final design of the PLS vehicle and its interior is given. The mission of the FHLLVs is to place large, massive payloads into Earth orbit with payload flexibility being considered foremost in the design. The final design of three launch vehicles was found to yield a payload capacity range from 20 to 200 mt. These designs include the use of multistaged, high thrust liquid engines mounted on the core stages of the rocket.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
...The National Highway Traffic Safety Administration (NHTSA) published a document in the Federal Register of June 21, 2010, announcing NHTSA's determination that there were no new model year (MY) 2011 light-duty truck lines subject to the requirements of the Federal motor vehicle theft prevention standard. The final rule also identified those vehicle lines that had been granted an exemption from the parts- marking requirements for the 2011 model year and those vehicle lines the agency removed because certain vehicle lines had been discontinued more than 5 years ago. This document corrects certain information published in the SUPPLEMENTARY INFORMATION section and Appendix A-I listing of the final rule. All previous information associated with the published notice remains the same.
Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin
2013-01-01
Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles in low-carbon transport.
A survey of light-vehicle driver education curriculum on sharing the road with heavy vehicles.
Baker, Stephanie; Schaudt, William A; Freed, J C; Toole, Laura
2012-07-01
Light-vehicle driver education programs that contain content about sharing the road with heavy vehicles may be helpful in reducing future light-vehicle/heavy-vehicle interactions. However, the extent of curricula in the United States including such content is unclear. Researchers developed an online survey targeted at instructors/administrators of state driver education programs to identify curricula addressing heavy vehicles and to determine perceived effectiveness. Ninety-one percent of respondents indicated that the light-vehicle driver education curriculum they teach/administer included a component covering how to safely share the road with heavy vehicles (82% perceived this component to be effective). Although a large proportion of these programs included a component on how to safely share the road with heavy vehicles, participants indicated there may be room for improvement. Participants recommended that future improvements to driver education programs include updated materials and student hands-on experience with heavy vehicles. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Lei; Zhai, Wanming; Gao, Jianmin
2017-11-01
Track irregularities are inevitably in a process of stochastic evolution due to the uncertainty and continuity of wheel-rail interactions. For depicting the dynamic behaviours of vehicle-track coupling system caused by track random irregularities thoroughly, it is a necessity to develop a track irregularity probabilistic model to simulate rail surface irregularities with ergodic properties on amplitudes, wavelengths and probabilities, and to build a three-dimensional vehicle-track coupled model by properly considering the wheel-rail nonlinear contact mechanisms. In the present study, the vehicle-track coupled model is programmed by combining finite element method with wheel-rail coupling model firstly. Then, in light of the capability of power spectral density (PSD) in characterising amplitudes and wavelengths of stationary random signals, a track irregularity probabilistic model is presented to reveal and simulate the whole characteristics of track irregularity PSD. Finally, extended applications from three aspects, that is, extreme analysis, reliability analysis and response relationships between dynamic indices, are conducted to the evaluation and application of the proposed models.
Launch of the Apollo 17 lunar landing mission
1972-12-07
S72-55482 (7 Dec. 1972) --- The huge, 363-feet tall Apollo 17 (Spacecraft 114/Lunar Module 12/Saturn 512) space vehicle is launched from Pad A., Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:33 a.m. (EST), Dec. 7, 1972. Apollo 17, the final lunar landing mission in NASA's Apollo program, was the first nighttime liftoff of the Saturn V launch vehicle. Aboard the Apollo 17 spacecraft were astronaut Eugene A. Cernan, commander; astronaut Ronald E. Evans, command module pilot; and scientist-astronaut Harrison H. Schmitt, lunar module pilot. Flame from the five F-1 engines of the Apollo/Saturn first (S-1C) stage illuminates the nighttime scene. A two-hour and 40-minute hold delayed the Apollo 17 launching.
Launch of the Apollo 17 lunar landing mission
1972-09-07
S72-55070 (7 Dec. 1972) --- The huge, 363-feet tall Apollo 17 (Spacecraft 114/Lunar Module 12/Saturn 512) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:33 a.m. (EST), Dec. 7, 1972. Apollo 17, the final lunar landing mission in NASA's Apollo program, was the first nighttime liftoff of the Saturn V launch vehicle. Aboard the Apollo 17 spacecraft were astronaut Eugene A. Cernan, commander; astronaut Ronald E. Evans, command module pilot; and scientist-astronaut Harrison H. Schmitt, lunar module pilot. Flame from the five F-1 engines of the Apollo/Saturn first (S-1C) stage illuminates the nighttime scene. A two-hour and 40-minute hold delayed the Apollo 17 launching.
Equations of motion for a flexible spacecraft-lumped parameter idealization
NASA Technical Reports Server (NTRS)
Storch, Joel; Gates, Stephen
1982-01-01
The equations of motion for a flexible vehicle capable of arbitrary translational and rotational motions in inertial space accompanied by small elastic deformations are derived in an unabridged form. The vehicle is idealized as consisting of a single rigid body with an ensemble of mass particles interconnected by massless elastic structure. The internal elastic restoring forces are quantified in terms of a stiffness matrix. A transformation and truncation of elastic degrees of freedom is made in the interest of numerical integration efficiency. Deformation dependent terms are partitioned into a hierarchy of significance. The final set of motion equations are brought to a fully assembled first order form suitable for direct digital implementation. A FORTRAN program implementing the equations is given and its salient features described.
1968-03-03
The launch of the Apollo 9 (Saturn V launch vehicle, SA-504), with astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart, took place on March 3, 1968. The Apollo 9 spacecraft, in the lunar mission configuration, was tested in Earth orbit. The mission was designed to rehearse all the steps and reproduce all the events of the Apollo 11 mission with the exception of the lunar touchdown, stay, and liftoff. The command and service modules, and the lunar module were used in flight procedures identical to those that would later take similar vehicles to the Moon, and a landing. The flight mechanics, mission support systems, communications, and recording of data were tested in a final round of verification. Astronauts Scott and Schweickart conducted Extravehicular Activity during this mission.
2001-09-05
KODIAK ISLAND, ALASKA - Inside the Launch Service Structure, Kodiak Launch Complex (KLC), the final stage of the Athena I launch vehicle, with the Kodiak Star spacecraft, is maneuvered into place. The first launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits
Gas Turbine Characteristics for a Large Civil Tilt-Rotor (LCTR)
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.; Thurman, Douglas R.
2010-01-01
In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project; an engine system study has been undertaken to help define and understand some of the major gas turbine engine parameters required to meet performance and weight requirements as defined by earlier vehicle system studies. These previous vehicle studies will be reviewed to help define gas turbine performance goals. Assumptions and analysis methods used will be described. Performance and weight estimates for a few conceptual gas turbine engines meeting these requirements will be given and discussed. Estimated performance for these conceptual engines over a wide speed variation (down to 50 percent power turbine rpm at high torque) will be presented. Finally, areas needing further effort will be suggested and discussed.
1967-01-01
NASA used barges for transporting full-sized stages for the Saturn I, Saturn IB, and Saturn V vehicles between the Marshall Space Flight Center (MSFC), the manufacturing plant at the Michoud Assembly Facility (MAF), the Mississippi Test Facility for testing, and the Kennedy Space Center. The barges traveled from the MSFC dock to the MAF, a total of 1,086.7 miles up the Tennessee River and down the Mississippi River. The barges also transported the assembled stages of the Saturn vehicle from the MAF to the Kennedy Space Center, a total of 932.4 miles along the Gulf of Mexico and up along the Atlantic Ocean, for the final assembly and the launch. Pictured is the barge Palaemon carrying Saturn IV S-IB flight stage enroute to MSFC.
Connected vehicle pilot deployment program phase 2, data management plan - Wyoming
DOT National Transportation Integrated Search
2017-04-10
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
EDIN0613P weight estimating program. [for launch vehicles
NASA Technical Reports Server (NTRS)
Hirsch, G. N.
1976-01-01
The weight estimating relationships and program developed for space power system simulation are described. The program was developed to size a two-stage launch vehicle for the space power system. The program is actually part of an overall simulation technique called EDIN (Engineering Design and Integration) system. The program sizes the overall vehicle, generates major component weights and derives a large amount of overall vehicle geometry. The program is written in FORTRAN V and is designed for use on the Univac Exec 8 (1110). By utilizing the flexibility of this program while remaining cognizant of the limits imposed upon output depth and accuracy by utilization of generalized input, this program concept can be a useful tool for estimating purposes at the conceptual design stage of a launch vehicle.
Integrating computer programs for engineering analysis and design
NASA Technical Reports Server (NTRS)
Wilhite, A. W.; Crisp, V. K.; Johnson, S. C.
1983-01-01
The design of a third-generation system for integrating computer programs for engineering and design has been developed for the Aerospace Vehicle Interactive Design (AVID) system. This system consists of an engineering data management system, program interface software, a user interface, and a geometry system. A relational information system (ARIS) was developed specifically for the computer-aided engineering system. It is used for a repository of design data that are communicated between analysis programs, for a dictionary that describes these design data, for a directory that describes the analysis programs, and for other system functions. A method is described for interfacing independent analysis programs into a loosely-coupled design system. This method emphasizes an interactive extension of analysis techniques and manipulation of design data. Also, integrity mechanisms exist to maintain database correctness for multidisciplinary design tasks by an individual or a team of specialists. Finally, a prototype user interface program has been developed to aid in system utilization.
Polynomial Size Formulations for the Distance and Capacity Constrained Vehicle Routing Problem
NASA Astrophysics Data System (ADS)
Kara, Imdat; Derya, Tusan
2011-09-01
The Distance and Capacity Constrained Vehicle Routing Problem (DCVRP) is an extension of the well known Traveling Salesman Problem (TSP). DCVRP arises in distribution and logistics problems. It would be beneficial to construct new formulations, which is the main motivation and contribution of this paper. We focused on two indexed integer programming formulations for DCVRP. One node based and one arc (flow) based formulation for DCVRP are presented. Both formulations have O(n2) binary variables and O(n2) constraints, i.e., the number of the decision variables and constraints grows with a polynomial function of the nodes of the underlying graph. It is shown that proposed arc based formulation produces better lower bound than the existing one (this refers to the Water's formulation in the paper). Finally, various problems from literature are solved with the node based and arc based formulations by using CPLEX 8.0. Preliminary computational analysis shows that, arc based formulation outperforms the node based formulation in terms of linear programming relaxation.
Electric vehicle life cycle cost analysis : final research project report.
DOT National Transportation Integrated Search
2017-02-01
This project compared total life cycle costs of battery electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV), hybrid electric vehicles (HEV), and vehicles with internal combustion engines (ICE). The analysis considered capital and operati...
Reusability Studies for Ares I and Ares V Propulsion
NASA Technical Reports Server (NTRS)
Williams, Thomas J.; Priskos, Alex S.; Schorr, Andrew A.; Barrett, Gregory
2008-01-01
With a mission to continue to support the goals of the International Space Station (ISS) and explore beyond Earth orbit, the United States National Aeronautics and Space Administration (NASA) is in the process of launching an entirely new space exploration initiative, the Constellation Program. Even as the Space Shuttle moves toward its final voyage, Constellation is building from nearly half a century of NASA spaceflight experience, and technological advances, including the legacy of Shuttle and earlier programs such as Apollo and the Saturn V rocket. Out of Constellation will come two new launch vehicles: the Ares I crew launch vehicle and the Ares V cargo launch vehicle. With the initial goal to seamlessly continue where the Space Shuttle leaves off, Ares will firstly service the Space Station. Ultimately, however, the intent is to push further: to establish an outpost on the Moon, and then to explore other destinations. With significant experience and a strong foundation in aerospace, NASA is now progressing toward the final design of the First Stage propulsion system for the Ares I. The new launch vehicle design will considerably increase safety and reliability, reduce the cost of accessing space, and provide a viable growth path for human space exploration. To achieve these goals, NASA is taking advantage of Space Shuttle hardware, safety, reliability, and experience. With efforts to minimize technical risk and life-cycle costs, the First Stage office is again pulling from NASA's strong legacy in aerospace exploration and development, most specifically the Space Shuttle Program. Trade studies have been conducted to evaluate lifecycle costs, expendability, and risk reduction. While many first stage features have already been determined, these trade studies are helping to resolve the operational requisites and configuration of the first stage element. This paper first presents an overview of the Ares missions and the genesis of the Ares vehicle design. It then looks at one of the most important trade studies to date, the "Ares I First Stage Expendability Trade Study." The purpose of this study was to determine the utility of flying the first stage as an expendable booster rather than making it reusable. To lower the study complexity, four operational scenarios (or cases) were defined. This assessment then included an evaluation of the development, reliability, performance, and transition impacts associated with an expendable solution. The paper looks at these scenarios from the perspectives of cost, reliability, and performance. The presentation provides an overview of the paper.
Reusability Studies for Ares I and Ares V Propulsion
NASA Technical Reports Server (NTRS)
Williams, Thomas J.; Priskos, Alex S.; Schorr, Andrew A.; Barrett, Greg
2008-01-01
With a mission to continue to support the goals of the International Space Station (ISS) and explore beyond Earth orbit, the United States National Aeronautics and Space Administration (NASA) is in the process of launching an entirely new space exploration initiative, the Constellation Program. Even as the Space Shuttle moves toward its final voyage, Constellation is building from nearly half a century of NASA spaceflight experience, and technological advances, including the legacy of Shuttle and earlier programs such as Apollo and the Saturn V rocket. Out of Constellation will come two new launch vehicles: the Ares I crew launch vehicle and the Ares V cargo launch vehicle. With the initial goal to seamlessly continue where the Space Shuttle leaves off, Ares will firstly service the Space Station. Ultimately, however, the intent is to push further: to establish an outpost on the Moon, and then to explore other destinations. With significant experience and a strong foundation in aerospace, NASA is now progressing toward the final design of the First Stage propulsion system for the Ares I. The new launch vehicle design will considerably increase safety and reliability, reduce the cost of accessing space, and provide a viable growth path for human space exploration. To achieve these goals, NASA is taking advantage of Space Shuttle hardware, safety, reliability, and experience. With efforts to minimize technical risk and life-cycle costs, the First Stage office is again pulling from NASA s strong legacy in aerospace exploration and development, most specifically the Space Shuttle Program. Trade studies have been conducted to evaluate life-cycle costs, expendability, and risk reduction. While many first stage features have already been determined, these trade studies are helping to resolve the operational requisites and configuration of the first stage element. This paper first presents an overview of the Ares missions and the genesis of the Ares vehicle design. It then looks at one of the most important trade studies to date, the "Ares I First Stage Expendability Trade Study." The purpose of this study was to determine the utility of flying the first stage as an expendable booster rather than making it reusable. To lower the study complexity, four operational scenarios (or cases) were defined. This assessment then included an evaluation of the development, reliability, performance, and transition impacts associated with an expendable solution. This paper looks at these scenarios from the perspectives of cost, reliability, and performance.
2007-01-30
KENNEDY SPACE CENTER, FLA. -- Representatives from NASA, Lockheed Martin, Space Florida and the state of Florida are seated on stage at a ceremony to commemorate the transition of the historic Operations and Checkout (O&C) Building high bay for use by the Constellation Program. From left are Cleon Lacefield, Lockheed Martin program manager; Thad Altman, representative of the State of Florida; Bill Parsons, Kennedy Space Center director; Steve Koller, executive director of Space Florida; and Skip Hatfield, Orion Project manager. Representatives from NASA, Lockheed Martin, Space Florida and the state of Florida are seated on stage at a ceremony to commemorate the transition of the historic Operations and Checkout (O&C) Building high bay for use by the Constellation Program. From left are Cleon Lacefield, Lockheed Martin program manager; Thad Altman, representative of the State of Florida; Bill Parsons, Kennedy Space Center director; Steve Koller, executive director of Space Florida; and Skip Hatfield, Orion Project manager. Originally built to process space vehicles in the Apollo era, the O&C Building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's human spaceflight vehicle of the future, will be capable of transporting four crewmembers for lunar missions and later will support crew transfers for Mars missions. Each Orion spacecraft also may be used to support up to six crewmembers to the International Space Station after the space shuttle is retired in 2010. Design, development and construction of Orion's components will be performed by Lockheed Martin for NASA at facilities throughout the country. Photo credit: NASA/Kim Shiflett
DOT National Transportation Integrated Search
2016-03-14
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
Connected vehicle pilot deployment program phase 2, data privacy plan – Wyoming.
DOT National Transportation Integrated Search
2016-04-14
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
Connected Vehicle Pilot Deployment Program, Comprehensive Installation Plan - WYDOT CV Pilot
DOT National Transportation Integrated Search
2018-02-16
The Wyoming Department of Transportation's (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...
Connected vehicle pilot deployment program phase 2 : data management plan - Tampa (THEA).
DOT National Transportation Integrated Search
2017-10-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...
Connected vehicle pilot deployment program phase 1, safety management plan – ICF/Wyoming.
DOT National Transportation Integrated Search
2016-03-14
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
NASA Technical Reports Server (NTRS)
Hague, D. S.; Vanderburg, J. D.
1977-01-01
A vehicle geometric definition based upon quadrilateral surface elements to produce realistic pictures of an aerospace vehicle. The PCSYS programs can be used to visually check geometric data input, monitor geometric perturbations, and to visualize the complex spatial inter-relationships between the internal and external vehicle components. PCSYS has two major component programs. The between program, IMAGE, draws a complex aerospace vehicle pictorial representation based on either an approximate but rapid hidden line algorithm or without any hidden line algorithm. The second program, HIDDEN, draws a vehicle representation using an accurate but time consuming hidden line algorithm.
NASA Technical Reports Server (NTRS)
Hoverkamp, J. D.
1974-01-01
A technique for predicting vehicle misalignment, the relationship of vehicle misalignment to the total vehicle/experiment integration effort, and the methodology used in performing a vehicle/experiment pointing compatibility assessment, are presented. The technique is demonstrated in detail by describing how it was used on the Skylab Program.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
... DEPARTMENT OF TRANSPORTATION ITS Joint Program Office; Vehicle to Infrastructure Core System... Program Office (ITS JPO) will host a free public meeting to discuss the Vehicle to Infrastructure (V2I... to work originally performed under the Vehicle Infrastructure Integration Proof of Concept (VII POC...
DOT National Transportation Integrated Search
1997-01-01
The Evolved Expendable Launch Vehicle (EELV) Program is a Department of Defense technology-development program managed by the Air Force. The program is intended to produce an improved launch vehicle family for government use. The EELV will replace th...
NASA Technical Reports Server (NTRS)
Rea, F. G.; Pittenger, J. L.; Conlon, R. J.; Allen, J. D.
1975-01-01
Techniques developed for identifying launch vehicle system requirements for NASA automated space missions are discussed. Emphasis is placed on development of computer programs and investigation of astrionics for OSS missions and Scout. The Earth Orbit Mission Program - 1 which performs linear error analysis of launch vehicle dispersions for both vehicle and navigation system factors is described along with the Interactive Graphic Orbit Selection program which allows the user to select orbits which satisfy mission requirements and to evaluate the necessary injection accuracy.
Connected vehicle pilot deployment program phase 1, concept of operations (ConOps), ICF/Wyoming.
DOT National Transportation Integrated Search
2015-12-01
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
Connected Vehicle Pilot Deployment Program Phase 1, Human Use Approval Summary – ICF/Wyoming.
DOT National Transportation Integrated Search
2016-07-18
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
DOT National Transportation Integrated Search
2016-06-22
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
DOT National Transportation Integrated Search
2016-08-12
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
Connected vehicle pilot deployment program phase II data privacy plan – Tampa (THEA).
DOT National Transportation Integrated Search
2017-02-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to re...
Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Shirk; Jeffrey Wishart
2015-04-01
As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, andmore » at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.« less
Natural Gas and Propane Vehicle Grant Program The Tennessee Department of Environment and Conservation's Office of Energy Programs administers the Natural Gas and Propane Vehicle Grant Program (Program and must intend to operate vehicles in Tennessee for a minimum of six years. Grant applications are
This action finalizes modifications to the federal on-board diagnostics regulations, including: harmonizing the emission levels above which a component or system is considered malfunctioning with those of the California Air Resources Board (CARB).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, T. S.; Taylor, C. H.; Moore, J. S.
Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which theremore » is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76% higher than in the No Program case. On-road medium- and heavy-duty vehicle stock could be as much as 39% higher. The resulting petroleum savings in 2035 were estimated to be as high as 3.1 million barrels per day, and reductions in GHG emissions were estimated to be as high as 500 million metric tons of CO2 equivalent per year. The benefits of continuing to invest government resources in advanced vehicle and fuel cell technologies would have significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.« less
DOT National Transportation Integrated Search
2016-05-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to re...
DOT National Transportation Integrated Search
2016-06-06
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
Transit aspects of the connected vehicle research program.
DOT National Transportation Integrated Search
2014-01-01
The U.S. Department of Transportations (USDOTs) Connected Vehicle Research Program is examining how wireless technology can enable vehicles to communicate with each other and with the infrastructure around them. This connected vehicle technolog...
40 CFR 89.914 - What provisions apply to vehicles certified under the motor-vehicle program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true What provisions apply to vehicles certified under the motor-vehicle program? 89.914 Section 89.914 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption...
40 CFR 89.914 - What provisions apply to vehicles certified under the motor-vehicle program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false What provisions apply to vehicles certified under the motor-vehicle program? 89.914 Section 89.914 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption...
40 CFR 89.914 - What provisions apply to vehicles certified under the motor-vehicle program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false What provisions apply to vehicles certified under the motor-vehicle program? 89.914 Section 89.914 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption...
40 CFR 89.914 - What provisions apply to vehicles certified under the motor-vehicle program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false What provisions apply to vehicles certified under the motor-vehicle program? 89.914 Section 89.914 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption...
40 CFR 89.914 - What provisions apply to vehicles certified under the motor-vehicle program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false What provisions apply to vehicles certified under the motor-vehicle program? 89.914 Section 89.914 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption...
Launch vehicle selection model
NASA Technical Reports Server (NTRS)
Montoya, Alex J.
1990-01-01
Over the next 50 years, humans will be heading for the Moon and Mars to build scientific bases to gain further knowledge about the universe and to develop rewarding space activities. These large scale projects will last many years and will require large amounts of mass to be delivered to Low Earth Orbit (LEO). It will take a great deal of planning to complete these missions in an efficient manner. The planning of a future Heavy Lift Launch Vehicle (HLLV) will significantly impact the overall multi-year launching cost for the vehicle fleet depending upon when the HLLV will be ready for use. It is desirable to develop a model in which many trade studies can be performed. In one sample multi-year space program analysis, the total launch vehicle cost of implementing the program reduced from 50 percent to 25 percent. This indicates how critical it is to reduce space logistics costs. A linear programming model has been developed to answer such questions. The model is now in its second phase of development, and this paper will address the capabilities of the model and its intended uses. The main emphasis over the past year was to make the model user friendly and to incorporate additional realistic constraints that are difficult to represent mathematically. We have developed a methodology in which the user has to be knowledgeable about the mission model and the requirements of the payloads. We have found a representation that will cut down the solution space of the problem by inserting some preliminary tests to eliminate some infeasible vehicle solutions. The paper will address the handling of these additional constraints and the methodology for incorporating new costing information utilizing learning curve theory. The paper will review several test cases that will explore the preferred vehicle characteristics and the preferred period of construction, i.e., within the next decade, or in the first decade of the next century. Finally, the paper will explore the interaction between the primary mission model (all payloads going from Earth to Low Earth Orbit (LEO)) and the secondary mission model (all payloads from LEO to Lunar and LEO to Mars and return).
40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty vehicles eligible for the NOX averaging, trading and banking program are described in the applicable...
40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty vehicles eligible for the NOX averaging, trading and banking program are described in the applicable...
40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment ENVIRONMENTAL... heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty vehicles eligible for the NOX averaging, trading and banking program are described in the applicable...
40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty vehicles eligible for the NOX averaging, trading and banking program are described in the applicable...
Connected commercial vehicles — retrofit safety device kit project : final report.
DOT National Transportation Integrated Search
2014-03-01
Connected vehicle wireless data communications can enable safety applications that may reduce injuries and fatalities. Cooperative vehicle-to-vehicle (V2V) safety applications will be effective only if a high fraction of vehicles are equipped. Deploy...
NASA Technical Reports Server (NTRS)
1995-01-01
The purpose of the Advanced Transportation System Studies (ATSS) Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is Volume 2 of the final report for the contract. It provides documentation of selected technical results from various TA-2 analysis activities, including a detailed narrative description of the SSTO concept assessment results, a user's guide for the associated SSTO sizing tools, an SSTO turnaround assessment report, an executive summary of the ground operations assessments performed during the first year of the contract, a configuration-independent vehicle health management system requirements report, a copy of all major TA-2 contract presentations, a copy of the FLO launch vehicle final report, and references to Pratt & Whitney's TA-2 sponsored final reports regarding the identification of Russian main propulsion technologies.
2017-02-08
Georgia Tech Research Corporation 505 Tenth Street NW Atlanta, GA 30332 -0420 ABSTRACT Final Report: MURI: Neuro-Inspired Adaptive Perception and...Conquer Strategy for Optimal Trajectory Planning via Mixed-Integer Programming, IEEE Transactions on Robotics, (12 2015): 0. doi: 10.1109/TRO...Learning Day, Microsoft Corporation , Cambridge, MA, May 18, 2015. (c) Presentations 09/06/2015 09/08/2015 125 131 Ali Borji, Dicky N. Sihite, Laurent Itti
STS-335 crew training, EVA TPS Overview with instructor John Ray
2010-11-03
JSC2010-E-183523 (3 Nov. 2010) --- NASA astronauts Rex Walheim (left), STS-135 mission specialist; and Doug Hurley, pilot, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 crew training, EVA TPS Overview with instructor John Ray
2010-11-03
JSC2010-E-183524 (3 Nov. 2010) --- NASA astronauts Rex Walheim (left), STS-135 mission specialist; and Doug Hurley, pilot, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
2001-01-22
fin whale (Balaenoptera physalis ), minke whale (B. acutorostrata), humpback whale (Megaptera novaeangliae), harbor seal (Phoca vitulina), Dall’s...modification of feeding habitat, 4) physical impacts due to launch failure, and 5) ingestion of toxins . A previous biological assessment (ENRI, 1998...Ingestion of toxins : Off Kodiak, eiders feed by diving and dabbling for mollusks and crustaceans in the shallow water. If, in the event of a launch
Geostationary platform systems concepts definition study. Volume 2: Technical, book 3
NASA Technical Reports Server (NTRS)
1980-01-01
The supporting research and technology, and space demonstrations required to support the 1990s operational geostationary platforms are identified. Also the requirements on and interfaces with the Space Transportation System hardware elements supporting the geostationary platform program, including the shuttle, orbital transfer vehicles, teleoperator, etc., are investigated to provide integrated support requirements. Finally, a preliminary evaluation of the practicability and capabilities of an experimental platform from the standpoint of technology, schedule, and cost is given.
40 CFR 86.1724-01 - Emission data vehicle selection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and...
Advanced engineering design program at the University of Illinois for the 1987-1988 academic year
NASA Technical Reports Server (NTRS)
Sivier, Kenneth R.; Lembeck, Michael F.
1988-01-01
The participation of the University of Illinois at Urbana-Champaign in the NASA/USRA Universities Advanced Engineering Design Program (Space) is reviewed for the 1987 to 88 academic year. The University's design project was the Manned Marsplane and Delivery System. In the spring of 1988 semester, 107 students were enrolled in the Aeronautical and Astronautical Engineering Departments' undergraduate Aerospace Vehicle Design course. These students were divided into an aircraft section (responsible for the Marsplane design), and a spacecraft section (responsible for the Delivery System Design). The design results are presented in Final Design Reports, copies of which are attached. In addition, five students presented a summary of the design results at the Program's Summer Conference.
NASA/ASEE Summer Faculty Fellowship Program, 1990, volume 2
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1990-01-01
The 1990 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and Johnson Space Centers (JSC). A compilation of the final reports on the research projects is presented. The following topics are covered: the Space Shuttle; the Space Station; lunar exploration; mars exploration; spacecraft power supplies; mars rover vehicle; mission planning for the Space Exploration Initiative; instrument calibration standards; a lunar oxygen production plant; optical filters for a hybrid vision system; dynamic structural analysis; lunar bases; pharmacodynamics of scopolamine; planetary spacecraft cost modeling; and others.
NASA Technical Reports Server (NTRS)
Duffey, Jack; Lowrey, Alan
1996-01-01
This report overviews the strategic implications of the Highly Reusable Space Transportation (HRST) program. The analysis postulates the anticipated HRST market (window is 2006-30, with a 2015 focus). Next the analysis speculates on market 'price of entry' for several potential markets. HRST is envisioned as a NASA overlay to either the STS modernization or the on-going RLV initiative. Three NASA options are reviewed. An example HRST program (MagLifter + RBCC RLV) is assessed in terms of financial/political issues. The merits of HRST-vs-RLV are briefly examined. Finally, a Small Launch Vehicle (SLV) HRST application is reviewed.
Experimental aeroelasticity history, status and future in brief
NASA Technical Reports Server (NTRS)
Ricketts, Rodney H.
1990-01-01
NASA conducts wind tunnel experiments to determine and understand the aeroelastic characteristics of new and advanced flight vehicles, including fixed-wing, rotary-wing and space-launch configurations. Review and assessments are made of the state-of-the-art in experimental aeroelasticity regarding available facilities, measurement techniques, and other means and devices useful in testing. In addition, some past experimental programs are described which assisted in the development of new technology, validated new analysis codes, or provided needed information for clearing flight envelopes of unwanted aeroelastic response. Finally, needs and requirements for advances and improvements in testing capabilities for future experimental research and development programs are described.
2015-06-01
10. Vanderbilt RT. The Vanderbilt rubber handbook . Babbit RO, editor. Norwalk (CT): RT Vanderbilt Company; 1990. 11. Loo CT. High temperature...Elastomers for Tracked Vehicles: 1980–1997 Program to Improve Durability of Rubber Tank Pads for Army Tracked Vehicles by David P Flanagan...Proving Ground, MD 21005-5069 ARL-TR-7331 June 2015 Elastomers for Tracked Vehicles: 1980–1997 Program to Improve Durability of Rubber
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
Base heating methodology improvements, volume 1
NASA Technical Reports Server (NTRS)
Bender, Robert L.; Reardon, John E.; Somers, Richard E.; Fulton, Michael S.; Smith, Sheldon D.; Pergament, Harold
1992-01-01
This document is the final report for NASA MSFC Contract NAS8-38141. The contracted effort had the broad objective of improving the launch vehicles ascent base heating methodology to improve and simplify the determination of that environment for Advanced Launch System (ALS) concepts. It was pursued as an Advanced Development Plan (ADP) for the Joint DoD/NASA ALS program office with project management assigned to NASA/MSFC. The original study was to be completed in 26 months beginning Sep. 1989. Because of several program changes and emphasis on evolving launch vehicle concepts, the period of performance was extended to the current completion date of Nov. 1992. A computer code incorporating the methodology improvements into a quick prediction tool was developed and is operational for basic configuration and propulsion concepts. The code and its users guide are also provided as part of the contract documentation. Background information describing the specific objectives, limitations, and goals of the contract is summarized. A brief chronology of the ALS/NLS program history is also presented to provide the reader with an overview of the many variables influencing the development of the code over the past three years.
Privacy Impact Assessment for the Light-Duty In-Use Vehicle Testing Program Information System
EPA's Light-Duty In-Use Vehicle Testing Program Information System contains car owner names, addresses, vehicle identification numbers, etc. The EPA uses this information to recruit and test vehicles for emissions standards compliance.
Scientific and Technical Information (STI) for Financial Assistance and Non-M&O/M&I
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaGrandeur, John; Crane, Doug
2012-07-02
BSST (hereafter referred to as Amerigon) began work in November 2004 under a cost share contract [1] awarded by the U.S. Department of Energy Freedom Car Office to develop a high efficiency Thermoelectric Waste Energy Recovery System for passenger vehicle applications. The system increases fuel economy by partially replacing the electric power produced by the alternator with electric power produced by conversion of exhaust gas in a Thermoelectric Generator (TEG). Amerigon’s team members included the BMW Group and Ford Motor Company, with both OEMs demonstrating the TEG system in their vehicles in the final program phase. Significant progress was mademore » in modeling, building and testing the TEG system from the lowest subassembly levels through an entire vehicle system. By the program’s conclusion, the team had successfully overcome the challenges of integrating TE materials into an exhaust system component and evaluated the system behavior in bench and over the road testing for over six months.« less
2007-01-30
KENNEDY SPACE CENTER, FLA. -- Kennedy Space Center Director Bill Parsons addresses guests and attendees in the Operations and Checkout (O&C) Building high bay in the ceremony commemorating the bay's transition for use by the Constellation Program. At right is Russell Romanella, director of the International Space Station/Payload Processing Directorate at Kennedy Space Center. Other representatives from NASA, Lockheed Martin, Space Florida and the state of Florida also attended. Originally built to process space vehicles in the Apollo era, the O&C Building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's human spaceflight vehicle of the future, will be capable of transporting four crewmembers for lunar missions and later will support crew transfers for Mars missions. Each Orion spacecraft also may be used to support up to six crewmembers to the International Space Station after the space shuttle is retired in 2010. Design, development and construction of Orion's components will be performed by Lockheed Martin for NASA at facilities throughout the country. Photo credit: NASA/Kim Shiflett
2009-01-26
CAPE CANAVERAL, Fla. – Representatives from NASA, Lockheed Martin, Space Florida and the state of Florida participate in a ceremony at NASA's Kennedy Space Center in Florida to mark the completion of renovations on the historic Operations and Checkout Building high bay for use by the Constellation Program. At center, U.S. Rep. Suzanne Kosmas and Lt. Governor Jeff Kottcamp listen to Richard Harris, with Lockheed Martin, describe some of the hardware that will be used in the building. Originally built to process space vehicles in the Apollo era, the building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's future human spaceflight vehicle, will be capable of transporting four crew members to the moon and later will support crew transfers to Mars. The Orion spacecraft also will be used to transport crew members to the International Space Station after space shuttles are retired in 2010. The first operational launch of Orion atop an Ares I rocket is planned for 2015. Photo credit: NASA/Dimitri Gerondidakis
The X-43A (Hyper-X) Flies Into the Record Books
NASA Technical Reports Server (NTRS)
Grindle, Laurie; Bahm, Catherine
2006-01-01
The goal of the Hyper-X research program, conducted jointly by the NASA Dryden Flight Research Center and the NASA Langley Research Center, was to demonstrate and validate the technology, experimental techniques, and computation methods and tools for design and performance predictions of a hypersonic aircraft with an airframe-integrated, scramjet propulsion system. Three X-43A airframe-integrated, scramjet research vehicles were designed and fabricated to achieve that goal by flight test: two test flights at Mach 7 and one test flight at Mach 10. The first flight, conducted on June 2, 2001, experienced a launch vehicle failure and resulted in a 9-month mishap investigation. A two-year return-to-flight effort ensued and concluded when the second Mach 7 flight was successful on March 27, 2004. Just eight months later, on November 16, the X-43A successfully completed the third and final flight. These two flights were the first flight demonstrations, at Mach 7 and Mach 10 respectively, of an airframe-integrated, scramjet-powered, hypersonic vehicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2015-01-12
The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers willmore » now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.« less
Design, Fabrication, and Testing of a Hopper Spacecraft Simulator
NASA Astrophysics Data System (ADS)
Mucasey, Evan Phillip Krell
A robust test bed is needed to facilitate future development of guidance, navigation, and control software for future vehicles capable of vertical takeoff and landings. Specifically, this work aims to develop both a hardware and software simulator that can be used for future flight software development for extra-planetary vehicles. To achieve the program requirements of a high thrust to weight ratio with large payload capability, the vehicle is designed to have a novel combination of electric motors and a micro jet engine is used to act as the propulsion elements. The spacecraft simulator underwent several iterations of hardware development using different materials and fabrication methods. The final design used a combination of carbon fiber and fiberglass that was cured under vacuum to serve as the frame of the vehicle which provided a strong, lightweight platform for all flight components and future payloads. The vehicle also uses an open source software development platform, Arduino, to serve as the initial flight computer and has onboard accelerometers, gyroscopes, and magnetometers to sense the vehicles attitude. To prevent instability due to noise, a polynomial kalman filter was designed and this fed the sensed angles and rates into a robust attitude controller which autonomously control the vehicle' s yaw, pitch, and roll angles. In addition to the hardware development of the vehicle itself, both a software simulation and a real time data acquisition interface was written in MATLAB/SIMULINK so that real flight data could be taken and then correlated to the simulation to prove the accuracy of the analytical model. In result, the full scale vehicle was designed and own outside of the lab environment and data showed that the software model accurately predicted the flight dynamics of the vehicle.
Ares I-X Flight Test - The Future Begins Here
NASA Technical Reports Server (NTRS)
Davis, Stephan R.
2008-01-01
In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission. Like the Apollo program, the Ares launch vehicles will rely upon extensive ground, flight, and orbital testing before sending the Orion crew exploration vehicle into space with humans on board. The first flight of Ares I, designated Ares I-X, will be a suborbital development flight test. Ares I-X gives NASA its first opportunity to gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future operational flights; and demonstrate the first stage recovery system. NASA also will begin modifying the launch infrastructure and fine-tuning ground and mission operations, as the agency makes the transition from the Space Shuttle to the Ares/Orion system.
U29: commercial vehicle secure network for safety and mobility applications final report.
DOT National Transportation Integrated Search
2011-09-01
The main objective of this project is to develop a secure, reliable, high throughput and integrated wireless network for Vehicle-To-Vehicle (V2V), Vehicle-To-Infrastructure (V2I) and intra-vehicle communications. Novel techniques and communication pr...
Aaron, Grant J; Friesen, Valerie M; Jungjohann, Svenja; Garrett, Greg S; Myatt, Mark
2017-01-01
Background: Large-scale food fortification (LSFF) of commonly consumed food vehicles is widely implemented in low- and middle-income countries. Many programs have monitoring information gaps and most countries fail to assess program coverage. Objective: The aim of this work was to present LSFF coverage survey findings (overall and in vulnerable populations) from 18 programs (7 wheat flour, 4 maize flour, and 7 edible oil programs) conducted in 8 countries between 2013 and 2015. Methods: A Fortification Assessment Coverage Toolkit (FACT) was developed to standardize the assessments. Three indicators were used to assess the relations between coverage and vulnerability: 1) poverty, 2) poor dietary diversity, and 3) rural residence. Three measures of coverage were assessed: 1) consumption of the vehicle, 2) consumption of a fortifiable vehicle, and 3) consumption of a fortified vehicle. Individual program performance was assessed based on the following: 1) achieving overall coverage ≥50%, 2) achieving coverage of ≥75% in ≥1 vulnerable group, and 3) achieving equity in coverage for ≥1 vulnerable group. Results: Coverage varied widely by food vehicle and country. Only 2 of the 18 LSFF programs assessed met all 3 program performance criteria. The 2 main program bottlenecks were a poor choice of vehicle and failure to fortify a fortifiable vehicle (i.e., absence of fortification). Conclusions: The results highlight the importance of sound program design and routine monitoring and evaluation. There is strong evidence of the impact and cost-effectiveness of LSFF; however, impact can only be achieved when the necessary activities and processes during program design and implementation are followed. The FACT approach fills an important gap in the availability of standardized tools. The LSFF programs assessed here need to be re-evaluated to determine whether to further invest in the programs, whether other vehicles are appropriate, and whether other approaches are needed. PMID:28404836
Aaron, Grant J; Friesen, Valerie M; Jungjohann, Svenja; Garrett, Greg S; Neufeld, Lynnette M; Myatt, Mark
2017-05-01
Background: Large-scale food fortification (LSFF) of commonly consumed food vehicles is widely implemented in low- and middle-income countries. Many programs have monitoring information gaps and most countries fail to assess program coverage. Objective: The aim of this work was to present LSFF coverage survey findings (overall and in vulnerable populations) from 18 programs (7 wheat flour, 4 maize flour, and 7 edible oil programs) conducted in 8 countries between 2013 and 2015. Methods: A Fortification Assessment Coverage Toolkit (FACT) was developed to standardize the assessments. Three indicators were used to assess the relations between coverage and vulnerability: 1 ) poverty, 2 ) poor dietary diversity, and 3 ) rural residence. Three measures of coverage were assessed: 1 ) consumption of the vehicle, 2 ) consumption of a fortifiable vehicle, and 3 ) consumption of a fortified vehicle. Individual program performance was assessed based on the following: 1 ) achieving overall coverage ≥50%, 2) achieving coverage of ≥75% in ≥1 vulnerable group, and 3 ) achieving equity in coverage for ≥1 vulnerable group. Results: Coverage varied widely by food vehicle and country. Only 2 of the 18 LSFF programs assessed met all 3 program performance criteria. The 2 main program bottlenecks were a poor choice of vehicle and failure to fortify a fortifiable vehicle (i.e., absence of fortification). Conclusions: The results highlight the importance of sound program design and routine monitoring and evaluation. There is strong evidence of the impact and cost-effectiveness of LSFF; however, impact can only be achieved when the necessary activities and processes during program design and implementation are followed. The FACT approach fills an important gap in the availability of standardized tools. The LSFF programs assessed here need to be re-evaluated to determine whether to further invest in the programs, whether other vehicles are appropriate, and whether other approaches are needed.
2011-06-01
JSC2011-E-050262 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA
2011-06-01
JSC2011-E-050254 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA
2011-06-01
JSC2011-E-050249 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA
2011-06-01
JSC2011-E-050245 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA
2011-06-01
JSC2011-E-050253 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The volume is the second part of a three part study submitted to the Petroleum Authority of Thailand. Part II analyzes the potential use of compressed natural gas (CNG) as a transportation fuel for high mileage vehicles traveling the highway system of Thailand. The study provides an initial estimate of buses and trucks that are potential candidates for converting to natural gas vehicles (NGV). CNG technology is briefly reviewed. The types of refueling stations that may be sited along the highway are discussed. The estimated capital investments and typical layouts are presented. The report also discusses the issues involved inmore » implementing a CNG program in Thailand, such as safety, user acceptability and the government's role.« less
Reflections on Centaur Upper Stage Integration by the NASA Lewis (Glenn) Research Center
NASA Technical Reports Server (NTRS)
Graham, Scott R.
2015-01-01
The NASA Glenn (then Lewis) Research Center (GRC) led several expendable launch vehicle (ELV) projects from 1963 to 1998, most notably the Centaur upper stage. These major, comprehensive projects included system management, system development, integration (both payload and stage), and launch operations. The integration role that GRC pioneered was truly unique and highly successful. Its philosophy, scope, and content were not just invaluable to the missions and vehicles it supported, but also had significant Agency-wide benefits. An overview of the NASA Lewis Research Center (now the NASA Glenn Research Center) philosophy on ELV integration is provided, focusing on Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur vehicles and programs. The necessity of having a stable, highly technically competent in-house staff is discussed. Significant depth of technical penetration of contractor work is another critical component. Functioning as a cohesive team was more than a concept: GRC senior management, NASA Headquarters, contractors, payload users, and all staff worked together. The scope, content, and history of launch vehicle integration at GRC are broadly discussed. Payload integration is compared to stage development integration in terms of engineering and organization. Finally, the transition from buying launch vehicles to buying launch services is discussed, and thoughts on future possibilities of employing the successful GRC experience in integrating ELV systems like Centaur are explored.
Reflections on Centaur Upper Stage Integration by the NASA Lewis (Glenn) Research Center
NASA Technical Reports Server (NTRS)
Graham, Scott R.
2014-01-01
The NASA Glenn (then Lewis) Research Center (GRC) led several expendable launch vehicle (ELV) projects from 1963 to 1998, most notably the Centaur upper stage. These major, comprehensive projects included system management, system development, integration (both payload and stage), and launch operations. The integration role that GRC pioneered was truly unique and highly successful. Its philosophy, scope, and content were not just invaluable to the missions and vehicles it supported, but also had significant Agencywide benefits. An overview of the NASA Lewis Research Center (now the NASA Glenn Research Center) philosophy on ELV integration is provided, focusing on Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur vehicles and programs. The necessity of having a stable, highly technically competent in-house staff is discussed. Significant depth of technical penetration of contractor work is another critical component. Functioning as a cohesive team was more than a concept: GRC senior management, NASA Headquarters, contractors, payload users, and all staff worked together. The scope, content, and history of launch vehicle integration at GRC are broadly discussed. Payload integration is compared to stage development integration in terms of engineering and organization. Finally, the transition from buying launch vehicles to buying launch services is discussed, and thoughts on future possibilities of employing the successful GRC experience in integrating ELV systems like Centaur are explored.
The role of inspection and maintenance in controlling vehicular emissions in Kathmandu valley, Nepal
NASA Astrophysics Data System (ADS)
Faiz, Asif; Bahadur Ale, Bhakta; Nagarkoti, Ram Kumar
Motor vehicles are a major source of air pollutant emissions in Kathmandu valley, Nepal. In-use vehicle emission limits were first introduced in Nepal in 1998 and updated in 2000. The emission regulations for gasoline vehicles limit CO emissions to 3-4.5% by volume and HC emissions to 1000 ppm for four-wheeled vehicles, and 7800 ppm for two- and three- wheelers. Emission limits for LPG/CNG vehicles are 3% for CO and 1000 ppm for HC. For diesel vehicles, smoke density must not exceed 65-75 HSU depending on the age of the vehicle. The Government operates a rudimentary inspection and maintenance (I/M) program based on an idle engine test, utilizing an exhaust gas analyzer (for gasoline/LPG/CNG vehicles) and an opacimeter for diesel vehicles. The I/M program is confined to four-wheeled vehicles and occasional three-wheelers. The inspections are required at least once a year and are conducted at designated vehicle testing stations. The I/M program is supplemented by roadside checks. This paper is based on the findings of an analysis of vehicle emissions test data for the period June 2000 to July 2002, covering some 45,000 data sets. Each data set includes information on vehicle type and ownership, the model year, and CO/HC test emission values. The analysis reported in this paper covers the characteristics and statistical distribution of emissions from gasoline-fuelled vehicles, including the impact of gross emitters. The effects of vehicle age, model year (with or without catalysts), usage, and ownership (private vs. public) on emissions of gasoline-fuelled vehicles are discussed. The findings for diesel vehicles have been reported earlier by Ale and Nagarkoti (2003b. Evaluation of Kathmandu valley inspection and maintenance program on diesel vehicles. Journal of the Institute of Engineering 3(1)). This study identifies the limitations of the current I/M program, given that it does not include 70% of the fleet consisting of two-wheelers and concludes with proposed changes to the I/M program to make it more effective.
Vehicle-to-vehicle communications in mixed passenger-freight convoys : [final report].
DOT National Transportation Integrated Search
2016-09-01
Vehicle convoys (platoons) hold a promise for significant efficiency improvements of freight and : passenger transportation through better system integration. Through the use of advanced driver : assistance, vehicles in a convoy can keep shorter dist...
DOT National Transportation Integrated Search
2015-09-01
The Connected Vehicle Safety Pilot was a research program that demonstrated the readiness of DSRC-based connected vehicle safety applications for nationwide deployment. The vision of the Connected Vehicle Safety Pilot Program was to test connected ve...
Connected vehicle pilot deployment program.
DOT National Transportation Integrated Search
2014-01-01
The U.S. Department of Transportations (USDOTs) connected vehicle research program is a multimodal initiative to enable safe, interoperable, networked wireless communications among vehicles, infrastructure, and personal communications devices. ...
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.
2016-01-01
The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.
Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Zwitter; Phillip Nash; Xiaoyan Xu
2011-03-31
This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibilitymore » of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.« less
75 FR 81640 - Record of Decision
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... on the Final Environmental Impact Statement/Cape Hatteras National Seashore Off-Road Vehicle... Environmental Impact Statement (Final EIS) for the Cape Hatteras National Seashore (Seashore) Off-Road Vehicle... temporary ORV use restrictions, for such things as ramp maintenance, resource and public safety closures...
Orange County Intelligent Vehicle/Highway Systems Study, Draft Final Report
DOT National Transportation Integrated Search
1993-06-01
THIS DOCUMENT REPRESENTS THE FINAL REPORT FOR THE ORANGE COUNTY INTELLIGENT VEHICLE-HIGHWAY SYSTEMS (IVHS) STUDY, PREPARED FOR THE ORANGE COUNTY TRANSPORTATION AUTHORITY (OCTA). THE PURPOSE OF THIS REPORT IS TO DOCUMENT THE FINDINGS OF THE IVHS STUDY...
40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Complete heavy-duty vehicle averaging...-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1817-05 Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty...
40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Complete heavy-duty vehicle averaging...-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1817-08 Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that...
Electric vehicle fleet implications and analysis : final research project report.
DOT National Transportation Integrated Search
2016-11-01
The objective of this project was to evaluate the implementation and effectiveness of : electric vehicles (EVs) used in fleet operations. The study focuses on Battery-Electric : Vehicles (BEVs) and Plug-In Hybrid Electric Vehicles (PHEVs); collective...
Investigation Of Alternative Displays For Side Collision Avoidance Systems, Final Report
DOT National Transportation Integrated Search
1996-12-01
DRIVER-VEHICLE INTERFACE OR DVI, HUMAN FACTORS, DRIVER PREFERENCES, INTELLIGENT VEHICLE INITIATIVE OR IVI : SIDE COLLISION AVOIDANCE SYSTEMS (SCAS) ARE DESIGNED TO WARN OF IMPENDING COLLISIONS AND CAN DETECT NOT ONLY ADJACENT VEHICLES BUT VEHICLES...
Installation Restoration Program. Records Search, Newark AFS, Ohio
1985-04-01
APPENDIX J - Aerial Photograph Newark Air Force Station . . . J-i i I I 1 I ! I iv I LIST OF TABLES No. Page 1 Potential Risk Ranking Based on Final HARM...accuracies of standards used at base level are directly traceable to the 3 Air Force Measurement Standards Laboratory at AGMC. The primary standards from...Approximately eight years ago the Base Exchange released it to the motor pool. Service is provided for all Air Force vehicles and equipment on the
2010-05-01
adverse impacts. This process was applied to the entire OHV area for the following resource areas: geomorphology and soils , water quality and...interaction with highly erodible soils . If such areas are utilized, operational constraints would be implemented that would minimize impacts in these areas...such as restricted use in wet soils and speed limits. At the motocross 2 area, the riding h·ack would be developed based on constraints associated
1965-08-01
Two workers are dwarfed by the five J-2 engines of the Saturn V second stage (S-II) as they make final inspections prior to a static test firing by North American Space Division. These five hydrogen -fueled engines produced one million pounds of thrust, and placed the Apollo spacecraft into earth orbit before departing for the moon. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
A computer program (HEVSIM) for heavy duty vehicle fuel economy and performance simulation
DOT National Transportation Integrated Search
1981-09-01
This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...
40 CFR 86.1721-99 - Application for certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (6) For electric and hybrid electric vehicles, identification of the energy usage in kilowatt-hours... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and...
49 CFR 567.5 - Requirements for manufacturers of vehicles manufactured in two or more stages.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Vehicle Identification Number. (c) Intermediate manufacturers. (1) Except as provided in paragraphs (f... that identified by the incomplete vehicle manufacturer. (v) Vehicle identification number. (d) Final...), and (d)(1), and 49 CFR 568.4(a)(9). (vi) Vehicle identification number. (vii) The type classification...
49 CFR 567.5 - Requirements for manufacturers of vehicles manufactured in two or more stages.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Vehicle Identification Number. (c) Intermediate manufacturers. (1) Except as provided in paragraphs (f... that identified by the incomplete vehicle manufacturer. (v) Vehicle identification number. (d) Final...), and (d)(1), and 49 CFR 568.4(a)(9). (vi) Vehicle identification number. (vii) The type classification...
49 CFR 567.5 - Requirements for manufacturers of vehicles manufactured in two or more stages.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Vehicle Identification Number. (c) Intermediate manufacturers. (1) Except as provided in paragraphs (f... that identified by the incomplete vehicle manufacturer. (v) Vehicle identification number. (d) Final...), and (d)(1), and 49 CFR 568.4(a)(9). (vi) Vehicle identification number. (vii) The type classification...
49 CFR 567.5 - Requirements for manufacturers of vehicles manufactured in two or more stages.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Vehicle Identification Number. (c) Intermediate manufacturers. (1) Except as provided in paragraphs (f... that identified by the incomplete vehicle manufacturer. (v) Vehicle identification number. (d) Final...), and (d)(1), and 49 CFR 568.4(a)(9). (vi) Vehicle identification number. (vii) The type classification...
Achieving the Proper Balance Between Crew and Public Safety
NASA Technical Reports Server (NTRS)
Gowan, John; Rosati, Paul; Silvestri, Ray; Stahl, Ben; Wilde, Paul
2011-01-01
A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. Historical examples and lessons learned from both the Space Shuttle and Constellation Programs will be presented. Using these examples as context, the paper will discuss some operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Manned vehicle perspectives from the FAA and Air Force organizations that oversee public safety will also be summarized. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.
Lunar Extravehicular Activity Program
NASA Technical Reports Server (NTRS)
Heartsill, Amy Ellison
2006-01-01
Extravehicular Activity (EVA) has proven an invaluable tool for space exploration since the inception of the space program. There are situations in which the best means to evaluate, observe, explore and potentially troubleshoot space systems are accomplished by direct human intervention. EVA provides this unique capability. There are many aspects of the technology required to enable a "miniature spaceship" to support individuals in a hostile environment in order to accomplish these tasks. This includes not only the space suit assembly itself, but the tools, design interfaces of equipment on which EVA must work and the specific vehicles required to support transfer of humans between habitation areas and the external world. This lunar mission program will require EVA support in three primary areas. The first of these areas include Orbital stage EVA or micro-gravity EVA which includes both Low Earth Orbit (LEO), transfer and Lunar Orbit EVA. The second area is Lunar Lander EVA capability, which is lunar surface EVA and carries slightly different requirements from micro-gravity EVA. The third and final area is Lunar Habitat based surface EVA, which is the final system supporting a long-term presence on the moon.
Onboard Monitoring and Reporting for Commercial Motor Vehicle Safety Final Report
DOT National Transportation Integrated Search
2008-02-01
This Final Report describes the process and product from the project, Onboard Monitoring and Reporting for Commercial Motor Vehicle Safety (OBMS), in which a prototypical suite of hardware and software on a class 8 truck was developed and tested. The...
40 CFR 86.094-26 - Mileage and service accumulation; emission requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-duty vehicles. It prescribes mileage and service accumulation requirements for durability data vehicles... Durability Program of § 86.094-13(d), and for emission data vehicles regardless of the durability program employed. Service accumulation requirements for durability data vehicles run under the Alternative Service...
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
DOT National Transportation Integrated Search
1981-10-01
This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...
DOT National Transportation Integrated Search
1981-10-01
This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...
DOT National Transportation Integrated Search
1981-10-01
This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...
DOT National Transportation Integrated Search
2005-03-01
The Crash Avoidance Metrics Partnership (CAMP) Vehicle Safety Communications Consortium (VSCC) comprised of BMW, DaimlerChrysler, Ford, GM, Nissan, Toyota, and Volkswagen, in partnership with USDOT, established the Vehicle Safety Communications (VSC)...
DOT National Transportation Integrated Search
2012-02-01
The relative contribution of heavy-duty diesel vehicles (HDDVs) to mobile source emissions has grown : significantly over the past decade, and certain vehicles identified as high emitting vehicles (HEs) contribute : disproportionately to the overall ...
40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that.... (1) Manufacturers of Otto-cycle vehicles may participate in an NMHC averaging, banking and trading...
City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-12-31
The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.
DOT National Transportation Integrated Search
1981-09-01
This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...
10 CFR 490.504 - Use of alternative fueled vehicle credits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...
10 CFR 490.504 - Use of alternative fueled vehicle credits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...
10 CFR 490.504 - Use of alternative fueled vehicle credits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...
10 CFR 490.504 - Use of alternative fueled vehicle credits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...
10 CFR 490.504 - Use of alternative fueled vehicle credits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...
41 CFR 109-26.501-51 - Used vehicles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Used vehicles. 109-26...-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 109-26.501-51 Used vehicles. Normally, DOE does not purchase or authorize contractors to purchase used motor vehicles. However, the Director...
41 CFR 109-26.501-51 - Used vehicles.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Used vehicles. 109-26...-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 109-26.501-51 Used vehicles. Normally, DOE does not purchase or authorize contractors to purchase used motor vehicles. However, the Director...
41 CFR 109-26.501-51 - Used vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Used vehicles. 109-26...-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 109-26.501-51 Used vehicles. Normally, DOE does not purchase or authorize contractors to purchase used motor vehicles. However, the Director...
45 CFR 1310.15 - Operation of vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 4 2012-10-01 2012-10-01 false Operation of vehicles. 1310.15 Section 1310.15... PROGRAM HEAD START TRANSPORTATION Transportation Requirements § 1310.15 Operation of vehicles. Each agency... individual, to children enrolled in its program must ensure that: (a) Effective October 1, 2006, on a vehicle...
45 CFR 1310.15 - Operation of vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 4 2014-10-01 2014-10-01 false Operation of vehicles. 1310.15 Section 1310.15... PROGRAM HEAD START TRANSPORTATION Transportation Requirements § 1310.15 Operation of vehicles. Each agency... individual, to children enrolled in its program must ensure that: (a) Effective October 1, 2006, on a vehicle...
45 CFR 1310.15 - Operation of vehicles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 4 2013-10-01 2013-10-01 false Operation of vehicles. 1310.15 Section 1310.15... PROGRAM HEAD START TRANSPORTATION Transportation Requirements § 1310.15 Operation of vehicles. Each agency... individual, to children enrolled in its program must ensure that: (a) Effective October 1, 2006, on a vehicle...
41 CFR 109-26.501-51 - Used vehicles.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Used vehicles. 109-26...-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 109-26.501-51 Used vehicles. Normally, DOE does not purchase or authorize contractors to purchase used motor vehicles. However, the Director...
41 CFR 109-26.501-51 - Used vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Used vehicles. 109-26...-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 109-26.501-51 Used vehicles. Normally, DOE does not purchase or authorize contractors to purchase used motor vehicles. However, the Director...
DOT National Transportation Integrated Search
1981-09-01
This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...
DOT National Transportation Integrated Search
1981-01-01
This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...
DOT National Transportation Integrated Search
1981-01-01
This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...
DOT National Transportation Integrated Search
1981-01-01
This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...
DOT National Transportation Integrated Search
1981-09-01
This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...
40 CFR 86.1728-99 - Compliance with emission standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicable emission standards in §§ 86.1708 and 86.1709. For hybrid electric vehicles, the emission data will... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and...
DOT National Transportation Integrated Search
1981-10-01
This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...
Highway Safety Program Manual: Volume 2: Motor Vehicle Registration.
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
Volume 2 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) describes the purposes and specific objectives of motor vehicle registration. Federal authority for vehicle registration and general policies regarding vehicle registration systems are outlined.…
40 CFR 1027.101 - To whom do these requirements apply?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTION CONTROLS FEES FOR ENGINE, VEHICLE, AND EQUIPMENT COMPLIANCE PROGRAMS § 1027.101 To whom do these..., vehicle, and equipment compliance program (EVECP). This includes activities related to approving... products: (1) Motor vehicles and motor vehicle engines we regulate under 40 CFR part 86. This includes...
Parametric Study Conducted of Rocket- Based, Combined-Cycle Nozzles
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.; Smith, Timothy D.
1998-01-01
Having reached the end of the 20th century, our society is quite familiar with the many benefits of recycling and reusing the products of civilization. The high-technology world of aerospace vehicle design is no exception. Because of the many potential economic benefits of reusable launch vehicles, NASA is aggressively pursuing this technology on several fronts. One of the most promising technologies receiving renewed attention is Rocket-Based, Combined-Cycle (RBCC) propulsion. This propulsion method combines many of the efficiencies of high-performance jet aircraft with the power and high-altitude capability of rocket engines. The goal of the present work at the NASA Lewis Research Center is to further understand the complex fluid physics within RBCC engines that govern system performance. This work is being performed in support of NASA's Advanced Reusable Technologies program. A robust RBCC engine design optimization demands further investigation of the subsystem performance of the engine's complex propulsion cycles. The RBCC propulsion system under consideration at Lewis is defined by four modes of operation in a singlestage- to-orbit configuration. In the first mode, the engine functions as a rocket-driven ejector. When the rocket engine is switched off, subsonic combustion (mode 2) is present in the ramjet mode. As the vehicle continues to accelerate, supersonic combustion (mode 3) occurs in the ramjet mode. Finally, as the edge of the atmosphere is approached and the engine inlet is closed off, the rocket is reignited and the final accent to orbit is undertaken in an all-rocket mode (mode 4). The performance of this fourth and final mode is the subject of this present study. Performance is being monitored in terms of the amount of thrust generated from a given amount of propellant.
The U.S. Environmental Protection Agency (EPA) is announcing more protective tailpipe emissions standards for all passenger vehicles, including sport utility vehicles (SUVs), minivans, vans and pick-up trucks.
Defining the Natural Atmospheric Environment Requirements for the NASA Constellation Program
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; Leahy, Frank
2008-01-01
The National Aeronautics and Space Administration began developing a new vehicle under the Constellation Program to replace the Space Shuttle. The Ares-1 launch vehicle and the Orion capsule will be used to ferry crew and some payloads to the International Space Station and will also be used for new missions to the moon, As development of this new vehicle begins, the Natural Environments Branch at Marshall Space Flight Center has been tasked with defining the natural environments the vehicle will encounter and working with the program to develop natural environmental requirements for the vehicles' elements. An overview of the structure of the program is given, along with a description of the Constellation Design Specification for Natural Environments and the Constellation Natural Environments Definition for Design documents and how they apply to the Ares-I and Orion vehicles.
Achieving the Proper Balance Between Crew and Public Safety
NASA Technical Reports Server (NTRS)
Gowan, John; Silvestri, Ray; Stahl, Ben; Rosati, Paul; Wilde, Paul
2011-01-01
A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard, and the design engineers must give these requirements the same consideration as crew safety requirements. For human spaceflight, the primary purpose and operational concept for any flight safety system is to protect the public while maximizing the likelihood of crew survival. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. An overview of existing range and crew safety policy requirements will be presented. Application of these requirements and lessons learned from both the Space Shuttle and Constellation Programs will also be discussed. Using these past programs as examples, the paper will detail operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Manned vehicle perspectives from the Federal Aviation Administration (FAA) and Air Force organizations that oversee public safety will be summarized as well. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.
Achieving the Proper Balance between Crew & Public Safety
NASA Astrophysics Data System (ADS)
Wilde, P.; Gowan, J.; Silvestri, R.; Stahl, B.; Rosati, P.
2012-01-01
A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard, and the design engineers must give these requirements the same consideration as crew safety requirements. For human spaceflight, the primary purpose and operational concept for any flight safety system is to protect the public while maximizing the likelihood of crew survival. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. An overview of existing range and crew safety policy requirements will be presented. Application of these requirements and lessons learned from both the Space Shuttle and Constellation Programs will also be discussed. Using these past programs as examples, the paper will detail operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Crewed vehicle perspectives from the Federal Aviation Administration and Air Force organizations that oversee public safety will be summarized as well. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.
Six degree of freedom FORTRAN program, ASTP docking dynamics, users guide
NASA Technical Reports Server (NTRS)
Mount, G. O., Jr.; Mikhalkin, B.
1974-01-01
The digital program ASTP Docking Dynamics as outlined is intended to aid the engineer using the program to determine the docking system loads and attendant vehicular motion resulting from docking two vehicles that have an androgynous, six-hydraulic-attenuator, guide ring, docking interface similar to that designed for the Apollo/Soyuz Test Project (ASTP). This program is set up to analyze two different vehicle combinations: the Apollo CSM docking to Soyuz and the shuttle orbiter docking to another orbiter. The subroutine modifies the vehicle control systems to describe one or the other vehicle combinations; the rest of the vehicle characteristics are changed by input data. To date, the program has been used to predict and correlate ASTP docking loads and performance with docking test program results from dynamic testing. The program modified for use on IBM 360 computers. Parts of the original docking system equations in the areas of hydraulic damping and capture latches are modified to better describe the detail design of the ASTP docking system.
40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that.... (1) Manufacturers of Otto-cycle vehicles may participate in an NMHC averaging, banking and trading...
40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that.... (1) Manufacturers of Otto-cycle vehicles may participate in an NMHC averaging, banking and trading...
40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that.... (1) Manufacturers of Otto-cycle vehicles may participate in an NMHC averaging, banking and trading...
40 CFR 88.205-94 - California Pilot Test Program Credits Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Program to meet the clean-fuel vehicle sales requirements through the use of credits. Participation in... be generated by any of the following means: (i) Sale of qualifying clean-fuel vehicles earlier than... requirements of paragraph (g) of this section. (ii) Sale of a greater number of qualifying clean-fuel vehicles...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-24
... Vehicle Program, which adopts California's second generation low emission vehicle program for light- duty... listed in the electronic docket, some information is not publicly available, i.e., confidential business....regulations.gov or in hard copy for public inspection during normal business hours at the Air Protection...
Validation of the Lockheed Martin Morphing Concept with Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Ivanco, Thomas G.; Scott, Robert C.; Love, Michael H.; Zink Scott; Weisshaar, Terrence A.
2007-01-01
The Morphing Aircraft Structures (MAS) program is a Defense Advanced Research Projects Agency (DARPA) led effort to develop morphing flight vehicles capable of radical shape change in flight. Two performance parameters of interest are loiter time and dash speed as these define the persistence and responsiveness of an aircraft. The geometrical characteristics that optimize loiter time and dash speed require different geometrical planforms. Therefore, radical shape change, usually involving wing area and sweep, allows vehicle optimization across many flight regimes. The second phase of the MAS program consisted of wind tunnel tests conducted at the NASA Langley Transonic Dynamics Tunnel to demonstrate two morphing concepts and their enabling technologies with large-scale semi-span models. This paper will focus upon one of those wind tunnel tests that utilized a model developed by Lockheed Martin Aeronautics Company (LM). Wind tunnel success criteria were developed by NASA to support the DARPA program objectives. The primary focus of this paper will be the demonstration of the DARPA objectives by systematic evaluation of the wind tunnel model performance relative to the defined success criteria. This paper will also provide a description of the LM model and instrumentation, and document pertinent lessons learned. Finally, as part of the success criteria, aeroelastic characteristics of the LM derived MAS vehicle are also addressed. Evaluation of aeroelastic characteristics is the most detailed criterion investigated in this paper. While no aeroelastic instabilities were encountered as a direct result of the morphing design or components, several interesting and unexpected aeroelastic phenomenon arose during testing.
Space Shuttle Ascent Flight Design Process: Evolution and Lessons Learned
NASA Technical Reports Server (NTRS)
Picka, Bret A.; Glenn, Christopher B.
2011-01-01
The Space Shuttle Ascent Flight Design team is responsible for defining a launch to orbit trajectory profile that satisfies all programmatic mission objectives and defines the ground and onboard reconfiguration requirements for this high-speed and demanding flight phase. This design, verification and reconfiguration process ensures that all applicable mission scenarios are enveloped within integrated vehicle and spacecraft certification constraints and criteria, and includes the design of the nominal ascent profile and trajectory profiles for both uphill and ground-to-ground aborts. The team also develops a wide array of associated training, avionics flight software verification, onboard crew and operations facility products. These key ground and onboard products provide the ultimate users and operators the necessary insight and situational awareness for trajectory dynamics, performance and event sequences, abort mode boundaries and moding, flight performance and impact predictions for launch vehicle stages for use in range safety, and flight software performance. These products also provide the necessary insight to or reconfiguration of communications and tracking systems, launch collision avoidance requirements, and day of launch crew targeting and onboard guidance, navigation and flight control updates that incorporate the final vehicle configuration and environment conditions for the mission. Over the course of the Space Shuttle Program, ascent trajectory design and mission planning has evolved in order to improve program flexibility and reduce cost, while maintaining outstanding data quality. Along the way, the team has implemented innovative solutions and technologies in order to overcome significant challenges. A number of these solutions may have applicability to future human spaceflight programs.
Natural Gas Vehicle Cylinder Safety, Training and Inspection Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hank Seiff
2008-12-31
Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators andmore » training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.« less
Rule to finalize standards for medium- and heavy-duty vehicles that would improve fuel efficiency and cut carbon pollution to reduce the impacts of climate change, while bolstering energy security and spurring manufacturing innovation.
The Commercial Vehicle Information Systems and Network program, 2012.
DOT National Transportation Integrated Search
2014-03-01
The Commercial Vehicle Information Systems and : Networks (CVISN) program supports that safety : mission by providing grant funds to States for: : Improving safety and productivity of motor : carriers, commercial motor vehicles : (CMVs), and thei...
DOT National Transportation Integrated Search
1994-01-01
Highly automated vehicles and highways--which permit higher travel speeds, narrower lanes, smaller headways between vehicles, and optimized routing (collectively called intelligent vehicle-highway systems or IVHS)-- have been generally conceded to be...
Train-to-train rear end impact tests - volume I - pre-impact determination of vehicle properties
DOT National Transportation Integrated Search
1999-03-31
This final report documents these nine tests. Volume I, Pre-Impact Determination of Vehicle Properties, summarizes the vehicle properties obtained prior to the impact tests. These vehicle properties were used in computer simulation of the impact test...
77 FR 18914 - National Motor Vehicle Title Information System (NMVTIS): Technical Corrections
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
... 1121-AA79 National Motor Vehicle Title Information System (NMVTIS): Technical Corrections AGENCY... (OJP) is promulgating this direct final rule for its National Motor Vehicle Title Information System... INFORMATION CONTACT paragraph. II. Background The National Motor Vehicle Title Information System was...
41 CFR 101-26.501-7 - Sale of vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Sale of vehicles. 101-26... PROGRAM 26.5-GSA Procurement Programs § 101-26.501-7 Sale of vehicles. GSA will not solicit trade-in bids when purchasing new motor vehicles for replacement purposes because experience has shown that suppliers...
41 CFR 101-26.501-7 - Sale of vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Sale of vehicles. 101-26... PROGRAM 26.5-GSA Procurement Programs § 101-26.501-7 Sale of vehicles. GSA will not solicit trade-in bids when purchasing new motor vehicles for replacement purposes because experience has shown that suppliers...
41 CFR 101-26.501 - Purchase of new motor vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Purchase of new motor... SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 101-26.501 Purchase of new motor vehicles. (a) It shall be the policy to procure commercially available motor vehicles, unless other vehicles are...
X-38 Ship #2 Landing on Lakebed, Completing the Program's 4th Flight
NASA Technical Reports Server (NTRS)
1999-01-01
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), makes a gentle lakebed landing at the end of a July 1999 test flight at the Dryden Flight Research Center, Edwards, California. It was the fourth free flight of the test vehicles in the X-38 program, and the second free flight test of Vehicle 132 or Ship 2. The goal of this flight was to release the vehicle from a higher altitude -- 31,500 feet -- and to fly the vehicle longer -- 31 seconds -- than any previous X-38 vehicle had yet flown. The project team also conducted aerodynamic verification maneuvers and checked improvements made to the drogue parachute. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
NASA Technical Reports Server (NTRS)
Brown, Richard; Collier, Gary; Heckenlaible, Richard; Dougherty, Edward; Dolenz, James; Ross, Iain
2012-01-01
The ASCENT program solves the three-dimensional motion and attendant structural loading on a flexible vehicle incorporating, optionally, an active analog thrust control system, aerodynamic effects, and staging of multiple bodies. ASCENT solves the technical problems of loads, accelerations, and displacements of a flexible vehicle; staging of the upper stage from the lower stage; effects of thrust oscillations on the vehicle; a payload's relative motion; the effect of fluid sloshing on vehicle; and the effect of winds and gusts on the vehicle (on the ground or aloft) in a continuous analysis. The ATTACH ASCENT Loads program reads output from the ASCENT flexible body loads program, and calculates the approximate load indicators for the time interval under consideration. It calculates the load indicator values from pre-launch to the end of the first stage.
NASA Technical Reports Server (NTRS)
Mcgehee, C. R.
1986-01-01
A study was conducted under Drones for Aerodynamic and Structural Testing (DAST) program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities and load reductions are achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, Thomas K.
2001-04-17
This program investigated the potential for Alkali Metal Thermal to Electric Converter (AMTEC) technology to be useful in automotive power system applications. AMTEC, a thermally regenerative electrochemical energy conversion system, converts heat into electricity from a heat source at 750 C to 850 C and a radiator at 200 C to 350 C. AMTEC uses external combustion with correspondingly low emission of NO{sub x} and hydrocarbons, and can tolerate essentially any hydrocarbon fuel. Efficiencies of 20% to 30% are projected to be feasible for systems of 25 kWe to 40 kWe peak output. The research program has shown that theremore » are significant advantages to be achieved if AMTEC systems can be made cost effective for vehicle applications. Among these are (1) higher efficiency at part load than IC engines can yield, (2) omnifuel capability, and (3) low noise and low emission of pollutants. Demonstrated lifetimes already above 12,000 hours should be adequate for most vehicle applications. In major production, AMTEC costs are projected to reach $1/Watt, a value still too high for widespread automotive main power application. AMTEC's unique capabilities for low emissions, all-fuel operation, and insensitivity to ambient temperature, however, do make it a potential option for specialized vehicle applications needing these properties.« less
Optimization of space manufacturing systems
NASA Technical Reports Server (NTRS)
Akin, D. L.
1979-01-01
Four separate analyses are detailed: transportation to low earth orbit, orbit-to-orbit optimization, parametric analysis of SPS logistics based on earth and lunar source locations, and an overall program option optimization implemented with linear programming. It is found that smaller vehicles are favored for earth launch, with the current Space Shuttle being right at optimum payload size. Fully reusable launch vehicles represent a savings of 50% over the Space Shuttle; increased reliability with less maintenance could further double the savings. An optimization of orbit-to-orbit propulsion systems using lunar oxygen for propellants shows that ion propulsion is preferable by a 3:1 cost margin over a mass driver reaction engine at optimum values; however, ion engines cannot yet operate in the lower exhaust velocity range where the optimum lies, and total program costs between the two systems are ambiguous. Heavier payloads favor the use of a MDRE. A parametric model of a space manufacturing facility is proposed, and used to analyze recurring costs, total costs, and net present value discounted cash flows. Parameters studied include productivity, effects of discounting, materials source tradeoffs, economic viability of closed-cycle habitats, and effects of varying degrees of nonterrestrial SPS materials needed from earth. Finally, candidate optimal scenarios are chosen, and implemented in a linear program with external constraints in order to arrive at an optimum blend of SPS production strategies in order to maximize returns.
Emergency vehicle-to-vehicle communication : final report.
DOT National Transportation Integrated Search
2016-08-15
Emergency response vehicles (ERVs) frequently navigate congested traffic conditions to reach : their destinations as quickly as possible. In this report, several efforts performed by the research : group are described, including micro-simulation, fie...
76 FR 43825 - Launch Safety: Lightning Criteria for Expendable Launch Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... Vehicles AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Direct final rule; Confirmation of... launch vehicle through or near an electrified environment in or near a cloud. These changes also increase...
National launch strategy vehicle data management system
NASA Technical Reports Server (NTRS)
Cordes, David
1990-01-01
The national launch strategy vehicle data management system (NLS/VDMS) was developed as part of the 1990 NASA Summer Faculty Fellowship Program. The system was developed under the guidance of the Engineering Systems Branch of the Information Systems Office, and is intended for use within the Program Development Branch PD34. The NLS/VDMS is an on-line database system that permits the tracking of various launch vehicle configurations within the program development office. The system is designed to permit the definition of new launch vehicles, as well as the ability to display and edit existing launch vehicles. Vehicles can be grouped in logical architectures within the system. Reports generated from this package include vehicle data sheets, architecture data sheets, and vehicle flight rate reports. The topics covered include: (1) system overview; (2) initial system development; (3) supercard hypermedia authoring system; (4) the ORACLE database; and (5) system evaluation.
U.S. Army Methanol-Fueled Administrative Vehicle Demonstration Program
1989-08-01
for either fuel when compared with published production specifications. iii Also, four Chevrolet vehicles, two each with L-4 engines and two with V-6...With Manufacturer’s Production Specifications ... 217 G CRC Deposit Ratings for Inspected Vehicles ...................... 235 Viii LIST OF ILLUSTRATIONS...vehicles within the Government’s administrative fleet and to stimulate further the production and use of methanol-fueled vehicles. This program was
Intelligent Vehicle Initiative: Business Plan
DOT National Transportation Integrated Search
1997-11-01
The U.S. Department of Transportation (USDOT) is embarking on a new program called the Intelligent Vehicle Initiative (IVI). The USDOT intends to jointly define the program plan and conduct the IVI in cooperation with the motor vehicle, trucking, and...
NASA's Morphing Project Research Summaries in Fiscal Year 2002
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Waszak, Martin R.
2005-01-01
The Morphing Project at the National Aeronautics and Space Agency s (NASA) Langley Research Center (LaRC) is part of the Breakthrough Vehicle Technologies Project, Vehicle Systems Program that conducts fundamental research on advanced technologies for future flight vehicles. The objectives of the Morphing Project are to develop and assess the advanced technologies and integrated component concepts to enable efficient, multi-point adaptability of flight vehicles; primarily through the application of adaptive structures and adaptive flow control to substantially alter vehicle performance characteristics. This document is a compilation of research summaries and other information on the project for fiscal year 2002. The focus is to provide a brief overview of the project content, technical results and lessons learned. At the time of publication, the Vehicle Systems Program (which includes the Morphing Project) is undergoing a program re-planning and reorganization. Accordingly, the programmatic descriptions of this document pertain only to the program as of fiscal year 2002.
EPA is taking final action to approve a revision to the Antelope Valley Air Quality Management District (AVAQMD) portion of the California SIP concerning the emissions of volatile organic compounds (VOCs) from motor vehicle assembly coating operations.
75 FR 64318 - Notice of Issuance of Final Determination Concerning Fairplay Legacy Electric Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... H118435 HkP CATEGORY: Marking Mr. Keith Andrews, President Fairplay Electric Cars 743 Horizon Ct., Suite..., requesting a final determination on behalf of Fairplay Electric Cars, LLC (``Fairplay''), pursuant to subpart... Determination Concerning Fairplay Legacy Electric Vehicles AGENCY: U.S. Customs and Border Protection...
Vehicle-to-Vehicle crash avoidance technology : public acceptance final report.
DOT National Transportation Integrated Search
2015-12-01
The Vehicle-to-Vehicle (V2V) Crash Avoidance Public Acceptance report summarizes data from a survey of the current level of awareness and acceptance of V2V technology. The survey was guided by findings from prior studies and 12 focus groups. A total ...
NYPA/TH!NK Clean Commute Program Report – Inception through February 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Karner; James Francfort
The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric transportation in urban applications. The primary Program partners are the New York Power Authority (NYPA) and Ford. The other Program partners providing funding and other support include the Metropolitan Transportation Authority, Metro North Railroad, Long Island Railroad, New York State Energy Research and Development Authority, Long Island Power Authority, New York State Department of Transportation, New York City Department of Transportation, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). The data inmore » this report is being collected via an internet-based questionnaire system by the AVTA through its subcontractor Electric Transportation Applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK cities is located at the commuters’ private residences as well as seven train stations. Eighty-seven commuters are using the TH!NK city vehicles, with 80% actively providing data to the AVTA. The participants have driven the vehicles nearly 150,000 miles since Program inception, avoiding the use of almost 7,000 gallons of gasoline. The TH!NK city vehicles are driven an average of between 180 and 230 miles per month, and over 95% of all trips taken with the TH!NK city vehicles replace trips previously taken in gasoline vehicles. This report covers the period from Program inception through February 2003.« less
75 FR 5248 - Requirements and Procedures for Consumer Assistance To Recycle and Save Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-02
... time will allow the public to benefit from the availability of lower cost used vehicle parts from... CARS program. The additional time would allow the public to benefit from the availability of lower cost... public benefit of having cheaper used vehicle parts from the vehicles traded in under the CARS program...
A LTA flight research vehicle. [technology assessment, airships
NASA Technical Reports Server (NTRS)
Nebiker, F. R.
1975-01-01
An Airship Flight Research Program is proposed. Major program objectives are summarized and a Modernized Navy ZPG3W Airship recommended as the flight test vehicle. The origin of the current interest in modern airship vehicles is briefly discussed and the major benefits resulting from the flight research program described. Airship configurations and specifications are included.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long
2016-01-01
The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.
NASA Technical Reports Server (NTRS)
1991-01-01
NASA's two Office of Space Flight (Code M) Space Transfer Vehicle (STV) contractors supported development of Space Exploration Initiative (SEI) lunar transportation concepts. This work treated lunar SEI missions as the far end of a more near-term STV program, most of whose missions were satellite delivery and servicing requirements derived from Civil Needs Data Base (CNDB) projections. Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) began to address the complete design of a lunar transportation system. The following challenges were addressed: (1) the geometry of aerobraking; (2) accommodation of mixed payloads; (3) cryogenic propellant transfer in Low Lunar Orbit (LLO); (4) fully re-usable design; and (5) growth capability. The leveled requirements, derived requirements, and assumptions applied to the lunar transportation system design are discussed. The mission operations section includes data on mission analysis studies and performance parametrics as well as the operating modes and performance evaluations which include the STCAEM recommendations. Element descriptions for the lunar transportation family included are a listing of the lunar transfer vehicle/lunar excursion vehicle (LTV/LEV) components; trade studies and mass analyses of the transfer and excursion modules; advanced crew recovery vehicle (ACRV) (modified crew recovery vehicle (MCRV)) modifications required to fulfill lunar operations; the aerobrake shape and L/D to be used; and some costing methods and results. Commonality and evolution issues are also discussed.
Code of Federal Regulations, 2010 CFR
2010-10-01
... facilities that receive trade-in vehicles under the CARS program. 599.401 Section 599.401 Transportation... facilities that receive trade-in vehicles under the CARS program. (a) The disposal facility must: (1) Not... or shredded, report the vehicle to NMVTIS as crushed or shredded. (b) The disposal facility may not...
Code of Federal Regulations, 2010 CFR
2010-07-01
... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control...
The Malemute development program. [rocket upper stage engine design
NASA Technical Reports Server (NTRS)
Bolster, W. J.; Hoekstra, P. W.
1976-01-01
The Malemute vehicle systems are two-stage systems based on utilizing a new high performance upper stage motor with two existing military boosters. The Malmute development program is described relative to program structure, preliminary design, vehicle subsystems, and the Malemute motor. Two vehicle systems, the Nike-Malemute and Terrier-Malemute, were developed which are capable of transporting comparatively large diameter (16 in.) 200-lb payloads to altitudes of 500 and 700 km, respectively. These vehicles provide relatively low-cost transportation with two-stage reliability and launch simplicity. Flight tests of both vehicle systems revealed their performance capabilities, with the Terrier-Malemute system involving a unique Malemute motor spin sensitivity problem. It is suggested that the vehicles can be successfully flown by lowering the burnout spin rate.
Connected Vehicle Impacts on Transportation Planning—Primer and Final Report.
DOT National Transportation Integrated Search
2016-06-01
The principal objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should be considered across the range of transportation planning processes and products developed...
Reusable launch vehicle: Technology development and test program
NASA Technical Reports Server (NTRS)
1995-01-01
The National Aeronautics and Space Administration (NASA) requested that the National Research Council (NRC) assess the Reusable Launch Vehicle (RLV) technology development and test programs in the most critical component technologies. At a time when discretionary government spending is under close scrutiny, the RLV program is designed to reduce the cost of access to space through a combination of robust vehicles and a streamlined infrastructure. Routine access to space has obvious benefits for space science, national security, commercial technologies, and the further exploration of space. Because of technological challenges, knowledgeable people disagree about the feasibility of a single-stage-to-orbit (SSTO) vehicle. The purpose of the RLV program proposed by NASA and industry contractors is to investigate the status of existing technology and to identify and advance key technology areas required for development and validation of an SSTO vehicle. This report does not address the feasibility of an SSTO vehicle, nor does it revisit the roles and responsibilities assigned to NASA by the National Transportation Policy. Instead, the report sets forth the NRC committee's findings and recommendations regarding the RLV technology development and test program in the critical areas of propulsion, a reusable cryogenic tank system (RCTS), primary vehicle structure, and a thermal protection system (TPS).
2011-07-08
CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen towering above is the massive Vehicle Assembly Building. Dozens of satellite news vehicles and trailers can be seen in the parking lot. In the background is the Turn Basin where NASA's Pegasus barge delivered the final external tank for the mission. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-08
CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen towering above is the massive Vehicle Assembly Building. Dozens of satellite news vehicles and trailers can be seen in the parking lot. In the background is the Turn Basin where NASA's Pegasus barge delivered the final external tank for the mission. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
This rule provides emission standards and test procedures for the certification of new natural gasfueled, and liquefied petroleum gasfueled light-duty vehicles, light-duty trucks, heavy-duty engines and vehicles, and motorcycles.
78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... [Docket No. NHTSA-2013-0011] RIN 2127-AL11 Federal Motor Vehicle Safety Standards; Air Brake Systems... rule that amended the Federal motor vehicle safety standard for air brake systems by requiring... published a final rule in the Federal Register amending Federal Motor Vehicle Safety Standard (FMVSS) No...
This action changes the regulatory definition of a motorcycle to include 3-wheeled vehicles weighing up to 1749 pounds effective for 1998 and later model year motorcycles for which emission standards are in place.
Dale Reed with X-38 and a Subscale Model Used in Test Program
NASA Technical Reports Server (NTRS)
1997-01-01
Dale Reed, a NASA engineer who worked on the original lifting-body research programs in the 1960s and 1970s, stands with a scale-model X-38 that was used in 1995 research flights, with a full-scale X-38 (80 percent of the size of a potential Crew Return Vehicle) behind him. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
NASA Astrophysics Data System (ADS)
Pilz, N.; Adirim, H.; Lo, R.; Schildknecht, A.
2004-10-01
Among other concepts, reusable space transportation systems that comprise winged reusable launch vehicles (RLV) with horizontal take-off and horizontal landing (HTHL) are under worldwide investigation, e.g. the respective concepts within ESA's FESTIP-Study (Future European Space Transportation Integration Program) or the HOPPER concept by EADS-ST. The payload of these RLVs could be significantly increased by means of a ground-based take-off assistance system that would accelerate the vehicle along a horizontal track until it reaches the desired speed to ignite its onboard engines for leaving the ground and launching into orbit. This paper illustrates the advantages of horizontal take-off for winged RLVs and provides an overview of launch-assist options for HTHL RLVs. It presents hot water propulsion for ground-based take-off assistance systems for future RLVs as an attractive choice besides magnetic levitation and acceleration (maglev) technology. Finally, preliminary design concepts are presented for a rocket assisted take-off system (RATOS) with hot water propulsion followed by an analysis of its improvement potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington, L.H.
1977-03-01
A comprehensive study was conducted of automobile exhaust emissions and the effects of restorative maintenance and selective engine parameter maladjustment on these emissions. This was a study of 100, 1975 and 1976 model year consumer owned vehicles from the Washington, D.C. area and was an addition to a total surveillance program which had been conducted in seven major cities (Denver, Washington, D.C., Los Angeles, Houston, Phoenix, Chicago and St. Louis) in order to determine the impact of automobile emissions on air quality. This additional study was not made in all seven of the cities involved in the original study. Specifically,more » vehicles from the Washington, D.C. area were tested for fuel economy and the content of total hydrocarbons, carbon monoxide, carbon dioxide and nitrogen oxides in their exhaust emissions using the 1975 Federal Test Procedure, the Highway Fuel Economy Test, the Federal Short Cycle, the New York-New Jersey Acid Test, the Clayton Key Mode Test, the Two Speed Idle Test, and the Federal Three Mode Test. (Portions of this document are not fully legible)« less
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for vehicle and mobile equipment mechanics I and II. Presented first are a…
2011-07-04
CAPE CANAVERAL, Fla. -- Jerry Ross, chief of the Vehicle Integration Test Office and former NASA astronaut, Shuttle Launch Director Mike Leinbach and James Branson with the Vehicle Integration Test Office await the arrival of the STS-135 crew members at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The STS-135 astronauts arrived at Kennedy about 2:30 p.m. EDT on July 4 for final preparations for space shuttle Atlantis' STS-135 mission to the International Space Station. Atlantis is scheduled to lift off on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Following is information for the proposed rule for the Modification of Federal On Board Diagnostic Regulations for Light-Duty Vehicles, Light-Duty Trucks, etc. Includes links to Federal Register and final rule.
Retiring Old Cars : Programs To Save Gasoline and Reduce Emissions
DOT National Transportation Integrated Search
1992-07-01
Older vehicles produce a disproportionate share of total U.S. vehicle air emissions. Congress asked Office of Technology Assessment to examine the ability of vehicle scrappage programs to reduce gasoline use and emissions. This report presents the re...