Sample records for vehicle program site

  1. Site operator program final report for fiscal years 1992 through 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francfort, J.E.; Bassett, R.R.; Birasco, S.

    The Site Operator Program was an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed at the Idaho National Engineering and Environmental Laboratory. The Program`s goals included the field evaluation of electric vehicles in real-world applications and environments; the support of electric vehicle technology advancement; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of electric vehicles. This report covers Program activities from 1992 to 1996. The Site Operator Program ended in September 1996, when it was superseded by the Field Operations Program. Electric vehicle testingmore » included baseline performance testing, which was performed in conjunction with EV America. The baseline performance parameters included acceleration, braking, range, energy efficiency, and charging time. The Program collected fleet operations data on electric vehicles operated by the Program`s thirteen partners, comprising electric utilities, universities, and federal agencies. The Program`s partners had over 250 electric vehicles, from vehicle converters and original equipment manufacturers, in their operating fleets. Test results are available via the World Wide Web site at http://ev.inel.gov/sop.« less

  2. Connected vehicle pilot deployment program phase 1 : lessons learned : final report.

    DOT National Transportation Integrated Search

    2017-01-30

    The Connected Vehicle Pilot Deployment (CV Pilots) Program seeks to spur innovation among early adopters of connected vehicle application concepts. Pilot deployment awards were given to three sites, New York City, Wyoming, and Tampa, FL. The CV pilot...

  3. Electric Vehicle Site Operator Program

    NASA Astrophysics Data System (ADS)

    1992-05-01

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one electric or hybrid van and four electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two Soleq 1992 Ford EVcort stationwagons.

  4. Electric and hybrid vehicle site operators program: Thinking of the future

    NASA Astrophysics Data System (ADS)

    Kansas State University, with support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one electric or hybrid van and two electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants' names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State's campus.

  5. Alternative Approach to Vehicle Element Processing

    NASA Technical Reports Server (NTRS)

    Huether, Jacob E.; Otto, Albert E.

    1995-01-01

    The National Space Transportation Policy (NSTP), describes the challenge facing today's aerospace industry. 'Assuring reliable and affordable access to space through U.S. space transportation capabilities is a fundamental goal of the U.S. space program'. Experience from the Space Shuttle Program (SSP) tells us that launch and mission operations are responsible for approximately 45 % of the cost of each shuttle mission. Reducing these costs is critical to NSTP goals in the next generation launch vehicle. Based on this, an innovative alternative approach to vehicle element processing was developed with an emphasis on reduced launch costs. State-of-the-art upgrades to the launch processing system (LPS) will enhance vehicle ground operations. To carry this one step further, these upgrade could be implemented at various vehicle element manufacturing sites to ensure system compatibility between the manufacturing facility and the launch site. Design center vehicle stand alone testing will ensure system integrity resulting in minimized checkout and testing at the launch site. This paper will addresses vehicle test requirements, timelines and ground checkout procedures which enable concept implementation.

  6. Kansas State University DOE/KEURP Site Operator User Task Force. Year 3, Fourth quarterly report, April 1--June 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hague, J.

    This program relates to demonstration use of electric-powered vehicles. KSU has two electric cars (conversion vehicles) from Soleq. Corp., and is purchasing 4 Chevy trucks for conversion. This document discusses the participating groups, program plan, events, vehicles and components, operations, and procurement.

  7. Piezo-electric automatic vehicle classification system : Oregon Department of Transportation with Castle Rock Consultants for a SHRP Long Term Pavement Performance Site : final report.

    DOT National Transportation Integrated Search

    1991-07-01

    Oregon has twelve pavement test sites that are part of the Strategic Highway Research Program (SHRP), Long Term Pavement Performance (LTPP) studies. Part of the data gathering on these sites involves vehicle weight and classification. This pilot proj...

  8. Piezo-electric automatic vehicle classification system : Oregon Department of Transportation with Castle Rock Consultants for a SHRP Long Term Pavement Performance Site.

    DOT National Transportation Integrated Search

    1990-05-01

    Oregon has twelve sites that are part of the Strategic Highway Research Program (SHRP), Long Term Pavement Performance (LTPP) studies. Part of the data gathering on these sites involves vehicle weight and classification. This pilot project was to hel...

  9. [Electric and hybrid vehicle site operators program]: Thinking of the future. Second year third quarter report, January 1--March 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy`s Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid vans and two (2) electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement ordermore » to purchase two (2) Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants` names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State`s campus.« less

  10. DOE/KEURP site operator program. Year 3, Second Quarter Report, October 1--December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy`s Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU has purchased several electric cars and proposes to purchase additional electric vehicles. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has procured two (2) Soleq 1993 Ford EVcort station wagons. During calendar year 1994, the Kansas`more » electric vehicle program expects to purchase a minimum of four and a maximum of eleven additional electric vehicles. The G-Van was signed in order for the public to be aware that it was an electric vehicle. Financial participants` names have been stenciled on the back door of the van. The Soleq EvCorts have not been signed. In order to demonstrate the technology as feasible, the EvCorts were deliberately not signed. The goal is to generate a public perception that this vehicle is no different from any similar internal combustion engine vehicle. Magnetic signs have been made for special functions to ensure sponsor support is recognized and acknowledged.« less

  11. 43 CFR 8365.2-4 - Vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Vehicles. 8365.2-4 Section 8365.2-4 Public... OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.2-4 Vehicles. Unless otherwise authorized, no motor vehicle shall be driven within developed recreation sites or areas except on...

  12. 43 CFR 8365.2-4 - Vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Vehicles. 8365.2-4 Section 8365.2-4 Public... OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.2-4 Vehicles. Unless otherwise authorized, no motor vehicle shall be driven within developed recreation sites or areas except on...

  13. 43 CFR 8365.2-4 - Vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Vehicles. 8365.2-4 Section 8365.2-4 Public... OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.2-4 Vehicles. Unless otherwise authorized, no motor vehicle shall be driven within developed recreation sites or areas except on...

  14. 43 CFR 8365.2-4 - Vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Vehicles. 8365.2-4 Section 8365.2-4 Public... OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.2-4 Vehicles. Unless otherwise authorized, no motor vehicle shall be driven within developed recreation sites or areas except on...

  15. Electric and hybrid vehicle program; Site Operator Program

    NASA Astrophysics Data System (ADS)

    Warren, J. F.

    1992-05-01

    Activities during the second quarter included the second meeting of the Site Operators in Phoenix, AZ in late April. The meeting was held in conjunction with the Solar and Electric 500 Race activities. Delivery of vehicles ordered previously has begun, although two of the operators are experiencing some delays in receiving their vehicles. Public demonstration activities continue, with an apparent increasing level of awareness and interest being displayed by the public. Initial problems with the Site Operator Database have been corrected and revised copies of the program have been supplied to the program participants. Operating and Maintenance data is being supplied and submitted to INEL on a monthly basis. Interest in the Site Operator Program is being reflected in requests for information from several organizations from across the country, representing a wide diversity of interests. These organizations have been referred to existing Site Operators with the explanation that the program will not be adding new participants, but that most of the existing organizations are willing to work with other groups. The exception to this was the addition of Potomac Electric Power Company (PEPCO) to the program. PEPCO has been awarded a subcontract to operate and maintain the DOE owned G-Van and Escort located in Washington, DC. They will provide data on these vehicles, as well as a Solectria Force which PEPCO has purchased. The Task Force intends to be actively involved in the infrastructure development in a wide range of areas. These include, among others, personnel development, safety, charging, and servicing. Work continues in these areas. York Technical College (YORK) has completed the draft outline for the EV Technician course. This is being circulated to organizations around the country for comments. Kansas State University (KSU) is working with a private sector company to develop a energy dispensing meter for opportunity charging in public areas.

  16. Surface Landing Site Weather Analysis for Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. Lee

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is an important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface atmospheric conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. Climatological time series of operational surface weather observations are used to calculate probabilities of occurrence of various sets of hypothetical vehicle constraint thresholds, Data are available for numerous geographical locations such that statistical analysis can be performed for single sites as well as multiple-site network configurations. Results provide statistical descriptions of how often certain weather conditions are observed at the site(s) and the percentage that specified criteria thresholds are matched or exceeded. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that can be obtained,

  17. Sustainable Federal Fleets: Deploying Electric Vehicles and Electric Vehicle Supply Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps federal agencies reduce petroleum consumption and increase alternative fuel use through its resources for Sustainable Federal Fleets. To assist agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory's (NREL's) EVSE Tiger Teams.

  18. Surface Landing Site Weather Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. L.

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing of the Ares vehicles to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is art important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface weather conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center (MSFC) Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. This paper wiI1 describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that cab be obtained.

  19. Enhancing the NASA Expendable Launch Vehicle Payload Safety Review Process Through Program Activities

    NASA Technical Reports Server (NTRS)

    Palo, Thomas E.

    2007-01-01

    The safety review process for NASA spacecraft flown on Expendable Launch Vehicles (ELVs) has been guided by NASA-STD 8719.8, Expendable Launch Vehicle Payload Safety Review Process Standard. The standard focused primarily on the safety approval required to begin pre-launch processing at the launch site. Subsequent changes in the contractual, technical, and operational aspects of payload processing, combined with lessons-learned supported a need for the reassessment of the standard. This has resulted in the formation of a NASA ELV Payload Safety Program. This program has been working to address the programmatic issues that will enhance and supplement the existing process, while continuing to ensure the safety of ELV payload activities.

  20. Users guide for guidance and control Launch and Abort Simulation for Spacecraft (LASS), volume 1

    NASA Technical Reports Server (NTRS)

    Havig, T. F.; Backman, H. D.

    1972-01-01

    The mathematical models and computer program which are used to implement LASS are described. The computer program provides for a simulation of boost to orbit and abort capability from boost trajectories to a prescribed target. The abort target provides a decision point for engine shutdown from which the vehicle coasts to the vicinity of the selected abort recovery site. The simulation is a six degree of freedom simulation describing a rigid body. The vehicle is influenced by forces and moments from nondistributed aerodynamics. An adaptive autopilot is provided to control vehicle attitudes during powered and unpowered flight. A conventional autopilot is provided for study of vehicle during powered flight.

  1. Study of emissions from passenger cars in six cities, FY79. Volume I. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    The standard mass emission test (Federal Test Procedure) was performed for emission factors determination on samples of passenger cars operating in Los Angeles, Houston, Denver, Phoenix, St. Louis and Washington, DC. These samples were also used for obtaining abbreviated emission test (short cycle test), fuel economy test, emission related maintenance and other data. Two-thousand forty-two (2,042) vehicles were tested under the program. The FTP and the Highway Fuel Economy Test were performed on all vehicles at all sites. Some vehicles which exceed Federal standards (excluding the Houston site) were subjected to a restorative maintenance evaluation. The evaluation employed in Losmore » Angeles was designed to address three-way catalyst technology. Some vehicles in all but the Los Angeles site were used to evaluate commercial repair facility performance in relation to idle speed and mixture adjustments. Other actions were taken in relation to each vehicle tested. These included an emission control system maladjustment/disablement and status inspection driveability evaluations and owner interviews to obtain vehicle maintenance and usage data.« less

  2. Electric and Hybrid Vehicles Program. Sixteenth annual report to Congress for fiscal year 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    This report describes the progress achieved in developing electric and hybrid vehicle technologies, beginning with highlights of recent accomplishments in FY 1992. Detailed descriptions are provided of program activities during FY 1992 in the areas of battery, fuel cell, and propulsion system development, and testing and evaluation of new technology in fleet site operations and in laboratories. This Annual Report also contains a status report on incentives and use of foreign components, as well as a list of publications resulting from the DOE program.

  3. SPIDERS Bi-Directional Charging Station Interconnection Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, M.

    2013-09-01

    The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) program is a multi-year Department of Defense-Department of Energy (DOE) collaborative effort that will demonstrate integration of renewables into island-able microgrids using on-site generation control, demand response, and energy storage with robust security features at multiple installations. Fort Carson, Colorado, will be the initial development and demonstration site for use of plug-in electric vehicles as energy storage (also known as vehicle-to-grid or V2G).

  4. Pacific Missile Range Facility Intercept Test Support. Environmental Assessment/Overseas Environmental Assessment

    DTIC Science & Technology

    2010-04-01

    frequency monitoring, target control, and electronic warfare and networked operations. Kokee supports tracking radars, telemetry, communications, and...owned island of Niihau provide support and sites for a remotely operated PMRF surveillance radar, a Test Vehicle Recovery Site, an electronic warfare...site, multiple electronic warfare portable simulator sites, a marker for aircraft mining exercise programs, and a helicopter terrain-following

  5. Solar power satellite system definition study. Part 2, volume 8: SPS launch vehicle ascent and entry sonic overpressure and noise effects

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Recoverable launch vehicle concepts for the Solar Power Satellite program were identified. These large launch vehicles are powered by proposed engines in the F-1 thrust level class. A description of the candidate launch vehicles and their operating mode was provided. Predictions of the sonic over pressures during ascent and entry for both types of vehicles, and prediction of launch noise levels in the vicinity of the launch site were included. An overall assessment and criteria for sonic overpressure and noise levels was examined.

  6. Apollo Program Summary Report: Synopsis of the Apollo Program Activities and Technology for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Overall program activities and the technology developed to accomplish lunar exploration are discussed. A summary of the flights conducted over an 11-year period is presented along with specific aspects of the overall program, including lunar science, vehicle development and performance, lunar module development program, spacecraft development testing, flight crew summary, mission operations, biomedical data, spacecraft manufacturing and testing, launch site facilities, equipment, and prelaunch operations, and the lunar receiving laboratory. Appendixes provide data on each of the Apollo missions, mission type designations, spacecraft weights, records achieved by Apollo crewmen, vehicle histories, and a listing of anomalous hardware conditions noted during each flight beginning with Apollo 4.

  7. Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, W.R.

    1996-11-01

    ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, usingmore » two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.« less

  8. Automatic vehicle monitoring systems study. Report of phase O. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A set of planning guidelines is presented to help law enforcement agencies and vehicle fleet operators decide which automatic vehicle monitoring (AVM) system could best meet their performance requirements. Improvements in emergency response times and resultant cost benefits obtainable with various operational and planned AVM systems may be synthesized and simulated by means of special computer programs for model city parameters applicable to small, medium, and large urban areas. Design characteristics of various AVM systems and the implementation requirements are illustrated and cost estimated for the vehicles, the fixed sites, and the base equipments. Vehicle location accuracies for different RF links and polling intervals are analyzed.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1968-02-06

    A bird's-eye view of Apollo 6 and its gantry leaving the Vehicle Assembly Building on the transporter heading to the launch site on Pad 39-A at Kennedy Space Center. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  10. The commercial evolution of the Titan program

    NASA Astrophysics Data System (ADS)

    Isakowitz, Steven

    1988-07-01

    The present status evaluation of proprietary efforts to turn the once exclusively government-requirements-oriented Titan launch vehicle into a successful commercial competitor is divided into three phases. The first phase notes recent changes in U.S. space transportation policy and the Titan configurations evaluated for commercial feasibility. The second phase is a development history for the current vehicle's marketing organization and the right-to-use agreement for a launch site. Phase three projects the prospective marketing climate for a commercial Titan vehicle and its planned improvements.

  11. Orbital transfer vehicle launch operations study. Volume 2: Detailed summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A series of Operational Design Drivers were identified. Several of these could have significant impact(s) on program costs. These recommendations, for example, include such items as: complete factory assembly and checkout prior to shipment to the ground launch site to make significant reductions in time required at the launch site as well as overall manpower required to do this work; minimize use of nonstandard equipment when orbiter provided equipment is available; and require commonality (or interchangeability) of subsystem equipment elements that are common to the space station, Orbit Maneuvering Vehicles, and/or Orbit Transfer Vehicles. Several additional items were identified that will require a significant amount of management attention (and direction) to resolve. Key elements of the space based processing plans are discussed.

  12. KSC-99pp1063

    NASA Image and Video Library

    1999-08-23

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  13. KSC-99pp1062

    NASA Image and Video Library

    1999-08-23

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  14. RLV/X-33 operations overview

    NASA Astrophysics Data System (ADS)

    Black, Stephen T.; Eshleman, Wally

    1997-01-01

    This paper describes the VentureStar™ SSTO RLV and X-33 operations concepts. Applications of advanced technologies, automated ground support systems, advanced aircraft and launch vehicle lessons learned have been integrated to develop a streamlined vehicle and mission processing concept necessary to meet the goals of a commercial SSTO RLV. These concepts will be validated by the X-33 flight test program where financial and technical risk mitigation are required. The X-33 flight test program totally demonstrates the vehicle performance, technology, and efficient ground operations at the lowest possible cost. The Skunk Work's test program approach and test site proximity to the production plant are keys. The X-33 integrated flight and ground test program incrementally expands the knowledge base of the overall system allowing minimum risk progression to the next flight test program milestone. Subsequent X-33 turnaround processing flows will be performed with an aircraft operations philosophy. The differences will be based on research and development, component reliability and flight test requirements.

  15. Ground Plane and Near-Surface Thermal Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Amundsen, Ruth M.; Scola, Salvatore; Leahy, Frank F.; Sharp, John R.

    2008-01-01

    Most spacecraft thermal analysis tools assume that the spacecraft is in orbit around a planet and are designed to calculate solar and planetary fluxes, as well as radiation to space. On NASA Constellation projects, thermal analysts are also building models of vehicles in their pre-launch condition on the surface of a planet. This process entails making some modifications in the building and execution of a thermal model such that the radiation from the planet, both reflected albedo and infrared, is calculated correctly. Also important in the calculation of pre-launch vehicle temperatures are the natural environments at the vehicle site, including air and ground temperatures, sky radiative background temperature, solar flux, and optical properties of the ground around the vehicle. A group of Constellation projects have collaborated on developing a cohesive, integrated set of natural environments that accurately capture worst-case thermal scenarios for the pre-launch and launch phases of these vehicles. The paper will discuss the standardization of methods for local planet modeling across Constellation projects, as well as the collection and consolidation of natural environments for launch sites. Methods for Earth as well as lunar sites will be discussed.

  16. Kistler reusable vehicle facility design and operational approach

    NASA Astrophysics Data System (ADS)

    Fagan, D.; McInerney, F.; Johnston, C.; Tolson, B.

    Kistler Aerospace Corporation is designing and developing the K-1, the world's first fully reusable aerospace vehicle to deliver satellites into orbit. The K-1 vehicle test program will be conducted in Woomera, Australia, with commercial operations scheduled to begin shortly afterwards. Both stages of the K-1 will return to the launch site utilizing parachutes and airbags for a soft landing within 24 h after launch. The turnaround flow of the two stages will cycle from landing site to a maintenance/refurbishment facility and through the next launch in only 9 days. Payload processing will occur in a separate facility in parallel with recovery and refurbishment operations. The vehicle design and on-board checkout capability of the avionics system eliminates the need for an abundance of ground checkout equipment. Payload integration, vehicle assembly, and K-1 transport to the launch pad will be performed horizontally, simplifying processing and reducing infrastructure requirements. This simple, innovative, and cost-effective approach will allow Kistler to offer its customers flexible, low-cost, and on-demand launch services.

  17. Contractor point of view for system development and test program

    NASA Technical Reports Server (NTRS)

    Koide, F. K.; Ringer, D. E.; Earl, C. E.

    1981-01-01

    Industry's practice of testing space qualified hardware is examined. An overview of the Global Positioning System (GPS) Test Program is discussed from the component level to the sub-system compatibility tests with the space vehicle and finally to the launch site tests, all related to the Rubidium clock.

  18. Evaluation of a high visibility enforcement project focused on passenger vehicles interacting with commercial vehicles.

    PubMed

    Thomas, F Dennis; Blomberg, Richard D; Peck, Raymond C; Cosgrove, Linda A; Salzberg, Philip M

    2008-01-01

    In 2004, Washington State applied NHTSA's High Visibility Enforcement model used in the Click It or Ticket seat belt campaign in an attempt to reduce unsafe driving behaviors around commercial motor vehicles (CMVs). The program was called Ticketing Aggressive Cars and Trucks (TACT). This paper details the methods used to evaluate the program's effectiveness and the results of the evaluation. Four high-crash interstate highway corridors, each approximately 25 miles in length, were selected. Two of these corridors received TACT media messages and increased enforcement over an 18-month period while two comparison corridors did not receive any increased media or enforcement. A total of 4,737 contacts were made with drivers during the two enforcement waves, and 72% of these contacts led to a citation. Drivers at the intervention sites who said they saw or heard any of the TACT messages increased from 17.7% in the pre period to a high of 67.3% in the post periods. Drivers at the intervention sites also reported increased exposure to the core message of leaving more space when passing trucks (14% pre to 40% post period). The percentage of drivers who said they leave more room when passing trucks than when passing cars rose from 16% in the pre period to 24% in the post period at the intervention sites, while comparison sites showed no change. Over 150 hours of video recorded by law enforcement officers in unmarked vehicles were utilized to examine violation rates and severity of violations before and after the intervention campaigns. Statistical analyses showed that violation rates were reduced significantly at the intervention sites (between 23% and 46%), while remaining constant at the comparison sites. Analyses of the video data also showed that the seriousness of the residual violations at the intervention sites decreased. Overall, the evaluation results provide a consistent picture of the effectiveness of the TACT pilot project. Success was demonstrated at every step - messages were received and understood, knowledge was changed in the intended direction, self reported driving behavior around large trucks improved, and observed driving behaviors confirmed the self reports. After this initial success in Washington State, the TACT model will continue to be implemented and evaluated by FMCSA in an attempt to validate the program. Based on the results of this study and the consistent positive results found for other sTEP projects, it is likely that TACT will show continued success in a variety of settings and will help reduce the number and severity of crashes involving CMVs. Future research should attempt to use many of the methods described here to further validate the methods for not only evaluations of TACT programs, but also for any other highway safety programs that require measurements of the program's effectiveness.

  19. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane moves past the Vehicle Assembly Building on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  20. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, pilings are being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  1. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, workers measure the piling being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  2. SLS Test Stand Site Selection

    NASA Technical Reports Server (NTRS)

    Crowe, Kathryn; Williams, Michael

    2015-01-01

    Test site selection is a critical element of the design, development and production of a new system. With the advent of the new Space Launch System (SLS), the National Aeronautics and Space Administration (NASA) had a number of test site selection decisions that needed to be made early enough in the Program to support the planned Launch Readiness Date (LRD). This case study focuses on decisions that needed to be made in 2011 and 2012 in preparation for the April 2013 DPMC decision about where to execute the Main Propulsion Test that is commonly referred to as "Green Run." Those decisions relied upon cooperative analysis between the Program, the Test Lab and Center Operations. The SLS is a human spaceflight vehicle designed to carry a crew farther into space than humans have previously flown. The vehicle consists of four parts: the crew capsule, the upper stage, the core stage, and the first stage solid rocket boosters. The crew capsule carries the astronauts, while the upper stage, the core stage, and solid rocket boosters provide thrust for the vehicle. In other words, the stages provide the "lift" part of the lift vehicle. In conjunction with the solid rocket boosters, the core stage provides the initial "get-off-the-ground" thrust to the vehicle. The ignition of the four core stage engines and two solid rocket boosters is the first step in the launch portion of the mission. The solid rocket boosters burn out after about 2 minutes of flight, and are then jettisoned. The core stage provides thrust until the vehicle reaches a specific altitude and speed, at which point the core stage is shut off and jettisoned, and the upper stage provides vehicle thrust for subsequent mission trajectories. The integrated core stage primarily consists of a liquid oxygen tank, a liquid hydrogen tank, and the four core stage engines. For the SLS program, four RS-25 engines were selected as the four core stage engines. The RS-25 engine is the same engine that was used for Space Shuttle. The test plan for the integrated core stage was broken down into several segments: Component testing, system level testing, and element level testing. In this context, components are items such as valves, controllers, sensors, etc. Systems are items such as an entire engine, a tank, or the outer stage body. The core stage itself is considered to be an element. The rocket engines are also considered an element. At the program level, it was decided to perform a single green run test on the integrated core stage prior to shipment of it to Kennedy Space Center (KSC) for use in the EM-1 test flight of the SLS vehicle. A green run test is the first live fire of the new integrated core stage and engine elements - without boosters of course. The SLS Program had to decide where to perform SLS green run testing.

  3. Construction continues on the RLV complex at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  4. Construction continues on the RLV complex at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  5. KSC-99pp1257

    NASA Image and Video Library

    1999-10-29

    The first roof panels are placed on the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes the hangar and a building for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  6. KSC-99pp1259

    NASA Image and Video Library

    1999-10-29

    Work continues on construction of the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. In the background can be seen the new construction for the building that will house related ground support equipment and administrative/technical support. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  7. KSC-99pp1262

    NASA Image and Video Library

    1999-10-29

    Workers place the first roof panels on the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes the hangar and a building for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  8. Investigation of abort procedures for space shuttle-type vehicles

    NASA Technical Reports Server (NTRS)

    Powell, R. W.; Eide, D. G.

    1974-01-01

    An investigation has been made of abort procedures for space shuttle-type vehicles using a point mass trajectory optimization program known as POST. This study determined the minimum time gap between immediate and once-around safe return to the launch site from a baseline due-East launch trajectory for an alternate space shuttle concept which experiences an instantaneous loss of 25 percent of the total main engine thrust.

  9. Numerical Skip-Entry Guidance

    NASA Technical Reports Server (NTRS)

    Tigges, Michael; Crull, Timothy; Rea, Jeremy; Johnson, Wyatt

    2006-01-01

    This paper assesses a preliminary guidance and targeting strategy for accomplishing Skip-Entry (SE) flight during a lunar return-capsule entry flight. One of the primary benefits of flying a SE trajectory is to provide the crew with continuous Continental United States (CONUS) landing site access throughout the lunar month. Without a SE capability, the capsule must land either in water or at one of several distributed land sites in the Southern Hemisphere for a significant portion of a lunar month using a landing and recovery scenario similar to that employed during the Apollo program. With a SE trajectory, the capsule can land either in water at a site in proximity to CONUS or at one of several distributed landing sites within CONUS, thereby simplifying the operational requirements for crew retrieval and vehicle recovery, and possibly enabling a high degree of vehicle reusability. Note that a SE capability does not require that the vehicle land on land. A SE capability enables a longer-range flight than a direct-entry flight, which permits the vehicle to land at a much greater distance from the Entry Interface (EI) point. This does not exclude using this approach to push the landing point to a water location in proximity of CONUS and utilizing water or airborne recovery forces.

  10. Orbital transfer vehicle launch operations study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose was to use the operational experience at the launch site to identify, describe and quantify the operational impacts of the various configurations on the Kennedy Space Center (KSC) and/or space station launch sites. Orbital Transfer Vehicle (OTV) configurations are being developed/defined by contractor teams. Lacking an approved configuration, the KSC Study Team defined a Reference Configuration to be used for this study. This configuration then become the baseline for the identification of the facilities, personnel and crew skills required for processing the OTV in a realistic manner that would help NASA achieve the lowest possible OTV life cycle costs. As the study progressed, researchers' initial apraisal that the vehicle, when delivered, would be a sophisticated, state-of-the-art vehicle was reinforced. It would be recovered and reused many times so the primary savings to be gained would be in the recurring-cycle of the vehicle operations--even to the point where it would be beneficial to break from tradition and make a significant expenditure in the development of processing facilities at the beginning of the program.

  11. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler puts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  12. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  13. Dual Liquid Flyback Booster for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Blum, C.; Jones, P.; Meinders, B.

    1998-01-01

    Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuffle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuffle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper 'Conceptual Design for a Space Shuttle Liquid Flyback Booster' will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.

  14. Dual Liquid Flyback Booster for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Blum, C.; Jones, Patti; Meinders, B.

    1998-01-01

    Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuttle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuttle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper, "Conceptual Design for a Space Shuttle Liquid Flyback Booster" will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.

  15. KSC-2011-5112

    NASA Image and Video Library

    2011-07-07

    CAPE CANAVERAL, Fla. -- A media event was held on the grounds near the Press Site at NASA's Kennedy Space Center in Florida where a Multi-Purpose Crew Vehicle (MPCV) is on display. The MPCV is based on the Orion design requirements for traveling beyond low Earth orbit and will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. Seen here is Mark Geyer, Multi-Purpose Crew Vehicle program manager speaking to media during a question-and-answer session. Photo credit: NASA/Frankie Martin

  16. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling off a truck. The piling will be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  17. Guide to alternative fuel vehicle incentives and laws: September 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, C.; O'Connor, K.

    1998-12-22

    This guide provides information in support of the National Clean Cities Program, which will assist one in becoming better informed about the choices and options surrounding the use of alternative fuels and the purchase of alternative fuel vehicles. The information printed in this guide is current as of September 15, 1998. For recent additions or more up-to-date information, check the Alternative Fuels Data Center Web site at http://www.afdc.doe.gov

  18. Site Operator technical report. Final report (1992--1996)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    The Southern California Edison Company (SCE) and the US Department of Energy (DOE) entered into cooperative agreement No. DE-FC07-91ID13077 on August 23, 1991, which expired on August 3, 1996. This cooperative agreement provided SCE with DOE cofunding for participation in the DOE`s Electric and Hybrid Vehicle Site Operator Program. In return, SCE provided the DOE with quarterly progress reports which include operating and maintenance data for the electric (EVs) vehicles in SCE`s fleet. Herein is SCE`s final report for the 1992 to 1996 agreement period. As of September 1, 1996 the SCE fleet had 65 electric vehicles in service. Amore » total of 578,200 miles had been logged. During the agreement period, SCE sent the DOE a total of 19 technical reports (Appendix B). This report summarizes the technical achievements which took place during a long, productive and rewarding, relationship with the DOE.« less

  19. System design and architecture for the IDTO prototype – phase I demonstration site (Columbus).

    DOT National Transportation Integrated Search

    2013-11-01

    This report documents the System Design and Architecture for the Phase I implementation of the Integrated Dynamic Transit Operations (IDTO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected Vehicle Program.

  20. Rail commuter vehicle curving performance

    DOT National Transportation Integrated Search

    2002-04-01

    This report presents results of a program to design and install a wayside wheel-rail force measurement system. The test site is capable of developing a set of measurements of lateral and vertical forces exerted between the wheel and the rail at caref...

  1. System design and architecture for the IDTO prototype : phase II demonstration site (central Florida).

    DOT National Transportation Integrated Search

    2015-05-01

    This report documents the System Design and Architecture for the Phase II implementation of the Integrated Dynamic Transit Operations (IDTO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected Vehicle Program. Thi...

  2. Report on functional requirements and software architecture for the IDTO prototype : phase I demonstration site (Columbus).

    DOT National Transportation Integrated Search

    2013-08-01

    This report documents the System Requirements and Architecture for the Phase I implementation of the Integrated Dynamic Transit Operations (IDTO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected Vehicle Program...

  3. The Launch Processing System for Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Springer, D. A.

    1973-01-01

    In order to reduce costs and accelerate vehicle turnaround, a single automated system will be developed to support shuttle launch site operations, replacing a multiplicity of systems used in previous programs. The Launch Processing System will provide real-time control, data analysis, and information display for the checkout, servicing, launch, landing, and refurbishment of the launch vehicles, payloads, and all ground support systems. It will also provide real-time and historical data retrieval for management and sustaining engineering (test records and procedures, logistics, configuration control, scheduling, etc.).

  4. Transformational Spaceport and Range Technologies: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic is divided into two parts and includes technologies for launch site infrastructure and range capabilities for the crew exploration vehicle and advanced heavy lift vehicles. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1968-10-01

    The Saturn IB and Saturn V flight vehicles first stages were manufactured at the Michoud Assembly Facility located 24 kilometers (approximately 15 miles) east of downtown New Orleans, Louisiana. The basic manufacturing building boasted 43 acres under one roof. By 1964, NASA added a separate engineering and office building, vertical assembly building, and test stage building. By 1966, other changes to the site included enlarged barge facilities and other miscellaneous support buildings. The image is a view of various vehicle components in the manufacturing plant.

  6. Ribbon cutting opens new ELV offices

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The audience applauds and enjoys the official opening of the E&O Building as the new site of the Expendable Launch Vehicle Program. Home for NASA's unmanned missions since 1964, the building has been renovated to house the ELV Program. Cutting the ribbon for the event were Deputy Manager of the ELV and Payload Carrier Programs, Steve Francois; Director of ELV Launch Services, Michael Benik; Center Director Roy Bridges; Manager of the ELV and Payload Carrier Programs, Bobby Bruckner; and Senior Manager of the Boeing ELV Program Support office, Jim Schofield.

  7. KSC-00pp1668

    NASA Image and Video Library

    2000-11-08

    The audience applauds and enjoys the official opening of the E&O Building as the new site of the Expendable Launch Vehicle Program. Home for NASA’s unmanned missions since 1964, the building has been renovated to house the ELV Program.; Cutting the ribbon for the event were Deputy Manager of the ELV and Payload Carrier Programs, Steve Francois; Director of ELV Launch Services, Michael Benik; Center Director Roy Bridges; Manager of the ELV and Payload Carrier Programs, Bobby Bruckner; and Senior Manager of the Boeing ELV Program Support office, Jim Schofield

  8. Automatic vehicle monitoring systems study. Report of phase O. Volume 2: Problem definition and derivation of AVM system selection techniques

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A set of planning guidelines is presented to help law enforcement agencies and vehicle fleet operators decide which automatic vehicle monitoring (AVM) system could best meet their performance requirements. Improvements in emergency response times and resultant cost benefits obtainable with various operational and planned AVM systems may be synthesized and simulated by means of special computer programs for model city parameters applicable to small, medium and large urban areas. Design characteristics of various AVM systems and the implementation requirements are illustrated and cost estimated for the vehicles, the fixed sites and the base equipments. Vehicle location accuracies for different RF links and polling intervals are analyzed. Actual applications and coverage data are tabulated for seven cities whose police departments actively cooperated in the study.

  9. Development Of Human Factors Guidelines For Advanced Traveler Information Systens And Commercial Vehicle Operations: Comparable Systems Analysis

    DOT National Transportation Integrated Search

    1998-11-01

    This document describes the strategy used to evaluate the Intelligent Transportation Systems (ITS) Joint Program Offices Metropolitan Model Deployment Initiative (MMDI). The MMDI is an aggressive deployment of ITS at four urban sites: New York/New...

  10. A-3 First Tree Cutting

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Tree clearing for the site of the new A-3 Test Stand at Stennis Space center began June 13. NASA's first new large rocket engine test stand to be built since the site's inception, A-3 construction begins a historic era for America's largest rocket engine test complex. The 300-foot-tall structure is scheduled for completion in August 2010. A-3 will perform altitude tests on the Constellation's J-2X engine that will power the upper stage of the Ares I crew launch vehicle and earth departure stage of the Ares V cargo launch vehicle. The Constellation Program, NASA's plan for carrying out the nation's Vision for Space Exploration, will return humans to the moon and eventually carry them to Mars and beyond.

  11. A-3 First Tree Cutting

    NASA Image and Video Library

    2007-06-13

    Tree clearing for the site of the new A-3 Test Stand at Stennis Space center began June 13. NASA's first new large rocket engine test stand to be built since the site's inception, A-3 construction begins a historic era for America's largest rocket engine test complex. The 300-foot-tall structure is scheduled for completion in August 2010. A-3 will perform altitude tests on the Constellation's J-2X engine that will power the upper stage of the Ares I crew launch vehicle and earth departure stage of the Ares V cargo launch vehicle. The Constellation Program, NASA's plan for carrying out the nation's Vision for Space Exploration, will return humans to the moon and eventually carry them to Mars and beyond.

  12. Characterization of in-use light-duty gasoline vehicle emissions by remote sensing in Beijing: impact of recent control measures.

    PubMed

    Zhou, Yu; Fu, Lixin; Cheng, Linglin

    2007-09-01

    China's national government and Beijing city authorities have adopted additional control measures to reduce the negative impact of vehicle emissions on Beijing's air quality. An evaluation of the effectiveness of these measures may provide guidance for future vehicle emission control strategy development. In-use emissions from light-duty gasoline vehicles (LDGVs) were investigated at five sites in Beijing with remote sensing instrumentation. Distance-based mass emission factors were derived with fuel consumption modeled on real world data. The results show that the recently implemented aggressive control strategies are significantly reducing the emissions of on-road vehicles. Older vehicles are contributing substantially to the total fleet emissions. An earlier program to retrofit pre-Euro cars with three-way catalysts produced little emission reduction. The impact of model year and driving conditions on the average mass emission factors indicates that the durability of vehicles emission controls may be inadequate in Beijing.

  13. New York City Police Department automated fuel monitoring system. Volume II: documentation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, W.J.; McNamara, M.M.

    1981-11-01

    The New York City Police Department's (NYCPD) automated fuel monitoring system was designed and implemented for NYCPD as a major aspect of the Naval Underwater System Center's technology transfer program. The system, which is the largest of its kind installed to date, provides complete control of fuel usage for an agency with 4,000 motor vehicles and 25,000 vehicle operators, and can be scaled up or down to meet the needs of other governmental units. Estimated annual cost savings to NYCPD are $2,000,000. Other benefits of the new system are: (1) central control of fuel ordering and dispensing which ensures fewermore » sites out of fuel and for shorter periods; (2) less out-of-precinct travel because personnel do not have to go from site to site looking for gas; and (3) control of the total fuel operation, both for management and accounting purposes.« less

  14. 78 FR 59866 - New Car Assessment Program (NCAP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... because ESC is now required for all light vehicles. For many years, NCAP has provided comparative... site, www.safercar.gov . NCAP provides comparative information on the safety performance and features... Features on www.safercar.gov are designed to assist drivers in avoiding backover crashes. After considering...

  15. Integrating Four Courses into a 12 Credit Hour Block of Instruction in an On-Line Format as Part of a Master's Program in Educational Administration.

    ERIC Educational Resources Information Center

    Klotz, Jack; Roberson, Thelma J.

    This paper shares the approach taken by one department of educational leadership to creating a vehicle for delivering its master's degree program to national and international students through the integration of online and on-site instructional formats. The paper addresses the historical background of higher education reform, the curriculum of the…

  16. Performance of a 1-micron, 1-joule Coherent Launch Site Atmospheric Wind Sounder

    NASA Technical Reports Server (NTRS)

    Hawley, James G.; Targ, Russell; Bruner, Richard; Henderson, Sammy W.; Hale, Charles P.; Vetorino, Steven; Lee, R. W.; Harper, Scott; Khan, Tayyab

    1992-01-01

    The paper describes the design and performance of the Coherent Launch Site Atmospheric Wind Sounder (CLAWS), which is a test and demonstration program designed for monitoring winds with a solid-state lidar in real time for the launch site vehicle guidance and control application. Analyses were conducted to trade off CO2 (9.11- and 10.6-microns), Ho:YAG (2.09 microns), and Nd:YAG (1.06-micron) laser-based lidars. The measurements set a new altitude record (26 km) for coherent wind measurements in the stratosphere.

  17. Mars sample return: Site selection and sample acquisition study

    NASA Technical Reports Server (NTRS)

    Nickle, N. (Editor)

    1980-01-01

    Various vehicle and mission options were investigated for the continued exploration of Mars; the cost of a minimum sample return mission was estimated; options and concepts were synthesized into program possibilities; and recommendations for the next Mars mission were made to the Planetary Program office. Specific sites and all relevant spacecraft and ground-based data were studied in order to determine: (1) the adequacy of presently available data for identifying landing sities for a sample return mission that would assure the acquisition of material from the most important geologic provinces of Mars; (2) the degree of surface mobility required to assure sample acquisition for these sites; (3) techniques to be used in the selection and drilling of rock a samples; and (4) the degree of mobility required at the two Viking sites to acquire these samples.

  18. TRAINING GUIDE FOR VOCATIONAL HABILITATION.

    ERIC Educational Resources Information Center

    BITTER, JAMES A.

    DESIGNED AS A GUIDE FOR COUNSELORS OF VOCATIONAL HABILITATION CLIENTS (CLIENTS WITH LITTLE OR NO VOCATIONAL EXPERIENCE) THIS MANUAL PRESENTS THE PROGRAM DEVELOPED BY THE WORK EXPERIENCE CENTER (WEC) OF THE ST. LOUIS JEWISH EMPLOYMENT AND VOCATIONAL SERVICE. THE MAJOR TRAINING VEHICLES USED BY WEC ARE HABILITATION WORKSHOPS, EMPLOYER JOB SITES, AND…

  19. Biconic cargo return vehicle with an advanced recovery system. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The conceptual design of the biconic Cargo Return Vehicle (CRV) is presented. The CRV will be able to meet all of the Space Station Freedom (SSF's) resupply needs. Worth note is the absence of a backup recovery chute in case of Advanced Recovery System (ARS) failure. The high reliability of ram-air parachutes does not warrant the penalty weight that such a system would create on successful missions. The CRV will launch vertically integrated with an Liquid Rocket Booster (LRB) vehicle and meets all NASA restrictions on fuel type for all phases of the mission. Because of the downscaled Orbital Maneuvering Vehicle (OMV) program, the CRV has been designed to be able to transfer cargo by docking directly to the Space Station Freedom as well as with OMV assistance. The CRV will cover enough crossrange to reach its primary landing site, Edwards Airforce Base, and all secondary landing sites with the exception of one orbit. Transportation back to KSC will be via the Boeing Super Guppy. Due to difficulties with man-rating the CRV, it will not be used in a CERV role. A brief summary of the CRV's specifications is given.

  20. KSC-98pc1882

    NASA Image and Video Library

    1998-12-18

    Federal, state, NASA, KSC and Space Florida Authority (SFA) officials dig in at the planned site of a multi-purpose hangar, phase one of the Reusable Launch Vehicle (RLV) Support Complex to be built near the Shuttle Landing Facility. From left, they are a representative from Rush Construction; Ed O'Connor, executive director of the Spaceport Florida Authority (SFA); Stephen T. Black, Lockheed Martin technical operations program manager; Warren Wiley, deputy director of engineering development; Tom Best, district director, representing U.S. Congressman Dave Weldon; Roy Bridges, director, Kennedy Space Center; Bill Posey, 32nd district representative; Randy Ball, state representative; Charlie Bronson, state senator; Donald McMonagle, manager of launch integration; and John London, Marshall Space Flight Center X-34 program manager. The new complex is jointly funded by SFA, NASA's Space Shuttle Program and Kennedy Space Center. It is intended to support the Space Shuttle and other RLV and X-vehicle systems. Completion is expected by the year 2000

  1. Abort performance for a winged-body single-stage to orbit vehicle. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Lyon, Jeffery A.

    1995-01-01

    Optimal control theory is employed to determine the performance of abort to orbit (ATO) and return to launch site (RTLS) maneuvers for a single-stage to orbit vehicle. The vehicle configuration examined is a seven engine, winged-body vehicle, that lifts-off vertically and lands horizontally. The abort maneuvers occur as the vehicle ascends to orbit and are initiated when the vehicle suffers an engine failure. The optimal control problems are numerically solved in discretized form via a nonlinear programming (NLP) algorithm. A description highlighting the attributes of this NLP method is provided. ATO maneuver results show that the vehicle is capable of ascending to orbit with a single engine failure at lift-off. Two engine out ATO maneuvers are not possible from the launch pad, but are possible after launch when the thrust to weight ratio becomes sufficiently large. Results show that single engine out RTLS maneuvers can be made for up to 180 seconds after lift-off and that there are scenarios for which RTLS maneuvers should be performed instead of ATP maneuvers.

  2. Determining the frequency of open windows in motor vehicles: a pilot study using a video camera in Houston, Texas during high temperature conditions.

    PubMed

    Long, Tom; Johnson, Ted; Ollison, Will

    2002-05-01

    Researchers have developed a variety of computer-based models to estimate population exposure to air pollution. These models typically estimate exposures by simulating the movement of specific population groups through defined microenvironments. Exposures in the motor vehicle microenvironment are significantly affected by air exchange rate, which in turn is affected by vehicle speed, window position, vent status, and air conditioning use. A pilot study was conducted in Houston, Texas, during September 2000 for a specific set of weather, vehicle speed, and road type conditions to determine whether useful information on the position of windows, sunroofs, and convertible tops could be obtained through the use of video cameras. Monitoring was conducted at three sites (two arterial roads and one interstate highway) on the perimeter of Harris County located in or near areas not subject to mandated Inspection and Maintenance programs. Each site permitted an elevated view of vehicles as they proceeded through a turn, thereby exposing all windows to the stationary video camera. Five videotaping sessions were conducted over a two-day period in which the Heat Index (HI)-a function of temperature and humidity-varied from 80 to 101 degrees F and vehicle speed varied from 30 to 74 mph. The resulting videotapes were processed to create a master database listing vehicle-specific data for site location, date, time, vehicle type (e.g., minivan), color, window configuration (e.g., four windows and sunroof), number of windows in each of three position categories (fully open, partially open, and closed), HI, and speed. Of the 758 vehicles included in the database, 140 (18.5 percent) were labeled as "open," indicating a window, sunroof, or convertible top was fully or partially open. The results of a series of stepwise linear regression analyses indicated that the probability of a vehicle in the master database being "open" was weakly affected by time of day, vehicle type, vehicle color, vehicle speed, and HI. In particular, open windows occurred more frequently when vehicle speed was less than 50 mph during periods when HI exceeded 99.9 degrees F and the vehicle was a minivan or passenger van. Overall, the pilot study demonstrated that data on factors affecting vehicle window position could be acquired through a relatively simple experimental protocol using a single video camera. Limitations of the study requiring further research include the inability to determine the status of the vehicle air conditioning system; lack of a wide range of weather, vehicle speed, and road type conditions; and the need to exclude some vehicles from statistical analyses due to ambiguous window positions.

  3. Installation Restoration Program. Phase I - Records Search 92nd Bombardment Wing (Heavy), Fairchild AFB, Washington.

    DTIC Science & Technology

    1985-01-01

    a pavillion with a snack bar, six cabins, eight recreational vehicle camping sites with electrical -- hookup only, a covered picnic area, and a small...solidification. Lava: The material extruded by a volcano which consists of molten or part- molten silicate material. Leachate: A solution resulting from

  4. 25 CFR 39.722 - What transportation information must day schools, on-reservation boarding schools and peripheral...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Mileage traveled to transport students to and from school on school days, to sites of special services, and to extra-curricular activities; (4) Mileage driven for student medical trips; (5) Costs of vehicle... INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION THE INDIAN SCHOOL EQUALIZATION PROGRAM Student...

  5. Saturn Apollo Program

    NASA Image and Video Library

    1972-04-01

    The Lunar Roving Vehicle (LRV) was designed to transport astronauts and materials on the Moon. An LRV was used on each of the last three Apollo missions; Apollo 15, Apollo 16, and Apollo 17, in 1971 and 1972, to permit the crew to travel several miles from the lunar landing site. This photograph was taken during the Apollo 16 mission.

  6. 14 CFR 420.19 - Launch site location review-general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... site, at least one type of expendable or reusable launch vehicle can be flown from the launch point... × 10−6). (2) Types of launch vehicles include orbital expendable launch vehicles, guided sub-orbital expendable launch vehicles, unguided sub-orbital expendable launch vehicles, and reusable launch vehicles...

  7. Installation Restoration Program Records Search for Langley Air Force Base, Virginia

    DTIC Science & Technology

    1982-06-01

    Septic Tanks at Langley Air Force Base 12 Location of Oil /Water Separators at Langley Air Force Base 13 Location Map of Possible Contaminated Area at...No. J.) and old vehicle dumping area (Site No. 15). A-17 Location of old underground fuel lines--possible oil -saturated area. vi FIGURES--Continued A...18 Location of old wastewater treatment plant at the Main Base Area (Site No. 2). A-19 Location of old underground oil storage tanks-possible oil

  8. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining a License § 420.29 Launch site location review for unproven launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall...

  9. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining a License § 420.29 Launch site location review for unproven launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall...

  10. Hydrogen Internal Combustion Engine (ICE) Vehicles and Fueling Infrastructure : Alternative Fuels & Life-Cycle Engineering Program : November 29, 2006 to November 28, 2011

    DOT National Transportation Integrated Search

    2011-12-20

    Wind turbines located on sites known as wind farms have become popular in the United States and elsewhere because they may be able to reduce, if not replace, the use of fossil fuels for energy production. The development of wind farms has been partic...

  11. Final Environmental Assessment of the Joint Air-to-Surface Stand-Off Missile (JASSM) Development and Evaluation Testing, White Sands Missile Range, New Mexico

    DTIC Science & Technology

    2001-12-01

    Explosive Test Site Program Definition and Risk Reduction Permissible Exposure Limit Program Executive Office Propellants, Explosives, and...each test vehicle is flown in the captive mode and critical systems are functioned to further remove risk of failure due to the flight environment...of other inferior missiles would require a larger number of missiles, at increased procurement costs and risk to aircraft and crew, in order to

  12. Selected topics from the structural acoustics program for the B-1 aircraft

    NASA Technical Reports Server (NTRS)

    Belcher, P. M.

    1979-01-01

    The major elements of the structural acoustics program for the B-1 aircraft are considered. Acoustic pressures measured at 280 sites on the surface of the vehicle were used to develop pressure models for a resizing of airframe components for aircraft No. 4 (A/C4). Acoustical fatigue design data for two dynamically complex structural configurations were acquired in laboratory programs, the conceptions for and executions of which detailed significant departures from the conventional. Design requirements for mechanical fasteners for configurations other than these two made use of analytical extensions of regrettably limited available information.

  13. A Characterization of the Terrestrial Environment of Kodiak Island, Alaska for the Design, Development and Operation of Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Rawlins, Michael A.; Johnson, Dale L.; Batts, Glen W.

    2000-01-01

    A quantitative characterization of the terrestrial environment is an important component in the success of a launch vehicle program. Environmental factors such as winds, atmospheric thermodynamics, precipitation, fog, and cloud characteristics are among many parameters that must be accurately defined for flight success. The National Aeronautics and Space Administration (NASA) is currently coordinating weather support and performing analysis for the launch of a NASA payload from a new facility located at Kodiak Island, Alaska in late 2001 (NASA, 1999). Following the first launch from the Kodiak Launch Complex, an Air Force intercontinental ballistic missile on November 5, 1999, the site's developer, the Alaska Aerospace Development Corporation (AADC), is hoping to acquire a sizable share of the many launches that will occur over the next decade. One such customer is NASA, which is planning to launch the Vegetation Canopy Lidar satellite aboard an Athena I rocket, the first planned mission to low earth orbit from the new facility. To support this launch, a statistical model of the atmospheric and surface environment for Kodiak Island, AK has been produced from rawinsonde and surface-based meteorological observations for use as an input to future launch vehicle design and/or operations. In this study, the creation of a "reference atmosphere" from rawinsonde observations is described along with comparisons between the reference atmosphere and existing model representations for Kodiak. Meteorological conditions that might result in a delay on launch day (cloud cover, visibility, precipitation, etc.) are also explored and described through probabilities of launch by month and hour of day. This atmospheric "mission analysis" is also useful during the early stages of a vehicle program, when consideration of the climatic characteristics of a location can be factored into vehicle designs. To be most beneficial, terrestrial environment definitions should a) be available at the inception of the program and based on the desired operational performance of the launch vehicle, b) be issued under the signature of the program manager and be part of the controlled program definition and requirements documentation, and c) specify the terrestrial environment for all phases of activity including prelaunch, launch, ascent, on-orbit, decent, and landing. Since the beginning of the space era, NASA has utilized some of the most detailed assessments of the terrestrial climatic environment in design, development, and operations of both expendable and reusable launch vehicles.

  14. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies report. Volume 3: Computer program listings

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A description and listing is presented of two computer programs: Hybrid Vehicle Design Program (HYVELD) and Hybrid Vehicle Simulation Program (HYVEC). Both of the programs are modifications and extensions of similar programs developed as part of the Electric and Hybrid Vehicle System Research and Development Project.

  15. KSC-03pd1107

    NASA Image and Video Library

    2003-04-10

    KENNEDY SPACE CENTER, FLA. -- Members of a U.S. Forest Service search team walk a grid during a Columbia Recovery search near the Hemphill site. The group is accompanied by a space program worker able to identify potential hazards of Shuttle parts. Kennedy Space Center workers are participating in the Columbia Recovery efforts at the Lufkin (Texas) Command Center, four field sites in East Texas, and the Barksdale, La., hangar site. KSC is working with representatives from other NASA Centers and with those from a number of federal, state and local agencies in the recovery effort. KSC provides vehicle technical expertise in the field to identify, collect and return Shuttle hardware to KSC.

  16. KSC-03pd1106

    NASA Image and Video Library

    2003-04-10

    KENNEDY SPACE CENTER, FLA. -- Members of a U.S. Forest Service search team walk a grid during a Columbia Recovery search near the Hemphill site. The group is accompanied by a space program worker able to identify potential hazards of Shuttle parts. Kennedy Space Center workers are participating in the Columbia Recovery efforts at the Lufkin (Texas) Command Center, four field sites in East Texas, and the Barksdale, La., hangar site. KSC is working with representatives from other NASA Centers and with those from a number of federal, state and local agencies in the recovery effort. KSC provides vehicle technical expertise in the field to identify, collect and return Shuttle hardware to KSC.

  17. KSC-03pd1115

    NASA Image and Video Library

    2003-04-09

    KENNEDY SPACE CENTER, FLA. -- Members of a U.S. Forest Service search team walk a grid during a Columbia Recovery search near the Nacogdoches site. The group is accompanied by a space program worker able to identify potential hazards of Shuttle parts. Kennedy Space Center workers are participating in the Columbia Recovery efforts at the Lufkin (Texas) Command Center, four field sites in East Texas, and the Barksdale, La., hangar site. KSC is working with representatives from other NASA Centers and with those from a number of federal, state and local agencies in the recovery effort. KSC provides vehicle technical expertise in the field to identify, collect and return Shuttle hardware to KSC.

  18. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  19. Highlights of 1978 activities

    NASA Technical Reports Server (NTRS)

    1978-01-01

    General highlights of NASA's activities for 1978 are presented. The highlights are categorized into topics such as space science, space transportation systems, space and terrestrial applications, environment, technology utilization, aeronautics, space research and technology, energy programs, and international. A list of the 1978 launches including: (1) launch date; (2) payload designation; (3) launch vehicle; (4) launch site and (5) mission remarks is also presented.

  20. Affects of road sign wording on visitor survey - non-response bias

    Treesearch

    Susan M. Kocis; Stanley J. Zarnoch; Donald B.K. English

    2004-01-01

    On-site visitor interviewer data collection is a key component of the USDA Forest Service National Visitor Use Monitoring (NVUM) program. In many areas, especially higher speed roads and roads with non-recreation traffic, many vehicles may not stop for an interview. Wording on the sign may condition non-recreation visitors to self-select as to whether or not they...

  1. X-33 Simulation Lab and Staff Engineers

    NASA Technical Reports Server (NTRS)

    1997-01-01

    X-33 program engineers at NASA's Dryden Flight Research Center, Edwards, California, monitor a flight simulation of the X-33 Advanced Technology Demonstrator as a 'flight' unfolds. The simulation provided flight trajectory data while flight control laws were being designed and developed. It also provided information which assisted X-33 developer Lockheed Martin in aerodynamic design of the vehicle. The X-33 program was a government/industry effort to design, build and fly a half-scale prototype that was to demonstrate in flight the new technologies needed for Lockheed Martin's proposed full-scale VentureStar Reusable Launch Vehicle. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was intended to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was intended to dramatically increase reliability and lower costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to create new opportunities for space access and significantly improve U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to reach altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to be launched from a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen fuel tank, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.

  2. Evolution of the Florida Launch Site Architecture: Embracing Multiple Customers, Enhancing Launch Opportunities

    NASA Technical Reports Server (NTRS)

    Colloredo, Scott; Gray, James A.

    2011-01-01

    The impending conclusion of the Space Shuttle Program and the Constellation Program cancellation unveiled in the FY2011 President's budget created a large void for human spaceflight capability and specifically launch activity from the Florida launch Site (FlS). This void created an opportunity to re-architect the launch site to be more accommodating to the future NASA heavy lift and commercial space industry. The goal is to evolve the heritage capabilities into a more affordable and flexible launch complex. This case study will discuss the FlS architecture evolution from the trade studies to select primary launch site locations for future customers, to improving infrastructure; promoting environmental remediation/compliance; improving offline processing, manufacturing, & recovery; developing range interface and control services with the US Air Force, and developing modernization efforts for the launch Pad, Vehicle Assembly Building, Mobile launcher, and supporting infrastructure. The architecture studies will steer how to best invest limited modernization funding from initiatives like the 21 st elSe and other potential funding.

  3. A review of physical security robotics at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roerig, S.C.

    1990-01-01

    As an outgrowth of research into physical security technologies, Sandia is investigating the role of robotics in security systems. Robotics may allow more effective utilization of guard forces, especially in scenarios where personnel would be exposed to harmful environments. Robots can provide intrusion detection and assessment functions for failed sensors or transient assets, can test existing fixed site sensors, and can gather additional intelligence and dispense delaying elements. The Robotic Security Vehicle (RSV) program for DOE/OSS is developing a fieldable prototype for an exterior physical security robot based upon a commercial four wheel drive vehicle. The RSV will be capablemore » of driving itself, being driven remotely, or being driven by an onboard operator around a site and will utilize its sensors to alert an operator to unusual conditions. The Remote Security Station (RSS) program for the Defense Nuclear Agency is developing a proof-of-principle robotic system which will be used to evaluate the role, and associated cost, of robotic technologies in exterior security systems. The RSS consists of an independent sensor pod, a mobile sensor platform and a control and display console. Sensor data fusion is used to optimize the system's intrusion detection performance. These programs are complementary, the RSV concentrates on developing autonomous mobility, while the RSS thrust is on mobile sensor employment. 3 figs.« less

  4. Hybrid Vehicle Program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  5. NYPA/TH!NK Clean Commute Program Final Report - Inception through December 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Francfort; Don Karner

    The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric transportation in urban applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations, where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK city vehicles is located at the commuters’ private residences as well as seven train stations. Ford leased at total of 97 TH!NK city electric vehicles to commuters from Westchester, Putnam, Rockland, Queens, Nassau, and Suffolkmore » counties for $199 per month. First Clean Commute Program vehicle deliveries occurred late in 2001, with data collection commencing in February 2002. Through May, 2004, 24 of the lessees have returned their vehicles to Ford and no longer participate in the Clean Commute Program. Reasons given for leaving the Program include relocation out of the Program area, change in employment status, change in commuting status, and, in a few cases, dissatisfaction with the vehicle. Additionally, 13 vehicles were returned to Ford when the lease was completed. In August 2002, Ford announced that it was ceasing production of the TH!NK city and would not extend any TH!NK city leases. Mileage accumulation dropped in the last quarter of the program as vehicle leases were returned to Ford. The impact of the program overall was significant as participants in the Clean Commute Program drove their vehicles over 406,074 miles, avoiding the use of over 18,887 gallons of gasoline. During the active portion of the program, the TH!NK city vehicles were driven an average of between 180 and 230 miles per month. Over 95% of all trips taken with the TH!NK city vehicles replaced trips previously taken in gasoline vehicles. This report covers the period from Program inception through December 2004.« less

  6. Integrated operations/payloads/fleet analysis. Volume 3: System costs. Appendix A: Program direct costs

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Individualized program direct costs for each satellite program are presented. This breakdown provides the activity level dependent costs for each satellite program. The activity level dependent costs, or, more simply, program direct costs, are comprised of the total payload costs (as these costs are strictly program dependent) and the direct launch vehicle costs. Only those incremental launch vehicle costs associated directly with the satellite program are considered. For expendable launch vehicles the direct costs include the vehicle investment hardware costs and the launch operations costs. For the reusable STS vehicles the direct costs include only the launch operations, recovery operations, command and control, vehicle maintenance, and propellant support. The costs associated with amortization of reusable vehicle investment, RDT&E range support, etc., are not included.

  7. 41 CFR 101-26.501-9 - Centralized motor vehicle leasing program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Centralized motor vehicle...-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 101-26.501-9 Centralized motor vehicle leasing program. GSA has a centralized leasing program to provide an additional source of motor vehicle support to...

  8. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  9. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  10. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  11. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  12. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  13. High spatial resolution mapping of water quality and bathymetry with an autonomous underwater vehicle

    NASA Astrophysics Data System (ADS)

    Pampalone, Vincenzo; Milici, Barbara

    2015-12-01

    The drone Ecomapper AUV (Autonomous Underwater Vehicle) is a rare example of highly technological instrument in the environmental coastal monitoring field. The YSI EcoMapper is a one-man deployable, Autonomous Underwater Vehicle (AUV) designed to collect bathymetry and water quality data. The submarine-like vehicle follows a programmed course and employs sensors mounted in the nose to record pertinent information. Once the vehicle has started its mission, it operates independently of the user and utilizes GPS waypoints navigation to complete its programmed course. Throughout the course, the vehicle constantly steers toward the line drawn in the mission planning software (VectorMap), essentially following a more accurate road of coordinates instead of transversing waypoint-to-waypoint. It has been equipped with a Doppler Velocity Log (DVL) to increase its underwater navigation accuracy. Potential EcoMapper applications include baseline environmental mapping in freshwater, estuarine or near-coastal environments, bathymetric mapping, dissolved oxygen studies, event monitoring (algal blooms, storm impacts, low dissolved oxygen), non-point source studies, point-source dispersion mapping, security, search & rescue, inspection, shallow water mapping, thermal dissipation mapping of cooling outfalls, trace-dye studies. The AUV is used in the coastal area of the Augusta Bay (Italy), located in the eastern part of Sicily. Due to the heavy contamination generated by the several chemical and petrochemical industries active in the zone, the harbour was declared a Contaminated Site of National Interest. The ecomapper allows for a simultaneous data collection of water quality and bathymetric data providing a complete environmental mapping system of the Harbour.

  14. Alternative models of recreational off-highway vehicle site demand

    Treesearch

    Jeffrey Englin; Thomas Holmes; Rebecca Niell

    2006-01-01

    A controversial recreation activity is off-highway vehicle use. Off-highway vehicle use is controversial because it is incompatible with most other activities and is extremely hard on natural eco-systems. This study estimates utility theoretic incomplete demand systems for four off-highway vehicle sites. Since two sets of restrictions are equally consistent with...

  15. Variability in Ocean Color Associated with Phytoplankton and Terrigenous Matter: Time Series Measurements and Algorithm Development at the FRONT Site on the New England Continental Shelf. Chapter 12

    NASA Technical Reports Server (NTRS)

    Morrison, John R.; Sosik, Heidi M.

    2003-01-01

    Fronts in the coastal ocean describe areas of strong horizontal gradients in both physical and biological properties associated with tidal mixing and freshwater estuarine output (e.g. Simpson, 1981 and O Donnell, 1993). Related gradients in optically important constituents mean that fronts can be observed from space as changes in ocean color as well as sea surface temperature (e.g., Dupouy et al., 1986). This research program is designed to determine which processes and optically important constituents must be considered to explain ocean color variations associated with coastal fronts on the New England continental shelf, in particular the National Ocean Partnership Program (NOPP) Front Resolving Observational Network with Telemetry (FRONT) site. This site is located at the mouth of Long Island sound and was selected after the analysis of 12 years of AVHRR data showed the region to be an area of strong frontal activity (Ullman and Cornillon, 1999). FRONT consists of a network of modem nodes that link bottom mounted Acoustic Doppler Current Profilers (ADCPs) and profiling arrays. At the center of the network is the Autonomous Vertically Profiling Plankton Observatory (AVPPO) (Thwaites et al. 1998). The AVPPO consists of buoyant sampling vehicle and a trawl-resistant bottom-mounted enclosure, which holds a winch, the vehicle (when not sampling), batteries, and controller. Three sampling systems are present on the vehicle, a video plankton recorder, a CTD with accessory sensors, and a suite of bio-optical sensors including Satlantic OCI-200 and OCR-200 spectral radiometers and a WetLabs ac-9 dual path absorption and attenuation meter. At preprogrammed times the vehicle is released, floats to the surface, and is then winched back into the enclosure with power and data connection maintained through the winch cable. Communication to shore is possible through a bottom cable and nearby surface telemetry buoy, equipped with a mobile modem, giving the capability for near-real time data transmission and interactive sampling control.

  16. STS-37 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1991-05-01

    The STS-37 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-ninth flight of the Space Shuttle and the eighth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-37/LWT-30); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-042. The primary objective of this flight was to successfully deploy the Gamma Ray Observatory (GRO) payload. The secondary objectives were to successfully perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG) Block 2 version, Radiation Monitoring Experiment-3 (RME-3), Ascent Particle Monitor (APM), Shuttle Amateur Radio Experiment-2 (SAREX-2), Air Force Maui Optical Site Calibration Test (AMOS), Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA), and the Crew and Equipment Transfer Aids (CETA) payloads.

  17. STS-37 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-37 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-ninth flight of the Space Shuttle and the eighth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-37/LWT-30); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-042. The primary objective of this flight was to successfully deploy the Gamma Ray Observatory (GRO) payload. The secondary objectives were to successfully perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG) Block 2 version, Radiation Monitoring Experiment-3 (RME-3), Ascent Particle Monitor (APM), Shuttle Amateur Radio Experiment-2 (SAREX-2), Air Force Maui Optical Site Calibration Test (AMOS), Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA), and the Crew and Equipment Transfer Aids (CETA) payloads.

  18. 76 FR 67287 - Alternative Fuel Transportation Program; Alternative Fueled Vehicle Credit Program (Subpart F...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... infrastructure, nonroad equipment, and emerging technologies related to those electric drive vehicles. As... for investment in an emerging technology relating to any'' of the enumerated electric drive vehicles... Fuel Transportation Program (AFTP or Program), by including EISA-specified electric drive vehicles and...

  19. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane traveling long one of the crawlerway tracks makes the turn toward Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  20. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane travels along one of the crawlerway tracks on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  1. Solar power satellite system definition study, phase 2. Part 1: Midterm briefing

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An overview of the program plan for the Solar Power Satellite Program is given. Progress in the microwave power transmission system is reported. A description is given of the following: (1) launch and recovery site facilities, systems and operations; (2) cargo packaging; (3) earth-to-LEO cargo transportation operations; (4) LEO-to-GEO cargo transportation operations; (5) personnel transportation operations; (6) space vehicles in-space maintenance operations; and (7) SPS maintenance systems and operations. Other topics discussed include GEO base operations, satellite construction operations, intra-base logistics, and GEO base definition. A research and program plan is presented along with cost estimates.

  2. NYPA/TH!NK Clean Commute Program Report – Inception Through May 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Karner; James Francfort; Randall Solomon

    The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric vehicles for transportation in urban applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations, where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK city vehicles is located at the commuters’ private residences as well as seven train stations. Ford leased 97 TH!NK city electric vehicles to commuters from Westchester, Putnam, Rockland, Queens, Nassau, and Suffolk countiesmore » for $199 per month per vehicle. The first Clean Commute Program vehicle deliveries occurred late in 2001, with data collection commencing in February 2002. Through May 2004, 24 of the lessees have returned their vehicles to Ford and no longer participate in the Clean Commute Program. Reasons given for returning the vehicles include relocation out of the Program area, change in employment status, change in commuting status, and, in a few cases, dissatisfaction with the vehicle. Additionally, 13 vehicles have been returned to Ford as their leases have completed. In August 2002, Ford announced that it was ceasing production of the TH!NK city and would not extend any TH!NK city leases. Through May 2004, participants in the Clean Commute Program have driven their vehicles over 370,000 miles, avoiding the use of over 17,000 gallons of gasoline. The TH!NK city vehicles are driven an average of between 180 and 230 miles per month, and over 95% of all trips taken with the TH!NK city vehicles replace trips previously taken in gasoline vehicles. This report covers the period from Program inception through May 2004.« less

  3. KSC-03pd1116

    NASA Image and Video Library

    2003-04-09

    KENNEDY SPACE CENTER, FLA. -- Temporary camp worker Michael Trujillo of North New Mexico displays chaps in the supply tent at the Nacogdoches site. The chaps are used by U.S. Forest Service, Environmental Protection Agency and space program workers searching through dense forests in East Texas. Kennedy Space Center workers are participating in the Columbia Recovery efforts at the Lufkin (Texas) Command Center, four field sites in East Texas, and the Barksdale, La., hangar site. KSC is working with representatives from other NASA Centers and with those from a number of federal, state and local agencies in the recovery effort. KSC provides vehicle technical expertise in the field to identify, collect and return Shuttle hardware to KSC.

  4. Study 2.5 final report. DORCA computer program. Volume 5: Analysis report

    NASA Technical Reports Server (NTRS)

    Campbell, N.

    1972-01-01

    A modification of the Dynamic Operational Requirements and Cost Analysis Program to perform traffic analyses of the automated satellite program is described. Inherent in the analyses of the automated satellite program was the assumption that a number of vehicles were available to perform any or all of the missions within the satellite program. The objective of the modification was to select a vehicle or group of vehicles for performing all of the missions at the lowest possible cost. A vehicle selection routine and the capability to simulate ground based vehicle operational modes were incorporated into the program.

  5. Nejat Aerospace Magnoplane

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus

    2012-01-01

    The Nejat Aerospace Magnoplane (NAM) is designed as a low speed (Mach < 1:00) aerial vehicle that it can be modified as a high speed aerial vehicle. This aerial vehicle is able to operate on highlands and hilly sites such as landing on and launching from the mentioned sites. The problem concerns with launching and landing of the vehicle on and from sites where there are highlands with bushes difficulties. Also, where there is short area for landing of regular airplane. This project is pursued for patent registration and highly modified version current airplanes.

  6. Antenatal glucocorticoid treatment alters Na+ uptake in renal proximal tubule cells from adult offspring in a sex-specific manner.

    PubMed

    Su, Yixin; Bi, Jianli; Pulgar, Victor M; Figueroa, Jorge; Chappell, Mark; Rose, James C

    2015-06-01

    We have shown a sex-specific effect of fetal programming on Na(+) excretion in adult sheep. The site of this effect in the kidney is unknown. Therefore, we tested the hypothesis that renal proximal tubule cells (RPTCs) from adult male sheep exposed to betamethasone (Beta) before birth have greater Na(+) uptake than do RPTCs from vehicle-exposed male sheep and that RPTCs from female sheep similarly exposed are not influenced by antenatal Beta. In isolated RPTCs from 1- to 1.5-yr-old male and female sheep, we measured Na(+) uptake under basal conditions and after stimulation with ANG II. To gain insight into the mechanisms involved, we also measured nitric oxide (NO) levels, ANG II receptor mRNA levels, and expression of Na(+)/H(+) exchanger 3. Basal Na(+) uptake increased more in cells from Beta-exposed male sheep than in cells from vehicle-exposed male sheep (400% vs. 300%, P < 0.00001). ANG II-stimulated Na(+) uptake was also greater in cells from Beta-exposed males. Beta exposure did not increase Na(+) uptake by RPTCs from female sheep. NO production was suppressed more by ANG II in RPTCs from Beta-exposed males than in RPTCs from either vehicle-exposed male or female sheep. Our data suggest that one site of the sex-specific effect of Beta-induced fetal programming in the kidney is the RPTC and that the enhanced Na(+) uptake induced by antenatal Beta in male RPTCs may be related to the suppression of NO in these cells. Copyright © 2015 the American Physiological Society.

  7. Aircraft and Ground Vehicle Winter Runway Friction Assessment

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1999-01-01

    Some background information is given together with the scope and objectives of a 5-year, Joint Winter Runway Friction Measurement Program between the National Aeronautics & Space Administration (NASA), Transport Canada (TC), and the Federal Aviation Administration (FAA). The primary objective of this effort is to perform instrumented aircraft and ground vehicle tests aimed at identifying a common number that all the different ground vehicle devices would report. This number, denoted the International Runway Friction Index (IRFI), will be related to all types of aircraft stopping performance. The range of test equipment, the test sites, test results and accomplishments, the extent of the substantial friction database compiled, and future test plans will be described. Several related studies have also been implemented including the effects of contaminant type on aircraft impingement drag, and the effectiveness of various runway and aircraft de-icing chemical types, and application rates.

  8. ETX-I: First-generation single-shaft electric propulsion system program. Volume 2: Battery

    NASA Astrophysics Data System (ADS)

    1988-06-01

    The overall objective of this research and development program was to advance ac powertrain technology for electric vehicles (EV). The program focused on the design, build, test, and refinement of an experimental advanced electric vehicle powertrain suitable for packaging in a Ford Escort or equivalent-size vehicle. A Mercury LN7 was subsequently selected for the test bed vehicle. Although not part of the initial contract, the scope of the ETX-I Program was expanded in 1983 to encompass the development of advanced electric vehicle batteries compatible with the ETX-I powertrain and vehicle test bed. The intent of the battery portion of the ETX-I Program was to apply the best available battery technology based on existing battery developments. The battery effort was expected to result in a practical scale-up of base battery technologies to the vehicle battery subsystem level. With the addition of the battery activity, the ETX-I Program became a complete proof-of-concept ac propulsion system technology development program. In this context, the term propulsion system is defined as all components and subsystems (from the driver input to the vehicle wheels) that are required to store energy on board the vehicle and, using that energy, to provide controlled motive power to the vehicle. This report, Volume 2, describes the battery portion of the ETX-I Program. The powertrain effort is reported in Volume 1.

  9. KSC Vertical Launch Site Evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, Lynne V.

    2007-01-01

    RS&H was tasked to evaluate the potential available launch sites for a combined two user launch pad. The Launch sites were to be contained entirely within current Kennedy Space Center property lines. The user launch vehicles to be used for evaluation are in the one million pounds of first stage thrust range. Additionally a second evaluation criterion was added early on in the study. A single user launch site was to be evaluated for a two million pound first stage thrust vehicle. Both scenarios were to be included in the report. To provide fidelity to the study criteria, a specific launch vehicle in the one million pound thrust range was chosen as a guide post or straw-man launch vehicle. The RpK K-1 vehicle is a current Commercial Orbital Transportation System (COTS), contract awardee along with the SpaceX Falcon 9 vehicle. SpaceX, at the time of writing, is planning to launch COTS and possibly other payloads from Cx-40 on Cape Canaveral Air Force Station property. RpK has yet to declare a specific launch site as their east coast US launch location. As such it was deemed appropriate that RpK's vehicle requirements be used as conceptual criteria. For the purposes of this study those criteria were marginally generalized to make them less specifiC.

  10. VentureStar by Lockheed Martin in Orbit - Computer Graphic

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This is an artist's conception of the NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) in orbit high above the Earth. NASA's Dryden Flight Research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33, which was a technology demonstrator vehicle for a possible RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that would improve U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company hopes to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to dramatically increase reliability and lower costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to create new opportunities for space access and significantly improve U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program had hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen tank, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.

  11. X-33 by Lockheed Martin on Launch Pad - Computer Graphic

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This is an artist's conception of the X-33 technology demonstrator on its launch pad, ready for lift-off into orbit. NASA's Dryden Flight Research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33, which was a technology demonstrator vehicle for a possible Reusable Launch Vehicle (RLV). The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that would improve U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increase reliability and lowered costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen fuel tank, and the resulting delays and increased costs, the X-33 program was cancelled in February 2001.

  12. VentureStar by Lockheed Martin Releasing Satellite - Computer Graphic

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This is an artist's conception of the NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) releasing a satellite into orbit around the Earth. NASA's Dryden Flight Research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33, which was a technology demonstrator vehicle for a possible RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that would improve U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen fuel tank, and the resulting increase in cost and schedule delay, the X-33 program was cancelled in February 2001.

  13. VentureStar by Lockheed Martin Docked with Space Station - Computer Graphic

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This is an artist's conception of the proposed NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) docking with the International Space Station. NASA's Dryden Flight Research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33, which was a technology demonstrator vehicle for the proposed RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that would have improved U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the cost of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also was to have lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to be seven days, but the program had hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to be an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program is managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to problems with the liquide hydrogen fuel tank, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.

  14. MagLifter Site Investigation and Implementation Strategies

    NASA Technical Reports Server (NTRS)

    Burke, Pamela; Slaughter, Maynard; Beer, C. Neil

    1995-01-01

    MagLifter, as defined here, is an advanced, earth-bound catapult system to provide the initial lift for earth orbiting vehicles to reduce or eliminate the need for multistage propulsion, thus reducing the cost of orbital space flight. It is presumed that magnetic levitation will catapult the vehicle to a desired initial velocity sufficient for reaching orbit with the vehicles own engines. Of necessity, the system must be located on and around a mountain with sufficient relief to allow the catapult to accelerate the launch vehicle to a sufficient speed in the desired direction to allow it to reach orbit. Such a mountain site must meet criteria consistent with current and future space launch needs and conditions. It is the purpose of this report to set forth preliminary criteria for choosing a suitable maglifter site. The report is divided into four major sections: (1) Assumed Launch System and Flight Vehicle Characteristics; (2) Task 1.A - Initial Site Selection Criteria; (3) Conclusions; and (4) Appendix - Phases of the Site Selection Process.

  15. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, a student from AM and his mentor install their payload into the launch vehicle which was built by the team of UAH students. The scientific payload, developed and built by the team of AM students, measured the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  16. Around Marshall

    NASA Image and Video Library

    2002-05-22

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, a student from AM and his mentor install their payload into the launch vehicle which was built by the team of UAH students. The scientific payload, developed and built by the team of AM students, measured the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  17. Defence R&D Canada's autonomous intelligent systems program

    NASA Astrophysics Data System (ADS)

    Digney, Bruce L.; Hubbard, Paul; Gagnon, Eric; Lauzon, Marc; Rabbath, Camille; Beckman, Blake; Collier, Jack A.; Penzes, Steven G.; Broten, Gregory S.; Monckton, Simon P.; Trentini, Michael; Kim, Bumsoo; Farell, Philip; Hopkin, Dave

    2004-09-01

    The Defence Research and Development Canada's (DRDC has been given strategic direction to pursue research to increase the independence and effectiveness of military vehicles and systems. This has led to the creation of the Autonomous Intelligent Systems (AIS) prgram and is notionally divide into air, land and marine vehicle systems as well as command, control and decision support systems. This paper presents an overarching description of AIS research issues, challenges and directions as well as a nominal path that vehicle intelligence will take. The AIS program requires a very close coordination between research and implementation on real vehicles. This paper briefly discusses the symbiotic relationship between intelligence algorithms and implementation mechanisms. Also presented are representative work from two vehicle specific research program programs. Work from the Autonomous Air Systems program discusses the development of effective cooperate control for multiple air vehicle. The Autonomous Land Systems program discusses its developments in platform and ground vehicle intelligence.

  18. Structural Analysis of Lightning Protection System for New Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cope, Anne; Moore, Steve; Pruss, Richard

    2008-01-01

    This project includes the design and specification of a lightning protection system for Launch Complex 39 B (LC39B) at Kennedy Space Center, FL in support of the Constellation Program. The purpose of the lightning protection system is to protect the Crew Launch Vehicle (CLV) or Cargo Launch Vehicle (CaLV) and associated launch equipment from direct lightning strikes during launch processing and other activities prior to flight. The design includes a three-tower, overhead catenary wire system to protect the vehicle and equipment on LC39B as described in the study that preceded this design effort: KSC-DX-8234 "Study: Construct Lightning Protection System LC3 9B". The study was a collaborative effort between Reynolds, Smith, and Hills (RS&H) and ASRC Aerospace (ASRC), where ASRC was responsible for the theoretical design and risk analysis of the lightning protection system and RS&H was responsible for the development of the civil and structural components; the mechanical systems; the electrical and grounding systems; and the siting of the lightning protection system. The study determined that a triangular network of overhead catenary cables and down conductors supported by three triangular free-standing towers approximately 594 ft tall (each equipped with a man lift, ladder, electrical systems, and communications systems) would provide a level of lightning protection for the Constellation Program CLV and CaLV on Launch Pad 39B that exceeds the design requirements.

  19. Air Vehicle Technology Integration Program (AVTIP). Delivery Order 0054: Opportune Landing Site (OLS) Critical Experiment

    DTIC Science & Technology

    2008-04-01

    suitability would result in safer landings and reduced maintenance costs associated with an intended area of operations 2.1.2. Concept of... cost , integration, logistics, ownership, performance, schedule, and user perception. Criteria were developed for three timeframes—reflecting the end...analysis.. Changed runway finder back to six cardinal headings or user specified headings. Added NASA ACCA cloud recognition filter. Added switches for

  20. Shaping NASA's Kennedy Space Center Safety for the Future

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul; McDaniel, Laura; Smith, Maynette

    2011-01-01

    With the completion of the Space Shuttle Program, the Kennedy Space Center (KSC) safety function will be required to evolve beyond the single launch vehicle launch site focus that has held prominence for almost fifty years. This paper will discuss how that evolution is taking place. Specifically, we will discuss the future of safety as it relates to a site that will have multiple, very disparate, functions. These functions will include new business; KSC facilities not under the control of NASA; traditional payload and launch vehicle processing; and, operations conducted by NASA personnel, NASA contractors or a combination of both. A key element in this process is the adaptation of the current KSC set of safety requirements into a multi-faceted set that can address each of the functions above, while maintaining our world class safety environment. One of the biggest challenges that will be addressed is how to protect our personnel and property without dictating how other Non-NASA organizations protect their own employees and property. The past history of KSC Safety will be described and how the lessons learned from previous programs will be applied to the future. The lessons learned from this process will also be discussed as information for other locations that may undergo such a transformation.

  1. Crosswalk markings and the risk of pedestrian-motor vehicle collisions in older pedestrians.

    PubMed

    Koepsell, Thomas; McCloskey, Lon; Wolf, Marsha; Moudon, Anne Vernez; Buchner, David; Kraus, Jess; Patterson, Matthew

    2002-11-06

    Motor vehicles struck and killed 4739 pedestrians in the United States in the year 2000. Older pedestrians are at especially high risk. To determine whether crosswalk markings at urban intersections influence the risk of injury to older pedestrians. Case-control study in which the units of study were crossing locations. Six cities in Washington and California, with case accrual from February 1995 through January 1999. A total of 282 case sites were street-crossing locations at an intersection where a pedestrian aged 65 years or older had been struck by a motor vehicle while crossing the street; 564 control sites were other nearby crossings that were matched to case sites based on street classification. Trained observers recorded environmental characteristics, vehicular traffic flow and speed, and pedestrian use at each site on the same day of the week and time of day as when the case event had occurred. Risk of pedestrian-motor vehicle collision involving an older pedestrian. After adjusting for pedestrian flow, vehicle flow, crossing length, and signalization, risk of a pedestrian-motor vehicle collision was 2.1-fold greater (95% confidence interval, 1.1-4.0) at sites with a marked crosswalk. Almost all of the excess risk was due to 3.6-fold (95% confidence interval, 1.7-7.9) higher risk associated with marked crosswalks at sites with no traffic signal or stop sign. Crosswalk markings appear associated with increased risk of pedestrian-motor vehicle collision to older pedestrians at sites where no signal or stop sign is present to halt traffic.

  2. Program test objectives milestone 3. [Integrated Propulsion Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.

    1994-01-01

    The following conclusions have been developed relative to propulsion system technology adequacy for efficient development and operation of recoverable and expendable launch vehicles (RLV and ELV) and the benefits which the integrated propulsion technology demonstrator will provide for enhancing technology: (1) Technology improvements relative to propulsion system design and operation can reduce program cost. Many features or improvement needs to enhance operability, reduce cost, and improve payload are identified. (2) The Integrated Propulsion Technology Demonstrator (IPTD) Program provides a means of resolving the majority of issues associated with improvement needs. (3) The IPTD will evaluate complex integration of vehicle and facility functions in fluid management and propulsion control systems, and provides an environment for validating improved mechanical and electrical components. (4) The IPTD provides a mechanism for investigating operational issues focusing on reducing manpower and time to perform various functions at the launch site. These efforts include model development, collection of data to validate subject models, and ultimate development of complex time line models. (5) The IPTD provides an engine test bed for tri/bi-propellant engine development firings which is representative of the actual vehicle environment. (6) The IPTD provides for only a limited multiengine configuration integration environment for RLV. Multiengine efforts may be simulated for a number of subsystems and a number of subsystems are relatively independent of the multiengine influences.

  3. Connected Vehicle Pilot Deployment Program phase I : partnership status summary : Tampa (THEA) : final report.

    DOT National Transportation Integrated Search

    2016-08-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is developing a suite of CV applications, or apps, that utilize vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V) and Vehicle to everything (V2...

  4. 2012 DOE Vehicle Technologies Program Annual Merit Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The 2012 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting was held May 14-18, 2012 in Crystal City, Virginia. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Program: a total of 309 individual activities were reviewed for Vehicle Technologies, by a total of 189 reviewers. A total of 1,473 individual review responses were received for the technical reviews.

  5. Development of Unmanned Aerial Vehicles for Site-Specific Crop Production Management

    USDA-ARS?s Scientific Manuscript database

    Unmanned Aerial Vehicles (UAV) have been developed and applied to support the practice of precision agriculture. Compared to piloted aircrafts, an Unmanned Aerial Vehicle can focus on much smaller crop fields with much lower flight altitude than regular airplanes to perform site-specific management ...

  6. Ground Processing Affordability for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and standard repairs need to be in-place as well as easily added. Many routine inspections and maintenance can be like an aircraft overhaul. Modifications and technology upgrades should be expected. Another factor affecting ground operations efficiency is trending. It is essential for RLV's, and also useful for ELV's which fly the same or similar models again. Good data analysis of technical and processing performance will determine fixes and improvements needed for safety, design, and future processing. Collecting such data on new or low-frequency vehicles is a challenge. Lessons can be learned from the Space Shuttle, or even the Concorde aircraft. For all of the above topics, efficient business systems must be established for comprehensive program management and good throughput. Drawings, specifications, and manuals for an entire launch vehicle are often in different formats from multiple vendors, plus they have proprietary constraints. Nonetheless, the integration team must ensure that all data needed is compatible and visible to each appropriate team member. Ground processing systems for scheduling, tracking, problem resolution, etc. must be well laid-out. The balance between COTS (commercial off the shelf) and custom software is difficult. Multiple customers, vendors, launch sites, and landing sites add to the complexity of efficient IT (Information Technology) tools.

  7. 78 FR 52997 - Connected Vehicle Research Program Public Meeting; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... DEPARTMENT OF TRANSPORTATION Connected Vehicle Research Program Public Meeting; Notice of Public... overview of the ITS JPO Connected Vehicle research program. The meeting will take place September 24 to 26... . The public meeting is the best opportunity to learn details about the Connected Vehicle research...

  8. DEPENDENCE OF NITRIC OXIDE EMISSIONS ON VEHICLE LOAD: RESULTS FROM THE GTRP INSTRUMENTED VEHICLE PROGRAM

    EPA Science Inventory

    The presentation discussed the dependence of nitric oxide (NO) emissions on vehicle load, bases on results from an instrumented-vehicle program. The accuracy and feasibility of modal emissions models depend on algorithms to allocate vehicle emissions based on a vehicle operation...

  9. A survey of light-vehicle driver education curriculum on sharing the road with heavy vehicles.

    PubMed

    Baker, Stephanie; Schaudt, William A; Freed, J C; Toole, Laura

    2012-07-01

    Light-vehicle driver education programs that contain content about sharing the road with heavy vehicles may be helpful in reducing future light-vehicle/heavy-vehicle interactions. However, the extent of curricula in the United States including such content is unclear. Researchers developed an online survey targeted at instructors/administrators of state driver education programs to identify curricula addressing heavy vehicles and to determine perceived effectiveness. Ninety-one percent of respondents indicated that the light-vehicle driver education curriculum they teach/administer included a component covering how to safely share the road with heavy vehicles (82% perceived this component to be effective). Although a large proportion of these programs included a component on how to safely share the road with heavy vehicles, participants indicated there may be room for improvement. Participants recommended that future improvements to driver education programs include updated materials and student hands-on experience with heavy vehicles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Green Vehicle Guide

    EPA Pesticide Factsheets

    On the Green Vehicle Guide you can search for green vehicles and see information on light duty vehicles, including emerging vehicle technology and alternative fuels. The site also addresses transportation's role in climate change.

  11. Connected vehicle pilot deployment program phase 2, data management plan - Wyoming

    DOT National Transportation Integrated Search

    2017-04-10

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  12. EDIN0613P weight estimating program. [for launch vehicles

    NASA Technical Reports Server (NTRS)

    Hirsch, G. N.

    1976-01-01

    The weight estimating relationships and program developed for space power system simulation are described. The program was developed to size a two-stage launch vehicle for the space power system. The program is actually part of an overall simulation technique called EDIN (Engineering Design and Integration) system. The program sizes the overall vehicle, generates major component weights and derives a large amount of overall vehicle geometry. The program is written in FORTRAN V and is designed for use on the Univac Exec 8 (1110). By utilizing the flexibility of this program while remaining cognizant of the limits imposed upon output depth and accuracy by utilization of generalized input, this program concept can be a useful tool for estimating purposes at the conceptual design stage of a launch vehicle.

  13. KSC-03pd1108

    NASA Image and Video Library

    2003-04-10

    KENNEDY SPACE CENTER, FLA. -- Members of a Columbia Recovery search team take a break while walking a grid during a search near the Hemphill site. At center is NASA engineer Clay Thomlinson. The U.S. Forest Service group is accompanied by a space program worker able to identify potential hazards of Shuttle parts. Kennedy Space Center workers are participating in the Columbia Recovery efforts at the Lufkin (Texas) Command Center, four field sites in East Texas, and the Barksdale, La., hangar site. KSC is working with representatives from other NASA Centers and with those from a number of federal, state and local agencies in the recovery effort. KSC provides vehicle technical expertise in the field to identify, collect and return Shuttle hardware to KSC.

  14. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I &more » II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.« less

  15. Building a QC Database of Meteorological Data from NASA KSC and the United States Air Force's Eastern Range

    NASA Technical Reports Server (NTRS)

    Brenton, J. C.; Barbre, R. E.; Decker, R. K.; Orcutt, J. M.

    2018-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) provides atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER complex is one of the most heavily instrumented sites in the United States with over 31 towers measuring various atmospheric parameters on a continuous basis. An inherent challenge with large datasets consists of ensuring erroneous data are removed from databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments, however no standard QC procedures for all databases currently exists resulting in QC databases that have inconsistencies in variables, development methodologies, and periods of record. The goal of this activity is to use the previous efforts to develop a standardized set of QC procedures from which to build meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC procedures will be described. As the rate of launches increases with additional launch vehicle programs, It is becoming more important that weather databases are continually updated and checked for data quality before use in launch vehicle design and certification analyses.

  16. Connected vehicle pilot deployment program phase 1, security management operational concept : ICF/Wyoming.

    DOT National Transportation Integrated Search

    2016-03-14

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  17. Connected vehicle pilot deployment program phase 2, data privacy plan – Wyoming.

    DOT National Transportation Integrated Search

    2016-04-14

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  18. Connected Vehicle Pilot Deployment Program, Comprehensive Installation Plan - WYDOT CV Pilot

    DOT National Transportation Integrated Search

    2018-02-16

    The Wyoming Department of Transportation's (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...

  19. Connected vehicle pilot deployment program phase 2 : data management plan - Tampa (THEA).

    DOT National Transportation Integrated Search

    2017-10-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...

  20. Connected vehicle pilot deployment program phase 1, safety management plan – ICF/Wyoming.

    DOT National Transportation Integrated Search

    2016-03-14

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  1. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jovovic, Vladimir

    2015-12-31

    Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed moremore » modest potential.« less

  2. PCSYS: The optimal design integration system picture drawing system with hidden line algorithm capability for aerospace vehicle configurations

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Vanderburg, J. D.

    1977-01-01

    A vehicle geometric definition based upon quadrilateral surface elements to produce realistic pictures of an aerospace vehicle. The PCSYS programs can be used to visually check geometric data input, monitor geometric perturbations, and to visualize the complex spatial inter-relationships between the internal and external vehicle components. PCSYS has two major component programs. The between program, IMAGE, draws a complex aerospace vehicle pictorial representation based on either an approximate but rapid hidden line algorithm or without any hidden line algorithm. The second program, HIDDEN, draws a vehicle representation using an accurate but time consuming hidden line algorithm.

  3. Vehicle misalignment prediction and vehicle/experiment pointing compatibility assessment. [as used in Skylab Program

    NASA Technical Reports Server (NTRS)

    Hoverkamp, J. D.

    1974-01-01

    A technique for predicting vehicle misalignment, the relationship of vehicle misalignment to the total vehicle/experiment integration effort, and the methodology used in performing a vehicle/experiment pointing compatibility assessment, are presented. The technique is demonstrated in detail by describing how it was used on the Skylab Program.

  4. 76 FR 21789 - ITS Joint Program Office; Vehicle to Infrastructure Core System Concept of Operations; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... DEPARTMENT OF TRANSPORTATION ITS Joint Program Office; Vehicle to Infrastructure Core System... Program Office (ITS JPO) will host a free public meeting to discuss the Vehicle to Infrastructure (V2I... to work originally performed under the Vehicle Infrastructure Integration Proof of Concept (VII POC...

  5. The U.S. Evolved Expendable Launch Vehicle (EELV) programs : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1997-01-01

    The Evolved Expendable Launch Vehicle (EELV) Program is a Department of Defense technology-development program managed by the Air Force. The program is intended to produce an improved launch vehicle family for government use. The EELV will replace th...

  6. Vehicle systems and payload requirements evaluation. [computer programs for identifying launch vehicle system requirements

    NASA Technical Reports Server (NTRS)

    Rea, F. G.; Pittenger, J. L.; Conlon, R. J.; Allen, J. D.

    1975-01-01

    Techniques developed for identifying launch vehicle system requirements for NASA automated space missions are discussed. Emphasis is placed on development of computer programs and investigation of astrionics for OSS missions and Scout. The Earth Orbit Mission Program - 1 which performs linear error analysis of launch vehicle dispersions for both vehicle and navigation system factors is described along with the Interactive Graphic Orbit Selection program which allows the user to select orbits which satisfy mission requirements and to evaluate the necessary injection accuracy.

  7. Connected Vehicle Pilot Deployment Program phase 1 : deployment readiness summary : Tampa (THEA) : final report.

    DOT National Transportation Integrated Search

    2016-09-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program intends to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to reduce...

  8. Connected vehicle pilot deployment program phase 1, concept of operations (ConOps), ICF/Wyoming.

    DOT National Transportation Integrated Search

    2015-12-01

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  9. Connected Vehicle Pilot Deployment Program Phase 1, Human Use Approval Summary – ICF/Wyoming.

    DOT National Transportation Integrated Search

    2016-07-18

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  10. Connected vehicle pilot deployment program phase 1, participant training and education plan – ICF/Wyoming.

    DOT National Transportation Integrated Search

    2016-06-22

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  11. Connected Vehicle Pilot Deployment Program phase 1 : partnership status summary : ICF/Wyoming : draft report.

    DOT National Transportation Integrated Search

    2016-08-12

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  12. Connected Vehicle Pilot Deployment Program phase 1 : application deployment : Tampa (THEA) : final report.

    DOT National Transportation Integrated Search

    2016-09-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...

  13. Connected Vehicle Pilot Deployment Program phase 1 : deployment readiness summary : ICF/Wyoming : final report.

    DOT National Transportation Integrated Search

    2016-09-13

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  14. Connected vehicle pilot deployment program phase II data privacy plan – Tampa (THEA).

    DOT National Transportation Integrated Search

    2017-02-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to re...

  15. Artist concept of X-33 and Reusable Launch Vehicle (RLV)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This artist's rendering depicts the NASA/Lockheed Martin X-33 technology demonstrator alongside the Venturestar, a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV). The X-33, a half-scale prototype for the Venturestar, is scheduled to be flight tested in 1999. NASA's Dryden Flight Research Center, Edwards, California, plays a key role in the development and flight testing of the X-33. The RLV technology program is a cooperative agreement between NASA and industry. The goal of the RLV technology program is to enable signifigant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology is overseeing the RLV program, which is being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to dramatically increase reliability and lower costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to create new opportunities for space access and significantly improve U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program had hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen tank, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.

  16. Alternative Fuels Data Center

    Science.gov Websites

    Natural Gas and Propane Vehicle Grant Program The Tennessee Department of Environment and Conservation's Office of Energy Programs administers the Natural Gas and Propane Vehicle Grant Program (Program and must intend to operate vehicles in Tennessee for a minimum of six years. Grant applications are

  17. Three years experience with forward-site mass casualty triage-, evacuation-, operating room-, ICU-, and radiography-enabled disaster vehicles: development of usage strategies from drills and deployments.

    PubMed

    Griffiths, Jane L; Kirby, Neil R; Waterson, James A

    2014-01-01

    Delineation of the advantages and problems related to the use of forward-site operating room-, Intensive Care Unit (ICU)-, radiography-, and mass casualty-enabled disaster vehicles for site evacuation, patient stabilization, and triage. The vehicles discussed have six ventilated ICU spaces, two ORs, on-site radiography, 21 intermediate acuity spaces with stretchers, and 54 seated minor acuity spaces. Each space has piped oxygen with an independent vehicle-loaded supply. The vehicles are operated by the Dubai Corporate Ambulance Services. Their support hospital is the main trauma center for the Emirate of Dubai and provides the vehicles' surgical, intensivist, anesthesia, and nursing staff. The disaster vehicles have been deployed 264 times in the last 5 years (these figures do not include deployments for drills). Introducing this new service required extensive initial planning and ongoing analysis of the performance of the disaster vehicles that offer ambulance services and receiving hospitals a large array of possibilities in terms of triage, stabilization of priority I and II patients, and management of priority III patients. In both drills and in disasters, the vehicles were valuable in forward triage and stabilization and in the transport of large numbers of priority III patients. This has avoided the depletion of emergency transport available for priority I and II patients. The successful utilization of disaster vehicles requires seamless cooperation between the hospital staffing the vehicles and the ambulance service deploying them. They are particularly effective during preplanned deployments to high-risk situations. These vehicles also potentially provide self-sufficient refuges for forward teams in hostile environments.

  18. KSC-08pd4106

    NASA Image and Video Library

    2008-12-19

    CAPE CANAVERAL, Fla. -- On Launch Pad 39B at NASA's Kennedy Space Center in Florida, one of the new lightning towers is under construction. The towers will hold catenary wires as part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Pad 39B will be the site of the first Ares vehicle launch, including Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Tim Jacobs

  19. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    This photograph shows the Saturn V assembled LOX (Liquid Oxygen) and fuel tanks ready for transport from the Manufacturing Engineering Laboratory at Marshall Space Flight Center in Huntsville, Alabama. The tanks were then shipped to the launch site at Kennedy Space Center for a flight. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  20. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane arrives at the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  1. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, T. S.; Taylor, C. H.; Moore, J. S.

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which theremore » is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76% higher than in the No Program case. On-road medium- and heavy-duty vehicle stock could be as much as 39% higher. The resulting petroleum savings in 2035 were estimated to be as high as 3.1 million barrels per day, and reductions in GHG emissions were estimated to be as high as 500 million metric tons of CO2 equivalent per year. The benefits of continuing to invest government resources in advanced vehicle and fuel cell technologies would have significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.« less

  2. Connected vehicle pilot deployment program phase I : security management operational concept, Tampa Hillsborough Expressway Authority (THEA).

    DOT National Transportation Integrated Search

    2016-05-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to re...

  3. Connected Vehicle Pilot Deployment Program Phase 1, Performance Measurement and Evaluation Support Plan – ICF/Wyoming.

    DOT National Transportation Integrated Search

    2016-06-06

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  4. Effects of automated speed enforcement in Montgomery County, Maryland, on vehicle speeds, public opinion, and crashes.

    PubMed

    Hu, Wen; McCartt, Anne T

    2016-09-01

    In May 2007, Montgomery County, Maryland, implemented an automated speed enforcement program, with cameras allowed on residential streets with speed limits of 35 mph or lower and in school zones. In 2009, the state speed camera law increased the enforcement threshold from 11 to 12 mph over the speed limit and restricted school zone enforcement hours. In 2012, the county began using a corridor approach, in which cameras were periodically moved along the length of a roadway segment. The long-term effects of the speed camera program on travel speeds, public attitudes, and crashes were evaluated. Changes in travel speeds at camera sites from 6 months before the program began to 7½ years after were compared with changes in speeds at control sites in the nearby Virginia counties of Fairfax and Arlington. A telephone survey of Montgomery County drivers was conducted in Fall 2014 to examine attitudes and experiences related to automated speed enforcement. Using data on crashes during 2004-2013, logistic regression models examined the program's effects on the likelihood that a crash involved an incapacitating or fatal injury on camera-eligible roads and on potential spillover roads in Montgomery County, using crashes in Fairfax County on similar roads as controls. About 7½ years after the program began, speed cameras were associated with a 10% reduction in mean speeds and a 62% reduction in the likelihood that a vehicle was traveling more than 10 mph above the speed limit at camera sites. When interviewed in Fall 2014, 95% of drivers were aware of the camera program, 62% favored it, and most had received a camera ticket or knew someone else who had. The overall effect of the camera program in its modified form, including both the law change and the corridor approach, was a 39% reduction in the likelihood that a crash resulted in an incapacitating or fatal injury. Speed cameras alone were associated with a 19% reduction in the likelihood that a crash resulted in an incapacitating or fatal injury, the law change was associated with a nonsignificant 8% increase, and the corridor approach provided an additional 30% reduction over and above the cameras. This study adds to the evidence that speed cameras can reduce speeding, which can lead to reductions in speeding-related crashes and crashes involving serious injuries or fatalities.

  5. Transit aspects of the connected vehicle research program.

    DOT National Transportation Integrated Search

    2014-01-01

    The U.S. Department of Transportations (USDOTs) Connected Vehicle Research Program is examining how wireless technology can enable vehicles to communicate with each other and with the infrastructure around them. This connected vehicle technolog...

  6. 40 CFR 89.914 - What provisions apply to vehicles certified under the motor-vehicle program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true What provisions apply to vehicles certified under the motor-vehicle program? 89.914 Section 89.914 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption...

  7. 40 CFR 89.914 - What provisions apply to vehicles certified under the motor-vehicle program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false What provisions apply to vehicles certified under the motor-vehicle program? 89.914 Section 89.914 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption...

  8. 40 CFR 89.914 - What provisions apply to vehicles certified under the motor-vehicle program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false What provisions apply to vehicles certified under the motor-vehicle program? 89.914 Section 89.914 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption...

  9. 40 CFR 89.914 - What provisions apply to vehicles certified under the motor-vehicle program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false What provisions apply to vehicles certified under the motor-vehicle program? 89.914 Section 89.914 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption...

  10. 40 CFR 89.914 - What provisions apply to vehicles certified under the motor-vehicle program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false What provisions apply to vehicles certified under the motor-vehicle program? 89.914 Section 89.914 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption...

  11. Computer graphic of Lockheed Martin X-33 Reusable Launch Vehicle (RLV) mounted on NASA 747 ferry air

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an artist's conception of the NASA/Lockheed Martin X-33 Advanced Technology Demonstrator being carried on the back of the 747 Shuttle Carrier Aircraft. This was a concept for moving the X-33 from its landing site back to NASA's Dryden Flight Research Center, Edwards, California. The X-33 was a technology demonstrator vehicle for the Reusable Launch Vehicle (RLV). The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology; Ames Research Center, Mountain View, CA., thermal protection system testing; Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis; and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama; Engineering & Science Services, Houston, Texas; Manned Space Systems, New Orleans, LA; Sanders, Nashua, NH; and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California; Allied Signal Aerospace, Teterboro, NJ; Rohr, Inc., Chula Vista, California; and Sverdrup Inc., St. Louis, Missouri.

  12. 40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty vehicles eligible for the NOX averaging, trading and banking program are described in the applicable...

  13. 40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty vehicles eligible for the NOX averaging, trading and banking program are described in the applicable...

  14. 40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment ENVIRONMENTAL... heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty vehicles eligible for the NOX averaging, trading and banking program are described in the applicable...

  15. 40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty vehicles eligible for the NOX averaging, trading and banking program are described in the applicable...

  16. 40 CFR 86.1724-01 - Emission data vehicle selection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and...

  17. X-33 Simulation Flown by Steve Ishmael

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Steve Ishmael flies a simulation of the X-33 Advanced Technology Demonstrator at NASA's Dryden Flight Research Center, Edwards, California. This simulation was used to provide flight trajectory data while flight control laws were being designed and developed, as well as to provide aerodynamic design information to X-33 developer Lockheed Martin. The X-33 program was a government/industry effort to design, build and fly a half-scale prototype that was to have demonstrated in flight the new technologies needed for the proposed Lockheed Martin full-scale VentureStar Reusable Launch Vehicle. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen tank and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.

  18. Elastomers for Tracked Vehicles: 1980-1997 Program to Improve Durability of Rubber Tank Pads for Army Tracked Vehicles

    DTIC Science & Technology

    2015-06-01

    10. Vanderbilt RT. The Vanderbilt rubber handbook . Babbit RO, editor. Norwalk (CT): RT Vanderbilt Company; 1990. 11. Loo CT. High temperature...Elastomers for Tracked Vehicles: 1980–1997 Program to Improve Durability of Rubber Tank Pads for Army Tracked Vehicles by David P Flanagan...Proving Ground, MD 21005-5069 ARL-TR-7331 June 2015 Elastomers for Tracked Vehicles: 1980–1997 Program to Improve Durability of Rubber

  19. Use of high-scale traffic modeling to estimate road vehicle emissions of CO2 and impact on the atmospheric concentration in São Paulo, Brazil.

    NASA Astrophysics Data System (ADS)

    Miranda, R. M.; Perez-Martinez, P.; Andrade, M. D. F.

    2015-12-01

    Adequate estimations of motor vehicle CO2 emission inventories at high spatial and temporal urban scales are needed to establish transport policy measures aim to reduce climate change impacts from global cities. The Metropolitan Region of São Paulo (MRSP) is impacted by the emission of 7 million vehicles (97% light-duty gasoline vehicles LDVs and 3% heavy-duty diesel vehicles HDVs) and several environmental programs were implemented to reduce the emissions. Inventories match site measurements and remote sensing and help to assess the real impact of road vehicle emissions on city's air quality. In this paper we presented a high-resolution vehicle-based inventory of motor CO2 emissions mapped at a scale of 100 m and 1 hour. We used origin and destination (O/D) transport area zone trips from the mobility survey of the São Paulo Transport Metropolitan Company (Metro), a road network of the region and traffic datasets from the São Paulo Transport Engineering Company (CET). The inventory was done individually for LDVs and HDVs for the years 2008 and 2013 and was complemented with air quality datasets from the State Environmental Company (CETESB), together with census data from the Brazilian Institute of Geography and Statistics (IBGE). Our inventory showed partial disagreement with the São Paulo State's GHG inventory, caused by the different approach used - bottom vs. top down - and characteristic spatial and temporal biases of the population inputs used (different emission factors). Higher concentrations became apparent near the road-network at the spatial scale used. The total emissions were estimated in 20,781 million tons per year of CO2eq (83.7% by LDVs and 16.3% HDVs). Temporal profiles - diurnal, weekly and monthly - in vehicle emission distributions were calculated using CET's traffic counts and surrogates of congestion. These profiles were compared with average road-site measurements of CO2 for the year 2013. Measurements showed two peaks associated to the morning/evening peak hour of vehicles, one in the morning of 430 ppm at 8:00 am, and the average concentration was 406 ± 12 ppm. Correlation analyses were performed between the vehicle kilometers travelled (VKT), the CO2 concentrations (proxy for the temporal variation of the CO2 emission) and the census data (personal income and hospital admissions).

  20. 40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...

  1. 40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...

  2. 40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...

  3. 40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...

  4. Orion Entry, Descent, and Landing Performance and Mission Design

    NASA Technical Reports Server (NTRS)

    Broome, Joel M.; Johnson, Wyatt

    2007-01-01

    The Orion Vehicle is the next spacecraft to take humans into space and will include missions to ISS as well as missions to the Moon. As part of that challenge, the vehicle will have to accommodate multiple mission design concepts, since return from Low Earth Orbit and return from the Moon can be quite different. Commonality between the different missions as it relates to vehicle systems, guidance capability, and operations concepts is the goal. Several unique mission design concepts include the specification of multiple land-based landing sites for a vehicle with closed-loop direct and skip entry guidance, followed by a parachute descent and landing attenuation system. This includes the ability of the vehicle to accurately target and land at a designated landing site, including site location aspects, landing site size, and landing opportunities assessments. Analyses associated with these mission design and flight performance challenges and constraints will be discussed as well as potential operational concepts to provide feasibility and/or mission commonality.

  5. Privacy Impact Assessment for the Light-Duty In-Use Vehicle Testing Program Information System

    EPA Pesticide Factsheets

    EPA's Light-Duty In-Use Vehicle Testing Program Information System contains car owner names, addresses, vehicle identification numbers, etc. The EPA uses this information to recruit and test vehicles for emissions standards compliance.

  6. Coverage of Large-Scale Food Fortification of Edible Oil, Wheat Flour, and Maize Flour Varies Greatly by Vehicle and Country but Is Consistently Lower among the Most Vulnerable: Results from Coverage Surveys in 8 Countries123

    PubMed Central

    Aaron, Grant J; Friesen, Valerie M; Jungjohann, Svenja; Garrett, Greg S; Myatt, Mark

    2017-01-01

    Background: Large-scale food fortification (LSFF) of commonly consumed food vehicles is widely implemented in low- and middle-income countries. Many programs have monitoring information gaps and most countries fail to assess program coverage. Objective: The aim of this work was to present LSFF coverage survey findings (overall and in vulnerable populations) from 18 programs (7 wheat flour, 4 maize flour, and 7 edible oil programs) conducted in 8 countries between 2013 and 2015. Methods: A Fortification Assessment Coverage Toolkit (FACT) was developed to standardize the assessments. Three indicators were used to assess the relations between coverage and vulnerability: 1) poverty, 2) poor dietary diversity, and 3) rural residence. Three measures of coverage were assessed: 1) consumption of the vehicle, 2) consumption of a fortifiable vehicle, and 3) consumption of a fortified vehicle. Individual program performance was assessed based on the following: 1) achieving overall coverage ≥50%, 2) achieving coverage of ≥75% in ≥1 vulnerable group, and 3) achieving equity in coverage for ≥1 vulnerable group. Results: Coverage varied widely by food vehicle and country. Only 2 of the 18 LSFF programs assessed met all 3 program performance criteria. The 2 main program bottlenecks were a poor choice of vehicle and failure to fortify a fortifiable vehicle (i.e., absence of fortification). Conclusions: The results highlight the importance of sound program design and routine monitoring and evaluation. There is strong evidence of the impact and cost-effectiveness of LSFF; however, impact can only be achieved when the necessary activities and processes during program design and implementation are followed. The FACT approach fills an important gap in the availability of standardized tools. The LSFF programs assessed here need to be re-evaluated to determine whether to further invest in the programs, whether other vehicles are appropriate, and whether other approaches are needed. PMID:28404836

  7. Coverage of Large-Scale Food Fortification of Edible Oil, Wheat Flour, and Maize Flour Varies Greatly by Vehicle and Country but Is Consistently Lower among the Most Vulnerable: Results from Coverage Surveys in 8 Countries.

    PubMed

    Aaron, Grant J; Friesen, Valerie M; Jungjohann, Svenja; Garrett, Greg S; Neufeld, Lynnette M; Myatt, Mark

    2017-05-01

    Background: Large-scale food fortification (LSFF) of commonly consumed food vehicles is widely implemented in low- and middle-income countries. Many programs have monitoring information gaps and most countries fail to assess program coverage. Objective: The aim of this work was to present LSFF coverage survey findings (overall and in vulnerable populations) from 18 programs (7 wheat flour, 4 maize flour, and 7 edible oil programs) conducted in 8 countries between 2013 and 2015. Methods: A Fortification Assessment Coverage Toolkit (FACT) was developed to standardize the assessments. Three indicators were used to assess the relations between coverage and vulnerability: 1 ) poverty, 2 ) poor dietary diversity, and 3 ) rural residence. Three measures of coverage were assessed: 1 ) consumption of the vehicle, 2 ) consumption of a fortifiable vehicle, and 3 ) consumption of a fortified vehicle. Individual program performance was assessed based on the following: 1 ) achieving overall coverage ≥50%, 2) achieving coverage of ≥75% in ≥1 vulnerable group, and 3 ) achieving equity in coverage for ≥1 vulnerable group. Results: Coverage varied widely by food vehicle and country. Only 2 of the 18 LSFF programs assessed met all 3 program performance criteria. The 2 main program bottlenecks were a poor choice of vehicle and failure to fortify a fortifiable vehicle (i.e., absence of fortification). Conclusions: The results highlight the importance of sound program design and routine monitoring and evaluation. There is strong evidence of the impact and cost-effectiveness of LSFF; however, impact can only be achieved when the necessary activities and processes during program design and implementation are followed. The FACT approach fills an important gap in the availability of standardized tools. The LSFF programs assessed here need to be re-evaluated to determine whether to further invest in the programs, whether other vehicles are appropriate, and whether other approaches are needed.

  8. The role of inspection and maintenance in controlling vehicular emissions in Kathmandu valley, Nepal

    NASA Astrophysics Data System (ADS)

    Faiz, Asif; Bahadur Ale, Bhakta; Nagarkoti, Ram Kumar

    Motor vehicles are a major source of air pollutant emissions in Kathmandu valley, Nepal. In-use vehicle emission limits were first introduced in Nepal in 1998 and updated in 2000. The emission regulations for gasoline vehicles limit CO emissions to 3-4.5% by volume and HC emissions to 1000 ppm for four-wheeled vehicles, and 7800 ppm for two- and three- wheelers. Emission limits for LPG/CNG vehicles are 3% for CO and 1000 ppm for HC. For diesel vehicles, smoke density must not exceed 65-75 HSU depending on the age of the vehicle. The Government operates a rudimentary inspection and maintenance (I/M) program based on an idle engine test, utilizing an exhaust gas analyzer (for gasoline/LPG/CNG vehicles) and an opacimeter for diesel vehicles. The I/M program is confined to four-wheeled vehicles and occasional three-wheelers. The inspections are required at least once a year and are conducted at designated vehicle testing stations. The I/M program is supplemented by roadside checks. This paper is based on the findings of an analysis of vehicle emissions test data for the period June 2000 to July 2002, covering some 45,000 data sets. Each data set includes information on vehicle type and ownership, the model year, and CO/HC test emission values. The analysis reported in this paper covers the characteristics and statistical distribution of emissions from gasoline-fuelled vehicles, including the impact of gross emitters. The effects of vehicle age, model year (with or without catalysts), usage, and ownership (private vs. public) on emissions of gasoline-fuelled vehicles are discussed. The findings for diesel vehicles have been reported earlier by Ale and Nagarkoti (2003b. Evaluation of Kathmandu valley inspection and maintenance program on diesel vehicles. Journal of the Institute of Engineering 3(1)). This study identifies the limitations of the current I/M program, given that it does not include 70% of the fleet consisting of two-wheelers and concludes with proposed changes to the I/M program to make it more effective.

  9. Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display

    NASA Technical Reports Server (NTRS)

    Moore, Charlotte

    2010-01-01

    The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.

  10. Corrosion Protection for Space and Beyond

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2007-01-01

    Florida is home to NASA's Launch Operations Center. Since its establishment in July 1962, the spaceport has served as the departure gate for every American manned mission and hundreds of advanced scientific spacecraft under the Launch Services Program. The center was renamed the John F. Kennedy Space Center in late 1963 to honor the president who put America on the path to the moon. Today, NASA is on the edge of a bold new chaIlenge: the ConsteIlation Program. ConsteIlation is a NASA program to create a new generation of spacecraft for human spaceflight, consisting primarily of the Ares I and Ares V launch vehicles, the Orion crew capsule, the Earth Departure stage and the Lunar access module. These spacecraft will be capable of performing a variety of missions, from Space Station resupply to lunar landings. The ambitious new endeavor caIls for NASA to return human explorers to the moon and then venture even farther, to Mars and beyond. As the nation's premier spaceport, Kennedy Space Center (KSC) will playa critical role in this new chapter in exploration, particularly in the conversion of the launch facilities to accommodate the new launch vehicles. To prepare for this endeavor, the launch site and facilities for the next generation of crew and cargo vehicles must be redesigned, assembled and tested. One critical factor that is being carefuIly considered during the renovation is protecting the new facilities and structures from corrosion and deterioration.

  11. DAST in Flight just after Structural Failure of Right Wing

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. This photo, taken 12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter. The vehicle crashed near Cuddeback Dry Lake. The Firebee II was selected for the DAST program because its standard wing could be removed and replaced by a supercritical wing. The project's digital flutter suppression system was intended to allow lighter wing structures, which would translate into better fuel economy for airliners. Because the DAST vehicles were flown intentionally at speeds and altitudes that would cause flutter, the program anticipated that crashes might occur. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  12. X-37 Flight Demonstrator: A Building Block in NASA's Future Access to Space

    NASA Technical Reports Server (NTRS)

    Jacobson, David

    2004-01-01

    X-37 is a fully automated winged vehicle designed to go into low-Earth orbit, maneuver, reenter Earth's atmosphere, and glide back to a landing site. This viewgraph presentation gives an overview of the X-37 flight demonstrator, including cut-away diagrams of its interior, the phased approach to its orbital flight demonstrations, and the experience the program will give aerospace engineers. The presentation also lists X-37 applications, partners, and milestones.

  13. KSC-2014-3527

    NASA Image and Video Library

    2014-08-14

    CAPE CANAVERAL, Fla. – A storm is brewing over Launch Complex 39 at NASA’s Kennedy Space Center in Florida. At left are the news networks' facilities on the NASA Press Site. At right is the behemoth Vehicle Assembly Building. Kennedy's Ground Support Development and Operations Program is hard at work transforming the center's facilities into a multi-user spaceport, when the weather permits. For more on Kennedy Space Center, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Ben Smegelsky

  14. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane begins moving away from the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  15. Safety pilot model deployment : lessons learned and recommendations for future connected vehicle activities.

    DOT National Transportation Integrated Search

    2015-09-01

    The Connected Vehicle Safety Pilot was a research program that demonstrated the readiness of DSRC-based connected vehicle safety applications for nationwide deployment. The vision of the Connected Vehicle Safety Pilot Program was to test connected ve...

  16. Connected vehicle pilot deployment program.

    DOT National Transportation Integrated Search

    2014-01-01

    The U.S. Department of Transportations (USDOTs) connected vehicle research program is a multimodal initiative to enable safe, interoperable, networked wireless communications among vehicles, infrastructure, and personal communications devices. ...

  17. Vehicle Dynamics Monitoring and Tracking System (VDMTS): Monitoring Mission Impacts in Support of Installation Land Management

    DTIC Science & Technology

    2012-05-01

    Hawaii (U.S. Army Environmental Command, 2008). The installation is located in the saddle between Mauna Loa and Mauna Kea volcanoes. PTA is located...17 5.2 SITE LOCATION, HISTORY , AND SITE CHARACTERISTICS...allowed the system to be tested and validated under different conditions and on different vehicle types. 5.2 SITE LOCATION, HISTORY , AND SITE

  18. 40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Complete heavy-duty vehicle averaging...-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1817-05 Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty...

  19. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Complete heavy-duty vehicle averaging...-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1817-08 Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that...

  20. Building a Quality Controlled Database of Meteorological Data from NASA Kennedy Space Center and the United States Air Force's Eastern Range

    NASA Technical Reports Server (NTRS)

    Brenton, James C.; Barbre. Robert E., Jr.; Decker, Ryan K.; Orcutt, John M.

    2018-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) has provided atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER complex is one of the most heavily instrumented sites in the United States with over 31 towers measuring various atmospheric parameters on a continuous basis. An inherent challenge with large sets of data consists of ensuring erroneous data is removed from databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments, however no standard QC procedures for all databases currently exists resulting in QC databases that have inconsistencies in variables, methodologies, and periods of record. The goal of this activity is to use the previous efforts by EV44 to develop a standardized set of QC procedures from which to build meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC procedures will be described. As the rate of launches increases with additional launch vehicle programs, it is becoming more important that weather databases are continually updated and checked for data quality before use in launch vehicle design and certification analyses.

  1. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2000-04-03

    This is a computer generated image of a Shuttle launch utilizing 2nd generation Reusable Launch Vehicle (RLV) flyback boosters, a futuristic concept that is currently undergoing study by NASA's Space Launch Initiative (SLI) Propulsion Office, managed by the Marshall Space Fight Center in Huntsville, Alabama, working in conjunction with the Agency's Glenn Research Center in Cleveland, Ohio. Currently, after providing thrust to the Space Shuttle, the solid rocket boosters are parachuted into the sea and are retrieved for reuse. The SLI is considering vehicle concepts that would fly first-stage boosters back to a designated landing site after separation from the orbital vehicle. These flyback boosters would be powered by several jet engines integrated into the booster capable of providing over 100,000 pounds of thrust. The study will determine the requirements for the engines, identify risk mitigation activities, and identify costs associated with risk mitigation and jet engine development and production, as well as determine candidate jet engine options to pursue for the flyback booster.

  2. Site survey method and apparatus

    DOEpatents

    Oldham, James G.; Spencer, Charles R.; Begley, Carl L.; Meyer, H. Robert

    1991-06-18

    The disclosure of the invention is directed to a site survey ground vehicle based apparatus and method for automatically detecting source materials, such as radioactivity, marking the location of the source materials, such as with paint, and mapping the location of the source materials on a site. The apparatus of the invention is also useful for collecting and analyzing samples. The apparatus includes a ground vehicle, detectors mounted at the front of the ground vehicle, and individual detector supports which follow somewhat irregular terrain to allow consistent and accurate detection, and autolocation equipment.

  3. Site survey method and apparatus

    DOEpatents

    Oldham, J.G.; Spencer, C.R.; Begley, C.L.; Meyer, H.R.

    1991-06-18

    The disclosure of the invention is directed to a site survey ground vehicle based apparatus and method for automatically detecting source materials, such as radioactivity, marking the location of the source materials, such as with paint, and mapping the location of the source materials on a site. The apparatus of the invention is also useful for collecting and analyzing samples. The apparatus includes a ground vehicle, detectors mounted at the front of the ground vehicle, and individual detector supports which follow somewhat irregular terrain to allow consistent and accurate detection, and autolocation equipment. 19 figures.

  4. A computer program (HEVSIM) for heavy duty vehicle fuel economy and performance simulation

    DOT National Transportation Integrated Search

    1981-09-01

    This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...

  5. 40 CFR 86.1721-99 - Application for certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (6) For electric and hybrid electric vehicles, identification of the energy usage in kilowatt-hours... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and...

  6. Experiment Configurations for the DAST

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This image shows three vehicle configurations considered for the Drones for Aerodynamic and Structural Testing (DAST) program, conducted at NASA's Dryden Flight Research Center between 1977 and 1983. The DAST project planned for three wing configurations. These were the Instrumented Standard Wing (ISW), the Aeroelastic Research Wing-1 (ARW-1), and the ARW-2. After the DAST-1 crash, project personnel fitted a second Firebee II with a rebuilt ARW-1 wing. Due to the project's ending, it never flew the ARW-2 wing. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  7. DAST in Flight

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  8. Concept for a radioisotope powered dual mode lunar rover

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Schriener, Timothy M.; Coste, Keith

    2006-01-01

    Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.

  9. Concept for a Radioisotope Powered Dual Mode Lunar Rover

    NASA Astrophysics Data System (ADS)

    Elliott, John O.; Schriener, Timothy M.; Coste, Keith

    2006-01-01

    Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.

  10. X-33 Proposal by Lockheed Martin - Computer Graphic

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This artist's rendering depicts the Lockheed Martin X-33 for a technology demonstrator of a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV), as submitted in the aerospace company's original proposal. NASA selected Lockheed Martin's design on 2 July 1996. NASA's Dryden Flight research Center, Edwards, California, was to have had a key role in the development and flight testing of the X-33. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that was to have improved U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improve U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquide hydrogen fuel tank, and the resulting time delay and cost increase, the X-33 program was cancelled in February 2001.

  11. X-33 Proposal by Rockwell - Computer Graphic

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This artist's rendering depicts the Rockwell International X-33 proposal for technology demonstrator of a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV). NASA considered design submissions from Rockwell, Lockheed Martin, and McDonnell Douglas. NASA selected Lockheed Martin's design on 2 July 1996. NASA's Dryden Flight research Center, Edwards, California, was to have had a key role in the development and flight testing of the X-33. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that was to have improved U.S. economic competitiveness. The X-33 design selected for development was a wedged-shaped subscale technology demonstrator prototype of a Reusable Launch Vehicle (RLV) by Lockheed Martin. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improve U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The Lockheed Martin X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen tank, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.

  12. X-33 Contractor Design Proposals

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This artist's rendering depicts the three designs submitted for the X-33 proposal for a technology demonstrator of a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV). NASA considered design submissions from Rockwell, Lockheed Martin, and McDonnell Douglas. NASA selected Lockheed Martin's design on 2 July 1996. NASA's Dryden Flight Research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space and to promote the creation and delivery of new space services and other activities that was to improve U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have create new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was to have normally been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen fuel tank, and the resulting schedule delay and cost increase, the X-33 program was cancelled in February 2001.

  13. Image acquisition system for traffic monitoring applications

    NASA Astrophysics Data System (ADS)

    Auty, Glen; Corke, Peter I.; Dunn, Paul; Jensen, Murray; Macintyre, Ian B.; Mills, Dennis C.; Nguyen, Hao; Simons, Ben

    1995-03-01

    An imaging system for monitoring traffic on multilane highways is discussed. The system, named Safe-T-Cam, is capable of operating 24 hours per day in all but extreme weather conditions and can capture still images of vehicles traveling up to 160 km/hr. Systems operating at different remote locations are networked to allow transmission of images and data to a control center. A remote site facility comprises a vehicle detection and classification module (VCDM), an image acquisition module (IAM) and a license plate recognition module (LPRM). The remote site is connected to the central site by an ISDN communications network. The remote site system is discussed in this paper. The VCDM consists of a video camera, a specialized exposure control unit to maintain consistent image characteristics, and a 'real-time' image processing system that processes 50 images per second. The VCDM can detect and classify vehicles (e.g. cars from trucks). The vehicle class is used to determine what data should be recorded. The VCDM uses a vehicle tracking technique to allow optimum triggering of the high resolution camera of the IAM. The IAM camera combines the features necessary to operate consistently in the harsh environment encountered when imaging a vehicle 'head-on' in both day and night conditions. The image clarity obtained is ideally suited for automatic location and recognition of the vehicle license plate. This paper discusses the camera geometry, sensor characteristics and the image processing methods which permit consistent vehicle segmentation from a cluttered background allowing object oriented pattern recognition to be used for vehicle classification. The image capture of high resolution images and the image characteristics required for the LPRMs automatic reading of vehicle license plates, is also discussed. The results of field tests presented demonstrate that the vision based Safe-T-Cam system, currently installed on open highways, is capable of producing automatic classification of vehicle class and recording of vehicle numberplates with a success rate around 90 percent in a period of 24 hours.

  14. Feasibility study of Northeast Thailand Gas Pipeline Project. Final report. Part 2. Compressed natural gas. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The volume is the second part of a three part study submitted to the Petroleum Authority of Thailand. Part II analyzes the potential use of compressed natural gas (CNG) as a transportation fuel for high mileage vehicles traveling the highway system of Thailand. The study provides an initial estimate of buses and trucks that are potential candidates for converting to natural gas vehicles (NGV). CNG technology is briefly reviewed. The types of refueling stations that may be sited along the highway are discussed. The estimated capital investments and typical layouts are presented. The report also discusses the issues involved inmore » implementing a CNG program in Thailand, such as safety, user acceptability and the government's role.« less

  15. KSC-2009-6225

    NASA Image and Video Library

    2009-11-12

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the tower on a new mobile launcher, or ML, for the Constellation Program grows as the fourth section is lowered into position. The tower will be approximately 345 feet tall when completed and have multiple platforms for personnel access. The ML is being built at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. The base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  16. 40 CFR 86.094-26 - Mileage and service accumulation; emission requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-duty vehicles. It prescribes mileage and service accumulation requirements for durability data vehicles... Durability Program of § 86.094-13(d), and for emission data vehicles regardless of the durability program employed. Service accumulation requirements for durability data vehicles run under the Alternative Service...

  17. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  18. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  19. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  20. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  1. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  2. Computer Program (VEHSIM) for Vehicle Fuel Economy and Performance Simulation (Automobiles and Light Trucks) : Vol. III

    DOT National Transportation Integrated Search

    1981-10-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  3. Computer Program (VEHSIM) for Vehicle Fuel Economy and Performance Simulation (Automobiles and Light Trucks) : Vol. II

    DOT National Transportation Integrated Search

    1981-10-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  4. Computer Program (VEHSIM) For Vehicle Fuel Economy and Performance Simulation (Automobiles and Light Trucks) : Vol. IV: Enhancements

    DOT National Transportation Integrated Search

    1981-10-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  5. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that.... (1) Manufacturers of Otto-cycle vehicles may participate in an NMHC averaging, banking and trading...

  6. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  7. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom

    2014-01-01

    Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.

  8. Abort Options for Human Lunar Missions between Earth Orbit and Lunar Vicinity

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Senent, Juan S.; Llama, Eduardo Garcia

    2005-01-01

    Apollo mission design emphasized operational flexibility that supported premature return to Earth. However, that design was tailored to use expendable hardware for short expeditions to low-latitude sites and cannot be applied directly to an evolutionary program requiring long stay times at arbitrary sites. This work establishes abort performanc e requirements for representative onorbit phases of missions involvin g rendezvous in lunar-orbit, lunar-surface and at the Earth-Moon libr ation point. This study submits reference abort delta-V requirements and other Earth return data (e.g., entry speed, flight path angle) and also examines the effect of abort performance requirements on propul sive capability for selected vehicle configurations.

  9. Assessment of community food resources: A Latino neighborhood study in upstate New York

    PubMed Central

    Lopez-Class, Maria; Hosler, Akiko S.

    2011-01-01

    This study aims to assess availability, affordability, and accessibility of food items in a low-income Latino neighborhood within a small city using an on-site food store survey. Store locations were identified by on-site GPS. Results showed the Latino neighborhood had limited availability and above average cost of high-fiber bread. Fresh vegetables were more expensive compared to the non-Latino neighborhood, and more stores in the Latino neighborhood participated in Supplemental Nutrition Assistance Food Program. The lack of supermarkets, fewer stores with disability access, and the lack of public transportation left Latino residents without a vehicle or with physical disabilities with few food shopping options. PMID:22065468

  10. Computer Program (HEVSIM) for Heavy Duty Vehicle Fuel Economy and Performance Simulation. Volume I: Description and Analysis

    DOT National Transportation Integrated Search

    1981-09-01

    This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...

  11. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...

  12. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...

  13. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...

  14. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...

  15. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...

  16. 41 CFR 109-26.501-51 - Used vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Used vehicles. 109-26...-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 109-26.501-51 Used vehicles. Normally, DOE does not purchase or authorize contractors to purchase used motor vehicles. However, the Director...

  17. 41 CFR 109-26.501-51 - Used vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Used vehicles. 109-26...-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 109-26.501-51 Used vehicles. Normally, DOE does not purchase or authorize contractors to purchase used motor vehicles. However, the Director...

  18. 41 CFR 109-26.501-51 - Used vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Used vehicles. 109-26...-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 109-26.501-51 Used vehicles. Normally, DOE does not purchase or authorize contractors to purchase used motor vehicles. However, the Director...

  19. 45 CFR 1310.15 - Operation of vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Operation of vehicles. 1310.15 Section 1310.15... PROGRAM HEAD START TRANSPORTATION Transportation Requirements § 1310.15 Operation of vehicles. Each agency... individual, to children enrolled in its program must ensure that: (a) Effective October 1, 2006, on a vehicle...

  20. 45 CFR 1310.15 - Operation of vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Operation of vehicles. 1310.15 Section 1310.15... PROGRAM HEAD START TRANSPORTATION Transportation Requirements § 1310.15 Operation of vehicles. Each agency... individual, to children enrolled in its program must ensure that: (a) Effective October 1, 2006, on a vehicle...

  1. 45 CFR 1310.15 - Operation of vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Operation of vehicles. 1310.15 Section 1310.15... PROGRAM HEAD START TRANSPORTATION Transportation Requirements § 1310.15 Operation of vehicles. Each agency... individual, to children enrolled in its program must ensure that: (a) Effective October 1, 2006, on a vehicle...

  2. 41 CFR 109-26.501-51 - Used vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Used vehicles. 109-26...-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 109-26.501-51 Used vehicles. Normally, DOE does not purchase or authorize contractors to purchase used motor vehicles. However, the Director...

  3. 41 CFR 109-26.501-51 - Used vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Used vehicles. 109-26...-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 109-26.501-51 Used vehicles. Normally, DOE does not purchase or authorize contractors to purchase used motor vehicles. However, the Director...

  4. A computer program (HEVSIM) for heavy duty vehicle fuel economy and performance simulation : Volume II: Users' Manual

    DOT National Transportation Integrated Search

    1981-09-01

    This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...

  5. A computer program (VEHSIM) for vehicle fuel economy and performance simulation (automobiles and light trucks). Volume 3. Glossary and listings

    DOT National Transportation Integrated Search

    1981-01-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  6. A computer program (VEHSIM) for vehicle fuel economy and performance simulation (automobiles and light trucks). Volume 2. Users guide

    DOT National Transportation Integrated Search

    1981-01-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  7. A computer program (VEHSIM) for vehicle fuel economy and performance simulation (automobiles and light trucks). Volume 1. Description and analysis

    DOT National Transportation Integrated Search

    1981-01-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  8. A computer program (HEVSIM) for heavy duty vehicle fuel economy and performance simulation : Volume 1: Description and Analysis

    DOT National Transportation Integrated Search

    1981-09-01

    This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...

  9. 40 CFR 86.1728-99 - Compliance with emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicable emission standards in §§ 86.1708 and 86.1709. For hybrid electric vehicles, the emission data will... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and...

  10. Computer Program (VEHSIM) for Vehicle Fuel Economy and Performance Simulation (Automobiles and Light Trucks) : Vol. I: Description and Analysis

    DOT National Transportation Integrated Search

    1981-10-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  11. Highway Safety Program Manual: Volume 2: Motor Vehicle Registration.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 2 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) describes the purposes and specific objectives of motor vehicle registration. Federal authority for vehicle registration and general policies regarding vehicle registration systems are outlined.…

  12. 40 CFR 1027.101 - To whom do these requirements apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTION CONTROLS FEES FOR ENGINE, VEHICLE, AND EQUIPMENT COMPLIANCE PROGRAMS § 1027.101 To whom do these..., vehicle, and equipment compliance program (EVECP). This includes activities related to approving... products: (1) Motor vehicles and motor vehicle engines we regulate under 40 CFR part 86. This includes...

  13. The relationship between airborne small ions and particles in urban environments

    NASA Astrophysics Data System (ADS)

    Ling, Xuan; Jayaratne, Rohan; Morawska, Lidia

    2013-11-01

    Ions play an important role in affecting climate and particle formation in the atmosphere. Small ions rapidly attach to particles in the air and, therefore, studies have shown that they are suppressed in polluted environments. Urban environments, in particular, are dominated by motor vehicle emissions and, since motor vehicles are a source of both particles and small ions, the relationship between these two parameters is not well known. In order to gain a better understanding of this relationship, an intensive campaign was undertaken where particles and small ions of both signs were monitored over two week periods at each of three sites A, B and C that were affected to varying degrees by vehicle emissions. Site A was close to a major road and reported the highest particle number and lowest small ion concentrations. Precursors from motor vehicle emissions gave rise to clear particle formation events on five days and, on each day this was accompanied by a suppression of small ions. Observations at Site B, which was located within the urban airshed, though not adjacent to motor traffic, showed particle enhancement but no formation events. Site C was a clean site, away from urban sources. This site reported the lowest particle number and highest small ion concentration. The positive small ion concentration was 10%-40% higher than the corresponding negative value at all sites. These results confirm previous findings that there is a clear inverse relationship between small ions and particles in urban environments dominated by motor vehicle emissions.

  14. Project Village conceptual plans. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming; proposed housing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    The WyCoal Project Village is a housing facility proposed adjacent to the Wyoming Coal Gasification Project plant construction site that would accommodate single workers in dormitory units and singles or couples at a recreation vehicle park. Centralized services and recreational facilities are also to be provided. The provision for some mobile home units to be used in lieu of RV spaces has been considered but would be developed only if a strong demonstrated demand from singles and couples required such a provision. No children will be allowed at the Project Village as accommodations for families will be available in themore » town of Douglas. The development program for the Project Village calls for a total plan capacity of 225 living units: 1500 dormitory rooms and 750 recreational vehicle spaces. However, the total units to be developed will not exceed 1800 with peak employment, including couples at the Recreational Vehicle Park, not anticipated to exceed 2000. The flexibility within the maximum plan capacity of 2250 will allow for the development of an appropriate balance of housing units geared to the on-site project demands as plant construction occurs. At this time a mix of approximately 1200 dormitory rooms and 600 RV spaces appears appropriate for planning purposes.« less

  15. Continuous vehicle classification data : how good is it?

    DOT National Transportation Integrated Search

    2000-08-01

    Florida has a lengthy history of trying to obtain continuous vehicle classification data. They installed their first piezoelectric axle sensors at a continuous count site in October of 1988. At that time, they had 86 continuous count sites operating ...

  16. 15 CFR 265.19 - Unattended vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Unattended vehicles. 265.19 Section... Unattended vehicles. No person shall leave a motor vehicle unattended on the site with the engine running or a key in the ignition switch or the vehicle not effectively braked. ...

  17. 15 CFR 265.19 - Unattended vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Unattended vehicles. 265.19 Section... Unattended vehicles. No person shall leave a motor vehicle unattended on the site with the engine running or a key in the ignition switch or the vehicle not effectively braked. ...

  18. 15 CFR 265.19 - Unattended vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Unattended vehicles. 265.19 Section... Unattended vehicles. No person shall leave a motor vehicle unattended on the site with the engine running or a key in the ignition switch or the vehicle not effectively braked. ...

  19. 15 CFR 265.19 - Unattended vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Unattended vehicles. 265.19 Section... Unattended vehicles. No person shall leave a motor vehicle unattended on the site with the engine running or a key in the ignition switch or the vehicle not effectively braked. ...

  20. 15 CFR 265.19 - Unattended vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Unattended vehicles. 265.19 Section... Unattended vehicles. No person shall leave a motor vehicle unattended on the site with the engine running or a key in the ignition switch or the vehicle not effectively braked. ...

  1. Defining the Natural Atmospheric Environment Requirements for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank

    2008-01-01

    The National Aeronautics and Space Administration began developing a new vehicle under the Constellation Program to replace the Space Shuttle. The Ares-1 launch vehicle and the Orion capsule will be used to ferry crew and some payloads to the International Space Station and will also be used for new missions to the moon, As development of this new vehicle begins, the Natural Environments Branch at Marshall Space Flight Center has been tasked with defining the natural environments the vehicle will encounter and working with the program to develop natural environmental requirements for the vehicles' elements. An overview of the structure of the program is given, along with a description of the Constellation Design Specification for Natural Environments and the Constellation Natural Environments Definition for Design documents and how they apply to the Ares-I and Orion vehicles.

  2. Six degree of freedom FORTRAN program, ASTP docking dynamics, users guide

    NASA Technical Reports Server (NTRS)

    Mount, G. O., Jr.; Mikhalkin, B.

    1974-01-01

    The digital program ASTP Docking Dynamics as outlined is intended to aid the engineer using the program to determine the docking system loads and attendant vehicular motion resulting from docking two vehicles that have an androgynous, six-hydraulic-attenuator, guide ring, docking interface similar to that designed for the Apollo/Soyuz Test Project (ASTP). This program is set up to analyze two different vehicle combinations: the Apollo CSM docking to Soyuz and the shuttle orbiter docking to another orbiter. The subroutine modifies the vehicle control systems to describe one or the other vehicle combinations; the rest of the vehicle characteristics are changed by input data. To date, the program has been used to predict and correlate ASTP docking loads and performance with docking test program results from dynamic testing. The program modified for use on IBM 360 computers. Parts of the original docking system equations in the areas of hydraulic damping and capture latches are modified to better describe the detail design of the ASTP docking system.

  3. Environmental Assessment of the Long Endurance Multi-Intelligence Vehicle (LEMV) Program

    DTIC Science & Technology

    2012-12-01

    cleaner, hair dryer 70 Intrusive; interferes with telephone conversation Normal conversation 50-65 Quiet Office 50-60 Comfortable hearing levels are...consuha1ion pursuan11o the ESA is requ ired . If add itional information on federal ly listed species becomes av;lilable. or if prOJCC I plans change, this...delemlination may be reconsidered. Please refer to this office’s web site :11 hiiJ>:I/www.fws.!!<Jv/nonheastinj fieldoflice/Endangered/ for further

  4. USNO GPS program

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1981-01-01

    Initial test results indicated that the Global Positioning System/Time Transfer Unit (GPS/TTU) performed well within the + or - 100 nanosecond range required by the original system specification. Subsequent testing involved the verification of GPS time at the master control site via portable clocks and the acquisition and tracking of as many passes of the space vehicles currently in operation as possible. A description and discussion of the testing, system modifications, test results obtained, and an evaluation of both GPS and the GPS/TTU are presented.

  5. The National Shipbuilding Research Program. Survey of Air and Water Quality Pollution Prevention and Control Technology Used in Shipyards and Similar Industries

    DTIC Science & Technology

    1998-01-09

    vehicle washing 3. TSP and citric acid for bilge cleaning 1. no capture and filtration of weld fumes 8 1. black beauty abrasives 2...treatment 1. not treated N/A 12 N/A 1. treated on-site. with gravity oil water separator, acid cracking of the emulsion layer and parallel...less energy-intensive treatment technologies such as constructed wetlands for sewage treatment and anoxic limestone drains for acid mine drainage

  6. End-To-End Simulation of Launch Vehicle Trajectories Including Stage Separation Dynamics

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Tartabini, Paul V.; Pamadi, Bandu N.

    2012-01-01

    The development of methodologies, techniques, and tools for analysis and simulation of stage separation dynamics is critically needed for successful design and operation of multistage reusable launch vehicles. As a part of this activity, the Constraint Force Equation (CFE) methodology was developed and implemented in the Program to Optimize Simulated Trajectories II (POST2). The objective of this paper is to demonstrate the capability of POST2/CFE to simulate a complete end-to-end mission. The vehicle configuration selected was the Two-Stage-To-Orbit (TSTO) Langley Glide Back Booster (LGBB) bimese configuration, an in-house concept consisting of a reusable booster and an orbiter having identical outer mold lines. The proximity and isolated aerodynamic databases used for the simulation were assembled using wind-tunnel test data for this vehicle. POST2/CFE simulation results are presented for the entire mission, from lift-off, through stage separation, orbiter ascent to orbit, and booster glide back to the launch site. Additionally, POST2/CFE stage separation simulation results are compared with results from industry standard commercial software used for solving dynamics problems involving multiple bodies connected by joints.

  7. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that.... (1) Manufacturers of Otto-cycle vehicles may participate in an NMHC averaging, banking and trading...

  8. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that.... (1) Manufacturers of Otto-cycle vehicles may participate in an NMHC averaging, banking and trading...

  9. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that.... (1) Manufacturers of Otto-cycle vehicles may participate in an NMHC averaging, banking and trading...

  10. 40 CFR 88.205-94 - California Pilot Test Program Credits Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Program to meet the clean-fuel vehicle sales requirements through the use of credits. Participation in... be generated by any of the following means: (i) Sale of qualifying clean-fuel vehicles earlier than... requirements of paragraph (g) of this section. (ii) Sale of a greater number of qualifying clean-fuel vehicles...

  11. 77 FR 3386 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Clean Vehicles Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... Vehicle Program, which adopts California's second generation low emission vehicle program for light- duty... listed in the electronic docket, some information is not publicly available, i.e., confidential business....regulations.gov or in hard copy for public inspection during normal business hours at the Air Protection...

  12. Hitching a ride: Seed accrual rates on different types of vehicles.

    PubMed

    Rew, Lisa J; Brummer, Tyler J; Pollnac, Fredric W; Larson, Christian D; Taylor, Kimberley T; Taper, Mark L; Fleming, Joseph D; Balbach, Harold E

    2018-01-15

    Human activities, from resource extraction to recreation, are increasing global connectivity, especially to less-disturbed and previously inaccessible places. Such activities necessitate road networks and vehicles. Vehicles can transport reproductive plant propagules long distances, thereby increasing the risk of invasive plant species transport and dispersal. Subsequent invasions by less desirable species have significant implications for the future of threatened species and habitats. The goal of this study was to understand vehicle seed accrual by different vehicle types and under different driving conditions, and to evaluate different mitigation strategies. Using studies and experiments at four sites in the western USA we addressed three questions: How many seeds and species accumulate and are transported on vehicles? Does this differ with vehicle type, driving surface, surface conditions, and season? What is our ability to mitigate seed dispersal risk by cleaning vehicles? Our results demonstrated that vehicles accrue plant propagules, and driving surface, surface conditions, and season affect the rate of accrual: on- and off-trail summer seed accrual on all-terrain vehicles was 13 and 3508 seeds km -1 , respectively, and was higher in the fall than in the summer. Early season seed accrual on 4-wheel drive vehicles averaged 7 and 36 seeds km -1 on paved and unpaved roads respectively, under dry conditions. Furthermore, seed accrual on unpaved roads differed by vehicle type, with tracked vehicles accruing more than small and large 4-wheel drives; and small 4-wheel drives more than large. Rates were dramatically increased under wet surface conditions. Vehicles indiscriminately accrue a wide diversity of seeds (different life histories, forms and seed lengths); total richness, richness of annuals, biennials, forbs and shrubs, and seed length didn't differ among vehicle types, or additional seed bank samples. Our evaluation of portable vehicle wash units showed that approximately 80% of soil and seed was removed from dirty vehicles. This suggests that interception programs to reduce vehicular seed transportation risk are feasible and should be developed for areas of high conservation value, or where the spread of invasive species is of special concern. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. 15 CFR 265.18 - Prohibited servicing of vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Prohibited servicing of vehicles. 265... § 265.18 Prohibited servicing of vehicles. No person shall make nonemergency repairs on privately owned vehicles on the site. ...

  14. 15 CFR 265.18 - Prohibited servicing of vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Prohibited servicing of vehicles. 265... § 265.18 Prohibited servicing of vehicles. No person shall make nonemergency repairs on privately owned vehicles on the site. ...

  15. Natural Gas Vehicle Cylinder Safety, Training and Inspection Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hank Seiff

    2008-12-31

    Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators andmore » training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.« less

  16. Commercial Space Port Planning in Texas

    NASA Astrophysics Data System (ADS)

    Bell, L.; Looke, B.

    2002-01-01

    The Texas Legislature is providing funding to support research and planning activities aimed at creating a commercial spaceport in the state. These monies have been allocated to regional Spaceport Development Corporations that have been established in three countries containing candidate site locations: Willacy County (in South Texas); Brazoria County (East Texas); and Pecos County (West Texas). This program is being sponsored and coordinated by the Texas Aerospace Commission (TAC). The Sasakawa International Center for Space Architecture (SICSA) at the University of Houston is providing research, planning and design support to TAC and is a member of each of the three regional development teams. Planning must carefully consider special support requirements and operational characteristics of all prospective launch systems along with geographic, infrastructure and environmental factors at each site. Two of the candidate sites are in coastal areas; a priority for certain launch service providers; whereas the third inland site is more attractive to others. Candidate launch systems include winged horizontal takeoff air-launch vehicles, vertical multi-stage reusable launch vehicles, and expendable sub-orbital surrounding rockets. Important research and planning activities include environmental impact assessments, analyses of overflight hazards, investigations of economic impacts and business plan development. The results of these activities will guide master plan development for each site, including: a physical plan (site layout, infrastructure improvements and facility construction); and a strategic plan (user agreements, licenses, finance sources and participants). Commercial spaceport development demands compliance with stringent FAA regulations established by the Office of Commercial Space Transportation (OCST) which exceed minimum standards allowed for U.S. Government spaceport facilities. Key among these requirements are 15,000 ft. radius on-site clear zones separating launch areas form inhabited facilities, and extremely conservative flight risk restrictions associated with launch trajectories over populated areas. Unless modified, the flight risk criteria currently mandated will prevent virtually all new U.S. commercial spaceport operating license proposals from being approved. Commercial spaceport development also presents significant financing challenges. New launch service companies typically lack substantial economic resources needed for infrastructure construction such as long horizontal runways, launch platforms and vehicle assembly and payload integration facilities. Outside investment sources much be identified, with supplementary revenues potentially derived from space tourism and ancillary public service uses. Texas spaceport planning sponsors, participants and advocates recognize that such a development warrants the necessary investment. It will support the advancement and services of new generations of launch systems vitally needed to reduce the high costs of space access. It will afford new state-wide, regional and local economic development opportunities that promote business investments, create jobs and expand infrastructure resources. It will also support a wide spectrum of educational objectives by including and serving academic programs at all levels. Regardless which site is ultimately selected, all Texas regions and public interests in general will benefit.

  17. 32 CFR 263.4 - Registration of vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Registration of vehicles. 263.4 Section 263.4...) MISCELLANEOUS TRAFFIC AND VEHICLE CONTROL ON CERTAIN DEFENSE MAPPING AGENCY SITES § 263.4 Registration of vehicles. (a) Newly assigned or employed individuals who intend to operate a privately-owned vehicle at the...

  18. 32 CFR 263.4 - Registration of vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Registration of vehicles. 263.4 Section 263.4...) MISCELLANEOUS TRAFFIC AND VEHICLE CONTROL ON CERTAIN DEFENSE MAPPING AGENCY SITES § 263.4 Registration of vehicles. (a) Newly assigned or employed individuals who intend to operate a privately-owned vehicle at the...

  19. 32 CFR 263.4 - Registration of vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Registration of vehicles. 263.4 Section 263.4...) MISCELLANEOUS TRAFFIC AND VEHICLE CONTROL ON CERTAIN DEFENSE MAPPING AGENCY SITES § 263.4 Registration of vehicles. (a) Newly assigned or employed individuals who intend to operate a privately-owned vehicle at the...

  20. The Commercial Vehicle Information Systems and Network program, 2012.

    DOT National Transportation Integrated Search

    2014-03-01

    The Commercial Vehicle Information Systems and : Networks (CVISN) program supports that safety : mission by providing grant funds to States for: : Improving safety and productivity of motor : carriers, commercial motor vehicles : (CMVs), and thei...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, J.; Modlin, C.W.; Frerking, C.J.

    HIPROTECT (pronounced High-protect) is a system designed to protect national archaeological and natural treasures from destruction by vandals or looters. The system is being developed jointly by the Lawrence Livermore National Laboratory and the University of California at Riverside under the DOD Legacy Resource Management Program. Thousands of archaeological sites are located on military bases and national park lands. Treasure hunters or vandals are pillaging and destroying these sites at will, since the sites are generally located in remote areas, unattended and unprotected. The HIPROTECT system is designed to detect trespassers at the protected sites and to alert park officialsmore » or military officials of intrusions. An array of sensors is used to detect trespassers. The sensors are triggered when a person or vehicle approaches the site. Alarm messages are transmitted to alert park officials or law enforcement officials by way of a cellular telephone link. A video and audio system is included to assist the officials in verifying that an intrusion has occurred and to allow two-way communication with the intruders.« less

  2. DAST Mated to B-52 on Ramp - Close-up

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Technicians mount a BQM-43 Firebee II drone on the wing pylon of NASA's B-52B launch aircraft. The drone was test flown as part of the Drones for Aerodynamic and Structural Testing (DAST) program. Research flights of drones with modified wings for the DAST program were conducted from 1977 to 1983. After the initial flights of Firebee II 72-1564, it was fitted with the Instrumented Standard Wing (also called the 'Blue Streak' wing). The first free flight attempt on March 7, 1979, was aborted before launch due to mechanical problems with the HH-53 recovery helicopter. The next attempt, on March 9, 1979, was successful. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  3. Impact of adding artificially generated alert sound to hybrid electric vehicles on their detectability by pedestrians who are blind.

    PubMed

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-01-01

    A repeated-measures design with block randomization was used for the study, in which 14 adults with visual impairments attempted to detect three different vehicles: a hybrid electric vehicle (HEV) with an artificially generated sound (Vehicle Sound for Pedestrians [VSP]), an HEV without the VSP, and a comparable internal combustion engine (ICE) vehicle. The VSP vehicle (mean +/- standard deviation [SD] = 38.3 +/- 14.8 m) was detected at a significantly farther distance than the HEV (mean +/- SD = 27.5 +/- 11.5 m), t = 4.823, p < 0.001, but no significant difference existed between the VSP and ICE vehicles (mean +/- SD = 34.5 +/- 14.3 m), t = 1.787, p = 0.10. Despite the overall sound level difference between the two test sites (parking lot = 48.7 dBA, roadway = 55.1 dBA), no significant difference in detection distance between the test sites was observed, F(1, 13) = 0.025, p = 0.88. No significant interaction was found between the vehicle type and test site, F(1.31, 16.98) = 0.272, p = 0.67. The findings of the study may help us understand how adding an artificially generated sound to an HEV could affect some of the orientation and mobility tasks performed by blind pedestrians.

  4. 41 CFR 101-26.501-7 - Sale of vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Sale of vehicles. 101-26... PROGRAM 26.5-GSA Procurement Programs § 101-26.501-7 Sale of vehicles. GSA will not solicit trade-in bids when purchasing new motor vehicles for replacement purposes because experience has shown that suppliers...

  5. 41 CFR 101-26.501-7 - Sale of vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Sale of vehicles. 101-26... PROGRAM 26.5-GSA Procurement Programs § 101-26.501-7 Sale of vehicles. GSA will not solicit trade-in bids when purchasing new motor vehicles for replacement purposes because experience has shown that suppliers...

  6. 41 CFR 101-26.501 - Purchase of new motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Purchase of new motor... SOURCES AND PROGRAM 26.5-GSA Procurement Programs § 101-26.501 Purchase of new motor vehicles. (a) It shall be the policy to procure commercially available motor vehicles, unless other vehicles are...

  7. ASCENT Program

    NASA Technical Reports Server (NTRS)

    Brown, Richard; Collier, Gary; Heckenlaible, Richard; Dougherty, Edward; Dolenz, James; Ross, Iain

    2012-01-01

    The ASCENT program solves the three-dimensional motion and attendant structural loading on a flexible vehicle incorporating, optionally, an active analog thrust control system, aerodynamic effects, and staging of multiple bodies. ASCENT solves the technical problems of loads, accelerations, and displacements of a flexible vehicle; staging of the upper stage from the lower stage; effects of thrust oscillations on the vehicle; a payload's relative motion; the effect of fluid sloshing on vehicle; and the effect of winds and gusts on the vehicle (on the ground or aloft) in a continuous analysis. The ATTACH ASCENT Loads program reads output from the ASCENT flexible body loads program, and calculates the approximate load indicators for the time interval under consideration. It calculates the load indicator values from pre-launch to the end of the first stage.

  8. Autonomous path-planning navigation system for site characterization

    NASA Astrophysics Data System (ADS)

    Rankin, Arturo L.; Crane, Carl D., III; Armstrong, David G., II; Nease, Allen D.; Brown, H. Edward

    1996-05-01

    The location and removal of buried munitions is an important yet hazardous task. Current development is aimed at performing both the ordnance location and removal tasks autonomously. An autonomous survey vehicle (ASV) named the Gator has been developed at the Center for Intelligent Machines and Robotics, under the direction of Wright Laboratory, Tyndall Air Force Base, Florida, and the Navy Explosive Ordnance Disposal Technology Division, Indian Head, Maryland. The primary task of the survey vehicle is to autonomously traverse an off-road site, towing behind it a trailer containing a sensor package capable of characterizing the sub-surface contents. Achieving 00 percent coverage of the site is critical to fully characterizing the site. This paper presents a strategy for planning efficient paths for the survey vehicle that guarantees near-complete coverage of a site. A small library of three in-house developed path planners are reviewed. A strategy is also presented to keep the trailer on-path and to calculate the percent of coverage of a site with a resolution of 0.01 m2. All of the algorithms discussed in this paper were initially developed in simulation on a Silicon Graphics computer and subsequently implemented on the survey vehicle.

  9. National launch strategy vehicle data management system

    NASA Technical Reports Server (NTRS)

    Cordes, David

    1990-01-01

    The national launch strategy vehicle data management system (NLS/VDMS) was developed as part of the 1990 NASA Summer Faculty Fellowship Program. The system was developed under the guidance of the Engineering Systems Branch of the Information Systems Office, and is intended for use within the Program Development Branch PD34. The NLS/VDMS is an on-line database system that permits the tracking of various launch vehicle configurations within the program development office. The system is designed to permit the definition of new launch vehicles, as well as the ability to display and edit existing launch vehicles. Vehicles can be grouped in logical architectures within the system. Reports generated from this package include vehicle data sheets, architecture data sheets, and vehicle flight rate reports. The topics covered include: (1) system overview; (2) initial system development; (3) supercard hypermedia authoring system; (4) the ORACLE database; and (5) system evaluation.

  10. U.S. Army Methanol-Fueled Administrative Vehicle Demonstration Program

    DTIC Science & Technology

    1989-08-01

    for either fuel when compared with published production specifications. iii Also, four Chevrolet vehicles, two each with L-4 engines and two with V-6...With Manufacturer’s Production Specifications ... 217 G CRC Deposit Ratings for Inspected Vehicles ...................... 235 Viii LIST OF ILLUSTRATIONS...vehicles within the Government’s administrative fleet and to stimulate further the production and use of methanol-fueled vehicles. This program was

  11. X-33 by Lockheed Martin above Earth - Computer Graphic

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This artist's rendering depicts the NASA/Lockheed Martin X-33 technology demonstrator for a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) in orbit over the Earth. NASA's Dryden Flight Research Center, Edwards, California., expected to play a key role in the development and flight testing of the X-33. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that was to have improved U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen fuel tank, and the resulting time delay and cost increase, the X-33 was cancelled in February 2001.

  12. Access to Space Interactive Design Web Site

    NASA Technical Reports Server (NTRS)

    Leon, John; Cutlip, William; Hametz, Mark

    2000-01-01

    The Access To Space (ATS) Group at NASA's Goddard Space Flight Center (GSFC) supports the science and technology community at GSFC by facilitating frequent and affordable opportunities for access to space. Through partnerships established with access mode suppliers, the ATS Group has developed an interactive Mission Design web site. The ATS web site provides both the information and the tools necessary to assist mission planners in selecting and planning their ride to space. This includes the evaluation of single payloads vs. ride-sharing opportunities to reduce the cost of access to space. Features of this site include the following: (1) Mission Database. Our mission database contains a listing of missions ranging from proposed missions to manifested. Missions can be entered by our user community through data input tools. Data is then accessed by users through various search engines: orbit parameters, ride-share opportunities, spacecraft parameters, other mission notes, launch vehicle, and contact information. (2) Launch Vehicle Toolboxes. The launch vehicle toolboxes provide the user a full range of information on vehicle classes and individual configurations. Topics include: general information, environments, performance, payload interface, available volume, and launch sites.

  13. Intelligent Vehicle Initiative: Business Plan

    DOT National Transportation Integrated Search

    1997-11-01

    The U.S. Department of Transportation (USDOT) is embarking on a new program called the Intelligent Vehicle Initiative (IVI). The USDOT intends to jointly define the program plan and conduct the IVI in cooperation with the motor vehicle, trucking, and...

  14. Sodium sulfur electric vehicle battery engineering program final report, September 2, 1986--June 15, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-06-01

    In September 1986 a contract was signed between Chloride Silent Power Limited (CSPL) and Sandia National Laboratories (SNL) entitled ``Sodium Sulfur Electric Vehicle Battery Engineering Program``. The aim of the cost shared program was to advance the state of the art of sodium sulfur batteries for electric vehicle propulsion. Initially, the work statement was non-specific in regard to the vehicle to be used as the design and test platform. Under a separate contract with the DOE, Ford Motor Company was designing an advanced electric vehicle drive system. This program, called the ETX II, used a modified Aerostar van for itsmore » platform. In 1987, the ETX II vehicle was adopted for the purposes of this contract. This report details the development and testing of a series of battery designs and concepts which led to the testing, in the US, of three substantial battery deliverables.« less

  15. NASA's Morphing Project Research Summaries in Fiscal Year 2002

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Waszak, Martin R.

    2005-01-01

    The Morphing Project at the National Aeronautics and Space Agency s (NASA) Langley Research Center (LaRC) is part of the Breakthrough Vehicle Technologies Project, Vehicle Systems Program that conducts fundamental research on advanced technologies for future flight vehicles. The objectives of the Morphing Project are to develop and assess the advanced technologies and integrated component concepts to enable efficient, multi-point adaptability of flight vehicles; primarily through the application of adaptive structures and adaptive flow control to substantially alter vehicle performance characteristics. This document is a compilation of research summaries and other information on the project for fiscal year 2002. The focus is to provide a brief overview of the project content, technical results and lessons learned. At the time of publication, the Vehicle Systems Program (which includes the Morphing Project) is undergoing a program re-planning and reorganization. Accordingly, the programmatic descriptions of this document pertain only to the program as of fiscal year 2002.

  16. NYPA/TH!NK Clean Commute Program Report – Inception through February 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Karner; James Francfort

    The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric transportation in urban applications. The primary Program partners are the New York Power Authority (NYPA) and Ford. The other Program partners providing funding and other support include the Metropolitan Transportation Authority, Metro North Railroad, Long Island Railroad, New York State Energy Research and Development Authority, Long Island Power Authority, New York State Department of Transportation, New York City Department of Transportation, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). The data inmore » this report is being collected via an internet-based questionnaire system by the AVTA through its subcontractor Electric Transportation Applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK cities is located at the commuters’ private residences as well as seven train stations. Eighty-seven commuters are using the TH!NK city vehicles, with 80% actively providing data to the AVTA. The participants have driven the vehicles nearly 150,000 miles since Program inception, avoiding the use of almost 7,000 gallons of gasoline. The TH!NK city vehicles are driven an average of between 180 and 230 miles per month, and over 95% of all trips taken with the TH!NK city vehicles replace trips previously taken in gasoline vehicles. This report covers the period from Program inception through February 2003.« less

  17. 75 FR 5248 - Requirements and Procedures for Consumer Assistance To Recycle and Save Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... time will allow the public to benefit from the availability of lower cost used vehicle parts from... CARS program. The additional time would allow the public to benefit from the availability of lower cost... public benefit of having cheaper used vehicle parts from the vehicles traded in under the CARS program...

  18. A LTA flight research vehicle. [technology assessment, airships

    NASA Technical Reports Server (NTRS)

    Nebiker, F. R.

    1975-01-01

    An Airship Flight Research Program is proposed. Major program objectives are summarized and a Modernized Navy ZPG3W Airship recommended as the flight test vehicle. The origin of the current interest in modern airship vehicles is briefly discussed and the major benefits resulting from the flight research program described. Airship configurations and specifications are included.

  19. Trajectory Design Employing Convex Optimization for Landing on Irregularly Shaped Asteroids

    NASA Technical Reports Server (NTRS)

    Pinson, Robin M.; Lu, Ping

    2016-01-01

    Mission proposals that land on asteroids are becoming popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site. The problem under investigation is how to design a fuel-optimal powered descent trajectory that can be quickly computed on- board the spacecraft, without interaction from ground control. An optimal trajectory designed immediately prior to the descent burn has many advantages. These advantages include the ability to use the actual vehicle starting state as the initial condition in the trajectory design and the ease of updating the landing target site if the original landing site is no longer viable. For long trajectories, the trajectory can be updated periodically by a redesign of the optimal trajectory based on current vehicle conditions to improve the guidance performance. One of the key drivers for being completely autonomous is the infrequent and delayed communication between ground control and the vehicle. Challenges that arise from designing an asteroid powered descent trajectory include complicated nonlinear gravity fields, small rotating bodies and low thrust vehicles. There are two previous studies that form the background to the current investigation. The first set looked in-depth at applying convex optimization to a powered descent trajectory on Mars with promising results.1, 2 This showed that the powered descent equations of motion can be relaxed and formed into a convex optimization problem and that the optimal solution of the relaxed problem is indeed a feasible solution to the original problem. This analysis used a constant gravity field. The second area applied a successive solution process to formulate a second order cone program that designs rendezvous and proximity operations trajectories.3, 4 These trajectories included a Newtonian gravity model. The equivalence of the solutions between the relaxed and the original problem is theoretically established. The proposed solution for designing the asteroid powered descent trajectory is to use convex optimization, a gravity model with higher fidelity than Newtonian, and an iterative solution process to design the fuel optimal trajectory. The solution to the convex optimization problem is the thrust profile, magnitude and direction, that will yield the minimum fuel trajectory for a soft landing at the target site, subject to various mission and operational constraints. The equations of motion are formulated in a rotating coordinate system and includes a high fidelity gravity model. The vehicle's thrust magnitude can vary between maximum and minimum bounds during the burn. Also, constraints are included to ensure that the vehicle does not run out of propellant, or go below the asteroid's surface, and any vehicle pointing requirements. The equations of motion are discretized and propagated with the trapezoidal rule in order to produce equality constraints for the optimization problem. These equality constraints allow the optimization algorithm to solve the entire problem, without including a propagator inside the optimization algorithm.

  20. Deploying Electric Vehicles and Electric Vehicle Supply Equipment: Tiger Teams Offer Project Assistance for Federal Fleets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    To assist federal agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory’s EVSE Tiger Teams.

  1. 49 CFR 599.401 - Requirements and limitations for disposal facilities that receive trade-in vehicles under the...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... facilities that receive trade-in vehicles under the CARS program. 599.401 Section 599.401 Transportation... facilities that receive trade-in vehicles under the CARS program. (a) The disposal facility must: (1) Not... or shredded, report the vehicle to NMVTIS as crushed or shredded. (b) The disposal facility may not...

  2. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control...

  3. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control...

  4. 78 FR 51381 - Early Warning Reporting, Foreign Defect Reporting, and Motor Vehicle and Equipment Recall...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ...NHTSA is adopting amendments to certain provisions of the early warning reporting (EWR) rule and the regulations governing motor vehicle and equipment safety recalls. The amendments to the EWR rule require light vehicle manufacturers to specify the vehicle type and the fuel and/or propulsion system type in their reports and add new component categories of stability control systems for light vehicles, buses, emergency vehicles, and medium-heavy vehicle manufacturers, and forward collision avoidance, lane departure prevention, and backover prevention for light vehicle manufacturers. These amendments will also require light vehicle manufacturers to segregate their Service Brake EWR data into two new discrete component categories. In addition, NHTSA will require motor vehicle manufacturers to report their annual list of substantially similar vehicles via the Internet. As to safety recalls, we will now require certain manufacturers to provide a VIN-based recalls lookup tool on their Web site or the Web site of a third party; require the submission of recalls reports and information via the Internet; and require adjustments to the required content of the owner notification letters and envelopes required to be issued to owners and purchasers of recalled vehicles and equipment.

  5. The Malemute development program. [rocket upper stage engine design

    NASA Technical Reports Server (NTRS)

    Bolster, W. J.; Hoekstra, P. W.

    1976-01-01

    The Malemute vehicle systems are two-stage systems based on utilizing a new high performance upper stage motor with two existing military boosters. The Malmute development program is described relative to program structure, preliminary design, vehicle subsystems, and the Malemute motor. Two vehicle systems, the Nike-Malemute and Terrier-Malemute, were developed which are capable of transporting comparatively large diameter (16 in.) 200-lb payloads to altitudes of 500 and 700 km, respectively. These vehicles provide relatively low-cost transportation with two-stage reliability and launch simplicity. Flight tests of both vehicle systems revealed their performance capabilities, with the Terrier-Malemute system involving a unique Malemute motor spin sensitivity problem. It is suggested that the vehicles can be successfully flown by lowering the burnout spin rate.

  6. Reusable launch vehicle: Technology development and test program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The National Aeronautics and Space Administration (NASA) requested that the National Research Council (NRC) assess the Reusable Launch Vehicle (RLV) technology development and test programs in the most critical component technologies. At a time when discretionary government spending is under close scrutiny, the RLV program is designed to reduce the cost of access to space through a combination of robust vehicles and a streamlined infrastructure. Routine access to space has obvious benefits for space science, national security, commercial technologies, and the further exploration of space. Because of technological challenges, knowledgeable people disagree about the feasibility of a single-stage-to-orbit (SSTO) vehicle. The purpose of the RLV program proposed by NASA and industry contractors is to investigate the status of existing technology and to identify and advance key technology areas required for development and validation of an SSTO vehicle. This report does not address the feasibility of an SSTO vehicle, nor does it revisit the roles and responsibilities assigned to NASA by the National Transportation Policy. Instead, the report sets forth the NRC committee's findings and recommendations regarding the RLV technology development and test program in the critical areas of propulsion, a reusable cryogenic tank system (RCTS), primary vehicle structure, and a thermal protection system (TPS).

  7. 32 CFR 263.7 - Emergency vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Emergency vehicles. 263.7 Section 263.7 National... TRAFFIC AND VEHICLE CONTROL ON CERTAIN DEFENSE MAPPING AGENCY SITES § 263.7 Emergency vehicles. No person shall fail or refuse to yield the right-of-way to an emergency vehicle when operating with siren or...

  8. 32 CFR 263.7 - Emergency vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Emergency vehicles. 263.7 Section 263.7 National... TRAFFIC AND VEHICLE CONTROL ON CERTAIN DEFENSE MAPPING AGENCY SITES § 263.7 Emergency vehicles. No person shall fail or refuse to yield the right-of-way to an emergency vehicle when operating with siren or...

  9. 32 CFR 263.7 - Emergency vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Emergency vehicles. 263.7 Section 263.7 National... TRAFFIC AND VEHICLE CONTROL ON CERTAIN DEFENSE MAPPING AGENCY SITES § 263.7 Emergency vehicles. No person shall fail or refuse to yield the right-of-way to an emergency vehicle when operating with siren or...

  10. 32 CFR 263.7 - Emergency vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Emergency vehicles. 263.7 Section 263.7 National... TRAFFIC AND VEHICLE CONTROL ON CERTAIN DEFENSE MAPPING AGENCY SITES § 263.7 Emergency vehicles. No person shall fail or refuse to yield the right-of-way to an emergency vehicle when operating with siren or...

  11. 32 CFR 263.7 - Emergency vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Emergency vehicles. 263.7 Section 263.7 National... TRAFFIC AND VEHICLE CONTROL ON CERTAIN DEFENSE MAPPING AGENCY SITES § 263.7 Emergency vehicles. No person shall fail or refuse to yield the right-of-way to an emergency vehicle when operating with siren or...

  12. Connected Vehicle Pilot Positioning and Timing Report: Summary of Positioning and Timing Approaches in CV Pilot Sites

    DOT National Transportation Integrated Search

    2018-01-25

    This document summarizes positioning and timing related information from the three Connected Vehicle Pilot Deployment Sites (NYCDOT, Tampa/THEA, and WYDOT) as discussed during technical roundtables. Information is largely based on progress to date du...

  13. Split delivery vehicle routing problem with time windows: a case study

    NASA Astrophysics Data System (ADS)

    Latiffianti, E.; Siswanto, N.; Firmandani, R. A.

    2018-04-01

    This paper aims to implement an extension of VRP so called split delivery vehicle routing problem (SDVRP) with time windows in a case study involving pickups and deliveries of workers from several points of origin and several destinations. Each origin represents a bus stop and the destination represents either site or office location. An integer linear programming of the SDVRP problem is presented. The solution was generated using three stages of defining the starting points, assigning busses, and solving the SDVRP with time windows using an exact method. Although the overall computational time was relatively lengthy, the results indicated that the produced solution was better than the existing routing and scheduling that the firm used. The produced solution was also capable of reducing fuel cost by 9% that was obtained from shorter total distance travelled by the shuttle buses.

  14. KSC-2010-1102

    NASA Image and Video Library

    2010-01-08

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a crane hoists the eighth tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, off the ground toward the launcher's growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  15. KSC-2009-6660

    NASA Image and Video Library

    2009-11-30

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the tower on a new mobile launcher, or ML, for the Constellation Program grows as the fifth tower segment is balanced in position. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  16. KSC-2009-6792

    NASA Image and Video Library

    2009-12-13

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the tower on a new mobile launcher, or ML, for the Constellation Program continues to grow as the sixth tower segment is balanced in position. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jim Grossmann

  17. KSC-2010-1101

    NASA Image and Video Library

    2010-01-08

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the eighth tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, begins its ascent to the top of the growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-6892

    NASA Image and Video Library

    2009-12-21

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the seventh tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, begins its ascent to the top of the growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  19. KSC-2009-6894

    NASA Image and Video Library

    2009-12-21

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a crane hoists the seventh tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, off the ground toward the launcher's growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  20. KSC-2010-1105

    NASA Image and Video Library

    2010-01-08

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, construction of the tower on a new mobile launcher, or ML, for the Constellation Program progresses with placement of the eighth tower segment on the growing structure. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  1. International Collaboration in Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Morris, K. Bruce; Horack, John M.; Nall, Mark; Leahy, Bart. D.

    2007-01-01

    The U.S. Vision for Space Exploration commits the United States to return astronauts to the moon by 2020 using the Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle. Like the Apollo program of the 1960s and 1970s, this effort will require preliminary reconnaissance in the form of robotic landers and probes. Unlike Apollo, some of the data NASA will rely upon to select landing sites and conduct science will be based on international missions as well, including SMART-1, SELENE, and Lunar Reconnaissance Orbiter (LRO). Opportunities for international cooperation on the moon also lie in developing lunar exploration technologies. The European Space Agency's SMART-1 orbiter (Figure 1) is making the first comprehensive inventory of key chemical elements in the lunar surface. It is also investigating the impact theory of the moon's formation.'

  2. Mississippi Curriculum Framework for Vehicle and Mobile Equipment Mechanics (Program CIP: 47.0699--Vehicle and Mobile Equipment Mech.). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for vehicle and mobile equipment mechanics I and II. Presented first are a…

  3. Retiring Old Cars : Programs To Save Gasoline and Reduce Emissions

    DOT National Transportation Integrated Search

    1992-07-01

    Older vehicles produce a disproportionate share of total U.S. vehicle air emissions. Congress asked Office of Technology Assessment to examine the ability of vehicle scrappage programs to reduce gasoline use and emissions. This report presents the re...

  4. 32 CFR 634.5 - Program objectives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicles. (2) Reduction of traffic deaths, injuries, and property damage from traffic accidents. Most traffic accidents can be prevented. Investigation of motor vehicle accidents should examine all factors... INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Introduction § 634.5 Program objectives. (a) The objectives of...

  5. Development of Vehicle-to-Infrastructure Applications Program Second Annual Report.

    DOT National Transportation Integrated Search

    2016-08-31

    This report documents the work completed by the Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium during the second year of the Development of Vehicle-to-Infrastructure Applications (V2I) Program. Participat...

  6. DOE/NREL Next Generation Natural Gas Vehicle Program : an overview

    DOT National Transportation Integrated Search

    2001-05-14

    This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energys (DOEs) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of...

  7. Development of vehicle-to-infrastructure applications program : first annual report.

    DOT National Transportation Integrated Search

    2015-08-01

    This report documents the work completed by the Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium during the first year of the Development of Vehicle-to-Infrastructure Applications (V2I) Program. Participati...

  8. Computer program (POWREQ) for power requirements of mass transit vehicles

    DOT National Transportation Integrated Search

    1977-08-01

    This project was performed to develop a computer program suitable for use in systematic analyses requiring estimates of the energy requirements of mass transit vehicles as a function of driving schedules and vehicle size, shape, and gross weight. The...

  9. Prenatal Dexamethasone and Postnatal High-Fat Diet Decrease Interferon Gamma Production through an Age-Dependent Histone Modification in Male Sprague-Dawley Rats

    PubMed Central

    Yu, Hong-Ren; Tain, You-Lin; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Chen, Chih-Cheng; Kuo, Ho-Chang; Hung, Pi-Lien; Hsieh, Kai-Sheng; Huang, Li-Tung

    2016-01-01

    Overexposure to prenatal glucocorticoid (GC) disturbs hypothalamic-pituitary-adrenocortical axis-associated neuroendocrine metabolism and susceptibility to metabolic syndrome. A high-fat (HF) diet is a major environmental factor that can cause metabolic syndrome. We aimed to investigate whether prenatal GC plus a postnatal HF diet could alter immune programming in rat offspring. Pregnant Sprague-Dawley rats were given intraperitoneal injections of dexamethasone or saline at 14–21 days of gestation. Male offspring were then divided into four groups: vehicle, prenatal dexamethasone exposure, postnatal HF diet (VHF), and prenatal dexamethasone exposure plus a postnatal HF diet (DHF). The rats were sacrificed and adaptive immune function was evaluated. Compared to the vehicle, the DHF group had lower interferon gamma (IFN-γ) production by splenocytes at postnatal day 120. Decreases in H3K9 acetylation and H3K36me3 levels at the IFN-γ promoter correlated with decreased IFN-γ production. The impaired IFN-γ production and aberrant site-specific histone modification at the IFN-γ promoter by prenatal dexamethasone treatment plus a postnatal HF diet resulted in resilience at postnatal day 180. Prenatal dexamethasone and a postnatal HF diet decreased IFN-γ production through a site-specific and an age-dependent histone modification. These findings suggest a mechanism by which prenatal exposure to GC and a postnatal environment exert effects on fetal immunity programming. PMID:27669212

  10. DAST Being Calibrated for Flight in Hangar

    NASA Technical Reports Server (NTRS)

    1982-01-01

    DAST-2, a modified BQM-34 Firebee II drone, undergoes calibration in a hangar at the NASA Dryden Flight Research Center. After the crash of the first DAST vehicle, project personnel fitted a second Firebee II (serial # 72-1558) with the rebuilt ARW-1 (ARW-1R) wing. The DAST-2 made a captive flight aboard the B-52 on October 29, 1982, followed by a free flight on November 3, 1982. During January and February of 1983, three launch attempts from the B-52 had to be aborted due to various problems. Following this, the project changed the launch aircraft to a DC-130A. Two captive flights occurred in May 1983. The first launch attempt from the DC-130 took place on June 1, 1983. The mothership released the DAST-2, but the recovery system immediately fired without being commanded. The parachute then disconnected from the vehicle, and the DAST-2 crashed into a farm field near Harper Dry Lake. Wags called this the 'Alfalfa Field Impact Test.' These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  11. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    NASA Astrophysics Data System (ADS)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  12. 75 FR 76487 - Haldex Brake Corporation, Commercial Vehicle Systems, Including On-Site Leased Workers of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ..., Commercial Vehicle Systems, Including On-Site Leased Workers of Johnston Integration Technologies, a... system components. The company reports that workers leased from Johnston Integration Technologies, a... certification to include workers leased from Johnston Integration Technologies, a subsidiary of Johnston...

  13. Methylotroph cloning vehicle

    DOEpatents

    Hanson, Richard S.; Allen, Larry N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  14. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1996-01-01

    Industry/NASA Reusable Launch Vehicle (RLV) Technology Program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  15. Vehicle Technologies and Fuel Cell Technologies Office Research and Development Programs: Prospective Benefits Assessment Report for Fiscal Year 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, T. S.; Birky, A.; Gohlke, David

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies Offices of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invest in early-stage research of advanced batteries and electrification, engines and fuels, materials, and energy-efficient mobility systems; hydrogen production, delivery, and storage; and fuel cell technologies. This report documents the estimated benefits of successful development and implementation of advanced vehicle technologies. It presents a comparison of a scenario with completely successful implementation of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies (the Program Success case) to a future in whichmore » there is no contribution after Fiscal Year 2017 by the VTO or FCTO to these technologies (the No Program case). Benefits were attributed to individual program technology areas, which included FCTO research and development and the VTO programs of electrification, advanced combustion engines and fuels, and materials technology. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 24% to 30% higher than in the No Program case, while fuel economy for on-road medium- and heavy-duty vehicle stock could be as much as 13% higher. The resulting petroleum savings in 2035 were estimated to be as high as 1.9 million barrels of oil per day, and reductions in greenhouse gas emissions were estimated to be as high as 320 million metric tons of carbon dioxide equivalent per year. Projections of light-duty vehicle adoption indicate that although advanced-technology vehicles may be somewhat more expensive to purchase, the fuel savings result in a net reduction of consumer cost. In 2035, reductions in annual fuel expenditures for vehicles (both light- and heavy-duty) are projected to range from $86 billion to $109 billion (2015$), while the projected increase in new vehicle expenditures in the same year ranges from $6 billion to $24 billion (2015$).« less

  16. Neighborhood characteristics and lifestyle intervention outcomes: Results from the Special Diabetes Program for Indians.

    PubMed

    Jiang, Luohua; Chang, Jenny; Beals, Janette; Bullock, Ann; Manson, Spero M

    2018-06-01

    Growing evidence reveals various neighborhood conditions are associated with the risk of developing type 2 diabetes. It is unknown, however, whether the effectiveness of diabetes prevention interventions is also influenced by neighborhood characteristics. The purpose of the current study is to examine the impact of neighborhood characteristics on the outcomes of a lifestyle intervention to prevent diabetes in American Indians and Alaska Natives (AI/ANs). Year 2000 US Census Tract data were linked with those from the Special Diabetes Program for Indians Diabetes Prevention Program (SDPI-DP), an evidence-based lifestyle intervention implemented in 36 AI/AN grantee sites across the US. A total of 3394 participants started the intervention between 01/01/2006 and 07/31/2009 and were followed by 07/31/2016. In 2016-2017, data analyses were conducted to evaluate the relationships of neighborhood characteristics with intervention outcomes, controlling for individual level socioeconomic status. AI/ANs from sites located in neighborhoods with higher median household income had 38% lower risk of developing diabetes than those from sites with lower neighborhood income (adjusted hazard ratio = 0.65, 95% CI: 0.47-0.90). Further, those from sites with higher neighborhood concentrations of AI/ANs achieved less BMI reduction and physical activity increase. Meanwhile, participants from sites with higher neighborhood level of vehicle occupancy made more improvement in BMI and diet. Lifestyle intervention effectiveness was not optimal when the intervention was implemented at sites with disadvantaged neighborhood characteristics. Meaningful improvements in socioeconomic and other neighborhood disadvantages of vulnerable populations could be important in stemming the global epidemic of diabetes. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Frequency of open windows in motor vehicles under varying temperature conditions: a videotape survey in Central North Carolina during 2001.

    PubMed

    Long, Tom; Johnson, Ted; Ollison, Will

    2004-07-01

    Air pollution exposures in the motor vehicle cabin are significantly affected by air exchange rate, a function of vehicle speed, window position, vent status, fan speed, and air conditioning use. A pilot study conducted in Houston, Texas, during September 2000 demonstrated that useful information concerning the position of windows, sunroofs, and convertible tops as a function of temperature and vehicle speed could be obtained through the use of video recorders. To obtain similar data representing a wide range of temperature and traffic conditions, a follow-up study was conducted in and around Chapel Hill, North Carolina at five sites representing a central business district, an arterial road, a low-income commercial district, an interstate highway, and a rural road. Each site permitted an elevated view of vehicles as they proceeded through a turn, thereby exposing all windows to the stationary camcorder. A total of 32 videotaping sessions were conducted between February and October 2001, in which temperature varied from 41 degrees F to 93 degrees F and average vehicle speed varied from 21 to 77 mph. The resulting video tapes were processed to create a vehicle-specific database that included site location, date, time, vehicle type, vehicle color, vehicle age, window configuration, number of windows in each of three position categories (fully open, partially open, and closed), meteorological factors, and vehicle speed. Of the 4715 vehicles included in the database, 1905 (40.4%) were labeled as "open," indicating a window, sunroof, or convertible top was fully or partially open. Stepwise linear regression analyses indicated that "open" window status was affected by wind speed, relative humidity, vehicle speed, cloud cover, apparent temperature, day of week, time of day, vehicle type, vehicle age, vehicle color, number of windows, sunroofs, location, and air quality season. Open windows tended to occur less frequently when relative humidity was high, apparent temperature (a parameter incorporating wind chill and heat index) was below 50 degrees F, or the vehicle was relatively new. Although the effects of the identified parameters were relatively weak, they are statistically significant and should be considered by researchers attempting to model vehicle air exchange rates.

  18. The use of UAVs to monitor archeological sites: the case study of Choirokoitia within the PROTHEGO project

    NASA Astrophysics Data System (ADS)

    Themistocleous, K.

    2017-09-01

    PROTHEGO (PROTection of European Cultural HEritage from GeO-hazards) is a collaborative research project funded in the framework of the Joint Programming Initiative on Cultural Heritage and Global Change (JPICH) - Heritage Plus in 2015-2018 (www.prothego.eu). PROTHEGO aims to make an innovative contribution towards the analysis of geo-hazards in areas of cultural heritage, and uses novel space technology for the management of sites and world heritage monuments located throughout Europe, using specialized remote sensing techniques. Τhe methodology will include the 395 monuments of UNESCO in Europe, with case studies conducted in 4 UNESCO sites in England, Spain, Italy and Cyprus. For the Cyprus case study in Choirokoitia, Unmanned Aerial Vehicles (UAVs) are used to monitor and assess the risk from natural hazards on the archaeological site to evaluate cultural heritage sites deformation. The UAVs were flown over the study area to produce time-series data, including orthoimages, 3D models and digital elevation models of the Choirokoitia site in order to identify changes in the area caused by natural hazards.

  19. Payload Performance Analysis for a Reusable Two-Stage-to-Orbit Vehicle

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Beaty, James R.; Lepsch, Roger A.; Gilbert, Michael G.

    2015-01-01

    This paper investigates a unique approach in the development of a reusable launch vehicle where, instead of designing the vehicle to be reusable from its inception, as was done for the Space Shuttle, an expendable two stage launch vehicle is evolved over time into a reusable launch vehicle. To accomplish this objective, each stage is made reusable by adding the systems necessary to perform functions such as thermal protection and landing, without significantly altering the primary subsystems and outer mold line of the original expendable vehicle. In addition, some of the propellant normally used for ascent is used instead for additional propulsive maneuvers after staging in order to return both stages to the launch site, keep loads within acceptable limits and perform a soft landing. This paper presents a performance analysis that was performed to investigate the feasibility of this approach by quantifying the reduction in payload capability of the original expendable launch vehicle after accounting for the mass additions, trajectory changes and increased propellant requirements necessary for reusability. Results show that it is feasible to return both stages to the launch site with a positive payload capability equal to approximately 50 percent of an equivalent expendable launch vehicle. Further discussion examines the ability to return a crew/cargo capsule to the launch site and presents technical challenges that would have to be overcome.

  20. Impact of adding artificially generated alert sound to hybrid electric vehicles on their detectability by pedestrians who are blind

    PubMed Central

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-01-01

    A repeated-measures design with block randomization was used for the study, in which 14 adults with visual impairments attempted to detect three different vehicles: a hybrid electric vehicle (HEV) with an artificially generated sound (Vehicle Sound for Pedestrians [VSP]), an HEV without the VSP, and a comparable internal combustion engine (ICE) vehicle. The VSP vehicle (mean +/− standard deviation [SD] = 38.3 +/− 14.8 m) was detected at a significantly farther distance than the HEV (mean +/− SD = 27.5 +/− 11.5 m), t = 4.823, p < 0.001, but no significant difference existed between the VSP and ICE vehicles (mean +/− SD = 34.5 +/− 14.3 m), t = 1.787, p = 0.10. Despite the overall sound level difference between the two test sites (parking lot = 48.7 dBA, roadway = 55.1 dBA), no significant difference in detection distance between the test sites was observed, F(1, 13) = 0.025, p = 0.88. No significant interaction was found between the vehicle type and test site, F(1.31, 16.98) = 0.272, p = 0.67. The findings of the study may help us understand how adding an artificially generated sound to an HEV could affect some of the orientation and mobility tasks performed by blind pedestrians. PMID:22773198

  1. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines: Voluntary Standards for Light-Duty Vehicles

    EPA Pesticide Factsheets

    The National LEV program demonstrates how cooperative, partnership efforts can produce a smarter, cheaper program that reduces regulatory burden while increasing protection of the environment and public health.

  2. Integrated vehicle-based safety systems field operational test final program report.

    DOT National Transportation Integrated Search

    2011-06-01

    "This document presents results from the light-vehicle and heavy-truck field operational tests performed as part of the Integrated Vehicle-Based Safety Systems (IVBSS) program. The findings are the result of analyses performed by the University of Mi...

  3. Integrated Vehicle-Based Safety Systems Field Operational Test : Final Program Report

    DOT National Transportation Integrated Search

    2011-06-01

    This document presents results from the light-vehicle and heavy-truck field operational tests performed as part of the Integrated Vehicle-Based Safety Systems (IVBSS) program. The findings are the result of analyses performed by the University of Mic...

  4. U.S. advanced launch vehicle technology programs : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1996-01-01

    U.S. firms and U.S. government agencies are jointly investing in advanced launch vehicle technology. This Special Report summarizes U.S. launch vehicle technology programs and highlights the changing : roles of government and industry players in pick...

  5. Scout launch vehicle, phases 4 and 5

    NASA Technical Reports Server (NTRS)

    Mccracken, D. C.; Leiss, A.; Horrocks, E. R.; Turpen, N. H.

    1974-01-01

    The historical data of the Scout launch vehicle program for Phases IV and V (vehicles 138 through 177) is presented for the FY 1966 through FY 1971 time period. Technical data and accounting information are detailed to provide a total picture of the program.

  6. Space Vehicle Valve System

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  7. Transformable Rhodobacter strains, method for producing transformable Rhodobacter strains

    DOEpatents

    Laible, Philip D.; Hanson, Deborah K.

    2018-05-08

    The invention provides an organism for expressing foreign DNA, the organism engineered to accept standard DNA carriers. The genome of the organism codes for intracytoplasmic membranes and features an interruption in at least one of the genes coding for restriction enzymes. Further provided is a system for producing biological materials comprising: selecting a vehicle to carry DNA which codes for the biological materials; determining sites on the vehicle's DNA sequence susceptible to restriction enzyme cleavage; choosing an organism to accept the vehicle based on that organism not acting upon at least one of said vehicle's sites; engineering said vehicle to contain said DNA; thereby creating a synthetic vector; and causing the synthetic vector to enter the organism so as cause expression of said DNA.

  8. Preliminary performance estimates of a highly maneuverable remotely piloted vehicle. [computerized synthesis program to assess effects of vehicle and mission parameters

    NASA Technical Reports Server (NTRS)

    Nelms, W. P., Jr.; Axelson, J. A.

    1974-01-01

    A computerized synthesis program has been used to assess the effects of various vehicle and mission parameters on the performance of a highly maneuverable remotely piloted vehicle (RPV) for the air-to-air combat role. The configuration used in the study is a trapezoidal-wing and body concept, with forward-mounted stabilizing and control surfaces. The study mission consists of an outbound cruise, an acceleration phase, a series of subsonic and supersonic turns, and a return cruise. Performance is evaluated in terms of both the required vehicle weight to accomplish this mission and combat effectiveness as measured by turning and acceleration capability. The report describes the synthesis program, the mission, the vehicle, and the results of sensitivity and trade studies.

  9. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Puneet; Casey, Dan

    This report summarizes the work conducted under U.S. Department of Energy (US DOE) contract DE-FC36-04GO14286 by Chevron Technology Ventures (CTV, a division of Chevron U.S.A., Inc.), Hyundai Motor Company (HMC), and UTC Power (UTCP, a United Technologies company) to validate hydrogen (H2) infrastructure technology and fuel cell hybrid vehicles. Chevron established hydrogen filling stations at fleet operator sites using multiple technologies for on-site hydrogen generation, storage, and dispensing. CTV constructed five demonstration stations to support a vehicle fleet of 33 fuel cell passenger vehicles, eight internal combustion engine (ICE) vehicles, three fuel cell transit busses, and eight internal combustion enginemore » shuttle busses. Stations were operated between 2005 and 2010. HMC introduced 33 fuel cell hybrid electric vehicles (FCHEV) in the course of the project. Generation I included 17 vehicles that used UTCP fuel cell power plants and operated at 350 bar. Generation II included 16 vehicles that had upgraded UTC fuel cell power plants and demonstrated options such as the use of super-capacitors and operation at 700 bar. All 33 vehicles used the Hyundai Tucson sports utility vehicle (SUV) platform. Fleet operators demonstrated commercial operation of the vehicles in three climate zones (hot, moderate, and cold) and for various driving patterns. Fleet operators were Southern California Edison (SCE), AC Transit (of Oakland, California), Hyundai America Technical Center Inc. (HATCI), and the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC, in a site agreement with Selfridge Army National Guard Base in Selfridge, Michigan).« less

  10. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  11. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  12. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  13. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  14. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  15. 25 CFR 170.152 - What transit facilities and activities are eligible for IRR Program funding?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and... transit vehicle; (d) Preventive maintenance; (e) Leasing transit vehicles, equipment, buildings, and...

  16. Maryland motor carrier program performance enhancement : [research summary].

    DOT National Transportation Integrated Search

    2014-02-01

    The Maryland Motor Carrier Program (MMCP) involves the regulation of : commercial vehicle safety inspections. This includes roadside inspections : programs which have a goal of improving safety and reducing crashes : involving commercial vehicles. Th...

  17. X-33 Proposal by McDonnell Douglas - Computer Graphic

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This artist's rendering depicts the McDonnell Douglas X-33 proposal for a technology demonstrator of a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV). McDonnell Douglas submitted a vertical landing configuration design which used liquid oxygen/hydrogen bell engines. NASA considered design submissions from Rockwell, Lockheed Martin, and McDonnell Douglas. NASA selected Lockheed Martin's design on 2 July 1996. NASA's Dryden Flight research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that was to have improved U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen fuel tanks, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.

  18. A survey of electric and hybrid vehicle simulation programs

    NASA Technical Reports Server (NTRS)

    Bevan, J.; Heimburger, D. A.; Metcalfe, M. A.

    1978-01-01

    Results of a survey conducted within the United States to determine the extent of development and capabilities of automotive performance simulation programs suitable for electric and hybrid vehicle studies are summarized. Altogether, 111 programs were identified as being in a usable state. The complexity of the existing programs spans a range from a page of simple desktop calculator instructions to 300,000 lines of a high-level programming language. The capability to simulate electric vehicles was most common, heat-engines second, and hybrid vehicles least common. Batch-operated programs are slightly more common than interactive ones, and one-third can be operated in either mode. The most commonly used language was FORTRAN, the language typically used by engineers. The higher-level simulation languages (e.g. SIMSCRIPT, GPSS, SIMULA) used by "model builders" were conspicuously lacking.

  19. Implementing a Nutrition and Physical Activity Curriculum in Head Start Through an Academic-Community Partnership.

    PubMed

    Zahnd, Whitney E; Smith, Tracey; Ryherd, Susan J; Cleer, Melissa; Rogers, Valerie; Steward, David E

    2017-06-01

    Schools may be an effective avenue for interventions that prevent childhood obesity. I am Moving I am Learning/Choosy Kids © (IMIL/CK) is a curriculum recommended by Head Start (HS) for education in nutrition, physical activity, and healthy lifestyle habits. We formed an academic-community partnership (ACP), the Springfield Collaborative for Active Child Health, to promote prevention of childhood obesity, in part, to implement the IMIL/CK curriculum in local HS sites. The ACP included a medical school, HS program, public school district, and state health department. Community-based participatory research principles helped identify and organize important implementation activities: community engagement, curriculum support, professional teacher training, and evaluation. IMIL/CK was piloted in 1 school then implemented in all local HS sites. All sites were engaged in IMIL/CK professional teacher training, classroom curriculum delivery, and child physical activity assessments. Local HS policy changed to include IMIL/CK in lesson plans and additional avenues of collaboration were initiated. Furthermore, improvements in physical activity and/or maintenance or improvement of healthy weight prevalence was seen in 4 of the 5 years evaluated. An ACP is an effective vehicle to implement and evaluate childhood obesity prevention programming in HS sites. © 2017, American School Health Association.

  20. 77 FR 19718 - Ford Motor Company Twin Cities Assembly Plant Vehicle Operations Division Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... Cities Assembly Plant Vehicle Operations Division Including On-Site Leased Workers From AEROTEK, Albers... Industries, Waste Management, VMX, Nascote Industries, Delphi Electronics & Safety, Unicomm, And Pacer... Operations Division, St. Paul, Minnesota. The workers are engaged in activities related to the production of...

  1. 76 FR 72236 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ..., FAA invites public comments about our intention to request the Office of Management and Budget (OMB... reentry vehicle, its operational capabilities, and its designated reentry site. DATES: Written comments... vehicle, its operational capabilities, and its designated reentry site. Respondents: Approximately 1...

  2. Highly Maneuverable Aircraft Technology (HiMAT) flight-flutter test program

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.

    1984-01-01

    The highly maneuverable aircraft technology (HiMAT) vehicle was evaluated in a joint NASA and Air Force flight test program. The HiMAT vehicle is a remotely piloted research vehicle. Its design incorporates the use of advanced composite materials in the wings, and canards for aeroelastic tailoring. A flight-flutter test program was conducted to clear a sufficient flight envelope to allow for performance, stability and control, and loads testing. Testing was accomplished with and without flight control-surface dampers. Flutter clearance of the vehicle indicated satisfactory damping and damping trends for the structural modes of the HiMAT vehicle. The data presented include frequency and damping plotted as a function of Mach number.

  3. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...

  4. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...

  5. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...

  6. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...

  7. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...

  8. Alternative Fuels Data Center

    Science.gov Websites

    vehicles. The Program will be focused on funding projects for the voluntary early retirement and . Eligible applicants that have received funding for voluntary vehicle retirement under the California Bureau of Automotive Repair's Consumer Assistance Program are eligible for vehicle replacement funding under

  9. Notification: Effectiveness of EPA's Oversight of State Vehicle Inspection and Maintenance Programs in Achieving Emission Reductions

    EPA Pesticide Factsheets

    Project #OPE-FYI7-0018, May 5, 2017. The EPA OIG plans to begin preliminary research to determine whether EPA oversight has ensured that vehicle inspection and maintenance programs are effective and efficient in reducing vehicle emissions.

  10. Sonic-boom measurements in the focus region during the ascent of Apollo 17. [maximum positive overpressure, positive impulse, signature duration, and bow-shock rise time

    NASA Technical Reports Server (NTRS)

    Henderson, H. R.; Hilton, D. A.

    1974-01-01

    Sonic-boom pressure signatures recorded during the ascent phase of Apollo 17 are presented. The measurements were obtained onboard six U.S. Navy ships positioned along the ground track of the spacecraft vehicle in the area of expected focus resulting from the flight path and acceleration of the vehicle. Tracings of the measured signatures are presented along with values of the maximum positive overpressure, positive impulse, signature duration, and bowshock rise time. Also included are brief descriptions of the ships and their location, the deployment of the sonic-boom instrumentation, flight profiles and operating conditions for the launch vehicle and spacecraft, surface-weather and sea-state information at the measuring sites, and high-altitude weather information for the general measurement areas. Comparisons of the measured and predicted sonic-boom overpressures for the Apollo 17 mission are presented. The measured data are also compared with data from the Apollo 15 and 16 missions and data from flight test programs of various aircraft.

  11. The DARPA/USAF Falcon Program Small Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Weeks, David J.; Walker, Steven H.; Thompson, Tim L.; Sackheim, Robert; London, John R., III

    2006-01-01

    Earlier in this decade, the U.S. Air Force Space Command and the Defense Advanced Research Projects Agency (DARPA), in recognizing the need for low-cost responsive small launch vehicles, decided to partner in addressing this national shortcoming. Later, the National Aeronautics and Space Administration (NASA) joined in supporting this effort, dubbed the Falcon Program. The objectives of the Small Launch Vehicle (SLV) element of the DARPA/USAF Falcon Program include the development of a low-cost small launch vehicle(s) that demonstrates responsive launch and has the potential for achieving a per mission cost of less than $5M when based on 20 launches per year for 10 years. This vehicle class can lift 1000 to 2000 lbm payloads to a reference low earth orbit. Responsive operations include launching the rocket within 48 hours of call up. A history of the program and the current status will be discussed with an emphasis on the potential impact on small satellites.

  12. DAST in Flight Showing Diverging Wingtip Oscillations

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. In this view of DAST-1 (Serial # 72-1557), taken on June 12, 1980, severe wingtip flutter is visible. Moments later, the right wing failed catastrophically and the vehicle crashed near Cuddeback Dry Lake. Before the drone was lost, it had made two captive and two free flights. Its first free flight, on October 2, 1979, was cut short by an uplink receiver failure. The drone was caught in midair by an HH-3 helicopter. The second free flight, on March 12, 1980, was successful, ending in a midair recovery. The third free flight, made on June 12, was to expand the flutter envelope. All of these missions launched from the NASA B-52. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  13. DAST Mated to B-52 in Flight - Close-up from Below

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This photo shows a BQM-34 Firebee II drone being carried aloft under the wing of NASA's B-52 mothership during a 1977 research flight. The Firebee/DAST research program ran from 1977 to 1983 at the NASA Dryden Flight Research Center, Edwards, California. This is the original Firebee II wing. Firebee 72-1564 made three captive flights--on November 25, 1975; May 17, 1976; and June 22, 1977--in preparation for the DAST project with modified wings. These were for checkout of the Firebee's systems and the prelaunch procedures. The first two used a DC-130A aircraft as the launch vehicle, while the third used the B-52. A single free flight using this drone occurred on July 28, 1977. The remote (ground) pilot was NASA research pilot Bill Dana. The launch and flight were successful, and the drone was caught in midair by an HH-53 helicopter. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  14. Near-term hybrid vehicle program, phase 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design of a hybrid vehicle which fully meets or exceeds the requirements set forth in the Near Term Hybrid Vehicle Program is documented. Topics addressed include the general layout and styling, the power train specifications with discussion of each major component, vehicle weight and weight breakdown, vehicle performance, measures of energy consumption, and initial cost and ownership cost. Alternative design options considered and their relationship to the design adopted, computer simulation used, and maintenance and reliability considerations are also discussed.

  15. Rockot-an available launch system for affordable access to space

    NASA Astrophysics Data System (ADS)

    de Vries, U.; Kinnersley, M.; Freeborn, P.

    2000-01-01

    The Rockot launcher will perform its fifth launch, the first commercial launch, in Spring 2000 from the Plesetsk Cosmodrome in Northern Russia carrying two American satellites into a LEO orbit. In preparation for that a launch pad verification flight will be carried out in November this year to prove the functionality of the adapted facilities at the Plesetsk launch site and by placing a Russian satellite into a highly inclined orbit. The results of the launches will be described in detail in the paper as well as the installations at the launch site. Eurockot, the German-Russian joint-venture company marketing and managing the Rockot launch vehicle is meanwhile an integral part of the space launch community. Eurockot was formed by DaimlerChrysler Aerospace and Khrunichev State Research and Production Space Center. A brief overview of its activities, the commercial program and the performance/services offered by Eurockot is presented. Rockot can launch satellites weighing up to 1850 kg into polar or other low earth orbits (LEO). The Rockot launch vehicle is based on the former Russian SS-19 strategic missile. The first and second stages are inherited from the SS-19, the third stage Breeze which has already been developed has multiple ignition capability. The Breeze upper stage is under production at Khrunichev in Moscow. The Rockot launch system is flight proven and is operated from the Plesetsk as well as from the Baikonur launch site. .

  16. A data reduction technique and associated computer program for obtaining vehicle attitudes with a single onboard camera

    NASA Technical Reports Server (NTRS)

    Bendura, R. J.; Renfroe, P. G.

    1974-01-01

    A detailed discussion of the application of a previously method to determine vehicle flight attitude using a single camera onboard the vehicle is presented with emphasis on the digital computer program format and data reduction techniques. Application requirements include film and earth-related coordinates of at least two landmarks (or features), location of the flight vehicle with respect to the earth, and camera characteristics. Included in this report are a detailed discussion of the program input and output format, a computer program listing, a discussion of modifications made to the initial method, a step-by-step basic data reduction procedure, and several example applications. The computer program is written in FORTRAN 4 language for the Control Data 6000 series digital computer.

  17. The VIPER project (Visualization Integration Platform for Exploration Research): a biologically inspired autonomous reconfigurable robotic platform for diverse unstructured environments

    NASA Astrophysics Data System (ADS)

    Schubert, Oliver J.; Tolle, Charles R.

    2004-09-01

    Over the last decade the world has seen numerous autonomous vehicle programs. Wheels and track designs are the basis for many of these vehicles. This is primarily due to four main reasons: a vast preexisting knowledge base for these designs, energy efficiency of power sources, scalability of actuators, and the lack of control systems technologies for handling alternate highly complex distributed systems. Though large efforts seek to improve the mobility of these vehicles, many limitations still exist for these systems within unstructured environments, e.g. limited mobility within industrial and nuclear accident sites where existing plant configurations have been extensively changed. These unstructured operational environments include missions for exploration, reconnaissance, and emergency recovery of objects within reconfigured or collapsed structures, e.g. bombed buildings. More importantly, these environments present a clear and present danger for direct human interactions during the initial phases of recovery operations. Clearly, the current classes of autonomous vehicles are incapable of performing in these environments. Thus the next generation of designs must include highly reconfigurable and flexible autonomous robotic platforms. This new breed of autonomous vehicles will be both highly flexible and environmentally adaptable. Presented in this paper is one of the most successful designs from nature, the snake-eel-worm (SEW). This design implements shape memory alloy (SMA) actuators which allow for scaling of the robotic SEW designs from sub-micron scale to heavy industrial implementations without major conceptual redesigns as required in traditional hydraulic, pneumatic, or motor driven systems. Autonomous vehicles based on the SEW design posses the ability to easily move between air based environments and fluid based environments with limited or no reconfiguration. Under a SEW designed vehicle, one not only achieves vastly improved maneuverability within a highly unstructured environment, but also gains robotic manipulation abilities, normally relegated as secondary add-ons within existing vehicles, all within one small condensed package. The prototype design presented includes a Beowulf style computing system for advanced guidance calculations and visualization computations. All of the design and implementation pertaining to the SEW robot discussed in this paper is the product of a student team under the summer fellowship program at the DOEs INEEL.

  18. Installation-restoration program. Preliminary assessment: 106th Civil Engineering Flight, Roslyn Air National Guard Station, New York Air National Guard, Roslyn, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    The preliminary assessment included the following activities: (1) An on-site visit, including interviews and field surveys; (2) Acquisition and analysis of information on past hazardous materials use, waste generation, and waste disposal at the Station; (3) Acquisition and analysis of available geological surveys, hydrological data, meteorological data, and environmental data; and (4) The identification and assessment of sites where contamination of soils, ground water and/or surface water may have occurred. Operations that have involved the use of hazardous materials and the disposal of hazardous wastes include vehicle maintenance and aerospace ground equipment (AGE) maintenance. The hazardous wastes disposed fo throughmore » these operations include varying quantities of petroleum-oil-lubricant (POL) products, acids, paints, thinners, strippers, and solvents. The field surveys and interviews resulted in the identification of three sites that exhibit the potential for migration of contaminants.« less

  19. Frequency Domain Computer Programs for Prediction and Analysis of Rail Vehicle Dynamics : Volume 2. Appendixes

    DOT National Transportation Integrated Search

    1975-12-01

    Frequency domain computer programs developed or acquired by TSC for the analysis of rail vehicle dynamics are described in two volumes. Volume 2 contains program listings including subroutines for the four TSC frequency domain programs described in V...

  20. 49 CFR 599.502 - Record retention.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... facility information, owner eligibility information, vehicle eligibility information (including vehicle fuel economy), dealer applications for reimbursement under the program, vehicle identification number data, vehicle ownership information, vehicle title, registration and insurance information, sales...

  1. 49 CFR 599.502 - Record retention.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... facility information, owner eligibility information, vehicle eligibility information (including vehicle fuel economy), dealer applications for reimbursement under the program, vehicle identification number data, vehicle ownership information, vehicle title, registration and insurance information, sales...

  2. 49 CFR 599.502 - Record retention.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... facility information, owner eligibility information, vehicle eligibility information (including vehicle fuel economy), dealer applications for reimbursement under the program, vehicle identification number data, vehicle ownership information, vehicle title, registration and insurance information, sales...

  3. 49 CFR 599.502 - Record retention.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... facility information, owner eligibility information, vehicle eligibility information (including vehicle fuel economy), dealer applications for reimbursement under the program, vehicle identification number data, vehicle ownership information, vehicle title, registration and insurance information, sales...

  4. Integrating smart roadside initiative into the V2I component of the connected vehicle program : task 3.2.

    DOT National Transportation Integrated Search

    2015-01-01

    This document details an analysis that maps the current Connected Vehicle development effort to the SRI efforts currently underway. The document provides a mapping of how SRI incorporates into the Connected Vehicle program. This mapping is performed ...

  5. Modeling municipal solid waste collection: A generalized vehicle routing model with multiple transfer stations, gather sites and inhomogeneous vehicles in time windows.

    PubMed

    Son, Le Hoang; Louati, Amal

    2016-06-01

    Municipal Solid Waste (MSW) collection is a necessary process in any municipality resulting in the quality-of-life, economic aspects and urban structuralization. The intrinsic nature of MSW collection relates to the development of effective vehicle routing models that optimize the total traveling distances of vehicles, the environmental emission and the investment costs. In this article, we propose a generalized vehicle routing model including multiple transfer stations, gather sites and inhomogeneous vehicles in time windows for MSW collection. It takes into account traveling in one-way routes, the number of vehicles per m(2) and waiting time at traffic stops for reduction of operational time. The proposed model could be used for scenarios having similar node structures and vehicles' characteristics. A case study at Danang city, Vietnam is given to illustrate the applicability of this model. The experimental results have clearly shown that the new model reduces both total traveling distances and operational hours of vehicles in comparison with those of practical scenarios. Optimal routes of vehicles on streets and markets at Danang are given. Those results are significant to practitioners and local policy makers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. VEEP: A Vehicle Economy, Emissions, and Performance simulation program

    NASA Technical Reports Server (NTRS)

    Klose, G. J.

    1978-01-01

    The purpose of the VEEP simulation program was to: (1) predict vehicle fuel economy and relative emissions over any specified driving cycle; (2) calculate various measures of vehicle performance (acceleration, passing manuevers, gradeability, top speed), and (3) give information on the various categories of energy dissipation (rolling friction, aerodynamics, accessories, inertial effects, component inefficiences, etc.). The vehicle is described based on detailed subsystem information and numerical parameters characterizing the components of a wide variety of self-propelled vehicles. Conventionally arranged heat engine powered automobiles were emphasized, but with consideration in the design toward the requirement of other types of vehicles.

  7. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, three Sparkman High School students pose with their rocket.

  8. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, two Johnson High School students pose with their rocket.

  9. Around Marshall

    NASA Image and Video Library

    2002-04-27

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, three Sparkman High School students pose with their rocket.

  10. Around Marshall

    NASA Image and Video Library

    2002-04-27

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides hands-on, practical aerospace experience. In this picture, a rocket built by Johnson High School students soars to it projected designation.

  11. Around Marshall

    NASA Image and Video Library

    2002-04-27

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, two Johnson High School students pose with their rocket.

  12. Terrain Mechanics and Modeling Research Program: Enhanced Vehicle Dynamics Module

    DTIC Science & Technology

    2009-05-01

    ER D C/ G SL T R- 09 -8 Terrain Mechanics and Modeling Research Program Enhanced Vehicle Dynamics Module Daniel C. Creighton, George...public release; distribution is unlimited. Terrain Mechanics and Modeling Research Program ERDC/GSL TR-09-8 May 2009 Enhanced Vehicle Dynamics...Module Daniel C. Creighton, George B. McKinley, and Randolph A. Jones Geotechnical and Structures Laboratory U.S. Army Engineer Research and

  13. Integrated Vehicle Health Management for the 2nd Generation RLV Program

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    2000-01-01

    This viewgraph presentation gives an overview of the Integrated Vehicle Health Management (IVHM) for Second Generation Reusable Launch Vehicle (RLV) program, including details on the second and third RLV programs, IVHM activity at Kennedy Space Center, the NASA X-37 IVHM flight experiment, propulsion and power IVHM, IVHM technologies at the Jet Propulsion Laboratory, structures IVHM for third generation RLVs, and IVHM systems engineering and integration.

  14. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developedmore » in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.« less

  15. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter Hill; Michael Penev

    2014-08-01

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  16. KSC-2009-1334

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane begins lifting a 100-foot fiberglass lightning mast to place it on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  17. KSC-2009-1333

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane begins lifting a 100-foot fiberglass lightning mast to place it on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  18. KSC-2009-1331

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane lifts a 100-foot fiberglass lightning mast that will be placed on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  19. KSC-2009-1335

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane lifts a 100-foot fiberglass lightning mast alongside the 500-foot tower where it will be installed. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  20. KSC-2009-1338

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places a 100-foot fiberglass lightning mast on top of the 500-foot tower. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller

  1. KSC-2009-1332

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane holds a 100-foot fiberglass lightning mast that will be placed on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  2. KSC-2009-1337

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places a 100-foot fiberglass lightning mast on top of the 500-foot tower. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. Another tower is seen at right. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  3. DORCA computer program. Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Wray, S. T., Jr.

    1971-01-01

    The Dynamic Operational Requirements and Cost Analysis Program (DORCA) was written to provide a top level analysis tool for NASA. DORCA relies on a man-machine interaction to optimize results based on external criteria. DORCA relies heavily on outside sources to provide cost information and vehicle performance parameters as the program does not determine these quantities but rather uses them. Given data describing missions, vehicles, payloads, containers, space facilities, schedules, cost values and costing procedures, the program computes flight schedules, cargo manifests, vehicle fleet requirements, acquisition schedules and cost summaries. The program is designed to consider the Earth Orbit, Lunar, Interplanetary and Automated Satellite Programs. A general outline of the capabilities of the program are provided.

  4. Early Program Development

    NASA Image and Video Library

    1961-05-01

    This artist's concept illustrates the Module Nova concept - Solid C-3 Basis. From 1960 to 1962, the Marshall Space Flight Center considered the Nova launch vehicle as a means to achieve a marned lunar landing with a direct flight to the Moon. Various configurations of the vehicle were examined. The latest configuration was a five-stage vehicle using eight F-1 engines in the first stage. Although the program was canceled after NASA planners selected the lunar/orbital rendezvous mode, the proposed F-1 engine would eventually be used in the Apollo Program to propel the first stage of the Saturn V launch vehicle.

  5. Early Program Development

    NASA Image and Video Library

    1961-11-01

    This artist's concept illustrates the Module Nova concept - Solid C-3 Basis. From 1960 to 1962, the Marshall Space Flight Center considered the Nova launch vehicle as a means to achieve a marned lunar landing with a direct flight to the Moon. Various configurations of the vehicle were examined. The latest configuration was a five-stage vehicle using eight F-1 engines in the first stage. Although the program was canceled after NASA planners selected the lunar/orbital rendezvous mode, the proposed F-1 engine would eventually be used in the Apollo Program to propel the first stage of the Saturn V launch vehicle.

  6. Java-based Graphical User Interface for MAVERIC-II

    NASA Technical Reports Server (NTRS)

    Seo, Suk Jai

    2005-01-01

    A computer program entitled "Marshall Aerospace Vehicle Representation in C II, (MAVERIC-II)" is a vehicle flight simulation program written primarily in the C programming language. It is written by James W. McCarter at NASA/Marshall Space Flight Center. The goal of the MAVERIC-II development effort is to provide a simulation tool that facilitates the rapid development of high-fidelity flight simulations for launch, orbital, and reentry vehicles of any user-defined configuration for all phases of flight. MAVERIC-II has been found invaluable in performing flight simulations for various Space Transportation Systems. The flexibility provided by MAVERIC-II has allowed several different launch vehicles, including the Saturn V, a Space Launch Initiative Two-Stage-to-Orbit concept and a Shuttle-derived launch vehicle, to be simulated during ascent and portions of on-orbit flight in an extremely efficient manner. It was found that MAVERIC-II provided the high fidelity vehicle and flight environment models as well as the program modularity to allow efficient integration, modification and testing of advanced guidance and control algorithms. In addition to serving as an analysis tool for techno logy development, many researchers have found MAVERIC-II to be an efficient, powerful analysis tool that evaluates guidance, navigation, and control designs, vehicle robustness, and requirements. MAVERIC-II is currently designed to execute in a UNIX environment. The input to the program is composed of three segments: 1) the vehicle models such as propulsion, aerodynamics, and guidance, navigation, and control 2) the environment models such as atmosphere and gravity, and 3) a simulation framework which is responsible for executing the vehicle and environment models and propagating the vehicle s states forward in time and handling user input/output. MAVERIC users prepare data files for the above models and run the simulation program. They can see the output on screen and/or store in files and examine the output data later. Users can also view the output stored in output files by calling a plotting program such as gnuplot. A typical scenario of the use of MAVERIC consists of three-steps; editing existing input data files, running MAVERIC, and plotting output results.

  7. Postflight analysis for Delta Program Mission no. 113: COS-B Mission

    NASA Technical Reports Server (NTRS)

    1976-01-01

    On 8 August 1975, the COS-B spacecraft was launched successfully from the Western Test Range (Delta Program Mission No. 113). The launch vehicle was a three stage Extended Long Tank Delta DSV-3P-11B vehicle. Postflight analyses performed in connection with flight are presented. Vehicle trajectory, stage performance, vehicle reliability and the propulsion, guidance, flight control, electronics, mechanical and structural systems are evaluated.

  8. Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.

  9. Near-Term Electric Vehicle Program. Phase II: Mid-Term Summary Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-08-01

    The Near Term Electric Vehicle (NTEV) Program is a constituent elements of the overall national Electric and Hybrid Vehicle Program that is being implemented by the Department of Energy in accordance with the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. Phase II of the NTEV Program is focused on the detailed design and development, of complete electric integrated test vehicles that incorporate current and near-term technology, and meet specified DOE objectives. The activities described in this Mid-Term Summary Report are being carried out by two contractor teams. The prime contractors for these contractormore » teams are the General Electric Company and the Garrett Corporation. This report is divided into two discrete parts. Part 1 describes the progress of the General Electric team and Part 2 describes the progress of the Garrett team.« less

  10. The vehicle design evaluation program - A computer-aided design procedure for transport aircraft

    NASA Technical Reports Server (NTRS)

    Oman, B. H.; Kruse, G. S.; Schrader, O. E.

    1977-01-01

    The vehicle design evaluation program is described. This program is a computer-aided design procedure that provides a vehicle synthesis capability for vehicle sizing, external load analysis, structural analysis, and cost evaluation. The vehicle sizing subprogram provides geometry, weight, and balance data for aircraft using JP, hydrogen, or methane fuels. The structural synthesis subprogram uses a multistation analysis for aerodynamic surfaces and fuselages to develop theoretical weights and geometric dimensions. The parts definition subprogram uses the geometric data from the structural analysis and develops the predicted fabrication dimensions, parts material raw stock buy requirements, and predicted actual weights. The cost analysis subprogram uses detail part data in conjunction with standard hours, realization factors, labor rates, and material data to develop the manufacturing costs. The program is used to evaluate overall design effects on subsonic commercial type aircraft due to parameter variations.

  11. Advanced Durability and Damage Tolerance Design and Analysis Methods for Composite Structures: Lessons Learned from NASA Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.

    2003-01-01

    Aerospace vehicles are designed to be durable and damage tolerant. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. However, both durability and damage tolerance design methodologies must address the deleterious effects of changes in material properties and the initiation and growth of microstructural damage that may occur during the service lifetime of the vehicle. Durability and damage tolerance design and certification requirements are addressed for commercial transport aircraft and NASA manned spacecraft systems. The state-of-the-art in advanced design and analysis methods is illustrated by discussing the results of several recently completed NASA technology development programs. These programs include the NASA Advanced Subsonic Technology Program demonstrating technologies for large transport aircraft and the X-33 hypersonic test vehicle demonstrating technologies for a single-stage-to-orbit space launch vehicle.

  12. 28 CFR 29.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administration DEPARTMENT OF JUSTICE MOTOR VEHICLE THEFT PREVENTION ACT REGULATIONS § 29.1 Purpose. (a) The purpose of this part is to implement the Motor Vehicle Theft Prevention Act, 42 U.S.C. 14171, which... vehicle theft prevention program. The program will be implemented by states and localities, at their sole...

  13. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  14. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  15. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  16. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  17. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  18. 40 CFR 51.365 - Data collection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... test start time and the time final emission scores are determined; (6) Vehicle Identification Number... enforcement of an I/M program. The program shall gather test data on individual vehicles, as well as quality... equipment is required or those test procedures relying upon a vehicle's OBD system). (a) Test data. The goal...

  19. 40 CFR 86.1712-99 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year 1999 or 2000, the California engine family; (iv) Assembly plant; (v) Vehicle identification... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty...

  20. 40 CFR 86.1712-99 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... model year 1999 or 2000, the California engine family; (iv) Assembly plant; (v) Vehicle identification... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty...

  1. 40 CFR 51.365 - Data collection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... test start time and the time final emission scores are determined; (6) Vehicle Identification Number... enforcement of an I/M program. The program shall gather test data on individual vehicles, as well as quality... equipment is required or those test procedures relying upon a vehicle's OBD system). (a) Test data. The goal...

  2. 76 FR 2066 - Approval and Promulgation of Implementation Plans; Indiana; Removal of Vehicle Inspection and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... ozone maintenance plans. The Indiana Department of Environmental Management (IDEM) submitted this... Promulgation of Implementation Plans; Indiana; Removal of Vehicle Inspection and Maintenance Programs for Clark... to allow the State to discontinue the vehicle inspection and maintenance (I/M) program in Clark and...

  3. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines: State Commitments to National Low Emission Vehicle Program

    EPA Pesticide Factsheets

    The Environmental Protection Agency (EPA) is issuing a final rule representing the next step in establishing a voluntary nationwide program to make new cars significantly cleaner burning than today’s current cars.

  4. 75 FR 11915 - Chrysler, LLC, Sterling Heights Vehicle Test Center, Including On-Site Leased Workers From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-65,672] Chrysler, LLC, Sterling Heights Vehicle Test Center, Including On-Site Leased Workers From Caravan Knight Facilities Management LLC; Sterling Heights, MI; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance and Alternative Trade Adjustment...

  5. 75 FR 34182 - Notice of Intent To Prepare a Programmatic Environmental Assessment for Proposed Mobile Fueling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Mobile Fueling Operations, Nationwide AGENCY: Postal Service. ACTION: Notice of intent to prepare a...) for the use of mobile fueling contractors to fuel postal vehicles on-site at selected Postal Service... utilize mobile fueling contractors to fuel vehicles on site at selected postal facilities located...

  6. Building a QC Database of Meteorological Data From NASA KSC and the United States Air Force's Eastern Range

    NASA Technical Reports Server (NTRS)

    Brenton, James C.; Barbre, Robert E.; Orcutt, John M.; Decker, Ryan K.

    2018-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) has provided atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER is one of the most heavily instrumented sites in the United States measuring various atmospheric parameters on a continuous basis. An inherent challenge with the large databases that EV44 receives from the ER consists of ensuring erroneous data are removed from the databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments; however, no standard QC procedures for all databases currently exist resulting in QC databases that have inconsistencies in variables, methodologies, and periods of record. The goal of this activity is to use the previous efforts by EV44 to develop a standardized set of QC procedures from which to build flags within the meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC checks are described. The flagged data points will be plotted in a graphical user interface (GUI) as part of a manual confirmation that the flagged data do indeed need to be removed from the archive. As the rate of launches increases with additional launch vehicle programs, more emphasis is being placed to continually update and check weather databases for data quality before use in launch vehicle design and certification analyses.

  7. Marshall Space Flight Center Telescience Resource Kit

    NASA Technical Reports Server (NTRS)

    Wade, Gina

    2016-01-01

    Telescience Resource Kit (TReK) is a suite of software applications that can be used to monitor and control assets in space or on the ground. The Telescience Resource Kit was originally developed for the International Space Station program. Since then it has been used to support a variety of NASA programs and projects including the WB-57 Ascent Vehicle Experiment (WAVE) project, the Fast Affordable Science and Technology Satellite (FASTSAT) project, and the Constellation Program. The Payloads Operations Center (POC), also known as the Payload Operations Integration Center (POIC), provides the capability for payload users to operate their payloads at their home sites. In this environment, TReK provides local ground support system services and an interface to utilize remote services provided by the POC. TReK provides ground system services for local and remote payload user sites including International Partner sites, Telescience Support Centers, and U.S. Investigator sites in over 40 locations worldwide. General Capabilities: Support for various data interfaces such as User Datagram Protocol, Transmission Control Protocol, and Serial interfaces. Data Services - retrieve, process, record, playback, forward, and display data (ground based data or telemetry data). Command - create, modify, send, and track commands. Command Management - Configure one TReK system to serve as a command server/filter for other TReK systems. Database - databases are used to store telemetry and command definition information. Application Programming Interface (API) - ANSI C interface compatible with commercial products such as Visual C++, Visual Basic, LabVIEW, Borland C++, etc. The TReK API provides a bridge for users to develop software to access and extend TReK services. Environments - development, test, simulations, training, and flight. Includes standalone training simulators.

  8. Methylotroph cloning vehicle

    DOEpatents

    Hanson, R.S.; Allen, L.N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  9. Application of Terrestrial Environments in Orion Assessments

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E.

    2016-01-01

    This presentation summarizes the Marshall Space Flight Center Natural Environments Terrestrial and Planetary Environments (TPE) Team support to the NASA Orion space vehicle. The TPE utilizes meteorological data to assess the sensitivities of the vehicle due to the terrestrial environment. The Orion vehicle, part of the Multi-Purpose Crew Vehicle Program, is designed to carry astronauts beyond low-earth orbit and is currently undergoing a series of tests including Exploration Test Flight (EFT) - 1. The presentation describes examples of TPE support for vehicle design and several tests, as well as support for EFT-1 and planning for upcoming Exploration Missions while emphasizing the importance of accounting for the natural environment's impact to the vehicle early in the vehicle's program.

  10. Program to determine space vehicle response to wind turbulence

    NASA Technical Reports Server (NTRS)

    Wilkening, H. D.

    1972-01-01

    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  11. Integrated vehicle-based safety systems : first annual report

    DOT National Transportation Integrated Search

    2007-10-01

    The IVBSS (Integrated Vehicle-Based Safety Systems) program is a four-year, two phase cooperative research program being conducted by an industry team led by the University of Michigan Transportation Research Institute (UMTRI). The program began in N...

  12. Challenges of space medical operations and life sciences management

    NASA Technical Reports Server (NTRS)

    Haddad, S. G.

    1992-01-01

    The Kennedy Space Center (KSC) has been the premier launch and landing site for America's space program since the early 1960s. Visitors are cognizant of space vehicles, processing facilities and launch pads which are treasured national resources. However, most are unaware of the unique organization which supports launch and landing activities and manages the center's occupational medicine, environmental health, ecological and environmental monitoring functions, as well as human and plant research programs. Management of this multifaceted organization can be complex because funding its different functions comes from a number of sources. Additionally the diverse disciplines of personnel present a special challenge in maintaining professional competencies while assuring efficiency in cyclical operations. This article explains the organization's structure and reviews some of its accomplishments.

  13. KSC-2009-1562

    NASA Image and Video Library

    2009-02-12

    CAPE CANAVERAL, Fla. – The faint sunrise sky over NASA's Kennedy Space Center casts the newly erected lightning towers on Launch Pad 39B in silhouette. They surround the fixed and rotating service structures at center that have served the Space Shuttle Program. The new lightning protection system is being built for the Constellation Program and Ares/Orion launches. Each of the towers is 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller

  14. The Mission Assessment Post Processor (MAPP): A New Tool for Performance Evaluation of Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Williams, Jacob; Stewart, Shaun M.; Lee, David E.; Davis, Elizabeth C.; Condon, Gerald L.; Senent, Juan

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Constellation Program paves the way for a series of lunar missions leading to a sustained human presence on the Moon. The proposed mission design includes an Earth Departure Stage (EDS), a Crew Exploration Vehicle (Orion) and a lunar lander (Altair) which support the transfer to and from the lunar surface. This report addresses the design, development and implementation of a new mission scan tool called the Mission Assessment Post Processor (MAPP) and its use to provide insight into the integrated (i.e., EDS, Orion, and Altair based) mission cost as a function of various mission parameters and constraints. The Constellation architecture calls for semiannual launches to the Moon and will support a number of missions, beginning with 7-day sortie missions, culminating in a lunar outpost at a specified location. The operational lifetime of the Constellation Program can cover a period of decades over which the Earth-Moon geometry (particularly, the lunar inclination) will go through a complete cycle (i.e., the lunar nodal cycle lasting 18.6 years). This geometry variation, along with other parameters such as flight time, landing site location, and mission related constraints, affect the outbound (Earth to Moon) and inbound (Moon to Earth) translational performance cost. The mission designer must determine the ability of the vehicles to perform lunar missions as a function of this complex set of interdependent parameters. Trade-offs among these parameters provide essential insights for properly assessing the ability of a mission architecture to meet desired goals and objectives. These trades also aid in determining the overall usable propellant required for supporting nominal and off-nominal missions over the entire operational lifetime of the program, thus they support vehicle sizing.

  15. Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis

    USGS Publications Warehouse

    Xu, Wenzhao; Collingsworth, Paris D.; Bailey, Barbara; Carlson Mazur, Martha L.; Schaeffer, Jeff; Minsker, Barbara

    2017-01-01

    This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local hotspot and cluster analyses. These methods are implemented in an interactive Web application developed using the Shiny package in the R programming environment to support near-real time analysis along with 2- and 3-D visualizations. The approach is demonstrated using historical sampling data from an undulating vehicle deployed at three rivermouth sites in Lake Michigan during 2011. The normalized root-mean-square error (NRMSE) of the interpolation averages approximately 10% in 3-fold cross validation. The results show that the framework can be used to track river plume dynamics and provide insights on mixing, which could be related to wind and seiche events.

  16. KSC-2009-5929

    NASA Image and Video Library

    2009-10-27

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a crane lowers the third section of the tower for a new mobile launcher, or ML, for the Constellation Program into place atop the growing structure. Installation of the first section was on Sept. 24, and the second, on Oct. 15. The tower will have multiple platforms for personnel access and be approximately 345 feet tall. The launcher is being built at the mobile launcher park site area located north of Kennedy's Vehicle Assembly Building to support the Ares I rocket. The ML will provide a base to launch the Ares I, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. The base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  17. KSC-2009-6895

    NASA Image and Video Library

    2009-12-21

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the seventh tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, seems to hover above the ground as it is lifted by crane toward the launcher's growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-6893

    NASA Image and Video Library

    2009-12-21

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the seventh tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, is lifted above the heads of the workers monitoring its ascent to the top of the growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  19. KSC-2009-5928

    NASA Image and Video Library

    2009-10-27

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a crane lowers the third section of the tower for a new mobile launcher, or ML, for the Constellation Program toward the growing structure. Installation of the first section was on Sept. 24, and the second, on Oct. 15. The tower will have multiple platforms for personnel access and be approximately 345 feet tall. The launcher is being built at the mobile launcher park site area located north of Kennedy's Vehicle Assembly Building to support the Ares I rocket. The ML will provide a base to launch the Ares I, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. The base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  20. Wind models for the NSTS ascent trajectory biasing for wind load alleviation

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.; Batts, G. W.; Hill, C. K.

    1989-01-01

    New concepts are presented for aerospace vehicle ascent wind profile biasing. The purpose for wind biasing the ascent trajectory is to provide ascent wind loads relief and thus decrease the probability for launch delays due to wind loads exceeding critical limits. Wind biasing trajectories to the profile of monthly mean winds have been widely used for this purpose. The wind profile models presented give additional alternatives for wind biased trajectories. They are derived from the properties of the bivariate normal probability function using the available wind statistical parameters for the launch site. The analytical expressions are presented to permit generalizations. Specific examples are given to illustrate the procedures. The wind profile models can be used to establish the ascent trajectory steering commands to guide the vehicle through the first stage. For the National Space Transportation System (NSTS) program these steering commands are called I-loads.

  1. Lunar Flight Study Series: Volume 8. Earth-Moon Transit Studies Based on Ephemeris Data and Using Best Available Computer Program. Part 3: Analysis of Some Lunar Landing Site Problems Utilizing Two Fundamental Principles

    NASA Technical Reports Server (NTRS)

    Tucker, W. B.; Hooper, H. L.

    1963-01-01

    This report presents two fundamental properties of lunar trajectories and makes use of these properties to solve various lunar landing site problems. Not only are various problems treated and solved but the properties and methods are established for use in the solution of other problems. This report presents an analysis of lunar landing site problems utilizing the direct mission mode as well as the orbital mission mode. A particular landing site is then specified and different flight profiles are analyzed for getting an exploration vehicle to that landing site. Rendezvous compatible lunar orbits for various stay-times at the landing site are treated. Launch opportunities are discussed for establishing rendezvous compatible lunar orbits without powered plane changes. Then, the minimum required plane changes for rendezvous in the lunar orbit are discussed for launching from earth on any day. On days that afford rendezvous compatible opportunities, there are no powered plane change requirements in the operations from launch at AMR through the rendezvous in lunar orbit, after the stay at the lunar site.

  2. Hyper-X: Flight Validation of Hypersonic Airbreathing Technology

    NASA Technical Reports Server (NTRS)

    Rausch, Vincent L.; McClinton, Charles R.; Crawford, J. Larry

    1997-01-01

    This paper provides an overview of NASA's focused hypersonic technology program, i.e. the Hyper-X program. This program is designed to move hypersonic, air breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. This paper presents some history leading to the flight test program, research objectives, approach, schedule and status. Substantial experimental data base and concept validation have been completed. The program is concentrating on Mach 7 vehicle development, verification and validation in preparation for wind tunnel testing in 1998 and flight testing in 1999. It is also concentrating on finalization of the Mach 5 and 10 vehicle designs. Detailed evaluation of the Mach 7 vehicle at the flight conditions is nearing completion, and will provide a data base for validation of design methods once flight test data are available.

  3. The NASA Hyper-X Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delman C., Jr.; Reubush, Daivd E.; McClinton, Charles R.; Rausch, Vincent L.; Crawford, J. Larry

    1997-01-01

    This paper provides an overview of NASA's Hyper-X Program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an overview of the flight test program, research objectives, approach, schedule and status. Substantial experimental database and concept validation have been completed. The program is currently concentrating on the first, Mach 7, vehicle development, verification and validation in preparation for wind-tunnel testing in 1998 and flight testing in 1999. Parallel to this effort the Mach 5 and 10 vehicle designs are being finalized. Detailed analytical and experimental evaluation of the Mach 7 vehicle at the flight conditions is nearing completion, and will provide a database for validation of design methods once flight test data are available.

  4. In use performance of catalytic converters on properly maintained high mileage vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, M.A.; Larson, R.E.; Donahue, K.S.

    1986-01-01

    A test program to evaluate the performance of catalytic converters from fifty-six 1981 and 1982 model year high mileage properly maintained in-use vehicles (from 21 engine families) was performed by the Certification Division of the Office of Mobile Sources (EPA). The program is called the Catalyst Change Program. All program vehicles were screened for proper maintenance and for mileages that ranged from 35,000 to 60,000 miles. Among vehicles belonging to 21 high sales volume and high technology engine and emission control system designs tested, poor catalyst performance was determined to be a significant contributor to emissions failure of properly-maintained vehiclesmore » at or near their warranted useful life mileage.« less

  5. Algorithm for constructing the programmed motion of a bounding vehicle for the flight phase

    NASA Technical Reports Server (NTRS)

    Lapshin, V. V.

    1979-01-01

    The construction of the programmed motion of a multileg bounding vehicle in the flight was studied. An algorithm is given for solving the boundary value problem for constructing this programmed motion. If the motion is shown to be symmetrical, a simplified use of the algorithm can be applied. A method is proposed for nonimpact of the legs during lift-off of the vehicle, and for softness at touchdown. Tables are utilized to construct this programmed motion over a broad set of standard motion conditions.

  6. TAD- THEORETICAL AERODYNAMICS PROGRAM

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  7. Composite structural armor for combat vehicle applications

    NASA Technical Reports Server (NTRS)

    Haskell, William E., III; Alesi, A. L.; Parsons, G. R.

    1990-01-01

    Several projects that have demonstrated the advantages of using thick composite armor technology for structural applications in armored combat vehicles are discussed. The first involved composite cargo doors for the Marine Corps LVTP-7 amphibious landing vehicle. Another was a demonstration composite turret that offered a weight reduction of 15.5 percent. The advantages of this composite armor compared to metallic armors used for combat vehicle hull and turret applications are reduced weight at equal ballistic protection; reduced back armor spall; excellent corrosion resistance; reduced production costs by parts consolidation; and inherent thermal and acoustic insulative properties. Based on the encouraging results of these past programs, the Demonstration Composite Hull Program was started in September 1986. To demonstrate this composite armor technology, the Army's newest infantry fighting vehicle, the Bradley Fighting Vehicle (BFV), was selected as a model. A composite infantry fighting vehicle, designated the CIFV for this program, has been designed and fabricated and is currently undergoing a 6000 mile field endurance test. The CIFV demonstration vehicle uses the BFV engine, transmission, suspension, track and other equipment.

  8. Near-term hybrid vehicle program, phase 1. Appendix D: Sensitivity analysis resport

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Parametric analyses, using a hybrid vehicle synthesis and economics program (HYVELD) are described investigating the sensitivity of hybrid vehicle cost, fuel usage, utility, and marketability to changes in travel statistics, energy costs, vehicle lifetime and maintenance, owner use patterns, internal combustion engine (ICE) reference vehicle fuel economy, and drive-line component costs and type. The lowest initial cost of the hybrid vehicle would be $1200 to $1500 higher than that of the conventional vehicle. For nominal energy costs ($1.00/gal for gasoline and 4.2 cents/kWh for electricity), the ownership cost of the hybrid vehicle is projected to be 0.5 to 1.0 cents/mi less than the conventional ICE vehicle. To attain this ownership cost differential, the lifetime of the hybrid vehicle must be extended to 12 years and its maintenance cost reduced by 25 percent compared with the conventional vehicle. The ownership cost advantage of the hybrid vehicle increases rapidly as the price of fuel increases from $1 to $2/gal.

  9. Navy Omni-Directional Vehicle (ODV) development program

    NASA Technical Reports Server (NTRS)

    Mcgowen, Hillery

    1994-01-01

    The Omni-Directional Vehicle (ODV) development program sponsored by the Office of Naval Research at the Coastal Systems Station has investigated the application of ODV technology for use in the Navy shipboard environment. ODV technology as originally received by the Navy in the form of the Cadillac-Gage Side Mover Vehicle was applicable to the shipboard environment with the potential to overcome conditions of reduced traction, ship motion, decks heeled at high angles, obstacles, and confined spaces. Under the Navy program, ODV technology was investigated and a series of experimental vehicles were built and successfully tested under extremely demanding conditions. The ODV drive system has been found to be applicable to autonomous, remotely, or manually operated vehicles. Potential commercial applications include multi-directional forklift trucks, automatic guided vehicles employed in manufacturing environments, and remotely controlled platforms used in nuclear facilities or for hazardous waste clean up tasks.

  10. Navy Omni-Directional Vehicle (ODV) development program

    NASA Astrophysics Data System (ADS)

    McGowen, Hillery

    1994-02-01

    The Omni-Directional Vehicle (ODV) development program sponsored by the Office of Naval Research at the Coastal Systems Station has investigated the application of ODV technology for use in the Navy shipboard environment. ODV technology as originally received by the Navy in the form of the Cadillac-Gage Side Mover Vehicle was applicable to the shipboard environment with the potential to overcome conditions of reduced traction, ship motion, decks heeled at high angles, obstacles, and confined spaces. Under the Navy program, ODV technology was investigated and a series of experimental vehicles were built and successfully tested under extremely demanding conditions. The ODV drive system has been found to be applicable to autonomous, remotely, or manually operated vehicles. Potential commercial applications include multi-directional forklift trucks, automatic guided vehicles employed in manufacturing environments, and remotely controlled platforms used in nuclear facilities or for hazardous waste clean up tasks.

  11. User Data Package for Compressed Natural Gas (CNG) Vehicles for Navy Applications

    DTIC Science & Technology

    1991-04-01

    already available). GENERAL CONSIDERATIONS The advantages and disadvantages for implementing a CNG-fueled vehicle fleet at a specific site vary. However...at the user’s site , if a guaranteed minimum quantity of CNG will be purchased annually by the fleet operator. Utilities are also establishing special...at low pressure and compressed on- site , several additional charges must be added to the cost charged by the natural gas supplier (see Table 1). The

  12. A Concept of Operations for an Integrated Vehicle Health Assurance System

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Ross, Richard W.; Berger, David E.; Lekki, John D.; Mah, Robert W.; Perey, Danie F.; Schuet, Stefan R.; Simon, Donald L.; Smith, Stephen W.

    2013-01-01

    This document describes a Concept of Operations (ConOps) for an Integrated Vehicle Health Assurance System (IVHAS). This ConOps is associated with the Maintain Vehicle Safety (MVS) between Major Inspections Technical Challenge in the Vehicle Systems Safety Technologies (VSST) Project within NASA s Aviation Safety Program. In particular, this document seeks to describe an integrated system concept for vehicle health assurance that integrates ground-based inspection and repair information with in-flight measurement data for airframe, propulsion, and avionics subsystems. The MVS Technical Challenge intends to maintain vehicle safety between major inspections by developing and demonstrating new integrated health management and failure prevention technologies to assure the integrity of vehicle systems between major inspection intervals and maintain vehicle state awareness during flight. The approach provided by this ConOps is intended to help optimize technology selection and development, as well as allow the initial integration and demonstration of these subsystem technologies over the 5 year span of the VSST program, and serve as a guideline for developing IVHAS technologies under the Aviation Safety Program within the next 5 to 15 years. A long-term vision of IVHAS is provided to describe a basic roadmap for more intelligent and autonomous vehicle systems.

  13. Ground vehicle control at NIST: From teleoperation to autonomy

    NASA Technical Reports Server (NTRS)

    Murphy, Karl N.; Juberts, Maris; Legowik, Steven A.; Nashman, Marilyn; Schneiderman, Henry; Scott, Harry A.; Szabo, Sandor

    1994-01-01

    NIST is applying their Real-time Control System (RCS) methodology for control of ground vehicles for both the U.S. Army Researh Lab, as part of the DOD's Unmanned Ground Vehicles program, and for the Department of Transportation's Intelligent Vehicle/Highway Systems (IVHS) program. The actuated vehicle, a military HMMWV, has motors for steering, brake, throttle, etc. and sensors for the dashboard gauges. For military operations, the vehicle has two modes of operation: a teleoperation mode--where an operator remotely controls the vehicle over an RF communications network; and a semi-autonomous mode called retro-traverse--where the control system uses an inertial navigation system to steer the vehicle along a prerecorded path. For the IVHS work, intelligent vision processing elements replace the human teleoperator to achieve autonomous, visually guided road following.

  14. Electric and hybrid vehicles program

    NASA Astrophysics Data System (ADS)

    1990-04-01

    This thirteenth annual report on the implementation of the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (Public Law 94-413), referred to as the Act, complies with the reporting requirements established in section 14 of the Act. In addition to informing Congress of the progress and plans of the Department of Energy's Electric and Hybrid Vehicles Program, this report is intended to serve as a communication link between the Department and all of the public and private interests involved in making the program a success. During FY 1989, significant progress was made in this program. There has been continuing interest shown by both the automobile manufacturers and supply sectors of our economy in electric and hybrid vehicles. The three major domestic automobile manufacturers all are devoting some effort towards electric vehicles. Their participation includes cost-shared contracts with Department of Energy and the Electric Power Research Institute as well as independently funded activities. Research and development efforts in batteries and propulsion components continue to achieve significant progress in providing industry with technology that will result in vehicles that will be more economically competitive.

  15. Traffic signal preemption for emergency vehicles : a cross-cutting study : putting the "first" in "first response"

    DOT National Transportation Integrated Search

    2006-01-01

    This cross-cutting study identifies issues associated with emergency vehicle operations and emergency vehicle preemption. This study reports information gathered during a review of publications and site visits to three jurisdictions operating emergen...

  16. 49 CFR 325.71 - Scope of the rules in this subpart.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the sound level generated by a motor vehicle, as displayed on a sound level measurement system, during the measurement of the motor vehicle's sound level emissions at a test site which is not a standard site. (b) The purpose of adding or subtracting a correction factor is to equate the sound level reading...

  17. 49 CFR 325.71 - Scope of the rules in this subpart.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the sound level generated by a motor vehicle, as displayed on a sound level measurement system, during the measurement of the motor vehicle's sound level emissions at a test site which is not a standard site. (b) The purpose of adding or subtracting a correction factor is to equate the sound level reading...

  18. Satellite Power System (SPS) concept definition study (exhibit C)

    NASA Technical Reports Server (NTRS)

    Haley, G. M.

    1979-01-01

    The major outputs of the study are the constructability studies which resulted in the definition of the concepts for satellite, rectenna, and satellite construction base construction. Transportation analyses resulted in definition of heavy-lift launch vehicle, electric orbit transfer vehicle, personnel orbit transfer vehicle, and intra-orbit transfer vehicle as well as overall operations related to transportation systems. The experiment/verification program definition resulted in the definition of elements for the Ground-Based Experimental Research and Key Technology plans. These studies also resulted in conceptual approaches for early space technology verification. The cost analysis defined the overall program and cost data for all program elements and phases.

  19. A teleoperated system for remote site characterization

    NASA Technical Reports Server (NTRS)

    Sandness, Gerald A.; Richardson, Bradley S.; Pence, Jon

    1994-01-01

    The detection and characterization of buried objects and materials is an important step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. By performing these tasks with remotely controlled sensors, it is possible to obtain improved data quality and consistency as well as enhanced safety for on-site workers. Therefore, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by a radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS).

  20. Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming

    PubMed Central

    Schmid, Verena

    2012-01-01

    Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests’ site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions. PMID:25540476

  1. Commercial Vehicle Driving. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This guide identifies considerations in the organization, operation, and evaluation of secondary and postsecondary vocational education programs. It contains both a vocational program guide and Career Merit Achievement Plan (Career MAP) for commercial vehicle driving. The guide contains the following sections: occupational description; program…

  2. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less

  3. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less

  4. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less

  5. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less

  6. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for themore » Vehicle Technologies Program of the U.S. Department of Energy.« less

  7. Field Experiments using Telepresence and Virtual Reality to Control Remote Vehicles: Application to Mars Rover Missions

    NASA Technical Reports Server (NTRS)

    Stoker, Carol

    1994-01-01

    This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary geologists participated in the mission simulation. The scientific goal of the science mission was to determine what could be learned about the geologic context of the site using the capabilities of imaging and mobility provided by the Marsokhod system in these two modes of operation. I will discuss the lessons learned from these experiments in terms of the strategy for performing Mars surface exploration using rovers. This research is supported by the Solar System Exploration Exobiology, Geology, and Advanced Technology programs.

  8. Skin blood flow responses to the iontophoresis of acetylcholine and sodium nitroprusside in man: possible mechanisms.

    PubMed

    Morris, S J; Shore, A C

    1996-10-15

    1. The mechanisms involved in the human skin blood flow responses to iontophoretic application of acetylcholine (ACH; delivered using an anodal charge) or sodium nitroprusside (SNP; administered with a cathodal charge) are unclear. The aims of this study were to investigate possible contributions of prostaglandin production to the increase in skin blood flow induced following the iontophoresis of ACh and to investigate possible contributions from local sensory nerves to the perfusion responses induced by ACh, SNP and their vehicles. 2. The contribution of prostaglandins to the ACh response was determined in a randomized double-blind study of eight healthy subjects, who were studied on two occasions. Basal responses to ACh were measured before the oral administration of 600 mg soluble aspirin in diluted orange juice (1 occasion or orange juice (1 occasion) and again 30 min after the drink. The contribution of local sensory nerve activation to the responses to ACh and ACh vehicle (8 subjects) and to SNP and SNP vehicle (7 subjects) was assessed. EMLA (5%) (a eutectic mixture of lignocaine and prilocaine) and placebo cream were applied to two separate areas on the forearm in a double-blind randomized manner 2 h before drug responses were measured. In all studies the skin microcirculation responses to iontophoretically applied drug vehicle (1 site) and drug (2 sites) were recorded by laser Doppler perfusion imaging. 3. The increase in forearm skin perfusion (P < 0.001) in response to the iontophoresis of ACh minus the response to ACh vehicle was not significantly different following placebo or aspirin administration. The increase in forearm skin red blood cell flux (P < 0.001) in response to the iontophoresis of ACh minus the response to ACh vehicle was not significantly different at the placebo-compared with the EMLA-treated site. THe small increase in perfusion (P < 0.001) in response to the iontophoresis of ACh vehicle was significantly inhibited at the EMLA-compared with the placebo-treated site (P < 0.05). The marked increase in perfusion (P < 0.001) in response to the iontophoresis of SNP vehicle was significantly inhibited at the EMLA-compared with the placebo-treated site (P < 0.01). 4. These data suggest that in healthy volunteers: (1) mechanisms other than prostaglandin production and local sensory nerve activation may be involved in the increase in skin perfusion observed following the iontophoretic application of ACh; and (2) stimulation of local sensory nerves may be responsible for the increase in tissue perfusion observed following the iontophoretic application of either ACh vehicle or SNP vehicle.

  9. Work vehicle warning lights : color options and effectiveness.

    DOT National Transportation Integrated Search

    2015-09-01

    KTC reviewed existing regulations, guidance, and practices to assess the Kentucky Transportation Cabinets warning : lights program on highway work vehicles. The Kentucky Revised Statutes categorizes KYTC vehicles as public safety : vehicles ...

  10. Vehicle Technologies Program Awards and Patents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-12-13

    Award-winning technologies and processes are hallmarks of the programs funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, and industrial partners. Awards, patents, and other recognition validate the products of research undertaken as part of the Vehicle Technologies Program.

  11. Frequency Domain Computer Programs for Prediction and Analysis of Rail Vehicle Dynamics : Volume 1. Technical Report

    DOT National Transportation Integrated Search

    1975-12-01

    Frequency domain computer programs developed or acquired by TSC for the analysis of rail vehicle dynamics are described in two volumes. Volume I defines the general analytical capabilities required for computer programs applicable to single rail vehi...

  12. Literature and best practices scan : Vehicle Inspection and Maintenance (I/M) Programs

    DOT National Transportation Integrated Search

    2002-06-01

    The state of Wisconsin operates one of the nation's most effective inspection/maintenance (I/M) programs. In Wisconsin's I/M program, vehicles registered in the Milwaukee metropolitan area are subjected to a transient emission test using the IM240 te...

  13. 2009 DOE Vehicle Technologies Program Annual Merit Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2009-10-01

    Annual Merit Review and Peer Evaluation Meeting to review the FY2008 accomplishments and FY2009 plans for the Vehicle Technologies Program, and provide an opportunity for industry, government, and academic to give inputs to DOE on the Program with a structured and formal methodology.

  14. Fact Sheet: Protection of the Stratospheric Ozone: New Substitute in the Motor Vehicle Air Conditioning Sector under the Significant New Alternatives Policy (SNAP) Program

    EPA Pesticide Factsheets

    Under the Significant New Alternatives Policy (SNAP) program, EPA is listing HFO-1234yf as an acceptable substitute for ozone depleting substances (ODS) in motor vehicle air conditioning (MVAC) systems in new cars and other light duty-vehicles and is speci

  15. Training Program for Operation of Emergency Vehicles. Trainee Study Guide.

    ERIC Educational Resources Information Center

    INNOVATRIX, Inc., Ingomar, PA.

    A two-part trainee study guide for use in the classroom phase of the Emergency Vehicle Operation (EVO) training program is provided. Part 1, to be taken by all trainees, contains seven units organized into various subunits and includes the following: (1) introduction to the course; (2) some legal aspects of emergency vehicle operation (state…

  16. Manned Orbital Transfer Vehicle (MOTV). Volume 3: Program requirements documents

    NASA Technical Reports Server (NTRS)

    Boyland, R. E.; Sherman, S. W.; Morfin, H. W.

    1979-01-01

    The requirements for geosynchronous orbit capability using the manned orbit transfer vehicle (MOTV) are defined. The program requirements, the mission requirements, and the system and subsystem requirements for the MOTV are discussed. The mission requirements include a geosynchronous Earth orbit vehicle for the construction, servicing, repair and operation of communications, solar power, and Earth observation satellites.

  17. 40 CFR 51.351 - Enhanced I/M performance standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicles. (10) Stringency. A 20% emission test failure rate among pre-1981 model year vehicles. (11) Waiver... 2001 and newer vehicles. (10) Stringency. A 20% emission test failure rate among pre-1981 model year... which will be achieved by the I/M program design in the SIP to those of the model program described in...

  18. 40 CFR 51.351 - Enhanced I/M performance standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vehicles. (10) Stringency. A 20% emission test failure rate among pre-1981 model year vehicles. (11) Waiver... 2001 and newer vehicles. (10) Stringency. A 20% emission test failure rate among pre-1981 model year... which will be achieved by the I/M program design in the SIP to those of the model program described in...

  19. 40 CFR 51.351 - Enhanced I/M performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicles. (10) Stringency. A 20% emission test failure rate among pre-1981 model year vehicles. (11) Waiver... 2001 and newer vehicles. (10) Stringency. A 20% emission test failure rate among pre-1981 model year... which will be achieved by the I/M program design in the SIP to those of the model program described in...

  20. 40 CFR 51.351 - Enhanced I/M performance standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vehicles. (10) Stringency. A 20% emission test failure rate among pre-1981 model year vehicles. (11) Waiver... 2001 and newer vehicles. (10) Stringency. A 20% emission test failure rate among pre-1981 model year... which will be achieved by the I/M program design in the SIP to those of the model program described in...

Top