Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure
NASA Technical Reports Server (NTRS)
Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew
2004-01-01
This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.
NASA Technical Reports Server (NTRS)
Kahn, Jon B. (Inventor)
1990-01-01
A mechanism for the docking of a space vehicle to a space station where a connection for transfer of personnel and equipment is desired. The invention comprises an active docking structure on a space vehicle 10 and a passive docking structure on a station 11. The passive structure includes a docking ring 50 mounted on a tunnel structure 35 fixed to the space station. The active structure including a docking ring 18 carried by actuator-attenuator devices 20, each attached at one end to the ring 18 and at its other end in the vehicle's payload bay 12. The devices 20 respond to command signals for moving the docking ring 18 between a stowed position in the space vehicle to a deployed position suitable for engagement with the docking ring 50. The devices 20 comprise means responsive to signals of sensed loadings to absorb impact energy and retraction means for drawing the coupled space vehicle and station into final docked configuration and moving the tunnel structure to a berthed position in the space vehicle 10. Latches 60 couple the space vehicle and space station upon contact of docking rings 18 and 50 and latches 41-48 establish a structural tie between the spacecraft when retracted.
General aviation components. [performance and capabilities of general aviation aircraft
NASA Technical Reports Server (NTRS)
1975-01-01
An overview is presented of selected aviation vehicles. The capabilities and performance of these vehicles are first presented, followed by a discussion of the aerodynamics, structures and materials, propulsion systems, noise, and configurations of fixed-wing aircraft. Finally the discussion focuses on the history, status, and future of attempts to provide vehicles capable of short-field operations.
DOT National Transportation Integrated Search
1975-11-01
The crashworthiness of existing urban rail vehicles (passenger cars) and the feasibility of improvements in this area were investigated. Both rail-car structural configurations and impact absorption devices were studied. This final report issued unde...
A structural survey of classes of vehicles for crashworthiness : final report.
DOT National Transportation Integrated Search
1978-02-01
This document reviews three phases of a study conducted to evaluate and improve the crashworthiness of passenger carrying vehicles in intercity service. Phase I surveyed the accident data over a period 1966 to 1973 and identified those areas responsi...
NASA Technical Reports Server (NTRS)
Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.
2011-01-01
This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.
NASA Technical Reports Server (NTRS)
McCurry, J. B.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. The basic period of performance of the TA-2 contract was from May 1992 through May 1993. No-cost extensions were exercised on the contract from June 1993 through July 1995. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 3, provides a work breakdown structure dictionary, user's guide for the parametric life cycle cost estimation tool, and final report developed by ECON, Inc., under subcontract to Lockheed Martin on TA-2 for the analysis of heavy lift launch vehicle concepts.
A study of space shuttle structural integrity test and assessment. Part 1
NASA Technical Reports Server (NTRS)
Anderson, R. E.; Poe, R. G.
1972-01-01
The ultrasonics technique for assessing the structural integrity of the primary surface of the space shuttle vehicles is discussed and evaluated. Analysis was made of transducers, transducer coupling test structure fabrication, flaws, and ultrasonic testing. Graphs of microphone response curves from the initial noise tests, accelerometer response curves from the final noise tests, and microphone curves from the final noise tests are included along with a glossary, bibliography, and results.
1990-11-01
control and including final recovery for a wide range of space vehicles from tethered satellite systems and flexible space structures to the space plane...flight mechanics, members from the Fluid Dynamics Panel, the Guidance and Control Panel, the Propulsion and Energetics Panel and the Structures and... Structures and Materials which should be overcome for a successful realization of a human Space Transportation System in the 21st century. He
NASA Astrophysics Data System (ADS)
Cahyono, Sukmaji Indro; Widodo, Angit; Anwar, Miftahul; Diharjo, Kuncoro; Triyono, Teguh; Hapid, A.; Kaleg, S.
2016-03-01
The carbon fiber reinforced plastic (CFRP) composite is relative high cost material in current manufacturing process of electric vehicle body structure. Sandwich panels consisting polypropylene (PP) honeycomb core with hybrid carbon-glass fiber composite skin were investigated. The aim of present paper was evaluate the flexural properties and bending rigidity of various volume fraction carbon-glass fiber composite skins with the honeycomb core. The flexural properties and cost of panels were compared to the reported values of solid hybrid Carbon/Glass FRP used for the frame body structure of electric vehicle. The finite element model of represented sandwich panel was established to characterize the flexural properties of material using homogenization technique. Finally, simplified model was employed to crashworthiness analysis for engine hood of the body electric vehicle structure. The good cost-electiveness of honeycomb core with hybrid carbon-glass fiber skin has the potential to be used as a light-weight alternative material in body electric vehicle fabricated.
Wheeled and Tracked Vehicle Endurance Testing
2014-10-02
Vehicle (ATV) 10 10 50 30 Fire Trucks - Crash and Rescue, Brush, Structural 49/56/50 22/16/50 - 29/28/0 a Wheeled Combat 30 40 15 15 Roboticb - 30 50... Wheeled Light W-M = Wheeled Medium W-H = Wheeled Heavy LM-TT = Light/Medium Truck H-TT = Heavy Truck Tractor/Trailer M = Motorcycle FT = Fire ...TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 02-2-506A Wheeled and Tracked Vehicle Endurance
Vehicle security encryption based on unlicensed encryption
NASA Astrophysics Data System (ADS)
Huang, Haomin; Song, Jing; Xu, Zhijia; Ding, Xiaoke; Deng, Wei
2018-03-01
The current vehicle key is easy to be destroyed and damage, proposing the use of elliptical encryption algorithm is improving the reliability of vehicle security system. Based on the encryption rules of elliptic curve, the chip's framework and hardware structure are designed, then the chip calculation process simulation has been analyzed by software. The simulation has been achieved the expected target. Finally, some issues pointed out in the data calculation about the chip's storage control and other modules.
Aerospace Vehicle Design, Spacecraft Section. Final Project Reports. Volume 2; Project Groups 6-8
NASA Technical Reports Server (NTRS)
1989-01-01
Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedam and provide emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing. Special attention is given to spacecraft communications.
Development history of the Hybrid Test Vehicle
NASA Technical Reports Server (NTRS)
Trummel, M. C.; Burke, A. F.
1983-01-01
Phase I of a joint Department of Energy/Jet Propulsion Laboratory Program undertook the development of the Hybrid Test Vehicle (HTV), which has subsequently progressed through design, fabrication, and testing and evaluation phases. Attention is presently given to the design and test experience gained during the HTV development program, and a discussion is presented of the design features and performance capabilities of the various 'mule' vehicles, devoted to the separate development of engine microprocessor control, vehicle structure, and mechanical components, whose elements were incorporated into the final HTV design. Computer projections of the HTV's performance are given.
A Discussion of Aerodynamic Control Effectors (ACEs) for Unmanned Air Vehicles (UAVs)
NASA Technical Reports Server (NTRS)
Wood, Richard M.
2002-01-01
A Reynolds number based, unmanned air vehicle classification structure has been developed which identifies four classes of unmanned air vehicle concepts. The four unmanned air vehicle (UAV) classes are; Micro UAV, Meso UAV, Macro UAV, and Mega UAV. In a similar fashion a labeling scheme for aerodynamic control effectors (ACE) was developed and eleven types of ACE concepts were identified. These eleven types of ACEs were laid out in a five (5) layer scheme. The final section of the paper correlated the various ACE concepts to the four UAV classes and ACE recommendations are offered for future design activities.
NASA Astrophysics Data System (ADS)
Kassem, M.; Soize, C.; Gagliardini, L.
2011-02-01
In a recent work [ Journal of Sound and Vibration 323 (2009) 849-863] the authors presented an energy-density field approach for the vibroacoustic analysis of complex structures in the low and medium frequency ranges. In this approach, a local vibroacoustic energy model as well as a simplification of this model were constructed. In this paper, firstly an extension of the previous theory is performed in order to include the case of general input forces and secondly, a structural partitioning methodology is presented along with a set of tools used for the construction of a partitioning. Finally, an application is presented for an automotive vehicle.
The Aurora space launcher concept
NASA Astrophysics Data System (ADS)
Kopp, Alexander; Stappert, Sven; Mattsson, David; Olofsson, Kurt; Marklund, Erik; Kurth, Guido; Mooij, Erwin; Roorda, Evelyne
2017-11-01
This paper gives an overview about the Aurora reusable space launcher concept study that was initiated in late-2015/early-2016. Within the Aurora study, several spaceplane-like vehicle configurations with different geometries, propulsion systems and mission profiles will be designed, investigated and evaluated with respect to their technical and economic feasibility. The first part of this paper will discuss the study logic and the current status of the Aurora studies and introduces the first vehicle configurations and their system design status. As the identification of highly efficient structural designs is of particular interest for Aurora, the structural design and analysis approach will be discussed in higher level of detail. A special design feature of the Aurora vehicle configurations is the utilization of the novel thin-ply composite material technology for structural mass reductions. Therefore, the second part of this paper will briefly discuss this technology and investigate the application and potential mass savings on vehicle level within simplified structural analysis studies. The results indicate that significant mass savings could be possible. Finally, an outlook on the next steps is provided.
The Aurora space launcher concept
NASA Astrophysics Data System (ADS)
Kopp, Alexander; Stappert, Sven; Mattsson, David; Olofsson, Kurt; Marklund, Erik; Kurth, Guido; Mooij, Erwin; Roorda, Evelyne
2018-06-01
This paper gives an overview about the Aurora reusable space launcher concept study that was initiated in late-2015/early-2016. Within the Aurora study, several spaceplane-like vehicle configurations with different geometries, propulsion systems and mission profiles will be designed, investigated and evaluated with respect to their technical and economic feasibility. The first part of this paper will discuss the study logic and the current status of the Aurora studies and introduces the first vehicle configurations and their system design status. As the identification of highly efficient structural designs is of particular interest for Aurora, the structural design and analysis approach will be discussed in higher level of detail. A special design feature of the Aurora vehicle configurations is the utilization of the novel thin-ply composite material technology for structural mass reductions. Therefore, the second part of this paper will briefly discuss this technology and investigate the application and potential mass savings on vehicle level within simplified structural analysis studies. The results indicate that significant mass savings could be possible. Finally, an outlook on the next steps is provided.
DOT National Transportation Integrated Search
2016-07-01
In Arizona, vehicle collisions with elk are costly and can be deadly. Dedicated wildlife crossing structures have proven effective for : elk elsewhere in Arizona. Planned highway reconstruction for Interstate 17 (I17) included such wildlife crossi...
Future Launch Vehicle Structures - Expendable and Reusable Elements
NASA Astrophysics Data System (ADS)
Obersteiner, M. H.; Borriello, G.
2002-01-01
Further evolution of existing expendable launch vehicles will be an obvious element influencing the future of space transportation. Besides this reusability might be the change with highest potential for essential improvement. The expected cost reduction and finally contributing to this, the improvement of reliability including safe mission abort capability are driving this idea. Although there are ideas of semi-reusable launch vehicles, typically two stages vehicles - reusable first stage or booster(s) and expendable second or upper stage - it should be kept in mind that the benefit of reusability will only overwhelm if there is a big enough share influencing the cost calculation. Today there is the understanding that additional technology preparation and verification will be necessary to master reusability and get enough benefits compared with existing launch vehicles. This understanding is based on several technology and system concepts preparation and verification programmes mainly done in the US but partially also in Europe and Japan. The major areas of necessary further activities are: - System concepts including business plan considerations - Sub-system or component technologies refinement - System design and operation know-how and capabilities - Verification and demonstration oriented towards future mission mastering: One of the most important aspects for the creation of those coming programmes and activities will be the iterative process of requirements definition derived from concepts analyses including economical considerations and the results achieved and verified within technology and verification programmes. It is the intention of this paper to provide major trends for those requirements focused on future launch vehicles structures. This will include the aspects of requirements only valid for reusable launch vehicles and those common for expendable, semi-reusable and reusable launch vehicles. Structures and materials is and will be one of the important technology areas to be improved. This includes: - Primary structures - Thermal protection systems (for high and low temperatures) - Hot structures (leading edges, engine cowling, ...) - Tanks (for various propellants and fluids, cryo, ...) Requirements to be considered are including materials properties and a variety of loads definition - static and dynamic. Based on existing knowledge and experience for expendable LV (Ariane, ...) and aircraft there is the need to established a combined understanding to provide the basis for an efficient RLV design. Health monitoring will support the cost efficient operation of future reusable structures, but will also need a sound understanding of loads and failure mechanisms as basis. Risk mitigation will ask for several steps of demonstration towards a cost efficient RLV (structures) operation. Typically this has or will start with basic technology, to be evolved to components demonstration (TPS, tanks, ...) and finally to result in the demonstration of the cost efficient reuse operation. This paper will also include a programmatic logic concerning future LV structures demonstration.
Liu, Mengying; Sun, Peihua
2014-01-01
A typical model of hypersonic vehicle has the complicated dynamics such as the unstable states, the nonminimum phases, and the strong coupling input-output relations. As a result, designing a robust stabilization controller is essential to implement the anticipated tasks. This paper presents a robust stabilization controller based on the guardian maps theory for hypersonic vehicle. First, the guardian maps theories are provided to explain the constraint relations between the open subsets of complex plane and the eigenvalues of the state matrix of closed-loop control system. Then, a general control structure in relation to the guardian maps theories is proposed to achieve the respected design demands. Furthermore, the robust stabilization control law depending on the given general control structure is designed for the longitudinal model of hypersonic vehicle. Finally, a simulation example is provided to verify the effectiveness of the proposed methods. PMID:24795535
Liu, Yanbin; Liu, Mengying; Sun, Peihua
2014-01-01
A typical model of hypersonic vehicle has the complicated dynamics such as the unstable states, the nonminimum phases, and the strong coupling input-output relations. As a result, designing a robust stabilization controller is essential to implement the anticipated tasks. This paper presents a robust stabilization controller based on the guardian maps theory for hypersonic vehicle. First, the guardian maps theories are provided to explain the constraint relations between the open subsets of complex plane and the eigenvalues of the state matrix of closed-loop control system. Then, a general control structure in relation to the guardian maps theories is proposed to achieve the respected design demands. Furthermore, the robust stabilization control law depending on the given general control structure is designed for the longitudinal model of hypersonic vehicle. Finally, a simulation example is provided to verify the effectiveness of the proposed methods.
75 FR 22532 - Federal Motor Vehicle Safety Standards; Cargo Carrying Capacity
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... That Can Be Added to a Vehicle After Final Vehicle Certification and Before First Retail Sale Without.... When weight is added between final vehicle certification and first retail sale, the load carrying... final vehicle certification and before first retail sale without triggering a requirement to re-label...
76 FR 17808 - Final Vehicle Safety Rulemaking and Research Priority Plan 2011-2013
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-31
... [Docket No. NHTSA-2009-0108] Final Vehicle Safety Rulemaking and Research Priority Plan 2011- 2013 AGENCY... availability. SUMMARY: This document announces the availability of the Final NHTSA Vehicle Safety and Fuel.... This Priority Plan is an update to the Final Vehicle Safety Rulemaking and Research Priority Plan 2009...
Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin
2013-01-01
Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles in low-carbon transport.
Full-Scale Passive Earth Entry Vehicle Landing Tests: Methods and Measurements
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Kellas, Sotiris
2018-01-01
During the summer of 2016, a series of drop tests were conducted on two passive earth entry vehicle (EEV) test articles at the Utah Test and Training Range (UTTR). The tests were conducted to evaluate the structural integrity of a realistic EEV vehicle under anticipated landing loads. The test vehicles were lifted to an altitude of approximately 400m via a helicopter and released via release hook into a predesignated 61 m landing zone. Onboard accelerometers were capable of measuring vehicle free flight and impact loads. High-speed cameras on the ground tracked the free-falling vehicles and data was used to calculate critical impact parameters during the final seconds of flight. Additional sets of high definition and ultra-high definition cameras were able to supplement the high-speed data by capturing the release and free flight of the test articles. Three tests were successfully completed and showed that the passive vehicle design was able to withstand the impact loads from nominal and off-nominal impacts at landing velocities of approximately 29 m/s. Two out of three test resulted in off-nominal impacts due to a combination of high winds at altitude and the method used to suspend the vehicle from the helicopter. Both the video and acceleration data captured is examined and discussed. Finally, recommendations for improved release and instrumentation methods are presented.
South Dakota ITS/CVO business plan : final business plan
DOT National Transportation Integrated Search
1998-01-18
This report defines an Intelligent Transportation Systems/Commercial Vehicle Operations (ITS/CVO) program for the State of South Dakota. Structured as a business plan, the document includes the following components: 1) description of the current CVO ...
Study on High Efficient Electric Vehicle Wireless Charging System
NASA Astrophysics Data System (ADS)
Chen, H. X.; Liu, Z. Z.; Zeng, H.; Qu, X. D.; Hou, Y. J.
2016-08-01
Electric and unmanned is a new trend in the development of automobile, cable charging pile can not meet the demand of unmanned electric vehicle. Wireless charging system for electric vehicle has a high level of automation, which can be realized by unmanned operation, and the wireless charging technology has been paid more and more attention. This paper first analyses the differences in S-S (series-series) and S-P (series-parallel) type resonant wireless power supply system, combined with the load characteristics of electric vehicle, S-S type resonant structure was used in this system. This paper analyses the coupling coefficient of several common coil structure changes with the moving distance of Maxwell Ansys software, the performance of disc type coil structure is better. Then the simulation model is established by Simulink toolbox in Matlab, to analyse the power and efficiency characteristics of the whole system. Finally, the experiment platform is set up to verify the feasibility of the whole system and optimize the system. Based on the theoretical and simulation analysis, the higher charging efficiency is obtained by optimizing the magnetic coupling mechanism.
NASA Technical Reports Server (NTRS)
Roche, Joseph M.
2002-01-01
Single-stage-to-orbit (SSTO) propulsion remains an elusive goal for launch vehicles. The physics of the problem is leading developers to a search for higher propulsion performance than is available with all-rocket power. Rocket-based combined cycle (RBCC) technology provides additional propulsion performance that may enable SSTO flight. Structural efficiency is also a major driving force in enabling SSTO flight. Increases in performance with RBCC propulsion are offset with the added size of the propulsion system. Geometrical considerations must be exploited to minimize the weight. Integration of the propulsion system with the vehicle must be carefully planned such that aeroperformance is not degraded and the air-breathing performance is enhanced. Consequently, the vehicle's structural architecture becomes one with the propulsion system architecture. Geometrical considerations applied to the integrated vehicle lead to low drag and high structural and volumetric efficiency. Sizing of the SSTO launch vehicle (GTX) is itself an elusive task. The weight of the vehicle depends strongly on the propellant required to meet the mission requirements. Changes in propellant requirements result in changes in the size of the vehicle, which in turn, affect the weight of the vehicle and change the propellant requirements. An iterative approach is necessary to size the vehicle to meet the flight requirements. GTX Sizer was developed to do exactly this. The governing geometry was built into a spreadsheet model along with scaling relationships. The scaling laws attempt to maintain structural integrity as the vehicle size is changed. Key aerodynamic relationships are maintained as the vehicle size is changed. The closed weight and center of gravity are displayed graphically on a plot of the synthesized vehicle. In addition, comprehensive tabular data of the subsystem weights and centers of gravity are generated. The model has been verified for accuracy with finite element analysis. The final trajectory was rerun using OTIS (Boeing Corporation's trajectory optimization software package), and the sizing output was incorporated into a solid model of the vehicle using PRO/Engineer computer-aided design software (Parametric Technology Corporation, Waltham, MA).
NASA Technical Reports Server (NTRS)
Bozajian, J. M.
1973-01-01
The requirements, trades, and design descriptions for the probe bus and orbiter spacecraft configurations, structure, thermal control, and harness are defined. Designs are developed for Thor/Delta and Atlas/Centaur launch vehicles with the latter selected as the final baseline. The major issues examined in achieving the baseline design are tabulated. The importance of spin axis orientation because of the effect on science experiments and earth communications is stressed.
Vehicle license plate recognition in dense fog based on improved atmospheric scattering model
NASA Astrophysics Data System (ADS)
Tang, Chunming; Lin, Jun; Chen, Chunkai; Dong, Yancheng
2018-04-01
An effective method based on improved atmospheric scattering model is proposed in this paper to handle the problem of the vehicle license plate location and recognition in dense fog. Dense fog detection is performed firstly by the top-hat transformation and the vertical edge detection, and the moving vehicle image is separated from the traffic video image. After the vehicle image is decomposed into two layers: structure and texture layers, the glow layer is separated from the structure layer to get the background layer. Followed by performing the mean-pooling and the bicubic interpolation algorithm, the atmospheric light map of the background layer can be predicted, meanwhile the transmission of the background layer is estimated through the grayed glow layer, whose gray value is altered by linear mapping. Then, according to the improved atmospheric scattering model, the final restored image can be obtained by fusing the restored background layer and the optimized texture layer. License plate location is performed secondly by a series of morphological operations, connected domain analysis and various validations. Characters extraction is achieved according to the projection. Finally, an offline trained pattern classifier of hybrid discriminative restricted boltzmann machines (HDRBM) is applied to recognize the characters. Experimental results on thorough data sets are reported to demonstrate that the proposed method can achieve high recognition accuracy and works robustly in the dense fog traffic environment during 24h or one day.
Robust on-off pulse control of flexible space vehicles
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi
1993-01-01
The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.
A review of design issues specific to hypersonic flight vehicles
NASA Astrophysics Data System (ADS)
Sziroczak, D.; Smith, H.
2016-07-01
This paper provides an overview of the current technical issues and challenges associated with the design of hypersonic vehicles. Two distinct classes of vehicles are reviewed; Hypersonic Transports and Space Launchers, their common features and differences are examined. After a brief historical overview, the paper takes a multi-disciplinary approach to these vehicles, discusses various design aspects, and technical challenges. Operational issues are explored, including mission profiles, current and predicted markets, in addition to environmental effects and human factors. Technological issues are also reviewed, focusing on the three major challenge areas associated with these vehicles: aerothermodynamics, propulsion, and structures. In addition, matters of reliability and maintainability are also presented. The paper also reviews the certification and flight testing of these vehicles from a global perspective. Finally the current stakeholders in the field of hypersonic flight are presented, summarizing the active programs and promising concepts.
Simulating an underwater vehicle self-correcting guidance system with Simulink
NASA Astrophysics Data System (ADS)
Fan, Hui; Zhang, Yu-Wen; Li, Wen-Zhe
2008-09-01
Underwater vehicles have already adopted self-correcting directional guidance algorithms based on multi-beam self-guidance systems, not waiting for research to determine the most effective algorithms. The main challenges facing research on these guidance systems have been effective modeling of the guidance algorithm and a means to analyze the simulation results. A simulation structure based on Simulink that dealt with both issues was proposed. Initially, a mathematical model of relative motion between the vehicle and the target was developed, which was then encapsulated as a subsystem. Next, steps for constructing a model of the self-correcting guidance algorithm based on the Stateflow module were examined in detail. Finally, a 3-D model of the vehicle and target was created in VRML, and by processing mathematical results, the model was shown moving in a visual environment. This process gives more intuitive results for analyzing the simulation. The results showed that the simulation structure performs well. The simulation program heavily used modularization and encapsulation, so has broad applicability to simulations of other dynamic systems.
Terminal Sliding Mode Tracking Controller Design for Automatic Guided Vehicle
NASA Astrophysics Data System (ADS)
Chen, Hongbin
2018-03-01
Based on sliding mode variable structure control theory, the path tracking problem of automatic guided vehicle is studied, proposed a controller design method based on the terminal sliding mode. First of all, through analyzing the characteristics of the automatic guided vehicle movement, the kinematics model is presented. Then to improve the traditional expression of terminal sliding mode, design a nonlinear sliding mode which the convergence speed is faster than the former, verified by theoretical analysis, the design of sliding mode is steady and fast convergence in the limited time. Finally combining Lyapunov method to design the tracking control law of automatic guided vehicle, the controller can make the automatic guided vehicle track the desired trajectory in the global sense as well as in finite time. The simulation results verify the correctness and effectiveness of the control law.
Wireless Sensor Needs in the Space Shuttle and CEV Structures Communities
NASA Technical Reports Server (NTRS)
James, George H., III
2007-01-01
This presentation will clarify some of the structural measurement needs of NASA's Space Shuttle and Crew Exploration Vehicles. Emerging technologies in wireless sensor systems can be of some advantage in both Programs. The presentation will address how wireless instrumentation has helped in the past and what has gone unmeasured on Shuttle due to various limitations. Finally, it will address the needs of the CEV program that can be met with reliable wireless systems, if modular avionics interfaces are provided to accommodate the usual evolving needs of an ambitious space vehicle development program. Examples of the advantages of flight data to support flight certification engineering analyses and of areas where add-on wireless instrumentation can be used will be shown. Without flight instrumentation, it is necessary to retain the conservative assumptions used in the design process. It will be shown how the lessons learned on Space Shuttle for wired and wireless structural measurements apply to the Orion Crew Exploration Vehicle (CEV), which is currently being designed.
Aeroacoustics of Space Vehicles
NASA Technical Reports Server (NTRS)
Panda, Jayanta
2014-01-01
While for airplanes the subject of aeroacoustics is associated with community noise, for space vehicles it is associated with vibro-acoustics and structural dynamics. Surface pressure fluctuations encountered during launch and travel through lower part of the atmosphere create intense vibro-acoustics environment for the payload, electronics, navigational equipment, and a large number of subsystems. All of these components have to be designed and tested for flight-certification. This presentation will cover all three major sources encountered in manned and unmanned space vehicles: launch acoustics, ascent acoustics and abort acoustics. Launch pads employ elaborate acoustic suppression systems to mitigate the ignition pressure waves and rocket plume generated noise during the early part of the liftoff. Recently we have used large microphone arrays to identify the noise sources during liftoff and found that the standard model by Eldred and Jones (NASA SP-8072) to be grossly inadequate. As the vehicle speeds up and reaches transonic speed in relatively denser part of the atmosphere, various shock waves and flow separation events create unsteady pressure fluctuations that can lead to high vibration environment, and occasional coupling with the structural modes, which may lead to buffet. Examples of wind tunnel tests and computational simulations to optimize the outer mold line to quantify and reduce the surface pressure fluctuations will be presented. Finally, a manned space vehicle needs to be designed for crew safety during malfunctioning of the primary rocket vehicle. This brings the subject of acoustic environment during abort. For NASAs Multi-Purpose Crew Vehicle (MPCV), abort will be performed by lighting rocket motors atop the crew module. The severe aeroacoustics environments during various abort scenarios were measured for the first time by using hot helium to simulate rocket plumes in the Ames unitary plan wind tunnels. Various considerations used for the helium simulation and the final confirmation from a flight test will be presented.
Structural design considerations for a Personnel Launch System
NASA Technical Reports Server (NTRS)
Bush, Lance B.; Lentz, Christopher A.; Robinson, James C.; Macconochie, Ian O.
1990-01-01
A vehicle capable of performing the transfer of eight people to and from the Space Station Freedom is currently in the conceptual/preliminary design stages at the NASA Langley Research Center. Structural definition of this Personnel Launch System (PLS) and the considerations leading to it are described. Issues such as cost, technology level, human factors, and maintainability are used as guidelines for the structural definition. A synergistic design technique involving aerodynamics, performance, mission, packaging, and weights and sizing analyses is utilized to evaluate the structural design. A closed-loop design is achieved when the mission requirements are met by each previously mentioned analysis for a particular vehicle weight. Although satisfactory, the structural concept presented herein is not to be treated as a final answer, but one promising solution. An examination of alternative designs and more detailed analyses can be undertaken in order to identify design inadequacies and more efficient approaches.
NASA Technical Reports Server (NTRS)
Scott, Elaine P.
1993-01-01
Thermal stress analyses are an important aspect in the development of aerospace vehicles such as the National Aero-Space Plane (NASP) and the High-Speed Civil Transport (HSCT) at NASA-LaRC. These analyses require knowledge of the temperature within the structures which consequently necessitates the need for thermal property data. The initial goal of this research effort was to develop a methodology for the estimation of thermal properties of aerospace structural materials at room temperature and to develop a procedure to optimize the estimation process. The estimation procedure was implemented utilizing a general purpose finite element code. In addition, an optimization procedure was developed and implemented to determine critical experimental parameters to optimize the estimation procedure. Finally, preliminary experiments were conducted at the Aircraft Structures Branch (ASB) laboratory.
NASA Astrophysics Data System (ADS)
Scott, Elaine P.
1993-12-01
Thermal stress analyses are an important aspect in the development of aerospace vehicles such as the National Aero-Space Plane (NASP) and the High-Speed Civil Transport (HSCT) at NASA-LaRC. These analyses require knowledge of the temperature within the structures which consequently necessitates the need for thermal property data. The initial goal of this research effort was to develop a methodology for the estimation of thermal properties of aerospace structural materials at room temperature and to develop a procedure to optimize the estimation process. The estimation procedure was implemented utilizing a general purpose finite element code. In addition, an optimization procedure was developed and implemented to determine critical experimental parameters to optimize the estimation procedure. Finally, preliminary experiments were conducted at the Aircraft Structures Branch (ASB) laboratory.
NASA Astrophysics Data System (ADS)
Robbins, Brian; Field, Rich; Grigoriu, Mircea; Jamison, Ryan; Mesh, Mikhail; Casper, Katya; Dechant, Lawrence
2016-11-01
During reentry, a hypersonic vehicle undergoes a period in which the flow about the vehicle transitions from laminar to turbulent flow. During this transitional phase, the flow is characterized by intermittent formations of localized turbulent behavior. These localized regions of turbulence are born at the onset of transition and grow as they move to the aft end of the flight vehicle. Throughout laminar-turbulent transition, the moving turbulent spots cause pressure fluctuations on the outer surface of the vehicle, which leads to the random vibration of the structure and its internal components. In light of this, it is of great interest to study the dynamical response of a flight vehicle undergoing transitional flow so that aircraft can be better designed to prevent structural failure. In this talk, we present a statistical model that calculates the birth, evolution, and pressure field of turbulent spots over a generic slender cone structure. We then illustrate that the model appropriately quantifies intermittency behavior and pressure loading by comparing the intermittency and root-mean-square pressure fluctuations produced by the model with theory and experiment. Finally, we present results pertaining to the structural response of a housing panel on the slender cone. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Damage Arresting Composites for Shaped Vehicles - Phase II Final Report
NASA Technical Reports Server (NTRS)
Velicki, Alex; Yovanof, Nicolette; Baraja, Jaime; Linton, Kim; Li, Victor; Hawley, Arthur; Thrash, Patrick; DeCoux, Steve; Pickell, Robert
2011-01-01
This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration. In addition to the analytical studies, a three specimen test program was also completed to assess the concept under axial tension loading, axial compression loading, and internal pressure loading.
Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles
DOT National Transportation Integrated Search
2016-12-14
The objectives of this project were to pilot test the use of an unmanned aerial vehicle (UAV) to gather stereo imagery of streambeds upstream of crossing structures, and develop a process of rapidly transmitting actionable information about potential...
Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview
NASA Technical Reports Server (NTRS)
Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil
2005-01-01
Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural integrity when exposed to a relevant dynamic pressure and aerodynamic stability of the inflatable system. Structural integrity and structural response of the inflatable will be verified with photogrammetric measurements of the back side of the aeroshell in flight. Aerodynamic stability as well as drag performance will be verified with on board inertial measurements and radar tracking from multiple ground radar stations. The experiment will yield valuable information about zero-g vacuum deployment dynamics of the flexible inflatable structure with both inertial and photographic measurements. In addition to demonstrating inflatable technology, IRVE will validate structural, aerothermal, and trajectory modeling techniques for the inflatable. Structural response determined from photogrammetrics will validate structural models, skin temperature measurements and additional in-depth temperature measurements will validate material thermal performance models, and on board inertial measurements along with radar tracking from multiple ground radar stations will validate trajectory simulation models.
Active pneumatic vibration isolation system using negative stiffness structures for a vehicle seat
NASA Astrophysics Data System (ADS)
Danh, Le Thanh; Ahn, Kyoung Kwan
2014-02-01
In this paper, an active pneumatic vibration isolation system using negative stiffness structures (NSS) for a vehicle seat in low excitation frequencies is proposed, which is named as an active system with NSS. Here, the negative stiffness structures (NSS) are used to minimize the vibratory attraction of a vehicle seat. Owing to the time-varying and nonlinear behavior of the proposed system, it is not easy to build an accurate dynamic for model-based controller design. Thus, an adaptive intelligent backstepping controller (AIBC) is designed to manage the system operation for high-isolation effectiveness. In addition, an auxiliary control effort is also introduced to eliminate the effect of the unpredictable perturbations. Moreover, a radial basis function neural network (RBFNN) model is utilized to estimate the optimal gain of the auxiliary control effort. Final control input and the adaptive law for updating coefficients of the approximate series can be obtained step by step using a suitable Lyapunov function. Afterward, the isolation performance of the proposed system is assessed experimentally. In addition, the effectiveness of the designed controller for the proposed system is also compared with that of the traditional backstepping controller (BC). The experimental results show that the isolation effectiveness of the proposed system is better than that of the active system without NSS. Furthermore, the undesirable chattering phenomenon in control effort is quite reduced by the estimation mechanism. Finally, some concluding remarks are given at the end of the paper.
On March 24, 1993 EPA finalized a new test procedure to measure evaporative emissions from motor vehicles. The amendments modify several of the test procedure’s tolerances, equipment specifications, and procedural steps.
Investigation of structure in the modular light pipe component for LED automotive lamp
NASA Astrophysics Data System (ADS)
Chen, Hsi-Chao; Zhou, Yang; Huang, Chien-Sheng; Jhong, Wan-Ling; Cheng, Bo-Wei; Jhang, Jhe-Ming
2014-09-01
Light-Emitting Diodes (LEDs) have the advantages of small length, long lifetime, fast response time (μs), low voltage, good mechanical properties and environmental protection. Furthermore, LEDs could replace the halogen lamps to avoid the mercury pollution and economize the use of energy. Therefore, the LEDs could instead of the traditional lamp in the future and became an important light source. The proposal of this study was to investigate the effects of the structure and length of the reflector component for a LED automotive lamp. The novel LED automotive lamp was assembled by several different modularization columnar. The optimized design of the different structure and the length to the reflector was simulated by software TracePro. The design result must met the vehicle regulation of United Nations Economic Commission for Europe (UNECE) such as ECE-R19 etc. The structure of the light pipe could be designed by two steps structure. Then constitute the proper structure and choose different power LED to meet the luminous intensity of the vehicle regulation. The simulation result shows the proper structure and length has the best total luminous flux and a high luminous efficiency for the system. Also, the stray light could meet the vehicle regulation of ECE R19. Finally, the experimental result of the selected structure and length of the light pipe could match the simulation result above 80%.
NASA Technical Reports Server (NTRS)
Mcgehee, C. R.
1986-01-01
A study was conducted under Drones for Aerodynamic and Structural Testing (DAST) program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities and load reductions are achieved.
NASA Astrophysics Data System (ADS)
Goodarzi, Avesta; Mohammadi, Masoud
2014-04-01
In this paper, vehicle stability control and fuel economy for a 4-wheel-drive hybrid vehicle are investigated. The integrated controller is designed within three layers. The first layer determines the total yaw moment and total lateral force made by using an optimal controller method to follow the desired dynamic behaviour of a vehicle. The second layer determines optimum tyre force distribution in order to optimise tyre usage and find out how the tyres should share longitudinal and lateral forces to achieve a target vehicle response under the assumption that all four wheels can be independently steered, driven, and braked. In the third layer, the active steering, wheel slip, and electrical motor torque controllers are designed. In the front axle, internal combustion engine (ICE) is coupled to an electric motor (EM). The control strategy has to determine the power distribution between ICE and EM to minimise fuel consumption and allowing the vehicle to be charge sustaining. Finally, simulations performed in MATLAB/SIMULINK environment show that the proposed structure could enhance the vehicle stability and fuel economy in different manoeuvres.
Urban e-Mobility - Challenges and potential solutions using the example of the "E3W" concept vehicle
NASA Astrophysics Data System (ADS)
Perterer, M.; Martin, P.; Lochner, H.
2014-05-01
Due to the increasing number of people in urban areas, there is a need for affordable individual transportation. Limited space in cities together with the need for a significant reduction of pollution will lead to new mobility concepts in the near future. The aim of these concepts is not replacing the car itself, but to supply an additional personal transportation solution with local zero emission. Therefore, electrical powered vehicle concepts may be used. Due to the limited energy density and high cost of current Li-ion batteries, a significant weight reduction of the vehicle could lead to acceptable range and cost. In order to develop an affordable urban concept, the requirements for this kind of vehicle also have to be adjusted in comparison to conventional cars. This concept, the so called "E3W", combines the advantages of a two-wheeler with those of a four-wheeler, resulting in a lightweight and compact vehicle. This concept accommodates space for two persons with luggage and guarantees a high level of safety including wind and weather protection. The overall measures of this vehicle are smaller than current compact cars and allow therefore better use in cities. In order to fulfill technical and commercial requirements, a load carrying, short fiber reinforced thermoplastic body structure is chosen, combining good weight specific mechanical properties and low production costs. This highly integrated body structure also provides the body cover all in one. Pultruded glass fiber reinforced plastic (GFRP) beams are used as the backbone for the vehicle by carrying the main loads, the front crash structure and the rear swingarm. Finally, two prototypes are built to investigate the driving behavior, proof the concept and the suitability for daily use.
77 FR 73039 - Notice of Issuance of Final Determination Concerning Vantage Electric Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... Determination Concerning Vantage Electric Vehicles AGENCY: U.S. Customs and Border Protection, Department of... of Vantage Vehicle electric trucks and vans. Based upon the facts presented, CBP has concluded in the final determination that the United States is the country of origin of the Vantage Vehicle EVX1000 and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
...-Road Vehicle Management Plan, Wrangell-St. Elias National Park and Preserve AGENCY: National Park... a Final Environmental Impact Statement (FEIS) on Off-Road Vehicle Management in the Nabesna District... preferred alternative and four action alternatives for management of off-road vehicles in the Nabesna...
76 FR 44829 - Federal Motor Vehicle Safety Standards; Air Brake Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
... [Docket No. NHTSA-2009-0175] RIN 2127-AK84 Federal Motor Vehicle Safety Standards; Air Brake Systems... final rule that amended the Federal motor vehicle safety standard for air brake systems by requiring... July 27, 2009, NHTSA published a final rule in the Federal Register amending Federal Motor Vehicle...
Vehicle Support Posts Installation onto Mobile Launcher
2017-05-25
At NASA's Kennedy Space Center in Florida, construction workers on the deck of the mobile launcher install the final four vehicle support posts. A total of eight support posts are being installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.
Vehicle Support Posts Installation onto Mobile Launcher
2017-05-25
At NASA's Kennedy Space Center in Florida, the final four vehicle support posts are being installed on the deck of the mobile launcher. A total of eight support posts are being installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.
Development tests of LOX/LH 2 tank for H-I launch vehicle
NASA Astrophysics Data System (ADS)
Takamatsu, H.; Imagawa, K.; Ichimaru, Y.
H-I is a future launch vehicle of Japan with a capability of placing more than 550 kg payload into a geostationary orbit. The National Space Development Agency of Japan (NASDA) is now directing its efforts to the final development of H-I launch vehicle. H-I's high launch capability is attained by adopting a newly developed second stage with a LOX/LH 2 propulsion system. The second stage propulsion system consists of a tank and an engine. The tank is 2.5 m in diameter and 5.7 m in length and contains 8.7 tons of propellants. This tank is an integral tank with a common bulkhead which separates the tank into forward LH 2 tank and aft LOX tank. The tank is made of 2219 aluminum alloy and is insulated with sprayed polyurethane foam. The common bulkhead is made of FRP honeycomb core and aluminium alloy surface sheets. The most critical item in the development of the tank is the common bulkhead, therefore the cryogenic structural test was carried out to verify the structural integrity of the bulkhead. The structural integrity of the whole LOX/LH 2 tank was verified by the cryogenic structural test of a sub-scale tank and the room temperature structural test of a prototype tank.
Constrained simultaneous multi-state reconfigurable wing structure configuration optimization
NASA Astrophysics Data System (ADS)
Snyder, Matthew
A reconfigurable aircraft is capable of in-flight shape change to increase mission performance or provide multi-mission capability. Reconfigurability has always been a consideration in aircraft design, from the Wright Flyer, to the F-14, and most recently the Lockheed-Martin folding wing concept. The Wright Flyer used wing-warping for roll control, the F-14 had a variable-sweep wing to improve supersonic flight capabilities, and the Lockheed-Martin folding wing demonstrated radical in-flight shape change. This dissertation will examine two questions that aircraft reconfigurability raises, especially as reconfiguration increases in complexity. First, is there an efficient method to develop a light weight structure which supports all the loads generated by each configuration? Second, can this method include the capability to propose a sub-structure topology that weighs less than other considered designs? The first question requires a method that will design and optimize multiple configurations of a reconfigurable aerostructure. Three options exist, this dissertation will show one is better than the others. Simultaneous optimization considers all configurations and their respective load cases and constraints at the same time. Another method is sequential optimization which considers each configuration of the vehicle one after the other - with the optimum design variable values from the first configuration becoming the lower bounds for subsequent configurations. This process repeats for each considered configuration and the lower bounds update as necessary. The third approach is aggregate combination — this method keeps the thickness or area of each member for the most critical configuration, the configuration that requires the largest cross-section. This research will show that simultaneous optimization produces a lower weight and different topology for the considered structures when compared to the sequential and aggregate techniques. To answer the second question, the developed optimization algorithm combines simultaneous optimization with a new method for determining the optimum location of the structural members of the sub-structure. The method proposed here considers an over-populated structural model, one in which there are initially more members than necessary. Using a unique iterative process, the optimization algorithm removes members from the design if they do not carry enough load to justify their presence. The initial set of members includes ribs, spars and a series of cross-members that diagonally connect the ribs and spars. The final result is a different structure, which is lower weight than one developed from sequential optimization or aggregate combination, and suggests the primary load paths. Chapter 1 contains background information on reconfigurable aircraft and a description of the new reconfigurable air vehicle being considered by the Air Vehicles Directorate of the Air Force Research Laboratory. This vehicle serves as a platform to test the proposed optimization process. Chapters 2 and 3 overview the optimization method and Chapter 4 provides some background analysis which is unique to this particular reconfigurable air vehicle. Chapter 5 contains the results of the optimizations and demonstrates how changing constraints or initial configuration impacts the final weight and topology of the wing structure. The final chapter contains conclusions and comments on some future work which would further enhance the effectiveness of the simultaneous reconfigurable structural topology optimization process developed and used in this dissertation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
...This final rule announces NHTSA's determination that there are no new model year (MY) 2011 light duty truck lines subject to the parts-marking requirements of the Federal motor vehicle theft prevention standard because they have been determined by the agency to be high-theft or because they have a majority of interchangeable parts with those of a passenger motor vehicle line. This final rule also identifies those vehicle lines that have been granted an exemption from the parts-marking requirements because the vehicles are equipped with antitheft devices determined to meet certain statutory criteria.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
...This final rule announces NHTSA's determination that there are no new model year (MY) 2012 light duty truck lines subject to the parts-marking requirements of the Federal motor vehicle theft prevention standard because they have been determined by the agency to be high-theft or because they have a majority of interchangeable parts with those of a passenger motor vehicle line. This final rule also identifies those vehicle lines that have been granted an exemption from the parts-marking requirements because the vehicles are equipped with antitheft devices determined to meet certain statutory criteria.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
...This final rule announces NHTSA's determination that there are no new model year (MY) 2014 light duty truck lines subject to the parts-marking requirements of the Federal motor vehicle theft prevention standard because they have been determined by the agency to be high-theft or because they have a majority of interchangeable parts with those of a passenger motor vehicle line. This final rule also identifies those vehicle lines that have been granted an exemption from the parts-marking requirements because the vehicles are equipped with antitheft devices determined to meet certain statutory criteria.
Increasing the Endurance and Payload Capacity of Unmanned Vehicles with Thin-Film Photovoltaics
2014-06-01
25 1. Maximum Power Point Tracker .......................................................25 2. DC-DC Power Conversion...An example of the amorphous silicon cell (from [28]). ...................................20 Figure 15. The structure of a copper indium gallium ...for the final solar array with the maximum power point indicated
Solar Thermal Utility-Scale Joint Venture Program (USJVP) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANCINI,THOMAS R.
2001-04-01
Several years ago Sandia National Laboratories developed a prototype interior robot [1] that could navigate autonomously inside a large complex building to aid and test interior intrusion detection systems. Recently the Department of Energy Office of Safeguards and Security has supported the development of a vehicle that will perform limited security functions autonomously in a structured exterior environment. The goal of the first phase of this project was to demonstrate the feasibility of an exterior robotic vehicle for security applications by using converted interior robot technology, if applicable. An existing teleoperational test bed vehicle with remote driving controls was modifiedmore » and integrated with a newly developed command driving station and navigation system hardware and software to form the Robotic Security Vehicle (RSV) system. The RSV, also called the Sandia Mobile Autonomous Navigator (SANDMAN), has been successfully used to demonstrate that teleoperated security vehicles which can perform limited autonomous functions are viable and have the potential to decrease security manpower requirements and improve system capabilities.« less
The Very Specific Vortex Shedding Test on VEGA Launch Vehicle
NASA Astrophysics Data System (ADS)
Leofanti, Jose Luis; Fotio, Domenico; Grillenbeck, Anton; Dillinger, Stephan; Scaccia, Aldo
2012-07-01
When tall structures are subjected to lateral wind flow, under certain conditions, vortices are shed from alternate sides of the structure inducing periodic cross wind loads on the structure. The periodic loads, in a relatively narrow and stable frequency band, can couple with the structure’s natural frequencies. To avoid this effect the VEGA Launch System (LS) comprised a decoupling device at the launch vehicle (LV) base called Anti Vortex Shedding (AVS). During the LV-Ground Segment combined test campaign in Kourou, the LV mounted on AVS was experimentally verified, including a modal characterization test, a verification under artificial operational loads and finally tested under real wind environment. The paper gives an overview on the particular aspects of test planning, the test setup preparation inside the launch pad gantry, the test performance, test results and the conclusion for the VEGA launch system’s operational readiness.
NASA Technical Reports Server (NTRS)
Mcgehee, C. R.
1986-01-01
This is Part 2-Appendices of a study conducted under Drones for Aerodynamic and Structural Testing (DAST) Program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities, and load reductions were achieved.
Reducing school bus/light-vehicle conflicts through connected vehicle communications : final report.
DOT National Transportation Integrated Search
2016-09-15
This project aimed to develop and test a concept for improving the safety of school bus transportation using connected vehicle technology. The project consisted of three key steps that led to a final road study: 1) conducting focus groups with light ...
Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles
NASA Technical Reports Server (NTRS)
Ivanco, Thomas G.
2016-01-01
Launch vehicles are exposed to ground winds during rollout and on the launch pad that can induce static and dynamic loads. Of particular concern are the dynamic loads caused by vortex shedding from nearly-cylindrical structures. When the frequency of vortex shedding nears that of a lowly-damped structural mode, the dynamic loads can be more than an order of magnitude greater than mean drag loads. Accurately predicting vehicle response to vortex shedding during the design and analysis cycles is difficult and typically exceeds the practical capabilities of modern computational fluid dynamics codes. Therefore, mitigating the ground wind loads risk typically requires wind-tunnel tests of dynamically-scaled models that are time consuming and expensive to conduct. In recent years, NASA has developed a ground wind loads analysis tool for launch vehicles to fill this analytical capability gap in order to provide predictions for prelaunch static and dynamic loads. This paper includes a background of the ground wind loads problem and the current state-of-the-art. It then discusses the history and significance of the analysis tool and the methodology used to develop it. Finally, results of the analysis tool are compared to wind-tunnel and full-scale data of various geometries and Reynolds numbers.
Development of a Refined Space Vehicle Rollout Forcing Function
NASA Technical Reports Server (NTRS)
James, George; Tucker, Jon-Michael; Valle, Gerard; Grady, Robert; Schliesing, John; Fahling, James; Emory, Benjamin; Armand, Sasan
2016-01-01
For several decades, American manned spaceflight vehicles and the associated launch platforms have been transported from final assembly to the launch pad via a pre-launch phase called rollout. The rollout environment is rich with forced harmonics and higher order effects can be used for extracting structural dynamics information. To enable this utilization, processing tools are needed to move from measured and analytical data to dynamic metrics such as transfer functions, mode shapes, modal frequencies, and damping. This paper covers the range of systems and tests that are available to estimate rollout forcing functions for the Space Launch System (SLS). The specific information covered in this paper includes: the different definitions of rollout forcing functions; the operational and developmental data sets that are available; the suite of analytical processes that are currently in-place or in-development; and the plans and future work underway to solve two immediate problems related to rollout forcing functions. Problem 1 involves estimating enforced accelerations to drive finite element models for developing design requirements for the SLS class of launch vehicles. Problem 2 involves processing rollout measured data in near real time to understand structural dynamics properties of a specific vehicle and the class to which it belongs.
Vibration analysis of the maglev guideway with the moving load
NASA Astrophysics Data System (ADS)
Wang, H. P.; Li, J.; Zhang, K.
2007-09-01
The response of the guideway induced by moving maglev vehicle is investigated in this paper. The maglev vehicle is simplified as evenly distributed force acting on the guideway at constant speed. According to the experimental line, the guideway structure of rail-sleeper-bridge is simplified as Bernoulli-Euler (B-E) beam—evenly distributed spring—simply supported B-E beam structure; thus, double deck model of the maglev guideway is constructed which can more accurately reflect the dynamic characteristic of the experimental line. The natural frequency and mode are deduced based on the theoretical model. The relationship between structural parameters and natural frequency are exploited by employing the numerical calculation method. The way to suppress the vehicle-guideway interaction by regulating the structural parameter is also discussed here. Using the normal coordinate transformation method, the coupled differential equations of motion of the maglev guideway are converted into a set of uncoupled equations. The closed-form solutions for the response of the guideway subjecting the moving load are derived. It is noted that the moving load would not induce the vehicle-guideway interaction oscillation. The analysis of the guideway impact factor implies that at some position of the guideway, the deflection may decrease with the increase of the speed of the load; several extreme value of the guideway displacement will appear induced by different speeds, with different acting place, the speeds are different either. The final numerical simulation verifies these conclusions.
Loads and Structural Dynamics Requirements for Spaceflight Hardware
NASA Technical Reports Server (NTRS)
Schultz, Kenneth P.
2011-01-01
The purpose of this document is to establish requirements relating to the loads and structural dynamics technical discipline for NASA and commercial spaceflight launch vehicle and spacecraft hardware. Requirements are defined for the development of structural design loads and recommendations regarding methodologies and practices for the conduct of load analyses are provided. As such, this document represents an implementation of NASA STD-5002. Requirements are also defined for structural mathematical model development and verification to ensure sufficient accuracy of predicted responses. Finally, requirements for model/data delivery and exchange are specified to facilitate interactions between Launch Vehicle Providers (LVPs), Spacecraft Providers (SCPs), and the NASA Technical Authority (TA) providing insight/oversight and serving in the Independent Verification and Validation role. In addition to the analysis-related requirements described above, a set of requirements are established concerning coupling phenomena or other interaction between structural dynamics and aerodynamic environments or control or propulsion system elements. Such requirements may reasonably be considered structure or control system design criteria, since good engineering practice dictates consideration of and/or elimination of the identified conditions in the development of those subsystems. The requirements are included here, however, to ensure that such considerations are captured in the design space for launch vehicles (LV), spacecraft (SC) and the Launch Abort Vehicle (LAV). The requirements in this document are focused on analyses to be performed to develop data needed to support structural verification. As described in JSC 65828, Structural Design Requirements and Factors of Safety for Spaceflight Hardware, implementation of the structural verification requirements is expected to be described in a Structural Verification Plan (SVP), which should describe the verification of each structural item for the applicable requirements. The requirement for and expected contents of the SVP are defined in JSC 65828. The SVP may also document unique verifications that meet or exceed these requirements with Technical Authority approval.
Design optimization of rear uprights for UniMAP Automotive Racing Team Formula SAE racing car
NASA Astrophysics Data System (ADS)
Azmeer, M.; Basha, M. H.; Hamid, M. F.; Rahman, M. T. A.; Hashim, M. S. M.
2017-10-01
In an automobile, the rear upright are used to provide a physical mounting and links the suspension arms to the hub and wheel assembly. In this work, static structural and shape optimization analysis for rear upright for UniMAP’s Formula SAE racing car had been done using ANSYS software with the objective to reduce weight while maintaining the structural strength of the vehicle upright. During the shape optimization process, the component undergoes 25%, 50% and 75 % weight reduction in order to find the best optimal shape of the upright. The final design of the upright is developed considering the weight reduction, structural integrity and the manufacturability. The final design achieved 21 % weight reduction and is able to withstand several loads.
2010-03-01
AFRL-RB-WP-TR-2010-3028 DESIGN AND ANALYSIS OF ADVANCED MATERIALS IN A THERMAL /ACOUSTIC ENVIRONMENT Delivery Order 0007: Volume 1‒Structural...Final 15 July 2005 – 30 March 2010 4. TITLE AND SUBTITLE DESIGN AND ANALYSIS OF ADVANCED MATERIALS IN A THERMAL /ACOUSTIC ENVIRONMENT Delivery...color. 14. ABSTRACT Air vehicles flying at hypersonic speeds encounter extreme thermal , aerodynamic and acoustic loads, utilizing thermal protection
Cooperative Control of Multiple Unmanned Autonomous Vehicles
2005-06-03
I I Final Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cooperative Control of Multiple Unmanned Autonomous Vehicles F49620-01-1-0337 6. AUTHOR(S... Autonomous Vehicles Final Report Kendall E. Nygard Department of Computer Science and Operations Research North Dakota State University Fargo, ND 58105-5164
Dynamic analysis of the American Maglev system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seda-Sanabria, Y.; Ray, J.C.
1996-06-01
Understanding the dynamic interaction between a magnetic levitated (Maglev) vehicle and its supporting guideway is essential in the evaluation of the performance of such a system. This interacting coupling, known as vehicle/guideway interaction (VGI), has a significant effect on system parameters such as the required magnetic suspension forces and gaps, vehicular ride quality, and guideway deflections and stresses. This report presents the VGI analyses conducted on an actual Maglev system concept definition (SCD), the American Maglev SCD, using a linear-elastic finite-element (FE) model. Particular interest was focused on the comparison of the ride quality of the vehicle, using two differentmore » suspension systems, and their effect on the guideway structure. The procedure and necessary assumptions in the modeling are discussed.« less
NASA Astrophysics Data System (ADS)
Koryanov, V.; Kazakovtsev, V.; Harri, A.-M.; Heilimo, J.; Haukka, H.; Aleksashkin, S.
2015-10-01
This research work is devoted to analysis of angular motion of the landing vehicle (LV) with an inflatable braking device (IBD), taking into account the influence of the wind load on the final stage of the movement. Using methods to perform a calculation of parameters of angular motion of the landing vehicle with an inflatable braking device based on the availability of small asymmetries, which are capable of complex dynamic phenomena, analyzes motion of the landing vehicle at the final stage of motion in the atmosphere.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
...EPA and NHTSA, on behalf of the Department of Transportation, are each finalizing rules to establish a comprehensive Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for on-road heavy-duty vehicles, responding to the President's directive on May 21, 2010, to take coordinated steps to produce a new generation of clean vehicles. NHTSA's final fuel consumption standards and EPA's final carbon dioxide (CO2) emissions standards are tailored to each of three regulatory categories of heavy-duty vehicles: Combination Tractors; Heavy-duty Pickup Trucks and Vans; and Vocational Vehicles. The rules include separate standards for the engines that power combination tractors and vocational vehicles. Certain rules are exclusive to the EPA program. These include EPA's final hydrofluorocarbon standards to control leakage from air conditioning systems in combination tractors, and pickup trucks and vans. These also include EPA's final nitrous oxide (N2O) and methane (CH4) emissions standards that apply to all heavy- duty engines, pickup trucks and vans. EPA's final greenhouse gas emission standards under the Clean Air Act will begin with model year 2014. NHTSA's final fuel consumption standards under the Energy Independence and Security Act of 2007 will be voluntary in model years 2014 and 2015, becoming mandatory with model year 2016 for most regulatory categories. Commercial trailers are not regulated in this phase of the Heavy-Duty National Program. The agencies estimate that the combined standards will reduce CO2 emissions by approximately 270 million metric tons and save 530 million barrels of oil over the life of vehicles sold during the 2014 through 2018 model years, providing over $7 billion in net societal benefits, and $49 billion in net societal benefits when private fuel savings are considered. EPA is also finalizing provisions allowing light-duty vehicle manufacturers to use CO2 credits to meet the light-duty vehicle N2O and CH4 standards, technical amendments to the fuel economy provisions for light-duty vehicles, and a technical amendment to the criteria pollutant emissions requirements for certain switch locomotives.
Stress analysis on passenger deck due to modification from passenger ship to vehicle-carrying ship
NASA Astrophysics Data System (ADS)
Zubaydi, A.; Sujiatanti, S. H.; Hariyanto, T. R.
2018-03-01
Stress is a basic concept in learning about material mechanism. The main focus that needs to be brought to attention in analyzing stress is strength, which is the structural capacity to carry or distribute loads. The structural capacity not only measured by comparing the maximum stress with the material’s yield strength but also with the permissible stress required by the Indonesian Classification Bureau (BKI), which certainly makes it much safer. This final project analyzes stress in passenger deck that experiences modification due to load changes, from passenger load to vehicle one, carrying: 6-wheels truck with maximum weight of 14 tons, a passenger car with maximum weight of 3.5 tons, and a motorcycle with maximum weight of 0.4 tons. The deck structure is modelled using finite element software. The boundary conditions given to the structural model are fix and simple constraint. The load that works on this deck is the deck load which comes from the vehicles on deck with three vehicles’ arrangement plans. After that, software modelling is conducted for analysis purpose. Analysis result shows a variation of maximum stress that occurs i.e. 135 N/mm2, 133 N/mm2, and 152 N/mm2. Those maximum stresses will not affect the structure of passenger deck’s because the maximum stress that occurs indicates smaller value compared to the Indonesian Classification Bureau’s permissible stress (175 N/mm2) as well as the material’s yield strength (235 N/mm2). Thus, the structural strength of passenger deck is shown to be capable of carrying the weight of vehicles in accordance with the three vehicles’ arrangement plans.
Affordable Electro-Magnetic Interference (EMI) Testing on Large Space Vehicles
NASA Technical Reports Server (NTRS)
Aldridge, Edward; Curry, Bruce; Scully, Robert
2015-01-01
Objective: Perform System-Level EMI testing of the Orion Exploration Flight Test-1 (EFT-1) spacecraft in situ in the Kennedy Space Center's Neil Armstrong Operations & Checkout (O&C) Facility in 6 days. The only way to execute the system-level EMI testing and meet this schedule challenge was to perform the EMI testing in situ in the Final Assembly & System Test (FAST) Cell in a reverberant mode, not the direct illumination mode originally planned. This required the unplanned construction of a Faraday Cage around the vehicle and FAST Cell structure. The presence of massive steel platforms created many challenges to developing an efficient screen room to contain the RF energy and yield an effective reverberant chamber. An initial effectiveness test showed marginal performance, but improvements implemented afterward resulted in the final test performing surprisingly well! The paper will explain the design, the challenges, and the changes that made the difference in performance!
The Environmental Protection Agency (EPA) is issuing a final rule representing the next step in establishing a voluntary nationwide program to make new cars significantly cleaner burning than today’s current cars.
NASA Astrophysics Data System (ADS)
Monica, Z.; Sękala, A.; Gwiazda, A.; Banaś, W.
2016-08-01
Nowadays a key issue is to reduce the energy consumption of road vehicles. In particular solution one could find different strategies of energy optimization. The most popular but not sophisticated is so called eco-driving. In this strategy emphasized is particular behavior of drivers. In more sophisticated solution behavior of drivers is supported by control system measuring driving parameters and suggesting proper operation of the driver. The other strategy is concerned with application of different engineering solutions that aid optimization the process of energy consumption. Such systems take into consideration different parameters measured in real time and next take proper action according to procedures loaded to the control computer of a vehicle. The third strategy bases on optimization of the designed vehicle taking into account especially main sub-systems of a technical mean. In this approach the optimal level of energy consumption by a vehicle is obtained by synergetic results of individual optimization of particular constructional sub-systems of a vehicle. It is possible to distinguish three main sub-systems: the structural one the drive one and the control one. In the case of the structural sub-system optimization of the energy consumption level is related with the optimization or the weight parameter and optimization the aerodynamic parameter. The result is optimized body of a vehicle. Regarding the drive sub-system the optimization of the energy consumption level is related with the fuel or power consumption using the previously elaborated physical models. Finally the optimization of the control sub-system consists in determining optimal control parameters.
2016-05-01
UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS
NASA Technical Reports Server (NTRS)
Perino, Scott; Bayandor, Javid; Siddens, Aaron
2012-01-01
The anticipated NASA Mars Sample Return Mission (MSR) requires a simple and reliable method in which to return collected Martian samples back to earth for scientific analysis. The Multi-Mission Earth Entry Vehicle (MMEEV) is NASA's proposed solution to this MSR requirement. Key aspects of the MMEEV are its reliable and passive operation, energy absorbing foam-composite structure, and modular impact sphere (IS) design. To aid in the development of an EEV design that can be modified for various missions requirements, two fully parametric finite element models were developed. The first model was developed in an explicit finite element code and was designed to evaluate the impact response of the vehicle and payload during the final stage of the vehicle's return to earth. The second model was developed in an explicit code and was designed to evaluate the static and dynamic structural response of the vehicle during launch and reentry. In contrast to most other FE models, built through a Graphical User Interface (GUI) pre-processor, the current model was developed using a coding technique that allows the analyst to quickly change nearly all aspects of the model including: geometric dimensions, material properties, load and boundary conditions, mesh properties, and analysis controls. Using the developed design tool, a full range of proposed designs can quickly be analyzed numerically and thus the design trade space for the EEV can be fully understood. An engineer can then quickly reach the best design for a specific mission and also adapt and optimize the general design for different missions.
DOT National Transportation Integrated Search
2010-05-07
Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint : Final Rule is consistent with the National Fuel Efficiency Policy announce...
Structural technology challenges for evolutionary growth of Space Station Freedom
NASA Technical Reports Server (NTRS)
Doiron, Harold H.
1990-01-01
A proposed evolutionary growth scenario for Space Station Freedom was defined recently by a NASA task force created to study requirements for a Human Exploration Initiative. The study was an initial response to President Bush's July 20, 1989 proposal to begin a long range program of human exploration of space including a permanently manned lunar base and a manned mission to Mars. This growth scenario evolves Freedom into a critical transportation node to support lunar and Mars missions. The growth scenario begins with the Assembly Complete configuration and adds structure, power, and facilities to support a Lunar Transfer Vehicle (LTV) verification flight. Evolutionary growth continues to support expendable, then reusable LTV operations, and finally, LTV and Mars Transfer Vehicle (MTV) operations. The significant structural growth and additional operations creating new loading conditions will present new technological and structural design challenges in addition to the considerable technology requirements of the baseline Space Station Freedom program. Several structural design and technology issues of the baseline program are reviewed and related technology development required by the growth scenario is identified.
Origin and Control of the Flow Structure on Unmanned Combat Air Vehicle
2007-12-01
REPORT DATE (DD-MM-VYVY) 2. REPORT TYPE 3. DATES COVERED (From - To) January 24. 2008 Final 1 Janualry 2005 to 31 December 2007 4. TITLE AND SUBTITLE...Room 732 NUMBER(S) Arlington VA 22203-1977 12. DISTRIBUTION I AVAILABILITY STATEMENT Appa oved f or publ. o "OMB.eese-R-R.R0- 1 distribution unli4itod...detailed characterization of the patterns of quantitative flow structure, both in the near-surface and crossflow planes. These types of approaches are
PECASE: Soaring Mechanisms for Flapping-Wing Micro Air Vehicles
2015-03-31
2015 2. REPORT TYPE Final 4. TITLE AND SUBTITLE PECASE: Soaring mechanisms for flapping - wing micro air vehicles 6. AUTHOR(S) Robert J. Wood 3...N00014-10-1-0684 Award Title: "PECASE: Soaring mechanisms for flapping - wing micro air vehicles" [previous award: N00014-08-1-0919, "Hovering Control for...Insect-Inspired Flapping - Wing Micro Air Vehicles"] Final report a. Scientific and Technical Objectives The Harvard Microrobotics Lab has
2016-12-14
The Architectural and Transportation Barriers Compliance Board (Access Board or Board) is issuing a final rule that revises its existing accessibility guidelines for non-rail vehicles--namely, buses, over-the-road buses, and vans--acquired or remanufactured by entities covered by the Americans with Disabilities Act. The revised guidelines ensure that such vehicles are readily accessible to, and usable by, individuals with disabilities. The U.S. Department of Transportation (DOT) is required to revise its accessibility standards for transportation vehicles acquired or remanufactured by entities covered by the Americans with Disabilities Act (ADA) to be consistent with the final rule.
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Davis, Susan R.; Askins, Bruce R.; Salyer, Blaine H.
2008-01-01
The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was lost during launch. Subsequent analyses indicated that had a GVT been conducted on the vehicle, problems with vehicle modes and control may have been discovered and corrected, avoiding loss of the vehicle/mission. This paper will address GVT planning, set-up, conduction and analyses, for the Saturn and Shuttle programs, and also focus on the current and on-going planning for the Ares I and V IVGVT.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
..., trailer, low-speed vehicle), and the vehicle's Vehicle Identification Number or ``VIN.'' The certification... Motor Vehicles (Except the Vehicle Identification Number). NHTSA's request for the extension of this... format and contents labels that manufacturers are required to affix to motor vehicles manufactured for...
Final design report of a personnel launch system and a family of heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Tupa, James; Merritt, Debbie; Riha, David; Burton, Lee; Kubinski, Russell; Drake, Kerry; Mann, Darrin; Turner, Ken
1991-01-01
The objective was to design both a Personnel Launch System (PLS) and a family of Heavy Lift Launch Vehicles (FHLLVs) that provide low cost and efficient operation in missions not suited for the Shuttle. The PLS vehicle is designed primarily for space station crew rotation and emergency crew return. The final design of the PLS vehicle and its interior is given. The mission of the FHLLVs is to place large, massive payloads into Earth orbit with payload flexibility being considered foremost in the design. The final design of three launch vehicles was found to yield a payload capacity range from 20 to 200 mt. These designs include the use of multistaged, high thrust liquid engines mounted on the core stages of the rocket.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
...The National Highway Traffic Safety Administration (NHTSA) published a document in the Federal Register of June 21, 2010, announcing NHTSA's determination that there were no new model year (MY) 2011 light-duty truck lines subject to the requirements of the Federal motor vehicle theft prevention standard. The final rule also identified those vehicle lines that had been granted an exemption from the parts- marking requirements for the 2011 model year and those vehicle lines the agency removed because certain vehicle lines had been discontinued more than 5 years ago. This document corrects certain information published in the SUPPLEMENTARY INFORMATION section and Appendix A-I listing of the final rule. All previous information associated with the published notice remains the same.
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Canadian Space Agency astronaut Chris Hadfield address the attendees at a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Roger Elliot with United Space Alliance addresses the attendees at a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Center Director Bob Cabana speaks to the attendees at a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1993-01-01
The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.
NASA Astrophysics Data System (ADS)
1993-07-01
The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.
Milestones Towards Hot CMC Structures for Operational Space Rentry Vehicles
NASA Astrophysics Data System (ADS)
Hald, H.; Weihs, H.; Reimer, T.
2002-01-01
Hot structures made of ceramic matrix composites (CMC) for space reentry vehicles play a key role regarding feasibility of advanced and reusable future space transportation systems. Thus realization of applicable flight hardware concerning hot primary structures like a nose cap or body flaps and thermal protection systems (TPS) requires system competence w.r.t. sophisticated know how in material processing, manufacturing and qualification of structural components and in all aspects from process control, use of NDI techniques, arc jet testing, hot structure testing to flight concept validation. This goal has been achieved so far by DLR while following a dedicated development road map since more than a decade culminating at present in the supply of the nose cap system for NASA's X-38; the flight hardware has been installed successfully in October 2001. A number of unique hardware development milestones had to be achieved in the past to finally reach this level of system competence. It is the intention of this paper to highlight the most important technical issues and achievements from the essential projects and developments to finally provide a comprehensive insight into DLR's past and future development road map w.r.t. CMC hot structures for space reentry vehicles. Based on DLR's C/C-SiC material which is produced with the inhouse developed liquid silicon infiltration process (LSI) the development strategy first concentrated on basic material properties evaluation in various arc jet testing facilities. As soon as a basic understanding of oxidation and erosion mechanisms had been achieved further efforts concentrated on inflight verification of both materials and design concepts for hot structures. Consequently coated and uncoated C/C-SiC specimens were integrated into the ablative heat shield of Russian FOTON capsules and they were tested during two missions in 1992 and 1994. Following on, a hot structure experiment called CETEX which principally was a kind of a little nose cap had been developed and tested during the EXPRESS mission in 1995. These three flight tests were the first ones in Europe carried out with such a kind of material and hot structural concept and manifold lessons learned w.r.t. material behaviour and structural design performance under the severe environment conditions of ballistic capsule reentry could be achieved. Within an ESA program called FESTIP we developed a new design concept for a rigid surface TPS based on CMC's which should be adaptable to the outer side of a cryogenic tank structure of a future SSTO vehicle. Special TPS concept features are (flat) integral stiffened CMC panels, hot CMC fasteners for outside attachment capability, thermal displacement compensation, sealing and insulation, provision of a purge gap etc. Two test samples have been constructed and manufactured in close cooperation with industrial companies and finally they were tested very successfully under realistic thermal and mechanical loading conditions. A further key technology is high temperature fastening of shell like CMC components; here two new CMC based fastener concepts featuring a combination of screwing and riveting methods could be developed and qualified even under high temperature fatigue loads within ESA and national German programs. In addition high temperature testing technology has been matured over years and some extraordinary tests of components like the EMA bearing for the X-38 body flaps designed and manufactured by MAN-T could be tested very successfully. Finally these developments put DLR in the position to develop and provide the nose cap system for X-38 from NASA and some of the most demanding basic features will be highlighted briefly (details in a separate paper). Reflecting the described developments and considering near future programs like CRV and other ongoing experimental developments it is obvious that we now entered a state of transition from basic technology development towards operational use of such kind of materials and structures.
NASA Technical Reports Server (NTRS)
Venkatesan, C.; Friedmann, P. P.
1987-01-01
This report is a sequel to the earlier report titled, Aeroelastic Effects in Multi-Rotor Vehicles with Application to Hybrid Heavy Lift System, Part 1: Formulation of Equations of Motion (NASA CR-3822). The trim and stability equations are presented for a twin rotor system with a buoyant envelope and an underslung load attached to a flexible supporting structure. These equations are specialized for the case of hovering flight. A stability analysis, for such a vehicle with 31 degrees of freedom, yields a total of 62 eigenvalues. A careful parametric study is performed to identify the various blade and vehicle modes, as well as the coupling between various modes. Finally, it is shown that the coupled rotor/vehicle stability analysis provides information on both the aeroelastic stability as well as complete vehicle dynamic stability. Also presented are the results of an analytical study aimed at predicting the aeromechanical stability of a single rotor helicopter in ground resonance. The theoretical results are found to be in good agreement with the experimental results, thereby validating the analytical model for the dynamics of the coupled rotor/support system.
Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang
2014-01-01
Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.
Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang
2014-01-01
Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian. PMID:25097870
Electric vehicle life cycle cost analysis : final research project report.
DOT National Transportation Integrated Search
2017-02-01
This project compared total life cycle costs of battery electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV), hybrid electric vehicles (HEV), and vehicles with internal combustion engines (ICE). The analysis considered capital and operati...
NASA Technical Reports Server (NTRS)
Holladay, Jon; Day, Greg; Gill, Larry
2004-01-01
Spacecraft are typically designed with a primary focus on weight in order to meet launch vehicle performance parameters. However, for pressurized and/or man-rated spacecraft, it is also necessary to have an understanding of the vehicle operating environments to properly size the pressure vessel. Proper sizing of the pressure vessel requires an understanding of the space vehicle's life cycle and compares the physical design optimization (weight and launch "cost") to downstream operational complexity and total life cycle cost. This paper will provide an overview of some major environmental design drivers and provide examples for calculating the optimal design pressure versus a selected set of design parameters related to thermal and environmental perspectives. In addition, this paper will provide a generic set of cracking pressures for both positive and negative pressure relief valves that encompasses worst case environmental effects for a variety of launch / landing sites. Finally, several examples are included to highlight pressure relief set points and vehicle weight impacts for a selected set of orbital missions.
POGO ground simulation test of H-I launch vehicle's second stage
NASA Astrophysics Data System (ADS)
Ono, Yoshio; Kohsetsu, Yuji; Shibukawa, Kiwao
This paper describes a POGO ground simulation test of the Japanese new second stage for the H-I launch vehicle. It was the final prelaunch verification test of a POGO prevention of the H-I. This test was planned to examine POGO stability and was conducted in a Captive Firing Test (CFT) by mounting a flight-type second stage by a soft suspension system on the CFT test stand which gave the vehicle a pseudo inflight boundary condition of free-free in terms of the vehicle's structural dynamics. There was no indication that implied POGO from the data measured during the CFT. Consequently, this test suggested that the new second stage of the H-I was POGO free. Therefore, it was decided that the first test flight (TF no. 1) of the H-I would be made without a POGO Suppression Device. TF no. 1 was launched successfully on August 13, 1986, and its telemetry data showed no evidence of POGO phenomenon.
An adaptable, low cost test-bed for unmanned vehicle systems research
NASA Astrophysics Data System (ADS)
Goppert, James M.
2011-12-01
An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.
Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent
NASA Technical Reports Server (NTRS)
Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.
2008-01-01
For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.
DOT National Transportation Integrated Search
2016-08-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is developing a suite of CV applications, or apps, that utilize vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V) and Vehicle to everything (V2...
This action finalizes modifications to the federal on-board diagnostics regulations, including: harmonizing the emission levels above which a component or system is considered malfunctioning with those of the California Air Resources Board (CARB).
NASA Astrophysics Data System (ADS)
Wei, Shiyin; Zhang, Zhaohui; Li, Shunlong; Li, Hui
2017-10-01
Strain is a direct indicator of structural safety. Therefore, strain sensors have been used in most structural health monitoring systems for bridges. However, until now, the investigation of strain response has been insufficient. This paper conducts a comprehensive study of the strain features of the U ribs and transverse diaphragm on an orthotropic steel deck and proposes a statistical paradigm for crack detection based on the features of vehicle-induced strain response by using the densely distributed optic fibre Bragg grating (FBG) strain sensors. The local feature of strain under vehicle load is highlighted, which enables the use of measurement data to determine the vehicle loading event and to make a decision regarding the health status of a girder near the strain sensors via technical elimination of the load information. Time-frequency analysis shows that the strain contains three features: the long-term trend item, the short-term trend item, and the instantaneous vehicle-induced item (IVII). The IVII is the wheel-induced strain with a remarkable local feature, and the measured wheel-induced strain is only influenced by the vehicle near the FBG sensor, while other vehicles slightly farther away have no effect on the wheel-induced strain. This causes the local strain series, among the FBG strain sensors in the same transverse locations of different cross-sections, to present similarities in shape to some extent and presents a time delay in successive order along the driving direction. Therefore, the strain series induced by an identical vehicle can be easily tracked and compared by extracting the amplitude and calculating the mutual ratio to eliminate vehicle loading information, leaving the girder information alone. The statistical paradigm for crack detection is finally proposed, and the detection accuracy is then validated by using dense FBG strain sensors on a long-span suspension bridge in China.
Simulation and Data Analytics for Mobile Road Weather Sensors
NASA Astrophysics Data System (ADS)
Chettri, S. R.; Evans, J. D.; Tislin, D.
2016-12-01
Numerous algorithmic and theoretical considerations arise in simulating a vehicle-based weather observation network known as the Mobile Platform Environmental Data (MoPED). MoPED integrates sensor data from a fleet of commercial vehicles (about 600 at last count, with thousands more to come) as they travel interstate, state and local routes and metropolitan areas throughout the conterminous United States. The MoPED simulator models a fleet of anywhere between 1000-10,000 vehicles that travel a highway network encoded in a geospatial database, starting and finishing at random times and moving at randomly-varying speeds. Virtual instruments aboard these vehicles interpolate surface weather parameters (such as temperature and pressure) from the High-Resolution Rapid Refresh (HRRR) data series, an hourly, coast-to-coast 3km grid of weather parameters modeled by the National Centers for Environmental Prediction. Whereas real MoPED sensors have noise characteristics that lead to drop-outs, drift, or physically unrealizable values, our simulation introduces a variety of noise distributions into the parameter values inferred from HRRR (Fig. 1). Finally, the simulator collects weather readings from the National Weather Service's Automated Surface Observation System (ASOS, comprised of over 800 airports around the country) for comparison, validation, and analytical experiments. The simulator's MoPED-like weather data stream enables studies like the following: Experimenting with data analysis and calibration methods - e.g., by comparing noisy vehicle data with ASOS "ground truth" in close spatial and temporal proximity (e.g., 10km, 10 min) (Fig. 2). Inter-calibrating different vehicles' sensors when they pass near each other. Detecting spatial structure in the surface weather - such as dry lines, sudden changes in humidity that accompany severe weather - and estimating how many vehicles are needed to reliably map these structures and their motion. Detecting bottlenecks in the MoPED data infrastructure to ensure real-time data filtering and dissemination as number of vehicles scales up; or tuning the data structures needed to keep track of individual sensor calibrations. Expanding the analytical and data management approach to other mobile weather sensors such as smartphones.
Connected commercial vehicles — retrofit safety device kit project : final report.
DOT National Transportation Integrated Search
2014-03-01
Connected vehicle wireless data communications can enable safety applications that may reduce injuries and fatalities. Cooperative vehicle-to-vehicle (V2V) safety applications will be effective only if a high fraction of vehicles are equipped. Deploy...
NASA Technical Reports Server (NTRS)
1995-01-01
The purpose of the Advanced Transportation System Studies (ATSS) Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is Volume 2 of the final report for the contract. It provides documentation of selected technical results from various TA-2 analysis activities, including a detailed narrative description of the SSTO concept assessment results, a user's guide for the associated SSTO sizing tools, an SSTO turnaround assessment report, an executive summary of the ground operations assessments performed during the first year of the contract, a configuration-independent vehicle health management system requirements report, a copy of all major TA-2 contract presentations, a copy of the FLO launch vehicle final report, and references to Pratt & Whitney's TA-2 sponsored final reports regarding the identification of Russian main propulsion technologies.
Experimental investigation of a quad-rotor biplane micro air vehicle
NASA Astrophysics Data System (ADS)
Bogdanowicz, Christopher Michael
Micro air vehicles are expected to perform demanding missions requiring efficient operation in both hover and forward flight. This thesis discusses the development of a hybrid air vehicle which seamlessly combines both flight capabilities: hover and high-speed forward flight. It is the quad-rotor biplane, which weighs 240 grams and consists of four propellers with wings arranged in a biplane configuration. The performance of the vehicle system was investigated in conditions representative of flight through a series of wind tunnel experiments. These studies provided an understanding of propeller-wing interaction effects and system trim analysis. This showed that the maximum speed of 11 m/s and a cruise speed of 4 m/s were achievable and that the cruise power is approximately one-third of the hover power. Free flight testing of the vehicle successfully highlighted its ability to achieve equilibrium transition flight. Key design parameters were experimentally investigated to understand their effect on overall performance. It was found that a trade-off between efficiency and compactness affects the final choice of the design. Design improvements have allowed for decreases in vehicle weight and ground footprint, while increasing structural soundness. Numerous vehicle designs, models, and flight tests have proven system scalability as well as versatility, including an upscaled model to be utilized in an extensive commercial package delivery system. Overall, the quad-rotor biplane is proven to be an efficient and effective multi-role vehicle.
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Canadian Space Agency astronaut Chris Hadfield (left) and NASA astronaut Gregory C. Johnson attend a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, United Space Alliance employees gather and hold up a banner at a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
Lead-acid batteries with polymer-structured electrodes for electric-vehicle applications
NASA Astrophysics Data System (ADS)
Soria, M. L.; Fullea, J.; Sáez, F.; Trinidad, F.
Some years ago a consortium of enterprises and a university from different European countries and industrial sectors was established to work together in the development of lighter lead-acid batteries for electrical and conventional vehicles with new innovative materials and process techniques, with the final goal of increasing the energy density by means of a battery weight reduction. Its main idea was to substitute the heavy lead alloy grids (mechanical support of the active masses and collectors of the current produced during the charge and discharge reactions) by lightweight metallised polymeric network structures (PNS) with reduced mesh dimensions in comparison to conventional grids. The network was then coated with conductive materials and corrosion resistant layers to conduct the current flow. In this paper, the electrode characteristics and the design features of the batteries prepared in the project will be described and their electrical performance presented.
Centralized versus distributed propulsion
NASA Technical Reports Server (NTRS)
Clark, J. P.
1982-01-01
The functions and requirements of auxiliary propulsion systems are reviewed. None of the three major tasks (attitude control, stationkeeping, and shape control) can be performed by a collection of thrusters at a single central location. If a centralized system is defined as a collection of separated clusters, made up of the minimum number of propulsion units, then such a system can provide attitude control and stationkeeping for most vehicles. A distributed propulsion system is characterized by more numerous propulsion units in a regularly distributed arrangement. Various proposed large space systems are reviewed and it is concluded that centralized auxiliary propulsion is best suited to vehicles with a relatively rigid core. These vehicles may carry a number of flexible or movable appendages. A second group, consisting of one or more large flexible flat plates, may need distributed propulsion for shape control. There is a third group, consisting of vehicles built up from multiple shuttle launches, which may be forced into a distributed system because of the need to add additional propulsion units as the vehicles grow. The effects of distributed propulsion on a beam-like structure were examined. The deflection of the structure under both translational and rotational thrusts is shown as a function of the number of equally spaced thrusters. When two thrusters only are used it is shown that location is an important parameter. The possibility of using distributed propulsion to achieve minimum overall system weight is also examined. Finally, an examination of the active damping by distributed propulsion is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, W.E.
1977-04-01
A three-phase program to develop and demonstrate the feasibility of a metallic heat shield suitable for use on Space Shuttle Orbiter class vehicles at operating surface temperatures of up to 1590 K (2400 F) is summarized. An orderly progression of configuration studies, material screening tests, and subscale structural tests was performed. Scale-up feasibility was demonstrated in the final phase when a sizable nine-panel array was fabricated and successfully tested. The full-scale tests included cyclic testing at reduced air pressure to 1590 K (2400 F) and up to 158 dB overall sound pressure level. The selected structural configuration and design techniquesmore » succesfully eliminated thermal induced failures. The thermal/structural performance of the system was repeatedly demonstrated. Practical and effective field repair methods for coated columbium alloys were demonstrated. Major uncertainties of accessibility, refurbishability, and durability were eliminated.« less
X-43A Final Flight Observations
NASA Technical Reports Server (NTRS)
Grindle, Laurie
2011-01-01
The presentation will provide an overview of the final flight of the NASA X-43A project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The first flight, conducted on June 2, 2001, was unsuccessful and resulted in a nine-month mishap investigation. A two-year return to flight effort ensued and concluded when the second Mach 7 flight was successfully conducted on March 27, 2004. The third and final flight, which occurred on November 16, 2004, was the first Mach 10 flight demonstration of an airframe-integrated, scramjet-powered, hypersonic vehicle. As such, the final flight presented first time technical challenges in addition to final flight project closeout concerns. The goals and objectives for the third flight as well as those for the project will be presented. The configuration of the Hyper-X stack including the X-43A, Hyper-X launch vehicle, and Hyper-X research vehicle adapter wil also be presented. Mission differences, vehicle modifications and lessons learned from the first and second flights as they applied to the third flight will also be discussed. Although X-43A flight 3 was always planned to be the final flight of the X-43A project, the X-43 program had two other vehicles and corresponding flight phases in X-43C and X-43B. Those other projects never manifested under the X-43 banner and X-43A flight 3 also became the final flight of X-43 program.
DOT National Transportation Integrated Search
2016-09-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program intends to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to reduce...
U29: commercial vehicle secure network for safety and mobility applications final report.
DOT National Transportation Integrated Search
2011-09-01
The main objective of this project is to develop a secure, reliable, high throughput and integrated wireless network for Vehicle-To-Vehicle (V2V), Vehicle-To-Infrastructure (V2I) and intra-vehicle communications. Novel techniques and communication pr...
DOT National Transportation Integrated Search
2016-09-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...
DOT National Transportation Integrated Search
2016-09-13
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
EPA is announcing its final determination that reduction of new motor vehicle emissions throughout the Northeast Ozone Transport Region (OTR) is necessary to mitigate the effects of air pollution transport.
NASA Technical Reports Server (NTRS)
Olds, John Robert; Walberg, Gerald D.
1993-01-01
Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are determined for the vehicle. A summary and evaluation of the various parametric MDO methods employed in the research are included. Recommendations for additional research are provided.
Vehicle-to-vehicle communications in mixed passenger-freight convoys : [final report].
DOT National Transportation Integrated Search
2016-09-01
Vehicle convoys (platoons) hold a promise for significant efficiency improvements of freight and : passenger transportation through better system integration. Through the use of advanced driver : assistance, vehicles in a convoy can keep shorter dist...
DOT National Transportation Integrated Search
2016-08-11
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
75 FR 81640 - Record of Decision
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... on the Final Environmental Impact Statement/Cape Hatteras National Seashore Off-Road Vehicle... Environmental Impact Statement (Final EIS) for the Cape Hatteras National Seashore (Seashore) Off-Road Vehicle... temporary ORV use restrictions, for such things as ramp maintenance, resource and public safety closures...
Orange County Intelligent Vehicle/Highway Systems Study, Draft Final Report
DOT National Transportation Integrated Search
1993-06-01
THIS DOCUMENT REPRESENTS THE FINAL REPORT FOR THE ORANGE COUNTY INTELLIGENT VEHICLE-HIGHWAY SYSTEMS (IVHS) STUDY, PREPARED FOR THE ORANGE COUNTY TRANSPORTATION AUTHORITY (OCTA). THE PURPOSE OF THIS REPORT IS TO DOCUMENT THE FINDINGS OF THE IVHS STUDY...
Electric vehicle fleet implications and analysis : final research project report.
DOT National Transportation Integrated Search
2016-11-01
The objective of this project was to evaluate the implementation and effectiveness of : electric vehicles (EVs) used in fleet operations. The study focuses on Battery-Electric : Vehicles (BEVs) and Plug-In Hybrid Electric Vehicles (PHEVs); collective...
Investigation Of Alternative Displays For Side Collision Avoidance Systems, Final Report
DOT National Transportation Integrated Search
1996-12-01
DRIVER-VEHICLE INTERFACE OR DVI, HUMAN FACTORS, DRIVER PREFERENCES, INTELLIGENT VEHICLE INITIATIVE OR IVI : SIDE COLLISION AVOIDANCE SYSTEMS (SCAS) ARE DESIGNED TO WARN OF IMPENDING COLLISIONS AND CAN DETECT NOT ONLY ADJACENT VEHICLES BUT VEHICLES...
49 CFR 567.5 - Requirements for manufacturers of vehicles manufactured in two or more stages.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Vehicle Identification Number. (c) Intermediate manufacturers. (1) Except as provided in paragraphs (f... that identified by the incomplete vehicle manufacturer. (v) Vehicle identification number. (d) Final...), and (d)(1), and 49 CFR 568.4(a)(9). (vi) Vehicle identification number. (vii) The type classification...
49 CFR 567.5 - Requirements for manufacturers of vehicles manufactured in two or more stages.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Vehicle Identification Number. (c) Intermediate manufacturers. (1) Except as provided in paragraphs (f... that identified by the incomplete vehicle manufacturer. (v) Vehicle identification number. (d) Final...), and (d)(1), and 49 CFR 568.4(a)(9). (vi) Vehicle identification number. (vii) The type classification...
49 CFR 567.5 - Requirements for manufacturers of vehicles manufactured in two or more stages.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Vehicle Identification Number. (c) Intermediate manufacturers. (1) Except as provided in paragraphs (f... that identified by the incomplete vehicle manufacturer. (v) Vehicle identification number. (d) Final...), and (d)(1), and 49 CFR 568.4(a)(9). (vi) Vehicle identification number. (vii) The type classification...
49 CFR 567.5 - Requirements for manufacturers of vehicles manufactured in two or more stages.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Vehicle Identification Number. (c) Intermediate manufacturers. (1) Except as provided in paragraphs (f... that identified by the incomplete vehicle manufacturer. (v) Vehicle identification number. (d) Final...), and (d)(1), and 49 CFR 568.4(a)(9). (vi) Vehicle identification number. (vii) The type classification...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
...EPA and NHTSA are issuing this joint Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint Final Rule is consistent with the National Fuel Efficiency Policy announced by President Obama on May 19, 2009, responding to the country's critical need to address global climate change and to reduce oil consumption. EPA is finalizing greenhouse gas emissions standards under the Clean Air Act, and NHTSA is finalizing Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended. These standards apply to passenger cars, light-duty trucks, and medium-duty passenger vehicles, covering model years 2012 through 2016, and represent a harmonized and consistent National Program. Under the National Program, automobile manufacturers will be able to build a single light-duty national fleet that satisfies all requirements under both programs while ensuring that consumers still have a full range of vehicle choices. NHTSA's final rule also constitutes the agency's Record of Decision for purposes of its National Environmental Policy Act (NEPA) analysis.
ERIC Educational Resources Information Center
Knezevich, Stephen J.
The primary objectives of the study were to develop a model for a National Academy for School Executives (NASE), to determine the receptivity of school administrators to such a program, and to determine the feasibility of implementing the model within the near future. Four academic task forces studied the structural elements, fiscal requirements,…
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, John Casper, Assistant Space Shuttle Program manager and Kennedy Center Director Bob Cabana talk with each other during a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
Onboard Monitoring and Reporting for Commercial Motor Vehicle Safety Final Report
DOT National Transportation Integrated Search
2008-02-01
This Final Report describes the process and product from the project, Onboard Monitoring and Reporting for Commercial Motor Vehicle Safety (OBMS), in which a prototypical suite of hardware and software on a class 8 truck was developed and tested. The...
Railway vehicle body structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finitemore » element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.« less
NASA Astrophysics Data System (ADS)
Qin, Yechen; He, Chenchen; Shao, Xinxin; Du, Haiping; Xiang, Changle; Dong, Mingming
2018-04-01
This paper presents a new approach for vibration mitigation based on a dynamic vibration absorbing structure (DVAS) for electric vehicles (EVs) that use in-wheel switched reluctance motors (SRMs). The proposed approach aims to alleviate the negative effects of vibration caused by the unbalanced electromagnetic force (UMEF) that arises from road excitations. The analytical model of SRMs is first formulated using Fourier series, and then a model of the coupled longitudinal-vertical dynamics is developed taking into consideration the external excitations consisting of the aerodynamic drag force and road unevenness. In addition, numerical simulations for a conventional SRM-suspension system and two novel DVASs are carried out for varying road levels specified by ISO standards and vehicle velocities. The results of the comparison reveal that a 35% improvement in ride comfort, 30% improvement of road handling, and 68% improvement in air gap between rotor and stator can be achieved by adopting the novel DVAS compared to the conventional SRM-suspension system. Finally, multi-body simulation (MBS) is performed using LMS Motion to validate the feasibility of the proposed DVAS. Analysis of the results shows that the proposed method can augment the effective application of SRMs in EVs.
DOT National Transportation Integrated Search
2005-03-01
The Crash Avoidance Metrics Partnership (CAMP) Vehicle Safety Communications Consortium (VSCC) comprised of BMW, DaimlerChrysler, Ford, GM, Nissan, Toyota, and Volkswagen, in partnership with USDOT, established the Vehicle Safety Communications (VSC)...
DOT National Transportation Integrated Search
2012-02-01
The relative contribution of heavy-duty diesel vehicles (HDDVs) to mobile source emissions has grown : significantly over the past decade, and certain vehicles identified as high emitting vehicles (HEs) contribute : disproportionately to the overall ...
EPA and National Highway Traffic SafetyAdministration (NHTSA) are each finalizing rules to establish a comprehensive Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for onroad heavy-duty vehicles.
2009-10-27
CAPE CANAVERAL, Fla. - Workers on Launch Pad 39B at NASA's Kennedy Space Center in Florida make final preparations for launch of the Constellation Program's 327-foot-tall Ares I-X rocket. The rotating service structure and the arms of the vehicle stabilization system will be moved from around the rocket for liftoff. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
Urban sprawl as a risk factor in motor vehicle crashes
Ewing, Reid; Hamidi, Shima; Grace, James B.
2016-01-01
A decade ago, compactness/sprawl indices were developed for metropolitan areas and counties which have been widely used in health and other research. In this study, we first update the original county index to 2010, then develop a refined index that accounts for more relevant factors, and finally seek to test the relationship between sprawl and traffic crash rates using structural equation modelling. Controlling for covariates, we find that sprawl is associated with significantly higher direct and indirect effects on fatal crash rates. The direct effect is likely due to the higher traffic speeds in sprawling areas, and the indirect effect is due to greater vehicle miles driven in such areas. Conversely, sprawl has negative direct relationships with total crashes and non-fatal injury crashes, and these offset (and sometimes overwhelm) the positive indirect effects of sprawl on both types of crashes through the mediating effect of increased vehicle miles driven. The most likely explanation is the greater prevalence of fender benders and other minor accidents in the low speed, high conflict traffic environments of compact areas, negating the lower vehicle miles travelled per capita in such areas.
The U.S. Environmental Protection Agency (EPA) is announcing more protective tailpipe emissions standards for all passenger vehicles, including sport utility vehicles (SUVs), minivans, vans and pick-up trucks.
NASA Astrophysics Data System (ADS)
Duan, Libin; Xiao, Ning-cong; Li, Guangyao; Cheng, Aiguo; Chen, Tao
2017-07-01
Tailor-rolled blank thin-walled (TRB-TH) structures have become important vehicle components owing to their advantages of light weight and crashworthiness. The purpose of this article is to provide an efficient lightweight design for improving the energy-absorbing capability of TRB-TH structures under dynamic loading. A finite element (FE) model for TRB-TH structures is established and validated by performing a dynamic axial crash test. Different material properties for individual parts with different thicknesses are considered in the FE model. Then, a multi-objective crashworthiness design of the TRB-TH structure is constructed based on the ɛ-support vector regression (ɛ-SVR) technique and non-dominated sorting genetic algorithm-II. The key parameters (C, ɛ and σ) are optimized to further improve the predictive accuracy of ɛ-SVR under limited sample points. Finally, the technique for order preference by similarity to the ideal solution method is used to rank the solutions in Pareto-optimal frontiers and find the best compromise optima. The results demonstrate that the light weight and crashworthiness performance of the optimized TRB-TH structures are superior to their uniform thickness counterparts. The proposed approach provides useful guidance for designing TRB-TH energy absorbers for vehicle bodies.
2009-03-26
CAPE CANAVERAL, Fla. – The first Ares I-X motor segment is in the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
Rule to finalize standards for medium- and heavy-duty vehicles that would improve fuel efficiency and cut carbon pollution to reduce the impacts of climate change, while bolstering energy security and spurring manufacturing innovation.
40 CFR 85.1509 - Final admission of modification and test vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Final admission of modification and test vehicles. 85.1509 Section 85.1509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor...
Equations of motion for a flexible spacecraft-lumped parameter idealization
NASA Technical Reports Server (NTRS)
Storch, Joel; Gates, Stephen
1982-01-01
The equations of motion for a flexible vehicle capable of arbitrary translational and rotational motions in inertial space accompanied by small elastic deformations are derived in an unabridged form. The vehicle is idealized as consisting of a single rigid body with an ensemble of mass particles interconnected by massless elastic structure. The internal elastic restoring forces are quantified in terms of a stiffness matrix. A transformation and truncation of elastic degrees of freedom is made in the interest of numerical integration efficiency. Deformation dependent terms are partitioned into a hierarchy of significance. The final set of motion equations are brought to a fully assembled first order form suitable for direct digital implementation. A FORTRAN program implementing the equations is given and its salient features described.
2001-09-05
KODIAK ISLAND, ALASKA - Inside the Launch Service Structure, Kodiak Launch Complex (KLC), the final stage of the Athena I launch vehicle, with the Kodiak Star spacecraft, is maneuvered into place. The first launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits
DOT National Transportation Integrated Search
1994-01-01
Highly automated vehicles and highways--which permit higher travel speeds, narrower lanes, smaller headways between vehicles, and optimized routing (collectively called intelligent vehicle-highway systems or IVHS)-- have been generally conceded to be...
Train-to-train rear end impact tests - volume I - pre-impact determination of vehicle properties
DOT National Transportation Integrated Search
1999-03-31
This final report documents these nine tests. Volume I, Pre-Impact Determination of Vehicle Properties, summarizes the vehicle properties obtained prior to the impact tests. These vehicle properties were used in computer simulation of the impact test...
77 FR 18914 - National Motor Vehicle Title Information System (NMVTIS): Technical Corrections
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
... 1121-AA79 National Motor Vehicle Title Information System (NMVTIS): Technical Corrections AGENCY... (OJP) is promulgating this direct final rule for its National Motor Vehicle Title Information System... INFORMATION CONTACT paragraph. II. Background The National Motor Vehicle Title Information System was...
Emergency vehicle-to-vehicle communication : final report.
DOT National Transportation Integrated Search
2016-08-15
Emergency response vehicles (ERVs) frequently navigate congested traffic conditions to reach : their destinations as quickly as possible. In this report, several efforts performed by the research : group are described, including micro-simulation, fie...
76 FR 43825 - Launch Safety: Lightning Criteria for Expendable Launch Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... Vehicles AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Direct final rule; Confirmation of... launch vehicle through or near an electrified environment in or near a cloud. These changes also increase...
Vortex Flows at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.
2003-01-01
A review of research conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data are for flat plates, cavities, bodies, missiles, wings, and aircraft with Mach numbers of 1.5 to 4.6. Data are presented to show the types of vortex structures that occur at supersonic speeds and the impact of these flow structures on vehicle performance and control. The data show the presence of both small- and large-scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices. Data are shown that highlight the effect of leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber on the aerodynamics of and flow over delta wings. Finally, a discussion of a design approach for wings that use vortex flows for improved aerodynamic performance at supersonic speeds is presented.
EPA is taking final action to approve a revision to the Antelope Valley Air Quality Management District (AVAQMD) portion of the California SIP concerning the emissions of volatile organic compounds (VOCs) from motor vehicle assembly coating operations.
EPA and NHTSA, on behalf of the Department of Transportation, have each finalized rules to establish a comprehensive Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for heavy-duty highway vehicles.
75 FR 64318 - Notice of Issuance of Final Determination Concerning Fairplay Legacy Electric Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... H118435 HkP CATEGORY: Marking Mr. Keith Andrews, President Fairplay Electric Cars 743 Horizon Ct., Suite..., requesting a final determination on behalf of Fairplay Electric Cars, LLC (``Fairplay''), pursuant to subpart... Determination Concerning Fairplay Legacy Electric Vehicles AGENCY: U.S. Customs and Border Protection...
Design, fracture control, fabrication, and testing of pressurized space-vehicle structures
NASA Technical Reports Server (NTRS)
Babel, H. W.; Christensen, R. H.; Dixon, H. H.
1974-01-01
The relationship between analysis, design, fabrication, and testing of thin shells is illustrated by Saturn S-IVB, Thor, Delta, and other single-use and reusable large-size cryogenic aluminum tankage. The analyses and design to meet the design requirements are reviewed and include consideration of fracture control, general instability, and other failure modes. The effect of research and development testing on the structure is indicated. It is shown how fabrication and nondestructive and acceptance testing constrain the design. Finally, qualification testing is reviewed to illustrate the extent of testing used to develop the Saturn S-IVB.
Vehicle-to-Vehicle crash avoidance technology : public acceptance final report.
DOT National Transportation Integrated Search
2015-12-01
The Vehicle-to-Vehicle (V2V) Crash Avoidance Public Acceptance report summarizes data from a survey of the current level of awareness and acceptance of V2V technology. The survey was guided by findings from prior studies and 12 focus groups. A total ...
Connected Vehicle Impacts on Transportation Planning—Primer and Final Report.
DOT National Transportation Integrated Search
2016-06-01
The principal objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should be considered across the range of transportation planning processes and products developed...
Yu, Jia; Yu, Zhichao; Tang, Chenlong
2016-07-04
The hot work environment of electronic components in the instrument cabin of spacecraft was researched, and a new thermal protection structure, namely graphite carbon foam, which is an impregnated phase-transition material, was adopted to implement the thermal control on the electronic components. We used the optimized parameters obtained from ANSYS to conduct 2D optimization, 3-D modeling and simulation, as well as the strength check. Finally, the optimization results were verified by experiments. The results showed that after optimization, the structured carbon-based energy-storing composite material could reduce the mass and realize the thermal control over electronic components. This phase-transition composite material still possesses excellent temperature control performance after its repeated melting and solidifying.
This rule provides emission standards and test procedures for the certification of new natural gasfueled, and liquefied petroleum gasfueled light-duty vehicles, light-duty trucks, heavy-duty engines and vehicles, and motorcycles.
78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... [Docket No. NHTSA-2013-0011] RIN 2127-AL11 Federal Motor Vehicle Safety Standards; Air Brake Systems... rule that amended the Federal motor vehicle safety standard for air brake systems by requiring... published a final rule in the Federal Register amending Federal Motor Vehicle Safety Standard (FMVSS) No...
This action changes the regulatory definition of a motorcycle to include 3-wheeled vehicles weighing up to 1749 pounds effective for 1998 and later model year motorcycles for which emission standards are in place.
Analysis and Design of a Speed and Position System for Maglev Vehicles
Dai, Chunhui; Dou, Fengshan; Song, Xianglei; Long, Zhiqiang
2012-01-01
This paper mainly researches one method of speed and location detection for maglev vehicles. As the maglev train doesn't have any physical contact with the rails, it has to use non-contact measuring methods. The technology based on the inductive loop-cable could fulfill the requirement by using an on-board antenna which could detect the alternating magnetic field produced by the loop-cable on rails. This paper introduces the structure of a speed and position system, and analyses the electromagnetic field produced by the loop-cable. The equivalent model of the loop-cable is given and the most suitable component of the magnetic flux density is selected. Then the paper also compares the alternating current (AC) resistance and the quality factor between two kinds of coils which the antenna is composed of. The effect of the rails to the signal receiving is also researched and then the structure of the coils is improved. Finally, considering the common-mode interference, 8-word coils are designed and analyzed. PMID:23012504
Analysis and design of a speed and position system for maglev vehicles.
Dai, Chunhui; Dou, Fengshan; Song, Xianglei; Long, Zhiqiang
2012-01-01
This paper mainly researches one method of speed and location detection for maglev vehicles. As the maglev train doesn't have any physical contact with the rails, it has to use non-contact measuring methods. The technology based on the inductive loop-cable could fulfill the requirement by using an on-board antenna which could detect the alternating magnetic field produced by the loop-cable on rails. This paper introduces the structure of a speed and position system, and analyses the electromagnetic field produced by the loop-cable. The equivalent model of the loop-cable is given and the most suitable component of the magnetic flux density is selected. Then the paper also compares the alternating current (AC) resistance and the quality factor between two kinds of coils which the antenna is composed of. The effect of the rails to the signal receiving is also researched and then the structure of the coils is improved. Finally, considering the common-mode interference, 8-word coils are designed and analyzed.
Following is information for the proposed rule for the Modification of Federal On Board Diagnostic Regulations for Light-Duty Vehicles, Light-Duty Trucks, etc. Includes links to Federal Register and final rule.
Intersection management using in-vehicle speed advisory/adaptation : final report.
DOT National Transportation Integrated Search
2016-08-30
In recent years, connected vehicles (CVs) and automated vehicles (AVs) have emerged as a : realistic and viable transportation option. Research centers and companies have dedicated : substantial efforts to the technology, motivated largely by the pot...
Wayne County, NY, municipal vehicle retrofit project - final report.
DOT National Transportation Integrated Search
2015-07-01
Police Departments struggle with both increasing fuel prices and increasing demands for : greater fuel efficiency and lower emissions. According to vehicle manufacturers, an : average of one gallon of gasoline is burned every hour that a vehicles ...
Measuring pedestrian volumes and conflicts. Volume 2, Accident prediction model
DOT National Transportation Integrated Search
1987-12-01
This final report presents the findings, conclusions, and recommendations of the study conducted to model pedestrian/vehicle accidents. A group-type analysis approach for the prediction of pedestrian/vehicle accidents using pedestrian/vehicle conflic...
Hemmelmayr, Vera C.; Cordeau, Jean-François; Crainic, Teodor Gabriel
2012-01-01
In this paper, we propose an adaptive large neighborhood search heuristic for the Two-Echelon Vehicle Routing Problem (2E-VRP) and the Location Routing Problem (LRP). The 2E-VRP arises in two-level transportation systems such as those encountered in the context of city logistics. In such systems, freight arrives at a major terminal and is shipped through intermediate satellite facilities to the final customers. The LRP can be seen as a special case of the 2E-VRP in which vehicle routing is performed only at the second level. We have developed new neighborhood search operators by exploiting the structure of the two problem classes considered and have also adapted existing operators from the literature. The operators are used in a hierarchical scheme reflecting the multi-level nature of the problem. Computational experiments conducted on several sets of instances from the literature show that our algorithm outperforms existing solution methods for the 2E-VRP and achieves excellent results on the LRP. PMID:23483764
Hemmelmayr, Vera C; Cordeau, Jean-François; Crainic, Teodor Gabriel
2012-12-01
In this paper, we propose an adaptive large neighborhood search heuristic for the Two-Echelon Vehicle Routing Problem (2E-VRP) and the Location Routing Problem (LRP). The 2E-VRP arises in two-level transportation systems such as those encountered in the context of city logistics. In such systems, freight arrives at a major terminal and is shipped through intermediate satellite facilities to the final customers. The LRP can be seen as a special case of the 2E-VRP in which vehicle routing is performed only at the second level. We have developed new neighborhood search operators by exploiting the structure of the two problem classes considered and have also adapted existing operators from the literature. The operators are used in a hierarchical scheme reflecting the multi-level nature of the problem. Computational experiments conducted on several sets of instances from the literature show that our algorithm outperforms existing solution methods for the 2E-VRP and achieves excellent results on the LRP.
NASA Astrophysics Data System (ADS)
Kong, Lingyu; Han, Jiming; Xiong, Wenting; Wang, Hao; Shen, Yaqi; Li, Ying
2017-05-01
Large scale access of electric vehicles will bring huge challenges to the safe operation of the power grid, and it’s important to control the charging and discharging of the electric vehicle. First of all, from the electric quality and network loss, this paper points out the influence on the grid caused by electric vehicle charging behaviour. Besides, control strategy of electric vehicle charging and discharging has carried on the induction and the summary from the direct and indirect control. Direct control strategy means control the electric charging behaviour by controlling its electric vehicle charging and discharging power while the indirect control strategy by means of controlling the price of charging and discharging. Finally, for the convenience of the reader, this paper also proposed a complete idea of the research methods about how to study the control strategy, taking the adaptability and possibility of failure of electric vehicle control strategy into consideration. Finally, suggestions on the key areas for future research are put up.
Spacecraft rendezvous operational considerations affecting vehicle systems design and configuration
NASA Astrophysics Data System (ADS)
Prust, Ellen E.
One lesson learned from Orbiting Maneuvering Vehicle (OMV) program experience is that Design Reference Missions must include an appropriate balance of operations and performance inputs to effectively drive vehicle systems design and configuration. Rendezvous trajectory design is based on vehicle characteristics (e.g., mass, propellant tank size, and mission duration capability) and operational requirements, which have evolved through the Gemini, Apollo, and STS programs. Operational constraints affecting the rendezvous final approach are summarized. The two major objectives of operational rendezvous design are vehicle/crew safety and mission success. Operational requirements on the final approach which support these objectives include: tracking/targeting/communications; trajectory dispersion and navigation uncertainty handling; contingency protection; favorable sunlight conditions; acceptable relative state for proximity operations handover; and compliance with target vehicle constraints. A discussion of the ways each of these requirements may constrain the rendezvous trajectory follows. Although the constraints discussed apply to all rendezvous, the trajectory presented in 'Cargo Transfer Vehicle Preliminary Reference Definition' (MSFC, May 1991) was used as the basis for the comments below.
NASA Astrophysics Data System (ADS)
Dawid, Rys; Piotr, Jaskula
2018-05-01
Oversized heavy duty vehicles occur in traffic very rarely but they reach extremely high weights, even up to 800 tonne. The detrimental impact of these vehicles on pavement structure is much higher than in case of commercial vehicles that comprise typical traffic, thus it is necessary to assess the sensitivity of pavement structure to passage of oversized vehicles. The paper presents results of sample calculations of load equivalency factor of a heavy duty oversized vehicle with usage of mechanistic-empirical approach. The effects of pavement thickness, type of distress (cracking or rutting) and pavement condition (new or old with structural damage) were considered in the paper. Analysis revealed that a single pass of an 800 tonne oversized vehicle is equivalent to pass of up to 377 standard 100 kN axles. Load equivalency factor calculated for thin structures is almost 3 times lower than for thick structures, however, the damage effect caused by one pass of an oversized vehicle is higher in the case of thin structure. Bearing capacity of a pavement structure may be qualified as sufficient for passage of an oversized heavy duty vehicle when the measured deflection, for example in an FWD test, does not exceed the maximum deflections derived from mechanistic-empirical analysis. The paper presents sample calculation of maximum deflections which allow to consider passage of an oversized vehicle as safe over different pavement structures. The paper provides road administration with a practical tool which helps to decide whether to issue a permit of passage for a given oversized vehicle.
DOT National Transportation Integrated Search
2016-02-02
In this paper we examine the implications of leveling the vehicle fuel choice playing field between : PHEV and CNG vehicles in the US. Currently, US policy provides a subsidy of $7,500 for most PHEV : vehicles but nothing for CNG vehicles. We use a m...
77 FR 70538 - Final Decision That Certain Canadian-Certified Vehicles Are Eligible for Importation
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... the United States (77 FR 57641). The notice identified these vehicles as: (a) All passenger cars... the vehicles identified below: FMVSS No. 110 for all passenger cars and all multipurpose passenger... 1, 2009; FMVSS No. 118 for all passenger cars and all multipurpose passenger vehicles, trucks, and...
Electric vehicle charging technologies analysis and standards : final research project report.
DOT National Transportation Integrated Search
2017-02-01
This project has evaluated the technologies and standards associated with Electric : Vehicle Service Equipment (EVSE) and the related infrastructure, and the major cost : issue related to electric vehicle (EV) charging -- the cost of utility power. T...
DOT National Transportation Integrated Search
1995-08-01
KEYWORDS : RESEARCH AND DEVELOPMENT OR R&D, CRASH REDUCTION, FATALITIES REDUCTION, LATERAL GUIDANCE, LONGITUDINAL GUIDANCE, ADVANCED VEHICLE CONTROL & SAFETY SYSTEMS OR AVCSS, ADVANCED VEHICLE CONTROL SYSTEM OR AVCS, INTELLIGENT VEHICLE INITIATIV...
Heavy and overweight vehicle brake testing : combination six-axle, final report.
DOT National Transportation Integrated Search
2017-05-01
The Heavy and Overweight Vehicle Brake Testing (HOVBT) program exists in order to provide information about the effect of gross vehicle weight (GVW) and on braking performance testing included service brake stopping distance tests, constant-pressure ...
NASA Technical Reports Server (NTRS)
McCurry, J.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).
Reducing Structural Weight and Increasing Protection in Simple Structures Subjected to Blast Loads
2014-08-12
centric vehicle structures that make the operation of the vehicle both comfortable and safe for the soldiers. Furthermore, a lighter weight vehicle...supporting forces. Therefore, a key design challenge is to develop lightweight occupant-centric vehicle structures that can provide high levels of...protection against explosive threats. In this paper, concepts for using materials, damping and other mechanisms to design structures with unique dynamic
Damage identification of supporting structures with a moving sensory system
NASA Astrophysics Data System (ADS)
Zhu, X. Q.; Law, S. S.; Huang, L.; Zhu, S. Y.
2018-02-01
An innovative approach to identify local anomalies in a structural beam bridge with an instrumented vehicle moving as a sensory system across the bridge. Accelerations at both the axle and vehicle body are measured from which vehicle-bridge interaction force on the structure is determined. Local anomalies of the structure are estimated from this interaction force with the Newton's iterative method basing on the homotopy continuation method. Numerical results with the vehicle moving over simply supported or continuous beams show that the acceleration responses from the vehicle or the bridge structure are less sensitive to the local damages than the interaction force between the wheel and the structure. Effects of different movement patterns and moving speed of the vehicle are investigated, and the effect of measurement noise on the identified results is discussed. A heavier or slower vehicle has been shown to be less sensitive to measurement noise giving more accurate results.
Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.
2005-01-01
This document is the final report for the project entitled, "Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components," funded under the NRA entitled "Cross-Enterprise Technology Development Program" issued by the NASA Office of Space Science in 2000. The project was funded in 2001, and spanned a four year period from March, 2001 to February, 2005. Through enhancements to and synthesis of unique, state of the art structural mechanics and micromechanics analysis software, a new multi-scale tool has been developed that enables design, analysis, and sizing of advance lightweight composite and smart materials and structures from the full vehicle, to the stiffened structure, to the micro (fiber and matrix) scales. The new software tool has broad, cross-cutting value to current and future NASA missions that will rely on advanced composite and smart materials and structures.
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, technicians check the fit of the end cover on the Ares I-X motor segment. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, the open end of the Ares I-X motor segment is seen without the end cover. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, a technician begins propellant grain inspection of the interior of the Ares I-X motor segment. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, the Ares I-X motor segment waits for inspection after removal of the shipping container. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, a technician performs propellant grain inspection of the inside of the Ares I-X motor segment. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, the rail car cover is moved away from the first Ares I-X motor segment. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, the Ares I-X motor segment is revealed after removal of the rail car cover. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, the rail car cover is removed from the first Ares I-X motor segment. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, the rail car cover is removed from the first Ares I-X motor segment. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
Saving lives through advanced vehicle safety technology : intelligent vehicle initiative
DOT National Transportation Integrated Search
2005-09-01
This final report provides an overview of the intelligent vehicle initiative's (IVI) progress and accomplishments. Authorized in the 1998 Transportation Equity Act for the 21st Century (TEA-21) as part of the U.S. DOT's Intelligent Transportation Sys...
DOT National Transportation Integrated Search
2017-06-01
This project developed a methodology to simulate and analyze roadway traffic patterns : and expected penetration and timing of electric vehicles (EVs) with application directed : toward the requirements for electric vehicle supply equipment (EVSE) si...
Virginia connected vehicle test bed system performance (V2I system performance) : final report.
DOT National Transportation Integrated Search
2016-05-01
This project identified vehicle-to-infrastructure (V2I) communication system limitations on the Northern Virginia Connected Vehicle Test Bed. Real-world historical data were analyzed to determine wireless Dedicated Short Range Communication (DSRC) co...
Train-to-train rear end impact tests - volume II - impact test summaries
DOT National Transportation Integrated Search
1977-03-31
This final report documents these nine tests. Volume I, Pre-Impact Determination of Vehicle Properties, summarizes the vehicle properties obtained prior to the impact tests. These vehicle properties were used in computer simulation of the impact test...
Connected vehicle pilot deployment program phase 1 : lessons learned : final report.
DOT National Transportation Integrated Search
2017-01-30
The Connected Vehicle Pilot Deployment (CV Pilots) Program seeks to spur innovation among early adopters of connected vehicle application concepts. Pilot deployment awards were given to three sites, New York City, Wyoming, and Tampa, FL. The CV pilot...
U32: vehicle stability and dynamics longer combination vehicles final report.
DOT National Transportation Integrated Search
2011-09-01
This study investigated the safety and stability of longer combination vehicles (LCVs), in particular a triple trailer combination behind a commercial tractor, which has more complicated dynamics than the more common tractor in combination with a sin...
An investigation into NVC characteristics of vehicle behaviour using modal analysis
NASA Astrophysics Data System (ADS)
Hanouf, Zahir; Faris, Waleed F.; Ahmad, Kartini
2017-03-01
NVC characterizations of vehicle behavior is one essential part of the development targets in automotive industries. Therefore understanding dynamic behavior of each structural part of the vehicle is a major requirement in improving the NVC characteristics of a vehicle. The main focus of this research is to investigate structural dynamic behavior of a passenger car using modal analysis part by part technique and apply this method to derive the interior noise sources. In the first part of this work computational modal analysis part by part tests were carried out to identify the dynamic parameters of the passenger car. Finite elements models of the different parts of the car are constructed using VPG 3.2 software. Ls-Dyna pre and post processing was used to identify and analyze the dynamic behavior of each car components panels. These tests had successfully produced natural frequencies and their associated mode shapes of such panels like trunk, hood, roof and door panels. In the second part of this research, experimental modal analysis part by part is performed on the selected car panels to extract modal parameters namely frequencies and mode shapes. The study establishes the step-by-step procedures to carry out experimental modal analysis on the car structures, using single input excitation and multi-output responses (SIMO) technique. To ensure the validity of the results obtained by the previous method an inverse method was done by fixing the response and moving the excitation and the results found were absolutely the same. Finally, comparison between results obtained from both analyses showed good similarity in both frequencies and mode shapes. Conclusion drawn from this part of study was that modal analysis part-by-part can be strongly used to establish the dynamic characteristics of the whole car. Furthermore, the developed method is also can be used to show the relationship between structural vibration of the car panels and the passengers’ noise comfort inside the cabin.
Pilot modeling and closed-loop analysis of flexible aircraft in the pitch tracking task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1983-01-01
The issue addressed in the appropriate modeling technique for pilot vehicle analysis of large flexible aircraft, when the frequency separation between the rigid-body mode and the dynamic aeroelastic modes is reduced. This situation was shown to have significant effects on pitch-tracking performance and subjective rating of the task, obtained via fixed base simulation. Further, the dynamics in these cases are not well modeled with a rigid-body-like model obtained by including only 'static elastic' effects, for example. It is shown that pilot/vehicle analysis of this data supports the hypothesis that an appropriate pilot-model structure is an optimal-control pilot model of full order. This is in contrast to the contention that a representative model is of reduced order when the subject is controlling high-order dynamics as in a flexible vehicle. The key appears to be in the correct assessment of the pilot's objective of attempting to control 'rigid-body' vehicle response, a response that must be estimated by the pilot from observations contaminated by aeroelastic dynamics. Finally, a model-based metric is shown to correlate well with the pilot's subjective ratings.
Space transfer vehicle concepts and requirements study. Volume 2, book 3: STV system interfaces
NASA Technical Reports Server (NTRS)
Weber, Gary A.
1991-01-01
This report presents the results of systems analyses and conceptual design of space transfer vehicles (STV). The missions examined included piloted and unpiloted lunar outpost support and spacecraft servicing, and unpiloted payload delivery to various earth and solar orbits. The study goal was to examine the mission requirements and provide a decision data base for future programmatic development plans. The final lunar transfer vehicles provided a wide range of capabilities and interface requirements while maintaining a constant payload mission model. Launch vehicle and space station sensitivity was examined, with the final vehicles as point design covering the range of possible options. Development programs were defined and technology readiness levels for different options were determined. Volume 1 presents the executive summary, volume 2 provides the study results, and volume 3 the cost and WBS data.
Vehicle license plate recognition based on geometry restraints and multi-feature decision
NASA Astrophysics Data System (ADS)
Wu, Jianwei; Wang, Zongyue
2005-10-01
Vehicle license plate (VLP) recognition is of great importance to many traffic applications. Though researchers have paid much attention to VLP recognition there has not been a fully operational VLP recognition system yet for many reasons. This paper discusses a valid and practical method for vehicle license plate recognition based on geometry restraints and multi-feature decision including statistical and structural features. In general, the VLP recognition includes the following steps: the location of VLP, character segmentation, and character recognition. This paper discusses the three steps in detail. The characters of VLP are always declining caused by many factors, which makes it more difficult to recognize the characters of VLP, therefore geometry restraints such as the general ratio of length and width, the adjacent edges being perpendicular are used for incline correction. Image Moment has been proved to be invariant to translation, rotation and scaling therefore image moment is used as one feature for character recognition. Stroke is the basic element for writing and hence taking it as a feature is helpful to character recognition. Finally we take the image moment, the strokes and the numbers of each stroke for each character image and some other structural features and statistical features as the multi-feature to match each character image with sample character images so that each character image can be recognized by BP neural net. The proposed method combines statistical and structural features for VLP recognition, and the result shows its validity and efficiency.
Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin; Hull, Patrick V.
2015-01-01
Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.
Lapteva, Maria; Kalia, Yogeshvar N
2013-08-01
The development of approaches to increase drug solubility and partitioning into the skin is an active area of research in topical and transdermal delivery. In addition to forming spherical aggregates, e.g., conventional oil in water or water in oil microemulsions, the combination of an oil, surfactant and water can create bicontinuous structures where the self-assembly properties of surfactants mean that the boundaries between oil and water are no longer random. This leads to the formation of specific microstructures whose intrinsic properties and interactions with the drug will determine the ability to formulate a given drug, its stability once formulated and its subsequent delivery. The review explores the relationship between the microstructure of biphasic formulations, present in microemulsions and liquid crystalline phases, and drug delivery into the skin. An overview of possible internal microstructures is followed by a summary of the methods used for structure characterization. The final section presents the work to-date and discusses the efficacy of such vehicles in enhancing dermal and transdermal delivery. The combination of water, surface agent and oil generates a broad range of three dimensional structures differing in both chemical and physical proprieties. Knowledge of the microstructure is important in understanding the behavior of a formulation and its effect on drug delivery into the skin. Microstructure complexity, interactions between the drug and the vehicle (i.e., location and mobility) and those between the vehicle and the skin are key determinants of drug delivery.
DOT National Transportation Integrated Search
2016-06-01
The transit industry has always shown a great interest in the adoption of transformational safety technologies to improve the safety of its passengers and drivers, as well as all road users including pedestrians. Due to its unique characteristics and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... amendments to the Federal motor vehicle safety standards on platform lift systems for motor vehicles. The... [email protected] . For legal issues, you may contact David Jasinski, Office of the Chief Counsel, NCC... in the Federal Register a final rule establishing FMVSS No. 403, Platform lift systems for motor...
Design of a fast crew transfer vehicle to Mars
NASA Technical Reports Server (NTRS)
1988-01-01
A final report is made on the trajectory and vehicle requirements for a fast crew transfer vehicle to Mars which will complete an Earth to Mars (and Mars to Earth) transfer in 150 days and will have a stay time at Mars of 40 days. This vehicle will maximize the crew's effectiveness on Mars by minimizing detrimental physiological effects such as bone demineralization and loss of muscle tone caused by long period exposure to zero gravity and radiation from cosmic rays and solar flares. The crew transfer vehicle discussed will complete the second half of a Split Mission to Mars. In the Split Mission, a slow, unmanned cargo vehicle, nicknamed the Barge, is sent to Mars ahead of the crew vehicle. Once the Barge is in orbit around Mars, the fast crew vehicle will be launched to rendezvous with the Barge in Mars orbit. The vehicle presented is designed to carry six astronauts for a mission duration of one year. The vehicle uses a chemical propulsion system and a nuclear power system. Four crew modules, similar to the proposed Space Station Common Modules, are used to house the crew and support equipment during the mission. The final design also includes a command module that is shielded to protect the crew during radiation events.
DOT National Transportation Integrated Search
1978-01-01
This report deals with the Periodic Motor Vehicle Inspection Management Evaluation System software documentation and implementation procedures. A companion report entitled "A Management System for Evaluating the Virginia Periodic Motor Vehicle Inspec...
The National LEV program demonstrates how cooperative, partnership efforts can produce a smarter, cheaper program that reduces regulatory burden while increasing protection of the environment and public health.
Video Vehicle Detector Verification System (V2DVS) operators manual and project final report.
DOT National Transportation Integrated Search
2012-03-01
The accurate detection of the presence, speed and/or length of vehicles on roadways is recognized as critical for : effective roadway congestion management and safety. Vehicle presence sensors are commonly used for traffic : volume measurement and co...
Integrated vehicle-based safety systems field operational test final program report.
DOT National Transportation Integrated Search
2011-06-01
"This document presents results from the light-vehicle and heavy-truck field operational tests performed as part of the Integrated Vehicle-Based Safety Systems (IVBSS) program. The findings are the result of analyses performed by the University of Mi...
Integrated Vehicle-Based Safety Systems Field Operational Test : Final Program Report
DOT National Transportation Integrated Search
2011-06-01
This document presents results from the light-vehicle and heavy-truck field operational tests performed as part of the Integrated Vehicle-Based Safety Systems (IVBSS) program. The findings are the result of analyses performed by the University of Mic...
Passive Earth Entry Vehicle Landing Test
NASA Technical Reports Server (NTRS)
Kellas, Sotiris
2017-01-01
Two full-scale passive Earth Entry Vehicles (EEV) with realistic structure, surrogate sample container, and surrogate Thermal Protection System (TPS) were built at NASA Langley Research Center (LaRC) and tested at the Utah Test and Training Range (UTTR). The main test objective was to demonstrate structural integrity and investigate possible impact response deviations of the realistic vehicle as compared to rigid penetrometer responses. With the exception of the surrogate TPS and minor structural differences in the back shell construction, the two test vehicles were identical in geometry and both utilized the Integrated Composite Stiffener Structure (ICoSS) structural concept in the forward shell. The ICoSS concept is a lightweight and highly adaptable composite concept developed at NASA LaRC specifically for entry vehicle TPS carrier structures. The instrumented test vehicles were released from a helicopter approximately 400 m above ground. The drop height was selected such that at least 98% of the vehicles terminal velocity would be achieved. While drop tests of spherical penetrometers and a low fidelity aerodynamic EEV model were conducted at UTTR in 1998 and 2000, this was the first time a passive EEV with flight-like structure, surrogate TPS, and sample container was tested at UTTR for the purpose of complete structural system validation. Test results showed that at a landing vertical speed of approximately 30 m/s, the test vehicle maintained structural integrity and enough rigidity to penetrate the sandy clay surface thus attenuating the landing load, as measured at the vehicle CG, to less than 600 g. This measured deceleration was found to be in family with rigid penetrometer test data from the 1998 and 2000 test campaigns. Design implications of vehicle structure/soil interaction with respect to sample container and sample survivability are briefly discussed.
NASA Astrophysics Data System (ADS)
Roman, C. N.; Reves-Sohn, R.; Singh, H.; Humphris, S.
2005-12-01
The spatial resolution of microbathymetry maps created using robotic vehicles such as ROVs, AUVs and manned submersibles in the deep ocean is currently limited by the accuracy of the vehicle navigation data. Errors in the vehicle position estimate commonly exceed the ranging errors of the acoustic mapping sensor itself, which creates inconsistency in the map making process and produces artifacts that lower resolution and distort map integrity. We present a methodology for producing self-consistent maps and improving vehicle position estimation by exploiting accurate local navigation and utilizing terrain relative measurements. The complete map is broken down into individual "sub-maps'', which are generated using short term Doppler based navigation. The sub-maps are pairwise registered to constrain the vehicle position estimates by matching terrain that has been imaged multiple times. This procedure is implemented using a delayed state Kalman filter to incorporate the sub-map registrations as relative position measurements between previously visited vehicle locations. Archiving of previous positions in a filter state vector allows for continual adjustment of the sub-map locations. The terrain registration is accomplished using a two dimensional correlation and a six degree of freedom point cloud alignment method tailored to bathymetric data. This registration procedure is applicable to fully 3 dimensional complex underwater environments. The complete bathymetric map is then created from the union of all sub-maps that have been aligned in a consistent manner. The method is applied to an SM2000 multibeam survey of the TAG hydrothermal structure on the Mid-Atlantic Ridge at 26(°)N using the Jason II ROV. The survey included numerous crossing tracklines designed to test this algorithm, and the final gridded bathymetry data is sub-meter accurate. The high-resolution map has allowed for the identification of previously unrecognized fracture patterns associated with flow focusing at TAG, as well as imaging of fine-scale features such as individual sulfide talus blocks and ODP re-entry cones.
NASA Technical Reports Server (NTRS)
Traversi, M.; Piccolo, R.
1980-01-01
Tradeoff study activities and the analysis process used are described with emphasis on (1) review of the alternatives; (2) vehicle architecture; and (3) evaluation of the propulsion system alternatives; interim results are presented for the basic hybrid vehicle characterization; vehicle scheme development; propulsion system power and transmission ratios; vehicle weight; energy consumption and emissions; performance; production costs; reliability, availability and maintainability; life cycle costs, and operational quality. The final vehicle conceptual design is examined.
NASA Astrophysics Data System (ADS)
Nor, M. K. Mohd; Noordin, A.; Ruzali, M. F. S.; Hussen, M. H.; Mustapa@Othman, N.
2017-04-01
Simple Structural Surfaces (SSS) method is offered as a means of organizing the process for rationalizing the basic vehicle body structure load paths. The application of this simplified approach is highly beneficial in the development of modern passenger car structure design. In Malaysia, the SSS topic has been widely adopted and seems compulsory in various automotive programs related to automotive vehicle structures in many higher education institutions. However, there is no real physical model of SSS available to gain considerable insight and understanding into the function of each major subassembly in the whole vehicle structures. Based on this motivation, a real physical SSS of sedan model and the corresponding model vehicle tests of bending is proposed in this work. The proposed approach is relatively easy to understand as compared to Finite Element Method (FEM). The results prove that the proposed vehicle model test is useful to physically demonstrate the importance of providing continuous load path using the necessary structural components within the vehicle structures. It is clearly observed that the global bending stiffness reduce significantly when more panels are removed from the complete SSS model. The analysis shows the front parcel shelf is an important subassembly to sustain bending load.
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Bill McArthur, (left) Space Shuttle Program Orbiter Projects manager; John Casper, Assistant Space Shuttle Program manager; John Shannon, Space Shuttle Program manager and Canadian Space Agency astronaut Chris Hadfield attend a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
Cyber Technology for Materials and Structures in Aeronautics and Aerospace
NASA Technical Reports Server (NTRS)
Pipes, R. Byron
2002-01-01
The evolution of composites applications in aeronautics from 1970 to the present is discussed. The barriers and challenges to economic application and to certification are presented and recommendations for accelerated development are outlined. The potential benefits of emerging technologies to aeronautics and their foundation in composite materials are described and the resulting benefits in vehicle take off gross weight are quantified. Finally, a 21st century vision for aeronautics in which human mobility is increased by an order of magnitude is articulated.
Accounting for electric vehicles in air quality conformity \\0x2012 final report.
DOT National Transportation Integrated Search
2014-12-01
Electric vehicles (EVs) obtain at least a part of the energy required for their propulsion from electricity. The : market for EVs, including hybrid, plug-in hybrid, and battery electric vehicles continues to grow, as many : new and affordable models ...
Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)
NASA Technical Reports Server (NTRS)
Tow, David
2009-01-01
NASA Dryden started working towards a single vehicle enhanced flight termination system (EFTS) in January 2008. NASA and AFFTC combined their efforts to work towards final operating capability for multiple vehicle and multiple missions simultaneously, to be completed by the end of 2011. Initially, the system was developed to support one vehicle and one frequency per mission for unmanned aerial vehicles (UAVs) at NASA Dryden. By May 2008 95% of design and hardware builds were completed, however, NASA Dryden's change of software safety scope and requirements caused delays after May 2008. This presentation reviews the initial and final operating capabilities for the Advanced Command Destruct System (ACDS), including command controller and configuration software development. A requirements summary is also provided.
Recursive Gradient Estimation Using Splines for Navigation of Autonomous Vehicles.
1985-07-01
AUTONOMOUS VEHICLES C. N. SHEN DTIC " JULY 1985 SEP 1 219 85 V US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER LARGE CALIBER WEAPON SYSTEMS LABORATORY I...GRADIENT ESTIMATION USING SPLINES FOR NAVIGATION OF AUTONOMOUS VEHICLES Final S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(q) 8. CONTRACT OR GRANT NUMBER...which require autonomous vehicles . Essential to these robotic vehicles is an adequate and efficient computer vision system. A potentially more
76 FR 2598 - Final Theft Data; Motor Vehicle Theft Prevention Standard
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... ``Quattro'' and ``Avant'' should be deleted from the Volkswagen and Audi vehicle line nomenclature. The..., Quattro and Avant have been deleted from the vehicle line nomenclature for the Volkswagen and Audi vehicle lines. Therefore, the entry for the Audi A6/A6 Quattro/S6/ S6 Avant has been changed to the Audi A6 and...
NASA Technical Reports Server (NTRS)
Zwack, M. R.; Dees, P. D.; Thomas, H. D.; Polsgrove, T. P.; Holt, J. B.
2017-01-01
The primary purpose of the multiPOST tool is to enable the execution of much larger sets of vehicle cases to allow for broader trade space exploration. However, this exploration is not achieved solely with the increased case throughput. The multiPOST tool is applied to carry out a Design of Experiments (DOE), which is a set of cases that have been structured to capture a maximum amount of information about the design space with minimal computational effort. The results of the DOE are then used to fit a surrogate model, ultimately enabling parametric design space exploration. The approach used for the MAV study includes both DOE and surrogate modeling. First, the primary design considerations for the vehicle were used to develop the variables and ranges for the multiPOST DOE. The final set of DOE variables were carefully selected in order to capture the desired vehicle trades and take into account any special considerations for surrogate modeling. Next, the DOE sets were executed through multiPOST. Following successful completion of the DOE cases, a manual verification trial was performed. The trial involved randomly selecting cases from the DOE set and running them by hand. The results from the human analyst's run and multiPOST were then compared to ensure that the automated runs were being executed properly. Completion of the verification trials was then followed by surrogate model fitting. After fits to the multiPOST data were successfully created, the surrogate models were used as a stand-in for POST2 to carry out the desired MAV trades. Using the surrogate models in lieu of POST2 allowed for visualization of vehicle sensitivities to the input variables as well as rapid evaluation of vehicle performance. Although the models introduce some error into the output of the trade study, they were very effective at identifying areas of interest within the trade space for further refinement by human analysts. The next section will cover all of the ground rules and assumptions associated with DOE setup and multiPOST execution. Section 3.1 gives the final DOE variables and ranges, while section 3.2 addresses the POST2 specific assumptions. The results of the verification trials are given in section 4. Section 5 gives the surrogate model fitting results, including the goodness-of-fit metrics for each fit. Finally, the MAV specific results are discussed in section 6.
CFD based aerodynamic modeling to study flight dynamics of a flapping wing micro air vehicle
NASA Astrophysics Data System (ADS)
Rege, Alok Ashok
The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better aerodynamic data. The second part of research involves preliminary work required to generate new aerodynamic data for the nonlinear model. First, a computational mesh is created over a 2-D wing section of the MAV model. A finite volume based computational flow solver is used to test different flapping trajectories of the wing section. Finally, a parametric study of the results obtained from the tests is performed.
Heterogeneous Teams of Autonomous Vehicles: Advanced Sensing & Control
2009-03-01
Final Technical 3. DATES COVERED (From To) 7/1/05-12/31708 4. TITLE AND SUBTITLE Heterogeneous Teams of Autonomous Vehicles Advanced Sensing...assimilating data from underwater and surface autonomous vehicles in addition to the usual sources of Eulerian and Lagrangian systems into a small scale
Methodologies used to estimate and forecast vehicle miles traveled (VMT) : final report.
DOT National Transportation Integrated Search
2016-07-01
Vehicle miles traveled (VMT) is a measure used in transportation planning for a variety of purposes. It measures the amount of travel for all vehicles in a geographic region over a given period of time, typically a one-year period. VMT is calculated ...
DOT National Transportation Integrated Search
2016-02-15
This research study focused on the development and subsequent evaluation of an in-vehicle Active Traffic and Demand Management (ATDM) system deployed on Interstate 66 in Northern Virginia. The ATDM elements inside the vehicle allowed drivers to remai...
DOT National Transportation Integrated Search
2016-08-04
This document is the Task 7 Application Deployment Plan deliverable for the New York City Connected Vehicle Pilot Deployment. It describes the process that the deployment team will follow to acquire and test the connected vehicle safety applications....
DOT National Transportation Integrated Search
2016-01-01
Vehicle emissions occupy a considerable share of emission inventories in the United States. One of the approaches taken to minimize vehicle emissions is eco-driving. Supported by advanced ITS technologies, it is available to provide the real-time eco...
Development of the PRSEUS Multi-Bay Pressure Box for a Hybrid Wing Body Vehicle
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Velicki, Alexander
2015-01-01
NASA has created the Environmentally Responsible Aviation Project to explore and document the feasibility, benefits, and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. Although such novel configurations like the Hybrid Wing Body (HWB) offer better aerodynamic performance as compared to traditional tube-and-wing aircraft, their blended wing shapes also pose significant new design challenges. Developing an improved structural concept that is capable of meeting the structural weight fraction allocated for these non-circular pressurized cabins is the primary obstacle in implementing large lifting-body designs. To address this challenge, researchers at NASA and The Boeing Company are working together to advance new structural concepts like the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), which is an integrally stiffened panel design that is stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. The large-scale multi-bay fuselage test article described in this paper is the final specimen in a building-block test program that was conceived to demonstrate the feasibility of meeting the structural weight goals established for the HWB pressure cabin.
Watzek, Nico; Berger, Franz; Kolle, Susanne Noreen; Kaufmann, Tanja; Becker, Matthias; van Ravenzwaay, Bennard
2017-04-01
In the EU, chemicals with a production or import volume in quantities of one metric ton per year or more have to be tested for skin sensitizing properties under the REACH regulation. The murine Local Lymph Node Assay (LLNA) and its modifications are widely used to fulfil the data requirement, as it is currently considered the first-choice method for in vivo testing to cover this endpoint. This manuscript describes a case study highlighting the importance of understanding the chemistry of the test material during testing for 'skin sensitization' of MCDA (mixture of 2,4- and 2,6-diamino-methylcyclohexane) with particular focus on the vehicle used. While the BrdU-ELISA modification of the LLNA using acetone/olive oil (AOO) as vehicle revealed expectable positive results. However, the concentration control analysis unexpectedly revealed an instability of MCDA in the vehicle AOO. Further studies on the reactivity showed MCDA to rapidly react with AOO under formation of various imine structures, which might have caused the positive LLNA result. The repetition of the LLNA using propylene glycol (PG) as vehicle did not confirm the positive results of the LLNA using AOO. Finally, a classification of MCDA as skin sensitizer according to the Globally Harmonized System (GHS) was not justified. Copyright © 2017 Elsevier Inc. All rights reserved.
A hierarchical estimator development for estimation of tire-road friction coefficient
Zhang, Xudong; Göhlich, Dietmar
2017-01-01
The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified “magic formula” tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method. PMID:28178332
NASA Astrophysics Data System (ADS)
Khatri, Jaidev
This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and finite element methods are needed for more precise intermediate and final evaluations. The methods presented within this thesis were shown to be useful for guiding initial control relevant design. The model was used to examine the vehicle's static and dynamic characteristics over the vehicle's trimmable region. The vehicle has significant longitudinal coupling between the fuel equivalency ratio (FER) and the flight path angle (FPA). For control system design, a two-input two-output plant (FER - elevator to speed-FPA) with 11 states (including 3 flexible modes) was used. Velocity, FPA, and pitch were assumed to be available for feedback. Aerodynamic heat modeling and design for the assumed TPS was incorporated to original Bolender's model to study the change in static and dynamic properties. De-centralized control stability, feasibility and limitations issues were dealt with the change in TPS elasticity, mass and physical dimension. The impact of elasticity due to TPS mass, TPS physical dimension as well as prolonged heating was also analyzed to understand performance limitations of de-centralized control designed for nominal model.
The ram accelerator - A chemically driven mass launcher
NASA Technical Reports Server (NTRS)
Kaloupis, P.; Bruckner, A. P.
1988-01-01
The ram accelerator, a chemically propelled mass driver, is presented as a viable new approach for directly launching acceleration-insensitive payloads into low earth orbit. The propulsion principle is similar to that of a conventional air-breathing ramjet. The cargo vehicle resembles the center-body of a ramjet and travels through a tube filled with a pre-mixed fuel and oxidizer mixture. The launch tube acts as the outer cowling of the ramjet and the combustion process travels with the vehicle. Two drive modes of the ram accelerator propulsion system are described, which when used in sequence are capable of accelerating the vehicle to as high as 10 km/sec. The requirements are examined for placing a 2000 kg vehicle into a 500 km orbit with a minimum of on-board rocket propellant for circularization maneuvers. It is shown that aerodynamic heating during atmospheric transit results in very little ablation of the nose. An indirect orbital insertion scenario is selected, utilizing a three step maneuver consisting of two burns and aerobraking. An on-board propulsion system using storable liquid propellants is chosen in order to minimize propellant mass requirements, and the use of a parking orbit below the desired final orbit is suggested as a means to increase the flexibility of the mass launch concept. A vehicle design using composite materials is proposed that will best meet the structural requirements, and a preliminary launch tube design is presented.
A hierarchical estimator development for estimation of tire-road friction coefficient.
Zhang, Xudong; Göhlich, Dietmar
2017-01-01
The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.
Summary of 2006 to 2010 FPMU Measurements of International Space Station Frame Potential Variations
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Wright, Kenneth H., Jr.; Chandler, Michael O.; Coffey, Victoria N.; Craven, Paul D.; Schneider, Todd A.; Parker, Linda N.; Ferguson, Dale C.; Koontz, Steve L.; Alred, John W.
2010-01-01
Electric potential variations on the International Space Station (ISS) structure in low Earth orbit are dominated by contributions from interactions of the United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment and inductive potentials generated by motion of the large vehicle across the Earth?s magnetic field. The Floating Potential Measurement Unit (FPMU) instrument suite comprising two Langmuir probes, a plasma impedance probe, and a floating potential probe was deployed in August 2006 for use in characterizing variations in ISS potential, the state of the ionosphere along the ISS orbit and its effect on ISS charging, evaluating effects of payloads and visiting vehicles, and for supporting ISS plasma hazard assessments. This presentation summarizes observations of ISS frame potential variations obtained from the FPMU from deployment in 2006 through the current time. We first describe ISS potential variations due to current collection by solar arrays in the day time sector of the orbit including eclipse exit and entry charging events, potential variations due to plasma environment variations in the equatorial anomaly, and visiting vehicles docked to the ISS structure. Next, we discuss potential variations due to inductive electric fields generated by motion of the vehicle across the geomagnetic field and the effects of external electric fields in the ionosphere. Examples of night time potential variations at high latitudes and their possible relationship to auroral charging are described and, finally, we demonstrate effects on the ISS potential due to European Space Agency and US plasma contactor devices.
Design and Error Analysis of a Vehicular AR System with Auto-Harmonization.
Foxlin, Eric; Calloway, Thomas; Zhang, Hongsheng
2015-12-01
This paper describes the design, development and testing of an AR system that was developed for aerospace and ground vehicles to meet stringent accuracy and robustness requirements. The system uses an optical see-through HMD, and thus requires extremely low latency, high tracking accuracy and precision alignment and calibration of all subsystems in order to avoid mis-registration and "swim". The paper focuses on the optical/inertial hybrid tracking system and describes novel solutions to the challenges with the optics, algorithms, synchronization, and alignment with the vehicle and HMD systems. Tracker accuracy is presented with simulation results to predict the registration accuracy. A car test is used to create a through-the-eyepiece video demonstrating well-registered augmentations of the road and nearby structures while driving. Finally, a detailed covariance analysis of AR registration error is derived.
NASA Technical Reports Server (NTRS)
Glass, David E.
2008-01-01
Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this paper is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components. The two primary technical challenges impacting the use of CMC TPS and hot structures for hypersonic vehicles are environmental durability and fabrication, and will be discussed briefly.
Madec, Simon; Baret, Fred; de Solan, Benoît; Thomas, Samuel; Dutartre, Dan; Jezequel, Stéphane; Hemmerlé, Matthieu; Colombeau, Gallian; Comar, Alexis
2017-01-01
The capacity of LiDAR and Unmanned Aerial Vehicles (UAVs) to provide plant height estimates as a high-throughput plant phenotyping trait was explored. An experiment over wheat genotypes conducted under well watered and water stress modalities was conducted. Frequent LiDAR measurements were performed along the growth cycle using a phénomobile unmanned ground vehicle. UAV equipped with a high resolution RGB camera was flying the experiment several times to retrieve the digital surface model from structure from motion techniques. Both techniques provide a 3D dense point cloud from which the plant height can be estimated. Plant height first defined as the z -value for which 99.5% of the points of the dense cloud are below. This provides good consistency with manual measurements of plant height (RMSE = 3.5 cm) while minimizing the variability along each microplot. Results show that LiDAR and structure from motion plant height values are always consistent. However, a slight under-estimation is observed for structure from motion techniques, in relation with the coarser spatial resolution of UAV imagery and the limited penetration capacity of structure from motion as compared to LiDAR. Very high heritability values ( H 2 > 0.90) were found for both techniques when lodging was not present. The dynamics of plant height shows that it carries pertinent information regarding the period and magnitude of the plant stress. Further, the date when the maximum plant height is reached was found to be very heritable ( H 2 > 0.88) and a good proxy of the flowering stage. Finally, the capacity of plant height as a proxy for total above ground biomass and yield is discussed.
Madec, Simon; Baret, Fred; de Solan, Benoît; Thomas, Samuel; Dutartre, Dan; Jezequel, Stéphane; Hemmerlé, Matthieu; Colombeau, Gallian; Comar, Alexis
2017-01-01
The capacity of LiDAR and Unmanned Aerial Vehicles (UAVs) to provide plant height estimates as a high-throughput plant phenotyping trait was explored. An experiment over wheat genotypes conducted under well watered and water stress modalities was conducted. Frequent LiDAR measurements were performed along the growth cycle using a phénomobile unmanned ground vehicle. UAV equipped with a high resolution RGB camera was flying the experiment several times to retrieve the digital surface model from structure from motion techniques. Both techniques provide a 3D dense point cloud from which the plant height can be estimated. Plant height first defined as the z-value for which 99.5% of the points of the dense cloud are below. This provides good consistency with manual measurements of plant height (RMSE = 3.5 cm) while minimizing the variability along each microplot. Results show that LiDAR and structure from motion plant height values are always consistent. However, a slight under-estimation is observed for structure from motion techniques, in relation with the coarser spatial resolution of UAV imagery and the limited penetration capacity of structure from motion as compared to LiDAR. Very high heritability values (H2> 0.90) were found for both techniques when lodging was not present. The dynamics of plant height shows that it carries pertinent information regarding the period and magnitude of the plant stress. Further, the date when the maximum plant height is reached was found to be very heritable (H2> 0.88) and a good proxy of the flowering stage. Finally, the capacity of plant height as a proxy for total above ground biomass and yield is discussed. PMID:29230229
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... Hatteras National Seashore Off-Road Vehicle Management Plan AGENCY: National Park Service, Interior. ACTION... Off-Road Vehicle Management Plan. SUMMARY: Pursuant to the National Environmental Policy Act of 1969... environmental impact statement (FEIS) for the proposed Cape Hatteras National Seashore (Seashore) Off-Road...
40 CFR 51.365 - Data collection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... test start time and the time final emission scores are determined; (6) Vehicle Identification Number... enforcement of an I/M program. The program shall gather test data on individual vehicles, as well as quality... equipment is required or those test procedures relying upon a vehicle's OBD system). (a) Test data. The goal...
40 CFR 51.365 - Data collection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... test start time and the time final emission scores are determined; (6) Vehicle Identification Number... enforcement of an I/M program. The program shall gather test data on individual vehicles, as well as quality... equipment is required or those test procedures relying upon a vehicle's OBD system). (a) Test data. The goal...
DOT National Transportation Integrated Search
1977-03-01
This final report documents these tests. Volume I, Pre-Impact Determination of Vehicle Properties, summarizes the vehicle properities obtained prior to the impact tests. These vehicle properties were used in computer simulation of the impact tests an...
40 CFR 63.3110 - What notifications must I submit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... elect to include the surface coating of new other motor vehicle bodies, body parts for new other motor vehicles, parts for new other motor vehicles, or aftermarket repair or replacement parts for other motor... volume of applied coating solids from: (i) The combined primer-surfacer, topcoat, final repair, glass...
DOT National Transportation Integrated Search
2014-08-31
This research is focused on developing and evaluating new traffic control strategies to enable emergency response vehicles (EVs) to travel in transportation networks as quickly as possible while the disruption to the rest of the traffic is kept to a ...
40 CFR 85.1505 - Final admission of certified vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 85.1505 Section 85.1505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor Vehicles and Motor... vehicle or engine from the previous test (e.g., adjusting the RPM, timing, air-to-fuel ratio, etc.) other...
A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles
2013-09-01
Autonomous Vehicles Joseph DiVita, PhD Robert L. Morris Maria Olinda Rodas SSC Pacific Approved...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 09–2013 Final A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles Joseph...Mission Area: Command and Control, Queueing Model; Supervisory Control; Unmanned Autonomous Vehicles M. O. Rodas U U U U 38 (619)
Numerical simulation of vehicle crashworthiness and occupant protection
NASA Astrophysics Data System (ADS)
Saha, Nripen K.
1993-08-01
Numerical simulation of vehicle crashworthiness and occupant protection are addressed. The vehicle crashworthiness design objectives are to design the vehicle structure for optimum impact energy absorption, and to design the restraint system (seatbelts, airbags, bolsters, etc.) for optimum occupant protection. The following approaches are taken; a major part of the impact energy is to be absorbed by the vehicle structure; the restraint components will provide protection against the remaining crash energy; certain vehicle components are designed to deform under specific types and speeds of impact in a desired mode for sound energy management; structural components such as front side rails, rear rails, door structure and pillars undergo large amounts of deformation; and with properly designed geometry and material these components assist in mitigating the effects of impact.
Numerical simulation of vehicle crashworthiness and occupant protection
NASA Technical Reports Server (NTRS)
Saha, Nripen K.
1993-01-01
Numerical simulation of vehicle crashworthiness and occupant protection are addressed. The vehicle crashworthiness design objectives are to design the vehicle structure for optimum impact energy absorption, and to design the restraint system (seatbelts, airbags, bolsters, etc.) for optimum occupant protection. The following approaches are taken; a major part of the impact energy is to be absorbed by the vehicle structure; the restraint components will provide protection against the remaining crash energy; certain vehicle components are designed to deform under specific types and speeds of impact in a desired mode for sound energy management; structural components such as front side rails, rear rails, door structure and pillars undergo large amounts of deformation; and with properly designed geometry and material these components assist in mitigating the effects of impact.
2009-03-26
CAPE CANAVERAL, Fla. –In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, the end of the Ares I-X motor segment is removed to allow propellant grain inspection of the interior. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, technicians prepare to remove the cover from the end of the Ares I-X motor segment for propellant grain inspection of the interior. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
Study and description of hydrogels and organogels as vehicles for cosmetic active ingredients.
Morales, M E; Gallardo, V; Clarés, B; García, M B; Ruiz, M A
2009-01-01
Cellulite, a clinical syndrome mainly affecting women, involves specific changes in conjunctive dermic and subcutaneous tissue, leading to vascular and hypertrophic alterations in adipose tissues and the consequent alteration of tissue structure. This paper describes the design of hydrogels and pluronic-lecithin organogels elaborated as vehicles of Aloe vera (Aloe vera linné) and Hydrocotyle asiatica (Centella asiatica) for the treatment of cellulite. The objective of this work was to carry out a complete evaluation of the proposed formulae through the study of the organoleptic and rheological properties of the formulae. Our work revealed that, in appearance, hydrogels show better organoleptic characteristics than organogels. On the other hand, from a rheological point of view, both hydrogels and organogels display a plastic behavior. However, the main difference between the two is that the more complex internal structure of the organogel bestows it with more viscosity. Finally, in vitro tests with Franz-type diffusion cells revealed that the release of cosmetic active principle from the tested excipients was appropriate, both in terms of magnitude and velocity.
NASA Astrophysics Data System (ADS)
Yang, Xudong; Sun, Lingyu; Zhang, Cheng; Li, Lijun; Dai, Zongmiao; Xiong, Zhenkai
2018-03-01
The application of polymer composites as a substitution of metal is an effective approach to reduce vehicle weight. However, the final performance of composite structures is determined not only by the material types, structural designs and manufacturing process, but also by their mutual restrict. Hence, an integrated "material-structure-process-performance" method is proposed for the conceptual and detail design of composite components. The material selection is based on the principle of composite mechanics such as rule of mixture for laminate. The design of component geometry, dimension and stacking sequence is determined by parametric modeling and size optimization. The selection of process parameters are based on multi-physical field simulation. The stiffness and modal constraint conditions were obtained from the numerical analysis of metal benchmark under typical load conditions. The optimal design was found by multi-discipline optimization. Finally, the proposed method was validated by an application case of automotive hatchback using carbon fiber reinforced polymer. Compared with the metal benchmark, the weight of composite one reduces 38.8%, simultaneously, its torsion and bending stiffness increases 3.75% and 33.23%, respectively, and the first frequency also increases 44.78%.
Application of Carbon Fibre Truss Technology to the Fuselage Structure of the SKYLON Spaceplane
NASA Astrophysics Data System (ADS)
Varvill, R.; Bond, A.
A reusable SSTO spaceplane employing dual mode airbreathing/rocket engines, such as SKYLON, has a voluminous fuselage in order to accommodate the considerable quantities of hydrogen fuel needed for the ascent. The loading intensity which this fuselage has to withstand is relatively low due to the modest in-flight inertial accelerations coupled with the very low density of liquid hydrogen. Also the requirement to accommo- date considerable temperature differentials between the internal cryogenic tankage and the aerodynamically heated outer skin of the vehicle imposes an additional design constraint that results in an optimum fuselage structural concept very different to conventional aircraft or rocket practice. Several different structural con- cepts exist for the primary loadbearing structure. This paper explores the design possibilities of the various types and explains why an independent near ambient temperature CFRP truss structure was selected for the SKYLON vehicle. The construction of such a truss structure, at a scale not witnessed since the days of the airship, poses a number of manufacturing and design difficulties. In particular the construction of the nodes and their attachment to the struts is considered to be a key issue. This paper describes the current design status of the overall truss geometry, strut construction and manufacturing route, and the final method of assembly. The results of a preliminary strut and node test programme are presented which give confidence that the design targets will eventually be met.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-18
...This document contains corrections to the final rule regulation which was published in the Federal Register of Monday, October 15, 2012 (77 FR 62624). The final rule established fuel economy standards for light-duty vehicles under the Energy Policy and Conservation Act (EPCA), as amended by the Energy Independence and Security Act (EISA), 49 U.S.C. 32901 et seq.
Astronaut John Young drives Lunar Roving Vehicle to final parking place
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, drives the Lunar Roving Vehicle (LRV) to its final parking place near the end of the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. Astronaut Charles M. Duke Jr., lunar module pilot, took this photograph looking southward. The flank of Stone Mountain can be seen on the horizon at left.
NASA Technical Reports Server (NTRS)
Masubuchi, K.; Agapakis, J. E.; Debiccari, A.; Vonalt, C.
1983-01-01
In order to establish permanent human presence in space technologies of constructing and repairing space stations and other space structures must be developed. Most construction jobs are performed on earth and the fabricated modules will then be delivered to space by the Space Shuttle. Only limited final assembly jobs, which are primarily mechanical fastening, will be performed on site in space. Such fabrication plans, however, limit the designs of these structures, because each module must fit inside the transport vehicle and must withstand launching stresses which are considerably high. Large-scale utilization of space necessitates more extensive construction work on site. Furthermore, continuous operations of space stations and other structures require maintenance and repairs of structural components as well as of tools and equipment on these space structures. Metal joining technologies, and especially high-quality welding, in space need developing.
Materials and structures for stretchable energy storage and conversion devices.
Xie, Keyu; Wei, Bingqing
2014-06-11
Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio-integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detection of vehicle parts based on Faster R-CNN and relative position information
NASA Astrophysics Data System (ADS)
Zhang, Mingwen; Sang, Nong; Chen, Youbin; Gao, Changxin; Wang, Yongzhong
2018-03-01
Detection and recognition of vehicles are two essential tasks in intelligent transportation system (ITS). Currently, a prevalent method is to detect vehicle body, logo or license plate at first, and then recognize them. So the detection task is the most basic, but also the most important work. Besides the logo and license plate, some other parts, such as vehicle face, lamp, windshield and rearview mirror, are also key parts which can reflect the characteristics of vehicle and be used to improve the accuracy of recognition task. In this paper, the detection of vehicle parts is studied, and the work is novel. We choose Faster R-CNN as the basic algorithm, and take the local area of an image where vehicle body locates as input, then can get multiple bounding boxes with their own scores. If the box with maximum score is chosen as final result directly, it is often not the best one, especially for small objects. This paper presents a method which corrects original score with relative position information between two parts. Then we choose the box with maximum comprehensive score as the final result. Compared with original output strategy, the proposed method performs better.
NASA Technical Reports Server (NTRS)
Olds, John R.; Tooley, Jeffrey
1999-01-01
This report summarizes key activities conducted in the third and final year of the cooperative agreement NCC1-229 entitled "Improving Conceptual Design for Launch Vehicles." This project has been funded by the Vehicle Analysis Branch at NASA's Langley Research Center in Hampton, VA. Work has been performed by the Space Systems Design Lab (SSDL) at the Georgia Institute of Technology, Atlanta, GA. Accomplishments during the first and second years of this project have been previously reported in annual progress reports. This report will focus on the third and final year of the three year activity.
Cooperative Control of Distributed Autonomous Vehicles in Adversarial Environments
2006-08-14
COOPERATIVE CONTROL OF DISTRIBUTED AUTONOMOUS VEHICLES IN ADVERSARIAL ENVIRONMENTS Grant #F49620–01–1–0361 Final Report Jeff Shamma Department of...CONTRACT NUMBER F49620-01-1-0361 5b. GRANT NUMBER 4. TITLE AND SUBTITLE COOPERATIVE CONTROL OF DISTRIBUTED AUTONOMOUS VEHICLES IN...single dominant language or a distribution of languages. A relation to multivehicle systems is understanding how highly autonomous vehicles on extended
Structural interaction with transportation and handling systems
NASA Technical Reports Server (NTRS)
1973-01-01
Problems involved in the handling and transportation of finished space vehicles from the factory to the launch site are presented, in addition to recommendations for properly accounting for in space vehicle structural design, adverse interactions during transportation. Emphasis is given to the protection of vehicle structures against those environments and loads encountered during transportation (including temporary storage) which would exceed the levels that the vehicle can safely withstand. Current practices for verifying vehicle safety are appraised, and some of the capabilities and limitations of transportation and handling systems are summarized.
75 FR 6123 - Federal Motor Vehicle Safety Standards; Occupant Crash Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-08
... motor vehicle safety standard is in effect under this chapter, a State or a political subdivision of a... [Docket No. NHTSA-2009-0156] RIN 2127-AK57 Federal Motor Vehicle Safety Standards; Occupant Crash...'s response to petitions for reconsideration of a November 12, 2008 final rule that amended the child...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
... [Docket No. NHTSA-2012-0174] RIN 2127-Al27 Federal Motor Vehicle Safety Standards; Lamps, Reflective... less than 30 feet in overall length, to the Federal motor vehicle safety standard (FMVSS) on lamps... final rule reorganizing the standard on December 4, 2007. DATES: Comments to this proposal must be...
NASA Technical Reports Server (NTRS)
Harrison, Phil; LaVerde, Bruce; Teague, David
2009-01-01
Although applications for Statistical Energy Analysis (SEA) techniques are more widely used in the aerospace industry today, opportunities to anchor the response predictions using measured data from a flight-like launch vehicle structure are still quite valuable. Response and excitation data from a ground acoustic test at the Marshall Space Flight Center permitted the authors to compare and evaluate several modeling techniques available in the SEA module of the commercial code VA One. This paper provides an example of vibration response estimates developed using different modeling approaches to both approximate and bound the response of a flight-like vehicle panel. Since both vibration response and acoustic levels near the panel were available from the ground test, the evaluation provided an opportunity to learn how well the different modeling options can match band-averaged spectra developed from the test data. Additional work was performed to understand the spatial averaging of the measurements across the panel from measured data. Finally an evaluation/comparison of two conversion approaches from the statistical average response results that are output from an SEA analysis to a more useful envelope of response spectra appropriate to specify design and test vibration levels for a new vehicle.
NASA Astrophysics Data System (ADS)
Koudelka, Petr; Hanulak, Patrik; Jaros, Jakub; Papes, Martin; Latal, Jan; Siska, Petr; Vasinek, Vladimir
2015-07-01
This paper discusses the implementation of a light emitting diode based visible light communication system for optical vehicle-to-vehicle (V2V) communications in road safety applications. The widespread use of LEDs as light sources has reached into automotive fields. For example, LEDs are used for taillights, daytime running lights, brake lights, headlights, and traffic signals. Future in the optical vehicle-to-vehicle (V2V) communications will be based on an optical wireless communication technology that using LED transmitter and a camera receiver (OCI; optical communication image sensor). Utilization of optical V2V communication systems in automotive industry naturally brings a lot of problems. Among them belongs necessity of circuit implementation into the current concepts of electronic LED lights control that allows LED modulation. These circuits are quite complicated especially in case of luxury cars. Other problem is correct design of modulation circuits so that final vehicle lightning using optical vehicle-to-vehicle (V2V) communication meets standard requirements on Photometric Quantities and Beam Homogeneity. Authors of this article performed research on optical vehicle-to-vehicle (V2V) communication possibilities of headlight (Jaguar) and taillight (Skoda) in terms of modulation circuits (M-PSK, M-QAM) implementation into the lamp concepts and final fulfilment of mandatory standards on Photometric Quantities and Beam Homogeneity.
Mobile remote manipulator vehicle system
NASA Technical Reports Server (NTRS)
Bush, Harold G. (Inventor); Mikulas, Martin M., Jr. (Inventor); Wallsom, Richard E. (Inventor); Jensen, J. Kermit (Inventor)
1987-01-01
A mobile remote manipulator system is disclosed for assembly, repair and logistics transport on, around and about a space station square bay truss structure. The vehicle is supported by a square track arrangement supported by guide pins integral with the space station truss structure and located at each truss node. Propulsion is provided by a central push-pull drive mechanism that extends out from the vehicle one full structural bay over the truss and locks drive rods into the guide pins. The draw bar is now retracted and the mobile remote manipulator system is pulled onto the next adjacent structural bay. Thus, translation of the vehicle is inchworm style. The drive bar can be locked onto two guide pins while the extendable draw bar is within the vehicle and then push the vehicle away one bay providing bidirectional push-pull drive. The track switches allow the vehicle to travel in two orthogonal directions over the truss structure which coupled with the bidirectional drive, allow movement in four directions on one plane. The top layer of this trilayered vehicle is a logistics platform. This platform is capable of 369 degees of rotation and will have two astronaut foot restraint platforms and a space crane integral.
Composite armored vehicle advanced technology demonstator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostberg, D.T.; Dunfee, R.S.; Thomas, G.E.
1996-12-31
Composite structures are a key technology needed to develop future lightweight combat vehicles that are both deployable and survivable. The Composite Armored Vehicle Advanced Technology Demonstrator Program that started in fiscal year 1994 will continue through 1998 to verily that composite structures are a viable solution for ground combat vehicles. Testing thus far includes material characterization, structural component tests and full scale quarter section tests. Material and manufacturing considerations, tests, results and changes, and the status of the program will be described. The structural component tests have been completed successfully, and quarter section testing is in progress. Upon completion ofmore » the critical design review, the vehicle demonstrator will be Fabricated and undergo government testing.« less
TREAT Neutronics Analysis and Design Support, Part I: Multi-SERTTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Woolstenhulme, Nicolas E.; Hill, Connie M.
2016-08-01
Experiment vehicle design is necessary in preparation for Transient Reactor Test (TREAT) facility restart and the resumption of transient testing to support Accident Tolerant Fuel (ATF) characterization and other future fuels testing requirements. Currently the most mature vehicle design is the Multi-SERTTA (Static Environments Rodlet Transient Test Apparatuses), which can accommodate up to four concurrent rodlet-sized specimens under separate environmental conditions. Robust test vehicle design requires neutronics analyses to support design development, optimization of the power coupling factor (PCF) to efficiently maximize energy generation in the test fuel rodlets, and experiment safety analyses. Calculations were performed to support analysis ofmore » a near-final design of the Multi-SERTTA vehicle, the design process for future TREAT test vehicles, and establish analytical practices for upcoming transient test experiments. Models of the Multi-SERTTA vehicle containing typical PWR-fuel rodlets were prepared and neutronics calculations were performed using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. Calculation of the PCF for reference conditions of a PWR fuel rodlet in clean water at operational temperature and pressure provided results between 1.10 and 1.74 W/g-MW depending on the location of the four Multi-SERTTA units with the stack. Basic changes to the Multi-SERTTA secondary vessel containment and support have minimal impact on PCF; using materials with less neutron absorption can improve expected PCF values, especially in the primary containment. An optimized balance is needed between structural integrity, experiment safety, and energy deposition in the experiment. Type of medium and environmental conditions within the primary vessel surrounding the fuel rodlet can also have a significant impact on resultant PCF values. The estimated reactivity insertion worth into the TREAT core is impacted more by the primary and secondary Multi-SERTTA vehicle structure with the experiment content and contained environment having a near negligible impact on overall system reactivity. Additional calculations were performed to evaluate the peak-to-average assembly powers throughout the TREAT core, as well as the nuclear heat generation for the various structural components of the Multi-SERTTA assembly. Future efforts include the evaluation of flux collars to shape the PCF for individual Multi-SERTTA units during an experiment such as to achieve uniformity in test unit environmental conditions impacted by the non-uniform axial flux/power profile of TREAT. Upon resumption of transient testing, experimental results from both the Multi-SERTTA and Multi-SERTTA-CAL will be compared against calculational results and methods for further optimization and design strategies.« less
Traffic impacts of bicycle facilities : final report.
DOT National Transportation Integrated Search
2017-06-01
Engineers need information about interactions between vehicles and bicyclists to design efficient, safe transportation systems. This study involved a review of design guidelines for bicycle facilities, observation of bicycle-vehicle interactions at n...
Integrated Composite Stiffener Structure (ICoSS) Concept for Planetary Entry Vehicles
NASA Technical Reports Server (NTRS)
Kellas, Sotiris
2016-01-01
Results from the design, manufacturing, and testing of a lightweight Integrated Composite Stiffened Structure (ICoSS) concept, intended for multi-mission planetary entry vehicles are presented. Tests from both component and full-scale tests for a typical Earth Entry Vehicle forward shell manufactured using the ICoSS concept are presented and advantages of the concept for the particular application of passive Earth Entry Vehicles over other structural concepts are discussed.
Influence of Structural Flexibility on the Dynamic Precision of a Vehicle-Mounted Equipment System
2015-05-12
Paramsothy Jayakumar , Dave Mechergui, Ronald Renke U.S.Army RDECOM TARDEC INFLUENCE OF STRUCTURAL FLEXIBILITY ON THE DYNAMIC PRECISION OF A...COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE INFLUENCE OF STRUCTURAL FLEXIBILITY ON THE DYNAMIC PRECISION OF A VEHICLE-MOUNTED EQUIPMENT...Equipment Enclosure CMS Results 23 12. Influence of CMS Method on the Vehicle Dynamics 24 13. Influence of Flexibility on the Vehicle
NASA Technical Reports Server (NTRS)
Dieriam, Todd A.
1990-01-01
Future missions to Mars may require pin-point landing precision, possibly on the order of tens of meters. The ability to reach a target while meeting a dynamic pressure constraint to ensure safe parachute deployment is complicated at Mars by low atmospheric density, high atmospheric uncertainty, and the desire to employ only bank angle control. The vehicle aerodynamic performance requirements and guidance necessary for 0.5 to 1.5 lift drag ratio vehicle to maximize the achievable footprint while meeting the constraints are examined. A parametric study of the various factors related to entry vehicle performance in the Mars environment is undertaken to develop general vehicle aerodynamic design requirements. The combination of low lift drag ratio and low atmospheric density at Mars result in a large phugoid motion involving the dynamic pressure which complicates trajectory control. Vehicle ballistic coefficient is demonstrated to be the predominant characteristic affecting final dynamic pressure. Additionally, a speed brake is shown to be ineffective at reducing the final dynamic pressure. An adaptive precision entry atmospheric guidance scheme is presented. The guidance uses a numeric predictor-corrector algorithm to control downrange, an azimuth controller to govern crossrange, and analytic control law to reduce the final dynamic pressure. Guidance performance is tested against a variety of dispersions, and the results from selected tests are presented. Precision entry using bank angle control only is demonstrated to be feasible at Mars.
AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2015-06-01
Collect and evaluate data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization Study. The Advanced Vehicle Testing Activity study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report summarizes the fleets studied to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a batterymore » electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.« less
Developing Autonomous Vehicles That Learn to Navigate by Mimicking Human Behavior
2006-09-28
navigate in an unstructured environment to a specific target or location. 15. SUBJECT TERMS autonomous vehicles , fuzzy logic, learning behavior...ANSI-Std Z39-18 Developing Autonomous Vehicles That Learn to Navigate by Mimicking Human Behavior FINAL REPORT 9/28/2006 Dean B. Edwards Department...the future, as greater numbers of autonomous vehicles are employed, it is hoped that lower LONG-TERM GOALS Use LAGR (Learning Applied to Ground Robots
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Editor); Venneri, Samuel L. (Editor)
1993-01-01
Various papers on flight vehicle materials, structures, and dynamics are presented. Individual topics addressed include: general modeling methods, component modeling techniques, time-domain computational techniques, dynamics of articulated structures, structural dynamics in rotating systems, structural dynamics in rotorcraft, damping in structures, structural acoustics, structural design for control, structural modeling for control, control strategies for structures, system identification, overall assessment of needs and benefits in structural dynamics and controlled structures. Also discussed are: experimental aeroelasticity in wind tunnels, aeroservoelasticity, nonlinear aeroelasticity, aeroelasticity problems in turbomachines, rotary-wing aeroelasticity with application to VTOL vehicles, computational aeroelasticity, structural dynamic testing and instrumentation.
Lead/acid battery development for heat engine/electric hybrid vehicles. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giner, J.; Taylor, A.H.; Goebel, F.
A program was undertaken to develop a lead/acid battery system for use in a hybrid heat engine/electric vehicle. The basic requirements are that the battery be capable of supplying high-rate power pulses and of accepting high-rate charge pulses, both of short duration. The feasibility of developing a bipolar lead/acid battery system which conforms to these specifications was investigated by using a modular approach to system design. In the preferred design, a vertical array of lead strips placed on either side of each substrate are connected with adjacent strips on the opposite side only over the top of the substrate tomore » provide electrical conduction through the substrate. The following topics are discussed concerning this system: study of electrochemical problem areas relevant to design of a high-power-density battery; corrosion of substrate materials; development and mechanical testing of structures; life testing; design and preliminary cost analysis.« less
Passive isolation/damping system for the Hubble space telescope reaction wheels
NASA Technical Reports Server (NTRS)
Hasha, Martin D.
1987-01-01
NASA's Hubble Space Telescope contain large, diffraction limited optics with extraordinary resolution and performance for surpassing existing observatories. The need to reduce structural borne vibration and resultant optical jitter from critical Pointing Control System components, Reaction Wheels, prompted the feasibility investigation and eventual development of a passive isolation system. Alternative design concepts considered were required to meet a host of stringent specifications and pass rigid tests to be successfully verified and integrated into the already built flight vehicle. The final design employs multiple arrays of fluid damped springs that attenuate over a wide spectrum, while confining newly introduced resonances to benign regions of vehicle dynamic response. Overall jitter improvement of roughly a factor of 2 to 3 is attained with this system. The basis, evolution, and performance of the isolation system, specifically discussing design concepts considered, optimization studies, development lessons learned, innovative features, and analytical and ground test verified results are presented.
The US - European Cooperation in the X-38 and CRV Programs
NASA Astrophysics Data System (ADS)
Sygulla, D.; Sabath, D.; Püttmann, N.; Schmid, V.; Caporicci, M.; Anderson, B.
2002-01-01
The European participation in the US X-38 program was initiated in 1997 and is realized by contributions from two European programs, by ESA's "Applied Reentry Technology Program", (ARTP) and the German/DLR "Technologies for Future Space Transportation Systems" (TETRA) program. The space agencies of USA, Europe and Germany have established two Memoranda of Understanding - NASA-ESA and NASA-DLR - for the European participation in the X-38 Program to deliver flight hard- and software in exchange to a re-entry flight opportunity with Vehicle 201 (V201). By October 2002 all European contributions to V201 of the X-38 program will be delivered to NASA JSC. Vehicle 201 represents the orbital test vehicle of the experimental vehicle family, developed and built from 1996 onwards by NASA at Johnson Space Center, JSC in Houston. The X-38 Program was initiated by NASA to prepare and develop the Crew Return Vehicle (CRV) with Vehicle 201 as prototype. NASA conducts the overall X-38 vehicle system engineering and integration, intended to provide the launch of the vehicle 201 with the Space Shuttle and will deliver flight data for post-flight analysis and assessment to DLR and ESA. The German national project TETRA (Technologies for future Space Transportation Systems) and the European ARTP (Applied Re-entry Technology Programme) are providing engineering support for design, analysis, system engineering and layout as well as delivering essential flight hard- and software: CMC Body flaps and CMC nose assembly from TETRA; rudders, CMC leading edges, landing gears and major elements of the V201 primary structure from ARTP. Since both programmes contribute in cooperation the major part of the aerodynamic database is generated, the flexible external insulation is developed and manufactured, and advanced sensors and data acquisition systems are built. The parts for V201 have been developed, fulfill the requirements, are qualified for flight and they are in the process of being integrated on the vehicle X- 38 V201. There will be no exchange of funds since the delivery of contributions and the flight opportunity are parts of a barter agreement. Presently NASA is assembling the vehicle's structure in preparation of the structural vehicle test in 2002. In the following period all major subsystems will be included and checked out before the envisaged orbital test flight of V201. The Shuttle Columbia will set it free in orbit and after an autonomous reentry flight it is proposed to glide towards Australia, hanging on the largest parafoil ever been built (7.500 square feet). Parallel to the final installation of all flight systems in V201, it was foreseen to develop the CRV using most of the systems of V201, provided the critical cost situation on the International Space Station can be solved. In this case the CRV would be used from about 2008/2009 as `ambulance - lifeboat' and/or as `return vehicle' for the crew of the International Space Station. Manifold contributions from European companies could be provided for the CRV: All in all this paper will give an overview about the programs X-38, CRV, TETRA and ARTP, as well as an overview about the status of the development of flight hard- and software for the reusable vehicle X-38 V201. *)CMC Ceramic Matrix Composites
Hypersonic Materials and Structures
NASA Technical Reports Server (NTRS)
Glass, David E.
2016-01-01
Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this presentation is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components.
DOT National Transportation Integrated Search
2016-12-15
Heavy vehicles have a much larger effect on the flow of a roundabout than a passenger car, and therefore they must be accounted for in the design (Transportation Research Board). Very few studies have looked at the effect of heavy vehicles on the flo...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... modification of motor vehicles so that persons with disabilities can drive or ride in them as passengers. In... Accommodate People with Disabilities.'' This final rule included two new ``collections of information,'' as... motor vehicle repair business that modifies a motor vehicle to enable a person with a disability to...
Materials Challenges in Space Exploration
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.
2005-01-01
United States civil space program administered by National Aeronautics and Space Administration has a new strategic direction to explore the solar system. This new 'vision for space exploration' encompasses a broad range of human and robotic missions, including the Moon. Mars and destinations beyond. These missions require advanced systems and capabilities that will accelerate the development of many critical technologies, including advanced materials and structural concepts. Specifically, it is planned to develop high-performance materials for vehicle structures, propulsion systems, and space suits; structural concepts for modular assembly for space infrastructure: lightweight deployable and inflatable structures for large space systems and crew habitats; and highly integrated structural systems and advanced thermal management systems for reducing launch mass and volume. This paper will present several materials challenges in advanced space systems-high performance structural and thermal materials, space durable materials, radiation protection materials, and nano-structural materials. Finally, the paper will take a look at the possibility of utilizing materials in situ, i.e., processing materials on the surface of the Moon and Mars.
VECVEV : Vehicle Crash Virtual Environment Visualizer
DOT National Transportation Integrated Search
2001-03-01
Crashworthiness of automotive vehicles and impact response of highway structures represent very active research areas. The ultimate goal is to design vehicles and highway structures to minimize risk to passengers while also controlling damage to vehi...
78 FR 35094 - Denial of Motor Vehicle Defect Petition, DP12-001
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
... ``Goldwing'' and was the heaviest motorcycle in BMW's lineup during those model years. As a ``full- dress... motorcycles (with distinct vehicle identification numbers) alleging final drive failures. These reports were...
CleanFleet final report. Volume 7, vehicle emissions
DOT National Transportation Integrated Search
1995-12-01
CleanFleet, formally known as the South Coast Alternative Fuels Demonstration, : was a comprehensive demonstration of alternative fuel vehicles (AFVs) in daily : commercial service. Measurements of exhaust and evaporative emissions from CleanFleet va...
Heavy point frog performance under passenger vehicles : final report.
DOT National Transportation Integrated Search
2016-06-01
Federal Railroad Administration contracted with the Transportation Technology Center, Inc., Pueblo, Colorado, to conduct an : investigation of passenger vehicle performance running through heavy point frog (HPF) up to speeds of 110 mph. A NUCARS : ...
Pavement Edge Treatment Final Report
DOT National Transportation Integrated Search
2018-01-01
The New York City Connected Vehicle Pilot aims to improve the safety of travelers and pedestrians in the city through the deployment of connected vehicle technologies. This objective directly aligns with the city's Vision Zero initiative, which began...
40 CFR 1051.137 - What are the consumer labeling requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... final deteriorated emission level. Round the resulting normalized emission rate for your vehicle to one... name, vehicle model name, engine description (500 cc two-stroke with DFI), the NER, and a brief...
40 CFR 1051.137 - What are the consumer labeling requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... final deteriorated emission level. Round the resulting normalized emission rate for your vehicle to one... name, vehicle model name, engine description (500 cc two-stroke with DFI), the NER, and a brief...
40 CFR 1051.137 - What are the consumer labeling requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... final deteriorated emission level. Round the resulting normalized emission rate for your vehicle to one... name, vehicle model name, engine description (500 cc two-stroke with DFI), the NER, and a brief...
40 CFR 1051.137 - What are the consumer labeling requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... final deteriorated emission level. Round the resulting normalized emission rate for your vehicle to one... name, vehicle model name, engine description (500 cc two-stroke with DFI), the NER, and a brief...
NASA Astrophysics Data System (ADS)
Kopp, G.; Brückmann, S.; Kriescher, M.; Friedrich, H. E.
In times of climate change vehicle emissions have to be reduced clearly. One possibility is to reduce the mass of the body in white using lightweight sandwich structures. The department `Lightweight and Hybrid Design Methods' of the Institute of Vehicle Concepts develops a vehicle body structure by using sandwiches with aluminum top layers and polyurethane foam as core material. For that the foam and the sandwiches were investigated under different load cases, e.g. pressure loading and in-plane tests. In tests with components the high potential of the sandwich materials were shown. On the dynamic component test facility of the institute, vehicle front structures were tested successfully. The results of all investigations regarding sandwich materials, integration of functions (e.g. crash, thermal) in vehicle structures and the concept LUV are developed under the research program of Next Generation Car of the DLR. We will show the development and results of the LUV.
Active Control of NITINOL-Reinforced Structural Composites
1992-10-12
useful in many critical structures that are intended to operate autonomously for long durations in isolated environments such as defense vehicles , space...durations in isolated environment such as defense vehicles , space structures and satellites. ACKNOWLEDGEMENTS This work is funded by a grant from the US Army...are intended to operate autonomously for long durations in isolated environment such as defense vehicles , space structures and satellites. REFERENCES
Tubular space truss structure for SKITTER 2 robot
NASA Technical Reports Server (NTRS)
Beecham, Richard; Dejulio, Linda; Delorme, Paul; Eck, Eric; Levy, Avi; Lowery, Joel; Radack, Joe; Sheffield, Randy; Stevens, Scott
1988-01-01
The Skitter 2 is a three legged transport vehicle designed to demonstrate the principle of a tripod walker in a multitude of environments. The tubular truss model of Skitter 2 is a proof of principal design. The model will replicate the operational capabilities of Skitter 2 including its ability to self-right itself. The project's focus was on the use of light weight tubular members in the final structural design. A strong design for the body was required as it will undergo the most intense loading. Triangular geometry was used extensively in the body, providing the required structural integrity and eliminating the need for cumbersome shear panels. Both the basic femur and tibia designs also relied on the strong geometry of the triangle. An intense literature search aided in the development of the most suitable weld techniques, joints, linkages, and materials required for a durable design. The hinge design features the use of spherical rod end bearings. In order to obtain a greater range of mobility in the tibia, a four-bar linkage was designed which attaches both to the femur and the tibia. All component designs, specifically the body, femur, and the tibia were optimized using the software package IDEAS 3.8A Supertab. The package provided essential deformation and stress analysis information on each component's design. The final structure incurred only a 0.0544 inch deflection in a maximum (worst case) loading situation. The highest stress experienced by any AL6061-T6 tubular member was 1920 psi. The structural integrity of the final design facilitated the use of Aluminum 6061-T6 tubing. The tubular truss structure of Skitter 2 is an effective and highly durable design. All facets of the design are structurally sound and cost effective.
NASA Technical Reports Server (NTRS)
Schwartz, Susan K.
1992-01-01
The Solid Modeling Aerospace Research Tool (SMART) is a computer aided design tool used in aerospace vehicle design. Modeling of structural components using SMART includes the representation of the transverse or cross-wise elements of a vehicle's fuselage, ringframes, and bulkheads. Ringframes are placed along a vehicle's fuselage to provide structural support and maintain the shape of the fuselage. Bulkheads are also used to maintain shape, but are placed at locations where substantial structural support is required. Given a Bezier curve representation of a cross sectional cut through a vehicle's fuselage and/or an internal tank, this project produces a first-guess Bezier patch representation of a ringframe or bulkhead at the cross-sectional position. The grid produced is later used in the structural analysis of the vehicle. The graphical display of the generated patches allows the user to edit patch control points in real time. Constraints considered in the patch generation include maintaining 'square-like' patches and placement of longitudinal, or lengthwise along the fuselage, structural elements called longerons.
NASA Astrophysics Data System (ADS)
Koryanov, Vsevolod; Harri, Ari-Matti; Kazakovtcev, Victor
At present paper analyzes the dynamics of movement of the landing vehicle (LV) with an inflatable braking device (IBD). During the movement in the planet's atmosphere with LV with IBD are significant aerodynamic loads, which can lead to a change in a non-rigid shape and appearance of the shell IBD current asymmetries LV with IBD. The presence arising in the manufacture of structural LV asymmetry results in a stabilized descent in the process of turning the LV with IBD various dynamic phenomena, such as the vibrational-rotational resonance, the resonance autorotation, altering the dynamics of angular motion of the LV. As a result of work carried out, among others, the following conclusions: 1. In the first step of descent of landing vehicle possible high angles of attack, however, the very small quantities of the velocity head. 2. In the second phase of descent arise spatial angles of attack, caused by small structural asymmetries of LV. These angles of attack, together with increasing magnitude of the velocity head cause these significant increase in lateral load. The increase in the transverse load leads to an increase in the asymmetry of the external form, which causes an additional increase in the spatial angle of attack. Depending on the magnitude of the transverse stiffness IBD or leads to a certain additional increase in the spatial angle of attack, or a possible buckling landing vehicle. 3. In the third (final) stage of the descent at subsonic speed landing vehicle with additional inflatable braking device does not influence the stiffness braking, changing the dynamics of angular motion slightly. This is due to the small size of the ram on the subsonic long trajectory and, accordingly, small deformation additional inflatable braking device. This research was supported by the European Commission Seventh Framework Programme FP7/2007-2013 under grant agreement n 263255 RITD.
Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.
2000-01-01
NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.
Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.
2000-01-01
NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the five pounds/inch and ten psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.
Hybrid Vehicle Program. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1984-06-01
This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.
Herbert Easterly auxiliary truck heater. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle`s primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work ninemore » different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.« less
NASA Technical Reports Server (NTRS)
Lubey, Daniel P.; Thiele, Sara R.; Gruseck, Madelyn L.; Evans, Carol T.
2010-01-01
Though getting astronauts safely into orbit and beyond has long been one of NASA?s chief goals, their safe return has always been equally as important. The Crew Exploration Vehicle?s (CEV) Parachute Assembly System (CPAS) is designed to safely return astronauts to Earth on the next-generation manned spacecraft Orion. As one means for validating this system?s requirements and testing its functionality, a test article known as the Parachute Compartment Drop Test Vehicle (PC-DTV) will carry a fully-loaded yet truncated CPAS Parachute Compartment (PC) in a series of drop tests. Two aerodynamic profiles for the PC-DTV currently exist, though both share the same interior structure, and both have an Orion-representative weight of 20,800 lbf. Two extraction methods have been developed as well. The first (Cradle Monorail System 2 - CMS2) uses a sliding rail technique to release the PC-DTV midair, and the second (Modified DTV Sled; MDS) features a much less constrained separation method though slightly more complex. The decision as to which aerodynamic profile and extraction method to use is still not finalized. Additional CFD and stress analysis must be undertaken in order to determine the more desirable options, though at present the "boat tail" profile and the CMS2 extraction method seem to be the favored options in their respective categories. Fabrication of the PC-DTV and the selected extraction sled is set to begin in early October 2010 with an anticipated first drop test in mid-March 2011.
Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Miller, Charles G.
1998-01-01
Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamics and physical processes, is the genesis for the design and development of advanced space transportation vehicles and provides crucial information to other disciplines such as structures, materials, propulsion, avionics, and guidance, navigation and control. Sources of aerothermodynamic information are ground-based facilities, Computational Fluid Dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this aerothermodynamic triad provides the optimum aerothermodynamic design to safely satisfy mission requirements while reducing design conservatism, risk and cost. The iterative aerothermodynamic process for initial screening/assessment of aerospace vehicle concepts, optimization of aerolines to achieve/exceed mission requirements, and benchmark studies for final design and establishment of the flight data book are reviewed. Aerothermodynamic methodology centered on synergism between ground-based testing and CFD predictions is discussed for various flow regimes encountered by a vehicle entering the Earth s atmosphere from low Earth orbit. An overview of the resources/infrastructure required to provide accurate/creditable aerothermodynamic information in a timely manner is presented. Impacts on Langley s aerothermodynamic capabilities due to recent programmatic changes such as Center reorganization, downsizing, outsourcing, industry (as opposed to NASA) led programs, and so forth are discussed. Sample applications of these capabilities to high Agency priority, fast-paced programs such as Reusable Launch Vehicle (RLV)/X-33 Phases I and 11, X-34, Hyper-X and X-38 are presented and lessons learned discussed. Lastly, enhancements in ground-based testing/CFD capabilities necessary to partially/fully satisfy future requirements are addressed.
Uncertainty management for aerial vehicles: Coordination, deconfliction, and disturbance rejection
NASA Astrophysics Data System (ADS)
Panyakeow, Prachya
The presented dissertation aims to develop control algorithms that deal with three types of uncertainties managements. First, we examine the situation when unmanned aerial vehicles (UAVs) fly through uncertain environments that contain both stationary and moving obstacles. Moreover, a guarantee of collision avoidance is necessary when UAVs operate in close proximity of each other. Second, we look at the communication uncertainty among the network of cooperative UAVs and the efforts to establish and maintain the connectivity throughout their entire missions. Third, we explore the scenario when the aircraft flies through wind gust. The introduction of an appropriate control scheme to actively alleviate the gust loads can result into weight reduction and consequently lower the fuel cost. In the first part of this dissertation, we develop a deconfliction algorithm that guarantees collision avoidance between a pair of constant speed unicycle-type UAVs as well as convergence to the desired destination for each UAV in presence of static obstacles. We use a combination of navigation and swirling functions to direct the unicycle vehicles along the planned trajectories while avoiding inter-vehicle collisions. The main feature of our contribution is proposing means of designing a deconfliction algorithm for unicycle vehicles that more closely capture the dynamics of constant speed UAVs as opposed to double integrator models. Specifically, we consider the issue of UAV turn-rate constraints and proceed to explore the selection of key algorithmic parameters in order to minimize undesirable trajectories and overshoots induced by the avoidance algorithm. The avoidance and convergence analysis of the proposed algorithm is then performed for two cooperative UAVs and simulation results are provided to support the viability of the proposed framework for more general mission scenarios. For the uncertainty of the UAV network, we provides two approaches to establish connectivity among a collection of UAVs that are initially scattered in space. The goal is to find shortest trajectories that bring the UAVs to a connected formation where they are in the range of detection of one another and headed in the same direction to maintain the connectivity. Pontryagin Minimum Principle (PMP) is utilized to determine the control law and path synthesis for the UAVs under the turn-rate constraints. We introduce an algorithm to search for the optimal solution when the final network topology is specified; followed by a nonlinear programming method in which the final configuration is emerged from the optimization routine under the constraints that the final topology is connected. Each method has its own advantages based on the size of corporative networks. For the uncertainty due to gust turbulence, we choose a model predictive control (MPC) technique to address gust load alleviation (GLA) for a flexible aircraft. MPC is a discrete method based on repeated online optimization that allows direct consideration of control actuator constraints into the feedback computation. Gust alleviation systems are dependent on how the structural flexibility of the aircraft affects its dynamics. Hence, we develop a six-degree-of-freedom flexible aircraft model that can integrate rigid body dynamic with structural deflection. The structural stick-and-beam model is utilized for the calculation of aeroelastic mode shapes and airframe loads. Another important feature of MPC for GLA design is the ability to include the preview of gust information ahead of the aircraft nose into the prediction process. This helps raising the prediction accuracy and consequently improves the load alleviation performance. Finally, the aircraft is modified by the addition of the flap-array, a composition of small trailing edge flaps throughout the entire span of the wings. These flaps are used in conjunction with the distributed spoilers. With the availability of the control surfaces closer to the wing root, the MPC with flap-array can reduce the wing bending moment from different mode shapes and achieve better load alleviation performance than the original aircraft.
NASA Technical Reports Server (NTRS)
Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)
2014-01-01
The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.
2009-03-26
CAPE CANAVERAL, Fla. – The NASA Railroad hauls one of the cars with the first Ares I-X segment to the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida. Four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments are being delivered to Kennedy's Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jack Pfaller
2009-03-26
CAPE CANAVERAL, Fla. – The NASA Railroad hauls one of the cars with the first Ares I-X segment to the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida. Four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments are being delivered to Kennedy's Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jack Pfaller
2009-03-26
CAPE CANAVERAL, Fla. – The NASA Railroad delivers the first Ares I-X segment to the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida. Four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments are being delivered to Kennedy's Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jack Pfaller
2009-03-19
CAPE CANAVERAL, Fla. – The NASA Railroad makes the exchange with the Florida East Coast Railway cars carrying the booster segments for the Ares I-X test rocket. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett
2009-03-26
CAPE CANAVERAL, Fla. – The NASA Railroad delivers the first Ares I-X segment to the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida. Four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments are being delivered to Kennedy's Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jack Pfaller
Structural Weight Estimation for Launch Vehicles
NASA Technical Reports Server (NTRS)
Cerro, Jeff; Martinovic, Zoran; Su, Philip; Eldred, Lloyd
2002-01-01
This paper describes some of the work in progress to develop automated structural weight estimation procedures within the Vehicle Analysis Branch (VAB) of the NASA Langley Research Center. One task of the VAB is to perform system studies at the conceptual and early preliminary design stages on launch vehicles and in-space transportation systems. Some examples of these studies for Earth to Orbit (ETO) systems are the Future Space Transportation System [1], Orbit On Demand Vehicle [2], Venture Star [3], and the Personnel Rescue Vehicle[4]. Structural weight calculation for launch vehicle studies can exist on several levels of fidelity. Typically historically based weight equations are used in a vehicle sizing program. Many of the studies in the vehicle analysis branch have been enhanced in terms of structural weight fraction prediction by utilizing some level of off-line structural analysis to incorporate material property, load intensity, and configuration effects which may not be captured by the historical weight equations. Modification of Mass Estimating Relationships (MER's) to assess design and technology impacts on vehicle performance are necessary to prioritize design and technology development decisions. Modern CAD/CAE software, ever increasing computational power and platform independent computer programming languages such as JAVA provide new means to create greater depth of analysis tools which can be included into the conceptual design phase of launch vehicle development. Commercial framework computing environments provide easy to program techniques which coordinate and implement the flow of data in a distributed heterogeneous computing environment. It is the intent of this paper to present a process in development at NASA LaRC for enhanced structural weight estimation using this state of the art computational power.
Optimization of a Hot Structure Aeroshell and Nose Cap for Mars Atmospheric Entry
NASA Technical Reports Server (NTRS)
Langston, Sarah L.; Lang, Christapher G.; Samareh, Jamshid A.; Daryabeigi, Kamran
2016-01-01
The National Aeronautics and Space Administration (NASA) is preparing to send humans beyond Low Earth Orbit and eventually to the surface of Mars. As part of the Evolvable Mars Campaign, different vehicle configurations are being designed and considered for delivering large payloads to the surface of Mars. Weight and packing volume are driving factors in the vehicle design, and the thermal protection system (TPS) for planetary entry is a technology area which can offer potential weight and volume savings. The feasibility and potential benefits of a ceramic matrix composite hot structure concept for different vehicle configurations are explored in this paper, including the nose cap for a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and an aeroshell for a mid lift-to-drag (Mid L/D) concept. The TPS of a planetary entry vehicle is a critical component required to survive the severe aerodynamic heating environment during atmospheric en- try. The current state-of-the-art is an ablative material to protect the vehicle from the heat load. The ablator is bonded to an underlying structure, which carries the mechanical loads associated with entry. The alternative hot structure design utilizes an advanced carbon-carbon material system on the outer surface of the vehicle, which is exposed to the severe heating and acts as a load carrying structure. The preliminary design using the hot structure concept and the ablative concept is determined for the spherical nose cap of the HIAD entry vehicle and the aeroshell of the Mid L/D entry vehicle. The results of the study indicate that the use of hot structures for both vehicle concepts leads to a feasible design with potential weight and volume savings benefits over current state-of-the-art TPS technology that could enable future missions.
Shuttle Derived In-Line Heavy Lift Vehicle
NASA Technical Reports Server (NTRS)
Greenwood, Terry; Twichell, Wallace; Ferrari, Daniel; Kuck, Frederick
2005-01-01
This paper introduces an evolvable Space Shuttle derived family of launch vehicles. It details the steps in the evolution of the vehicle family, noting how the evolving lift capability compares with the evolving lift requirements. A system description is given for each vehicle. The cost of each development stage is described. Also discussed are demonstration programs, the merits of the SSME vs. an expendable rocket engine (RS-68), and finally, the next steps needed to refine this concept.
Barwood CNG Cab Fleet Study: Final Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, P.; Kelly, K.; John, M.
1999-05-03
This report describes a fleet study conducted over a 12-month period to evaluate the operation of dedicated compress natural gas (CNG) Ford Crown Victoria sedans in a taxicab fleet. In the study, we assess the performance and reliability of the vehicles and the cost of operating the CNG vehicles compared to gasoline vehicles. The study results reveal that the CNG vehicles operated by this fleet offer both economic and environmental advantages. The total operating costs of the CNG vehicles were about 25% lower than those of the gasoline vehicles. The CNG vehicles performed as well as the gasoline vehicles, andmore » were just as reliable. Barwood representatives and drivers have come to consider the CNG vehicles an asset to their business and to the air quality of the local community.« less
VIEW OF EMERGENCY RESPONSE VEHICLES PARKED OUTSIDE BUILDING 331, THE ...
VIEW OF EMERGENCY RESPONSE VEHICLES PARKED OUTSIDE BUILDING 331, THE VEHICLE MAINTENANCE GARAGE AND FIRE STATION. THE BUILDING, ORIGINALLY CONSTRUCTED IN 1953, WAS DESIGNED AND UTILIZED AS A WAREHOUSE. ADDITIONS TO THE STRUCTURE, INCLUDING THE FIRE DEPARTMENT STRUCTURE, WERE COMPLETED IN 1967. (4/7/87) - Rocky Flats Plant, Vehicle Maintenance Garage & Fire Station, Golden, Jefferson County, CO
Composite Dry Structure Cost Improvement Approach
NASA Technical Reports Server (NTRS)
Nettles, Alan; Nettles, Mindy
2015-01-01
This effort demonstrates that by focusing only on properties of relevance, composite interstage and shroud structures can be placed on the Space Launch System vehicle that simultaneously reduces cost, improves reliability, and maximizes performance, thus providing the Advanced Development Group with a new methodology of how to utilize composites to reduce weight for composite structures on launch vehicles. Interstage and shroud structures were chosen since both of these structures are simple in configuration and do not experience extreme environments (such as cryogenic or hot gas temperatures) and should represent a good starting point for flying composites on a 'man-rated' vehicle. They are used as an example only. The project involves using polymer matrix composites for launch vehicle structures, and the logic and rationale behind the proposed new methodology.
Development of Vehicle Model Test for Road Loading Analysis of Sedan Model
NASA Astrophysics Data System (ADS)
Mohd Nor, M. K.; Noordin, A.; Ruzali, M. F. S.; Hussen, M. H.
2016-11-01
Simple Structural Surfaces (SSS) method is offered as a means of organizing the process for rationalizing the basic vehicle body structure load paths. The application of this simplified approach is highly beneficial in the design development of modern passenger car structure especially during the conceptual stage. In Malaysia, however, there is no real physical model of SSS available to gain considerable insight and understanding into the function of each major subassembly in the whole vehicle structures. Based on this motivation, a physical model of SSS for sedan model with the corresponding model vehicle tests of bending and torsion is proposed in this work. The proposed approach is relatively easy to understand as compared to Finite Element Method (FEM). The results show that the proposed vehicle model test is capable to show that satisfactory load paths can give a sufficient structural stiffness within the vehicle structure. It is clearly observed that the global bending stiffness reduce significantly when more panels are removed from a complete SSS model. It is identified that parcel shelf is an important subassembly to sustain bending load. The results also match with the theoretical hypothesis, as the stiffness of the structure in an open section condition is shown weak when subjected to torsion load compared to bending load. The proposed approach can potentially be integrated with FEM to speed up the design process of automotive vehicle.
Benefits Estimation Model for Automated Vehicle Operations: Phase 2 Final Report
DOT National Transportation Integrated Search
2018-01-01
Automated vehicles have the potential to bring about transformative safety, mobility, energy, and environmental benefits to the surface transportation system. They are also being introduced into a complex transportation system, where second-order imp...
Engine Benchmarking - Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallner, Thomas
Detailed benchmarking of the powertrains of three light-duty vehicles was performed. Results were presented and provided to CRADA partners. The vehicles included a MY2011 Audi A4, a MY2012 Mini Cooper and a MY2014 Nissan Versa.
High speed curving performance of rail vehicles
DOT National Transportation Integrated Search
2015-03-23
On March 13, 2013, the Federal Railroad Administration (FRA) published a final rule titled Vehicle/Track Interaction Safety Standards; High-Speed and High Cant Deficiency Operations which amended the Track Safety Standards (49 CFR Part213) and ...
U27 : real-time commercial vehicle safety & security monitoring final report.
DOT National Transportation Integrated Search
2012-12-01
Accurate real-time vehicle tracking has a wide range of applications including fleet management, drug/speed/law enforcement, transportation planning, traffic safety, air quality, electronic tolling, and national security. While many alternative track...
Connected commercial vehicles-integrated truck project : final report.
DOT National Transportation Integrated Search
2014-01-01
Connected vehicle wireless data communications can enable safety applications that may reduce crashes, injuries, and fatalities suffered on our roads and highways, as well as enabling reductions in traffic congestion and effects on the environment. A...
Vehicle trust management for connected vehicles : final research report.
DOT National Transportation Integrated Search
2016-01-01
The goal of this project is to research a wide range of transportation-related issues : including: improving health and safety for all users of the transportation system, including : bicycles, pedestrians and transit modes; reducing carbon emissions ...
Highway maintenance concept vehicle final report : phase four.
DOT National Transportation Integrated Search
2002-06-01
This report documents Phase IV of the Highway Maintenance Concept Vehicle (HMCV) project, : a pooled fund study sponsored by the Departments of Transportation of Iowa, Pennsylvania, and : Wisconsin. This report provides the background, including a br...
Traction drive automatic transmission for gas turbine engine driveline
Carriere, Donald L.
1984-01-01
A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.
78 FR 70415 - Federal Motor Vehicle Safety Standards; Occupant Crash Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
...Completing the first initiative of NHTSA's 2007 ``NHTSA's Approach to Motorcoach Safety'' plan and one of the principal undertakings of DOT's 2009 Motorcoach Safety Action Plan, and fulfilling a statutory mandate of the Motorcoach Enhanced Safety Act of 2012, incorporated into the Moving Ahead for Progress in the 21st Century Act, this final rule amends the Federal motor vehicle safety standard (FMVSS) on occupant crash protection to require lap/shoulder seat belts for each passenger seating position in all new over-the-road buses, and in new buses other than over-the-road buses with a gross vehicle weight rating (GVWR) greater than 11,793 kilograms (kg) (26,000 pounds (lb), with certain exclusions. By requiring the passenger lap/ shoulder seat belts, this final rule significantly reduces the risk of fatality and serious injury in frontal crashes and the risk of occupant ejection in rollovers, thus considerably enhancing the safety of these vehicles.
Overview With Results and Lessons Learned of the X-43A Mach 10 Flight
NASA Technical Reports Server (NTRS)
Marshall, Laurie A.; Bahm, Catherine; Corpening, Griffin P.; Sherrill, Robert
2005-01-01
This paper provides an overview of the final flight of the NASA X-43A project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The third and final flight, November 16, 2004, was the first Mach 10 flight demonstration of an airframe-integrated, scramjet-powered, hypersonic vehicle. The goals and objectives for the project as well as those for the third flight are presented. The configuration of the Hyper-X stack including the X-43A, Hyper-X launch vehicle, and Hyper-X research vehicle adapter is discussed. The second flight of the X-43A was successfully conducted on March 27, 2004. Mission differences, vehicle modifications and lessons learned from the second flight as they applied to the third flight are also discussed. An overview of flight 3 results is presented.
Jankovic, Miroslava; Powell, Barry Kay
2000-12-26
A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.
2016-10-01
BRIEFING CHARTS) D. Zeppettella Structures Technology Branch Aerospace Vehicles Division Steve Bucca and Thomas Gage BerrieHill Research...R. WIPPERMAN, Chief Program Manager Structures Technology Branch Structures Technology Branch Aerospace Vehicles Division Aerospace Vehicles...Corporation) 5d. PROJECT NUMBER 4920 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q06A 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
NASA Technical Reports Server (NTRS)
Martinovic, Zoran N.; Cerro, Jeffrey A.
2002-01-01
This is an interim user's manual for current procedures used in the Vehicle Analysis Branch at NASA Langley Research Center, Hampton, Virginia, for launch vehicle structural subsystem weight estimation based on finite element modeling and structural analysis. The process is intended to complement traditional methods of conceptual and early preliminary structural design such as the application of empirical weight estimation or application of classical engineering design equations and criteria on one dimensional "line" models. Functions of two commercially available software codes are coupled together. Vehicle modeling and analysis are done using SDRC/I-DEAS, and structural sizing is performed with the Collier Research Corp. HyperSizer program.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... alternative would continue current management of vehicle use on the park road. In addition to a seasonal limit... Impact Statement for the Denali Park Road Vehicle Management Plan. SUMMARY: Pursuant to Sec. 102(2)(C... end of the Savage River Bridge (mile 14.8) and continues to the former Mt. McKinley National Park...
Small Upper Stage Basic Program Final Report
1991-08-27
design of the SUS. During storage, the SUS shall3 be required to withstand environments as specified in 3.2.5.1. Environmental protection shall be...accomplish this goal, a launch vehicle survey was conducted to establish the current LV capability and environments with respect to small satellites...4 Launch Vehicle Shock Environment ...................................................................... 2-4 2-5 Launch Vehicle Sound Pressure
DOT National Transportation Integrated Search
1994-01-01
The 1993 Session of the Virginia General Assembly lessened restrictions relating to the application of aftermarket tinted window films to motor vehicle glass. Effective July 1, 1993, vehicles are allowed to have window tinting treatments that do not ...
NASA Technical Reports Server (NTRS)
1991-01-01
Topics addressed are: (1) an artificial gravity assessment study; (2) Mars mission transport vehicle (MTV)/Mars excursion vehicle (MEV) mission scenarios; (3) aerobrake issues; (4) equipment life and self-check; (5) earth-to-orbit (ETO) heavy lift launch vehicle (HLLV) definition trades; and (6) risk analysis.
Journal of Chinese Society of Astronautics (Selected Articles),
1983-03-10
Graphics Disclaimer...................... ..... .. . .. .. . . ... Calculation of Minimum Entry Heat Transfer Shape of a Space * Vehicle , by, Zhou Qi...the best quality copy available. ..- ii CALCULATION OF MINIMUM ENTRY HEAT TRANSFER SHAPE OF A SPACE VEHICLE Zhou Qi cheng ABSTRACT This paper dealt...entry heat transfer shape under specified fineness ratio and total vehicle weight conditions could be obtained using a variational method. Finally, the
Thermoelectric Waste Heat Recovery Program for Passenger Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jovovic, Vladimir
2015-12-31
Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed moremore » modest potential.« less
NASA Astrophysics Data System (ADS)
Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping
2018-02-01
In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.
Final Phase Flight Performance and Touchdown Time Assessment of TDV in RLV-TD HEX-01 Mission
NASA Astrophysics Data System (ADS)
Yadav, Sandeep; Jayakumar, M.; Nizin, Aziya; Kesavabrahmaji, K.; Shyam Mohan, N.
2017-12-01
RLV-TD HEX-01 mission was configured as a precursor flight to actual two stages to orbit vehicle. In this mission RLV-TD was designed as a two stage vehicle for demonstrating the hypersonic flight of a winged body vehicle at Mach No. 5. One of the main objectives of this mission was to generate data for better understanding of new technologies required to design the future vehicle. In this mission, the RLV-TD vehicle was heavily instrumented to get data related to performance of different subsystems. As per the mission design, RLV-TD will land in sea after flight duration of 700 s and travelling a distance of nearly 500 km in Bay of Bengal from the launch site for a nominal trajectory. The visibility studies for telemetry data of vehicle for the nominal and off nominal trajectories were carried out. Based on that, three ground stations were proposed for the telemetry data reception (including one in sea). Even with this scheme it was seen that during the final phase of the flight there will not be any ground station visible to the flight due to low elevation. To have the mission critical data during final phase of the flight, telemetry through INSAT scheme was introduced. During the end of the mission RLV-TD will be landing in the sea on a hypothetical runway. To know the exact time of touchdown for the flight in sea, there was no direct measurement available. Simultaneously there were all chances of losing ground station visibility just before touchdown, making it difficult to assess flight performance during that phase. In this work, telemetry and instrumentation scheme of RLV-TD HEX-01 mission is discussed with an objective to determine the flight performance during the final phase. Further, using various flight sensor data the touchdown time of TDV is assessed for this mission.
The development of a center cell structure in bonded aluminum for the Ferrari 408 research vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeds, A.; Nardini, D.; Cassese, F.
1989-01-01
In F408 research vehicle has enabled Ferrari Engineering to evaluate new forms of transmission, suspension, bodywork and structure for future production vehicles. As Alcan worked with Ferrari Engineering to adapt its Aluminum Structured Vehicle Technology (ASVT) to develop a bonded version of a central section of the structure (center cell). This paper begins with an outline of the major F408 project objectives and indicates the performance and manufacturing advantages for the features of interest, particularly the center cell structure. The paper describes the development stages of the bonded aluminum center cell. It shows that the performance and manufacturing objectives weremore » met with a substantial weight-saving and improvement in stiffness compared to laser-welded stainless steel. The paper concludes with a summary of the other technical innovations and developments in the F408 vehicle.« less
Influence of structural dynamics on vehicle design - Government view. [of aerospace vehicles
NASA Technical Reports Server (NTRS)
Kordes, E. E.
1977-01-01
Dynamic design considerations for aerospace vehicles are discussed, taking into account fixed wing aircraft, rotary wing aircraft, and launch, space, and reentry vehicles. It is pointed out that space vehicles have probably had the most significant design problems from the standpoint of structural dynamics, because their large lightweight structures are highly nonlinear. Examples of problems in the case of conventional aircraft include the flutter encountered by high performance military aircraft with external stores. A description is presented of a number of examples which illustrate the direction of present efforts for improving aircraft efficiency. Attention is given to the results of studies on the structural design concepts for the arrow-wing supersonic cruise aircraft configuration and a system study on low-wing-loading, short haul transports.
Welding at the Kennedy Space Center.
NASA Technical Reports Server (NTRS)
Clautice, W. E.
1973-01-01
Brief description of the nature of the mechanical equipment at a space launch complex from a welding viewpoint. including an identification of the major welding applications used in the construction of this complex. The role played by welding in the ground support equipment is noted, including the welded structures and systems required in the vehicle assembly building, the mobile launchers, transporters, mobile service structure, launch pad and launch site, the propellants system, the pneumatics system, and the environmental control system. The welding processes used at the Kennedy Space Center are reviewed, and a particularly detailed account is given of the design and fabrication of the liquid hydrogen and liquid oxygen storage spheres and piping. Finally, the various methods of testing and inspecting the storage spheres are cited.
NASA Technical Reports Server (NTRS)
Clayton, Joseph P.; Tinker, Michael L.
1991-01-01
This paper describes experimental and analytical characterization of a new flexible thermal protection material known as Tailorable Advanced Blanket Insulation (TABI). This material utilizes a three-dimensional ceramic fabric core structure and an insulation filler. TABI is the leading candidate for use in deployable aeroassisted vehicle designs. Such designs require extensive structural modeling, and the most significant in-plane material properties necessary for model development are measured and analytically verified in this study. Unique test methods are developed for damping measurements. Mathematical models are developed for verification of the experimental modulus and damping data, and finally, transverse properties are described in terms of the inplane properties through use of a 12-dof finite difference model of a simple TABI configuration.
NASA advanced aeronautics design solar powered remotely piloted vehicle
NASA Technical Reports Server (NTRS)
Elario, David S.; Guillmette, Neal H.; Lind, Gregory S.; Webster, Jonathan D.; Ferreira, Michael J.; Konstantakis, George C.; Marshall, David L.; Windt, Cari L.
1991-01-01
Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is beneficial to society. The design and construction of a Multi-Purpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of utilizing solar propulsion as a primary fuel source. This task has been a year long effort by a group of ten students, divided into five teams, each dealing with different aspects of the design. The aircraft was designed to take-off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design in order to achieve flight in this regime. Optimal performance requires a light weight configuration with both structural integrity and maximum power availability. The structure design and choice of solar cells for the propulsion was governed by the weight, efficiency, and cost considerations. The final design is a MPRPV weighting 35 N which cruises 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 10 percent efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were research and tested during the design process.
Swiss heavy goods vehicle control sites peer exchange meeting : final report.
DOT National Transportation Integrated Search
2008-05-01
On February 19, 2008, a peer exchange meeting was held in Glendale, Arizona with the intent of exchanging information on technology-based approaches supporting commercial motor vehicle enforcement. Meeting attendees included transportation and law en...
Fleet equipment performance measurement preventive maintenance model : final report.
DOT National Transportation Integrated Search
2014-04-01
The concept of preventive maintenance is very important in the effective management and deployment of : vehicle fleets. The Texas Department of Transportation (TxDOT) operates a large fleet of on-road and offroad : equipment. Newer engines and vehicl...
High-speed surface transportation corridor : a conceptual framework, final report.
DOT National Transportation Integrated Search
2009-10-08
Efficient transportation is indispensable for economic growth and prosperity. In this study we propose the development of a high-speed surface corridor and compatible vehicles. We present a conceptual framework for this corridor and vehicle. This pro...
Integrating Powered Descent Vehicle with Back Shell of Mars Spacecraft
2011-11-10
The powered descent vehicle of NASA Mars Science Laboratory spacecraft is being prepared for final integration into the spacecraft back shell in this photograph from inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.
In-vehicle crash avoidance warning systems : human factors considerations
DOT National Transportation Integrated Search
1997-02-01
This document represents the final report of the work performed under contract DTNH22-91 C-07004, In-Vehicle Crash Avoidance Warning Systems: Human Factors Considerations. This project was performed to develop guidelines for the interface desig...
Highway Vehicle Retrofit Evaluation : Phase 2. Report. Testing and Final Evaluation Results.
DOT National Transportation Integrated Search
1976-11-01
This report presents the results of engine dynamometer and vehicle chassis dynamometer tests conducted with selected automotive retrofit devices in the classes of ultrasonic carburetors, high-velocity intake manifolds, tuned exhaust systems, and high...
Road Weather Management Program : connected vehicle-infrastructure research. Final Report
DOT National Transportation Integrated Search
2016-04-30
This report provides insight into how existing vehicle sensor data (e.g., location, heading, road surface and atmospheric conditions) can be utilized by the CVI environment to support transportation safety through road-weather applications. Of specia...
In-vehicle work zone messages : final report.
DOT National Transportation Integrated Search
2017-06-01
Work zones present an increased risk to drivers and the work crew. To mitigate these risks, this study investigated the : potential effects of in-vehicle messages to communicate work zone events to the driver. The researchers conducted : literature r...
Proving autonomous vehicle and advanced driver assistance systems safety : final research report.
DOT National Transportation Integrated Search
2016-02-15
The main objective of this project was to provide technology for answering : crucial safety and correctness questions about verification of autonomous : vehicle and advanced driver assistance systems based on logic. : In synergistic activities, we ha...
Vehicle telematics as a platform for road use fees : final report.
DOT National Transportation Integrated Search
2016-11-01
Vehicle telematics systems are composed of various onboard communications, positioning technologies, and computing technologies. Much of the data generated and/or gathered by these systems can be used to determine travel. These systems enable a range...
A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
2007-01-01
A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.
Reusability aspects for space transportation rocket engines: programmatic status and outlook
NASA Astrophysics Data System (ADS)
Preclik, D.; Strunz, R.; Hagemann, G.; Langel, G.
2011-09-01
Rocket propulsion systems belong to the most critical subsystems of a space launch vehicle, being illustrated in this paper by comparing different types of transportation systems. The aspect of reusability is firstly discussed for the space shuttle main engine, the only rocket engine in the world that has demonstrated multiple reuses. Initial projections are contrasted against final reusability achievements summarizing three decades of operating the space shuttle main engine. The discussion is then extended to engines employed on expendable launch vehicles with an operational life requirement typically specifying structural integrities up to 20 cycles (start-ups) and an accumulated burning time of about 6,000 s (Vulcain engine family). Today, this life potential substantially exceeds the duty cycle of an expendable engine. It is actually exploited only during the development and qualification phase of an engine when system reliability is demonstrated on ground test facilities with a reduced number of hardware sets that are subjected to an extended number of test cycles and operation time. The paper will finally evaluate the logic and effort necessary to qualify a reusable engine for a required reliability and put this result in context of possible cost savings realized from reuse operations over a time span of 25 years.
Study 2.5 final report. DORCA computer program. Volume 5: Analysis report
NASA Technical Reports Server (NTRS)
Campbell, N.
1972-01-01
A modification of the Dynamic Operational Requirements and Cost Analysis Program to perform traffic analyses of the automated satellite program is described. Inherent in the analyses of the automated satellite program was the assumption that a number of vehicles were available to perform any or all of the missions within the satellite program. The objective of the modification was to select a vehicle or group of vehicles for performing all of the missions at the lowest possible cost. A vehicle selection routine and the capability to simulate ground based vehicle operational modes were incorporated into the program.
Steering redundancy for self-driving vehicles using differential braking
NASA Astrophysics Data System (ADS)
Jonasson, M.; Thor, M.
2018-05-01
This paper describes how differential braking can be used to turn a vehicle in the context of providing fail-operational control for self-driving vehicles. Two vehicle models are developed with differential input. The models are used to explain the bounds of curvature that differential braking provides and they are then validated with measurements in a test vehicle. Particular focus is paid on wheel suspension effects that significantly influence the obtained curvature. The vehicle behaviour and its limitations due to wheel suspension effects are, owing to the vehicle models, defined and explained. Finally, a model-based controller is developed to control the vehicle curvature during a fault by differential braking. The controller is designed to compensate for wheel angle disturbance that is likely to occur during the control event.
NASA Astrophysics Data System (ADS)
Salami, E.; Montazer, E.; Ward, T. A.; Ganesan, P. B.
2017-06-01
The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings.
Pogo suppression on space shuttle - early studies
NASA Technical Reports Server (NTRS)
Rubin, S.; Wagner, R. G.; Payne, J. G.
1973-01-01
Preliminary studies for pogo prevention on the shuttle vehicle are reported. The importance of the effect of oscillatory outflow from a hydroelastic tank is displayed in terms of excitation of normal modes for a structure containing that tank assuming its outlet is closed. Evaluation of an approximate propulsion frequency response at undamped feedline resonance reveals the conditions for which the contribution of tank outflow is destabilizing and also provides a criterion for identifying those structural modes which are of potential significance for system stability. Various finite-element and normal-mode models for hydraulic feedlines are evaluated relative to accuracy of admittances of a long line. A procedure is recommended for modeling a feed system to minimize the required number of second-order equations. Specific recommendations are made for the analytical estimation of pump cavitation compliance and a first estimate for the shuttle pumps is given. Weakness in past practices of pump testing are identified and a new three-phase program is proposed. Finally results of numerical studies on the early vehicle configuration are presented. It is concluded that an accumulator between the boost and main pump offers promise of higher effectiveness than one at the engine inlet.
A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui
2012-04-01
The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.
Optimization of vehicle deceleration to reduce occupant injury risks in frontal impact.
Mizuno, Koji; Itakura, Takuya; Hirabayashi, Satoko; Tanaka, Eiichi; Ito, Daisuke
2014-01-01
In vehicle frontal impacts, vehicle acceleration has a large effect on occupant loadings and injury risks. In this research, an optimal vehicle crash pulse was determined systematically to reduce injury measures of rear seat occupants by using mathematical simulations. The vehicle crash pulse was optimized based on a vehicle deceleration-deformation diagram under the conditions that the initial velocity and the maximum vehicle deformation were constant. Initially, a spring-mass model was used to understand the fundamental parameters for optimization. In order to investigate the optimization under a more realistic situation, the vehicle crash pulse was also optimized using a multibody model of a Hybrid III dummy seated in the rear seat for the objective functions of chest acceleration and chest deflection. A sled test using a Hybrid III dummy was carried out to confirm the simulation results. Finally, the optimal crash pulses determined from the multibody simulation were applied to a human finite element (FE) model. The optimized crash pulse to minimize the occupant deceleration had a concave shape: a high deceleration in the initial phase, low in the middle phase, and high again in the final phase. This crash pulse shape depended on the occupant restraint stiffness. The optimized crash pulse determined from the multibody simulation was comparable to that from the spring-mass model. From the sled test, it was demonstrated that the optimized crash pulse was effective for the reduction of chest acceleration. The crash pulse was also optimized for the objective function of chest deflection. The optimized crash pulse in the final phase was lower than that obtained for the minimization of chest acceleration. In the FE analysis of the human FE model, the optimized pulse for the objective function of the Hybrid III chest deflection was effective in reducing rib fracture risks. The optimized crash pulse has a concave shape and is dependent on the occupant restraint stiffness and maximum vehicle deformation. The shapes of the optimized crash pulse in the final phase were different for the objective functions of chest acceleration and chest deflection due to the inertial forces of the head and upper extremities. From the human FE model analysis it was found that the optimized crash pulse for the Hybrid III chest deflection can substantially reduce the risk of rib cage fractures. Supplemental materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention to view the supplemental file.
Technology update: Tethered aerostat structural design and material developments
NASA Technical Reports Server (NTRS)
Witherow, R. G.
1975-01-01
Requirements exist for an extremely stable, high performance, all-weather tethered aerostat system. This requirement has been satisfied by a 250,000 cubic foot captive buoyant vehicle as demonstrated by over a year of successful field operations. This achievement required significant advancements in several technology areas including composite materials design, aerostatics and aerodynamics, structural design, electro-mechanical design, vehicle fabrication and mooring operations. This paper specifically addresses the materials and structural design aspects of pressurized buoyant vehicles as related to the general class of Lighter Than Air vehicles.
Torque blending and wheel slip control in EVs with in-wheel motors
NASA Astrophysics Data System (ADS)
de Castro, Ricardo; Araújo, Rui E.; Tanelli, Mara; Savaresi, Sergio M.; Freitas, Diamantino
2012-01-01
Among the many opportunities offered by electric vehicles (EVs), the design of power trains based on in-wheel electric motors represents, from the vehicle dynamics point of view, a very attractive prospect, mainly due to the torque-vectoring capabilities. However, this distributed propulsion also poses some practical challenges, owing to the constraints arising from motor installation in a confined space, to the increased unsprung mass weight and to the integration of the electric motor with the friction brakes. This last issue is the main theme of this work, which, in particular, focuses on the design of the anti-lock braking system (ABS). The proposed structure for the ABS is composed of a tyre slip controller, a wheel torque allocator and a braking supervisor. To address the slip regulation problem, an adaptive controller is devised, offering robustness to uncertainties in the tyre-road friction and featuring a gain-scheduling mechanism based on the vehicle velocity. Further, an optimisation framework is employed in the torque allocator to determine the optimal split between electric and friction brake torque based on energy performance metrics, actuator constraints and different actuators bandwidth. Finally, based on the EV working condition, the priorities of this allocation scheme are adapted by the braking supervisor unit. Simulation results obtained with the CarSim vehicle model, demonstrate the effectiveness of the overall approach.
Know Before You Go! Utah's Off-Highway Vehicle Education Student Workbook.
ERIC Educational Resources Information Center
Utah State Dept. of Natural Resources, Salt Lake City. Div. of Parks and Recreation.
This document is intended to teach the riders of off-highway vehicles (OHVs) how to ride safely and legally on Utah's public lands and how to take care of the places in which they ride. OHVs are all-terrain vehicles (ATVs), off-highway motorcycles, and snowmobiles. Receiving a passing grade on the final test and in an associated course on driving…
Modeling impacts of cold climates on vehicle emissions : final report.
DOT National Transportation Integrated Search
2017-01-20
Vehicle emissions include carbon monoxide (CO), nitrogen oxides (NOx = NO + NO2), volatile organic compounds (VOCs), and air toxics such as benzene. Each of these pollutants is linked to adverse human health effects. To evaluate the contributions of ...
View of the Lunar Roving Vehicle in its final parking space
1972-12-13
AS17-146-22367 (7-19 Dec. 1972) --- This is an excellent view of the Lunar Roving Vehicle (LRV) which was used extensively by astronauts Eugene A. Cernan and Harrison H. Schmitt at the Taurus-Littrow landing site.
Variable Dynamic Testbed Vehicle Study, Final Report, Volume II: Technical Results
DOT National Transportation Integrated Search
1994-08-30
THE NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION (NHTSA) COMMISSIONED THE JET PROPULSION LABORATORY (JPL) TO CONDUCT A STUDY OF AN INSTRUMENTED TEST VEHICLE THAT MAY SATISFY A NUMBER OF REQUIREMENTS FOR NHTSA AS WELL AS OTHERS DOING WORK ASSOCIATED...
Variability in traffic monitoring data : final summary report
DOT National Transportation Integrated Search
1997-08-01
For highway maintenance and planning purposes, each road segment is characterized by its traffic flow [such as the annual average daily traffic (AADT) and the AADT for each vehicle class], by the weight distribution of vehicles that travel on its roa...
Rule to finalize standards for medium- and heavy-duty vehicles that would improve fuel efficiency and cut carbon pollution to reduce the impacts of climate change, while bolstering energy security and spurring manufacturing innovation.
Direct Final Rule for Heavy-Duty Highway Program: Revisions for Emergency Vehicles
Revises the heavy-duty diesel regulations to enable emergency vehicles to perform mission-critical life-saving work without risking that abnormal conditions of the emission control system could lead to decreased engine power, speed or torque.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
... the decision making process. ADDRESSES: Copies of the ROD will be available in an electronic format... at the Savage River Check Station. The 160-vehicle limit is derived from traffic model simulation...
DOT National Transportation Integrated Search
2010-02-01
It is important for many applications, such as intersection delay estimation and adaptive signal : control, to obtain vehicle turning movement information at signalized intersections. However, : vehicle turning movement information is very time consu...
Traffic safety measures using multiple streams real time data : final report
DOT National Transportation Integrated Search
2017-01-04
Traffic crashes and accidents result from many complex factors, but at a basic level, they are conflicts : among vehicles and/or other road users. Roadway conditions, traffic signals, weather, traffic flow, : drivers' behavior and health of vehicles ...
Idea Project Final Report, Laser Vehicle Detector-Classifier
DOT National Transportation Integrated Search
1995-11-28
WEIGH-IN-MOTION OR WIM, COMMERCIAL VEHICLE OPERATIONS OR CVO : THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM, WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFAC...
Heavy and overweight vehicle brake testing : combination five-axle tractor-flatbed, final report
DOT National Transportation Integrated Search
2017-05-01
The Federal Motor Carrier Safety Administration (FMCSA), in coordination with the Federal Highway Administration (FHWA), sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gros...
Vehicle infrastructure integration proof of concept : technical description--vehicle : final report
DOT National Transportation Integrated Search
2009-05-19
This report provides the technical description of the VII system developed for the Cooperative Agreement VII Program between the USDOT and the VII Consortium. The basic architectural elements are summarized and detailed descriptions of the hardware a...
NASA Astrophysics Data System (ADS)
Shakiba, Maryam; Ozer, Hasan; Ziyadi, Mojtaba; Al-Qadi, Imad L.
2016-11-01
The structure-induced rolling resistance of pavements, and its impact on vehicle fuel consumption, is investigated in this study. The structural response of pavement causes additional rolling resistance and fuel consumption of vehicles through deformation of pavement and various dissipation mechanisms associated with inelastic material properties and damping. Accurate and computationally efficient models are required to capture these mechanisms and obtain realistic estimates of changes in vehicle fuel consumption. Two mechanistic-based approaches are currently used to calculate vehicle fuel consumption as related to structural rolling resistance: dissipation-induced and deflection-induced methods. The deflection-induced approach is adopted in this study, and realistic representation of pavement-vehicle interactions (PVIs) is incorporated. In addition to considering viscoelastic behavior of asphalt concrete layers, the realistic representation of PVIs in this study includes non-uniform three-dimensional tire contact stresses and dynamic analysis in pavement simulations. The effects of analysis type, tire contact stresses, pavement viscoelastic properties, pavement damping coefficients, vehicle speed, and pavement temperature are then investigated.
Structural Health Monitoring for a Z-Type Special Vehicle
Yuan, Chaolin; Ren, Liang; Li, Hongnan
2017-01-01
Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG) sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM) scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles. PMID:28587161
Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang
2016-01-01
Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. PMID:27294931
Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang
2016-06-09
Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety.
Dual motor drive vehicle speed synchronization and coordination control strategy
NASA Astrophysics Data System (ADS)
Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing
2018-04-01
Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.
The effect of motion and signalling on drivers' ability to predict intentions of other road users.
Lee, Yee Mun; Sheppard, Elizabeth
2016-10-01
Failure in making the correct judgment about the intention of an approaching vehicle at a junction could lead to a collision. This paper investigated the impact of dynamic information on drivers' judgments about the intentions of approaching cars and motorcycles, and whether a valid or invalid signal was provided was also manipulated. Participants were presented with videoclips of vehicles approaching a junction which terminated immediately before the vehicle made any manoeuvre, or images of the final frame of each video. They were asked to judge whether or not the vehicle would turn. Drivers were better in judging the manoeuvre of approaching vehicles in dynamic than static stimuli, for both vehicle types. Drivers were better in judging the manoeuvre of cars than motorcycles for videos, but not for photographs. Drivers were also better in judging the manoeuvre of approaching vehicles when a valid signal was provided than an invalid signal, demonstrating the importance of providing a valid signal while driving. However, drivers were still somewhat successful in their judgments in most of the conditions with an invalid signal, suggesting that drivers were able to focus on other cues to intention. Finally, given that dynamic stimuli more closely reflect the demands of real-life driving there may be a need for drivers to adopt a more cautious approach while inferring a motorcyclist's intentions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ground Vibration Testing Options for Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry
2011-01-01
New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.
2004-03-24
KENNEDY SPACE CENTER, FLA. -- In the Thermal Protection System Facility, Pilar Ryan, with United Space Alliance, stitches a piece of insulation blanket for Atlantis's nose cap. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
Evaluation of Acoustic Emission SHM of PRSEUS Composite Pressure Cube Tests
NASA Technical Reports Server (NTRS)
Horne, Michael R.; Madaras, Eric I.
2013-01-01
A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) pressure cube were conducted during third quarter 2011 at NASA Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. The AE signals of the later tests are consistent with the final failure progression through two of the pressure cube panels. Calibration tests and damage precursor AE indications, from preliminary checkout pressurizations, indicated areas of concern that eventually failed. Hence those tests have potential for vehicle health monitoring.
NASA Technical Reports Server (NTRS)
Oken, S.; Skoumal, D. E.; Straayer, J. W.
1974-01-01
The development of metal structures reinforced with filamentary composites as a weight saving feature of the space shuttle components is discussed. A frame was selected for study that was representative of the type of construction used in the bulk frames of the orbiter vehicle. Theoretical and experimental investigations were conducted. Component tests were performed to evaluate the critical details used in the designs and to provide credibility to the weight saving results. A model frame was constructed of the reinforced metal material to provide a final evaluation of the construction under realistic load conditions.
2009-03-20
CAPE CANAVERAL, Fla. – The NASA Railroad hauls cars carrying the Ares I-X motor segments and nozzle exit cone over a river bridge to NASA's Kennedy Space Center in Florida. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to Kennedy's Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett
2009-03-19
CAPE CANAVERAL, Fla. – – The NASA Railroad (right) is ready for the exchange of the Florida East Coast Railway cars carrying the booster segments for the Ares I-X test rocket. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett
2009-03-20
CAPE CANAVERAL, Fla. –The NASA Railroad is hauling one of the cars with an Ares I-X segment to the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to Kennedy's Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jack Pfaller
2009-03-19
CAPE CANAVERAL, Fla. – The Florida East Coast Railway train arrives at the Jay Jay Rail Yard with the booster segments for the Ares I-X test rocket for interchange with the NASA Railroad (left). The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett
2009-03-19
CAPE CANAVERAL, Fla. – The Florida East Coast Railway train arrives at the Jay Jay Rail Yard with the booster segments for the Ares I-X test rocket for interchange with the NASA Railroad. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett
2009-03-19
CAPE CANAVERAL, Fla. – The NASA Railroad (right) is ready for the exchange of the Florida East Coast Railway cars carrying the booster segments for the Ares I-X test rocket. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett
2009-03-20
CAPE CANAVERAL, Fla. – The NASA Railroad hauls cars carrying the Ares I-X motor segments and nozzle exit cone over a river bridge to NASA's Kennedy Space Center in Florida. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to Kennedy's Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett
2009-03-20
CAPE CANAVERAL, Fla. – A close-up of the NASA Railroad locomotive #3, and the EMDSW-1500 switcher, that is hauling the Ares I-X motor segments and nozzle exit cone to NASA's Kennedy Space Center in Florida. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to Kennedy's Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett
2009-03-20
CAPE CANAVERAL, Fla. – After switching out the box cars on the train, the NASA Railroad hauls the Ares I-X motor segments and nozzle exit cone to NASA's Kennedy Space Center in Florida. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to Kennedy's Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jack Pfaller
2009-03-19
CAPE CANAVERAL, Fla. – The Florida East Coast Railway train arrives at the Jay Jay Rail Yard with the booster segments for the Ares I-X test rocket for interchange with the NASA Railroad. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett
2009-03-19
CAPE CANAVERAL, Fla. – The Florida East Coast Railway train arrives at the Jay Jay Rail Yard with the booster segments for the Ares I-X test rocket for interchange with the NASA Railroad. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett
2009-03-20
CAPE CANAVERAL, Fla. – The NASA Railroad hauls cars carrying the Ares I-X motor segments and nozzle exit cone over a river bridge to NASA's Kennedy Space Center in Florida. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to Kennedy's Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett
2009-03-20
CAPE CANAVERAL, Fla. –This NASA Railroad engine is hauling one of the cars with an Ares I-X segment to the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to Kennedy's Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jack Pfaller
Evaluation of the Mack Intelligent Vehicle Field Operational Test: September 2006
DOT National Transportation Integrated Search
2006-09-01
This report presents the final results of an independent evaluation of the U.S. Department of Transportation (USDOT) Mack Intelligent Vehicle Initiative (IVI) Field Operational Test (FOT). The IVI is a cooperative effort to conduct FOTs of advanced i...
2000 annual assessment : motor vehicle traffic crash fatality and injury estimates for 2000
DOT National Transportation Integrated Search
2001-11-01
This annual report, prepared as a slide presentation, contains estimates for motor vehicle traffic crashes in 2000 and the resulting injuries and fatalities. They are compared to estimates from the 1999 Final Files. These Annual Assessment estimates ...
Measuring concentrations of selected air pollutants inside California vehicles : final report
DOT National Transportation Integrated Search
1998-12-01
This study provided the data needed to characterize in-transit exposures to air pollutants for California drivers. It also demonstrated a number of in-situ monitoring techniques in moving vehicles and provided findings that shed new light on particle...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... Crosstrek, Toyota Prius and the Volkswagen Audi A4 Allroad (MPV). Subsequent to publishing the April 12.... Therefore, the agency is removing the Ford Five-Hundred (2007) and Volkswagen Audi Allroad vehicle lines...
DOT National Transportation Integrated Search
2016-08-01
This document describes the process and status of developing and implementing agreements, contracts and subcontracts among partner organizations in the New York City Connected Vehicle Pilot Deployment (NYC CVPD). Details include the work elements as ...
DOT National Transportation Integrated Search
2018-01-01
Connected vehicle mobility applications are commonly referred to as dynamic mobility applications (DMAs). DMAs seek to fully leverage frequently collected and rapidly disseminated multi-source data gathered from connected travelers, vehicles, and inf...
Stress and fatigue effects of driving longer combination vehicles
DOT National Transportation Integrated Search
2000-07-01
This Tech Brief summarizes the final report of a study by the same title, which was conducted as a part of a major program by the Federal Highway Administration to investigate commercial driver fatigue in commercial motor vehicle (CMV) operations. Th...
A course on motor vehicle trauma : instructor's guide--final/users manual
DOT National Transportation Integrated Search
1986-09-01
Author's abstract: Health professionals are key to any progress in reducing motor vehicle-related injury and death, yet they have been slow to recognize their role in this important area. One contributing factor to this situation has been the absence...
Impact of cold climates on vehicle emissions: the cold start air toxics pulse : final report.
DOT National Transportation Integrated Search
2016-09-21
This project measured cold start emissions from four vehicles in winter using fast response instrumentation to accurately measure the : time variation of the cold start emission pulse. Seventeen successful tests were conducted over a temperature rang...
The Oregon DOT Slow-Speed Weigh-in-Motion (SWIM) Project : final report
DOT National Transportation Integrated Search
1998-12-01
Weigh-in-motion (WIM) systems have been increasingly used to screen potentially overweight vehicles. However, under slow speed conditions (less than 10 mph), WIM scales appear to be capable of estimating static gross vehicle weight to within 110% wit...
An assessment of autonomous vehicles : traffic impacts and infrastructure needs : final report.
DOT National Transportation Integrated Search
2017-03-01
The project began by understanding the current state of practice and trends. NHTSAs four-level taxonomy for automated vehicles was used to classify smart driving technologies and infrastructure needs. The project used surveys to analyze and gain a...
Traffic accident simulation : final report.
DOT National Transportation Integrated Search
1992-06-01
The purpose of this research was to determine if HVOSM (Highway Vehicle Object Simulation Model) could be used to model a vehicle with a modern front (or rear) suspension system such as a McPherson strut and have the results of the dynamic model be v...
DOT National Transportation Integrated Search
1998-09-01
Commercial Vehicle Administrative (CVO) Processes Cross-Cutting report summarizes and interprets the results of several Field Operational Tests (FOTs) conducted to evaluate systems that increase the efficiency of commercial vehicle administrative pro...
DOT National Transportation Integrated Search
2002-03-01
The Commercial Vehicle Information Systems and Networks Model Deployment Initiative (CVISN MDI) is funded by the Intelligent Transportation Systems Joint Program Office (ITS JPO) and managed by the Federal Motor Carrier Safety Administration (FMCSA),...
DOT National Transportation Integrated Search
2000-12-01
This paper brings together the findings of activities that addressed the impacts of nontechnical barriers and constraints that might impede the progress of Intelligent Transportation Systems (ITS) programs. It discusses how the planning and deploymen...
Alternative Fuel Vehicle Forecasts : Final report.
DOT National Transportation Integrated Search
2016-04-01
Federal and state fuel taxes account for the largest share of the Texas State Highway Fund at 48 percent and 29 percent, respectively, in Fiscal Year 2015. These taxes are levied on a per-gallon basis, meaning that as vehicles get more fuel efficient...
DOT National Transportation Integrated Search
2016-07-14
This report describes the system requirements specifications (SyRS) for the use of mobile devices in a connected vehicle environment. Specifically, it defines the different types of requirements (functional, interface, performance, security, data, an...
DOT National Transportation Integrated Search
2016-08-01
This document describes the System Requirements Specification (SyRS) for the Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment. This SyRS describes the current system requirements derived from the user needs, Conc...
Test Plan. GCPS Task 4, subtask 4.2 thrust structure development
NASA Astrophysics Data System (ADS)
Greenberg, H. S.
1994-09-01
The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through testing activities. One of the major concerns that stems from full scale fabrication is the realities of size and the associated complexities of handling, manufacturing, and assembly. The need exists to fabricate, assemble and test_representative joint specimens to achieve_confidence in the design and manufacturing technologies being proposed.
Test Plan. GCPS Task 4, subtask 4.2 thrust structure development
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through testing activities. One of the major concerns that stems from full scale fabrication is the realities of size and the associated complexities of handling, manufacturing, and assembly. The need exists to fabricate, assemble and test_representative joint specimens to achieve_confidence in the design and manufacturing technologies being proposed.
NASA Technical Reports Server (NTRS)
Sensmeier, Mark D.; Samareh, Jamshid A.
2005-01-01
An approach is proposed for the application of rapid generation of moderate-fidelity structural finite element models of air vehicle structures to allow more accurate weight estimation earlier in the vehicle design process. This should help to rapidly assess many structural layouts before the start of the preliminary design phase and eliminate weight penalties imposed when actual structure weights exceed those estimated during conceptual design. By defining the structural topology in a fully parametric manner, the structure can be mapped to arbitrary vehicle configurations being considered during conceptual design optimization. A demonstration of this process is shown for two sample aircraft wing designs.
Crew Launch Vehicle (CLV) Upper Stage Configuration Selection Process
NASA Technical Reports Server (NTRS)
Davis, Daniel J.; Coook, Jerry R.
2006-01-01
The Crew Launch Vehicle (CLV), a key component of NASA's blueprint for the next generation of spacecraft to take humans back to the moon, is being designed and built by engineers at NASA s Marshall Space Flight Center (MSFC). The vehicle s design is based on the results of NASA's 2005 Exploration Systems Architecture Study (ESAS), which called for development of a crew-launch system to reduce the gap between Shuttle retirement and Crew Exploration Vehicle (CEV) Initial Operating Capability, identification of key technologies required to enable and significantly enhance these reference exploration systems, and a reprioritization of near- and far-term technology investments. The Upper Stage Element (USE) of the CLV is a clean-sheet approach that is being designed and developed in-house, with element management at MSFC. The USE concept is a self-supporting cylindrical structure, approximately 115' long and 216" in diameter, consisting of the following subsystems: Primary Structures (LOX Tank, LH2 Tank, Intertank, Thrust Structure, Spacecraft Payload Adaptor, Interstage, Forward and Aft Skirts), Secondary Structures (Systems Tunnel), Avionics and Software, Main Propulsion System, Reaction Control System, Thrust Vector Control, Auxiliary Power Unit, and Hydraulic Systems. The ESAS originally recommended a CEV to be launched atop a four-segment Space Shuttle Main Engine (SSME) CLV, utilizing an RS-25 engine-powered upper stage. However, Agency decisions to utilize fewer CLV development steps to lunar missions, reduce the overall risk for the lunar program, and provide a more balanced engine production rate requirement prompted engineers to switch to a five-segment design with a single Saturn-derived J-2X engine. This approach provides for single upper stage engine development for the CLV and an Earth Departure Stage, single Reusable Solid Rocket Booster (RSRB) development for the CLV and a Cargo Launch Vehicle, and single core SSME development. While the RSRB design has changed since the CLV Project's inception, the USE design has remained essentially a clean-sheet approach. Although a clean-sheet upper stage design inherently carries more risk than a modified design, it does offer many advantages: a design for increased reliability; built-in extensibility to allow for commonality/growth without major redesign; and incorporation of state-of-the-art materials, hardware, and design, fabrication, and test techniques and processes to facilitate a potentially better, more reliable system. Because consideration was given in the ESAS to both clean-sheet and modified USE designs, this paper will highlight the advantages and disadvantages of both approaches and provide a detailed discussion of trades/selections made that led to the final upper stage configuration.
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.
2000-01-01
A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.
Thermal-Mechanical Testing of Hypersonic Vehicle Structures
NASA Technical Reports Server (NTRS)
Hudson, Larry; Stephens, Craig
2007-01-01
A viewgraph presentation describing thermal-mechanical tests on the structures of hypersonic vehicles is shown. The topics include: 1) U.S. Laboratories for Hot Structures Testing; 2) NASA Dryden Flight Loads Laboratory; 3) Hot Structures Test Programs; 4) Typical Sequence for Hot Structures Testing; 5) Current Hot Structures Testing; and 6) Concluding Remarks.
ASTROS: A multidisciplinary automated structural design tool
NASA Technical Reports Server (NTRS)
Neill, D. J.
1989-01-01
ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task.
NASA Astrophysics Data System (ADS)
Yang, Xingbang; Wang, Tianmiao; Liang, Jianhong; Yao, Guocai; Liu, Miao
2015-04-01
The aquatic unmanned aerial vehicle (AquaUAV), a kind of vehicle that can operate both in the air and the water, has been regarded as a new breakthrough to broaden the application scenario of UAV. Wide application prospects in military and civil field are more than bright, therefore many institutions have focused on the development of such a vehicle. However, due to the significant difference of the physical properties between the air and the water, it is rather difficult to design a fully-featured AquaUAV. Until now, majority of partially-featured AquaUAVs have been developed and used to verify the feasibility of an aquatic-aerial vehicle. In the present work, we classify the current partially-featured AquaUAV into three categories from the scope of the whole UAV field, i.e., the seaplane UAV, the submarine-launched UAV, and the submersible UAV. Then the recent advancements and common characteristics of the three kinds of AquaUAVs are reviewed in detail respectively. Then the applications of bionics in the design of AquaUAV, the transition mode between the air and the water, the morphing wing structure for air-water adaptation, and the power source and the propulsion type are summarized and discussed. The tradeoff analyses for different transition methods between the air and the water are presented. Furthermore, it indicates that applying the bionics into the design and development of the AquaUAV will be essential and significant. Finally, the significant technical challenges for the AquaUAV to change from a conception to a practical prototype are indicated.
Vibration isolation of automotive vehicle engine using periodic mounting systems
NASA Astrophysics Data System (ADS)
Asiri, S.
2005-05-01
Customer awareness and sensitivity to noise and vibration levels have been raised through increasing television advertisement, in which the vehicle noise and vibration performance is used as the main market differentiation. This awareness has caused the transportation industry to regard noise and vibration as important criteria for improving market shares. One industry that tends to be in the forefront of the technology to reduce the levels of noise and vibration is the automobile industry. Hence, it is of practical interest to reduce the vibrations induced structural responses. The automotive vehicle engine is the main source of mechanical vibrations of automobiles. The engine is vulnerable to the dynamic action caused by engine disturbance force in various speed ranges. The vibrations of the automotive vehicle engines may cause structural failure, malfunction of other parts, or discomfort to passengers because of high level noise and vibrations. The mounts of the engines act as the transmission paths of the vibrations transmitted from the excitation sources to the body of the vehicle and passengers. Therefore, proper design and control of these mounts are essential to the attenuation of the vibration of platform structures. To improve vibration resistant capacities of engine mounting systems, vibration control techniques may be used. For instance, some passive and semi-active dissipation devices may be installed at mounts to enhance vibration energy absorbing capacity. In the proposed study, a radically different concept is presented whereby periodic mounts are considered because these mounts exhibit unique dynamic characteristics that make them act as mechanical filters for wave propagation. As a result, waves can propagate along the periodic mounts only within specific frequency bands called the "Pass Bands" and wave propagation is completely blocked within other frequency bands called the "Stop Bands". The experimental arrangements, including the design of mounting systems with plain and periodic mounts will be studied first. The dynamic characteristics of such systems will be obtained experimentally in both cases. The tests will be then carried out to study the performance characteristics of periodic mounts with geometrical and/or material periodicity. The effectiveness of the periodicity on the vibration levels of mounting systems will be demonstrated theoretically and experimentally. Finally, the experimental results will be compared with the theoretical predictions.
Nam, Kanghyun
2015-11-11
This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle's cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data.
DOT National Transportation Integrated Search
1980-04-01
In the report, procedures to reduce the propulsion system noise of urban rail transit vehicles on elevated structures are studied. Experiments in a laboratory use a scale model transit vehicle to evaluate the acoustical effectiveness of noise barrier...
Control of autonomous ground vehicles: a brief technical review
NASA Astrophysics Data System (ADS)
Babak, Shahian-Jahromi; Hussain, Syed A.; Karakas, Burak; Cetin, Sabri
2017-07-01
This paper presents a brief review of the developments achieved in autonomous vehicle systems technology. A concise history of autonomous driver assistance systems is presented, followed by a review of current state of the art sensor technology used in autonomous vehicles. Standard sensor fusion method that has been recently explored is discussed. Finally, advances in embedded software methodologies that define the logic between sensory information and actuation decisions are reviewed.
Structural dynamic and aeroelastic considerations for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.
1991-01-01
The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.
Automating Structural Analysis of Spacecraft Vehicles
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2004-01-01
A major effort within NASA's vehicle analysis discipline has been to automate structural analysis and sizing optimization during conceptual design studies of advanced spacecraft. Traditional spacecraft structural sizing has involved detailed finite element analysis (FEA) requiring large degree-of-freedom (DOF) finite element models (FEM). Creation and analysis of these models can be time consuming and limit model size during conceptual designs. The goal is to find an optimal design that meets the mission requirements but produces the lightest structure. A structural sizing tool called HyperSizer has been successfully used in the conceptual design phase of a reusable launch vehicle and planetary exploration spacecraft. The program couples with FEA to enable system level performance assessments and weight predictions including design optimization of material selections and sizing of spacecraft members. The software's analysis capabilities are based on established aerospace structural methods for strength, stability and stiffness that produce adequately sized members and reliable structural weight estimates. The software also helps to identify potential structural deficiencies early in the conceptual design so changes can be made without wasted time. HyperSizer's automated analysis and sizing optimization increases productivity and brings standardization to a systems study. These benefits will be illustrated in examining two different types of conceptual spacecraft designed using the software. A hypersonic air breathing, single stage to orbit (SSTO), reusable launch vehicle (RLV) will be highlighted as well as an aeroshell for a planetary exploration vehicle used for aerocapture at Mars. By showing the two different types of vehicles, the software's flexibility will be demonstrated with an emphasis on reducing aeroshell structural weight. Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.
Research of a Tram Headstock from Composite
NASA Astrophysics Data System (ADS)
Malkovsky, Zdenek; Kovandova, Hedvika
2014-08-01
The requirements for crashworthiness of railway vehicles are defined by the Railroad crashworthiness standard EN 15227. This standard is based on the findings of the characteristics of steel structures of front parts of railway vehicles. In the Czech Republic an extensive research was carried out within the project TIP FR-TI1/113 on application of composite sandwich structure elements in the design of the front cabins of a railway vehicle. The aim of the research work was to determine real possibilities of the composite sandwich structures for use in the construction of railway vehicles while considering the validity of the above-mentioned standard.
Development of a dedicated ethanol ultra-low emission vehicle (ULEV): Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodge, L.; Bourn, G.; Callahan, T.
The objective of this project was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the fourth and final phase of this project, and also the overall project. The focus of this report is the technology used tomore » develop a dedicated ethanol-fueled ULEV, and the emissions results documenting ULV performance. Some of the details for the control system and hardware changes are presented in two appendices that are SAE papers. The demonstrator vehicle has a number of advanced technological features, but it is currently configured with standard original equipment manufacturer (OEM) under-engine catalysts. Close-coupled catalysts would improve emissions results further, but no close-coupled catalysts were available for this testing. Recently, close-coupled catalysts were obtained, but installation and testing will be performed in the future. This report also briefly summarizes work in several other related areas that supported the demonstrator vehicle work.« less
NASA Astrophysics Data System (ADS)
Maity, Arnab; Padhi, Radhakant; Mallaram, Sanjeev; Mallikarjuna Rao, G.; Manickavasagam, M.
2016-10-01
A new nonlinear optimal and explicit guidance law is presented in this paper for launch vehicles propelled by solid motors. It can ensure very high terminal precision despite not having the exact knowledge of the thrust-time curve apriori. This was motivated from using it for a carrier launch vehicle in a hypersonic mission, which demands an extremely narrow terminal accuracy window for the launch vehicle for successful initiation of operation of the hypersonic vehicle. The proposed explicit guidance scheme, which computes the optimal guidance command online, ensures the required stringent final conditions with high precision at the injection point. A key feature of the proposed guidance law is an innovative extension of the recently developed model predictive static programming guidance with flexible final time. A penalty function approach is also followed to meet the input and output inequality constraints throughout the vehicle trajectory. In this paper, the guidance law has been successfully validated from nonlinear six degree-of-freedom simulation studies by designing an inner-loop autopilot as well, which enhances confidence of its usefulness significantly. In addition to excellent nominal results, the proposed guidance has been found to have good robustness for perturbed cases as well.
2011-07-21
CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), Mission Convoy Commander Tim Obrien strategies with NASA managers and convoy crew members during a prelanding meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), NASA Administrator Charles Bolden discusses strategies with NASA managers and convoy crew members during a prelanding convoy meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Neural network based automatic limit prediction and avoidance system and method
NASA Technical Reports Server (NTRS)
Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)
2001-01-01
A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.
Bridge condition assessment based on long-term strain monitoring
NASA Astrophysics Data System (ADS)
Sun, LiMin; Sun, Shouwang
2011-04-01
In consideration of the important role that bridges play as transportation infrastructures, their safety, durability and serviceability have always been deeply concerned. Structural Health Monitoring Systems (SHMS) have been installed to many long-span bridges to provide bridge engineers with the information needed in making rational decisions for maintenance. However, SHMS also confronted bridge engineers with the challenge of efficient use of monitoring data. Thus, methodologies which are robust to random disturbance and sensitive to damage become a subject on which many researches in structural condition assessment concentrate. In this study, an innovative probabilistic approach for condition assessment of bridge structures was proposed on the basis of long-term strain monitoring on steel girder of a cable-stayed bridge. First, the methodology of damage detection in the vicinity of monitoring point using strain-based indices was investigated. Then, the composition of strain response of bridge under operational loads was analyzed. Thirdly, the influence of temperature and wind on strains was eliminated and thus strain fluctuation under vehicle loads is obtained. Finally, damage evolution assessment was carried out based on the statistical characteristics of rain-flow cycles derived from the strain fluctuation under vehicle loads. The research conducted indicates that the methodology proposed is qualified for structural condition assessment so far as the following respects are concerned: (a) capability of revealing structural deterioration; (b) immunity to the influence of environmental variation; (c) adaptability to the random characteristic exhibited by long-term monitoring data. Further examination of the applicability of the proposed methodology in aging bridge may provide a more convincing validation.
NASA Astrophysics Data System (ADS)
Pan, Chu-Dong; Yu, Ling; Liu, Huan-Lin
2017-08-01
Traffic-induced moving force identification (MFI) is a typical inverse problem in the field of bridge structural health monitoring. Lots of regularization-based methods have been proposed for MFI. However, the MFI accuracy obtained from the existing methods is low when the moving forces enter into and exit a bridge deck due to low sensitivity of structural responses to the forces at these zones. To overcome this shortcoming, a novel moving average Tikhonov regularization method is proposed for MFI by combining with the moving average concepts. Firstly, the bridge-vehicle interaction moving force is assumed as a discrete finite signal with stable average value (DFS-SAV). Secondly, the reasonable signal feature of DFS-SAV is quantified and introduced for improving the penalty function (∣∣x∣∣2 2) defined in the classical Tikhonov regularization. Then, a feasible two-step strategy is proposed for selecting regularization parameter and balance coefficient defined in the improved penalty function. Finally, both numerical simulations on a simply-supported beam and laboratory experiments on a hollow tube beam are performed for assessing the accuracy and the feasibility of the proposed method. The illustrated results show that the moving forces can be accurately identified with a strong robustness. Some related issues, such as selection of moving window length, effect of different penalty functions, and effect of different car speeds, are discussed as well.
Fully three-dimensional analysis of high-speed train-track-soil-structure dynamic interaction
NASA Astrophysics Data System (ADS)
Galvín, P.; Romero, A.; Domínguez, J.
2010-11-01
In this paper, a general and fully three dimensional multi-body-finite element-boundary element model, formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using finite elements. The soil is considered as a homogeneous half-space by the boundary element method. This methodology could be used to take into account local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line. The nonlinear behaviour of the structures could be also considered. In the present paper, in order to test the model, vibrations induced by high-speed train passage are evaluated for a ballasted track. The quasi-static and dynamic load components are studied and the influence of the suspended mass on the vertical loads is analyzed. The numerical model is validated by comparison with experimental records from two HST lines. Finally, the dynamic behaviour of a transition zone between a ballast track and a slab track is analyzed and the obtained results from the proposed model are compared with those obtained from a model with invariant geometry with respect to the track direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).
TA-60-1 Heavy Equipment Shop Areas SWPPP Rev 2 Jan 2017-Final
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgin, Jillian Elizabeth
The primary activities and equipment areas at the facility that are potential stormwater pollution sources include; The storage of vehicles and heavy equipment awaiting repair; or repaired vehicles waiting to be picked up; The storage and handling of oils, anti-freeze, solvents, degreasers, batteries and other chemicals for the maintenance of vehicles and heavy equipment; and Equipment cleaning operations including exterior vehicle wash-down. Steam cleaning is only done on the steam cleaning pad area located at the north east end of Building 60-0001.
NASA Technical Reports Server (NTRS)
Nysmith, C. Robert; Summers, James L.
1961-01-01
Small pyrex glass spheres, representative of stoney meteoroids, were fired into 2024-T3 aluminum alclad multiple-sheet structures at velocities to 11,000 feet per second to evaluate the effectiveness of multisheet hull construction as a means of increasing the resistance of a spacecraft to meteoroid penetrations. The results of these tests indicate that increasing the number of sheets in a structure while keeping the total sheet thickness constant and increasing the spacing between sheets both tend to increase the penetration resistance of a structure of constant weight per unit area. In addition, filling the space between the sheets with a light filler material was found to substantially increase structure penetration resistance with a small increase in weight. An evaluation of the meteoroid hazard to space vehicles is presented in the form of an illustrative-example for two specific lunar mission vehicles, a single-sheet, monocoque hull vehicle and a glass-wool filled, double-sheet hull vehicle. The evaluation is presented in terms of the "best" and the "worst" conditions that might be expected as determined from astronomical and satellite measurements, high-speed impact data, and hypothesized meteoroid structures and compositions. It was observed that the vehicle flight time without penetration can be increased significantly by use of multiple-sheet rather than single-sheet hull construction with no increase in hull weight. Nevertheless, it is evident that a meteoroid hazard exists, even for the vehicle with the selected multiple-sheet hull.
DOT National Transportation Integrated Search
2016-07-12
This document describes the Performance Measurement and Evaluation Support Plan for the New York City Department of Transportation New York City (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. The report documents the performance metrics tha...
Near Term Weight Reduction Potential in a 1977 General Motors B Body Vehicle : final report
DOT National Transportation Integrated Search
1978-05-01
The report presents an analysis of the potential for weight reduction through lightweight material and component substitutions in a 1977 General Motors Corporation B body vehicle. The changes were limited to those that appeared producible in the 1980...
DOT National Transportation Integrated Search
2016-12-01
In order to reduce risky behavior around workzones, this project examines the effectiveness of using in-vehicle : messages to heighten drivers awareness of safety-critical and pertinent workzone information. : This investigation centers around an ...
DOT National Transportation Integrated Search
2016-07-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is part of a national effort to advance CV technologies by deploying, demonstrating, testing and offering lessons learned for future deployers. The THE...
DOT National Transportation Integrated Search
2016-03-14
The Performance Measurement and Evaluation Support Plan for the Connected Vehicle Pilot Deployment Program Phase 1, Tampa Hillsborough Expressway Authority, outlines the goals and objectives for the Pilot as well as the proposed performance metrics. ...
DOT National Transportation Integrated Search
2016-05-18
This document describes the Security Management Operating Concept (SMOC) for the New York City Department of Transportation (NYCDOT) Connected Vehicle Pilot Deployment (CVPD) Project. This SMOC outlines the security mechanisms that will be used to pr...
Safety of railroad passenger vehicle dynamics : final summary report
DOT National Transportation Integrated Search
2002-07-01
This report is a summary of all the work done by Foster-Miller on the passenger rail vehicle dynamic safety under the contract awarded by the FRA. The report presents key issues and findings in the safety assessments and a safety assessment methodolo...
Sensing for HOV/HOT lanes enforcement : final report.
DOT National Transportation Integrated Search
2017-02-01
The use and creation of combined high-occupancy vehicle/high-occupancy toll (HOV/HOT Lanes) have become : more common in urban areas since all types of road users can take advantage of the lane either as a highoccupancy : vehicle or opting in to pay ...
DOT National Transportation Integrated Search
1988-02-01
THIS EVALUATION OF THE VEHICLE RADAR SAFETY SYSTEMS? ANTI-COLLISION DEVICE (HEREAFTER VRSS) WAS UNDERTAKEN BY THE OPERATOR PERFORMANCE AND SAFETY ANALYSIS DIVISION OF THE TRANSPORTATION SYSTEMS CENTER AT THE REQUEST OF THE NATIONAL HIGHWAY TRAFFIC SA...
DOT National Transportation Integrated Search
2015-10-01
Anonymous probe vehicle data are currently being collected on roadways throughout the United States. These data are being incorporated into local and statewide mobility reports to measure the performance of freeways and arterial systems. Predefined s...
DOT National Transportation Integrated Search
2010-09-01
Initial research studied the use of wireless local area networks (WLAN) protocols in Inter-Vehicle Communications : (IVC) environments. The protocols performance was evaluated in terms of measuring throughput, jitter time and : delay time. This re...
DOT National Transportation Integrated Search
2016-08-01
Public charging stations allow electric vehicle (EV) owners to have the ability and confidence to drive throughout New York State; for travel within and between metropolitan areas. Incorporating EV charging station planning into broader local and reg...
DOT National Transportation Integrated Search
2012-02-01
The University of Toledo University Transportation Center (UT-UTC) has identified : hybrid vehicles as one of the three areas of the research. The activities in this research : are directed towards the noise, vibration, and harshness (NVH) solutions ...
DOT National Transportation Integrated Search
1995-08-01
INTELLIGENT VEHICLE INITIATIVE OR IVI : THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. :...
Evaporative Emissions from In-Use Vehicles: Test Fleet Expansion (CRC E-77-2b) Final Report
Report describes the ongoing investigation into the evaporative emission performance of aging light-duty vehicles. The objective was to add additional data to the Coordinating Research Council's (CRC) E-77-2 evaporative emission/permeation test program
On-road energy harvesting from running vehicles : final report.
DOT National Transportation Integrated Search
2014-11-01
A new type of large-scale on-road energy harvester to harness the energy on the road when : traffic passes by is developed. When vehicles pass over the energy harvesting device, the : electrical energy can be produced by the mechanical motion even af...
Computational Aspects of Heat Transfer in Structures
NASA Technical Reports Server (NTRS)
Adelman, H. M. (Compiler)
1982-01-01
Techniques for the computation of heat transfer and associated phenomena in complex structures are examined with an emphasis on reentry flight vehicle structures. Analysis methods, computer programs, thermal analysis of large space structures and high speed vehicles, and the impact of computer systems are addressed.
The Best Estimated Trajectory Analysis for Pad Abort One
NASA Technical Reports Server (NTRS)
Kutty, Prasad; Noonan, Meghan; Karlgaard, Christopher; Beck, Roger
2011-01-01
I. Best Estimated Trajectory (BET) objective: a) Produce reconstructed trajectory of the PA-1 flight to understand vehicle dynamics and aid other post flight analyses. b) Leverage all measurement sources taken of vehicle during flight to produce the most accurate estimate of vehicle trajectory. c) Generate trajectory reconstructions of the Crew Module (CM), Launch Abort System (LAS), and Forward Bay Cover (FBC). II. BET analysis was started immediately following the PA-1 mission and was completed in September, 2010 a) Quick look version of BET released 5/25/2010: initial repackaging of SIGI data. b) Preliminary version of BET released 7/6/2010: first blended solution using available sources of external measurements. c) Final version of BET released 9/1/2010: final blended solution using all available sources of data.
Emission projections of the transport Sector in China: 2015-2040
NASA Astrophysics Data System (ADS)
Yan, L.
2016-12-01
Driven by the significant growth freight and passenger transport demand, transport sector has become a sector that is largely responsible for increases in emissions of atmospheric pollutants (NOx, CO, HC, PM2.5) in China. Figuring out the emission trend in China's transport sector has great influence on formulating emission reduction measures in the future. In this work, both on-road and off-road transport emissions in China were estimated from 2015 to 2040 for CO, NOx, HC and PM2.5. The projection was conducted based on on the energy consumption structure forecast from IEA (International Energy Agency), the future national average annual distance traveled per vehicle and fuel consumption per distance derived from simulation results of the Fuel Economy and Environmental Impact (FEEI) model. The results show that the ownership of on-road vehicles in China increases rapidly during 2015 to 2030 and then the growth slows down. Finally, the total amount reaches up to 522 million in 2040 in which 84.5% turns out to be light-duty vehicles. Because current control legislations for the transport sector in China will continue to be strengthened in the future, the total emissions of China's transport sector were projected to peak around 2030, due to the improvement of vehicle emission standard and the retirement of old vehicles are the most effective measures. The off-road transport will become the main contributor to emissions from transport sector in China since 2030. This work provides a new perspective to understand emissions from both on-road and off-road transport in China, which can support the achievement of improving air quality promised by the Chinese government. This work provides a new perspective to understand the emission trends of on-road and off-road transport sector in China from 2015 to 2040, which can support the achievement of the air quality goal promised by the Chinese government. Driven by the significant growth freight and passenger transport demand, transport sector has become a sector that is largely responsible for increases in emissions of atmospheric pollutants (NOx, CO, HC, PM2.5) in China. Figuring out the emission trend in China's transport sector has great influence on formulating emission reduction measures in the future. In this work, both on-road and off-road transport emissions in China were estimated from 2015 to 2040 for CO, NOx, HC and PM2.5. The projection was conducted based on on the energy consumption structure forecast from IEA (International Energy Agency), the future national average annual distance traveled per vehicle and fuel consumption per distance derived from simulation results of the Fuel Economy and Environmental Impact (FEEI) model. The results show that the ownership of on-road vehicles in China increases rapidly during 2015 to 2030 and then the growth slows down. Finally, the total amount reaches up to 522 million in 2040 in which 84.5% turns out to be light-duty vehicles. Because current control legislations for the transport sector in China will continue to be strengthened in the future, the total emissions of China's transport sector were projected to peak around 2030, due to the improvement of vehicle emission standard and the retirement of old vehicles are the most effective measures. The off-road transport will become the main contributor to emissions from transport sector in China since 2030. This work provides a new perspective to understand emissions from both on-road and off-road transport in China, which can support the achievement of improving air quality promised by the Chinese government. This work provides a new perspective to understand the emission trends of on-road and off-road transport sector in China from 2015 to 2040, which can support the achievement of the air quality goal promised by the Chinese government.
Ares I-X Flight Test - On the Fast Track to the Future
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Robinson, Kimberly F.
2008-01-01
In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately130,OOO feet and through maximum dynamic pressure ("Max Q") of approximately 800 pounds per square foot. Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by an integrated vehicle CDR in March 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008.
Optimal Predictive Control for Path Following of a Full Drive-by-Wire Vehicle at Varying Speeds
NASA Astrophysics Data System (ADS)
SONG, Pan; GAO, Bolin; XIE, Shugang; FANG, Rui
2017-05-01
The current research of the global chassis control problem for the full drive-by-wire vehicle focuses on the control allocation (CA) of the four-wheel-distributed traction/braking/steering systems. However, the path following performance and the handling stability of the vehicle can be enhanced a step further by automatically adjusting the vehicle speed to the optimal value. The optimal solution for the combined longitudinal and lateral motion control (MC) problem is given. First, a new variable step-size spatial transformation method is proposed and utilized in the prediction model to derive the dynamics of the vehicle with respect to the road, such that the tracking errors can be explicitly obtained over the prediction horizon at varying speeds. Second, a nonlinear model predictive control (NMPC) algorithm is introduced to handle the nonlinear coupling between any two directions of the vehicular planar motion and computes the sequence of the optimal motion states for following the desired path. Third, a hierarchical control structure is proposed to separate the motion controller into a NMPC based path planner and a terminal sliding mode control (TSMC) based path follower. As revealed through off-line simulations, the hierarchical methodology brings nearly 1700% improvement in computational efficiency without loss of control performance. Finally, the control algorithm is verified through a hardware in-the-loop simulation system. Double-lane-change (DLC) test results show that by using the optimal predictive controller, the root-mean-square (RMS) values of the lateral deviations and the orientation errors can be reduced by 41% and 30%, respectively, comparing to those by the optimal preview acceleration (OPA) driver model with the non-preview speed-tracking method. Additionally, the average vehicle speed is increased by 0.26 km/h with the peak sideslip angle suppressed to 1.9°. This research proposes a novel motion controller, which provides the full drive-by-wire vehicle with better lane-keeping and collision-avoidance capabilities during autonomous driving.
NASA Technical Reports Server (NTRS)
Black, W. E.
1977-01-01
A three-phase program to develop and demonstrate the feasibility of a metallic heat shield suitable for use on Space Shuttle Orbiter class vehicles at operating surface temperatures of up to 1590 K (2400 F) is summarized. An orderly progression of configuration studies, material screening tests, and subscale structural tests was performed. Scale-up feasibility was demonstrated in the final phase when a sizable nine-panel array was fabricated and successfully tested. The full-scale tests included cyclic testing at reduced air pressure to 1590 K (2400 F) and up to 158 dB overall sound pressure level. The selected structural configuration and design techniques succesfully eliminated thermal induced failures. The thermal/structural performance of the system was repeatedly demonstrated. Practical and effective field repair methods for coated columbium alloys were demonstrated. Major uncertainties of accessibility, refurbishability, and durability were eliminated.
VEGA Launch Vehicle Vibro-Acoustic Approach for Multi Payload Configuration Qualification
NASA Astrophysics Data System (ADS)
Bartoccini, D.; Di Trapani, C.; Fotino, D.; Bonnet, M.
2014-06-01
Acoustic loads are one of the principal source of structural vibration and internal noise during a launch vehicle flight but do not generally present a critical design condition for the main load-carrying structure. However, acoustic loads may be critical to the proper functioning of vehicle components and their supporting structures, which are otherwise lightly loaded. Concerning the VEGA program, in order to demonstrate VEGA Launch Vehicle (LV) on-ground qualification, prior to flight, to the acoustic load, the following tests have been performed: small-scale acoustic test intended for the determination of the acoustic loading of the LV and its nature and full-scale acoustic chamber test to determine the vibro-acoustic response of the structures as well as of the acoustic cavities.
LDRD final report on light-powered nanovehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelnutt, John Allen; van Swol, Frank B.; Miller, James Edward
2003-11-01
We have investigated the possibility of constructing nanoscale metallic vehicles powered by biological motors or flagella that are activated and powered by visible light. The vehicle's body is to be composed of the surfactant bilayer of a liposome coated with metallic nanoparticles or nanosheets grown together into a porous single crystal. The diameter of the rigid metal vesicles is from about 50 nm to microns. Illumination with visible light activates a photosynthetic system in the bilayer that can generate a pH gradient across the liposomal membrane. The proton gradient can fuel a molecular motor that is incorporated into the membrane.more » Some molecular motors require ATP to fuel active transport. The protein ATP synthase, when embedded in the membrane, will use the pH gradient across the membrane to produce ATP from ADP and inorganic phosphate. The nanoscale vehicle is thus composed of both natural biological components (ATPase, flagellum; actin-myosin, kinesin-microtubules) and biomimetic components (metal vehicle casing, photosynthetic membrane) as functional units. Only light and storable ADP, phosphate, water, and weak electron donor are required fuel components. These nano-vehicles are being constructed by self-assembly and photocatalytic and autocatalytic reactions. The nano-vehicles can potentially respond to chemical gradients and other factors such as light intensity and field gradients, in a manner similar to the way that magnetic bacteria navigate. The delivery package might include decision-making and guidance components, drugs or other biological and chemical agents, explosives, catalytic reactors, and structural materials. We expected in one year to be able only to assess the problems and major issues at each stage of construction of the vehicle and the likely success of fabricating viable nanovehicles with our biomimetic photocatalytic approach. Surprisingly, we have been able to demonstrate that metallized photosynthetic liposomes can indeed be made. We have completed the synthesis of metallized liposomes with photosynthetic function included and studied these structures by electron microscopy. Both platinum and palladium nanosheeting have been used to coat the micelles. The stability of the vehicles to mechanical stress and the solution environment is enhanced by the single-crystalline platinum or palladium coating on the vesicle. With analogous platinized micelles, it is possible to dry the vehicles and re-suspend them with full functionality. However, with the liposomes drying on a TEM grid may cause the platinized liposomes to collapse, although probably stay viable in solution. It remains to be shown whether a proton motive force across the metallized bilayer membrane can be generated and whether we will also be able to incorporate various functional capabilities including ATP synthesis and functional molecular motors. Future tasks to complete the nanovehicles would be the incorporation of ATP synthase into metallized liposomes and the incorporation of a molecular motor into metallized liposomes.« less
Propellant Mass Fraction Calculation Methodology for Launch Vehicles
NASA Technical Reports Server (NTRS)
Holt, James B.; Monk, Timothy S.
2009-01-01
Propellant Mass Fraction (pmf) calculation methods vary throughout the aerospace industry. While typically used as a means of comparison between competing launch vehicle designs, the actual pmf calculation method varies slightly from one entity to another. It is the purpose of this paper to present various methods used to calculate the pmf of a generic launch vehicle. This includes fundamental methods of pmf calculation which consider only the loaded propellant and the inert mass of the vehicle, more involved methods which consider the residuals and any other unusable propellant remaining in the vehicle, and other calculations which exclude large mass quantities such as the installed engine mass. Finally, a historic comparison is made between launch vehicles on the basis of the differing calculation methodologies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. (a) Except for... 49 Transportation 2 2011-10-01 2011-10-01 false Structural serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 Section 176.172 Transportation...
Code of Federal Regulations, 2013 CFR
2013-10-01
... serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. (a) Except for... 49 Transportation 2 2013-10-01 2013-10-01 false Structural serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 Section 176.172 Transportation...
Code of Federal Regulations, 2014 CFR
2014-10-01
... serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. (a) Except for... 49 Transportation 2 2014-10-01 2014-10-01 false Structural serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 Section 176.172 Transportation...
Orbiter lessons learned: A guide to future vehicle development
NASA Technical Reports Server (NTRS)
Greenberg, Harry Stan
1993-01-01
Topics addressed are: (1) wind persistence loads methodology; (2) emphasize supportability in design of reusable vehicles; (3) design for robustness; (4) improved aerodynamic environment prediction methods for complex vehicles; (5) automated integration of aerothermal, manufacturing, and structures analysis; (6) continued electronic documentation of structural design and analysis; and (7) landing gear rollout load simulations.
FinalReport-DOE BES DMSE-UNR-QLi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qizhen
The primary goal of this project is to explore the fundamental deformation and failure mechanisms for magnesium with a hexagonal close packed (HCP) crystal structure. It is critical to perform this project for a number of reasons. First, magnesium is the lightest structural metal and its application in various structural components can save the final component weight. Second, the weight reduction from the usage of magnesium-based structural components in transportation vehicles such as automobiles and aircrafts can improve fuel efficiency and reduce the greenhouse gas emissions. Third, structural components often experience dynamic loading such as cyclic loading conditions. Fourth, magnesiummore » with a HCP crystal structure generally has its special deformation responses under loading conditions. This project investigated magnesium based materials (magnesium single crystal, pure polycrystalline magnesium, and some magnesium alloys) under various loading conditions, and also explored some processing routes to manipulate the microstructure and mechanical properties of magnesium. The research results were published in a number of articles and also disseminated through presentations in various conferences such as TMS annual meetings, MRS meetings, the international Plasticity conferences, the Pacific Rim International Congress on Advanced Materials and Processing, and AeroMat. In addition to the contribution to the research/academic community, this project is also beneficial to the general public. With the actual usage of magnesium in the passenger cars, the weight reduction and fuel consumption reduction will save the fuel bill of individual owners.« less
Comparing Free-Free and Shaker Table Model Correlation Methods Using Jim Beam
NASA Technical Reports Server (NTRS)
Ristow, James; Smith, Kenneth Wayne, Jr.; Johnson, Nathaniel; Kinney, Jackson
2018-01-01
Finite element model correlation as part of a spacecraft program has always been a challenge. For any NASA mission, the coupled system response of the spacecraft and launch vehicle can be determined analytically through a Coupled Loads Analysis (CLA), as it is not possible to test the spacecraft and launch vehicle coupled system before launch. The value of the CLA is highly dependent on the accuracy of the frequencies and mode shapes extracted from the spacecraft model. NASA standards require the spacecraft model used in the final Verification Loads Cycle to be correlated by either a modal test or by comparison of the model with Frequency Response Functions (FRFs) obtained during the environmental qualification test. Due to budgetary and time constraints, most programs opt to correlate the spacecraft dynamic model during the environmental qualification test, conducted on a large shaker table. For any model correlation effort, the key has always been finding a proper definition of the boundary conditions. This paper is a correlation case study to investigate the difference in responses of a simple structure using a free-free boundary, a fixed boundary on the shaker table, and a base-drive vibration test, all using identical instrumentation. The NAVCON Jim Beam test structure, featured in the IMAC round robin modal test of 2009, was selected as a simple, well recognized and well characterized structure to conduct this investigation. First, a free-free impact modal test of the Jim Beam was done as an experimental control. Second, the Jim Beam was mounted to a large 20,000 lbf shaker, and an impact modal test in this fixed configuration was conducted. Lastly, a vibration test of the Jim Beam was conducted on the shaker table. The free-free impact test, the fixed impact test, and the base-drive test were used to assess the effect of the shaker modes, evaluate the validity of fixed-base modeling assumptions, and compare final model correlation results between these boundary conditions.
DOT National Transportation Integrated Search
2009-05-01
In 2005, the US Department of Transportation (DOT) initiated a program to develop and test a 5.9GHzbased : Vehicle Infrastructure Integration (VII) proof of concept (POC). The POC was implemented in the northwest : suburbs of Detroit, Michigan. Th...
DOT National Transportation Integrated Search
2010-03-01
The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...
Study of the effects of plea bargaining motor vehicle offenses : final report, December 2009.
DOT National Transportation Integrated Search
2009-12-01
The objectives of this study were to examine the impact of plea bargaining point-carrying moving violations to zero-point : offenses on roadway safety in New Jersey and to assess the impact of plea bargaining on New Jersey Motor Vehicle : Commission ...
DOT National Transportation Integrated Search
2011-08-01
The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...
DOT National Transportation Integrated Search
1997-01-01
Countermeasures for motor vehicle crashes are often determined after extensive data analysis of the crash history of a roadway segment. An important factor that drives the value of this analysis is the accuracy, or precision, with which the crash is ...
DOT National Transportation Integrated Search
1998-05-01
The Smart Sign project has successfully demonstrated the merging of two separate technological disciplines of highway messaging and on-road vehicle emissions sensing into an advanced ITS public information system. This operational test has demonstrat...
DOT National Transportation Integrated Search
2009-05-18
This document describes the objectives and the approach to the testing of the VII Proof of Concept system. A summary of the test results and findings for both the major system functions and the applications designed for the system, are presented alon...
CENTRAL CAROLINA VEHICLE PARTICULATE EMISSION STUDY (FINAL REPORT)
A study to characterize the exhaust emissions from a light-duty fleet of in-use vehicles representative of central North Carolina was conducted in 1999 during both a winter phase (February) and a summer phase (June - July). Summer temperatures averaged 78 F, while the winter te...
Consumer acceptance and travel behavior : impacts of automated vehicles : final report.
DOT National Transportation Integrated Search
2016-01-01
This study provides a glimpse into the not-too-distant future by asking people in the general population how they would respond to the availability of self-driving vehicles, which might be on Texas roadways within a few years. Some elements of the te...
76 FR 1367 - Petition for Approval of Alternate Odometer Disclosure Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
...The State of Wisconsin has petitioned for approval of alternate requirements to certain requirements under Federal odometer law. NHTSA is issuing this final determination granting Wisconsin's petition as it pertains to vehicle transfers. This determination does not include vehicles covered by a lease agreement.
DOT National Transportation Integrated Search
2016-09-09
This document describes the Deployment Readiness Summary for the New York City (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. It demonstrates the completion of Task 1-12 deliverables of Phase 1 by the NYC team. The document also addresses h...
DOT National Transportation Integrated Search
1995-05-14
THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFACE TRANSPORTATION. IT FOCUSES ON PRODUCTS AND RESULT FOR THE DEVELOP...
Function-based design process for an intelligent ground vehicle vision system
NASA Astrophysics Data System (ADS)
Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.
2010-10-01
An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.
2011-07-21
CAPE CANAVERAL, Fla. -- The Convoy Command Center vehicle is positioned on the Shuttle Landing Facility (SLF) at NASA's Kennedy Space Center in Florida awaiting the landing of space shuttle Atlantis. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Seen here is Chris Hasselbring, USA Operations Manager. Securing the space shuttle fleet's place in history, Atlantis marks the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Ben Smegelsky
NASA Astrophysics Data System (ADS)
Huo, Lin; Cheng, Xing-Hua; Yang, Tao
2015-05-01
This paper presents a study of aerothermoelastic response of a C/SiC panel, which is a primary structure for ceramic matrix composite shingle thermal protection system for hypersonic vehicles. It is based on a three dimensional thermal protection shingle panel on a quasi-waverider vehicle model. Firstly, the Thin Shock Layer and piston theory are adopted to compute the aerodynamic pressure of rigid body and deformable body, and a series of engineering methods are used to compute the aerodynamic heating. Then an aerothermoelastic loosely-coupled time marching strategy and self-adapting aerodynamic heating time step are developed to analyze the aerothermoelastic response of the panel, with an aerodynamic heating and temperature field coupling parameter selection method being adopted to increase the efficiency. Finally, a few revealing conclusions are reached by analyzing how coupling at different degrees influences the quasi-static aerothermoelastic response of the panel and how aerodynamic pressure of rigid body time step influences the quasi-static aerothermoelastic response on a glide trajectory.
Temperature and initial curvature effects in low-density panel flutter
NASA Technical Reports Server (NTRS)
Resende, Hugo B.
1992-01-01
The panel flutter phenomenon is studied assuming free-molecule flow. This kind of analysis is relevant in the case of hypersonic flight vehicles traveling at high altitudes, especially in the leeward portion of the vehicle. In these conditions the aerodynamic shear can be expected to be considerably larger than the pressure at a given point, so that the effects of such a loading are incorporated into the structural model. Both the pressure and shear loadings are functions of the panel temperature, which can lead to great variations on the location of the stability boundaries for parametric studies. Different locations can, however, be 'collapsed' onto one another by using as ordinate an appropriately normalized dynamic pressure parameter. This procedure works better for higher values of the panel temperature for a fixed undisturbed flow temperature. Finally, the behavior of the system is studied when the panel has some initial curvature. This leads to the conclusion that it may be unrealistic to try to distinguish between a parabolic or sinusoidal initial shape.
Adaptive control of a quadrotor aerial vehicle with input constraints and uncertain parameters
NASA Astrophysics Data System (ADS)
Tran, Trong-Toan; Ge, Shuzhi Sam; He, Wei
2018-05-01
In this paper, we address the problem of adaptive bounded control for the trajectory tracking of a Quadrotor Aerial Vehicle (QAV) while the input saturations and uncertain parameters with the known bounds are simultaneously taken into account. First, to deal with the underactuated property of the QAV model, we decouple and construct the QAV model as a cascaded structure which consists of two fully actuated subsystems. Second, to handle the input constraints and uncertain parameters, we use a combination of the smooth saturation function and smooth projection operator in the control design. Third, to ensure the stability of the overall system of the QAV, we develop the technique for the cascaded system in the presence of both the input constraints and uncertain parameters. Finally, the region of stability of the closed-loop system is constructed explicitly, and our design ensures the asymptotic convergence of the tracking errors to the origin. The simulation results are provided to illustrate the effectiveness of the proposed method.
Nonlinear panel flutter in a rarefied atmosphere - Aerodynamic shear stress effects
NASA Technical Reports Server (NTRS)
Resende, Hugo B.
1991-01-01
The panel flutter phenomenon is studied assuming free-molecule flow. This kind of analysis is relevant in the case of hypersonic flight vehicles traveling at high altitudes, especially in the leeward portion of the vehicle. In these conditions the aerodynamic shear can be expected to be considerably larger than the pressure at a given point, so that the effects of such a loading are incorporated into the structural model. This is accomplished by introducing distributed longitudinal and bending moment loads. The former can lead to buckling of the panel, with the second mode in the case of a simply-supported panel playing a important role, and becoming the dominant mode in the solution. The presence of equivalent springs in the longitudinal direction at the panel's ends also becomes of relative importance, even for the evaluation of the linear flutter parameter. Finally, the behavior of the system is studied in the presence of applied compressive forces, that is, classical buckling.
Guo, Zongyi; Chang, Jing; Guo, Jianguo; Zhou, Jun
2018-06-01
This paper focuses on the adaptive twisting sliding mode control for the Hypersonic Reentry Vehicles (HRVs) attitude tracking issue. The HRV attitude tracking model is transformed into the error dynamics in matched structure, whereas an unmeasurable state is redefined by lumping the existing unmatched disturbance with the angular rate. Hence, an adaptive finite-time observer is used to estimate the unknown state. Then, an adaptive twisting algorithm is proposed for systems subject to disturbances with unknown bounds. The stability of the proposed observer-based adaptive twisting approach is guaranteed, and the case of noisy measurement is analyzed. Also, the developed control law avoids the aggressive chattering phenomenon of the existing adaptive twisting approaches because the adaptive gains decrease close to the disturbance once the trajectories reach the sliding surface. Finally, numerical simulations on the attitude control of the HRV are conducted to verify the effectiveness and benefit of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Aerothermodynamic testing requirements for future space transportation systems
NASA Technical Reports Server (NTRS)
Paulson, John W., Jr.; Miller, Charles G., III
1995-01-01
Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamic and physical processes, is the genesis for the design and development of advanced space transportation vehicles. It provides crucial information to other disciplines involved in the development process such as structures, materials, propulsion, and avionics. Sources of aerothermodynamic information include ground-based facilities, computational fluid dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this triad is required to provide the optimum requirements while reducing undue design conservatism, risk, and cost. This paper discusses the role of ground-based facilities in the design of future space transportation system concepts. Testing methodology is addressed, including the iterative approach often required for the assessment and optimization of configurations from an aerothermodynamic perspective. The influence of vehicle shape and the transition from parametric studies for optimization to benchmark studies for final design and establishment of the flight data book is discussed. Future aerothermodynamic testing requirements including the need for new facilities are also presented.