Systems Analysis and Integration Publications | Transportation Research |
data Vehicle analysis Vehicle energy Vehicle modeling Vehicle simulation Wireless power transfer The NREL Systems Analysis and Integration Publications Systems Analysis and Integration Publications NREL publishes technical reports, fact sheets, and other documents about its systems analysis and
Electric vehicle life cycle cost analysis : final research project report.
DOT National Transportation Integrated Search
2017-02-01
This project compared total life cycle costs of battery electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV), hybrid electric vehicles (HEV), and vehicles with internal combustion engines (ICE). The analysis considered capital and operati...
Vehicle Technology Simulation and Analysis Tools | Transportation Research
| NREL Vehicle Technology Simulation and Analysis Tools Vehicle Technology Simulation and vehicle technologies with the potential to achieve significant fuel savings and emission reductions. NREL : Automotive Deployment Options Projection Tool The ADOPT modeling tool estimates vehicle technology
Dynamic performances analysis of a real vehicle driving
NASA Astrophysics Data System (ADS)
Abdullah, M. A.; Jamil, J. F.; Salim, M. A.
2015-12-01
Vehicle dynamic is the effects of movement of a vehicle generated from the acceleration, braking, ride and handling activities. The dynamic behaviours are determined by the forces from tire, gravity and aerodynamic which acting on the vehicle. This paper emphasizes the analysis of vehicle dynamic performance of a real vehicle. Real driving experiment on the vehicle is conducted to determine the effect of vehicle based on roll, pitch, and yaw, longitudinal, lateral and vertical acceleration. The experiment is done using the accelerometer to record the reading of the vehicle dynamic performance when the vehicle is driven on the road. The experiment starts with weighing a car model to get the center of gravity (COG) to place the accelerometer sensor for data acquisition (DAQ). The COG of the vehicle is determined by using the weight of the vehicle. A rural route is set to launch the experiment and the road conditions are determined for the test. The dynamic performance of the vehicle are depends on the road conditions and driving maneuver. The stability of a vehicle can be controlled by the dynamic performance analysis.
DOT National Transportation Integrated Search
1980-12-01
This source document on motor vehicle market analysis and consumer impacts consists of three parts. Part II consists of studies and review on: motor vehicle sales trends; motor vehicle fleet life and fleet composition; car buying patterns of the busi...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... Deployment Analysis Report Review; Notice of Public Meeting AGENCY: Research and Innovative Technology... discuss the Connected Vehicle Infrastructure Deployment Analysis Report. The webinar will provide an... and Transportation Officials (AASHTO) Connected Vehicle Infrastructure Deployment Analysis Report...
DOT National Transportation Integrated Search
2009-12-22
This document presents the University of Michigan Transportation Research Institutes plan to : perform analysis of data collected from the light vehicle platform field operational test of the : Integrated Vehicle-Based Safety Systems (IVBSS) progr...
Recreation Vehicle Mechanic. Occupational Analyses Series.
ERIC Educational Resources Information Center
Dean, Ann; Embree, Rick
This analysis covers tasks performed by a recreation vehicle mechanic, an occupational title some provinces and territories of Canada have also identified as recreation vehicle technician and recreation vehicle service technician. A guide to analysis discusses development, structure, and validation method; scope of the occupation; trends; and…
Nontangent, Developed Contour Bulkheads for a Single-Stage Launch Vehicle
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Lepsch, Roger A., Jr.
2000-01-01
Dry weights for single-stage launch vehicles that incorporate nontangent, developed contour bulkheads are estimated and compared to a baseline vehicle with 1.414 aspect ratio ellipsoidal bulkheads. Weights, volumes, and heights of optimized bulkhead designs are computed using a preliminary design bulkhead analysis code. The dry weights of vehicles that incorporate the optimized bulkheads are predicted using a vehicle weights and sizing code. Two optimization approaches are employed. A structural-level method, where the vehicle's three major bulkhead regions are optimized separately and then incorporated into a model for computation of the vehicle dry weight, predicts a reduction of4365 lb (2.2 %) from the 200,679-lb baseline vehicle dry weight. In the second, vehicle-level, approach, the vehicle dry weight is the objective function for the optimization. For the vehicle-level analysis, modified bulkhead designs are analyzed and incorporated into the weights model for computation of a dry weight. The optimizer simultaneously manipulates design variables for all three bulkheads to reduce the dry weight. The vehicle-level analysis predicts a dry weight reduction of 5129 lb, a 2.6% reduction from the baseline weight. Based on these results, nontangent, developed contour bulkheads may provide substantial weight savings for single stage vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less
Time-dependent inertia analysis of vehicle mechanisms
NASA Astrophysics Data System (ADS)
Salmon, James Lee
Two methods for performing transient inertia analysis of vehicle hardware systems are developed in this dissertation. The analysis techniques can be used to predict the response of vehicle mechanism systems to the accelerations associated with vehicle impacts. General analytical methods for evaluating translational or rotational system dynamics are generated and evaluated for various system characteristics. The utility of the derived techniques are demonstrated by applying the generalized methods to two vehicle systems. Time dependent acceleration measured during a vehicle to vehicle impact are used as input to perform a dynamic analysis of an automobile liftgate latch and outside door handle. Generalized Lagrange equations for a non-conservative system are used to formulate a second order nonlinear differential equation defining the response of the components to the transient input. The differential equation is solved by employing the fourth order Runge-Kutta method. The events are then analyzed using commercially available two dimensional rigid body dynamic analysis software. The results of the two analytical techniques are compared to experimental data generated by high speed film analysis of tests of the two components performed on a high G acceleration sled at Ford Motor Company.
Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis
NASA Technical Reports Server (NTRS)
Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.
2008-01-01
Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. V.; Yerazunis, S. W.
1973-01-01
Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement.
Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark
2011-01-01
A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.
NASA Astrophysics Data System (ADS)
Mirbaha, Babak; Saffarzadeh, Mahmoud; AmirHossein Beheshty, Seyed; Aniran, MirMoosa; Yazdani, Mirbahador; Shirini, Bahram
2017-10-01
Analysis of vehicle speed with different weather condition and traffic characteristics is very effective in traffic planning. Since the weather condition and traffic characteristics vary every day, the prediction of average speed can be useful in traffic management plans. In this study, traffic and weather data for a two-lane highway located in Northwest of Iran were selected for analysis. After merging traffic and weather data, the linear regression model was calibrated for speed prediction using STATA12.1 Statistical and Data Analysis software. Variables like vehicle flow, percentage of heavy vehicles, vehicle flow in opposing lane, percentage of heavy vehicles in opposing lane, rainfall (mm), snowfall and maximum daily wind speed more than 13m/s were found to be significant variables in the model. Results showed that variables of vehicle flow and heavy vehicle percent acquired the positive coefficient that shows, by increasing these variables the average vehicle speed in every weather condition will also increase. Vehicle flow in opposing lane, percentage of heavy vehicle in opposing lane, rainfall amount (mm), snowfall and maximum daily wind speed more than 13m/s acquired the negative coefficient that shows by increasing these variables, the average vehicle speed will decrease.
Space transportation architecture: Reliability sensitivities
NASA Technical Reports Server (NTRS)
Williams, A. M.
1992-01-01
A sensitivity analysis is given of the benefits and drawbacks associated with a proposed Earth to orbit vehicle architecture. The architecture represents a fleet of six vehicles (two existing, four proposed) that would be responsible for performing various missions as mandated by NASA and the U.S. Air Force. Each vehicle has a prescribed flight rate per year for a period of 31 years. By exposing this fleet of vehicles to a probabilistic environment where the fleet experiences failures, downtimes, setbacks, etc., the analysis involves determining the resiliency and costs associated with the fleet of specific vehicle/subsystem reliabilities. The resources required were actual observed data on the failures and downtimes associated with existing vehicles, data based on engineering judgement for proposed vehicles, and the development of a sensitivity analysis program.
HASA: Hypersonic Aerospace Sizing Analysis for the Preliminary Design of Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Harloff, Gary J.; Berkowitz, Brian M.
1988-01-01
A review of the hypersonic literature indicated that a general weight and sizing analysis was not available for hypersonic orbital, transport, and fighter vehicles. The objective here is to develop such a method for the preliminary design of aerospace vehicles. This report describes the developed methodology and provides examples to illustrate the model, entitled the Hypersonic Aerospace Sizing Analysis (HASA). It can be used to predict the size and weight of hypersonic single-stage and two-stage-to-orbit vehicles and transports, and is also relevant for supersonic transports. HASA is a sizing analysis that determines vehicle length and volume, consistent with body, fuel, structural, and payload weights. The vehicle component weights are obtained from statistical equations for the body, wing, tail, thermal protection system, landing gear, thrust structure, engine, fuel tank, hydraulic system, avionics, electral system, equipment payload, and propellant. Sample size and weight predictions are given for the Space Shuttle orbiter and other proposed vehicles, including four hypersonic transports, a Mach 6 fighter, a supersonic transport (SST), a single-stage-to-orbit (SSTO) vehicle, a two-stage Space Shuttle with a booster and an orbiter, and two methane-fueled vehicles.
DOT National Transportation Integrated Search
1980-12-01
The source document on motor vehicle market analysis and consumer impact consists of three parts. Part I is an integrated overview of the motor vehicle market in the late 1970's, with sections on the structure of the market, motor vehicle trends, con...
NASA Technical Reports Server (NTRS)
1995-01-01
The purpose of the Advanced Transportation System Studies (ATSS) Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is Volume 2 of the final report for the contract. It provides documentation of selected technical results from various TA-2 analysis activities, including a detailed narrative description of the SSTO concept assessment results, a user's guide for the associated SSTO sizing tools, an SSTO turnaround assessment report, an executive summary of the ground operations assessments performed during the first year of the contract, a configuration-independent vehicle health management system requirements report, a copy of all major TA-2 contract presentations, a copy of the FLO launch vehicle final report, and references to Pratt & Whitney's TA-2 sponsored final reports regarding the identification of Russian main propulsion technologies.
NASA Technical Reports Server (NTRS)
McCurry, J.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.
1972-01-01
The problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars were investigated. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; navigation, terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks were studied: vehicle model design, mathematical modeling of dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement and transport parameter evaluation.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.
1972-01-01
Investigation of problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks have been under study: vehicle model design, mathematical modeling of a dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer sybsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement.
Human Factors Vehicle Displacement Analysis: Engineering In Motion
NASA Technical Reports Server (NTRS)
Atencio, Laura Ashley; Reynolds, David; Robertson, Clay
2010-01-01
While positioned on the launch pad at the Kennedy Space Center, tall stacked launch vehicles are exposed to the natural environment. Varying directional winds and vortex shedding causes the vehicle to sway in an oscillating motion. The Human Factors team recognizes that vehicle sway may hinder ground crew operation, impact the ground system designs, and ultimately affect launch availability . The objective of this study is to physically simulate predicted oscillation envelopes identified by analysis. and conduct a Human Factors Analysis to assess the ability to carry out essential Upper Stage (US) ground operator tasks based on predicted vehicle motion.
Computer analysis of railcar vibrations
NASA Technical Reports Server (NTRS)
Vlaminck, R. R.
1975-01-01
Computer models and techniques for calculating railcar vibrations are discussed along with criteria for vehicle ride optimization. The effect on vibration of car body structural dynamics, suspension system parameters, vehicle geometry, and wheel and rail excitation are presented. Ride quality vibration data collected on the state-of-the-art car and standard light rail vehicle is compared to computer predictions. The results show that computer analysis of the vehicle can be performed for relatively low cost in short periods of time. The analysis permits optimization of the design as it progresses and minimizes the possibility of excessive vibration on production vehicles.
Decision Models for Conducting an Economic Analysis of Alternative Fuels for the Ice Engine.
1983-03-01
p.cduc.d ICE vehicles. This analysis focusqs on electric vehicles d=.signed for commercial use. Electric hybrid vehicles which combine electric...ccntain -:he minimum gross veicle weight, engine size, and other characterist-ca of vehicles generally procured by the Federal governmen. The ir...Electric and Hybrid Vehicles, Energy Technology Review Nc. 44 published by Noyes Data Corpora’-ion. It summarizes data cn characteristics, cost, maints
Some issues in the statistical analysis of vehicle emissions
DOT National Transportation Integrated Search
2000-09-01
Some of the issues complicating the statistical analysis of vehicle emissions and the effectiveness of emissions control programs are presented in this article. Issues discussed include: the variability of inter- and intra-vehicle emissions; the skew...
Medium Duty ARRA Data Reporting and Analysis; NREL (National Renewable Energy Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Kenneth; Duran, Adam; Ragatz, Adam
Medium-duty (MD) electric vehicle (EV) data collection and analysis will help drive design, purchase, and research investments. Over 4 million miles and 160,000 driving days of EV driving data were collected under this project. Publicly available data help drive technology research, development, and deployment. Feeding the vocational database for future analysis will lead to a better understanding of usage and will result in better design optimization and technology implementation. The performance of a vehicle varies with drive cycle and cargo load - MD vehicles are 'multi-functional.' Environment and accessory loads affect vehicle range and in turn add cost by addingmore » battery capacity. MD EV vehicles can function in vocations traditionally serviced by gasoline or diesel vehicles. Facility implications (i.e., demand charges) need to be understood as part of site-based analysis for EV implementation.« less
Systems Analysis and Integration | Transportation Research | NREL
data visualization displayed on a wall. Using a suite of simulation and analysis tools, NREL evaluates savings and reduce emissions. Pictured here, engineers discuss the 3D results of a vehicle simulation vehicles, and other alternative fuel vehicles. Using a suite of simulation and analysis tools, NREL
Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis
NASA Technical Reports Server (NTRS)
Askins, Bruce R.; Davis, Susan R.; Salyer, Blaine H.; Tuma, Margaret L.
2008-01-01
All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).
Feasibility study of modern airships, phase 2. Volume 2: Airport feeder vehicle
NASA Technical Reports Server (NTRS)
1976-01-01
The Airport Feeder vehicle is a VTOL, semi-buoyant ellipsoidal airship capable of transporting passengers or cargo to major CTOL hub terminals from suburban and downtown depots. Six tasks were reviewed: (1) vehicle design definition, (2) operational procedures analysis, (3) cost analysis, (4) comparison with alternate transportation modes, (5) mission/vehicle feasibility assessment, and (6) technology assessment.
A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty
NASA Astrophysics Data System (ADS)
Kewlani, Gaurav; Crawford, Justin; Iagnemma, Karl
2012-05-01
The ability of ground vehicles to quickly and accurately analyse their dynamic response to a given input is critical to their safety and efficient autonomous operation. In field conditions, significant uncertainty is associated with terrain and/or vehicle parameter estimates, and this uncertainty must be considered in the analysis of vehicle motion dynamics. Here, polynomial chaos approaches that explicitly consider parametric uncertainty during modelling of vehicle dynamics are presented. They are shown to be computationally more efficient than the standard Monte Carlo scheme, and experimental results compared with the simulation results performed on ANVEL (a vehicle simulator) indicate that the method can be utilised for efficient and accurate prediction of vehicle motion in realistic scenarios.
Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Chenevert, Donald J.
2009-01-01
NASA has conducted dynamic tests on each major launch vehicle during the past 45 years. Each test provided invaluable data to correlate and correct analytical models. GVTs result in hardware changes to Saturn and Space Shuttle, ensuring crew and vehicle safety. Ares I IVGT will provide test data such as natural frequencies, mode shapes, and damping to support successful Ares I flights. Testing will support controls analysis by providing data to reduce model uncertainty. Value of testing proven by past launch vehicle successes and failures. Performing dynamic testing on Ares vehicles will provide confidence that the launch vehicles will be safe and successful in their missions.
A modal analysis of flexible aircraft dynamics with handling qualities implications
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1983-01-01
A multivariable modal analysis technique is presented for evaluating flexible aircraft dynamics, focusing on meaningful vehicle responses to pilot inputs and atmospheric turbulence. Although modal analysis is the tool, vehicle time response is emphasized, and the analysis is performed on the linear, time-domain vehicle model. In evaluating previously obtained experimental pitch tracking data for a family of vehicle dynamic models, it is shown that flexible aeroelastic effects can significantly affect pitch attitude handling qualities. Consideration of the eigenvalues alone, of both rigid-body and aeroelastic modes, does not explain the simulation results. Modal analysis revealed, however, that although the lowest aeroelastic mode frequency was still three times greater than the short-period frequency, the rigid-body attitude response was dominated by this aeroelastic mode. This dominance was defined in terms of the relative magnitudes of the modal residues in selected vehicle responses.
The vehicle design evaluation program - A computer-aided design procedure for transport aircraft
NASA Technical Reports Server (NTRS)
Oman, B. H.; Kruse, G. S.; Schrader, O. E.
1977-01-01
The vehicle design evaluation program is described. This program is a computer-aided design procedure that provides a vehicle synthesis capability for vehicle sizing, external load analysis, structural analysis, and cost evaluation. The vehicle sizing subprogram provides geometry, weight, and balance data for aircraft using JP, hydrogen, or methane fuels. The structural synthesis subprogram uses a multistation analysis for aerodynamic surfaces and fuselages to develop theoretical weights and geometric dimensions. The parts definition subprogram uses the geometric data from the structural analysis and develops the predicted fabrication dimensions, parts material raw stock buy requirements, and predicted actual weights. The cost analysis subprogram uses detail part data in conjunction with standard hours, realization factors, labor rates, and material data to develop the manufacturing costs. The program is used to evaluate overall design effects on subsonic commercial type aircraft due to parameter variations.
NASA Technical Reports Server (NTRS)
1974-01-01
A summary of the constraints and requirements on the Earth Observatory Satellite (EOS-A) orbit and launch vehicle analysis is presented. The propulsion system (hydrazine) and the launch vehicle (Delta 2910) selected for EOS-A are examined. The rationale for the selection of the recommended orbital altitude of 418 nautical miles is explained. The original analysis was based on the EOS-A mission with the Thematic Mapper and the High Resolution Pointable Imager. The impact of the revised mission model is analyzed to show how the new mission model affects the previously defined propulsion system, launch vehicle, and orbit. A table is provided to show all aspects of the EOS multiple mission concepts. The subjects considered include the following: (1) mission orbit analysis, (2) spacecraft parametric performance analysis, (3) launch system performance analysis, and (4) orbits/launch vehicle selection.
NASA Astrophysics Data System (ADS)
Worley, Marilyn E.; Ren, Ping; Sandu, Corina; Hong, Dennis
2007-04-01
This study focuses on developing an assessment tool for the performance prediction of lightweight autonomous vehicles with varying locomotion platforms on coastal terrain involves three segments. A table based on the House of Quality shows the relationships - high, low, or adverse - between mission profile requirements and general performance measures and geometries of vehicles under consideration for use. This table, when combined with known values for vehicle metrics, provides information for an index formula used to quantitatively compare the mobility of a user-chosen set of vehicles, regardless of their methods of locomotion. To study novel forms of locomotion, and to compare their mobility and performance with more traditional wheeled and tracked vehicles, several new autonomous vehicles - bipedal, self-excited dynamic tripedal, active spoke-wheel - are currently under development. While the terramechanics properties of wheeled and tracked vehicles, such as the contact patch pressure distribution, have been understood and models have been developed for heavy vehicles, the feasibility of extrapolating them to the analysis of light vehicles is still under analysis. wheeled all-terrain vehicle and a lightweight autonomous tracked vehicle have been tested for effects of sand gradation, vehicle speed, and vehicle payload on measures of pressure and sinkage in the contact patch, and preliminary analysis is presented on the sinkage of the wheeled all-terrain vehicle. These three segments - development of the comparison matrix and indexing function, modeling and development of novel forms of locomotion, and physical experimentation of lightweight tracked and wheeled vehicles on varying terrain types for terramechanic model validation - combine to give an overall picture of mobility that spans across different forms of locomotion.
Atlanta I-85 HOV-to-HOT conversion : analysis of vehicle and person throughput.
DOT National Transportation Integrated Search
2013-10-01
This report summarizes the vehicle and person throughput analysis for the High Occupancy Vehicle to High Occupancy Toll Lane : conversion in Atlanta, GA, undertaken by the Georgia Institute of Technology research team. The team tracked changes in : o...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom P.
The Department of Energy’s (DOE) Vehicle Technologies Office funds research on development of technologies to improve the fuel economy of both light- and heavy-duty vehicles, including advanced combustion systems, improved batteries and electric drive systems, and new lightweight materials. Of these approaches to increase fuel economy and reduce fuel consumption, reducing vehicle mass through more extensive use of strong lightweight materials is perhaps the easiest and least expensive method; however, there is a concern that reducing vehicle mass may lead to more fatalities. Lawrence Berkeley National Laboratory (LBNL) has conducted several analyses to better understand the relationship between vehicle mass,more » size and safety, in order to ameliorate concerns that down-weighting vehicles will inherently lead to more fatalities. These analyses include recreating the regression analyses conducted by the National Highway Traffic Safety Administration (NHTSA) that estimate the relationship between mass reduction and U.S. societal fatality risk per vehicle mile of travel (VMT), while holding vehicle size (i.e. footprint, wheelbase times track width) constant; these analyses are referred to as LBNL Phase 1 analysis. In addition, LBNL has conducted additional analysis of the relationship between mass and the two components of risk per VMT, crash frequency (crashes per VMT) and risk once a crash has occurred (risk per crash); these analyses are referred to as LBNL Phase 2 analysis.« less
Ares I-X Malfunction Turn Range Safety Analysis
NASA Technical Reports Server (NTRS)
Beaty, J. R.
2011-01-01
Ares I-X was the designation given to the flight test version of the Ares I rocket which was developed by NASA (also known as the Crew Launch Vehicle (CLV) component of the Constellation Program). The Ares I-X flight test vehicle achieved a successful flight test on October 28, 2009, from Pad LC-39B at Kennedy Space Center, Florida (KSC). As part of the flight plan approval for the test vehicle, a range safety malfunction turn analysis was performed to support the risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could have caused the vehicle trajectory to deviate from its normal flight path. The effects of these failures were evaluated with an Ares I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version II (POST2) simulation tool. The Ares I-X simulation analysis provided output files containing vehicle trajectory state information. These were used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at KSC, and to develop the vehicle destruct criteria used by the flight test range safety officer in the event of a flight test anomaly of the vehicle. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study.
An Integrated Tool for System Analysis of Sample Return Vehicles
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.
2012-01-01
The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.
Development of STS/Centaur failure probabilities liftoff to Centaur separation
NASA Technical Reports Server (NTRS)
Hudson, J. M.
1982-01-01
The results of an analysis to determine STS/Centaur catastrophic vehicle response probabilities for the phases of vehicle flight from STS liftoff to Centaur separation from the Orbiter are presented. The analysis considers only category one component failure modes as contributors to the vehicle response mode probabilities. The relevant component failure modes are grouped into one of fourteen categories of potential vehicle behavior. By assigning failure rates to each component, for each of its failure modes, the STS/Centaur vehicle response probabilities in each phase of flight can be calculated. The results of this study will be used in a DOE analysis to ascertain the hazard from carrying a nuclear payload on the STS.
Analysis of hydraulic steering system of tracked all-terrain vehicles' articulated mechanism
NASA Astrophysics Data System (ADS)
Meng, Zhongliang; Zang, Hao
2018-04-01
As for the researches on the dynamic characteristics of tracked all-terrain vehicles' articulated mechanism, the hydraulic feature of their steering system needs researching more, apart from the study on mechanical models. According to the maximum pressure required by the steering system of tracked all-terrain vehicle and the principle of the steering system, this paper conducts an analysis of the hydraulic steering system of the articulated mechanism. Based on the structure principle of the steering gear, a simulation model of the tracked all-terrain vehicle turning left is built. When building the simulation model of the steering gear, it makes a simulation analysis, taking the tracked all-terrain vehicle turning left as an example.
NASA Technical Reports Server (NTRS)
1974-01-01
A number of problems related to the design, construction and evaluation of an autonomous roving planetary vehicle and its control and operating systems intended for an unmanned exploration of Mars are studied. Vehicle configuration, dynamics, control, systems and propulsion; systems analysis; terrain sensing and modeling and path selection; and chemical analysis of samples are included.
de Villiers, M M; Mahlatji, M D; Malan, S F; van Tonder, E C; Liebenberg, W
2004-07-01
This study reports the preparation of four niclosamide solvates and the determination of the stability of the crystal forms in different suspension vehicles by DSC and TG analysis. Thermal analysis showed that the niclosamide solvates were extremely unstable in a PVP-vehicle and rapidly changed to monohydrated crystals. A suspension in propylene glycol was more stable and TG analysis showed that crystal transformation was less rapid. In this vehicle, the crystals transformed to the anhydrate, rather than the monohydrate, since the vehicle was non-aqueous. The TEG-hemisolvate was the most stable in suspension and offered the best possibility of commercial exploitation.
Efficiency analysis of a multiple axle vehicle with hydrostatic transmission overcoming obstacles
NASA Astrophysics Data System (ADS)
Comellas, M.; Pijuan, J.; Nogués, M.; Roca, J.
2018-01-01
Transmission configurations in off-road vehicles with multiple driven axles can be a determining factor in the obstacle surmounting capacity and also in the vehicle efficiency. An off-road articulated vehicle with four driven axles, four bogies and two modules has been considered for the global hydrostatic transmission efficiency analysis and for the vehicle functional efficiency analysis. The power flow through the transmission system has been quantified from the combustion engine shaft to each axle of the wheels. It has been done for different the operating conditions and taking into account the wheel-terrain interaction and the transmission configuration, that could lead to a forced slippage of some of the wheels. Results show the influence of the different wheels' requirements, the transmission configuration limitations and the considered control strategy on the global transmission and vehicle functional efficiencies.
DOT National Transportation Integrated Search
2014-03-01
Connected vehicle wireless data communications can enable safety applications that may reduce injuries and fatalities. Cooperative vehicle-to-vehicle (V2V) safety applications will be effective only if a high fraction of vehicles are equipped. Deploy...
VEHICLE MASS REDUCTION STUDY | Science Inventory ...
Analysis of the potential to reduce light-duty vehicle mass through the application of low density or high strength materials, component consolidation, and changes to vehicle architecture. Find a holistic vehicle design approach that establishes a potential path for future feasible vehicle mass reduction in light-duty vehicles to meet more stringent GHG and Fuel Economy Standards.
Payload vehicle aerodynamic reentry analysis
NASA Astrophysics Data System (ADS)
Tong, Donald
An approach for analyzing the dynamic behavior of a cone-cylinder payload vehicle during reentry to insure proper deployment of the parachute system and recovery of the payload is presented. This analysis includes the study of an aerodynamic device that is useful in extending vehicle axial rotation through the maximum dynamic pressure region. Attention is given to vehicle configuration and reentry trajectory, the derivation of pitch static aerodynamics, the derivation of the pitch damping coefficient, pitching moment modeling, aerodynamic roll device modeling, and payload vehicle reentry dynamics. It is shown that the vehicle dynamics at parachute deployment are well within the design limit of the recovery system, thus ensuring successful payload recovery.
Variable Dynamic Testbed Vehicle Dynamics Analysis
DOT National Transportation Integrated Search
1996-03-01
ANTI-ROLL BAR, EMULATION, FOUR-WHEEL-STEERING, LATERAL RESPONSE CHARACTERISTICS, SIMULATION, VARIABLE DYNAMIC TESTBED VEHICLE, INTELLIGENT VEHICLE INITIATIVE OR IVI : THE VARIABLE DYNAMIC TESTBED VEHICLE (VDTV) CONCEPT HAS BEEN PROPOSED AS A TOOL...
Automatic generation of the non-holonomic equations of motion for vehicle stability analysis
NASA Astrophysics Data System (ADS)
Minaker, B. P.; Rieveley, R. J.
2010-09-01
The mathematical analysis of vehicle stability has been utilised as an important tool in the design, development, and evaluation of vehicle architectures and stability controls. This paper presents a novel method for automatic generation of the linearised equations of motion for mechanical systems that is well suited to vehicle stability analysis. Unlike conventional methods for generating linearised equations of motion in standard linear second order form, the proposed method allows for the analysis of systems with non-holonomic constraints. In the proposed method, the algebraic constraint equations are eliminated after linearisation and reduction to first order. The described method has been successfully applied to an assortment of classic dynamic problems of varying complexity including the classic rolling coin, the planar truck-trailer, and the bicycle, as well as in more recent problems such as a rotor-stator and a benchmark road vehicle with suspension. This method has also been applied in the design and analysis of a novel three-wheeled narrow tilting vehicle with zero roll-stiffness. An application for determining passively stable configurations using the proposed method together with a genetic search algorithm is detailed. The proposed method and software implementation has been shown to be robust and provides invaluable conceptual insight into the stability of vehicles and mechanical systems.
Human Factors Analysis to Improve the Processing of Ares-1 Launch Vehicle
NASA Technical Reports Server (NTRS)
Stambolian, Damon B.; Dippolito, Gregory M.; Nyugen, Bao; Dischinger, Charles; Tran, Donald; Henderson, Gena; Barth, Tim
2011-01-01
This slide presentation reviews the use of Human Factors analysis in improving the ground processing procedures for the Ares-1 launch vehicle. The light vehicle engineering designers for Ares-l launch vehicle had to design the flight vehicle for effective, efficient and safe ground operations in the cramped dimensions in a rocket design. The use of a mockup of the area where the technician would be required to work proved to be a very effective method to promote the collaboration between the Ares-1 designers and the ground operations personnel.
DOT National Transportation Integrated Search
2017-08-25
The intent of the Rural Connected Vehicle Gap Analysis project was to identify any current gaps in the connected vehicle program that may result in a reduced deployment potential in the rural areas of the United States. Through a workshop conducted a...
DOT National Transportation Integrated Search
2012-05-16
This Communications Data Delivery System Analysis Task 2 report describes and analyzes options for Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications data delivery systems using various communication media (Dedicated Short Ra...
DOT National Transportation Integrated Search
1980-12-01
This source document on motor vehicle market analysis and consumer impacts consists of three parts. Part III consists of studies and reviews on: consumer awareness of fuel efficiency issues; consumer acceptance of fuel efficient vehicles; car size ch...
DOT National Transportation Integrated Search
2016-03-02
The principal objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should be considered across the range of transportation planning processes and products developed...
DOT National Transportation Integrated Search
2015-06-01
The principal objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should be considered across the range of transportation planning processes and products developed...
NASA Technical Reports Server (NTRS)
Hegab, Hisham E.
2002-01-01
The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.
NASA Technical Reports Server (NTRS)
Hegab, Hisham E.
2001-01-01
The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Davis, Susan R.; Askins, Bruce R.; Salyer, Blaine H.
2008-01-01
The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was lost during launch. Subsequent analyses indicated that had a GVT been conducted on the vehicle, problems with vehicle modes and control may have been discovered and corrected, avoiding loss of the vehicle/mission. This paper will address GVT planning, set-up, conduction and analyses, for the Saturn and Shuttle programs, and also focus on the current and on-going planning for the Ares I and V IVGVT.
National Plug-In Electric Vehicle Infrastructure Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Eric; Rames, Clement; Muratori, Matteo
This report addresses the fundamental question of how much plug-in electric vehicle (PEV) charging infrastructure—also known as electric vehicle supply equipment (EVSE)—is needed in the United States to support both plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs).
Electric/Hybrid Vehicle Simulation
NASA Technical Reports Server (NTRS)
Slusser, R. A.; Chapman, C. P.; Brennand, J. P.
1985-01-01
ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.
NASA Technical Reports Server (NTRS)
McGhee, David S.; Peck, Jeff A.; McDonald, Emmett J.
2012-01-01
This paper examines Probabilistic Sensitivity Analysis (PSA) methods and tools in an effort to understand their utility in vehicle loads and dynamic analysis. Specifically, this study addresses how these methods may be used to establish limits on payload mass and cg location and requirements on adaptor stiffnesses while maintaining vehicle loads and frequencies within established bounds. To this end, PSA methods and tools are applied to a realistic, but manageable, integrated launch vehicle analysis where payload and payload adaptor parameters are modeled as random variables. This analysis is used to study both Regional Response PSA (RRPSA) and Global Response PSA (GRPSA) methods, with a primary focus on sampling based techniques. For contrast, some MPP based approaches are also examined.
76 FR 51120 - Denial of Motor Vehicle Defect Petition
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-17
... crashes an air bag should have deployed, which were not always well-founded, or based on any technical analysis. There were 5 reports of non-deployment in a population of 176,471 \\4\\ Chevrolet Cobalt vehicles... NHTSA's Fatality Analysis Reporting System (FARS) tracks all fatal crashes involving motor vehicles in...
DOT National Transportation Integrated Search
2016-03-11
The principal objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should be considered across the range of transportation planning processes and products developed...
40 CFR 86.240-94 - Exhaust sample analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.240-94 Exhaust sample analysis. The...
DOT National Transportation Integrated Search
2016-03-11
The principal objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should be considered across the range of transportation planning processes and products developed...
14 CFR 417.209 - Malfunction turn analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... nozzle burn-through. For each cause of a malfunction turn, the analysis must establish the launch vehicle... the launch vehicle's turning capability in the event of a malfunction during flight. A malfunction... launch vehicle is capable. (4) The time, as a single value or a probability time distribution, when each...
14 CFR 417.209 - Malfunction turn analysis.
Code of Federal Regulations, 2011 CFR
2011-01-01
... nozzle burn-through. For each cause of a malfunction turn, the analysis must establish the launch vehicle... the launch vehicle's turning capability in the event of a malfunction during flight. A malfunction... launch vehicle is capable. (4) The time, as a single value or a probability time distribution, when each...
NASA Astrophysics Data System (ADS)
Yoshida, Takashi
Combined-levitation-and-propulsion single-sided linear induction motor (SLIM) vehicle can be levitated without any additional levitation system. When the vehicle runs, the attractive-normal force varies depending on the phase of primary current because of the short primary end effect. The ripple of the attractive-normal force causes the vertical vibration of the vehicle. In this paper, instantaneous attractive-normal force is analyzed by using space harmonic analysis method. And based on the analysis, vertical vibration control is proposed. The validity of the proposed control method is verified by numerical simulation.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Vanderberg, J. D.; Woodbury, N. W.
1974-01-01
A method for rapidly examining the probable applicability of weight estimating formulae to a specific aerospace vehicle design is presented. The Multivariate Analysis Retrieval and Storage System (MARS) is comprised of three computer programs which sequentially operate on the weight and geometry characteristics of past aerospace vehicles designs. Weight and geometric characteristics are stored in a set of data bases which are fully computerized. Additional data bases are readily added to the MARS system and/or the existing data bases may be easily expanded to include additional vehicles or vehicle characteristics.
NASA Technical Reports Server (NTRS)
Rehder, J. J.; Wurster, K. E.
1978-01-01
Techniques for sizing electrically or chemically propelled orbit transfer vehicles and analyzing fleet requirements are used in a comparative analysis of the two concepts for various levels of traffic to geosynchronous orbit. The vehicle masses, fuel requirements, and fleet sizes are determined and translated into launch vehicle payload requirements. Technology projections beyond normal growth are made and their effect on the comparative advantages of the concepts is determined. A preliminary cost analysis indicates that although electric propulsion greatly reduces launch vehicle requirements substantial improvements in the cost and reusability of power systems must occur to make an electrically propelled vehicle competitive.
INS integrated motion analysis for autonomous vehicle navigation
NASA Technical Reports Server (NTRS)
Roberts, Barry; Bazakos, Mike
1991-01-01
The use of inertial navigation system (INS) measurements to enhance the quality and robustness of motion analysis techniques used for obstacle detection is discussed with particular reference to autonomous vehicle navigation. The approach to obstacle detection used here employs motion analysis of imagery generated by a passive sensor. Motion analysis of imagery obtained during vehicle travel is used to generate range measurements to points within the field of view of the sensor, which can then be used to provide obstacle detection. Results obtained with an INS integrated motion analysis approach are reviewed.
NASA Astrophysics Data System (ADS)
Bell, Stephen C.; Ginsburg, Marc A.; Rao, Prabhakara P.
An important part of space launch vehicle mission planning for a planetary mission is the integrated analysis of guidance and performance dispersions for both booster and upper stage vehicles. For the Mars Observer mission, an integrated trajectory analysis was used to maximize the scientific payload and to minimize injection errors by optimizing the energy management of both vehicles. This was accomplished by designing the Titan III booster vehicle to inject into a hyperbolic departure plane, and the Transfer Orbit Stage (TOS) to correct any booster dispersions. An integrated Monte Carlo analysis of the performance and guidance dispersions of both vehicles provided sensitivities, an evaluation of their guidance schemes and an injection error covariance matrix. The polynomial guidance schemes used for the Titan III variable flight azimuth computations and the TOS solid rocket motor ignition time and burn direction derivations accounted for a wide variation of launch times, performance dispersions, and target conditions. The Mars Observer spacecraft was launched on 25 September 1992 on the Titan III/TOS vehicle. The post flight analysis indicated that a near perfect park orbit injection was achieved, followed by a trans-Mars injection with less than 2sigma errors.
Analysis of permit vehicle loads in Wisconsin.
DOT National Transportation Integrated Search
2009-09-30
This study evaluated the impact of the 250-kip Wisconsin Standard Permit Vehicle against the overloaded vehicles operating on Wisconsin roads in recent years. The evaluation was conducted using three sets of data: 1) overloaded vehicle records within...
An Example for Integrated Gas Turbine Engine Testing and Analysis Using Modeling and Simulation
2006-12-01
USAF Academy in a joint test and analysis effort of the F109 turbofan engine. This process uses a swirl investigation as a vehicle to exercise and...test and analysis effort of the F109 turbofan engine. This process uses a swirl investigation as a vehicle to exercise and demonstrate the approach...test and analysis effort of the F109 turbofan engine, an effort which uses a swirl investigation as a vehicle to exercise and demonstrate the
Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.
2006-01-01
This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.
Study 2.5 final report. DORCA computer program. Volume 5: Analysis report
NASA Technical Reports Server (NTRS)
Campbell, N.
1972-01-01
A modification of the Dynamic Operational Requirements and Cost Analysis Program to perform traffic analyses of the automated satellite program is described. Inherent in the analyses of the automated satellite program was the assumption that a number of vehicles were available to perform any or all of the missions within the satellite program. The objective of the modification was to select a vehicle or group of vehicles for performing all of the missions at the lowest possible cost. A vehicle selection routine and the capability to simulate ground based vehicle operational modes were incorporated into the program.
Dependence of driving characteristics upon follower-leader combination
NASA Astrophysics Data System (ADS)
Nagahama, Akihito; Yanagisawa, Daichi; Nishinari, Katsuhiro
2017-10-01
The analysis of the microscopic view of mixed traffic offers a basis for resolving traffic jams which are inhomogeneous due to several types of vehicles. In this study, we research the dependence of driving characteristics upon vehicle order in a platoon. By focusing particularly upon the manner in which the driving characteristics of a follower are affected by both their own vehicle type and that of their leader, we measured the trajectories of platoons comprising two vehicles selected from motorcycles, passenger cars, and trucks on a test course. Analysis based on vehicle order showed that the vehicle types of both the leader and the follower as well as the leader's driving characteristics affected the velocity, acceleration, deceleration, operational delay of followers, and the distance gap between leaders and followers in different ways. In addition, we investigated the factors affecting driving characteristics by multiple regression analysis. We revealed that the operational delay and the maximum distance gap tend to be large when the length of leaders is large. Furthermore, as long as a follower can follow, we need not consider vehicle types among the parameters determining maximum velocity in car-following models. The vehicle types of the leader and the follower should be considered to determine maximum acceleration. When determining maximum deceleration, the vehicle types of the follower should be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom P.
This report presents a new approach to analyze the relationship between vehicle mass and risk: tracking fatality risk by vehicle model year and mass, for individual vehicle models. This approach is appealing as it greatly minimizes the influence of driver characteristics and behavior, and crash circumstances, on fatality risk. However, only the most popular vehicle models, with the largest number of fatalities, can be analyzed in this manner. While the analysis of all vehicle models of a given type suggests that there is a relationship between increased mass and fatality risk, analysis of the ten most popular four-door car modelsmore » separately suggests that this relationship is weak: in many cases when the mass of a specific vehicle model is increased societal fatality risk is unchanged or even increases. These results suggest that increasing the mass of an individual vehicle model does not necessarily lead to decreased societal fatality risk.« less
NASA Technical Reports Server (NTRS)
Traversi, M.
1979-01-01
Data are presented on the sensitivity of: (1) mission analysis results to the boundary values given for number of passenger cars and average annual vehicle miles traveled per car; (2) vehicle characteristics and performance to specifications; and (3) tradeoff study results to the expected parameters.
Orbiter lessons learned: A guide to future vehicle development
NASA Technical Reports Server (NTRS)
Greenberg, Harry Stan
1993-01-01
Topics addressed are: (1) wind persistence loads methodology; (2) emphasize supportability in design of reusable vehicles; (3) design for robustness; (4) improved aerodynamic environment prediction methods for complex vehicles; (5) automated integration of aerothermal, manufacturing, and structures analysis; (6) continued electronic documentation of structural design and analysis; and (7) landing gear rollout load simulations.
Bridge Analysis and Evaluation of Effects Under Overload Vehicles
DOT National Transportation Integrated Search
2009-12-01
Movement of industrial freight infrequently requires special overload vehicles weighing 5 to 6 times the normal legal truck weight to move across highway systems. The gross vehicle weight of the overload vehicles frequently exceeds 400 kips while the...
Electric vehicle fleet implications and analysis : final research project report.
DOT National Transportation Integrated Search
2016-11-01
The objective of this project was to evaluate the implementation and effectiveness of : electric vehicles (EVs) used in fleet operations. The study focuses on Battery-Electric : Vehicles (BEVs) and Plug-In Hybrid Electric Vehicles (PHEVs); collective...
Structural Weight Estimation for Launch Vehicles
NASA Technical Reports Server (NTRS)
Cerro, Jeff; Martinovic, Zoran; Su, Philip; Eldred, Lloyd
2002-01-01
This paper describes some of the work in progress to develop automated structural weight estimation procedures within the Vehicle Analysis Branch (VAB) of the NASA Langley Research Center. One task of the VAB is to perform system studies at the conceptual and early preliminary design stages on launch vehicles and in-space transportation systems. Some examples of these studies for Earth to Orbit (ETO) systems are the Future Space Transportation System [1], Orbit On Demand Vehicle [2], Venture Star [3], and the Personnel Rescue Vehicle[4]. Structural weight calculation for launch vehicle studies can exist on several levels of fidelity. Typically historically based weight equations are used in a vehicle sizing program. Many of the studies in the vehicle analysis branch have been enhanced in terms of structural weight fraction prediction by utilizing some level of off-line structural analysis to incorporate material property, load intensity, and configuration effects which may not be captured by the historical weight equations. Modification of Mass Estimating Relationships (MER's) to assess design and technology impacts on vehicle performance are necessary to prioritize design and technology development decisions. Modern CAD/CAE software, ever increasing computational power and platform independent computer programming languages such as JAVA provide new means to create greater depth of analysis tools which can be included into the conceptual design phase of launch vehicle development. Commercial framework computing environments provide easy to program techniques which coordinate and implement the flow of data in a distributed heterogeneous computing environment. It is the intent of this paper to present a process in development at NASA LaRC for enhanced structural weight estimation using this state of the art computational power.
Impact of Active Climate Control Seats on Energy Use, Fuel Use, and CO2 Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutzer, Cory J; Rugh, John P; Titov, Eugene V
A project was developed through collaboration between Gentherm and NREL to determine the impact of climate control seats for light-duty vehicles in the United States. The project used a combination of experimentation and analysis, with experimental results providing critical input to the analysis process. First, outdoor stationary vehicle testing was performed at NREL's facility in Golden, CO using multiple occupants. Two pre-production Ford Focus electric vehicles were used for testing; one containing a standard inactive seat and the second vehicle containing a Gentherm climate control seat. Multiple maximum cool-down and steady-state cooling tests were performed in late summer conditions. Themore » two vehicles were used to determine the increase in cabin temperature when using the climate control seat in comparison to the baseline vehicle cabin temperature with a standard seat at the equivalent occupant whole-body sensation. The experiments estimated that on average, the climate control seats allowed for a 2.61 degrees Celsius increase in vehicle cabin temperature at equivalent occupant body sensation compared to the baseline vehicle. The increased cabin air temperature along with their measured energy usage were then used as inputs to the national analysis process. The national analysis process was constructed from full vehicle cabin, HVAC, and propulsion models previously developed by NREL. In addition, three representative vehicle platforms, vehicle usage patterns, and vehicle registration weighted environmental data were integrated into the analysis process. Both the baseline vehicle and the vehicle with climate control seats were simulated, using the experimentally determined cabin temperature offset of 2.61degrees Celsius and added seat energy as inputs to the climate control seat vehicle model. The U.S. composite annual fuel use savings for the climate control seats over the baseline A/C system was determined to be 5.1 gallons of gasoline per year per vehicle, corresponding to 4.0 grams of CO2/mile savings. Finally, the potential impact of 100 percent adoption of climate control seats on U.S. light-duty fleet A/C fuel use was calculated to be 1.3 billion gallons of gasoline annually with a corresponding CO2 emissions reduction of 12.7 million tons. Direct comparison of the impact of the CCS to the ventilated seat off-cycle credit was not possible because the NREL analysis calculated a combined car/truck savings and the baseline A/C CO2 emissions were higher than EPA. To enable comparison, the CCS national A/C CO2 emissions were split into car/truck components and the ventilated seat credit was scaled up. The split CO2 emissions savings due to the CCS were 3.5 g/mi for a car and 4.4 g/mi for a truck. The CCS saved an additional 2.0 g/mi and 2.5 g/mi over the adjusted ventilated seat credit for a car and truck, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinkman, Norman; Wang, Michael; Weber, Trudy
An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.
Advanced Suspension and Control Algorithm for U.S. Army Ground Vehicles
2013-04-01
Army Materiel Systems Analysis Activity (AMSAA), for his assistance and guidance in building a multibody vehicle dynamics model of a typical light...Mobility Multipurpose Wheeled Vehicle [HMMWV] model) that was developed in collaboration with the U.S. Army Materiel Systems Analysis Activity (5) is...control weight for GPC With Explicit Disturbance was R = 1.0e-7 over the entire speed range. To simplify analysis , the control weights for the other two
Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi
Wang, Michael
2018-05-11
To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.
NASA Astrophysics Data System (ADS)
Kisulenko, B. V.; Bocharov, A. V.; Pugachev, V. V.
2018-02-01
The article discusses the risks specific to vehicles with a high level of automation of control, and conditions the limits on the operating conditions of such vehicles. The article determines existing legal barriers to the implementation of autonomous vehicles. The article contains an analysis of foreign practice of regulating in the European Union, Japan and the United States and information about the UNECE activities aimed at enabling operation of vehicles with a high degree of automation control. Basing on the results of the analysis, the authors made proposals for removal of legal barriers. The article also contains proposals for the development of specific requirements for autonomous vehicles associated with their specific features of design.
Hypersonic vehicle control law development using H(infinity) and micron-synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.
1993-01-01
Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.
NASA Technical Reports Server (NTRS)
1979-01-01
Results of a study leading to the preliminary design of a five passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis are presented. The study methodology is described. Vehicle characterizations, the mission description, characterization, and impact on potential sales, and the rationale for the selection of the reference internal combustion engine vehicle are presented. Conclusions and recommendations of the mission analysis and performance specification report are included.
Revised Vehicle Miles of Travel for Passenger Cars and Light Trucks, 1975 to 1993
DOT National Transportation Integrated Search
1995-09-21
The Federal Highway Administration (FHWA) historically has supplied registered : vehicle and vehicle miles of travel (VMT) data for use with the National Center : for Statistics and Analysis (NCSA) motor vehicle injury and fatality data. : However, t...
Zero-moment point determination of worst-case manoeuvres leading to vehicle wheel lift
NASA Astrophysics Data System (ADS)
Lapapong, S.; Brown, A. A.; Swanson, K. S.; Brennan, S. N.
2012-01-01
This paper proposes a method to evaluate vehicle rollover propensity based on a frequency-domain representation of the zero-moment point (ZMP). Unlike other rollover metrics such as the static stability factor, which is based on the steady-state behaviour, and the load transfer ratio, which requires the calculation of tyre forces, the ZMP is based on a simplified kinematic model of the vehicle and the analysis of the contact point of the vehicle relative to the edge of the support polygon. Previous work has validated the use of the ZMP experimentally in its ability to predict wheel lift in the time domain. This work explores the use of the ZMP in the frequency domain to allow a chassis designer to understand how operating conditions and vehicle parameters affect rollover propensity. The ZMP analysis is then extended to calculate worst-case sinusoidal manoeuvres that lead to untripped wheel lift, and the analysis is tested across several vehicle configurations and compared with that of the standard Toyota J manoeuvre.
Goldenbeld, Charles; Reurings, Martine; Van Norden, Yvette; Stipdonk, Henk
2013-01-01
To establish the statistical relationship between offenses and crashes when the unit of analysis is the vehicle instead of the driver, to show the influence of the severity (e.g., minor speed offenses) on this relationship, and to research whether the form of this relationship is similar in different enforcement contexts. An exploratory analysis was conducted using Dutch traffic offense and crash data. Crash data included all police-registered crashes involving motorized and registered vehicles in 2009; offense data included all non-criminal traffic offenses registered during 2005-2009 (mostly camera detected). Together these comprise an estimated 97 percent of all traffic offenses registered in this period. The analysis was done on a level of identified vehicles rather than persons. Vehicles involved in crashes were matched to vehicles involved in traffic offenses. The offense frequency distributions of registered crash involved vehicles and a random selection of vehicles was analyzed. Two comparisons were made: (1) privately owned vehicles versus company-owned vehicles and (2) vehicles for which only minor speed offenses were registered versus vehicles for which at least one major speed offense was registered. An increase in traffic offense frequency coincides with a stronger increase in relative crash involvement. This relationship was adequately described by a power function. The slightly more than linear increase in the crash risk for vehicles with only minor speed offenses suggests that minor speed offenses (<10 km/h over the limit) contributed slightly to crashes. This relationship was unlikely to be caused by increased distance traveled only. For vehicles with at least one or more major speed violation an approximately quadratic increase of crash risk with increasing speed offense frequency was found. A comparison of Dutch and Canadian data showed a much more progressive offense-crash relationship in the Dutch data. The crash involvement of vehicles increased more than linearly with the number of minor traffic violations. Thus, automatic detection of minor offenses bears relevance to safety. The substantial increase in crash rates with speed offense frequency for vehicles with at least one major speed violation suggests that these vehicles represent a specific group with a significantly increased crash risk, especially in the case of many minor offenses. The more progressive relationship between offenses and crashes in The Netherlands when compared to Canada was hypothesized to result from the higher intensity camera enforcement levels and less severe consequences in the Dutch enforcement and adjudication system.
NASA Technical Reports Server (NTRS)
Miller, R. E., Jr.; Hansen, S. D.; Redhed, D. D.; Southall, J. W.; Kawaguchi, A. S.
1974-01-01
Evaluation of the cost-effectiveness of integrated analysis/design systems with particular attention to Integrated Program for Aerospace-Vehicle Design (IPAD) project. An analysis of all the ingredients of IPAD indicates the feasibility of a significant cost and flowtime reduction in the product design process involved. It is also concluded that an IPAD-supported design process will provide a framework for configuration control, whereby the engineering costs for design, analysis and testing can be controlled during the air vehicle development cycle.
NASA Astrophysics Data System (ADS)
Dawid, Rys; Piotr, Jaskula
2018-05-01
Oversized heavy duty vehicles occur in traffic very rarely but they reach extremely high weights, even up to 800 tonne. The detrimental impact of these vehicles on pavement structure is much higher than in case of commercial vehicles that comprise typical traffic, thus it is necessary to assess the sensitivity of pavement structure to passage of oversized vehicles. The paper presents results of sample calculations of load equivalency factor of a heavy duty oversized vehicle with usage of mechanistic-empirical approach. The effects of pavement thickness, type of distress (cracking or rutting) and pavement condition (new or old with structural damage) were considered in the paper. Analysis revealed that a single pass of an 800 tonne oversized vehicle is equivalent to pass of up to 377 standard 100 kN axles. Load equivalency factor calculated for thin structures is almost 3 times lower than for thick structures, however, the damage effect caused by one pass of an oversized vehicle is higher in the case of thin structure. Bearing capacity of a pavement structure may be qualified as sufficient for passage of an oversized heavy duty vehicle when the measured deflection, for example in an FWD test, does not exceed the maximum deflections derived from mechanistic-empirical analysis. The paper presents sample calculation of maximum deflections which allow to consider passage of an oversized vehicle as safe over different pavement structures. The paper provides road administration with a practical tool which helps to decide whether to issue a permit of passage for a given oversized vehicle.
NASA Technical Reports Server (NTRS)
Unal, Resit
1999-01-01
Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.
NASA Technical Reports Server (NTRS)
McCurry, J. B.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. The basic period of performance of the TA-2 contract was from May 1992 through May 1993. No-cost extensions were exercised on the contract from June 1993 through July 1995. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 3, provides a work breakdown structure dictionary, user's guide for the parametric life cycle cost estimation tool, and final report developed by ECON, Inc., under subcontract to Lockheed Martin on TA-2 for the analysis of heavy lift launch vehicle concepts.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2011-01-01
Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin is caused by an undamping of the aerodynamics in one of the lower frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic lineloads derived from steady rigid computational fluid dynamics (CFD). However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers where experiment or unsteady computational aeroelastic (CAE) analysis show a reduced or even negative aerodynamic damping. This paper will present a method of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics. The enhanced formulation uses unsteady CFD to compute the response of selected lower frequency modes. The response is contained in a time history of the vehicle lineloads. A proper orthogonal decomposition of the unsteady aerodynamic lineload response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping and mass matrices. The results of the enhanced quasi-static aeroelastic stability analysis are compared with the damping and frequency computed from unsteady CAE analysis and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady CAE analysis.
Hybrid vehicle assessment. Phase 1: Petroleum savings analysis
NASA Technical Reports Server (NTRS)
Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H. C.
1984-01-01
The results of a comprehensive analysis of near term electric hybrid vehicles are presented, with emphasis on their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles are first modeled. The projected U.S. fleet composition is estimated, and conceptual hybrid vehicle designs are conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates are then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of sevral conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle mission battery combination. Conclusions and recommendations are presented, and development recommendations are identified.
Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Michael
2012-07-25
To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continuedmore » to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.« less
NASA Astrophysics Data System (ADS)
Simniceanu, Loreta; Mihaela, Bogdan; Otat, Victor; Trotea, Mario
2017-10-01
This paper proposes a plan mechanical model for the vehicles with two axles, taking into account the lateral deflection of the tire. For this mechanical model are determined two mathematical models under the nonlinear differential equations systems form without taking into account the action of the driver and taking into account. The analysis of driver-vehicle system consists in the mathematical description of vehicle dynamics, coupled with the possibilities and limits of the human factor. Description seeks to emphasize the significant influence of the driver in handling and stability analyzes of vehicles and vehicle-driver system stability until the advent of skidding. These mathematical models are seen as very useful tools to analyzing the vehicles stability. The paper analyzes the influence of some parameters of the vehicle on its behavior in terms of stability of dynamic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francfort, Jim; Bennett, Brion; Carlson, Richard
2015-09-01
Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s (DOE) Idaho National Laboratory (INL), is the lead laboratory for U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). INL’s conduct of the AVTA resulted in a significant base of knowledge and experience in the area of testing light-duty vehicles that reduced transportation-related petroleum consumption. Due to this experience, INL was tasked by DOE to develop agreements with companies that were the recipients of The American Recovery and Reinvestment Act of 2009 (ARRA) grants, that would allow INL to collect raw data from light-duty vehicles andmore » charging infrastructure. INL developed non-disclosure agreements (NDAs) with several companies and their partners that resulted in INL being able to receive raw data via server-to-server connections from the partner companies. This raw data allowed INL to independently conduct data quality checks, perform analysis, and report publicly to DOE, partners, and stakeholders, how drivers used both new vehicle technologies and the deployed charging infrastructure. The ultimate goal was not the deployment of vehicles and charging infrastructure, cut rather to create real-world laboratories of vehicles, charging infrastructure and drivers that would aid in the design of future electric drive transportation systems. The five projects that INL collected data from and their partners are: • ChargePoint America - Plug-in Electric Vehicle Charging Infrastructure Demonstration • Chrysler Ram PHEV Pickup - Vehicle Demonstration • General Motors Chevrolet Volt - Vehicle Demonstration • The EV Project - Plug-in Electric Vehicle Charging Infrastructure Demonstration • EPRI / Via Motors PHEVs – Vehicle Demonstration The document serves to benchmark the performance science involved the execution, analysis and reporting for the five above projects that provided lessons learned based on driver’s use of the vehicles and recharging decisions made. Data is reported for the use of more than 25,000 vehicles and charging units.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom
2012-08-01
NHTSA recently completed a logistic regression analysis (Kahane 2012) updating its 2003 and 2010 studies of the relationship between vehicle mass and US fatality risk per vehicle mile traveled (VMT). The new study updates the previous analyses in several ways: updated FARS data for 2002 to 2008 involving MY00 to MY07 vehicles are used; induced exposure data from police reported crashes in several additional states are added; a new vehicle category for car-based crossover utility vehicles (CUVs) and minivans is created; crashes with other light-duty vehicles are divided into two groups based on the crash partner vehicle’s weight, and amore » category for all other fatal crashes is added; and new control variables for new safety technologies and designs, such as electronic stability controls (ESC), side airbags, and methods to meet voluntary agreement to improve light truck compatibility with cars, are included.« less
Nuclear Thermal Propulsion Mars Mission Systems Analysis and Requirements Definition
NASA Technical Reports Server (NTRS)
Mulqueen, Jack; Chiroux, Robert C.; Thomas, Dan; Crane, Tracie
2007-01-01
This paper describes the Mars transportation vehicle design concepts developed by the Marshall Space Flight Center (MSFC) Advanced Concepts Office. These vehicle design concepts provide an indication of the most demanding and least demanding potential requirements for nuclear thermal propulsion systems for human Mars exploration missions from years 2025 to 2035. Vehicle concept options vary from large "all-up" vehicle configurations that would transport all of the elements for a Mars mission on one vehicle. to "split" mission vehicle configurations that would consist of separate smaller vehicles that would transport cargo elements and human crew elements to Mars separately. Parametric trades and sensitivity studies show NTP stage and engine design options that provide the best balanced set of metrics based on safety, reliability, performance, cost and mission objectives. Trade studies include the sensitivity of vehicle performance to nuclear engine characteristics such as thrust, specific impulse and nuclear reactor type. Tbe associated system requirements are aligned with the NASA Exploration Systems Mission Directorate (ESMD) Reference Mars mission as described in the Explorations Systems Architecture Study (ESAS) report. The focused trade studies include a detailed analysis of nuclear engine radiation shield requirements for human missions and analysis of nuclear thermal engine design options for the ESAS reference mission.
Effects of vehicle-ride exposure on cervical pathology: a meta-analysis
KOLLOCK, Roger; GAMES, Kenneth; WILSON, Alan E.; SEFTON, JoEllen M.
2015-01-01
Research to date on the effect vehicle-ride exposure has on the development of cervical pathologies in mounted Warfighters is conflicting. The purpose of this study was to determine if the literature suggests a definite effect of vehicle-ride exposure on cervical pathology. Databases were searched using multiple combinations of select terms. Twelve studies meeting the inclusion criteria were included in the meta-analysis. The results of the meta-analysis revealed that overall vehicle-ride exposure was likely to increase cervical pathology (p=0.01, odds ratio=1.59, 95% CI=1.16−2.17). Using vehicle type as a moderator it was found that vehicle-ride exposure in ground-based vehicles (p=0.01, odds ratio=2.33, 95% CI=1.41−3.85) and fixed-wing aircraft (p=0.01, odds ratio =1.59, 95% CI=1.13−2.23) were likely to increase cervical pathology. Using operator/other personnel moderator it was found that in the populations tested, fighter pilots or fighter jet weapons systems operators were more likely to develop a cervical pathology (p<0.001, odds ratio=1.78, 95% CI=1.26−2.50). The available studies indicate an increase in cervical pathology for personnel exposed to ground-based vehicles and fixed-wing aircraft. PMID:25739897
Development and Flight Testing of an Adaptable Vehicle Health-Monitoring Architecture
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.; Taylor, B. Douglas; Brett, Rube R.
2003-01-01
Development and testing of an adaptable wireless health-monitoring architecture for a vehicle fleet is presented. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained adaptable expert system. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate, and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear.
Guo, Junbin; Wang, Jianqiang; Guo, Xiaosong; Yu, Chuanqiang; Sun, Xiaoyan
2014-01-01
Preceding vehicle detection and tracking at nighttime are challenging problems due to the disturbance of other extraneous illuminant sources coexisting with the vehicle lights. To improve the detection accuracy and robustness of vehicle detection, a novel method for vehicle detection and tracking at nighttime is proposed in this paper. The characteristics of taillights in the gray level are applied to determine the lower boundary of the threshold for taillights segmentation, and the optimal threshold for taillight segmentation is calculated using the OTSU algorithm between the lower boundary and the highest grayscale of the region of interest. The candidate taillight pairs are extracted based on the similarity between left and right taillights, and the non-vehicle taillight pairs are removed based on the relevance analysis of vehicle location between frames. To reduce the false negative rate of vehicle detection, a vehicle tracking method based on taillights estimation is applied. The taillight spot candidate is sought in the region predicted by Kalman filtering, and the disturbed taillight is estimated based on the symmetry and location of the other taillight of the same vehicle. Vehicle tracking is completed after estimating its location according to the two taillight spots. The results of experiments on a vehicle platform indicate that the proposed method could detect vehicles quickly, correctly and robustly in the actual traffic environments with illumination variation. PMID:25195855
Guo, Junbin; Wang, Jianqiang; Guo, Xiaosong; Yu, Chuanqiang; Sun, Xiaoyan
2014-08-19
Preceding vehicle detection and tracking at nighttime are challenging problems due to the disturbance of other extraneous illuminant sources coexisting with the vehicle lights. To improve the detection accuracy and robustness of vehicle detection, a novel method for vehicle detection and tracking at nighttime is proposed in this paper. The characteristics of taillights in the gray level are applied to determine the lower boundary of the threshold for taillights segmentation, and the optimal threshold for taillight segmentation is calculated using the OTSU algorithm between the lower boundary and the highest grayscale of the region of interest. The candidate taillight pairs are extracted based on the similarity between left and right taillights, and the non-vehicle taillight pairs are removed based on the relevance analysis of vehicle location between frames. To reduce the false negative rate of vehicle detection, a vehicle tracking method based on taillights estimation is applied. The taillight spot candidate is sought in the region predicted by Kalman filtering, and the disturbed taillight is estimated based on the symmetry and location of the other taillight of the same vehicle. Vehicle tracking is completed after estimating its location according to the two taillight spots. The results of experiments on a vehicle platform indicate that the proposed method could detect vehicles quickly, correctly and robustly in the actual traffic environments with illumination variation.
Mission analysis and performance specification studies report, appendix A
NASA Technical Reports Server (NTRS)
1979-01-01
The Near Term Hybrid Passenger Vehicle Development Program tasks included defining missions, developing distributions of daily travel and composite driving cycles for these missions, providing information necessary to estimate the potential replacement of the existing fleet by hybrids, and estimating acceleration/gradeability performance requirements for safe operation. The data was then utilized to develop mission specifications, define reference vehicles, develop hybrid vehicle performance specifications, and make fuel consumption estimates for the vehicles. The major assumptions which underlie the approach taken to the mission analysis and development of performance specifications are the following: the daily operating range of a hybrid vehicle should not be limited by the stored energy capacity and the performance of such a vehicle should not be strongly dependent on the battery state of charge.
Three dimensional modeling and dynamic analysis of four-wheel-steering vehicles
NASA Astrophysics Data System (ADS)
Hu, Haiyan; Han, Qiang
2003-02-01
The paper presents a nonlinear dynamic model of 9 degrees of freedom for four-wheel-steering vehicles. Compared with those in previous studies, this model includes the pitch and roll of the vehicle body, the motion of 4 wheels in the accelerating or braking process, the nonlinear coupling of vehicle body and unsprung part, as well as the air drag and wind effect. As a result, the model can be used for the analysis of various maneuvers of the four-wheel-steering vehicles. In addition, the previous models can be considered as a special case of this model. The paper gives some case studies for the dynamic performance of a four-wheel-steering vehicle under step input and saw-tooth input of steering angle applied on the front wheels, respectively.
NASA Technical Reports Server (NTRS)
1991-01-01
Topics addressed are: (1) an artificial gravity assessment study; (2) Mars mission transport vehicle (MTV)/Mars excursion vehicle (MEV) mission scenarios; (3) aerobrake issues; (4) equipment life and self-check; (5) earth-to-orbit (ETO) heavy lift launch vehicle (HLLV) definition trades; and (6) risk analysis.
Spatial analysis of alcohol-related motor vehicle crash injuries in southeastern Michigan.
Meliker, Jaymie R; Maio, Ronald F; Zimmerman, Marc A; Kim, Hyungjin Myra; Smith, Sarah C; Wilson, Mark L
2004-11-01
Temporal, behavioral and social risk factors that affect injuries resulting from alcohol-related motor vehicle crashes have been characterized in previous research. Much less is known about spatial patterns and environmental associations of alcohol-related motor vehicle crashes. The aim of this study was to evaluate geographic patterns of alcohol-related motor vehicle crashes and to determine if locations of alcohol outlets are associated with those crashes. In addition, we sought to demonstrate the value of integrating spatial and traditional statistical techniques in the analysis of this preventable public health risk. The study design was a cross-sectional analysis of individual-level blood alcohol content, traffic report information, census block group data, and alcohol distribution outlets. Besag and Newell's spatial analysis and traditional logistic regression both indicated that areas of low population density had more alcohol-related motor vehicle crashes than expected (P < 0.05). There was no significant association between alcohol outlets and alcohol-related motor vehicle crashes using distance analyses, logistic regression, and Chi-square. Differences in environmental or behavioral factors characteristic of areas of low population density may be responsible for the higher proportion of alcohol-related crashes occurring in these areas.
Crew Exploration Vehicle Ascent Abort Coverage Analysis
NASA Technical Reports Server (NTRS)
Abadie, Marc J.; Berndt, Jon S.; Burke, Laura M.; Falck, Robert D.; Gowan, John W., Jr.; Madsen, Jennifer M.
2007-01-01
An important element in the design of NASA's Crew Exploration Vehicle (CEV) is the consideration given to crew safety during various ascent phase failure scenarios. To help ensure crew safety during this critical and dynamic flight phase, the CEV requirements specify that an abort capability must be continuously available from lift-off through orbit insertion. To address this requirement, various CEV ascent abort modes are analyzed using 3-DOF (Degree Of Freedom) and 6-DOF simulations. The analysis involves an evaluation of the feasibility and survivability of each abort mode and an assessment of the abort mode coverage using the current baseline vehicle design. Factors such as abort system performance, crew load limits, thermal environments, crew recovery, and vehicle element disposal are investigated to determine if the current vehicle requirements are appropriate and achievable. Sensitivity studies and design trades are also completed so that more informed decisions can be made regarding the vehicle design. An overview of the CEV ascent abort modes is presented along with the driving requirements for abort scenarios. The results of the analysis completed as part of the requirements validation process are then discussed. Finally, the conclusions of the study are presented, and future analysis tasks are recommended.
NASA Technical Reports Server (NTRS)
Martinovic, Zoran N.; Cerro, Jeffrey A.
2002-01-01
This is an interim user's manual for current procedures used in the Vehicle Analysis Branch at NASA Langley Research Center, Hampton, Virginia, for launch vehicle structural subsystem weight estimation based on finite element modeling and structural analysis. The process is intended to complement traditional methods of conceptual and early preliminary structural design such as the application of empirical weight estimation or application of classical engineering design equations and criteria on one dimensional "line" models. Functions of two commercially available software codes are coupled together. Vehicle modeling and analysis are done using SDRC/I-DEAS, and structural sizing is performed with the Collier Research Corp. HyperSizer program.
Human Factors Analysis to Improve the Processing of Ares-1 Launch Vehicle
NASA Technical Reports Server (NTRS)
Dippolito, Gregory M.; Stambolian, Damon B.
2011-01-01
The Constellation Program (CxP) is composed of an array of vehicles used to go to the Moon and Mars. The Ares vehicle one of the components of CxP, goes through several stages of processing before it is launched at the Kennedy Space Center. In order to have efficient and effective ground processing inside and outside the vehicle, all of the ground processing activities should be analyzed. The analysis for this program was performed, by engineers, technicians, and human factors experts with spacecraft processing experience. The procedure used to gather data was accomplished by observing human activities within physical mockups. The paper will focus on the procedures, analysis and results from these observations.
Future Automotive Systems Technology Simulator (FASTSim)
DOE Office of Scientific and Technical Information (OSTI.GOV)
An advanced vehicle powertrain systems analysis tool, the Future Automotive Systems Technology Simulator (FASTSim) provides a simple way to compare powertrains and estimate the impact of technology improvements on light-, medium- and heavy-duty vehicle efficiency, performance, cost, and battery life. Created by the National Renewable Energy Laboratory, FASTSim accommodates a range of vehicle types - including conventional vehicles, electric-drive vehicles, and fuel cell vehicles - and is available for free download in Microsoft Excel and Python formats.
Sovereignty and Collaboration: Affordable Strategies in Times of Austerity
2016-10-01
provide precision-guided bombs and a land-support SOVEREIGNTY—ANALYSIS 26 vehicle were delivered for more than 20 percent below the expenditure ini...weapon Precision-guided bomb Support vehicle Panther command & control vehicle Successor Identification Friend or Foe (IFF) Joint combat aircraft...GLMRS) Multi-role armoured vehicle (MRAV) Next-generation light anti-armoured weapon Precision-guided bomb Support vehicle Panther command & control
DOT National Transportation Integrated Search
2006-03-01
There have been several studies that have investigated interactions between light and heavy vehicles. These have primarily consisted of crash database analyses where Police Accident Reports have been studied. These approaches are generally reliable, ...
Modeling and Controls Development of 48V Mild Hybrid Electric Vehicles
The Advanced Light-Duty Powertrain and Hybrid Analysis tool (ALPHA) was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types c...
Design tradeoff studies and sensitivity analysis, appendices B1 - B4. [hybrid electric vehicles
NASA Technical Reports Server (NTRS)
1979-01-01
Documentation is presented for a program which separately computes fuel and energy consumption for the two modes of operation of a hybrid electric vehicle. The distribution of daily travel is specified as input data as well as the weights which the component driving cycles are given in each of the composite cycles. The possibility of weight reduction through the substitution of various materials is considered as well as the market potential for hybrid vehicles. Data relating to battery compartment weight distribution and vehicle handling analysis is tabulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).
Shou, Wilson Z; Naidong, Weng
2003-01-01
It has become increasingly popular in drug development to conduct discovery pharmacokinetic (PK) studies in order to evaluate important PK parameters of new chemical entities (NCEs) early in the discovery process. In these studies, dosing vehicles are typically employed in high concentrations to dissolve the test compounds in dose formulations. This can pose significant problems for the liquid chromatography/tandem mass spectrometric (LC/MS/MS) analysis of incurred samples due to potential signal suppression of the analytes caused by the vehicles. In this paper, model test compounds in rat plasma were analyzed using a generic fast gradient LC/MS/MS method. Commonly used dosing vehicles, including poly(ethylene glycol) 400 (PEG 400), polysorbate 80 (Tween 80), hydroxypropyl beta-cyclodextrin, and N,N-dimethylacetamide, were fortified into rat plasma at 5 mg/mL before extraction. Their effects on the sample analysis results were evaluated by the method of post-column infusion. Results thus obtained indicated that polymeric vehicles such as PEG 400 and Tween 80 caused significant suppression (> 50%, compared with results obtained from plasma samples free from vehicles) to certain analytes, when minimum sample cleanup was used and the analytes happened to co-elute with the vehicles. Effective means to minimize this 'dosing vehicle effect' included better chromatographic separations, better sample cleanup, and alternative ionization methods. Finally, a real-world example is given to illustrate the suppression problem posed by high levels of PEG 400 in sample analysis, and to discuss steps taken in overcoming the problem. A simple but effective means of identifying a 'dosing vehicle effect' is also proposed. Copyright 2003 John Wiley & Sons, Ltd.
Contemporary Impact Analysis Methodology for Planetary Sample Return Missions
NASA Technical Reports Server (NTRS)
Perino, Scott V.; Bayandor, Javid; Samareh, Jamshid A.; Armand, Sasan C.
2015-01-01
Development of an Earth entry vehicle and the methodology created to evaluate the vehicle's impact landing response when returning to Earth is reported. NASA's future Mars Sample Return Mission requires a robust vehicle to return Martian samples back to Earth for analysis. The Earth entry vehicle is a proposed solution to this Mars mission requirement. During Earth reentry, the vehicle slows within the atmosphere and then impacts the ground at its terminal velocity. To protect the Martian samples, a spherical energy absorber called an impact sphere is under development. The impact sphere is composed of hybrid composite and crushable foam elements that endure large plastic deformations during impact and cause a highly nonlinear vehicle response. The developed analysis methodology captures a range of complex structural interactions and much of the failure physics that occurs during impact. Numerical models were created and benchmarked against experimental tests conducted at NASA Langley Research Center. The postimpact structural damage assessment showed close correlation between simulation predictions and experimental results. Acceleration, velocity, displacement, damage modes, and failure mechanisms were all effectively captured. These investigations demonstrate that the Earth entry vehicle has great potential in facilitating future sample return missions.
Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2012-01-01
Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.
Design and analysis of roll cage
NASA Astrophysics Data System (ADS)
Angadi, Gurusangappa; Chetan, S.
2018-04-01
Wildlife fire fighting vehicles are used to extinguish fires in forests, in this process vehicles face falling objects like rocks, tree branches and other objects. Also due to uneven conditions of the terrain like cliff edges, uneven surfaces etc. makes the vehicle to roll over and these can cause injuries to both the driver and the operator. Roll over of a vehicle is a common incident which makes fatal injuries to the operator and also stands next to the crash accidents. In order to reduce the injury level and continuous roll over of the vehicle it is necessary to equip suitable roll cage according to standards of vehicle. In this present work roll cage for pump operator in wildfire fighting vehicle is designed and analysis is carried out in computer simulated environment when seating position of operator seated outside of the cabin. According to NFPA 1906 standards wildlife fire apparatus, Design and Test procedures that are carried out in Hyperworks maintaining SAE J1194.1983 standards. G load case, roof crush analysis and pendulum impact analysis tests are carried out on roll cage to ensure the saftey of design. These load cases are considerd to satisfy the situation faced in forest terrain. In these test procedures roll cage is analysed for stresses and deformation in various load cases. After recording results these are compared with standards mentioned in SAE J1194.1983.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaren, Joyce; Miller, John; O'Shaughnessy, Eric
With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for fourmore » charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.« less
NASA Technical Reports Server (NTRS)
Martellucci, A.; Maguire, B. L.; Neff, R. S.
1972-01-01
The objective of the study was to provide a detailed post flight evaluation of ballistic vehicle flight test boundary layer transition data. A total of fifty-five vehicles were selected for analysis. These vehicles were chosen from a data sampling of roughly two hundred flights and the criteria for vehicle selection is delineated herein. The results of the analysis indicate that frustum transition of re-entry vehicles appears to be nose tip dominated. Frustum related parameters and materials apparently have a second order effect on transition. This implies that local viscous parameters on the frustum should not correlate flight test transition data, and in fact they do not. Specific parameters relative to the nose tip have been identified as the apparent dominant factors that characterize the transition phenomena and a correlation of flight test data is presented.
Simulation Research on Vehicle Active Suspension Controller Based on G1 Method
NASA Astrophysics Data System (ADS)
Li, Gen; Li, Hang; Zhang, Shuaiyang; Luo, Qiuhui
2017-09-01
Based on the order relation analysis method (G1 method), the optimal linear controller of vehicle active suspension is designed. The system of the main and passive suspension of the single wheel vehicle is modeled and the system input signal model is determined. Secondly, the system motion state space equation is established by the kinetic knowledge and the optimal linear controller design is completed with the optimal control theory. The weighting coefficient of the performance index coefficients of the main passive suspension is determined by the relational analysis method. Finally, the model is simulated in Simulink. The simulation results show that: the optimal weight value is determined by using the sequence relation analysis method under the condition of given road conditions, and the vehicle acceleration, suspension stroke and tire motion displacement are optimized to improve the comprehensive performance of the vehicle, and the active control is controlled within the requirements.
Crew Exploration Vehicle Ascent Abort Overview
NASA Technical Reports Server (NTRS)
Davidson, John B., Jr.; Madsen, Jennifer M.; Proud, Ryan W.; Merritt, Deborah S.; Sparks, Dean W., Jr.; Kenyon, Paul R.; Burt, Richard; McFarland, Mike
2007-01-01
One of the primary design drivers for NASA's Crew Exploration Vehicle (CEV) is to ensure crew safety. Aborts during the critical ascent flight phase require the design and operation of CEV systems to escape from the Crew Launch Vehicle and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. The analysis involves an evaluation of the feasibility and survivability of each abort mode and an assessment of the abort mode coverage. These studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the CEV, driving requirements for abort scenarios, and an overview of current ascent abort modes. Example analysis results are then discussed. Finally, future areas for abort analysis are addressed.
NASA Technical Reports Server (NTRS)
Ingram, J. E.; Murray, T. O.
1989-01-01
An assessment of the static strength of the Aeroassist Flight Experiment (AFE) Carrier Vehicle is presented. The Carrier Vehicle is the structural component which provides the mounting platform for the experiments, on-board computers, batteries, and other black boxes. In addition, the Solid Rocket Motor (SRM), the Thrusters, and the Aerobrake are all attached directly to the Carrier Vehicle. The basic approach in this analysis was to develop a NASTRAN Finite Element Model as a parallel effort to the preliminary design, and to use the internal loads from this model to perform the stress analysis. The NASTRAN method of Inertial Relief was employed. This method involves either specifying a set of CG (center of gravity) accelerations or applying forces at the CG and representing the Carrier Vehicle and all its mounted devices with the proper stiffness and mass properties.
Automating Structural Analysis of Spacecraft Vehicles
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2004-01-01
A major effort within NASA's vehicle analysis discipline has been to automate structural analysis and sizing optimization during conceptual design studies of advanced spacecraft. Traditional spacecraft structural sizing has involved detailed finite element analysis (FEA) requiring large degree-of-freedom (DOF) finite element models (FEM). Creation and analysis of these models can be time consuming and limit model size during conceptual designs. The goal is to find an optimal design that meets the mission requirements but produces the lightest structure. A structural sizing tool called HyperSizer has been successfully used in the conceptual design phase of a reusable launch vehicle and planetary exploration spacecraft. The program couples with FEA to enable system level performance assessments and weight predictions including design optimization of material selections and sizing of spacecraft members. The software's analysis capabilities are based on established aerospace structural methods for strength, stability and stiffness that produce adequately sized members and reliable structural weight estimates. The software also helps to identify potential structural deficiencies early in the conceptual design so changes can be made without wasted time. HyperSizer's automated analysis and sizing optimization increases productivity and brings standardization to a systems study. These benefits will be illustrated in examining two different types of conceptual spacecraft designed using the software. A hypersonic air breathing, single stage to orbit (SSTO), reusable launch vehicle (RLV) will be highlighted as well as an aeroshell for a planetary exploration vehicle used for aerocapture at Mars. By showing the two different types of vehicles, the software's flexibility will be demonstrated with an emphasis on reducing aeroshell structural weight. Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.
Inertial navigation sensor integrated motion analysis for autonomous vehicle navigation
NASA Technical Reports Server (NTRS)
Roberts, Barry; Bhanu, Bir
1992-01-01
Recent work on INS integrated motion analysis is described. Results were obtained with a maximally passive system of obstacle detection (OD) for ground-based vehicles and rotorcraft. The OD approach involves motion analysis of imagery acquired by a passive sensor in the course of vehicle travel to generate range measurements to world points within the sensor FOV. INS data and scene analysis results are used to enhance interest point selection, the matching of the interest points, and the subsequent motion-based computations, tracking, and OD. The most important lesson learned from the research described here is that the incorporation of inertial data into the motion analysis program greatly improves the analysis and makes the process more robust.
DOT National Transportation Integrated Search
1981-09-01
This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...
DOT National Transportation Integrated Search
1981-01-01
This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...
DOT National Transportation Integrated Search
1981-09-01
This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...
DOT National Transportation Integrated Search
1981-10-01
This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...
Effect of Weight Transfer on a Vehicle's Stopping Distance.
ERIC Educational Resources Information Center
Whitmire, Daniel P.; Alleman, Timothy J.
1979-01-01
An analysis of the minimum stopping distance problem is presented taking into account the effect of weight transfer on nonskidding vehicles and front- or rear-wheels-skidding vehicles. Expressions for the minimum stopping distances are given in terms of vehicle geometry and the coefficients of friction. (Author/BB)
Orbit Transfer Vehicle (OTV) engine, phase A study. Volume 2: Study
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1979-01-01
The hydrogen oxygen engine used in the orbiter transfer vehicle is described. The engine design is analyzed and minimum engine performance and man rating requirements are discussed. Reliability and safety analysis test results are presented and payload, risk and cost, and engine installation parameters are defined. Engine tests were performed including performance analysis, structural analysis, thermal analysis, turbomachinery analysis, controls analysis, and cycle analysis.
Ares I-X Flight Test Validation of Control Design Tools in the Frequency-Domain
NASA Technical Reports Server (NTRS)
Johnson, Matthew; Hannan, Mike; Brandon, Jay; Derry, Stephen
2011-01-01
A major motivation of the Ares I-X flight test program was to Design for Data, in order to maximize the usefulness of the data recorded in support of Ares I modeling and validation of design and analysis tools. The Design for Data effort was intended to enable good post-flight characterizations of the flight control system, the vehicle structural dynamics, and also the aerodynamic characteristics of the vehicle. To extract the necessary data from the system during flight, a set of small predetermined Programmed Test Inputs (PTIs) was injected directly into the TVC signal. These PTIs were designed to excite the necessary vehicle dynamics while exhibiting a minimal impact on loads. The method is similar to common approaches in aircraft flight test programs, but with unique launch vehicle challenges due to rapidly changing states, short duration of flight, a tight flight envelope, and an inability to repeat any test. This paper documents the validation effort of the stability analysis tools to the flight data which was performed by comparing the post-flight calculated frequency response of the vehicle to the frequency response calculated by the stability analysis tools used to design and analyze the preflight models during the control design effort. The comparison between flight day frequency response and stability tool analysis for flight of the simulated vehicle shows good agreement and provides a high level of confidence in the stability analysis tools for use in any future program. This is true for both a nominal model as well as for dispersed analysis, which shows that the flight day frequency response is enveloped by the vehicle s preflight uncertainty models.
The pitch-heave dynamics of transportation vehicles
NASA Technical Reports Server (NTRS)
Sweet, L. M.; Richardson, H. H.
1975-01-01
The analysis and design of suspensions for vehicles of finite length using pitch-heave models is presented. Dynamic models for the finite length vehicle include the spatial distribution of the guideway input disturbance over the vehicle length, as well as both pitch and heave degrees-of-freedom. Analytical results relate the vehicle front and rear accelerations to the pitch and heave natural frequencies, which are functions of vehicle suspension geometry and mass distribution. The effects of vehicle asymmetry and suspension contact area are evaluated. Design guidelines are presented for the modification of vehicle and suspension parameters to meet alternative ride quality criteria.
Buckling analysis and test correlation of hat stiffened panels for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Percy, Wendy C.; Fields, Roger A.
1990-01-01
The paper discusses the design, analysis, and test of hat stiffened panels subjected to a variety of thermal and mechanical load conditions. The panels were designed using data from structural optimization computer codes and finite element analysis. Test methods included the grid shadow moire method and a single gage force stiffness method. The agreement between the test data and analysis provides confidence in the methods that are currently being used to design structures for hypersonic vehicles. The agreement also indicates that post buckled strength may potentially be used to reduce the vehicle weight.
Quantitative Analysis of a Hybrid Electric HMMWV for Fuel Economy Improvement
2012-05-01
HMMWV of equivalent size. Hybrid vehicle powertrains show improved fuel economy gains due to optimized engine operation and regenerative braking . In... regenerative braking . Validated vehicle models as well as data collected on test tracks are used in the quantitative analysis. The regenerative braking ...hybrid electric vehicle, drive cycle, fuel economy, engine efficiency, regenerative braking . 1 Introduction The US Army (Tank Automotive
Parametric Thermal Soak Model for Earth Entry Vehicles
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Samareh, Jamshid; Doan, Quy D.
2013-01-01
The analysis and design of an Earth Entry Vehicle (EEV) is multidisciplinary in nature, requiring the application many disciplines. An integrated tool called Multi Mission System Analysis for Planetary Entry Descent and Landing or M-SAPE is being developed as part of Entry Vehicle Technology project under In-Space Technology program. Integration of a multidisciplinary problem is a challenging task. Automation of the execution process and data transfer among disciplines can be accomplished to provide significant benefits. Thermal soak analysis and temperature predictions of various interior components of entry vehicle, including the impact foam and payload container are part of the solution that M-SAPE will offer to spacecraft designers. The present paper focuses on the thermal soak analysis of an entry vehicle design based on the Mars Sample Return entry vehicle geometry and discusses a technical approach to develop parametric models for thermal soak analysis that will be integrated into M-SAPE. One of the main objectives is to be able to identify the important parameters and to develop correlation coefficients so that, for a given trajectory, can estimate the peak payload temperature based on relevant trajectory parameters and vehicle geometry. The models are being developed for two primary thermal protection (TPS) materials: 1) carbon phenolic that was used for Galileo and Pioneer Venus probes and, 2) Phenolic Impregnated Carbon Ablator (PICA), TPS material for Mars Science Lab mission. Several representative trajectories were selected from a very large trade space to include in the thermal analysis in order to develop an effective parametric thermal soak model. The selected trajectories covered a wide range of heatload and heatflux combinations. Non-linear, fully transient, thermal finite element simulations were performed for the selected trajectories to generate the temperature histories at the interior of the vehicle. Figure 1 shows the finite element model that was used for the simulations. The results indicate that it takes several hours for the thermal energy to soak into the interior of the vehicle and achieve maximum payload temperatures. In addition, a strong correlation between the heatload and peak payload container temperature is observed that will help establishing the parametric thermal soak model.
2009-12-01
vehicles so do some electric vehicle braking systems (MIT, 2008). e. Brakes Regenerative braking on electric vehicles recoups some of the energy lost...engine is required to replace the energy lost by braking . Regenerative braking takes some of the lost energy during braking and turns it into...Motors and Tesla Motors offer regenerative breaking in their respective electric vehicles. Tesla explains regenerative braking as “engine braking
National connected vehicle field infrastructure footprint analysis.
DOT National Transportation Integrated Search
2014-06-01
The fundamental premise of the connected vehicle initiative is that enabling wireless connectivity among vehicles, the infrastructure, and mobile devices will bring about transformative changes in safety, mobility, and the environmental impacts in th...
Automated and connected vehicle implications and analysis.
DOT National Transportation Integrated Search
2017-05-01
Automated and connected vehicles (ACV) and, in particular, autonomous vehicles have captured : the interest of the public, industry and transportation authorities. ACVs can significantly reduce : accidents, fuel consumption, pollution and the costs o...
NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch
NASA Technical Reports Server (NTRS)
Gilligan, Eric
2014-01-01
Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.
Modeling and Validation of Power-split and P2 Parallel Hybrid Electric Vehicles SAE 2013-01-1470)
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined ...
DOT National Transportation Integrated Search
2016-02-02
In this paper we examine the implications of leveling the vehicle fuel choice playing field between : PHEV and CNG vehicles in the US. Currently, US policy provides a subsidy of $7,500 for most PHEV : vehicles but nothing for CNG vehicles. We use a m...
DOT National Transportation Integrated Search
2013-11-01
The transit industry has always shown a great interest in the adoption of transformational safety technologies to improve the safety of its passengers and drivers, as well as all road users including pedestrians. Due to its unique characteristics and...
DOT National Transportation Integrated Search
2016-05-01
The Moving Ahead for Progress in the 21st Century Act (MAP-21) requires that the Secretary of Transportation conduct a Safety Study of covered farm vehicles. The Act defines a covered farm vehicle as a vehicle that: MAP-21 requires that t...
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was created by EPA to estimate greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle type...
NASA Technical Reports Server (NTRS)
Traversi, M.; Piccolo, R.
1980-01-01
Tradeoff study activities and the analysis process used are described with emphasis on (1) review of the alternatives; (2) vehicle architecture; and (3) evaluation of the propulsion system alternatives; interim results are presented for the basic hybrid vehicle characterization; vehicle scheme development; propulsion system power and transmission ratios; vehicle weight; energy consumption and emissions; performance; production costs; reliability, availability and maintainability; life cycle costs, and operational quality. The final vehicle conceptual design is examined.
New method for distance-based close following safety indicator.
Sharizli, A A; Rahizar, R; Karim, M R; Saifizul, A A
2015-01-01
The increase in the number of fatalities caused by road accidents involving heavy vehicles every year has raised the level of concern and awareness on road safety in developing countries like Malaysia. Changes in the vehicle dynamic characteristics such as gross vehicle weight, travel speed, and vehicle classification will affect a heavy vehicle's braking performance and its ability to stop safely in emergency situations. As such, the aim of this study is to establish a more realistic new distance-based safety indicator called the minimum safe distance gap (MSDG), which incorporates vehicle classification (VC), speed, and gross vehicle weight (GVW). Commercial multibody dynamics simulation software was used to generate braking distance data for various heavy vehicle classes under various loads and speeds. By applying nonlinear regression analysis to the simulation results, a mathematical expression of MSDG has been established. The results show that MSDG is dynamically changed according to GVW, VC, and speed. It is envisaged that this new distance-based safety indicator would provide a more realistic depiction of the real traffic situation for safety analysis.
A comparison of exhaust emissions from vehicles fuelled with petrol, LPG and CNG
NASA Astrophysics Data System (ADS)
Bielaczyc, P.; Szczotka, A.; Woodburn, J.
2016-09-01
This paper presents an analysis of THC, NMHC, CO, NOx and CO2 emissions during testing of two bi-fuel vehicles, fuelled with petrol and gaseous fuels, on a chassis dynamometer in the context of the Euro 6 emissions requirements. The analyses were performed on one Euro 5 bi-fuel vehicle (petrol/LPG) and one Euro 5 bi-fuel vehicle (petrol/CNG), both with SI engines equipped with MPI feeding systems operating in closed-loop control, typical three-way-catalysts and heated oxygen sensors. The vehicles had been adapted by their manufacturers for fuelling with LPG or CNG by using additional special equipment mounted onto the existing petrol fuelling system. The vehicles tested featured multipoint gas injection systems. The aim of this paper was an analysis of the impact of the gaseous fuels on the exhaust emission in comparison to the emission of the vehicles fuelled with petrol. The tests subject to the analyses presented here were performed in the Engine Research Department of BOSMAL Automotive Research and Development Institute Ltd in Bielsko-Biala, Poland, within a research programme investigating the influence of alternative fuels on exhaust emissions from light duty vehicle vehicles with spark-ignition and compression-ignition engines.
Vibration test of 1/5 scale H-II launch vehicle
NASA Astrophysics Data System (ADS)
Morino, Yoshiki; Komatsu, Keiji; Sano, Masaaki; Minegishi, Masakatsu; Morita, Toshiyuki; Kohsetsu, Y.
In order to predict dynamic loads on the newly designed Japanese H-II launch vehicle, the adequacy of prediction methods has been assessed by the dynamic scale model testing. The three-dimensional dynamic model was used in the analysis to express coupling effects among axial, lateral (pitch and yaw) and torsional vibrations. The liquid/tank interaction was considered by use of a boundary element method. The 1/5 scale model of the H-II launch vehicle was designed to simulate stiffness and mass properties of important structural parts, such as core/SRB junctions, first and second stage Lox tanks and engine mount structures. Modal excitation of the test vehicle was accomplished with 100-1000 N shakers which produced random or sinusoidal vibrational forces. The vibrational response of the test vehicle was measured at various locations with accelerometers and pressure sensor. In the lower frequency range, corresmpondence between analysis and experiment was generally good. The basic procedures in analysis seem to be adequate so far, but some improvements in mathematical modeling are suggested by comparison of test and analysis.
Huang, Weiqing; Fan, Hongbo; Qiu, Yongfu; Cheng, Zhiyu; Xu, Pingru; Qian, Yu
2016-05-01
Recently, China has frequently experienced large-scale, severe and persistent haze pollution due to surging urbanization and industrialization and a rapid growth in the number of motor vehicles and energy consumption. The vehicle emission due to the consumption of a large number of fossil fuels is no doubt a critical factor of the haze pollution. This work is focused on the causation mechanism of haze pollution related to the vehicle emission for Guangzhou city by employing the Fault Tree Analysis (FTA) method for the first time. With the establishment of the fault tree system of "Haze weather-Vehicle exhausts explosive emission", all of the important risk factors are discussed and identified by using this deductive FTA method. The qualitative and quantitative assessments of the fault tree system are carried out based on the structure, probability and critical importance degree analysis of the risk factors. The study may provide a new simple and effective tool/strategy for the causation mechanism analysis and risk management of haze pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aerothermoelastic analysis of a NASP demonstrator model
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Zeiler, Thomas A.; Pototzky, Anthony S.; Spain, Charles V.; Engelund, Walter C.
1993-01-01
The proposed National AeroSpace Plane (NASP) is designed to travel at speeds up to Mach 25. Because aerodynamic heating during high-speed flight through the atmosphere could destiffen a structure, significant couplings between the elastic and rigid body modes could result in lower flutter speeds and more pronounced aeroelastic response characteristics. These speeds will also generate thermal loads on the structure. The purpose of this research is develop methodologies applicable to the NASP and to apply them to a representative model to determine its aerothermoelastic characteristics when subjected to these thermal loads. This paper describes an aerothermoelastic analysis of the generic hypersonic vehicle configuration. The steps involved in this analysis were: (1) generating vehicle surface temperatures at the appropriate flight conditions; (2) applying these temperatures to the vehicle's structure to predict changes in the stiffness resulting from material property degradation; (3) predicting the vibration characteristics of the heated structure at the various temperature conditions; (4) performing aerodynamic analyses; and (5) conducting flutter analysis of the heated vehicle. Results of these analyses and conclusions representative of a NASP vehicle are provided in this paper.
Cost-assessment Analysis of Local Vehicle Scrapping Facility
NASA Astrophysics Data System (ADS)
Grabowski, Lukasz; Gliniak, Maciej; Polek, Daria; Gruca, Maria
2017-12-01
The purpose of the paper was to analyse the costs of recycling vehicles at local vehicle scrapping facility. The article contains regulations concerning vehicle decommissioning, describes the types of recovery, vehicles recycling networks, analyses the structure of a disassembly station, as well as the financial and institutional system in charge of dealing with the recycling of vehicles in Poland. The authors present the number of scrapped vehicles at local recycling company and the level of achieved recovery and recycling. The research presented in the article shows financial situation of the vehicle scrapping industry. In addition, it has been observed that the number of subsidies are directly proportional to the number of scrapped vehicles, and achieved levels of recycling and recovery depends on the percentage of incomplete vehicles.
Rapid Contingency Simulation Modeling of the NASA Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Betts, Kevin M.; Rutherford, R. Chad; McDuffie, James; Johnson, Matthew D.
2007-01-01
The NASA Crew Launch Vehicle is a two-stage orbital launcher designed to meet NASA's current as well as future needs for human space flight. In order to free the designers to explore more possibilities during the design phase, a need exists for the ability to quickly perform simulation on both the baseline vehicle as well as the vehicle after proposed changes due to mission planning, vehicle configuration and avionics changes, proposed new guidance and control algorithms, and any other contingencies the designers may wish to consider. Further, after the vehicle is designed and built, the need will remain for such analysis in the event of future mission planning. An easily reconfigurable, modular, nonlinear six-degree-of-freedom simulation matching NASA Marshall's in-house high-fidelity simulator is created with the ability to quickly perform simulation and analysis of the Crew Launch Vehicle throughout the entire launch profile. Simulation results are presented and discussed, and an example comparison fly-off between two candidate controllers is presented.
Multiple Vehicle Detection and Segmentation in Malaysia Traffic Flow
NASA Astrophysics Data System (ADS)
Fariz Hasan, Ahmad; Fikri Che Husin, Mohd; Affendi Rosli, Khairul; Norhafiz Hashim, Mohd; Faiz Zainal Abidin, Amar
2018-03-01
Vision based system are widely used in the field of Intelligent Transportation System (ITS) to extract a large amount of information to analyze traffic scenes. By rapid number of vehicles on the road as well as significant increase on cameras dictated the need for traffic surveillance systems. This system can take over the burden some task was performed by human operator in traffic monitoring centre. The main technique proposed by this paper is concentrated on developing a multiple vehicle detection and segmentation focusing on monitoring through Closed Circuit Television (CCTV) video. The system is able to automatically segment vehicle extracted from heavy traffic scene by optical flow estimation alongside with blob analysis technique in order to detect the moving vehicle. Prior to segmentation, blob analysis technique will compute the area of interest region corresponding to moving vehicle which will be used to create bounding box on that particular vehicle. Experimental validation on the proposed system was performed and the algorithm is demonstrated on various set of traffic scene.
2014-01-01
vehicles/structures; in the work of Bergeron et al. (2002), an instrumented ballistic pendulum was utilized to investigate mine detonation-induced...element/ discrete-particle computational analysis in order to investigate potential benefits and drawbacks associated with material substitution...investigate potential benefits and drawbacks associated with material substitution (from steel to composite) in military-vehicle hull-floors whose primary
NASA Technical Reports Server (NTRS)
Dickman, Glen J.; Keeley, J. T.
1985-01-01
This portion of the Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Study, Volume 2, Book 2, summarizes the flight vehicle concept selection process and results. It presents an overview of OTV mission and system design requirements and describes the family of OTV recommended, the reasons for this recommendation, and the associated Phase C/D Program.
Motor vehicle crash deaths related to police pursuits in the United States.
Rivara, F P; Mack, C D
2004-04-01
To determine the number and characteristics of motor vehicle crash deaths related to police pursuits in the United States. Analysis of the Fatality Analysis Reporting System and the Crashworthiness Data System of the National Highway Traffic Safety Administration for the years 1994-2002. There were 2654 fatal crashes involving 3965 vehicles and 3146 fatalities during the nine year study period. Of these, 1088 were to people not in the fleeing vehicle. These crashes often occurred at high speed, in the night, on local roads. Most of the pursued drivers had prior motor vehicle related convictions. Many deaths related to police pursuits are to innocent victims. Given that most of the pursued drivers had prior convictions, alternative means of detaining them should be explored.
Evaluation of Skylab IB sensitivity to on-pad winds with turbulence
NASA Technical Reports Server (NTRS)
Coffin, T.
1972-01-01
Computer simulation was performed to estimate displacements and bending moments experienced by the SKYLAB 1B vehicle on the launch pad due to atmospheric winds. The vehicle was assumed to be a beam-like structure represented by a finite number of generalized coordinates. Wind flow across the vehicle was treated as a nonhomogeneous, stationary random process. Response computations were performed by the assumption of simple strip theory and application of generalized harmonic analysis. Displacement and bending moment statistics were obtained for six vehicle propellant loading conditions and four representative reference wind profile and turbulence levels. Means, variances and probability distributions are presented graphically for each case. A separate analysis was performed to indicate the influence of wind gradient variations on vehicle response statistics.
NASA Astrophysics Data System (ADS)
Koryanov, V.; Kazakovtsev, V.; Harri, A.-M.; Heilimo, J.; Haukka, H.; Aleksashkin, S.
2015-10-01
This research work is devoted to analysis of angular motion of the landing vehicle (LV) with an inflatable braking device (IBD), taking into account the influence of the wind load on the final stage of the movement. Using methods to perform a calculation of parameters of angular motion of the landing vehicle with an inflatable braking device based on the availability of small asymmetries, which are capable of complex dynamic phenomena, analyzes motion of the landing vehicle at the final stage of motion in the atmosphere.
Pink, Alex; Ragatz, Adam; Wang, Lijuan; ...
2017-03-28
Vehicles continuously report real-time fuel consumption estimates over their data bus, known as the controller area network (CAN). However, the accuracy of these fueling estimates is uncertain to researchers who collect these data from any given vehicle. To assess the accuracy of these estimates, CAN-reported fuel consumption data are compared against fuel measurements from precise instrumentation. The data analyzed consisted of eight medium/heavy-duty vehicles and two medium-duty engines. Varying discrepancies between CAN fueling rates and the more accurate measurements emerged but without a vehicular trend-for some vehicles the CAN under-reported fuel consumption and for others the CAN over-reported fuel consumption.more » Furthermore, a qualitative real-time analysis revealed that the operating conditions under which these fueling discrepancies arose varied among vehicles. A drive cycle analysis revealed that while CAN fueling estimate accuracy differs for individual vehicles, that CAN estimates capture the relative fuel consumption differences between drive cycles within 4% for all vehicles and even more accurately for some vehicles. Furthermore, in situations where only CAN-reported data are available, CAN fueling estimates can provide relative fuel consumption trends but not accurate or precise fuel consumption rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pink, Alex; Ragatz, Adam; Wang, Lijuan
Vehicles continuously report real-time fuel consumption estimates over their data bus, known as the controller area network (CAN). However, the accuracy of these fueling estimates is uncertain to researchers who collect these data from any given vehicle. To assess the accuracy of these estimates, CAN-reported fuel consumption data are compared against fuel measurements from precise instrumentation. The data analyzed consisted of eight medium/heavy-duty vehicles and two medium-duty engines. Varying discrepancies between CAN fueling rates and the more accurate measurements emerged but without a vehicular trend-for some vehicles the CAN under-reported fuel consumption and for others the CAN over-reported fuel consumption.more » Furthermore, a qualitative real-time analysis revealed that the operating conditions under which these fueling discrepancies arose varied among vehicles. A drive cycle analysis revealed that while CAN fueling estimate accuracy differs for individual vehicles, that CAN estimates capture the relative fuel consumption differences between drive cycles within 4% for all vehicles and even more accurately for some vehicles. Furthermore, in situations where only CAN-reported data are available, CAN fueling estimates can provide relative fuel consumption trends but not accurate or precise fuel consumption rates.« less
NASA Technical Reports Server (NTRS)
Bloetscher, F.
1975-01-01
The histroy, potential mission application, and designs of lighter-than-air (LTA) vehicles are researched and evaluated. Missions are identified to which airship vehicles are potentially suited. Results of the mission analysis are combined with the findings of a parametric analysis to formulate the mission/vehicle combinations recommended for further study. Current transportation systems are surveyed and potential areas of competition are identified as well as potential missions resulting from limitations of these systems. Potential areas of military usage are included.
An Examination of "The Martian" Trajectory
NASA Technical Reports Server (NTRS)
Burke, Laura
2015-01-01
This analysis was performed to support a request to examine the trajectory of the Hermes vehicle in the novel "The Martian" by Andy Weir. Weir developed his own tool to perform the analysis necessary to provide proper trajectory information for the novel. The Hermes vehicle is the interplanetary spacecraft that shuttles the crew to and from Mars. It is notionally a Nuclear powered vehicle utilizing VASIMR engines for propulsion. The intent of this analysis was the determine whether the trajectory as it was outlined in the novel is consistent with the rules of orbital mechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Thomas P.
This report analyzes the relationship between vehicle weight, size (wheelbase, track width, and their product, footprint), and safety, for individual vehicle makes and models. Vehicle weight and footprint are correlated with a correlation coefficient (R{sup 2}) of about 0.62. The relationship is stronger for cars (0.69) than for light trucks (0.42); light trucks include minivans, fullsize vans, truck-based SUVs, crossover SUVs, and pickup trucks. The correlation between wheelbase and track width, the components of footprint, is about 0.61 for all light vehicles, 0.62 for cars and 0.48 for light trucks. However, the footprint data used in this analysis does notmore » vary for different versions of the same vehicle model, as curb weight does; the analysis could be improved with more precise data on footprint for different versions of the same vehicle model. Although US fatality risk to drivers (driver fatalities per million registered vehicles) decreases as vehicle footprint increases, there is very little correlation either for all light vehicles (0.01), or cars (0.07) or trucks (0.11). The correlation between footprint and fatality risks cars impose on drivers of other vehicles is also very low (0.01); for trucks the correlation is higher (0.30), with risk to others increasing as truck footprint increases. Fatality risks reported here do not account for differences in annual miles driven, driver age or gender, or crash location by vehicle type or model. It is difficult to account for these factors using data on national fatal crashes because the number of vehicles registered to, for instance, young males in urban areas is not readily available by vehicle type or model. State data on all police-reported crashes can be used to estimate casualty risks that account for miles driven, driver age and gender, and crash location. The number of vehicles involved in a crash can act as a proxy of the number of miles a given vehicle type, or model, is driven per year, and is a preferable unit of exposure to a serious crash than the number of registered vehicles. However, because there are relatively few fatalities in the states providing crash data, we calculate casualty risks, which are the sum of fatalities and serious or incapacitating injuries, per vehicle involved in a crash reported to the police. We can account for driver age/gender and driving location effects by excluding from analysis crashes (and casualties) involving young males and the elderly, and occurring in very rural or very urban counties. Using state data on all police-reported crashes in five states, we find that excluding crashes involving young male and elderly drivers has little effect on casualty risk; however, excluding crashes that occurred in the most rural and most urban counties (based on population density) increases casualty risk for all vehicle types except pickups. This suggests that risks for pickups are overstated unless they account for the population density of the county in which the crashes occur. After removing crashes involving young males and elderly drivers, and those occurring in the most rural and most urban counties, we find that casualty risk in all light-duty vehicles tends to increase with increasing weight or footprint; however, the correlation (R{sup 2}) between casualty risk and vehicle weight is 0.31, while the correlation with footprint is 0.23. These relationships are stronger for cars than for light trucks. The correlation between casualty risk in frontal crashes and light-duty vehicle wheelbase is 0.12, while the correlation between casualty risk in left side crashes and track width is 0.36. We calculated separately the casualty risks vehicles impose on drivers of the other vehicles with which they crash. The correlation between casualty risk imposed by light trucks on drivers of other vehicles and light truck footprint is 0.15, while the correlation with light truck footprint is 0.33; risk imposed on others increases as light truck weight or footprint increases. Our analysis indicates that, after excluding crashes involving young male and elderly drivers, and crashes in very rural and very urban counties, and accounting for vehicle weight and footprint, sports cars, pickup trucks and truck-based SUVs have higher risk to their drivers than cars, while import luxury cars and crossover SUVs have lower risk to their drivers than cars. Similarly, pickups and sports cars impose a large casualty risk on drivers of other vehicles, after accounting for vehicle weight and footprint. Our analysis suggests that excluding young male and elderly drivers, and crashes in very rural and urban counties, accounting for vehicle weight, footprint, and type explains only about half of the variability in casualty risk to drivers, and to drivers of other vehicles, by vehicle model.« less
High-fidelity modeling and impact footprint prediction for vehicle breakup analysis
NASA Astrophysics Data System (ADS)
Ling, Lisa
For decades, vehicle breakup analysis had been performed for space missions that used nuclear heater or power units in order to assess aerospace nuclear safety for potential launch failures leading to inadvertent atmospheric reentry. Such pre-launch risk analysis is imperative to assess possible environmental impacts, obtain launch approval, and for launch contingency planning. In order to accurately perform a vehicle breakup analysis, the analysis tool should include a trajectory propagation algorithm coupled with thermal and structural analyses and influences. Since such a software tool was not available commercially or in the public domain, a basic analysis tool was developed by Dr. Angus McRonald prior to this study. This legacy software consisted of low-fidelity modeling and had the capability to predict vehicle breakup, but did not predict the surface impact point of the nuclear component. Thus the main thrust of this study was to develop and verify the additional dynamics modeling and capabilities for the analysis tool with the objectives to (1) have the capability to predict impact point and footprint, (2) increase the fidelity in the prediction of vehicle breakup, and (3) reduce the effort and time required to complete an analysis. The new functions developed for predicting the impact point and footprint included 3-degrees-of-freedom trajectory propagation, the generation of non-arbitrary entry conditions, sensitivity analysis, and the calculation of impact footprint. The functions to increase the fidelity in the prediction of vehicle breakup included a panel code to calculate the hypersonic aerodynamic coefficients for an arbitrary-shaped body and the modeling of local winds. The function to reduce the effort and time required to complete an analysis included the calculation of node failure criteria. The derivation and development of these new functions are presented in this dissertation, and examples are given to demonstrate the new capabilities and the improvements made, with comparisons between the results obtained from the upgraded analysis tool and the legacy software wherever applicable.
The effect of passenger load on unstable vehicles in fatal, untripped rollover crashes.
Whitfield, R A; Jones, I S
1995-01-01
Consumers may be unaware of the risk of rollover crashes posed by passenger loads in vehicles with poor roll stability. This analysis demonstrates that certain sports utility vehicles and small pickup trucks have designs that are so unstable that the weight of the passengers in the vehicle affects its propensity to roll over. This effect occurs even though the weight of the loaded vehicle is less than the manufacturer's gross vehicle weight rating. The risk of a fatal, "untripped" rollover crash in vehicles with low roll stability is increased as each passenger is added to the vehicle load. PMID:7661237
Analysis of autonomous vehicle policies.
DOT National Transportation Integrated Search
2017-01-01
The rapid development and adoption of connected and autonomous vehicles will transform the U.S. transportation system over the next 30 years. Although the widespread use of fully connected and autonomous vehicles is still several years away, it is no...
Measuring pedestrian volumes and conflicts. Volume 2, Accident prediction model
DOT National Transportation Integrated Search
1987-12-01
This final report presents the findings, conclusions, and recommendations of the study conducted to model pedestrian/vehicle accidents. A group-type analysis approach for the prediction of pedestrian/vehicle accidents using pedestrian/vehicle conflic...
A systematic analysis of the Braitenberg vehicle 2b for point-like stimulus sources.
Rañó, Iñaki
2012-09-01
Braitenberg vehicles have been used experimentally for decades in robotics with limited empirical understanding. This paper presents the first mathematical model of the vehicle 2b, displaying so-called aggression behaviour, and analyses the possible trajectories for point-like smooth stimulus sources. This sensory-motor steering control mechanism is used to implement biologically grounded target approach, target-seeking or obstacle-avoidance behaviour. However, the analysis of the resulting model reveals that complex and unexpected trajectories can result even for point-like stimuli. We also prove how the implementation of the controller and the vehicle morphology interact to affect the behaviour of the vehicle. This work provides a better understanding of Braitenberg vehicle 2b, explains experimental results and paves the way for a formally grounded application on robotics as well as for a new way of understanding target seeking in biology.
Ares I-X Flight Test Vehicle: Stack 5 Modal Test
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Danel R.
2010-01-01
Ares I-X was the first flight test vehicle used in the development of NASA's Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the first modal test that was performed on the top section of the vehicle referred to as Stack 5, which consisted of the spacecraft adapter, service module, crew module and launch abort system simulators. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 5 modal test.
Ares I-X Flight Test Vehicle:Stack 1 Modal Test
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.
2010-01-01
Ares I-X was the first flight test vehicle used in the development of NASA s Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the second modal test that was performed on the middle section of the vehicle referred to as Stack 1, which consisted of the subassembly from the 5th segment simulator through the interstage. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 1 modal test.
Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles
NASA Astrophysics Data System (ADS)
Manski, Detlef; Martin, James A.
1988-07-01
Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.
Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Manski, Detlef; Martin, James A.
1988-01-01
Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.
Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire
NASA Astrophysics Data System (ADS)
Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2018-05-01
The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.
NASA Technical Reports Server (NTRS)
1975-01-01
The transportation mass requirements developed for each mission and transportation mode were based on vehicle systems sized to fit the exact needs of each mission (i.e. rubber vehicles). The parametric data used to derive the mass requirements for each mission and transportation mode are presented to enable accommodation of possible changes in mode options or payload definitions. The vehicle sizing and functional requirements used to derive the parametric data will form the basis for conceptual configurations of the transportation elements in a later phase of study. An investigation of the weight growth approach to future space transportation systems analysis is presented. Parameters which affect weight growth, past weight histories, and the current state of future space-mission design are discussed. Weight growth factors of from 10 percent to 41 percent were derived for various missions or vehicles.
Analysis of a hypersonic waverider research vehicle with a hydrocarbon scramjet engine
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.; Bowles, Jeffrey V.; Huynh, Loc C.
1993-01-01
The results of a feasibility study of a hypersonic waverider research vehicle with a hydrocarbon scramjet engine are presented. The integrated waverider/scramjet geometry is first optimized with a vehicle synthesis code to produce a maximum product of the lift-to-drag ratio and the cycle specific impulse, hence cruise range. Computational fluid dynamics (CFD) is then employed to provide a nose-to-tail analysis of the system at the on-design conditions. Some differences are noted between the results of the two analysis techniques. A comparison of experimental, engineering analysis and CFD results on a waverider forebody are also included for validation.
NASA Technical Reports Server (NTRS)
Duffy, James B.
1993-01-01
This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).
Hybrid cars now, fuel cell cars later.
Demirdöven, Nurettin; Deutch, John
2004-08-13
We compare the energy efficiency of hybrid and fuel cell vehicles as well as conventional internal combustion engines. Our analysis indicates that fuel cell vehicles using hydrogen from fossil fuels offer no significant energy efficiency advantage over hybrid vehicles operating in an urban drive cycle. We conclude that priority should be placed on hybrid vehicles by industry and government.
Light-duty vehicle greenhouse gas (GHG) and fuel economy (FE) standards for MYs 2012 -2025 are requiring vehicle powertrains to become much more efficient. The EPA is using a full vehicle simulation model, called the Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA), to ...
DOT National Transportation Integrated Search
2016-06-01
The transit industry has always shown a great interest in the adoption of transformational safety technologies to improve the safety of its passengers and drivers, as well as all road users including pedestrians. Due to its unique characteristics and...
Hybrid Cars Now, Fuel Cell Cars Later
NASA Astrophysics Data System (ADS)
Demirdöven, Nurettin; Deutch, John
2004-08-01
We compare the energy efficiency of hybrid and fuel cell vehicles as well as conventional internal combustion engines. Our analysis indicates that fuel cell vehicles using hydrogen from fossil fuels offer no significant energy efficiency advantage over hybrid vehicles operating in an urban drive cycle. We conclude that priority should be placed on hybrid vehicles by industry and government.
DOT National Transportation Integrated Search
1999-07-17
Article discusses the findings of a study that compared data on commercial and passenger motor vehicle crashes on toll roads. This analysis is based on data from toll roads in Florida, Illinois, Indiana, Kansas, New York, Ohio, and Pennsylvania. In a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom P.
In its 2012 report NHTSA simulated the effect four fleetwide mass reduction scenarios would have on the change in annual fatalities. NHTSA estimated that the most aggressive of these scenarios (reducing mass 5.2% in heavier light trucks and 2.6% in all other vehicles types except lighter cars) would result in a small reduction in societal fatalities. LBNL replicated the methodology NHTSA used to simulate six mass reduction scenarios, including the mass reductions recommended in the 2015 NRC committee report, and estimated in 2021 and 2025 by EPA in the TAR, using the updated data through 2012. The analysis indicates thatmore » the estimated x change in fatalities under each scenario based on the updated analysis is comparable to that in the 2012 analysis, but less beneficial or more detrimental than that in the 2016 analysis. For example, an across the board 100-lb reduction in mass would result in an estimated 157 additional annual fatalities based on the 2012 analysis, but would result in only an estimated 91 additional annual fatalities based on the 2016 analysis, and an additional 87 fatalities based on the current analysis. The mass reductions recommended by the 2015 NRC committee report6 would result in a 224 increase in annual fatalities in the 2012 analysis, a 344 decrease in annual fatalities in the 2016 analysis, and a 141 increase in fatalities in the current analysis. The mass reductions EPA estimated for 2025 in the TAR7 would result in a 203 decrease in fatalities based on the 2016 analysis, but an increase of 39 fatalities based on the current analysis. These results support NHTSA’s conclusion from its 2012 study that, when footprint is held fixed, “no judicious combination of mass reductions in the various classes of vehicles results in a statistically significant fatality increase and many potential combinations are safety-neutral as point estimates.”Like the previous NHTSA studies, this updated report concludes that the estimated effect of mass reduction while maintaining footprint on societal U.S. fatality risk is small, and not statistically significant at the 95% or 90% confidence level for all vehicle types based on the jack-knife method NHTSA used. This report also finds that the estimated effects of other control variables, such as vehicle type, specific safety technologies, and crash conditions such as whether the crash occurred at night, in a rural county, or on a high-speed road, on risk are much larger, in some cases two orders of magnitude larger, than the estimated effect of mass or footprint reduction on risk. Finally, this report shows that after accounting for the many vehicle, driver, and crash variables NHTSA used in its regression analyses, there remains a wide variation in risk by vehicle make and model, and this variation is unrelated to vehicle mass. Although the purpose of the NHTSA and LBNL reports is to estimate the effect of vehicle mass reduction on societal risk, this is not exactly what the regression models are estimating. Rather, they are estimating the recent historical relationship between mass and risk, after accounting for most measurable differences between vehicles, drivers, and crash times and locations. In essence, the regression models are comparing the risk of a 2600-lb Dodge Neon with that of a 2500-lb Honda Civic, after attempting to account for all other differences between the two vehicles. The models are not estimating the effect of literally removing 100 pounds from the Neon, leaving everything else unchanged. In addition, the analyses are based on the relationship of vehicle mass and footprint on risk for recent vehicle designs (model year 2004 to 2011). These relationships may or may not continue into the future as manufacturers utilize new vehicle designs and incorporate new technologies, such as more extensive use of strong lightweight materials and specific safety technologies. Therefore, throughout this report we use the phrase “the estimated effect of mass (or footprint) reduction on risk” as shorthand for “the estimated change in risk as a function of its relationship to mass (or footprint) for vehicle models of recent design.”« less
Analysis of Suborbital Launch Trajectories for Satellite Delivery
1991-12-01
4 3. Specialty areas related to trajectory ition ............... 6 I 4. Comparison of a two stage launch vehicle versus a SSTO ...the point where a Single-Stage-To- Orbit ( SSTO ) vehicle may be practical. The flight characteristics of a hypersonic SSTO vehicle would allow a...a two stage launch vehicle versus a SSTO vehicle to de-3 termine the ideal staging velocity (14:4-5). 3 Several studies have been presented that
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1994-01-01
The NASA High-Angle-of Attack Research Vehicle (HARV), a modified F-18 aircraft, experienced handling qualities problems in recent flight tests at NASA Dryden Research Center. Foremost in these problems was the tendency of the pilot-aircraft system to exhibit a potentially dangerous phenomenon known as a pilot-induced oscillation (PIO). When they occur, PIO's can severely restrict performance, sharply dimish mission capabilities, and can even result in aircraft loss. A pilot/vehicle analysis was undertaken with the goal of reducing these PIO tendencies and improving the overall vehicle handling qualities with as few changes as possible to the existing feedback/feedforward flight control laws. Utilizing a pair of analytical pilot models developed by the author, a pilot/vehicle analysis of the existing longitudinal flight control system was undertaken. The analysis included prediction of overall handling qualities levels and PIO susceptability. The analysis indicated that improvement in the flight control system was warranted and led to the formulation of a simple control stick command shaping filter. Analysis of the pilot/vehicle system with the shaping filter indicated significant improvements in handling qualities and PIO tendencies could be achieved. A non-real time simulation of the modified control system was undertaken with a realistic, nonlinear model of the current HARV. Special emphasis was placed upon those details of the command filter implementation which could effect safety of flight. The modified system is currently awaiting evaluation in the real-time, pilot-in-the-loop, Dual-Maneuvering-Simulator (DMS) facility at Langley.
Collaborative Multidisciplinary Sciences for Analysis and Design of Aerospace Vehicles. Volume 1
2017-05-01
AEROSPACE VEHICLES Volume 1 5a. CONTRACT NUMBER FA8650-09-2-3938 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62201F 6. AUTHOR(S) Raymond M...S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBERDesign and Analysis Branch (AFRL/RQVC) Aerospace Vehicles Division Air Force Research...Laboratory, Aerospace Systems Directorate Wright-Patterson Air Force Base, OH 45433-7542 Air Force Materiel Command, United States Air Force Virginia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, V.K.; Young, J.M.
1995-07-01
The US Army`s Project Manager, Advanced Field Artillery System/Future Armored Resupply Vehicle (PM-AFAS/FARV) is sponsoring the development of technologies that can be applied to the resupply vehicle for the Advanced Field Artillery System. The Engineering Technology Division of the Oak Ridge National Laboratory has proposed adding diagnostics/prognostics systems to four components of the Ammunition Transfer Arm of this vehicle, and a cost-benefit analysis was performed on the diagnostics/prognostics to show the potential savings that may be gained by incorporating these systems onto the vehicle. Possible savings could be in the form of reduced downtime, less unexpected or unnecessary maintenance, fewermore » regular maintenance checks. and/or tower collateral damage or loss. The diagnostics/prognostics systems are used to (1) help determine component problems, (2) determine the condition of the components, and (3) estimate the remaining life of the monitored components. The four components on the arm that are targeted for diagnostics/prognostics are (1) the electromechanical brakes, (2) the linear actuators, (3) the wheel/roller bearings, and (4) the conveyor drive system. These would be monitored using electrical signature analysis, vibration analysis, or a combination of both. Annual failure rates for the four components were obtained along with specifications for vehicle costs, crews, number of missions, etc. Accident scenarios based on component failures were postulated, and event trees for these scenarios were constructed to estimate the annual loss of the resupply vehicle, crew, arm. or mission aborts. A levelized cost-benefit analysis was then performed to examine the costs of such failures, both with and without some level of failure reduction due to the diagnostics/prognostics systems. Any savings resulting from using diagnostics/prognostics were calculated.« less
Analysis of Separation Corridors for Visiting Vehicles from the International Space Station
NASA Technical Reports Server (NTRS)
Zaczek, Mariusz P.; Schrock, Rita R.; Schrock, Mark B.; Lowman, Bryan C.
2011-01-01
The International Space Station (ISS) is a very dynamic vehicle with many operational constraints that affect its performance, operations, and vehicle lifetime. Most constraints are designed to alleviate various safety concerns that are a result of dynamic activities between the ISS and various Visiting Vehicles (VVs). One such constraint that has been in place for Russian Vehicle (RV) operations is the limitation placed on Solar Array (SA) positioning in order to prevent collisions during separation and subsequent relative motion of VVs. An unintended consequence of the SA constraint has been the impacts to the operational flexibility of the ISS resulting from the reduced power generation capability as well as from a reduction in the operational lifetime of various SA components. The purpose of this paper is to discuss the technique and the analysis that were applied in order to relax the SA constraints for RV undockings, thereby improving both the ISS operational flexibility and extending its lifetime for many years to come. This analysis focused on the effects of the dynamic motion that occur both prior to and following RV separations. The analysis involved a parametric approach in the conservative application of various initial conditions and assumptions. These included the use of the worst case minimum and maximum vehicle configurations, worst case initial attitudes and attitude rates, and the worst case docking port separation dynamics. Separations were calculated for multiple ISS docking ports, at varied deviations from the nominal undocking attitudes and included the use of two separate attitude control schemes: continuous free-drift and a post separation attitude hold. The analysis required numerical propagation of both the separation motion and the vehicle attitudes using 3-degree-of-freedom (DOF) relative motion equations coupled with rigid body rotational dynamics to generate a large set of separation trajectories.
Household income and vehicle fuel economy in California.
DOT National Transportation Integrated Search
2015-11-01
This white paper presents the findings from an analysis of the fiscal implications for vehicle owners of changing from the current : statewide fuel tax to a road user charge (RUC) based on vehicle-miles traveled (VMT). Since 1923, California...
Electric vehicle charging technologies analysis and standards : final research project report.
DOT National Transportation Integrated Search
2017-02-01
This project has evaluated the technologies and standards associated with Electric : Vehicle Service Equipment (EVSE) and the related infrastructure, and the major cost : issue related to electric vehicle (EV) charging -- the cost of utility power. T...
Stochastic analysis of future vehicle populations
DOT National Transportation Integrated Search
1979-05-01
The purpose of this study was to build a stochastic model of future vehicle populations. Such a model can be used to investigate the uncertainties inherent in Future Vehicle Populations. The model, which is called the Future Automobile Population Sto...
Analysis of Rail Transit Vehicle Dynamic Curving Performance
DOT National Transportation Integrated Search
1984-06-01
An analytical model is developed for determining the dynamic curving performance of rail transit vehicles. The dynamic wheel/rail interaction forces, vehicle suspension and body motions and track displacement are computed, as well as wheel and rail w...
NASA Astrophysics Data System (ADS)
Campanari, Stefano; Manzolini, Giampaolo; Garcia de la Iglesia, Fernando
This work presents a study of the energy and environmental balances for electric vehicles using batteries or fuel cells, through the methodology of the well to wheel (WTW) analysis, applied to ECE-EUDC driving cycle simulations. Well to wheel balances are carried out considering different scenarios for the primary energy supply. The fuel cell electric vehicles (FCEV) are based on the polymer electrolyte membrane (PEM) technology, and it is discussed the possibility to feed the fuel cell with (i) hydrogen directly stored onboard and generated separately by water hydrolysis (using renewable energy sources) or by conversion processes using coal or natural gas as primary energy source (through gasification or reforming), (ii) hydrogen generated onboard with a fuel processor fed by natural gas, ethanol, methanol or gasoline. The battery electric vehicles (BEV) are based on Li-ion batteries charged with electricity generated by central power stations, either based on renewable energy, coal, natural gas or reflecting the average EU power generation feedstock. A further alternative is considered: the integration of a small battery to FCEV, exploiting a hybrid solution that allows recovering energy during decelerations and substantially improves the system energy efficiency. After a preliminary WTW analysis carried out under nominal operating conditions, the work discusses the simulation of the vehicles energy consumption when following standardized ECE-EUDC driving cycle. The analysis is carried out considering different hypothesis about the vehicle driving range, the maximum speed requirements and the possibility to sustain more aggressive driving cycles. The analysis shows interesting conclusions, with best results achieved by BEVs only for very limited driving range requirements, while the fuel cell solutions yield best performances for more extended driving ranges where the battery weight becomes too high. Results are finally compared to those of conventional internal combustion engine vehicles, showing the potential advantages of the different solutions considered in the paper and indicating the possibility to reach the target of zero-emission vehicles (ZEV).
Coupled vibration analysis of Maglev vehicle-guideway while standing still or moving at low speeds
NASA Astrophysics Data System (ADS)
Kim, Ki-Jung; Han, Jong-Boo; Han, Hyung-Suk; Yang, Seok-Jo
2015-04-01
Dynamic instability, that is, resonance, may occur on an electromagnetic suspension-type Maglev that runs over the elevated guideway, particularly at very low speeds, due to the flexibility of the guideway. An analysis of the dynamic interaction between the vehicle and guideway is required at the design stage to investigate such instability, setting slender guideway in design direction for reducing construction costs. In addition, it is essential to design an effective control algorithm to solve the problem of instability. In this article, a more detailed model for the dynamic interaction of vehicle/guideway is proposed. The proposed model incorporates a 3D full vehicle model based on virtual prototyping, flexible guideway by a modal superposition method and levitation electromagnets including feedback controller into an integrated model. By applying the proposed model to an urban Maglev vehicle newly developed for commercial application, an analysis of the instability phenomenon and an investigation of air gap control performance are carried out through a simulation.
Dual-fuel, dual-throat engine preliminary analysis
NASA Technical Reports Server (NTRS)
Obrien, C. J.
1979-01-01
A propulsion system analysis of the dual fuel, dual throat engine for launch vehicle applications was conducted. Basic dual throat engine characterization data were obtained to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined.
Electronic credentialing for commercial vehicle operations : a cross-cutting analysis
DOT National Transportation Integrated Search
1999-06-10
This case study presents an analysis of how Maryland, Virginia, and Kentucky have used the Commercial Vehicle Information Systems & Networks (CVISN) Architecture to develop state CVISN systems designs for electronic credentialing. Focus is on the CVI...
Systems analysis of decontamination options for civilian vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, Greg W.; Hoette, Trisha Marie
2010-11-01
The objective of this project, which was supported by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical and Biological Division (CBD), was to investigate options for the decontamination of the exteriors and interiors of vehicles in the civilian setting in order to restore those vehicles to normal use following the release of a highly toxic chemical. The decontamination of vehicles is especially challenging because they often contain sensitive electronic equipment, multiple materials some of which strongly adsorb chemical agents, and in the case of aircraft, have very rigid material compatibility requirements (i.e., they cannot be exposedmore » to reagents that may cause even minor corrosion). A systems analysis approach was taken examine existing and future civilian vehicle decontamination capabilities.« less
Motor vehicle crash deaths related to police pursuits in the United States
Rivara, F; Mack, C
2004-01-01
Objective: To determine the number and characteristics of motor vehicle crash deaths related to police pursuits in the United States. Methods: Analysis of the Fatality Analysis Reporting System and the Crashworthiness Data System of the National Highway Traffic Safety Administration for the years 1994–2002. Results: There were 2654 fatal crashes involving 3965 vehicles and 3146 fatalities during the nine year study period. Of these, 1088 were to people not in the fleeing vehicle. These crashes often occurred at high speed, in the night, on local roads. Most of the pursued drivers had prior motor vehicle related convictions. Conclusions: Many deaths related to police pursuits are to innocent victims. Given that most of the pursued drivers had prior convictions, alternative means of detaining them should be explored. PMID:15066973
Reliability verification of vehicle speed estimate method in forensic videos.
Kim, Jong-Hyuk; Oh, Won-Taek; Choi, Ji-Hun; Park, Jong-Chan
2018-06-01
In various types of traffic accidents, including car-to-car crash, vehicle-pedestrian collision, and hit-and-run accident, driver overspeed is one of the critical issues of traffic accident analysis. Hence, analysis of vehicle speed at the moment of accident is necessary. The present article proposes a vehicle speed estimate method (VSEM) applying a virtual plane and a virtual reference line to a forensic video. The reliability of the VSEM was verified by comparing the results obtained by applying the VSEM to videos from a test vehicle driving with a global positioning system (GPS)-based Vbox speed. The VSEM verified by these procedures was applied to real traffic accident examples to evaluate the usability of the VSEM. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1979-01-01
The three most promising vehicle use patterns (missions) for the near term electric hybrid vehicle were found to be all-purpose city driving, commuting, and family and civic business. The mission selection process was based principally on an analysis of the travel patterns found in the Nationwide Transportation Survey and on the Los Angeles and Washington, D.C. origin-destination studies data. Travel patterns in turn were converted to fuel requirements for 1985 conventional and hybrid cars. By this means, the potential fuel savings for each mission were estimated, and preliminary design requirements for hybrid vehicles were derived.
Thermal Analysis of Thermal Protection System of Test Launch Vehicle
NASA Astrophysics Data System (ADS)
Kim, Jongmin
2017-10-01
In this paper, a thermal analysis of the thermal protection system (TPS) of test launch vehicle (TLV) is explained. TLV is heated during the flight due to engine exhaust plume gas by thermal radiation and a TPS is needed to protect the vehicle from the heating. The thermal analysis of the TPS is conducted to predict the heat flux from plume gas and temperature of the TPS during the flight. To simplify the thermal analysis, plume gas radiation and radiative properties are assumed to be surface radiation and constants, respectively. Thermal conductivity, emissivity and absorptivity of the TPS material are measured. Proper plume conditions are determined from the preliminary analysis and then the heat flux and temperature of the TPS are calculated.
MmWave Vehicle-to-Infrastructure Communication :Analysis of Urban Microcellular Networks
DOT National Transportation Integrated Search
2017-05-01
Vehicle-to-infrastructure (V2I) communication may provide high data rates to vehicles via millimeterwave (mmWave) microcellular networks. This report uses stochastic geometry to analyze the coverage of urban mmWave microcellular networks. Prior work ...
Changes in Motor Vehicle Buyer Attitudes and Market Behavior
DOT National Transportation Integrated Search
1980-12-01
An analysis is made of the impact of fuel-efficient motor vehicle design changes on the attitudes and market behavior of buyers of new motor vehicles. Car buyer profiles for selected makes of automobiles describe demographic characteristics, owner sa...
Technical Capabilities of the National Vehicle and Fuel Emissions Laboratory (NVFEL)
National Vehicle and Fuel Emissions Laboratory (NVFEL) is a state-of-the-art test facility that conducts a wide range of emissions testing and analysis for EPA’s motor vehicle, heavy-duty engine, and nonroad engine programs.
Low Life Cycle Cost Paratransit Vehicle Design Study
DOT National Transportation Integrated Search
1978-08-01
A preliminary design and cost study was performed for a low life cycle cost paratransit vehicle. The manufacturing technique and cost analysis were based on limited production of 5000 units per year for a ten year period. The vehicle configuration re...
Municipal Fleet Vehicle Electrification and Photovoltaic Power In the City of Pittsburgh.
DOT National Transportation Integrated Search
2016-01-01
This document reports the results of a cost benefit analysis on potential photovoltaic projects : in Pittsburgh and electrifying the citys light duty civilian vehicle fleet. Currently the : city of Pittsburgh has a civilian passenger vehicle fleet...
Heavy vehicle driver workload assessment. Task 1, task analysis data and protocols review
DOT National Transportation Integrated Search
This report contains a review of available task analytic data and protocols pertinent to heavy vehicle operation and determination of the availability and relevance of such data to heavy vehicle driver workload assessment. Additionally, a preliminary...
DOT National Transportation Integrated Search
2016-02-01
Vehicle Miles Traveled (VMT) is a critical performance measure that is used extensively in highway transportation management for financial analysis, resource allocation, impact assessments, and reporting to oversight agencies. As highway revenue from...
NASA Astrophysics Data System (ADS)
Kim, Chul-Ho; Lee, Kee-Man; Lee, Sang-Heon
Power train system design is one of the key R&D areas on the development process of new automobile because an optimum size of engine with adaptable power transmission which can accomplish the design requirement of new vehicle can be obtained through the system design. Especially, for the electric vehicle design, very reliable design algorithm of a power train system is required for the energy efficiency. In this study, an analytical simulation algorithm is developed to estimate driving performance of a designed power train system of an electric. The principal theory of the simulation algorithm is conservation of energy with several analytical and experimental data such as rolling resistance, aerodynamic drag, mechanical efficiency of power transmission etc. From the analytical calculation results, running resistance of a designed vehicle is obtained with the change of operating condition of the vehicle such as inclined angle of road and vehicle speed. Tractive performance of the model vehicle with a given power train system is also calculated at each gear ratio of transmission. Through analysis of these two calculation results: running resistance and tractive performance, the driving performance of a designed electric vehicle is estimated and it will be used to evaluate the adaptability of the designed power train system on the vehicle.
Symplectic analysis of vertical random vibration for coupled vehicle track systems
NASA Astrophysics Data System (ADS)
Lu, F.; Kennedy, D.; Williams, F. W.; Lin, J. H.
2008-10-01
A computational model for random vibration analysis of vehicle-track systems is proposed and solutions use the pseudo excitation method (PEM) and the symplectic method. The vehicle is modelled as a mass, spring and damping system with 10 degrees of freedom (dofs) which consist of vertical and pitching motion for the vehicle body and its two bogies and vertical motion for the four wheelsets. The track is treated as an infinite Bernoulli-Euler beam connected to sleepers and hence to ballast and is regarded as a periodic structure. Linear springs couple the vehicle and the track. Hence, the coupled vehicle-track system has only 26 dofs. A fixed excitation model is used, i.e. the vehicle does not move along the track but instead the track irregularity profile moves backwards at the vehicle velocity. This irregularity is assumed to be a stationary random process. Random vibration theory is used to obtain the response power spectral densities (PSDs), by using PEM to transform this random multiexcitation problem into a deterministic harmonic excitation one and then applying symplectic solution methodology. Numerical results for an example include verification of the proposed method by comparing with finite element method (FEM) results; comparison between the present model and the traditional rigid track model and; discussion of the influences of track damping and vehicle velocity.
DOT National Transportation Integrated Search
2009-11-23
This document presents the University of Michigan Transportation Research Institutes plan to perform : analysis of data collected from the heavy truck platform field operational test of the Integrated Vehicle- : Based Safety Systems (IVBSS) progra...
Vehicle Infrastructure Integration (VII) data use analysis and processing : project summary report.
DOT National Transportation Integrated Search
2012-03-01
The purpose of the Data Use Analysis and Processing (DUAP) project is to support the : Michigan Department of Transportation (MDOT) and its partners in evaluating uses and : benefits of connected vehicle data in transportation agency management and :...
Analysis of Life-Cycle Costs and Market Applications of Flywheel Energy-Storage Transit Vehicles
DOT National Transportation Integrated Search
1979-07-01
The Urban Mass Transportation Administration (UMTA) has recently completed the Phase I activities of its Flywheel Energy Storage Program involving an analysis of the operational requirements and the conceptual design of flywheel energy storage vehicl...
Inflight thermodynamic properties
NASA Technical Reports Server (NTRS)
Brown, S. C.; Daniels, G. E.; Johnson, D. L.; Smith, O. E.
1973-01-01
The inflight thermodynamic parameters (temperature, pressure, and density) of the atmosphere are presented. Mean and extreme values of the thermodynamic parameters given here can be used in application of many aerospace problems, such as: (1) research and planning and engineering design of remote earth sensing systems; (2) vehicle design and development; and (3) vehicle trajectory analysis, dealing with vehicle thrust, dynamic pressure, aerodynamic drag, aerodynamic heating, vibration, structural and guidance limitations, and reentry analysis. Atmospheric density plays a very important role in most of the above problems. A subsection on reentry is presented, giving atmospheric models to be used for reentry heating, trajectory, etc., analysis.
Light-Duty Diesel Vehicles: Efficiency and Emissions Attributes and Market Issues
2009-01-01
This report responds to a request from Senator Jeff Sessions for an analysis of the environmental and energy efficiency attributes of light-duty diesel vehicles. Specifically, the inquiry asked for a comparison of the characteristics of diesel-fueled vehicles with those of similar gasoline-fueled, E85-fueled, and hybrid vehicles, as well as a discussion of any technical, economic, regulatory, or other obstacles to increasing the use of diesel-fueled vehicles in the United States
A 3D Reconstruction Strategy of Vehicle Outline Based on Single-Pass Single-Polarization CSAR Data.
Leping Chen; Daoxiang An; Xiaotao Huang; Zhimin Zhou
2017-11-01
In the last few years, interest in circular synthetic aperture radar (CSAR) acquisitions has arisen as a consequence of the potential achievement of 3D reconstructions over 360° azimuth angle variation. In real-world scenarios, full 3D reconstructions of arbitrary targets need multi-pass data, which makes the processing complex, money-consuming, and time expending. In this paper, we propose a processing strategy for the 3D reconstruction of vehicle, which can avoid using multi-pass data by introducing a priori information of vehicle's shape. Besides, the proposed strategy just needs the single-pass single-polarization CSAR data to perform vehicle's 3D reconstruction, which makes the processing much more economic and efficient. First, an analysis of the distribution of attributed scattering centers from vehicle facet model is presented. And the analysis results show that a smooth and continuous basic outline of vehicle could be extracted from the peak curve of a noncoherent processing image. Second, the 3D location of vehicle roofline is inferred from layover with empirical insets of the basic outline. At last, the basic line and roofline of the vehicle are used to estimate the vehicle's 3D information and constitute the vehicle's 3D outline. The simulated and measured data processing results prove the correctness and effectiveness of our proposed strategy.
Modelling Workload on the Bison C3I Command Post: Phase 1 - Task Analysis
2009-08-01
Intelligence Mobile Command Post is an armoured vehicle originally designed as an infantry section carrier. Manufactured by General Dynamics, the MCP...variant of the Bison Armoured Vehicle has a raised roof to accommodate various radio suites. There are three blast seats inside the vehicle as well as...SLIMGARD VEHICLE HEADSET....................................................................................................... 27 FIGURE 17: ARMOUR
NASA Astrophysics Data System (ADS)
Zhang, Lei; Cao, Wei; Li, Shengcai; Lu, Peng
2018-01-01
Introduced some unmanned vehicles development present situation, points out that the main development trend of photoelectric technology, analyzes the basic ability requirement of unmanned vehicles, in the future war system demonstrates the photoelectric information transmission, battlefield situational awareness, photoelectric integrated optoelectronic technology such as against the application of the unmanned vehicles demand in the future.
A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.
Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang
2015-11-13
Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.
Finite Element Model Calibration Approach for Area I-X
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Gaspar, James L.; Lazor, Daniel R.; Parks, Russell A.; Bartolotta, Paul A.
2010-01-01
Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of non-conventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pretest predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.
Finite Element Model Calibration Approach for Ares I-X
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Lazor, Daniel R.; Gaspar, James L.; Parks, Russel A.; Bartolotta, Paul A.
2010-01-01
Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of nonconventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pre-test predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.
Evaluation of Long Duration Flight on Venus
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Colozza, Anthony J.
2006-01-01
An analysis was performed to evaluate the potential of utilizing either an airship or aircraft as a flight platform for long duration flight within the atmosphere of Venus. In order to achieve long-duration flight, the power system for the vehicle had to be capable of operating for extended periods of time. To accomplish these, two types of power systems were considered, a solar energy-based power system utilizing a photovoltaic array as the main power source and a radioisotope heat source power system utilizing a Stirling engine as the heat conversion device. Both types of vehicles and power systems were analyzed to determine their flight altitude range. This analysis was performed for a station-keeping mission where the vehicle had to maintain a flight over a location on the ground. This requires the vehicle to be capable of flying faster than the wind speed at a particular altitude. An analysis was also performed to evaluate the altitude range and maximum duration for a vehicle that was not required to maintain station over a specified location. The results of the analysis show that each type of flight vehicle and power system was capable of flight within certain portions of Venus s atmosphere. The aircraft, both solar and radioisotope power proved to be the most versatile and provided the greatest range of coverage both for station-keeping and non-station-keeping missions.
2017-01-01
The U.S. Energy Information Administration (EIA) contracted with Leidos to analyze the effect of California zero-emission vehicle regulations (ZEVR) and state-level incentives on zero-emission and plug-in hybrid vehicle sales. Leidos worked to review the effect of state-level incentives by: *Conducting a review on the available incentives on zero-emission vehicles and related transitional vehicle types such has plug-in hybrid electric vehicles *Quantifying the effective monetary value of these different incentives *Evaluating the combined values of these incentives in each state on an example sale of a Nissan Leaf and Chevrolet Volt
NASA Technical Reports Server (NTRS)
Traversi, M.; Barbarek, L. A. C.
1979-01-01
Applicable data was categorized and processed according to vehicle usage and trip parameters with consideration of payload (cargo, people, size) and driving cycles. A mission that maximizes the fuel potential savings for the total 1985 vehicle fleet was selected. Mission requirements that have a bearing on conventional and hybrid vehicle performance and characteristics were identified and formulated and a reference ICE vehicle was selected that meets or exceeds all requirements while maintaining within applicable constraints. Specifications for vehicle performance were established based on mission requirements, mission related vehicle characteristics, and fuel consumption.
An Entry Flight Controls Analysis for a Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Calhoun, Philip
2000-01-01
The NASA Langley Research Center has been performing studies to address the feasibility of various single-stage to orbit concepts for use by NASA and the commercial launch industry to provide a lower cost access to space. Some work on the conceptual design of a typical lifting body concept vehicle, designated VentureStar(sup TM) has been conducted in cooperation with the Lockheed Martin Skunk Works. This paper will address the results of a preliminary flight controls assessment of this vehicle concept during the atmospheric entry phase of flight. The work includes control analysis from hypersonic flight at the atmospheric entry through supersonic speeds to final approach and landing at subsonic conditions. The requirements of the flight control effectors are determined over the full range of entry vehicle Mach number conditions. The analysis was performed for a typical maximum crossrange entry trajectory utilizing angle of attack to limit entry heating and providing for energy management, and bank angle to modulation of the lift vector to provide downrange and crossrange capability to fly the vehicle to a specified landing site. Sensitivity of the vehicle open and closed loop characteristics to CG location, control surface mixing strategy and wind gusts are included in the results. An alternative control surface mixing strategy utilizing a reverse aileron technique demonstrated a significant reduction in RCS torque and fuel required to perform bank maneuvers during entry. The results of the control analysis revealed challenges for an early vehicle configuration in the areas of hypersonic pitch trim and subsonic longitudinal controllability.
Potentials for Platooning in U.S. Highway Freight Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratori, Matteo; Holden, Jacob; Lammert, Michael
2017-03-28
Smart technologies enabling connection among vehicles and between vehicles and infrastructure as well as vehicle automation to assist human operators are receiving significant attention as a means for improving road transportation systems by reducing fuel consumption - and related emissions - while also providing additional benefits through improving overall traffic safety and efficiency. For truck applications, which are currently responsible for nearly three-quarters of the total U.S. freight energy use and greenhouse gas (GHG) emissions, platooning has been identified as an early feature for connected and automated vehicles (CAVs) that could provide significant fuel savings and improved traffic safety andmore » efficiency without radical design or technology changes compared to existing vehicles. A statistical analysis was performed based on a large collection of real-world U.S. truck usage data to estimate the fraction of total miles that are technically suitable for platooning. In particular, our analysis focuses on estimating 'platoonable' mileage based on overall highway vehicle use and prolonged high-velocity traveling, and established that about 65% of the total miles driven by combination trucks from this data sample could be driven in platoon formation, leading to a 4% reduction in total truck fuel consumption. This technical potential for 'platoonable' miles in the United States provides an upper bound for scenario analysis considering fleet willingness and convenience to platoon as an estimate of overall benefits of early adoption of connected and automated vehicle technologies. A benefit analysis is proposed to assess the overall potential for energy savings and emissions mitigation by widespread implementation of highway platooning for trucks.« less
Structural weights analysis of advanced aerospace vehicles using finite element analysis
NASA Technical Reports Server (NTRS)
Bush, Lance B.; Lentz, Christopher A.; Rehder, John J.; Naftel, J. Chris; Cerro, Jeffrey A.
1989-01-01
A conceptual/preliminary level structural design system has been developed for structural integrity analysis and weight estimation of advanced space transportation vehicles. The system includes a three-dimensional interactive geometry modeler, a finite element pre- and post-processor, a finite element analyzer, and a structural sizing program. Inputs to the system include the geometry, surface temperature, material constants, construction methods, and aerodynamic and inertial loads. The results are a sized vehicle structure capable of withstanding the static loads incurred during assembly, transportation, operations, and missions, and a corresponding structural weight. An analysis of the Space Shuttle external tank is included in this paper as a validation and benchmark case of the system.
Economics of small fully reusable launch systems (SSTO vs. TSTO)
NASA Astrophysics Data System (ADS)
Koelle, Dietrich E.
1997-01-01
The paper presents a design and cost comparison of an SSTO vehicle concept with two TSTO vehicle options. It is shown that the ballistic SSTO concept feasibility is NOT a subject of technology but of proper vehicle SIZING. This also allows to design for sufficient performance margin. The cost analysis has been performed with the TRANSCOST- Model, also using the "Standardized Cost per Flight" definition for the CpF comparison. The results show that a present-technology SSTO for LEO missions is about 30 % less expensive than any TSTO vehicle, based on Life-Cycle-Cost analysis, in addition to the inherent operational/ reliability advantages of a single-stage vehicle. In case of a commercial development and operation it is estimated that an SSTO vehicle with 400 Mg propellant mass can be flown for some 9 Million per mission (94/95) with 14 Mg payload to LEO, 7 Mg to the Space Station Orbit, or 2 Mg to a 200/800 km polar orbit. This means specific transportation cost of 650 /kg (300 $/lb), resp.3.2 MYr/Mg, to LEO which is 6 -10% of present expendable launch vehicles.
Structural Design and Analysis of Un-pressurized Cargo Delivery Vehicle
NASA Technical Reports Server (NTRS)
Martinovic, Zoran N.
2007-01-01
As part of the Exploration Systems Architecture Study, NASA has defined a family of vehicles to support lunar exploration and International Space Station (ISS) re-supply missions after the Shuttle s retirement. The Un-pressurized Cargo Delivery Vehicle (UCDV) has been envisioned to be an expendable logistics delivery vehicle that would be used to deliver external cargo to the ISS. It would be launched on the Crew Launch Vehicle and would replace the Crew Exploration Vehicle. The estimated cargo would be the weight of external logistics to the ISS. Determining the minimum weight design of the UCDV during conceptual design is the major issue addressed in this paper. This task was accomplished using a procedure for rapid weight estimation that was based on Finite Element Analysis and sizing of the vehicle by the use of commercially available codes. Three design concepts were analyzed and their respective weights were compared. The analytical structural weight was increased by a factor to account for structural elements that were not modeled. Significant reduction in weight of a composite design over metallic was achieved for similar panel concepts.
Economic Cost of Motor Vehicle Crashes, 1994
DOT National Transportation Integrated Search
1996-07-01
This report presents the results of an analysis of motor vehicle crash costs in 1994. The total economic cost of motor vehicle crashes in 1994 was $150.5 billion. This represents the present value of lifetime costs for 40,676 fatalities, 5.2 million ...
DOT National Transportation Integrated Search
1999-10-01
This analysis brief explores differences and similarities among the national crash experience of combination-unit trucks (CUTs), single-unit trucks (SUTs), and "all vehicles" (principally cars and light truck/vans). These CUT vs. SUT vs. all vehicle ...
Pilot/vehicle model analysis of visually guided flight
NASA Technical Reports Server (NTRS)
Zacharias, Greg L.
1991-01-01
Information is given in graphical and outline form on a pilot/vehicle model description, control of altitude with simple terrain clues, simulated flight with visual scene delays, model-based in-cockpit display design, and some thoughts on the role of pilot/vehicle modeling.
NASA Technical Reports Server (NTRS)
Oman, B. H.
1977-01-01
The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.
Integrated Software for Analyzing Designs of Launch Vehicles
NASA Technical Reports Server (NTRS)
Philips, Alan D.
2003-01-01
Launch Vehicle Analysis Tool (LVA) is a computer program for preliminary design structural analysis of launch vehicles. Before LVA was developed, in order to analyze the structure of a launch vehicle, it was necessary to estimate its weight, feed this estimate into a program to obtain pre-launch and flight loads, then feed these loads into structural and thermal analysis programs to obtain a second weight estimate. If the first and second weight estimates differed, it was necessary to reiterate these analyses until the solution converged. This process generally took six to twelve person-months of effort. LVA incorporates text to structural layout converter, configuration drawing, mass properties generation, pre-launch and flight loads analysis, loads output plotting, direct solution structural analysis, and thermal analysis subprograms. These subprograms are integrated in LVA so that solutions can be iterated automatically. LVA incorporates expert-system software that makes fundamental design decisions without intervention by the user. It also includes unique algorithms based on extensive research. The total integration of analysis modules drastically reduces the need for interaction with the user. A typical solution can be obtained in 30 to 60 minutes. Subsequent runs can be done in less than two minutes.
Pyrotechnic Shock Analysis Using Statistical Energy Analysis
2015-10-23
SEA subsystems. A couple of validation examples are provided to demonstrate the new approach. KEY WORDS : Peak Ratio, phase perturbation...Ballistic Shock Prediction Models and Techniques for Use in the Crusader Combat Vehicle Program,” 11th Annual US Army Ground Vehicle Survivability
78 FR 23158 - Organization and Delegation of Duties
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-18
... management actions of major significance, such as those relating to changes in basic organization pattern... regard to rulemaking, enforcement, vehicle safety research and statistics and data analysis, provides... Administrator for the National Center for Statistics and Analysis, and the Associate Administrator for Vehicle...
Analysis of fatal crashes due to signal and stop sign violations
DOT National Transportation Integrated Search
2004-09-01
The 1999 and 2000 Fatality Analysis Reporting System databases were analyzed to gain a better understanding of fatal crashes involving light vehicles that violated traffic signals or stop signs. A total of 9,951 vehicles were involved in fatal crashe...
Engineering Cost Analysis of the Urban-Tracked Air Cushion Vehicle System
DOT National Transportation Integrated Search
1972-01-01
The Urban Tracked Air Cushion Vehicle (UTACV) is presently being developed as a means of improving urban transportation. This report covers the development of a cost analysis conducted for the UTACV. The report covers the development of a computer pr...
DOT National Transportation Integrated Search
2013-12-27
This report presents an analysis by Booz Allen Hamilton (Booz Allen) of the technical design for the Security Credentials Management System (SCMS) intended to support communications security for the connected vehicle system. The SCMS technical design...
Identification, analysis, and remedial treatment of low guardrail in Virginia.
DOT National Transportation Integrated Search
1981-01-01
Guardrails that are too low may fail to safely redirect errant vehicles; instead, the vehicles may vault the guardrails, resulting in severe accidents. An analysis of data on a small sample of guardrails throughout-Virginia showed that over 80% of th...
[Risk factors for road traffic injury in agricultural vehicle drivers].
Cui, M J; Chen, Y; Li, Y; Hu, J; Zhang, X J
2017-08-20
Objective: To examine the risk factors for road traffic injury in agricultural vehicle drivers. Methods: A total of 103 drivers (who had suffered agricultural vehicle road traffic injury within the past year based on the road traffic injury registrar from the Traffic Management Bureau) who were involved in the annual agricultural vehicle inspection from December 2014 to January 2015 were randomly sampled from the Yixing Agricultural Vehicle Station as the case group for this study. Based on a 1∶2 assignment ratio and matched for sex, age, and education, a total of 206 drivers who had not suffered any agricultural vehicle road traffic injury within the past year were selected as the control group. The general information, vehicle information, driving information, driving behavior, and accident details of the agricultural vehicle drivers were analyzed. Results: The incidence rate of road traffic injury was 7.24% given the 103 agricultural vehicle drivers who had suffered agricultural vehicle road traffic injury in the past year. Univariate logistic regression analysis showed that drinking, debt, pressure, history of car accident, history of drunk driving, smoking and phone use during driving, fatigue driving, and driving with illness were the risk factors for road traffic injury in agricultural vehicle drivers ( OR =2.332, 2.429, 19.778, 5.589, 8.517, 2.125, 3.203, 10.249 and 5.639, respectively) . Multivariate logistic regression analysis also demonstrated that pressure, history of car accident, history of drunk driving, fatigue driving, and driving with illness were the risk factors for road traffic injury in agricultural vehicle drivers ( OR =12.139, 11.184, 6.729, 5.939, and 6.544, respectively) . Conclusion: Pressure, history of car accident, history of drunk driving, fatigue driving, and driving with illness are the major risk factors for road traffic injury in agricultural vehicle drivers.
Database improvements for motor vehicle/bicycle crash analysis
Lusk, Anne C; Asgarzadeh, Morteza; Farvid, Maryam S
2015-01-01
Background Bicycling is healthy but needs to be safer for more to bike. Police crash templates are designed for reporting crashes between motor vehicles, but not between vehicles/bicycles. If written/drawn bicycle-crash-scene details exist, these are not entered into spreadsheets. Objective To assess which bicycle-crash-scene data might be added to spreadsheets for analysis. Methods Police crash templates from 50 states were analysed. Reports for 3350 motor vehicle/bicycle crashes (2011) were obtained for the New York City area and 300 cases selected (with drawings and on roads with sharrows, bike lanes, cycle tracks and no bike provisions). Crashes were redrawn and new bicycle-crash-scene details were coded and entered into the existing spreadsheet. The association between severity of injuries and bicycle-crash-scene codes was evaluated using multiple logistic regression. Results Police templates only consistently include pedal-cyclist and helmet. Bicycle-crash-scene coded variables for templates could include: 4 bicycle environments, 18 vehicle impact-points (opened-doors and mirrors), 4 bicycle impact-points, motor vehicle/bicycle crash patterns, in/out of the bicycle environment and bike/relevant motor vehicle categories. A test of including these variables suggested that, with bicyclists who had minor injuries as the control group, bicyclists on roads with bike lanes riding outside the lane had lower likelihood of severe injuries (OR, 0.40, 95% CI 0.16 to 0.98) compared with bicyclists riding on roads without bicycle facilities. Conclusions Police templates should include additional bicycle-crash-scene codes for entry into spreadsheets. Crash analysis, including with big data, could then be conducted on bicycle environments, motor vehicle potential impact points/doors/mirrors, bicycle potential impact points, motor vehicle characteristics, location and injury. PMID:25835304
Frontier battery development for hybrid vehicles.
Lewis, Heather; Park, Haram; Paolini, Maion
2012-04-23
Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this "hybrid premium" is the cost of the vehicles' batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.
Multi-mission space vehicle subsystem analysis tools
NASA Technical Reports Server (NTRS)
Kordon, M.; Wood, E.
2003-01-01
Spacecraft engineers often rely on specialized simulation tools to facilitate the analysis, design and operation of space systems. Unfortunately these tools are often designed for one phase of a single mission and cannot be easily adapted to other phases or other misions. The Multi-Mission Pace Vehicle Susbsystem Analysis Tools are designed to provide a solution to this problem.
Development and Flight Testing of an Adaptive Vehicle Health-Monitoring Architecture
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.
2002-01-01
On going development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle, and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. The expert system is parameterized, which makes it adaptable to be trained to both a user's subject reasoning and existing quantitative analytic tools. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation and, data acquisition, storage and retrieval.
Buck, Ursula; Naether, Silvio; Braun, Marcel; Bolliger, Stephan; Friederich, Hans; Jackowski, Christian; Aghayev, Emin; Christe, Andreas; Vock, Peter; Dirnhofer, Richard; Thali, Michael J
2007-07-20
The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.
NASA Technical Reports Server (NTRS)
Ables, Brett
2014-01-01
Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile mission scope.
A PSFI-based analysis on the energy efficiency potential of China’s domestic passenger vehicles
NASA Astrophysics Data System (ADS)
Chen, Chuan; Ren, Huanhuan; Zhao, Dongchang
2017-01-01
In this article, China’s domestic passenger vehicles (excluding new energy vehicles) are categorized into two groups: local brand vehicles and vehicles manufactured by joint ventures. Performance-Size-Fuel economy Index (PSFI) will be applied to analyse the speed of technical progress and the future trends of these vehicles. In addition, a forecast on energy efficiency potential of domestic passenger vehicles from 2016 to 2020 will be made based on different Emphasis on Reducing Fuel Consumption (ERFC) scenarios. According to the study, if the process of technical progress continues at its current speed, domestic ICE passenger vehicles will hardly meet Phase IV requirements by 2020 even though companies contribute as much technical progress to fuel consumption reduction as possible.
Analysis of Non-Tactical Vehicle Utilization at Fort Carson Colorado
2012-01-01
regenerative braking energy recovery. The mass of the vehicles monitored in this study was not known. However, some useful information may be... regenerative energy recovery potential for specific duty cycles was also quantified through a cumulative assessment of the number and severity of deceleration...extracted on usage time, distance, vehicle speed and geographic location in order to compare vehicle driving profiles. The regenerative energy recovery
DOT National Transportation Integrated Search
2009-06-09
With funding and support from the USDOT RITA and direction from the FHWA Road Weather Management Program, NCAR is developing a Vehicle Data Translator (VDT) that incorporates vehicle-based measurements of the road and surrounding atmosphere with othe...
The economic impact of motor vehicle crashes, 2000
DOT National Transportation Integrated Search
2002-05-01
This report presents the results of an analysis of motor vehicle crash costs in the United State in the year 2000. The total economic cost of motor vehicle crashes in 2000 was $230.6 billion. This represents the present value of lifetime costs for 41...
New data for relating land use and urban form to private passenger vehicle miles.
DOT National Transportation Integrated Search
2013-08-01
This research project developed the most extensive and spatially detailed analysis of : annual vehicle miles traveled (VMT) by type of vehicle, place of residence, and land use : pattern. We combined a unique Massachusetts State dataset of annual odo...
An In-Depth Cost Analysis for New Light-Duty Vehicle Technologies
Within the transportation sector, light-duty vehicles are the predominant source of greenhouse gas (GHG) emissions, principally exhaust CO2 and refrigerant leakage from vehicle air conditioners. EPA has contracted with FEV to estimate the costs of technologies that may be employ...
Adams National Historic Park Trolley Vehicle Replacement Selection Analysis
DOT National Transportation Integrated Search
2017-12-01
Adams NHP owns three trolley vehicles that were purchased in the early 2000s and, while their accrued mileage remains low, they have reached the end of their useful lives due in large part to vehicle parts becoming unavailable. Both the original trol...
DOT National Transportation Integrated Search
1998-11-01
This flyer summarizes the identified human factors research needs for integrated in-vehicle systems for transit vehicles, one of five configurations of in-vehicle safety and driver information systems. A complete review of the research needs for all ...
NASA Astrophysics Data System (ADS)
Shakiba, Maryam; Ozer, Hasan; Ziyadi, Mojtaba; Al-Qadi, Imad L.
2016-11-01
The structure-induced rolling resistance of pavements, and its impact on vehicle fuel consumption, is investigated in this study. The structural response of pavement causes additional rolling resistance and fuel consumption of vehicles through deformation of pavement and various dissipation mechanisms associated with inelastic material properties and damping. Accurate and computationally efficient models are required to capture these mechanisms and obtain realistic estimates of changes in vehicle fuel consumption. Two mechanistic-based approaches are currently used to calculate vehicle fuel consumption as related to structural rolling resistance: dissipation-induced and deflection-induced methods. The deflection-induced approach is adopted in this study, and realistic representation of pavement-vehicle interactions (PVIs) is incorporated. In addition to considering viscoelastic behavior of asphalt concrete layers, the realistic representation of PVIs in this study includes non-uniform three-dimensional tire contact stresses and dynamic analysis in pavement simulations. The effects of analysis type, tire contact stresses, pavement viscoelastic properties, pavement damping coefficients, vehicle speed, and pavement temperature are then investigated.
Vehicle systems: coupled and interactive dynamics analysis
NASA Astrophysics Data System (ADS)
Vantsevich, Vladimir V.
2014-11-01
This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.
NASA Technical Reports Server (NTRS)
Unal, Resit; Morris, W. Douglas; White, Nancy H.; Lepsch, Roger A.; Brown, Richard W.
2000-01-01
This paper describes the development of parametric models for estimating operational reliability and maintainability (R&M) characteristics for reusable vehicle concepts, based on vehicle size and technology support level. A R&M analysis tool (RMAT) and response surface methods are utilized to build parametric approximation models for rapidly estimating operational R&M characteristics such as mission completion reliability. These models that approximate RMAT, can then be utilized for fast analysis of operational requirements, for lifecycle cost estimating and for multidisciplinary sign optimization.
Vehicle for Space Transfer and Recovery (VSTAR), volume 2: Substantiating analyses and data
NASA Technical Reports Server (NTRS)
1988-01-01
The Vehicle Space Transfer and Recovery (VSTAR) system is designed as a manned orbital transfer vehicle (MOTV) with the primary mission of Satellite Launch and Repair (SLR). Reference materials, calculations and trade studies used in the analysis and selection of VSTAR components. Each major VSTAR system is examined separately. Simple graphs and tables are used to make qualitative comparisons of various VSTAR component candidates. Equations and/or calculations used for a particular analysis are also included where applicable.
Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Lee Kenneth
2017-03-01
This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.
Design, Analysis and Qualification of Elevon for Reusable Launch Vehicle
NASA Astrophysics Data System (ADS)
Tiwari, S. B.; Suresh, R.; Krishnadasan, C. K.
2017-12-01
Reusable launch vehicle technology demonstrator is configured as a winged body vehicle, designed to fly in hypersonic, supersonic and subsonic regimes. The vehicle will be boosted to hypersonic speeds after which the winged body separates and descends using aerodynamic control. The aerodynamic control is achieved using the control surfaces mainly the rudder and the elevon. Elevons are deflected for pitch and roll control of the vehicle at various flight conditions. Elevons are subjected to aerodynamic, thermal and inertial loads during the flight. This paper gives details about the configuration, design, qualification and flight validation of elevon for Reusable Launch Vehicle.
The role of inspection and maintenance in controlling vehicular emissions in Kathmandu valley, Nepal
NASA Astrophysics Data System (ADS)
Faiz, Asif; Bahadur Ale, Bhakta; Nagarkoti, Ram Kumar
Motor vehicles are a major source of air pollutant emissions in Kathmandu valley, Nepal. In-use vehicle emission limits were first introduced in Nepal in 1998 and updated in 2000. The emission regulations for gasoline vehicles limit CO emissions to 3-4.5% by volume and HC emissions to 1000 ppm for four-wheeled vehicles, and 7800 ppm for two- and three- wheelers. Emission limits for LPG/CNG vehicles are 3% for CO and 1000 ppm for HC. For diesel vehicles, smoke density must not exceed 65-75 HSU depending on the age of the vehicle. The Government operates a rudimentary inspection and maintenance (I/M) program based on an idle engine test, utilizing an exhaust gas analyzer (for gasoline/LPG/CNG vehicles) and an opacimeter for diesel vehicles. The I/M program is confined to four-wheeled vehicles and occasional three-wheelers. The inspections are required at least once a year and are conducted at designated vehicle testing stations. The I/M program is supplemented by roadside checks. This paper is based on the findings of an analysis of vehicle emissions test data for the period June 2000 to July 2002, covering some 45,000 data sets. Each data set includes information on vehicle type and ownership, the model year, and CO/HC test emission values. The analysis reported in this paper covers the characteristics and statistical distribution of emissions from gasoline-fuelled vehicles, including the impact of gross emitters. The effects of vehicle age, model year (with or without catalysts), usage, and ownership (private vs. public) on emissions of gasoline-fuelled vehicles are discussed. The findings for diesel vehicles have been reported earlier by Ale and Nagarkoti (2003b. Evaluation of Kathmandu valley inspection and maintenance program on diesel vehicles. Journal of the Institute of Engineering 3(1)). This study identifies the limitations of the current I/M program, given that it does not include 70% of the fleet consisting of two-wheelers and concludes with proposed changes to the I/M program to make it more effective.
Computational Aspects of Heat Transfer in Structures
NASA Technical Reports Server (NTRS)
Adelman, H. M. (Compiler)
1982-01-01
Techniques for the computation of heat transfer and associated phenomena in complex structures are examined with an emphasis on reentry flight vehicle structures. Analysis methods, computer programs, thermal analysis of large space structures and high speed vehicles, and the impact of computer systems are addressed.
DOT National Transportation Integrated Search
1975-12-01
Frequency domain computer programs developed or acquired by TSC for the analysis of rail vehicle dynamics are described in two volumes. Volume 2 contains program listings including subroutines for the four TSC frequency domain programs described in V...
DOT National Transportation Integrated Search
1975-12-01
Frequency domain computer programs developed or acquired by TSC for the analysis of rail vehicle dynamics are described in two volumes. Volume I defines the general analytical capabilities required for computer programs applicable to single rail vehi...
Launch vehicle design and GNC sizing with ASTOS
NASA Astrophysics Data System (ADS)
Cremaschi, Francesco; Winter, Sebastian; Rossi, Valerio; Wiegand, Andreas
2018-03-01
The European Space Agency (ESA) is currently involved in several activities related to launch vehicle designs (Future Launcher Preparatory Program, Ariane 6, VEGA evolutions, etc.). Within these activities, ESA has identified the importance of developing a simulation infrastructure capable of supporting the multi-disciplinary design and preliminary guidance navigation and control (GNC) design of different launch vehicle configurations. Astos Solutions has developed the multi-disciplinary optimization and launcher GNC simulation and sizing tool (LGSST) under ESA contract. The functionality is integrated in the Analysis, Simulation and Trajectory Optimization Software for space applications (ASTOS) and is intended to be used from the early design phases up to phase B1 activities. ASTOS shall enable the user to perform detailed vehicle design tasks and assessment of GNC systems, covering all aspects of rapid configuration and scenario management, sizing of stages, trajectory-dependent estimation of structural masses, rigid and flexible body dynamics, navigation, guidance and control, worst case analysis, launch safety analysis, performance analysis, and reporting.
Near-term hybrid vehicle program, phase 1. Appendix D: Sensitivity analysis resport
NASA Technical Reports Server (NTRS)
1979-01-01
Parametric analyses, using a hybrid vehicle synthesis and economics program (HYVELD) are described investigating the sensitivity of hybrid vehicle cost, fuel usage, utility, and marketability to changes in travel statistics, energy costs, vehicle lifetime and maintenance, owner use patterns, internal combustion engine (ICE) reference vehicle fuel economy, and drive-line component costs and type. The lowest initial cost of the hybrid vehicle would be $1200 to $1500 higher than that of the conventional vehicle. For nominal energy costs ($1.00/gal for gasoline and 4.2 cents/kWh for electricity), the ownership cost of the hybrid vehicle is projected to be 0.5 to 1.0 cents/mi less than the conventional ICE vehicle. To attain this ownership cost differential, the lifetime of the hybrid vehicle must be extended to 12 years and its maintenance cost reduced by 25 percent compared with the conventional vehicle. The ownership cost advantage of the hybrid vehicle increases rapidly as the price of fuel increases from $1 to $2/gal.
Development of a numerical model for vehicle-bridge interaction analysis of railway bridges
NASA Astrophysics Data System (ADS)
Kim, Hee Ju; Cho, Eun Sang; Ham, Jun Su; Park, Ki Tae; Kim, Tae Heon
2016-04-01
In the field of civil engineering, analyzing dynamic response was main concern for a long time. These analysis methods can be divided into moving load analysis method and moving mass analysis method, and formulating each an equation of motion has recently been studied after dividing vehicles and bridges. In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations for motion. Also, 3 dimensional accurate numerical models was developed by KTX-vehicle in order to analyze dynamic response characteristics. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 18 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by PSD functions of the Federal Railroad Administration (FRA).
Avionics architecture studies for the entry research vehicle
NASA Technical Reports Server (NTRS)
Dzwonczyk, M. J.; Mckinney, M. F.; Adams, S. J.; Gauthier, R. J.
1989-01-01
This report is the culmination of a year-long investigation of the avionics architecture for NASA's Entry Research Vehicle (ERV). The Entry Research Vehicle is conceived to be an unmanned, autonomous spacecraft to be deployed from the Shuttle. It will perform various aerodynamic and propulsive maneuvers in orbit and land at Edwards AFB after a 5 to 10 hour mission. The design and analysis of the vehicle's avionics architecture are detailed here. The architecture consists of a central triply redundant ultra-reliable fault tolerant processor attached to three replicated and distributed MIL-STD-1553 buses for input and output. The reliability analysis is detailed here. The architecture was found to be sufficiently reliable for the ERV mission plan.
Analysis of electric vehicle extended range misalignment based on rigid-flexible dynamics
NASA Astrophysics Data System (ADS)
Xu, Xiaowei; Lv, Mingliang; Chen, Zibo; Ji, Wei; Gao, Ruiceng
2017-04-01
The safety of the extended range electric vehicle is seriously affected by the misalignment fault. Therefore, this paper analyzed the electric vehicle extended range misalignment based on rigid-flexible dynamics. Through comprehensively applied the hybrid modeling of rigid-flexible and the method of fault diagnosis of machinery and equipment comprehensively, it established a extender hybrid rigid flexible mechanical model by means of the software ADAMS and ANSYS. By setting the relevant parameters to simulate the misalignment of shafting, the failure phenomenon, the spectrum analysis and the evolution rules were analyzed. It concluded that 0.5th and 1 harmonics are considered as the characteristic parameters of misalignment diagnostics for electric vehicle extended range.
An In-Depth Cost Analysis for New Light-Duty Vehicle ...
Within the transportation sector, light-duty vehicles are the predominant source of greenhouse gas (GHG) emissions, principally exhaust CO2 and refrigerant leakage from vehicle air conditioners. EPA has contracted with FEV to estimate the costs of technologies that may be employed to reduce these emissions. The purpose of this work is to determine accurate costs for GHG-reducing technologies. This is of paramount importance in setting the appropriate GHG standards. EPA has contracted with FEV to perform this cost analysis through tearing down vehicles, engines and components, both with and without these technologies, and evaluating, part by part, the observed differences in size, weight, materials, machining steps, and other cost-affecting parameters.
Historical Review of the Transportation Analysis Fact of the Week, 1996-2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohlke, David; Davis, Stacy Cagle
The Vehicle Technologies Office in the United States Department of Energy hosts a transportation analysis fact of the week on its webpage. As of October 2017, one thousand facts have been published since 1996. Examining the themes of published facts allows one to trace analytical trends determined to be of interest to the public over this time. The most popular themes addressed in the Fact of the Week were vehicle fuel economy, petroleum use and production, vehicle sales, and traveler behavior. Facts on vehicle electrification and advanced combustion technologies have been more popular in the last few years, showing theirmore » relevance to the Department of Energy mission.« less
2nd Generation Reusable Launch Vehicle Potential Commercial Development Scenarios
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Rogacki, John R. (Technical Monitor)
2001-01-01
The presentation will discuss potential commercial development scenarios for a Second Generation Reusable Launch Vehicle. The analysis of potential scenarios will include commercial rates of return, government return on investment, and market considerations. The presentation will include policy considerations in addition to analysis of Second Generation Reusable Launch Vehicle economics. The data discussed is being developed as a part of NASA's Second Generation Reusable Launch Vehicle Program, for consideration as potential scenarios for enabling a next generation system. Material will include potential scenarios not previously considered by NASA or presented at other conferences. Candidate paper has not been presented at a previous meeting, and conference attendance of the author has been approved by NASA.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.
1971-01-01
Investigation of problems related to control of a mobile planetary vehicle according to a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: (1) overall systems analysis; (2) vehicle configuration and dynamics; (3) toroidal wheel design and evaluation; (4) on-board navigation systems; (5) satellite-vehicle navigation systems; (6) obstacle detection systems; (7) terrain sensing, interpretation and modeling; (8) computer simulation of terrain sensor-path selection systems; and (9) chromatographic systems design concept studies. The specific tasks which have been undertaken are defined and the progress which has been achieved during the period July 1, 1971 to December 31, 1971 is summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Steve; Francfort, Jim
2015-07-01
Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 Vehicle Utilization report provided the resultsmore » of the data analysis and observations related to the replacement of current vehicles with PEVs. This report provides an assessment of charging infrastructure required to support the suggested PEV replacements.« less
DOT National Transportation Integrated Search
2015-01-01
This document details an analysis that maps the current Connected Vehicle development effort to the SRI efforts currently underway. The document provides a mapping of how SRI incorporates into the Connected Vehicle program. This mapping is performed ...
Bridge analysis and evaluation of effects under overload vehicles : phase 2.
DOT National Transportation Integrated Search
2012-09-01
The use of special purpose highway vehicles, over the legal limit in size and in weight, is increasing as industry grows and large items must be shipped over highways. Overload vehicle crossing of a bridge, even if it is a single crossing, may affect...
Analysis of light vehicle crashes and pre-crash scenarios based on the 2000 General Estimates System
DOT National Transportation Integrated Search
2003-02-01
This report analyzes the problem of light vehicle crashes in the United States to support the development and assessment of effective crash avoidance systems as part of the U.S. Department of Transportation's Intelligent Vehicle Initiative. The analy...
DOT National Transportation Integrated Search
2008-06-01
This paper empirically examines the vehicle type regulation that was introduced under the : Automobile Nitrogen OxidesParticulate Matter Law to mitigate air pollution problems in Japanese metropolitan areas. The vehicle type regulation effectively...
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Smart
A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.
Structures for the 3rd Generation Reusable Concept Vehicle
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2001-01-01
A major goal of NASA is to create an advance space transportation system that provides a safe, affordable highway through the air and into space. The long-term plans are to reduce the risk of crew loss to 1 in 1,000,000 missions and reduce the cost of Low-Earth Orbit by a factor of 100 from today's costs. A third generation reusable concept vehicle (RCV) was developed to assess technologies required to meet NASA's space access goals. The vehicle will launch from Cape Kennedy carrying a 25,000 lb. payload to the International Space Station (ISS). The system is an air breathing launch vehicle (ABLV) hypersonic lifting body with rockets and uses triple point hydrogen and liquid oxygen propellant. The focus of this paper is on the structural concepts and analysis methods used in developing the third generation reusable launch vehicle (RLV). Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.
Straight ahead running of a nonlinear car and driver model - new nonlinear behaviours highlighted
NASA Astrophysics Data System (ADS)
Della Rossa, Fabio; Mastinu, Giampiero
2018-05-01
The paper deals with the bifurcation analysis of a validated simple model describing a vehicle+driver running straight ahead. The mechanical model of the car has two degrees of freedom and the related equations of motion contain the nonlinear tyre characteristics. The driver is described by a very simple model. Bifurcation analysis is adopted for characterising straight ahead motion at different speeds for different drivers. A nonlinear sensitivity analysis is performed as a function of the driver's parameters and forward vehicle speed. A wealth of unreferenced bifurcations is discovered both for the understeering (UN) and for the oversteering (OV) vehicle. For the UN vehicle, a supercritical Hopf bifurcation may occur as the forward speed is increased. Also tangent (fold) bifurcations (saddle-node bifurcation of limit cycles) occur as the speed (or disturbance) is further increased. For the OV vehicle, a subcritical Hopf bifurcation occurs as the speed reaches a critical value. The preview distance (a driver's control parameter) plays a fundamental role in straight ahead driving. Either too short or too long preview distances are negative for straight ahead running.
Systems Analysis of the Hydrogen Transition with HyTrans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leiby, Paul Newsome; Greene, David L; Bowman, David Charles
2007-01-01
The U.S. Federal government is carefully considering the merits and long-term prospects of hydrogen-fueled vehicles. NAS (1) has called for the careful application of systems analysis tools to structure the complex assessment required. Others, raising cautionary notes, question whether a consistent and plausible transition to hydrogen light-duty vehicles can identified (2) and whether that transition would, on balance, be environmentally preferred. Modeling the market transition to hydrogen-powered vehicles is an inherently complex process, encompassing hydrogen production, delivery and retailing, vehicle manufacturing, and vehicle choice and use. We describe the integration of key technological and market factors in a dynamic transitionmore » model, HyTrans. The usefulness of HyTrans and its predictions depends on three key factors: (1) the validity of the economic theories that underpin the model, (2) the authenticity with which the key processes are represented, and (3) the accuracy of specific parameter values used in the process representations. This paper summarizes the theoretical basis of HyTrans, and highlights the implications of key parameter specifications with sensitivity analysis.« less
Hypersonic vehicle control law development using H infinity and mu-synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.
1992-01-01
Applicability and effectiveness of robust control techniques to a single-stage-to-orbit (SSTO) airbreathing hypersonic vehicle on an ascent accelerating path and their effectiveness are explored in this paper. An SSTO control system design problem, requiring high accuracy tracking of velocity and altitude commands while limiting angle of attack oscillations, minimizing control power usage and stabilizing the vehicle all in the presence of atmospheric turbulence and uncertainty in the system, was formulated to compare results of the control designs using H infinity and mu-synthesis procedures. The math model, an integrated flight/propulsion dynamic model of a conical accelerator class vehicle, was linearized as the vehicle accelerated through Mach 8. Controller analysis was conducted using the singular value technique and the mu-analysis approach. Analysis results were obtained in both the frequency and the time domains. The results clearly demonstrate the inherent advantages of the structured singular value framework for this class of problems. Since payload performance margins are so critical for the SSTO mission, it is crucial that adequate stability margins be provided without sacrificing any payload mass.
NASA Technical Reports Server (NTRS)
Alexander, Reginald A.; Stanley, Thomas Troy
1999-01-01
Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system and in the case of SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA); the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately determine insulation masses for a vehicle such as the one described above, the aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thicknesses that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to reduce the TPS mass. The problem described is an example of the need for collaborative design and analysis. Analysis tools are being developed to facilitate these collaborative efforts. RECIPE is a cross-platform application capable of hosting a number of engineers and designers across the Internet for distributed and collaborative engineering environments. Such integrated system design environments allow for collaborative team design analysis for performing individual or reduced team studies. The analysis tools mentioned earlier are commonly run on different platforms and are usually run by different people. To facilitate the larger number of potential runs that may need to be made, RECIPE connects the computer codes that calculate the trajectory data, heat rate data, and TPS masses so that the output from each tool is easily transferred to the model input files that need it. This methodology is being applied to solve launch vehicle thermal design problems to shorten the design cycle, and enable the project team to evaluate design options. Results will be presented indicating the effectiveness of this as a collaborative design tool.
Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology
NASA Astrophysics Data System (ADS)
Kirkpatrick, Brad Kenneth
In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Eric W; Rames, Clement L; Bedir, Abdulkadir
This report analyzes plug-in electric vehicle (PEV) infrastructure needs in California from 2017 to 2025 in a scenario where the State's zero-emission vehicle (ZEV) deployment goals are achieved by household vehicles. The statewide infrastructure needs are evaluated by using the Electric Vehicle Infrastructure Projection tool, which incorporates representative statewide travel data from the 2012 California Household Travel Survey. The infrastructure solution presented in this assessment addresses two primary objectives: (1) enabling travel for battery electric vehicles and (2) maximizing the electric vehicle-miles traveled for plug-in hybrid electric vehicles. The analysis is performed at the county-level for each year between 2017more » and 2025 while considering potential technology improvements. The results from this study present an infrastructure solution that can facilitate market growth for PEVs to reach the State's ZEV goals by 2025. The overall results show a need for 99k-130k destination chargers, including workplaces and public locations, and 9k-25k fast chargers. The results also show a need for dedicated or shared residential charging solutions at multi-family dwellings, which are expected to host about 120k PEVs by 2025. An improvement to the scientific literature, this analysis presents the significance of infrastructure reliability and accessibility on the quantification of charger demand.« less
The Importance of Powertrain Downsizing in a Benefit-Cost Analysis of Vehicle Lightweighting
NASA Astrophysics Data System (ADS)
Ward, J.; Gohlke, D.; Nealer, R.
2017-04-01
Reducing vehicle weight is an important avenue to improve energy efficiency and decrease greenhouse gas emissions from our cars and trucks. Conventionally, models have estimated acceptable increased manufacturing cost as proportional to the lifetime fuel savings associated with reduced vehicle weight. Vehicle lightweighting also enables a decrease in powertrain size and significant reductions in powertrain cost. Accordingly, we propose and apply a method for calculating the maximum net benefits and breakeven cost of vehicle lightweighting that considers both efficiency and powertrain downsizing for a conventional internal combustion engine vehicle, a battery electric vehicle with a range of 300 miles (BEV300), and a fuel cell electric vehicle (FCEV). We find that excluding powertrain downsizing cost savings undervalues the potential total net benefits of vehicle lightweighting, especially for the BEV300 and FCEV.
Coupling vibration research on Vehicle-bridge system
NASA Astrophysics Data System (ADS)
Zhou, Jiguo; Wang, Guihua
2018-01-01
The vehicle-bridge coupling system forms when vehicle running on a bridge. It will generate a relatively large influence on the driving comfort and driving safe when the vibration of the vehicle is bigger. A three-dimensional vehicle-bridge system with biaxial seven degrees of freedom has been establish in this paper based on finite numerical simulation. Adopting the finite element transient numerical simulation to realize the numerical simulation of vehicle-bridge system coupling vibration. Then, analyze the dynamic response of vehicle and bridge while different numbers of vehicles running on the bridge. Got the variation rule of vertical vibration of car body and bridge, and that of the contact force between the wheel and bridge deck. The research results have a reference value for the analysis about the vehicle running on a large-span cabled bridge.
14 CFR 417.215 - Straight-up time analysis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Straight-up time analysis. 417.215 Section 417.215 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... vehicle's flight termination system or breakup of the launch vehicle would not cause hazardous debris or...
14 CFR 417.215 - Straight-up time analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Straight-up time analysis. 417.215 Section 417.215 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... vehicle's flight termination system or breakup of the launch vehicle would not cause hazardous debris or...
DOT National Transportation Integrated Search
1997-06-01
This report describes analysis tools to predict shift under high-speed vehicle- : track interaction. The analysis approach is based on two fundamental models : developed (as part of this research); the first model computes the track lateral : residua...
DOT National Transportation Integrated Search
1997-01-01
Countermeasures for motor vehicle crashes are often determined after extensive data analysis of the crash history of a roadway segment. An important factor that drives the value of this analysis is the accuracy, or precision, with which the crash is ...
Simulations of SSLV Ascent and Debris Transport
NASA Technical Reports Server (NTRS)
Rogers, Stuart; Aftosmis, Michael; Murman, Scott; Chan, William; Gomez, Ray; Gomez, Ray; Vicker, Darby; Stuart, Phil
2006-01-01
A viewgraph presentation on Computational Fluid Dynamic (CFD) Simulation of Space Shuttle Launch Vehicle (SSLV) ascent and debris transport analysis is shown. The topics include: 1) CFD simulations of the Space Shuttle Launch Vehicle ascent; 2) Debris transport analysis; 3) Debris aerodynamic modeling; and 4) Other applications.
The effect of decreases in vehicle weight on injury crash rates
DOT National Transportation Integrated Search
1997-01-01
This study presents the results of an analysis to estimate the effect of a one hundred (1 00) pound reduction in the : average weight of passenger vehicles on the crash rates of driver incapacitating injury. The analysis was conducted : as a part of ...
14 CFR 417.215 - Straight-up time analysis.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Straight-up time analysis. 417.215 Section 417.215 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... vehicle's flight termination system or breakup of the launch vehicle would not cause hazardous debris or...
14 CFR 417.215 - Straight-up time analysis.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Straight-up time analysis. 417.215 Section 417.215 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... vehicle's flight termination system or breakup of the launch vehicle would not cause hazardous debris or...
14 CFR 417.215 - Straight-up time analysis.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Straight-up time analysis. 417.215 Section 417.215 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... vehicle's flight termination system or breakup of the launch vehicle would not cause hazardous debris or...
Spectral Analysis of the Effects of Daylight Saving Time on Motor Vehicle Fatal Traffic Accidents
DOT National Transportation Integrated Search
1977-04-01
This report shows that Daylight Saving Time (DST) reduces the number of persons killed in motor vehicle fatal traffic accidents by about one percent. This estimate is based on a spectral (Fourier) analysis of these fatalities which utilizes a filteri...
Sjödin, Linda; Buchanan, Angus; Mundt, Beate; Karlsson, Emelie; Falkmer, Torbjörn
2012-02-01
A vast majority of the journeys made by children with disabilities in Sweden are in the family car, which usually is bought and adapted for the child with governmental subsidies. Despite the important philosophical views about accessible vehicles, little is known about the impact of vehicle adaptations on families' lives. The aim of the study was to investigate parent views about the impact of vehicle grants and vehicle adaptation grants on their children's transport mobility and community access. In total, 434 parents of children with disabilities in Sweden who had received vehicle grants and/or vehicle adaptation grants between 1998-2007 responded to a questionnaire comprising questions with both pre-selected and open-ended answers. A non-responder analysis was performed. Children with disabilities were found to increase their transport mobility and community access in society as vehicle grants and/or vehicle adaptation grants were given to their parents. Their travel patterns and their travel priorities with their family car indicated that family friends and relatives and leisure activities were frequently visited and prioritised destinations. The grants were linked to access to social and family activities, provided environmental gains and led to increased experienced security. The results also showed that the potential to make spontaneous trips had increased substantially and that families experienced feelings of freedom and enhanced community access. The non-responder analysis confirmed these results. According to parents, vehicle grants and vehicle adaptation grants for children with disabilities have a positive impact on the children's transport mobility and community access. © 2011 The Authors. Australian Occupational Therapy Journal © 2011 Occupational Therapy Australia.
NAC Off-Vehicle Brake Testing Project
2007-05-01
disc pads/rotors and drum shoe assemblies/ drums - Must use vehicle “OEM” brake /hub-end hardware, or ESA... brake component comparison analysis (primary)* - brake system design analysis - brake system component failure analysis - (*) limited to disc pads...e.g. disc pads/rotors, drum shoe assemblies/ drums . - Not limited to “OEM” brake /hub-end hardware as there is none ! - Weight transfer, plumbing,
Application of optimization techniques to vehicle design: A review
NASA Technical Reports Server (NTRS)
Prasad, B.; Magee, C. L.
1984-01-01
The work that has been done in the last decade or so in the application of optimization techniques to vehicle design is discussed. Much of the work reviewed deals with the design of body or suspension (chassis) components for reduced weight. Also reviewed are studies dealing with system optimization problems for improved functional performance, such as ride or handling. In reviewing the work on the use of optimization techniques, one notes the transition from the rare mention of the methods in the 70's to an increased effort in the early 80's. Efficient and convenient optimization and analysis tools still need to be developed so that they can be regularly applied in the early design stage of the vehicle development cycle to be most effective. Based on the reported applications, an attempt is made to assess the potential for automotive application of optimization techniques. The major issue involved remains the creation of quantifiable means of analysis to be used in vehicle design. The conventional process of vehicle design still contains much experience-based input because it has not yet proven possible to quantify all important constraints. This restraint on the part of the analysis will continue to be a major limiting factor in application of optimization to vehicle design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tardiff, Mark F.; Runkle, Robert C.; Anderson, K. K.
2006-01-23
The goal of primary radiation monitoring in support of routine screening and emergency response is to detect characteristics in vehicle radiation signatures that indicate the presence of potential threats. Two conceptual approaches to analyzing gamma-ray spectra for threat detection are isotope identification and anomaly detection. While isotope identification is the time-honored method, an emerging technique is anomaly detection that uses benign vehicle gamma ray signatures to define an expectation of the radiation signature for vehicles that do not pose a threat. Newly acquired spectra are then compared to this expectation using statistical criteria that reflect acceptable false alarm rates andmore » probabilities of detection. The gamma-ray spectra analyzed here were collected at a U.S. land Port of Entry (POE) using a NaI-based radiation portal monitor (RPM). The raw data were analyzed to develop a benign vehicle expectation by decimating the original pulse-height channels to 35 energy bins, extracting composite variables via principal components analysis (PCA), and estimating statistically weighted distances from the mean vehicle spectrum with the mahalanobis distance (MD) metric. This paper reviews the methods used to establish the anomaly identification criteria and presents a systematic analysis of the response of the combined PCA and MD algorithm to modeled mono-energetic gamma-ray sources.« less
On the feasibility of a transient dynamic design analysis
NASA Astrophysics Data System (ADS)
Cunniff, Patrick F.; Pohland, Robert D.
1993-05-01
The Dynamic Design Analysis Method has been used for the past 30 years as part of the Navy's efforts to shock-harden heavy shipboard equipment. This method which has been validated several times employs normal mode theory and design shock values. This report examines the degree of success that may be achieved by using simple equipment-vehicle models that produce time history responses which are equivalent to the responses that would be achieved using spectral design values employed by the Dynamic Design Analysis Method. These transient models are constructed by attaching the equipment's modal oscillators to the vehicle which is composed of rigid masses and elastic springs. Two methods have been developed for constructing these transient models. Each method generates the parameters of the vehicles so as to approximate the required damaging effects, such that the transient model is excited by an idealized impulse applied to the vehicle mass to which the equipment modal oscillators are attached. The first method called the Direct Modeling Method, is limited to equipment with at most three-degrees of freedom and the vehicle consists of a single lumped mass and spring. The Optimization Modeling Method, which is based on the simplex method for optimization, has been used successfully with a variety of vehicle models and equipment sizes.
Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System
Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan
2009-01-01
This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms. PMID:22408487
Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.
Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan
2009-01-01
This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.
Huang, Wei-Dong; Zhang, Y-H Percival
2011-01-01
Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.
Chen, Cong; Zhang, Guohui; Liu, Xiaoyue Cathy; Ci, Yusheng; Huang, Helai; Ma, Jianming; Chen, Yanyan; Guan, Hongzhi
2016-12-01
There is a high potential of severe injury outcomes in traffic crashes on rural interstate highways due to the significant amount of high speed traffic on these corridors. Hierarchical Bayesian models are capable of incorporating between-crash variance and within-crash correlations into traffic crash data analysis and are increasingly utilized in traffic crash severity analysis. This paper applies a hierarchical Bayesian logistic model to examine the significant factors at crash and vehicle/driver levels and their heterogeneous impacts on driver injury severity in rural interstate highway crashes. Analysis results indicate that the majority of the total variance is induced by the between-crash variance, showing the appropriateness of the utilized hierarchical modeling approach. Three crash-level variables and six vehicle/driver-level variables are found significant in predicting driver injury severities: road curve, maximum vehicle damage in a crash, number of vehicles in a crash, wet road surface, vehicle type, driver age, driver gender, driver seatbelt use and driver alcohol or drug involvement. Among these variables, road curve, functional and disabled vehicle damage in crash, single-vehicle crashes, female drivers, senior drivers, motorcycles and driver alcohol or drug involvement tend to increase the odds of drivers being incapably injured or killed in rural interstate crashes, while wet road surface, male drivers and driver seatbelt use are more likely to decrease the probability of severe driver injuries. The developed methodology and estimation results provide insightful understanding of the internal mechanism of rural interstate crashes and beneficial references for developing effective countermeasures for rural interstate crash prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Wei-Dong; Zhang, Y-H Percival
2011-01-01
Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941
Development and Flight Testing of an Autonomous Landing Gear Health-Monitoring System
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.
2003-01-01
Development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation; and, data acquisition, storage and retrieval.
A strategy for developing a launch vehicle system for orbit insertion: Methodological aspects
NASA Astrophysics Data System (ADS)
Klyushnikov, V. Yu.; Kuznetsov, I. I.; Osadchenko, A. S.
2014-12-01
The article addresses methodological aspects of a development strategy to design a launch vehicle system for orbit insertion. The development and implementation of the strategy are broadly outlined. An analysis is provided of the criterial base and input data needed to define the main requirements for the launch vehicle system. Approaches are suggested for solving individual problems in working out the launch vehicle system development strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, M.; Daley, R.
This report focuses on the National Renewable Energy Laboratory's (NREL) fiscal year (FY) 2012 effort that used the NREL Optimal Vehicle Acquisition (NOVA) analysis to identify optimal vehicle acquisition recommendations for eleven diverse federal agencies. Results of the study show that by following a vehicle acquisition plan that maximizes the reduction in greenhouse gas (GHG) emissions, significant progress is also made toward the mandated complementary goals of acquiring alternative fuel vehicles, petroleum use reduction, and alternative fuel use increase.
Postflight analysis for Delta Program Mission no. 113: COS-B Mission
NASA Technical Reports Server (NTRS)
1976-01-01
On 8 August 1975, the COS-B spacecraft was launched successfully from the Western Test Range (Delta Program Mission No. 113). The launch vehicle was a three stage Extended Long Tank Delta DSV-3P-11B vehicle. Postflight analyses performed in connection with flight are presented. Vehicle trajectory, stage performance, vehicle reliability and the propulsion, guidance, flight control, electronics, mechanical and structural systems are evaluated.
Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package
NASA Technical Reports Server (NTRS)
1979-01-01
The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascarin, Anthony; Hannibal, Ted; Raghunathan, Anand
2015-04-01
The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. The strategic targets were a 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. The baseline vehicle was an average of several available vehicles in this class. Mass and cost breakdowns from several sources were used, including original equipment manufacturers’ (OEMs’) input through U.S. Department of Energy’s Vehicle Technologies Office programs andmore » public presentations, A2Mac1 LLC’s teardown information, Lotus Engineering Limited and FEV, Inc. breakdowns in their respective lightweighting studies, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses. Information on lightweighting strategies in this analysis came from these same sources and the ongoing U.S. Department of Energy-funded Vehma International of America, Inc. /Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, and many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs.« less
Potentials for Platooning in U.S. Highway Freight Transport: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratori, Matteo; Holden, Jacob; Lammert, Michael
2017-03-15
Smart technologies enabling connection among vehicles and between vehicles and infrastructure as well as vehicle automation to assist human operators are receiving significant attention as means for improving road transportation systems by reducing fuel consumption - and related emissions - while also providing additional benefits through improving overall traffic safety and efficiency. For truck applications, currently responsible for nearly three-quarters of the total U.S. freight energy use and greenhouse gas (GHG) emissions, platooning has been identified as an early feature for connected and automated vehicles (CAVs) that could provide significant fuel savings and improved traffic safety and efficiency without radicalmore » design or technology changes compared to existing vehicles. A statistical analysis was performed based on a large collection of real-world U.S. truck usage data to estimate the fraction of total miles that are technically suitable for platooning. In particular, our analysis focuses on estimating 'platoonable' mileage based on overall highway vehicle use and prolonged high-velocity traveling, establishing that about 65% of the total miles driven by combination trucks could be driven in platoon formation, leading to a 4% reduction in total truck fuel consumption. This technical potential for 'platoonable' miles in the U.S. provides an upper bound for scenario analysis considering fleet willingness to platoon as an estimate of overall benefits of early adoption of CAV technologies. A benefit analysis is proposed to assess the overall potential for energy savings and emissions mitigation by widespread implementation of highway platooning for trucks.« less
NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools
NASA Technical Reports Server (NTRS)
Waters, Eric D.; Garcia, Jessica; Beers, Benjamin; Philips, Alan; Holt, James B.; Threet, Grady E., Jr.
2013-01-01
The Earth to Orbit (ETO) Team of the Advanced Concepts Office (ACO) at NASA Marshal Space Flight Center (MSFC) is considered the preeminent group to go to for prephase A and phase A concept definition. The ACO team has been at the forefront of a multitude of launch vehicle studies determining the future direction of the Agency as a whole due, in part, to their rapid turnaround time in analyzing concepts and their ability to cover broad trade spaces of vehicles in that limited timeframe. Each completed vehicle concept includes a full mass breakdown of each vehicle to tertiary subsystem components, along with a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. Additionally, a structural analysis of the vehicle based on material properties and geometries is performed as well as an analysis to determine the flight loads based on the trajectory outputs. As mentioned, the ACO Earth to Orbit Team prides themselves on their rapid turnaround time and often need to fulfill customer requests within limited schedule or little advanced notice. Due to working in this fast paced environment, the ETO team has developed some finely honed skills and methods to maximize the delivery capability to meet their customer needs. This paper will describe the interfaces between the 3 primary disciplines used in the design process; weights and sizing, trajectory, and structural analysis, as well as the approach each discipline employs to streamline their particular piece of the design process.
NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools
NASA Technical Reports Server (NTRS)
Waters, Eric D.; Creech, Dennis M.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan
2012-01-01
The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent go-to group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA s design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer s needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces between the three disciplines used in the design process: weights and sizing, trajectory, and structural analysis. The tools used to perform such analysis are INtegrated Rocket Sizing (INTROS), Program to Optimize Simulated Trajectories (POST), and Launch Vehicle Analysis (LVA) respectively. The methods each discipline uses to streamline their particular part of the design process will also be discussed.
NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools
NASA Technical Reports Server (NTRS)
Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan
2013-01-01
The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces between the three disciplines used in the design process: weights and sizing, trajectory, and structural analysis. The tools used to perform such analysis are INtegrated Rocket Sizing (INTROS), Program to Optimize Simulated Trajectories (POST), and Launch Vehicle Analysis (LVA) respectively. The methods each discipline uses to streamline their particular part of the design process will also be discussed.
Modeling and Validation of Lithium-ion Automotive Battery Packs (SAE 2013-01-1539)
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types c...
NASA Astrophysics Data System (ADS)
Saykin, A. M.; Tuktakiev, G. S.; Zhuravlev, A. V.; Zaitseva, E. P.
2018-02-01
The paper contains the analysis of the main trends in the patenting of ground unmanned vehicles, driver assistance systems (ADAS) and unmanned vehicle components abroad during the period from 2010 to 2016. The conclusion was made that the intensity of their patenting abroad increased.
40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... judgement, a catalyst aging bench that follows the SBC and delivers the appropriate exhaust flow, exhaust... set must consist of randomly procured vehicles from actual customer use. The vehicles selected for... submit an analysis which evaluates whether the durability objective will be achieved for the vehicle...
This presentation contains research on consumer issues, including an assessment of vehicle affordability, a study of willingness-to-pay for various vehicle attributes, and content analysis of auto reviews.
DOT National Transportation Integrated Search
2009-05-01
This paper examines the vehicle type regulation that was introduced under the Automobile : Nitrogen OxidesParticulate Matter Law to mitigate air pollution in Japanese metropolitan : areas. The vehicle type regulation effectively sets the timing fo...
Detailed test objectives for the extended long tank delta launch vehicle, spacecraft: AE-C
NASA Technical Reports Server (NTRS)
1973-01-01
The test objectives for the extended long tank Delta Launch Vehicle are presented. The subjects discussed are: (1) mission and vehicle objectives, (2) nominal flight plan, (3) trajectory analysis, (4) weight summary and inflight mass properties, and (5) instrumentation channel assignments and ground monitoring assignments.
Benchmarking and Modeling of a Conventional Mid-Size Car Using ALPHA (SAE Paper 2015-01-1140)
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was created by EPA to estimate greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle type...
DOT National Transportation Integrated Search
2008-05-06
The present study used commercial motor vehicle (CMV) crash data from NCDOTs Traffic Engineering Accident : Analysis System (TEAAS) to infer the presence and relative extent of STAA dimensioned vehicles operating : beyond the 3-mile buffer of the ...
Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters
NASA Astrophysics Data System (ADS)
Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon
2018-04-01
In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.
Effectiveness of low speed autonomous emergency braking in real-world rear-end crashes.
Fildes, B; Keall, M; Bos, N; Lie, A; Page, Y; Pastor, C; Pennisi, L; Rizzi, M; Thomas, P; Tingvall, C
2015-08-01
This study set out to evaluate the effectiveness of low speed autonomous emergency braking (AEB) technology in current model passenger vehicles, based on real-world crash experience. The validating vehicle safety through meta-analysis (VVSMA) group comprising a collaboration of government, industry consumer organisations and researchers, pooled data from a number of countries using a standard analysis format and the established MUND approach. Induced exposure methods were adopted to control for any extraneous effects. The findings showed a 38 percent overall reduction in rear-end crashes for vehicles fitted with AEB compared to a comparison sample of similar vehicles. There was no statistical evidence of any difference in effect between urban (≤60 km/h) and rural (>60 km/h) speed zones. Areas requiring further research were identified and widespread fitment through the vehicle fleet is recommended. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Huang, Haiyun; Zhang, Junping; Li, Yonghe
2018-05-01
Under the weight charge policy, the weigh in motion data at a toll station on the Jing-Zhu Expressway were collected. The statistic analysis of vehicle load data was carried out. For calculating the operating vehicle load effects on bridges, by Monte Carlo method used to generate random traffic flow and influence line loading method, the maximum bending moment effect of simple supported beams were obtained. The extreme value I distribution and normal distribution were used to simulate the distribution of the maximum bending moment effect. By the extrapolation of Rice formula and the extreme value I distribution, the predicted values of the maximum load effects were obtained. By comparing with vehicle load effect according to current specification, some references were provided for the management of the operating vehicles and the revision of the bridge specifications.
Formation stability analysis of unmanned multi-vehicles under interconnection topologies
NASA Astrophysics Data System (ADS)
Yang, Aolei; Naeem, Wasif; Fei, Minrui
2015-04-01
In this paper, the overall formation stability of an unmanned multi-vehicle is mathematically presented under interconnection topologies. A novel definition of formation error is first given and followed by the proposed formation stability hypothesis. Based on this hypothesis, a unique extension-decomposition-aggregation scheme is then employed to support the stability analysis for the overall multi-vehicle formation under a mesh topology. It is proved that the overall formation control system consisting of N number of nonlinear vehicles is not only asymptotically stable, but also exponentially stable in the sense of Lyapunov within a neighbourhood of the desired formation. This technique is shown to be applicable for a mesh topology but is equally applicable for other topologies. A simulation study of the formation manoeuvre of multiple Aerosonde UAVs (unmanned aerial vehicles), in 3-D space, is finally carried out verifying the achieved formation stability result.
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.
2003-01-01
Aerospace vehicles are designed to be durable and damage tolerant. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. However, both durability and damage tolerance design methodologies must address the deleterious effects of changes in material properties and the initiation and growth of microstructural damage that may occur during the service lifetime of the vehicle. Durability and damage tolerance design and certification requirements are addressed for commercial transport aircraft and NASA manned spacecraft systems. The state-of-the-art in advanced design and analysis methods is illustrated by discussing the results of several recently completed NASA technology development programs. These programs include the NASA Advanced Subsonic Technology Program demonstrating technologies for large transport aircraft and the X-33 hypersonic test vehicle demonstrating technologies for a single-stage-to-orbit space launch vehicle.
Economic Analysis of Different Electric Vehicle Charging Scenarios
NASA Astrophysics Data System (ADS)
Ying, Li; Haiming, Zhou; Xiufan, Ma; Hao, Wang
2017-05-01
Influence of electric vehicles (EV) to grid cannot be ignored. Research on the economy analysis of different charging scenarios is helpful to guide the user to charge or discharge orderly. EV charging models are built such as disordered charging, valley charging, intelligent charging, and V2G (Vehicle to Grid), by which changes of charging load in different scenarios can be seen to analyze the influence to initial load curve, and comparison can be done about user’s average cost. Monte Carlo method is used to simulate the electric vehicle charging behavior, cost in different charging scenarios are compared, social cost is introduced in V2G scene, and the relationship between user’s average cost and social cost is analyzed. By test, it is proved that user’s cost is the lowest in V2G scenario, and the larger the scale of vehicles is, the more the social cost can save.
NASA Technical Reports Server (NTRS)
Ottander, John A.; Hall, Robert A.; Powers, Joseph F.
2017-01-01
One of the challenges of developing flight control systems for liquid-propelled space vehicles is ensuring stability and performance in the presence of parasitic minimally damped slosh dynamics in the liquid propellants. This can be especially difficult when the fundamental frequencies of the slosh motions are in proximity to the frequency used for vehicle control. The challenge is partially alleviated since the energy dissipation and effective damping in the slosh modes increases with amplitude. However, traditional launch vehicle control design methodology is performed with linearized systems using a fixed slosh damping corresponding to a slosh motion amplitude based on heritage values. This papers presents a method for performing the control design and analysis using damping at slosh amplitudes chosen based on the resulting limit cycle amplitude of the vehicle thrust vector system due to a control-slosh interaction under degraded phase and gain margin conditions.
NASA Technical Reports Server (NTRS)
Ottander, John A.; Hall, Robert A., Jr.; Powers, Joseph F.
2017-01-01
One of the challenges of developing flight control systems for liquid-propelled space vehicles is ensuring stability and performance in the presence of parasitic minimally damped slosh dynamics in the liquid propellants. This can be especially difficult when the fundamental frequencies of the slosh motions are in proximity to the frequency used for vehicle control. The challenge is partially alleviated since the energy dissipation and effective damping in the slosh modes increases with amplitude. However, traditional launch vehicle control design methodology is performed with linearized systems using a fixed slosh damping corresponding to a slosh motion amplitude based on heritage values. This papers presents a method for performing the control design and analysis using damping at slosh amplitudes chosen based on the resulting limit cycle amplitude of the vehicle thrust vector system due to a control-slosh interaction under degraded phase and gain margin conditions.
NASA Astrophysics Data System (ADS)
Yadav, D.; Upadhyay, H. C.
1992-07-01
Vehicles obtain track-induced input through the wheels, which commonly number more than one. Analysis available for the vehicle response in a variable velocity run on a non-homogeneously profiled flexible track supported by compliant inertial foundation is for a linear heave model having a single ground input. This analysis is being extended to two point input models with heave-pitch and heave-roll degrees of freedom. Closed form expressions have been developed for the system response statistics. Results are presented for a railway coach and track/foundation problem, and the performances of heave, heave-pitch and heave-roll models have been compared. The three models are found to agree in describing the track response. However, the vehicle sprung mass behaviour is predicted to be different by these models, indicating the strong effect of coupling on the vehicle vibration.
Application of dual-fuel propulsion to a single stage AMLS vehicle
NASA Technical Reports Server (NTRS)
Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit
1993-01-01
As part of NASA's Advanced Manned Launch System (AMLS) study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate engine concept combining Russian RD-170 kerosene-fueled engines with SSME-derivative engines; the kerosene and hydrogen-fueled Russian RD-701 engine concept; and a dual-fuel, dual-expander engine concept. Analysis to determine vehicle weight and size characteristics was performed using conceptual level design techniques. A response surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicle concepts with respect to several important propulsion system and vehicle design parameters in order to achieve minimum empty weight. Comparisons were then made with a hydrogen-fueled reference, single-stage vehicle. The tools and methods employed in the analysis process are also summarized.
Orion Rendezvous, Proximity Operations, and Docking Design and Analysis
NASA Technical Reports Server (NTRS)
D'Souza, Christopher; Hanak, F. Chad; Spehar, Pete; Clark, Fred D.; Jackson, Mark
2007-01-01
The Orion vehicle will be required to perform rendezvous, proximity operations, and docking with the International Space Station (ISS) and the Earth Departure Stage (EDS)/Lunar Landing Vehicle (LLV) stack in Low Earth Orbit (LEO) as well as with the Lunar Landing Vehicle in Low Lunar Orbit (LLO). The RPOD system, which consists of sensors, actuators, and software is being designed to be flexible and robust enough to perform RPOD with different vehicles in different environments. This paper will describe the design and the analysis which has been performed to date to allow the vehicle to perform its mission. Since the RPOD design touches on many areas such as sensors selection and placement, trajectory design, navigation performance, and effector performance, it is inherently a systems design problem. This paper will address each of these issues in order to demonstrate how the Orion RPOD has been designed to accommodate and meet all the requirements levied on the system.
Effect of interactions between vehicles and pedestrians on fuel consumption and emissions
NASA Astrophysics Data System (ADS)
Li, Xiang; Sun, Jian-Qiao
2014-12-01
This paper presents a study of variations of fuel consumption and emissions of vehicles due to random street crossings of pedestrians. The pedestrian and vehicle movement models as well as the interaction model between the two entities are presented. Extensive numerical simulations of single and multiple cars are carried out to investigate the traffic flow rate, vehicle average speed, fuel consumption, CO, HC and NOx emissions. Generally more noncompliant road-crossings of pedestrians lead to higher level of fuel consumptions and emissions of vehicles, and the traffic situation can be improved by imposing higher vehicle speed limit to some extent. Different traffic characteristics in low and high vehicle density regions are studied. The traffic flow is more influenced by crossing pedestrians in the low vehicle density region, while in the high vehicle density region, the interactions among vehicles dominate. The main contribution of this paper lies in the qualitative analysis of the impact of the interactions between pedestrians and vehicles on the traffic, its energy economy and emissions.
Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, A.D.; Ng, H.K.; Santini, D.J.
1997-12-01
To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary ofmore » other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.« less
Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool (SAE 2013-01-0808)
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the Greenhouse gas emissions and fuel efficiency from light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator, which is cap...
DOT National Transportation Integrated Search
1998-11-01
In this annual report, Traffic Safety Facts 1997: A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimates System, the National Highway Traffic Safety Administration (NHTSA) presents descriptive ...
DOT National Transportation Integrated Search
2007-01-01
In this annual report, Traffic Safety Facts 2007: A Compilation of Motor Vehicle Crash Data from the Fatality : Analysis Reporting System and the General Estimates System, the National Highway Traffic Safety Administration : (NHTSA) presents descript...
NASA Technical Reports Server (NTRS)
Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.
1988-01-01
This report presents the unmanned Multiple Exploratory Probe Systems (MEPS), a space vehicle designed to observe the planet Mars in preparation for manned missions. The options considered for each major element are presented as a trade analysis, and the final vehicle design is defined.
Subsatellite Orbital Analysis Program (SOAP) user's guide
NASA Astrophysics Data System (ADS)
Castle, K. G.; Voss, J. M.; Gibson, J. S.
1981-07-01
The features and use of the subsatellite operational analysis are examined. The model simulates several Earth-orbiting vehicles, their pilots, control systems, and interaction with the environment. The use of the program, input and output capabilities, executive structures, and properties of the vehicles and environmental effects which it models are described.
Subsatellite Orbital Analysis Program (SOAP) user's guide
NASA Technical Reports Server (NTRS)
Castle, K. G.; Voss, J. M.; Gibson, J. S.
1981-01-01
The features and use of the subsatellite operational analysis are examined. The model simulates several Earth-orbiting vehicles, their pilots, control systems, and interaction with the environment. The use of the program, input and output capabilities, executive structures, and properties of the vehicles and environmental effects which it models are described.
DOT National Transportation Integrated Search
2008-01-01
In this annual report, Traffic Safety Facts 2008: A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimates System, the National Highway Traffic Safety Administration (NHTSA) presents descriptive ...
DOT National Transportation Integrated Search
2009-01-01
In this annual report, Traffic Safety Facts 2009: A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimates System, the National Highway Traffic Safety Administration (NHTSA) presents descriptive ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.; Brooker, A.; Burton, E.
This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.
Public Health, Ethics, and Autonomous Vehicles
2017-01-01
With the potential to save nearly 30 000 lives per year in the United States, autonomous vehicles portend the most significant advance in auto safety history by shifting the focus from minimization of postcrash injury to collision prevention. I have delineated the important public health implications of autonomous vehicles and provided a brief analysis of a critically important ethical issue inherent in autonomous vehicle design. The broad expertise, ethical principles, and values of public health should be brought to bear on a wide range of issues pertaining to autonomous vehicles. PMID:28207327
Public Health, Ethics, and Autonomous Vehicles.
Fleetwood, Janet
2017-04-01
With the potential to save nearly 30 000 lives per year in the United States, autonomous vehicles portend the most significant advance in auto safety history by shifting the focus from minimization of postcrash injury to collision prevention. I have delineated the important public health implications of autonomous vehicles and provided a brief analysis of a critically important ethical issue inherent in autonomous vehicle design. The broad expertise, ethical principles, and values of public health should be brought to bear on a wide range of issues pertaining to autonomous vehicles.
NASA Technical Reports Server (NTRS)
Rea, F. G.; Pittenger, J. L.; Conlon, R. J.; Allen, J. D.
1975-01-01
Techniques developed for identifying launch vehicle system requirements for NASA automated space missions are discussed. Emphasis is placed on development of computer programs and investigation of astrionics for OSS missions and Scout. The Earth Orbit Mission Program - 1 which performs linear error analysis of launch vehicle dispersions for both vehicle and navigation system factors is described along with the Interactive Graphic Orbit Selection program which allows the user to select orbits which satisfy mission requirements and to evaluate the necessary injection accuracy.
NASA Technical Reports Server (NTRS)
Hattis, Philip D.; Malchow, Harvey L.
1992-01-01
Horizontal takeoff airbreathing-propulsion launch vehicles require near-optimal guidance and control which takes into account performance sensitivities to atmospheric characteristics while satisfying physically-derived operational constraints. A generic trajectory/control analysis tool that deepens insight into these considerations has been applied to two versions of a winged-cone vehicle model. Information that is critical to the design and trajectory of these vehicles is derived, and several unusual characteristics of the airbreathing propulsion model are shown to have potentially substantial effects on vehicle dynamics.
Parametric Testing of Launch Vehicle FDDR Models
NASA Technical Reports Server (NTRS)
Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar
2011-01-01
For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.
Schlinkmann, K M; Razum, O; Werber, D
2017-04-01
Foodborne disease outbreaks (FBDOs) occur frequently in Europe. Employing analytical epidemiological study designs increases the likelihood of identifying the suspected vehicle(s), but these studies are rarely applied in FBDO investigations. We used multivariable binary logistic regression analysis to identify characteristics of investigated FBDOs reported to the European Food Safety Authority (2007-2011) that were associated with analytical epidemiological evidence (compared to evidence from microbiological investigations/descriptive epidemiology only). The analysis was restricted to FBDO investigations, where the evidence for the suspected vehicle was considered 'strong', i.e. convincing. The presence of analytical epidemiological evidence was reported in 2012 (50%) of these 4038 outbreaks. In multivariable analysis, increasing outbreak size, number of hospitalizations, causative (i.e. aetiological) agent (whether identified and, if so, which one), and the setting in which these outbreaks occurred (e.g. geographically dispersed outbreaks) were independently associated with presence of analytical evidence. The number of investigations with reported analytical epidemiological evidence was unexpectedly high, likely indicating the need for quality assurance within the European Union foodborne outbreak reporting system, and warranting cautious interpretation of our findings. This first analysis of evidence implicating a food vehicle in FBDOs may help to inform public health authorities on when to use analytical epidemiological study designs.
Single-Point Attachment Wind Damper for Launch Vehicle On-Pad Motion
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2009-01-01
A single-point-attachment wind-damper device is proposed to reduce on-pad motion of a cylindrical launch vehicle. The device is uniquely designed to attach at only one location along the vehicle and capable of damping out wind gusts from any lateral direction. The only source of damping is from two viscous dampers in the device. The effectiveness of the damper design in reducing vehicle displacements is determined from transient analysis results using an Ares I-X launch vehicle. Combinations of different spring stiffnesses and damping are used to show how the vehicle's displacement response is significantly reduced during a wind gust.
Multidisciplinary aeroelastic analysis of a generic hypersonic vehicle
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Petersen, K. L.
1993-01-01
This paper presents details of a flutter and stability analysis of aerospace structures such as hypersonic vehicles. Both structural and aerodynamic domains are discretized by the common finite element technique. A vibration analysis is first performed by the STARS code employing a block Lanczos solution scheme. This is followed by the generation of a linear aerodynamic grid for subsequent linear flutter analysis within subsonic and supersonic regimes of the flight envelope; the doublet lattice and constant pressure techniques are employed to generate the unsteady aerodynamic forces. Flutter analysis is then performed for several representative flight points. The nonlinear flutter solution is effected by first implementing a CFD solution of the entire vehicle. Thus, a 3-D unstructured grid for the entire flow domain is generated by a moving front technique. A finite element Euler solution is then implemented employing a quasi-implicit as well as an explicit solution scheme. A novel multidisciplinary analysis is next effected that employs modal and aerodynamic data to yield aerodynamic damping characteristics. Such analyses are performed for a number of flight points to yield a large set of pertinent data that define flight flutter characteristics of the vehicle. This paper outlines the finite-element-based integrated analysis procedures in detail, which is followed by the results of numerical analyses of flight flutter simulation.
NASA Technical Reports Server (NTRS)
Young, Larry A.; Yetter, Jeffrey A.; Guynn, Mark D.
2006-01-01
Maturation of intelligent systems technologies and their incorporation into aerial platforms are dictating the development of new analysis tools and incorporation of such tools into existing system analysis methodologies in order to fully capture the trade-offs of autonomy on vehicle and mission success. A first-order "system analysis of autonomy" methodology is outlined in this paper. Further, this analysis methodology is subsequently applied to notional high-altitude long-endurance (HALE) aerial vehicle missions.
Dynamics of aerospace vehicles
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1991-01-01
The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.
Potential safety benefits of intelligent cruise control systems.
Chira-Chavala, T; Yoo, S M
1994-04-01
Potential safety impact of a hypothetical intelligent cruise control system (ICCS) is evaluated in terms of changes in traffic accidents and some traffic operation characteristics affecting safety. The analysis of changes in traffic accidents is accomplished by in-depth examinations of police accident reports for four major counties in California. The evaluation of changes in traffic operation characteristics affecting safety is accomplished by vehicle simulation. The accident analysis reveals that the use of the hypothetical ICCS could potentially reduce traffic accidents by up to 7.5%. Preliminary vehicle simulation results based on a 10-vehicle convoy indicate that the use of the hypothetical ICCS could reduce frequencies of hard acceleration and deceleration, enhance speed harmonization among vehicles, and reduce incidence of "less-safe" headway.
Radar cross section fundamentals for the aircraft designer
NASA Technical Reports Server (NTRS)
Stadmore, H. A.
1979-01-01
Various aspects of radar cross-section (RCS) techniques are summarized, with emphasis placed on fundamental electromagnetic phenomena, such as plane and spherical wave formulations, and the definition of RCS is given in the far-field sense. The basic relationship between electronic countermeasures and a signature level is discussed in terms of the detectability range of a target vehicle. Fundamental radar-signature analysis techniques, such as the physical-optics and geometrical-optics approximations, are presented along with examples in terms of aircraft components. Methods of analysis based on the geometrical theory of diffraction are considered and various wave-propagation phenomena are related to local vehicle geometry. Typical vehicle components are also discussed, together with their contribution to total vehicle RCS and their individual signature sensitivities.
Launch Vehicle Abort Analysis for Failures Leading to Loss of Control
NASA Technical Reports Server (NTRS)
Hanson, John M.; Hill, Ashley D.; Beard, Bernard B.
2013-01-01
Launch vehicle ascent is a time of high risk for an onboard crew. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based on data already available from the Guidance, Navigation, and Control system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. The two primary areas of focus are the derivation of abort triggers to ensure that abort occurs as quickly as possible when needed, but that false aborts are avoided, and evaluation of success in aborting off the failing launch vehicle.
NASA Technical Reports Server (NTRS)
Kofal, Allen E.
1987-01-01
The mission and system requirements for the concept definition and system analysis of the Orbital Transfer Vehicle (OTV) are established. The requirements set forth constitute the single authority for the selection, evaluation, and optimization of the technical performance and design of the OTV. This requirements document forms the basis for the Ground and Space Based OTV concept definition analyses and establishes the physical, functional, performance and design relationships to STS, Space Station, Orbital Maneuvering Vehicle (OMV), and payloads.
Unmanned vehicles for maritime spill response case study: Exercise Cathach.
Dooly, Gerard; Omerdic, Edin; Coleman, Joseph; Miller, Liam; Kaknjo, Admir; Hayes, James; Braga, Jóse; Ferreira, Filipe; Conlon, Hugh; Barry, Hugh; Marcos-Olaya, Jesús; Tuohy, Thomas; Sousa, João; Toal, Dan
2016-09-15
This paper deals with two aspects, namely a historical analysis of the use of unmanned vehicles (UAVs ROVs, AUVs) in maritime spill incidents and a detailed description of a multi-agency oil and HNS incident response exercise involving the integration and analysis of unmanned vehicles environmental sensing equipment. The exercise was a first in terms of the level of robotic systems deployed to assist in survey, surveillance and inspection roles for oil spills and harmful and noxious substances. Copyright © 2016 Elsevier Ltd. All rights reserved.
Airbreathing hypersonic vehicle design and analysis methods
NASA Technical Reports Server (NTRS)
Lockwood, Mary Kae; Petley, Dennis H.; Hunt, James L.; Martin, John G.
1996-01-01
The design, analysis, and optimization of airbreathing hypersonic vehicles requires analyses involving many highly coupled disciplines at levels of accuracy exceeding those traditionally considered in a conceptual or preliminary-level design. Discipline analysis methods including propulsion, structures, thermal management, geometry, aerodynamics, performance, synthesis, sizing, closure, and cost are discussed. Also, the on-going integration of these methods into a working environment, known as HOLIST, is described.
Introduction: Aims and Requirements of Future Aerospace Vehicles. Chapter 1
NASA Technical Reports Server (NTRS)
Rodriguez, Pedro I.; Smeltzer, Stanley S., III; McConnaughey, Paul (Technical Monitor)
2001-01-01
The goals and system-level requirements for the next generation aerospace vehicles emphasize safety, reliability, low-cost, and robustness rather than performance. Technologies, including new materials, design and analysis approaches, manufacturing and testing methods, operations and maintenance, and multidisciplinary systems-level vehicle development are key to increasing the safety and reducing the cost of aerospace launch systems. This chapter identifies the goals and needs of the next generation or advanced aerospace vehicle systems.
Hypersonic vehicle model and control law development using H(infinity) and micron synthesis
NASA Astrophysics Data System (ADS)
Gregory, Irene M.; Chowdhry, Rajiv S.; McMinn, John D.; Shaughnessy, John D.
1994-10-01
The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.
Initial Assessment of the Ares I-X Launch Vehicle Upper Stage to Vibroacoustic Flight Environments
NASA Technical Reports Server (NTRS)
Larko, Jeffrey M.; Hughes, William O.
2008-01-01
The Ares I launch vehicle will be NASA s first new launch vehicle since 1981. Currently in design, it will replace the Space Shuttle in taking astronauts to the International Space Station, and will eventually play a major role in humankind s return to the Moon and eventually to Mars. Prior to any manned flight of this vehicle, unmanned test readiness flights will be flown. The first of these readiness flights, named Ares I-X, is scheduled to be launched in April 2009. The NASA Glenn Research Center is responsible for the design, manufacture, test and analysis of the Ares I-X upper stage simulator (USS) element. As part of the design effort, the structural dynamic response of the Ares I-X launch vehicle to its vibroacoustic flight environments must be analyzed. The launch vehicle will be exposed to extremely high acoustic pressures during its lift-off and aerodynamic stages of flight. This in turn will cause high levels of random vibration on the vehicle's outer surface that will be transmitted to its interior. Critical flight equipment, such as its avionics and flight guidance components are susceptible to damage from this excitation. This study addresses the modelling, analysis and predictions from examining the structural dynamic response of the Ares I-X upper stage to its vibroacoustic excitations. A statistical energy analysis (SEA) model was used to predict the high frequency response of the vehicle at locations of interest. Key to this study was the definition of the excitation fields corresponding to lift off acoustics and the unsteady aerodynamic pressure fluctuations during flight. The predicted results will be used by the Ares I-X Project to verify the flight qualification status of the Ares I-X upper stage components.
Frontier battery development for hybrid vehicles
2012-01-01
Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil. PMID:22540987
Vision-based object detection and recognition system for intelligent vehicles
NASA Astrophysics Data System (ADS)
Ran, Bin; Liu, Henry X.; Martono, Wilfung
1999-01-01
Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.
Hypersonic vehicle model and control law development using H(infinity) and micron synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.
1994-01-01
The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.
Type, size and age of vehicles driven by teenage drivers killed in crashes during 2008-2012.
McCartt, Anne T; Teoh, Eric R
2015-04-01
Given teenagers' elevated crash rates, it is especially important that their vehicles have key safety features and good crash protection. A profile of vehicles driven by teenagers killed in crashes was developed. Data on vehicles of drivers ages 15-17 and ages 35-50 who died in crashes during 2008-2012 were obtained from the Fatality Analysis Reporting System. Using vehicle identification numbers, the vehicle make, model and model year were identified. 29% of fatally injured teenagers were driving mini or small cars, 82% were driving vehicles at least 6 years old, and 48% were driving vehicles at least 11 years old. Compared with middle-aged drivers, teenagers' vehicles more often were small or mini cars or older vehicles. Few teenagers' vehicles had electronic stability control or side airbags as standard features. Parents should consider safety when choosing vehicles for their teenagers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
A Computational Fluid Dynamics Study of Swirling Flow Reduction by Using Anti-Vortex Baffle
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff; Peugeot, John W.
2017-01-01
OBJECTIVES: To evaluate proposed anti-vortex design in suppressing swirling flow during US burn. APPROACH: Include two major body forces in the analysis a)Vehicle acceleration (all three components); b)Vehicle maneuvers (roll, pitch, and yaw). Perform two drainage analyses of Ares I LOX tank using 6 DOF body forces predicted by GN&C analysis (Guidance Navigation and Control) during vehicle ascent: one with baffle, one without baffle. MODEL: Use Ares I defined geometry. O-Grid for easy fitting of baffle. In this preliminary analysis the holes are sealed. Use whole 360 deg. model with no assumption of symmetry or cyclic boundary conditions. Read in 6DOF data vs time from a file.
NASA Technical Reports Server (NTRS)
Driver, E. T.
1971-01-01
Safety design features in the motor vehicle and highway construction fields result from systems analysis approach to prevent or lessen death, injury, and property damage results. Systems analysis considers the prevention of crashes, increased survivability in crashes, and prompt medical attention to injuries as well as other postcrash salvage measures. The interface of these system elements with the driver, the vehicle, and the environment shows that action on the vehicle system produces the greatest safety payoff through design modifications. New and amended safety standards developed through hazard analysis technique improved accident statistics in the 70'; these regulations include driver qualifications and countermeasures to identify the chronic drunken driver who is involved in more than two-thirds of all auto deaths.
NASA Technical Reports Server (NTRS)
Kamhawi, Hilmi N.
2013-01-01
This report documents the work performed during the period from May 2011 - October 2012 on the Integrated Design and Engineering Analysis (IDEA) environment. IDEA is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML). This report will focus on describing the work done in the areas of: (1) Integrating propulsion data (turbines, rockets, and scramjets) in the system, and using the data to perform trajectory analysis; (2) Developing a parametric packaging strategy for a hypersonic air breathing vehicles allowing for tank resizing when multiple fuels and/or oxidizer are part of the configuration; and (3) Vehicle scaling and closure strategies.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The airplane flutter and maneuver-gust load analysis results obtained during B-52B drop test vehicle configuration (with fins) evaluation are presented. These data are presented as supplementary data to that given in Volume 1 of this document. A brief mathematical description of airspeed notation and gust load factor criteria are provided as a help to the user. References are defined which provide mathematical description of the airplane flutter and load analysis techniques. Air-speed-load factor diagrams are provided for the airplane weight configurations reanalyzed for finned drop test vehicle configuration.
In-Flight Stability Analysis of the X-48B Aircraft
NASA Technical Reports Server (NTRS)
Regan, Christopher D.
2008-01-01
This report presents the system description, methods, and sample results of the in-flight stability analysis for the X-48B, Blended Wing Body Low-Speed Vehicle. The X-48B vehicle is a dynamically scaled, remotely piloted vehicle developed to investigate the low-speed control characteristics of a full-scale blended wing body. Initial envelope clearance was conducted by analyzing the stability margin estimation resulting from the rigid aircraft response during flight and comparing it to simulation data. Short duration multisine signals were commanded onboard to simultaneously excite the primary rigid body axes. In-flight stability analysis has proven to be a critical component of the initial envelope expansion.
Sensitivity analysis of automatic flight control systems using singular value concepts
NASA Technical Reports Server (NTRS)
Herrera-Vaillard, A.; Paduano, J.; Downing, D.
1985-01-01
A sensitivity analysis is presented that can be used to judge the impact of vehicle dynamic model variations on the relative stability of multivariable continuous closed-loop control systems. The sensitivity analysis uses and extends the singular-value concept by developing expressions for the gradients of the singular value with respect to variations in the vehicle dynamic model and the controller design. Combined with a priori estimates of the accuracy of the model, the gradients are used to identify the elements in the vehicle dynamic model and controller that could severely impact the system's relative stability. The technique is demonstrated for a yaw/roll damper stability augmentation designed for a business jet.
The influence of rear turn-signal characteristics on crash risk.
Sullivan, John M; Flannagan, Michael J
2012-02-01
The relationship between the relative risk of a rear-end collision during a turn, merge, or lane change maneuver and the characteristics of the rear turn-signal configuration was examined using crash data from seven states in the United States. Rear turn-signal characteristics-including color, optics, separation, and light source-were identified for 55 vehicle models and used in a logistic regression analysis to model the odds of a rear-end collision. Additional variables including driver demographics (gender, age), vehicle age, and light condition were also modeled. Risk was assessed using a contrast group of striking vehicles in similar collisions. The results suggest that the odds of being the struck vehicle were 3% to 28% lower among vehicles equipped with amber versus red turn signals. Although the analysis suggests that there may be a safety benefit associated with amber rear turn signals, it is unclear whether turn-signal color alone is responsible. The results suggest that aspects of a vehicle's rear signal characteristics may influence crash risk. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle
NASA Technical Reports Server (NTRS)
Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit
1995-01-01
As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2014-08-01
Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 alsomore » includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.« less
Computational Analysis of Mine Blast on a Commercial Vehicle Structure
2007-01-01
ANALYSIS OF MINE BLAST ON A COMMERCIAL VEHICLE STRUCTURE M. Grujicic 1∗ , B. Pandurangan 1 , I. Haque 1 , B. A. Cheeseman 2 , W. N. Roy 2 and R. R. Skaggs...buried in (either dry or saturated sand) underneath the vehicle’s front right wheel is analyzed computationally. The computational analysis included the...A frequency analysis of the pressure versus time signals and visual observation clearly show the differences in the blast loads resulting from the
NASA Technical Reports Server (NTRS)
Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria
2013-01-01
The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the ascent phase of the mission as well as from the extreme heat fluxes produced during the supersonic test phase by the main motor plume and aeroheating. The passive thermal design approach for the SFDT vehicle relies upon careful and complex bounding analysis of all three modes of heat transfer - conduction, convection, and radiation - coupled with a tightly managed transient power dissipation timeline for onboard electronics components throughout all mission phases.
Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles
NASA Technical Reports Server (NTRS)
Ivanco, Thomas G.
2016-01-01
Launch vehicles are exposed to ground winds during rollout and on the launch pad that can induce static and dynamic loads. Of particular concern are the dynamic loads caused by vortex shedding from nearly-cylindrical structures. When the frequency of vortex shedding nears that of a lowly-damped structural mode, the dynamic loads can be more than an order of magnitude greater than mean drag loads. Accurately predicting vehicle response to vortex shedding during the design and analysis cycles is difficult and typically exceeds the practical capabilities of modern computational fluid dynamics codes. Therefore, mitigating the ground wind loads risk typically requires wind-tunnel tests of dynamically-scaled models that are time consuming and expensive to conduct. In recent years, NASA has developed a ground wind loads analysis tool for launch vehicles to fill this analytical capability gap in order to provide predictions for prelaunch static and dynamic loads. This paper includes a background of the ground wind loads problem and the current state-of-the-art. It then discusses the history and significance of the analysis tool and the methodology used to develop it. Finally, results of the analysis tool are compared to wind-tunnel and full-scale data of various geometries and Reynolds numbers.
An Analysis of Skill Requirements for Operators of Amphibious Air Cushion Vehicles (ACVs).
ERIC Educational Resources Information Center
McKnight, A. James; And Others
This report describes the skills required in the operation of an amphibious air cushion vehicle (ACV) in Army tactical and logistic missions. The research involved analyzing ACV characteristics, operating requirements, environmental effects, and results of a simulation experiment. The analysis indicates that ACV operation is complicated by an…
DOT National Transportation Integrated Search
2015-06-01
This report summarizes a safety analysis of medium- and heavy-duty vehicles (MD/HDVs) equipped with fuel efficiency (FE) technologies and/or using alternative fuels (natural gas-CNG and LNG, propane, biodiesel and power train electrification). The st...
Analysis of Connected and Automated Vehicle Technologies Highlights
Uncertainty in Potential Effects on Fuel Use, Miles Traveled | News | NREL Analysis of Connected and Automated Vehicle Technologies Highlights Uncertainty in Potential Effects on Fuel Use, Miles Potential Effects on Fuel Use, Miles Traveled December 13, 2016 A joint study from the U.S. Department of
Evolutionary computing for the design search and optimization of space vehicle power subsystems
NASA Technical Reports Server (NTRS)
Kordon, M.; Klimeck, G.; Hanks, D.
2004-01-01
Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment.
Sensitivity Analysis of Launch Vehicle Debris Risk Model
NASA Technical Reports Server (NTRS)
Gee, Ken; Lawrence, Scott L.
2010-01-01
As part of an analysis of the loss of crew risk associated with an ascent abort system for a manned launch vehicle, a model was developed to predict the impact risk of the debris resulting from an explosion of the launch vehicle on the crew module. The model consisted of a debris catalog describing the number, size and imparted velocity of each piece of debris, a method to compute the trajectories of the debris and a method to calculate the impact risk given the abort trajectory of the crew module. The model provided a point estimate of the strike probability as a function of the debris catalog, the time of abort and the delay time between the abort and destruction of the launch vehicle. A study was conducted to determine the sensitivity of the strike probability to the various model input parameters and to develop a response surface model for use in the sensitivity analysis of the overall ascent abort risk model. The results of the sensitivity analysis and the response surface model are presented in this paper.
Study on environmental test technology of LiDAR used for vehicle
NASA Astrophysics Data System (ADS)
Wang, Yi; Yang, Jianfeng; Ou, Yong
2018-03-01
With the development of intelligent driving, the LiDAR used for vehicle plays an important role in it, in some extent LiDAR is the key factor of intelligent driving. And environmental adaptability is one critical factor of quality, it relates success or failure of LiDAR. This article discusses about the environment and its effects on LiDAR used for vehicle, it includes analysis of any possible environment that vehicle experiences, and environmental test design.
Analysis of vehicle dynamics under sadden cross wind
NASA Astrophysics Data System (ADS)
Walczak, S.
2016-09-01
In this paper, the way of calculating aerodynamic forces acting on a vehicle passing in the region of sadden cross wind was presented. The CarDyn, a vehicle dynamics simulation program, developed by the author was used. The effects of the cross wind were studied with a fixed steering wheel simulation. On the base of computer simulations the car cross wind sensitivity were determined, and vehicle responses such as lateral offset, side acceleration and yaw angular velocity are presented.
SPECIATED VOC EMISSIONS FROM MODERN GDI LIGHT ...
Chassis dynamometer emissions testing was conducted to characterize speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs) and ozone precursors, in exhaust emissions from three modern gasoline direct injection (GDI) light-duty vehicles. Each GDI vehicle tested in this study utilized slightly different fuel injection technology: Vehicle 1 used a 2.4 liter, naturally aspirated, wall-guided GDI; Vehicle 2 used a 1.8 liter, turbocharged GDI engine; Vehicle 3 used a 1.5 liter, turbocharged, spray-guided GDI engine. Vehicle testing was conducted in a temperature controlled chassis dynamometer test cell at 22 °C over the EPA Federal Test Procedure (FTP) and a portion of the Supplemental FTP (SFTP). The FTP was conducted as a three phase cycle with a cold start, hot transient, and warm start phase (also known as the FTP-75 driving cycle). The SFTP consisted of the US06 driving cycle (conducted without the vehicle’s air conditioning on), which provides a more aggressive driving pattern than the FTP. The vehicles operated on 10 percent ethanol blended gasoline (E10). VOC emissions from diluted vehicle exhaust were sampled over each FTP phase and over the Supplemental FTP with SUMMA canisters for EPA Method TO-15 analysis and with DNPH cartridges for carbonyl analysis by EPA Method TO-11A. This presentation will report the impact of driving cycle and GDI technology on speciated MSAT emissions. MSAT emission rates will be compared
Payload Performance Analysis for a Reusable Two-Stage-to-Orbit Vehicle
NASA Technical Reports Server (NTRS)
Tartabini, Paul V.; Beaty, James R.; Lepsch, Roger A.; Gilbert, Michael G.
2015-01-01
This paper investigates a unique approach in the development of a reusable launch vehicle where, instead of designing the vehicle to be reusable from its inception, as was done for the Space Shuttle, an expendable two stage launch vehicle is evolved over time into a reusable launch vehicle. To accomplish this objective, each stage is made reusable by adding the systems necessary to perform functions such as thermal protection and landing, without significantly altering the primary subsystems and outer mold line of the original expendable vehicle. In addition, some of the propellant normally used for ascent is used instead for additional propulsive maneuvers after staging in order to return both stages to the launch site, keep loads within acceptable limits and perform a soft landing. This paper presents a performance analysis that was performed to investigate the feasibility of this approach by quantifying the reduction in payload capability of the original expendable launch vehicle after accounting for the mass additions, trajectory changes and increased propellant requirements necessary for reusability. Results show that it is feasible to return both stages to the launch site with a positive payload capability equal to approximately 50 percent of an equivalent expendable launch vehicle. Further discussion examines the ability to return a crew/cargo capsule to the launch site and presents technical challenges that would have to be overcome.
NASA Astrophysics Data System (ADS)
Yazdanie, Mashael; Noembrini, Fabrizio; Dossetto, Lionel; Boulouchos, Konstantinos
2014-03-01
This study provides a comprehensive analysis of well-to-wheel (WTW) primary energy demand and greenhouse gas (GHG) emissions for the operation of conventional and alternative passenger vehicle drivetrains. Results are determined based on a reference vehicle, drivetrain/production process efficiencies, and lifecycle inventory data specific to Switzerland. WTW performance is compared to a gasoline internal combustion engine vehicle (ICEV). Both industrialized and novel hydrogen and electricity production pathways are evaluated. A strong case is presented for pluggable electric vehicles (PEVs) due to their high drivetrain efficiency. However, WTW performance strongly depends on the electricity source. A critical electricity mix can be identified which divides optimal drivetrain performance between the EV, ICEV, and plug-in hybrid vehicle. Alternative drivetrain and energy carrier production pathways are also compared by natural resource. Fuel cell vehicle (FCV) performance proves to be on par with PEVs for energy carrier (EC) production via biomass and natural gas resources. However, PEVs outperform FCVs via solar energy EC production pathways. ICE drivetrains using alternative fuels, particularly biogas and CNG, yield remarkable WTW energy and emission reductions as well, indicating that alternative fuels, and not only alternative drivetrains, play an important role in the transition towards low-emission vehicles in Switzerland.
A new formulation of the understeer coefficient to relate yaw torque and vehicle handling
NASA Astrophysics Data System (ADS)
Bucchi, F.; Frendo, F.
2016-06-01
The handling behaviour of vehicles is an important property for its relation to performance and safety. In 1970s, Pacejka did the groundwork for an objective analysis introducing the handling diagram and the understeer coefficient. In more recent years, the understeer concept is still mentioned but the handling is actively managed by direct yaw control (DYC). In this paper an accurate analysis of the vehicle handling is carried out, considering also the effect of drive forces. This analysis brings to a new formulation of the understeer coefficient, which is almost equivalent to the classical one, but it can be obtained by quasi-steady-state manoeuvres. In addition, it relates the vehicle yaw torque to the understeer coefficient, filling up the gap between the classical handling approach and DYC. A multibody model of a Formula SAE car is then used to perform quasi-steady-state simulations in order to verify the effectiveness of the new formulation. Some vehicle set-ups and wheel drive arrangements are simulated and the results are discussed. In particular, the handling behaviours of the rear wheel drive (RWD) and the front wheel drive (FWD) architectures are compared, finding an apparently surprising result: for the analysed vehicle the FWD is less understeering than for RWD. The relation between the yaw torque and the understeer coefficient allows to understand this behaviour and opens-up the possibility for different yaw control strategies.
Spatial distribution of vehicle emission inventories in the Federal District, Brazil
NASA Astrophysics Data System (ADS)
Réquia, Weeberb João; Koutrakis, Petros; Roig, Henrique Llacer
2015-07-01
Air pollution poses an important public health risk, especially in large urban areas. Information about the spatial distribution of air pollutants can be used as a tool for developing public policies to reduce source emissions. Air pollution monitoring networks provide information about pollutant concentrations; however, they are not available in every urban area. Among the 5570 cities in Brazil, for example, only 1.7% of them have air pollution monitoring networks. In this study we assess vehicle emissions for main traffic routes of the Federal District (state of Brazil) and characterize their spatial patterns. Toward this end, we used a bottom-up method to predict emissions and to characterize their spatial patterns using Global Moran's (Spatial autocorrelation analysis) and Getis-Ord General G (High/Low cluster analysis). Our findings suggested that light duty vehicles are primarily responsible for the vehicular emissions of CO (68.9%), CH4 (93.6%), and CO2 (57.9%), whereas heavy duty vehicles are primarily responsible for the vehicular emissions of NMHC (92.9%), NOx (90.7%), and PM (97.4%). Furthermore, CO2 is the pollutant with the highest emissions, over 30 million tons/year. In the spatial autocorrelation analysis was identified cluster (p < 0.01) for all types of vehicles and for all pollutants. However, we identified high cluster only for the light vehicles.
Lee, Jaeyoung; Yasmin, Shamsunnahar; Eluru, Naveen; Abdel-Aty, Mohamed; Cai, Qing
2018-02-01
In traffic safety literature, crash frequency variables are analyzed using univariate count models or multivariate count models. In this study, we propose an alternative approach to modeling multiple crash frequency dependent variables. Instead of modeling the frequency of crashes we propose to analyze the proportion of crashes by vehicle type. A flexible mixed multinomial logit fractional split model is employed for analyzing the proportions of crashes by vehicle type at the macro-level. In this model, the proportion allocated to an alternative is probabilistically determined based on the alternative propensity as well as the propensity of all other alternatives. Thus, exogenous variables directly affect all alternatives. The approach is well suited to accommodate for large number of alternatives without a sizable increase in computational burden. The model was estimated using crash data at Traffic Analysis Zone (TAZ) level from Florida. The modeling results clearly illustrate the applicability of the proposed framework for crash proportion analysis. Further, the Excess Predicted Proportion (EPP)-a screening performance measure analogous to Highway Safety Manual (HSM), Excess Predicted Average Crash Frequency is proposed for hot zone identification. Using EPP, a statewide screening exercise by the various vehicle types considered in our analysis was undertaken. The screening results revealed that the spatial pattern of hot zones is substantially different across the various vehicle types considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of Vehicle Flexibility on IRVE-II Flight Dynamics
NASA Technical Reports Server (NTRS)
Bose, David M.; Toniolo, Matthew D.; Cheatwood, F. M.; Hughes, Stephen J.; Dillman, Robert A.
2011-01-01
The Inflatable Re-entry Vehicle Experiment II (IRVE-II) successfully launched from Wallops Flight Facility (WFF) on August 17, 2009. The primary objectives of this flight test were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for refining pre-flight design and analysis tools. Post-flight analysis including trajectory reconstruction outlined in O Keefe3 demonstrated that the IRVE-II Research Vehicle (RV) met mission objectives but also identified a few anomalies of interest to flight dynamics engineers. Most notable of these anomalies was high normal acceleration during the re-entry pressure pulse. Deflection of the inflatable aeroshell during the pressure pulse was evident in flight video and identified as the likely cause of the anomaly. This paper provides a summary of further post-flight analysis with particular attention to the impact of aeroshell flexibility on flight dynamics and the reconciliation of flight performance with pre-flight models. Independent methods for estimating the magnitude of the deflection of the aeroshell experienced on IRVE-II are discussed. The use of the results to refine models for pre-flight prediction of vehicle performance is then described.
A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
2007-01-01
A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.
Summary of CPAS EDU Testing Analysis Results
NASA Technical Reports Server (NTRS)
Romero, Leah M.; Bledsoe, Kristin J.; Davidson, John.; Engert, Meagan E.; Fraire, Usbaldo, Jr.; Galaviz, Fernando S.; Galvin, Patrick J.; Ray, Eric S.; Varela, Jose
2015-01-01
The Orion program's Capsule Parachute Assembly System (CPAS) project is currently conducting its third generation of testing, the Engineering Development Unit (EDU) series. This series utilizes two test articles, a dart-shaped Parachute Compartment Drop Test Vehicle (PCDTV) and capsule-shaped Parachute Test Vehicle (PTV), both of which include a full size, flight-like parachute system and require a pallet delivery system for aircraft extraction. To date, 15 tests have been completed, including six with PCDTVs and nine with PTVs. Two of the PTV tests included the Forward Bay Cover (FBC) provided by Lockheed Martin. Advancements in modeling techniques applicable to parachute fly-out, vehicle rate of descent, torque, and load train, also occurred during the EDU testing series. An upgrade from a composite to an independent parachute simulation allowed parachute modeling at a higher level of fidelity than during previous generations. The complexity of separating the test vehicles from their pallet delivery systems necessitated the use the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulator for modeling mated vehicle aircraft extraction and separation. This paper gives an overview of each EDU test and summarizes the development of CPAS analysis tools and techniques during EDU testing.
High Altitude Long Endurance UAV Analysis of Alternatives and Technology Requirements Development
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.
2007-01-01
An Analysis of Alternatives and a Technology Requirements Study were conducted for two mission areas utilizing various types of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicles (UAV). A hurricane science mission and a communications relay mission provided air vehicle requirements which were used to derive sixteen potential HALE UAV configurations, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative propulsion systems. A HTA diesel-fueled wing-body-tail configuration emerged as the preferred concept given near-term technology constraints. The cost effectiveness analysis showed that simply maximizing vehicle endurance can be a sub-optimum system solution. In addition, the HTA solar regenerative configuration was utilized to perform both a mission requirements study and a technology development study. Given near-term technology constraints, the solar regenerative powered vehicle was limited to operations during the long days and short nights at higher latitudes during the summer months. Technology improvements are required in energy storage system specific energy and solar cell efficiency, along with airframe drag and mass reductions to enable the solar regenerative vehicle to meet the full mission requirements.
Determination of vehicle density from traffic images at day and nighttime
NASA Astrophysics Data System (ADS)
Mehrübeoğlu, Mehrübe; McLauchlan, Lifford
2007-02-01
In this paper we extend our previous work to address vehicle differentiation in traffic density computations1. The main goal of this work is to create vehicle density history for given roads under different weather or light conditions and at different times of the day. Vehicle differentiation is important to account for connected or otherwise long vehicles, such as trucks or tankers, which lead to over-counting with the original algorithm. Average vehicle size in pixels, given the magnification within the field of view for a particular camera, is used to separate regular cars and long vehicles. A separate algorithm and procedure have been developed to determine traffic density after dark when the vehicle headlights are turned on. Nighttime vehicle recognition utilizes blob analysis based on head/taillight images. The high intensity of vehicle lights are identified in binary images for nighttime vehicle detection. The stationary traffic image frames are downloaded from the internet as they are updated. The procedures are implemented in MATLAB. The results of both nighttime traffic density and daytime long vehicle identification algorithms are described in this paper. The determination of nighttime traffic density, and identification of long vehicles at daytime are improvements over the original work1.
NASA Astrophysics Data System (ADS)
Yao, Qiming; Liu, Shuo; Liu, Yang
2018-05-01
An experimental design was used to study the vehicle operation characteristics of different ramp entrance conditions in underground road. With driving simulator, the experimental scenarios include left or right ramp with first, second and third service level, respectively, to collect vehicle speed, acceleration, lateral displacement and location information at the ramp entrance section. By using paired t-test and ANOVA, the influence factors of vehicle operating characteristics are studied. The result shows that effects of ramp layout and mainline traffic environment on vehicle operation characteristics are significant. The regression model of vehicle traveling distance on acceleration lane is established. Suggestions are made for ramp entrance design of underground road.
Dual motor drive vehicle speed synchronization and coordination control strategy
NASA Astrophysics Data System (ADS)
Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing
2018-04-01
Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.
System Analysis Applied to Autonomy: Application to Human-Rated Lunar/Mars Landers
NASA Technical Reports Server (NTRS)
Young, Larry A.
2006-01-01
System analysis is an essential technical discipline for the modern design of spacecraft and their associated missions. Specifically, system analysis is a powerful aid in identifying and prioritizing the required technologies needed for mission and/or vehicle development efforts. Maturation of intelligent systems technologies, and their incorporation into spacecraft systems, are dictating the development of new analysis tools, and incorporation of such tools into existing system analysis methodologies, in order to fully capture the trade-offs of autonomy on vehicle and mission success. A "system analysis of autonomy" methodology will be outlined and applied to a set of notional human-rated lunar/Mars lander missions toward answering these questions: 1. what is the optimum level of vehicle autonomy and intelligence required? and 2. what are the specific attributes of an autonomous system implementation essential for a given surface lander mission/application in order to maximize mission success? Future human-rated lunar/Mars landers, though nominally under the control of their crew, will, nonetheless, be highly automated systems. These automated systems will range from mission/flight control functions, to vehicle health monitoring and prognostication, to life-support and other "housekeeping" functions. The optimum degree of autonomy afforded to these spacecraft systems/functions has profound implications from an exploration system architecture standpoint.
SACD's Support of the Hyper-X Program
NASA Technical Reports Server (NTRS)
Robinson, Jeffrey S.; Martin, John G.
2006-01-01
NASA s highly successful Hyper-X program demonstrated numerous hypersonic air-breathing vehicle related technologies including scramjet performance, advanced materials and hot structures, GN&C, and integrated vehicle performance resulting in, for the first time ever, acceleration of a vehicle powered by a scramjet engine. The Systems Analysis and Concepts Directorate (SACD) at NASA s Langley Research Center played a major role in the integrated team providing critical support, analysis, and leadership to the Hyper-X Program throughout the program s entire life and were key to its ultimate success. Engineers in SACD s Vehicle Analysis Branch (VAB) were involved in all stages and aspects of the program, from conceptual design prior to contract award, through preliminary design and hardware development, and in to, during, and after each of the three flights. Working closely with other engineers at Langley and Dryden, as well as industry partners, roughly 20 members of SACD were involved throughout the evolution of the Hyper-X program in nearly all disciplines, including lead roles in several areas. Engineers from VAB led the aerodynamic database development, the propulsion database development, and the stage separation analysis and database development effort. Others played major roles in structures, aerothermal, GN&C, trajectory analysis and flight simulation, as well as providing CFD support for aerodynamic, propulsion, and aerothermal analysis.
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Zeck, H.; Walker, W. H.; Polack, A.
1982-01-01
Control requirements of Controlled Configured Design Approach vehicles with far-aft center of gravity locations are studied. The baseline system investigated is a fully reusable vertical takeoff/horizontal landing single stage-to-orbit vehicle with mission requirements similar to that of the space shuttle vehicle. Evaluations were made to determine dynamic stability boundaries, time responses, trim control, operational center-of-gravity limits, and flight control subsystem design requirements. Study tasks included a baseline vehicle analysis, an aft center of gravity study, a payload size study, and a technology assessment.
Simulation and analysis of traffic flow based on cellular automaton
NASA Astrophysics Data System (ADS)
Ren, Xianping; Liu, Xia
2018-03-01
In this paper, single-lane and two-lane traffic model are established based on cellular automaton. Different values of vehicle arrival rate at the entrance and vehicle departure rate at the exit are set to analyze their effects on density, average speed and traffic flow. If the road exit is unblocked, vehicles can pass through the road smoothly despite of the arrival rate at the entrance. If vehicles enter into the road continuously, the traffic condition is varied with the departure rate at the exit. To avoid traffic jam, reasonable vehicle departure rate should be adopted.
NASA Technical Reports Server (NTRS)
Gisser, D. G.; Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Yerazunis, S. Y.
1975-01-01
Problems related to an unmanned exploration of the planet Mars by means of an autonomous roving planetary vehicle are investigated. These problems include: design, construction and evaluation of the vehicle itself and its control and operating systems. More specifically, vehicle configuration, dynamics, control, propulsion, hazard detection systems, terrain sensing and modelling, obstacle detection concepts, path selection, decision-making systems, and chemical analyses of samples are studied. Emphasis is placed on development of a vehicle capable of gathering specimens and data for an Augmented Viking Mission or to provide the basis for a Sample Return Mission.
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Lovejoy, Andrew E.; Thornburgh, Robert P.; Rankin, Charles
2012-01-01
NASA s Shell Buckling Knockdown Factor (SBKF) project has the goal of developing new analysis-based shell buckling design factors (knockdown factors) and design and analysis technologies for launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale levels. This paper describes the design and analysis of three different orthogrid-stiffeNed metallic cylindrical-shell test articles. Two of the test articles are 8-ft-diameter, 6-ft-long test articles, and one test article is a 27.5-ft-diameter, 20-ft-long Space Shuttle External Tank-derived test article.
Multi-Mission System Analysis for Planetary Entry (M-SAPE) Version 1
NASA Technical Reports Server (NTRS)
Samareh, Jamshid; Glaab, Louis; Winski, Richard G.; Maddock, Robert W.; Emmett, Anjie L.; Munk, Michelle M.; Agrawal, Parul; Sepka, Steve; Aliaga, Jose; Zarchi, Kerry;
2014-01-01
This report describes an integrated system for Multi-mission System Analysis for Planetary Entry (M-SAPE). The system in its current form is capable of performing system analysis and design for an Earth entry vehicle suitable for sample return missions. The system includes geometry, mass sizing, impact analysis, structural analysis, flight mechanics, TPS, and a web portal for user access. The report includes details of M-SAPE modules and provides sample results. Current M-SAPE vehicle design concept is based on Mars sample return (MSR) Earth entry vehicle design, which is driven by minimizing risk associated with sample containment (no parachute and passive aerodynamic stability). By M-SAPE exploiting a common design concept, any sample return mission, particularly MSR, will benefit from significant risk and development cost reductions. The design provides a platform by which technologies and design elements can be evaluated rapidly prior to any costly investment commitment.
NASA Technical Reports Server (NTRS)
1971-01-01
Individualized program direct costs for each satellite program are presented. This breakdown provides the activity level dependent costs for each satellite program. The activity level dependent costs, or, more simply, program direct costs, are comprised of the total payload costs (as these costs are strictly program dependent) and the direct launch vehicle costs. Only those incremental launch vehicle costs associated directly with the satellite program are considered. For expendable launch vehicles the direct costs include the vehicle investment hardware costs and the launch operations costs. For the reusable STS vehicles the direct costs include only the launch operations, recovery operations, command and control, vehicle maintenance, and propellant support. The costs associated with amortization of reusable vehicle investment, RDT&E range support, etc., are not included.
Lessons Learned During TBCC Design for the NASA-AFRL Joint System Study
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.; Espinosa, A. M.
2013-01-01
NASA and the Air Force Research Laboratory are involved in a Joint System Study (JSS) on Two-Stage-to-Orbit (TSTO) vehicles. The JSS will examine the performance, operability and analysis uncertainty of unmanned, fully reusable, TSTO launch vehicle concepts. NASA is providing a vehicle concept using turbine-based combined cycle (TBCC) propulsion on the booster stage and an all-rocket orbiter. The variation in vehicle and mission requirements for different potential customers, combined with analysis uncertainties, make it problematic to define optimum vehicle types or concepts, but the study is being used by NASA for tool assessment and development, and to identify technology gaps. Preliminary analyses were performed on the entire TBCC booster concept; then higher-fidelity analyses were performed for particular areas to verify results or reduce analysis uncertainties. Preliminary TBCC system analyses indicated that there would be sufficient thrust margin over its mission portion. The higher fidelity analyses, which included inlet and nozzle performance corrections for significant area mismatches between TBCC propulsion requirements versus the vehicle design, resulted in significant performance penalties from the preliminary results. TBCC system design and vehicle operation assumptions were reviewed to identify items to mitigate these performance penalties. The most promising items were then applied and analyses rerun to update performance predictions. A study overview is given to orient the reader, quickly focusing upon the NASA TBCC booster and low speed propulsion system. Details for the TBCC concept and the analyses performed are described. Finally, a summary of "Lessons Learned" are discussed with suggestions to improve future study efforts.
Design and analysis of a magneto-rheological damper for an all terrain vehicle
NASA Astrophysics Data System (ADS)
Krishnan Unni, R.; Tamilarasan, N.
2018-02-01
A shock absorber design intended to replace the existing conventional shock absorber with a controllable system using a Magneto-rheological damper is introduced for an All Terrain Vehicle (ATV) that was designed for Baja SAE competitions. Suspensions are a vital part of an All Terrain Vehicles as it endures various surfaces and requires utmost attention while designing. COMSOL multi-physics software is used for applications that have coupled physics problems and is a unique tool that is used for the designing and analysis phase of the Magneto-rheological damper for the considered application and the model is optimized based on Taguchi using DOE software. The magneto-rheological damper is designed to maximize the damping force with the measured geometric constraints for the All Terrain Vehicle.
ARC Research Areas and Projects
support ground vehicle system-of-systems integration. This integration may involve not just a vehicle but also the humans inside and the support systems outside, as well as a wide variety of missions with issues pertaining to design, analysis and optimization of ground vehicle systems. Work is organized in
Code of Federal Regulations, 2012 CFR
2012-01-01
... vehicle flown with a wind weighting safety system. 417.233 Section 417.233 Aeronautics and Space... with a wind weighting safety system. For each launch of an unguided suborbital launch vehicle flown with a wind weighting safety system, in addition to the other requirements in this subpart outlined in...
Code of Federal Regulations, 2013 CFR
2013-01-01
... vehicle flown with a wind weighting safety system. 417.233 Section 417.233 Aeronautics and Space... with a wind weighting safety system. For each launch of an unguided suborbital launch vehicle flown with a wind weighting safety system, in addition to the other requirements in this subpart outlined in...
Code of Federal Regulations, 2014 CFR
2014-01-01
... vehicle flown with a wind weighting safety system. 417.233 Section 417.233 Aeronautics and Space... with a wind weighting safety system. For each launch of an unguided suborbital launch vehicle flown with a wind weighting safety system, in addition to the other requirements in this subpart outlined in...
DOT National Transportation Integrated Search
2016-12-15
Heavy vehicles have a much larger effect on the flow of a roundabout than a passenger car, and therefore they must be accounted for in the design (Transportation Research Board). Very few studies have looked at the effect of heavy vehicles on the flo...
Unmanned Air Vehicle/Remotely Piloted Vehicle Analysis for Lethal UAV/ RPV
1993-09-01
taking the output power at a relatively low speed from the camshaft which is gear-driven at half the crankshaft RPM [Ref. 6]. there engine is a four...from the top of a tree , from over a steep cliff, or other perilous terrain. In addition, parachute landings invariably take their toll in vehicle damage
The Effect of Automobile Safety on Vehicle Type Choice: An Empirical Study.
ERIC Educational Resources Information Center
McCarthy, Patrick S.
An analysis was made of the extent to which the safety characteristics of new vehicles affect consumer purchase decisions. Using an extensive data set that combines vehicle data collected by the Automobile Club of Southern California Target Car Program with the responses from a national household survey of new car buyers, a statistical model of…
M113A1 Day/Night Movement Rate Analysis
1975-06-01
d. Each vehicle traversed the course usiig the path of the preced- ing vehicle, i.e., no " free play " in selecting a route was permitted. The test...traversed the course usling the path of the preced- ing vehicle, i.e., no " free play " in selecting a route was permitted. The test course varied from
Orbital transfer vehicle studies overview
NASA Technical Reports Server (NTRS)
Perkinson, Don
1987-01-01
An overview is given in viewgraph form of orbital transfer vehicle concept definition and systems analysis studies. Project development flow charts are shown for key milestones from 1985 until 1997. Diagrams of vehicles are given. Information is presented in outline form on technology requirements, cooling of propellant tanks, cryogenic fluid management, quick connect/disconnect fluid interfaces and propellant mass transfer.
Code of Federal Regulations, 2011 CFR
2011-01-01
... vehicle flown with a wind weighting safety system. 417.233 Section 417.233 Aeronautics and Space... with a wind weighting safety system. For each launch of an unguided suborbital launch vehicle flown with a wind weighting safety system, in addition to the other requirements in this subpart outlined in...
Code of Federal Regulations, 2010 CFR
2010-01-01
... vehicle flown with a wind weighting safety system. 417.233 Section 417.233 Aeronautics and Space... with a wind weighting safety system. For each launch of an unguided suborbital launch vehicle flown with a wind weighting safety system, in addition to the other requirements in this subpart outlined in...
NASA Technical Reports Server (NTRS)
Olds, John R.; Cowart, Kris
2001-01-01
A method for integrating Aeroheating analysis into conceptual reusable launch vehicle (RLV) design is presented in this thesis. This process allows for faster turn-around time to converge a RLV design through the advent of designing an optimized thermal protection system (TPS). It consists of the coupling and automation of four computer software packages: MINIVER, TPSX, TCAT, and ADS. MINIVER is an Aeroheating code that produces centerline radiation equilibrium temperatures, convective heating rates, and heat loads over simplified vehicle geometries. These include flat plates and swept cylinders that model wings and leading edges, respectively. TPSX is a NASA Ames material properties database that is available on the World Wide Web. The newly developed Thermal Calculation Analysis Tool (TCAT) uses finite difference methods to carry out a transient in-depth 1-D conduction analysis over the center mold line of the vehicle. This is used along with the Automated Design Synthesis (ADS) code to correctly size the vehicle's thermal protection system (TPS). The numerical optimizer ADS uses algorithms that solve constrained and unconstrained design problems. The resulting outputs for this process are TPS material types, unit thicknesses, and acreage percentages. TCAT was developed for several purposes. First, it provides a means to calculate the transient in-depth conduction seen by the surface of the TPS material that protects a vehicle during ascent and reentry. Along with the in-depth conduction, radiation from the surface of the material is calculated along with the temperatures at the backface and interior parts of the TPS material. Secondly, TCAT contributes added speed and automation to the overall design process. Another motivation in the development of TCAT is optimization. In some vehicles, the TPS accounts for a high percentage of the overall vehicle dry weight. Optimizing the weight of the TPS will thereby lower the percentage of the dry weight accounted for by the TPS. Also, this will lower the cost of the TPS and the overall cost of the vehicle.
Wenzel, Tom
2013-10-01
The National Highway Traffic Safety Administration (NHTSA) recently updated its 2003 and 2010 logistic regression analyses of the effect of a reduction in light-duty vehicle mass on US societal fatality risk per vehicle mile traveled (VMT; Kahane, 2012). Societal fatality risk includes the risk to both the occupants of the case vehicle as well as any crash partner or pedestrians. The current analysis is the most thorough investigation of this issue to date. This paper replicates the Kahane analysis and extends it by testing the sensitivity of his results to changes in the definition of risk, and the data and control variables used in the regression models. An assessment by Lawrence Berkeley National Laboratory (LBNL) indicates that the estimated effect of mass reduction on risk is smaller than in Kahane's previous studies, and is statistically non-significant for all but the lightest cars (Wenzel, 2012a). The estimated effects of a reduction in mass or footprint (i.e. wheelbase times track width) are small relative to other vehicle, driver, and crash variables used in the regression models. The recent historical correlation between mass and footprint is not so large to prohibit including both variables in the same regression model; excluding footprint from the model, i.e. allowing footprint to decrease with mass, increases the estimated detrimental effect of mass reduction on risk in cars and crossover utility vehicles (CUVs)/minivans, but has virtually no effect on light trucks. Analysis by footprint deciles indicates that risk does not consistently increase with reduced mass for vehicles of similar footprint. Finally, the estimated effects of mass and footprint reduction are sensitive to the measure of exposure used (fatalities per induced exposure crash, rather than per VMT), as well as other changes in the data or control variables used. It appears that the safety penalty from lower mass can be mitigated with careful vehicle design, and that manufacturers can reduce mass as a strategy to increase their vehicles' fuel economy and reduce greenhouse gas emissions without necessarily compromising societal safety. Published by Elsevier Ltd.
Scenario analysis of freight vehicle accident risks in Taiwan.
Tsai, Ming-Chih; Su, Chien-Chih
2004-07-01
This study develops a quantitative risk model by utilizing Generalized Linear Interactive Model (GLIM) to analyze the major freight vehicle accidents in Taiwan. Eight scenarios are established by interacting three categorical variables of driver ages, vehicle types and road types, each of which contains two levels. The database that consists of 2043 major accidents occurring between 1994 and 1998 in Taiwan is utilized to fit and calibrate the model parameters. The empirical results indicate that accident rates of freight vehicles in Taiwan were high in the scenarios involving trucks and non-freeway systems, while; accident consequences were severe in the scenarios involving mature drivers or non-freeway systems. Empirical evidences also show that there is no significant relationship between accident rates and accident consequences. This is to stress that safety studies that describe risk merely as accident rates rather than the combination of accident rates and consequences by definition might lead to biased risk perceptions. Finally, the study recommends using number of vehicle as an alternative of traffic exposure in commercial vehicle risk analysis. The merits of this would be that it is simple and thus reliable; meanwhile, the resulted risk that is termed as fatalities per vehicle could provide clear and direct policy implications for insurance practices and safety regulations.
Preliminary In-Flight Loads Analysis of In-Line Launch Vehicles using the VLOADS 1.4 Program
NASA Technical Reports Server (NTRS)
Graham, J. B.; Luz, P. L.
1998-01-01
To calculate structural loads of in-line launch vehicles for preliminary design, a very useful computer program is VLOADS 1.4. This software may also be used to calculate structural loads for upper stages and planetary transfer vehicles. Launch vehicle inputs such as aerodynamic coefficients, mass properties, propellants, engine thrusts, and performance data are compiled and analyzed by VLOADS to produce distributed shear loads, bending moments, axial forces, and vehicle line loads as a function of X-station along the vehicle's length. Interface loads, if any, and translational accelerations are also computed. The major strength of the software is that it enables quick turnaround analysis of structural loads for launch vehicles during the preliminary design stage of its development. This represents a significant improvement over the alternative-the time-consuming, and expensive chore of developing finite element models. VLOADS was developed as a Visual BASIC macro in a Microsoft Excel 5.0 work book on a Macintosh. VLOADS has also been implemented on a PC computer using Microsoft Excel 7.0a for Windows 95. VLOADS was developed in 1996, and the current version was released to COSMIC, NASA's Software Technology Transfer Center, in 1997. The program is a copyrighted work with all copyright vested in NASA.
A benchmark for vehicle detection on wide area motion imagery
NASA Astrophysics Data System (ADS)
Catrambone, Joseph; Amzovski, Ismail; Liang, Pengpeng; Blasch, Erik; Sheaff, Carolyn; Wang, Zhonghai; Chen, Genshe; Ling, Haibin
2015-05-01
Wide area motion imagery (WAMI) has been attracting an increased amount of research attention due to its large spatial and temporal coverage. An important application includes moving target analysis, where vehicle detection is often one of the first steps before advanced activity analysis. While there exist many vehicle detection algorithms, a thorough evaluation of them on WAMI data still remains a challenge mainly due to the lack of an appropriate benchmark data set. In this paper, we address a research need by presenting a new benchmark for wide area motion imagery vehicle detection data. The WAMI benchmark is based on the recently available Wright-Patterson Air Force Base (WPAFB09) dataset and the Temple Resolved Uncertainty Target History (TRUTH) associated target annotation. Trajectory annotations were provided in the original release of the WPAFB09 dataset, but detailed vehicle annotations were not available with the dataset. In addition, annotations of static vehicles, e.g., in parking lots, are also not identified in the original release. Addressing these issues, we re-annotated the whole dataset with detailed information for each vehicle, including not only a target's location, but also its pose and size. The annotated WAMI data set should be useful to community for a common benchmark to compare WAMI detection, tracking, and identification methods.
An Analysis of the Impact of Sport Utility Vehicles in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, S.C.; Truett, L.F.
2000-08-01
It may be labeled sport utility vehicle, SUV, sport-ute, suburban assault vehicle, or a friend of OPEC (Organization for Petroleum Exporting Countries). It has been the subject of comics, the object of high-finance marketing ploys, and the theme of Dateline. Whatever the label or the occasion, this vehicle is in great demand. The popularity of sport utility vehicles (SUVs) has increased dramatically since the late 1970s, and SUVs are currently the fastest growing segment of the motor vehicle industry. Hoping to gain market share due to the popularity of the expanding SUV market, more and more manufacturers are adding SUVsmore » to their vehicle lineup. One purpose of this study is to analyze the world of the SUV to determine why this vehicle has seen such a rapid increase in popularity. Another purpose is to examine the impact of SUVs on energy consumption, emissions, and highway safety.« less
Probabilistic model of bridge vehicle loads in port area based on in-situ load testing
NASA Astrophysics Data System (ADS)
Deng, Ming; Wang, Lei; Zhang, Jianren; Wang, Rei; Yan, Yanhong
2017-11-01
Vehicle load is an important factor affecting the safety and usability of bridges. An statistical analysis is carried out in this paper to investigate the vehicle load data of Tianjin Haibin highway in Tianjin port of China, which are collected by the Weigh-in- Motion (WIM) system. Following this, the effect of the vehicle load on test bridge is calculated, and then compared with the calculation result according to HL-93(AASHTO LRFD). Results show that the overall vehicle load follows a distribution with a weighted sum of four normal distributions. The maximum vehicle load during the design reference period follows a type I extremum distribution. The vehicle load effect also follows a weighted sum of four normal distributions, and the standard value of the vehicle load is recommended as 1.8 times that of the calculated value according to HL-93.
Lockheed Martin Skunk Works Single Stage to Orbit/Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
1999-01-01
Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. This portion of the report is comprised of a status report of Lockheed Martin's contribution to the program. The following is a summary of the Lockheed Martin Centers involved and work reviewed under their portion of the agreement: (1) Lockheed Martin Skunk Works - Vehicle Development, Operations Development, X-33 and RLV Systems Engineering, Manufacturing, Ground Operations, Reliability, Maintainability/Testability, Supportability, & Special Analysis Team, and X-33 Flight Assurance; (2) Lockheed Martin Technical Operations - Launch Support Systems, Ground Support Equipment, Flight Test Operations, and RLV Operations Development Support; (3) Lockheed Martin Space Operations - TAEM and A/L Guidance and Flight Control Design, Evaluation of Vehicle Configuration, TAEM and A/L Dispersion Analysis, Modeling and Simulations, Frequency Domain Analysis, Verification and Validation Activities, and Ancillary Support; (4) Lockheed Martin Astronautics-Denver - Systems Engineering, X-33 Development; (5) Sanders - A Lockheed Martin Company - Vehicle Health Management Subsystem Progress, GSS Progress; and (6) Lockheed Martin Michoud Space Systems - X-33 Liquid Oxygen (LOX) Tank, Key Challenges, Lessons Learned, X-33/RLV Composite Technology, Reusable Cyrogenic Insulation (RCI) and Vehicle Health Monitoring, Main Propulsion Systems (MPS), Structural Testing, X-33 System Integration and Analysis, and Cyrogenic Systems Operations.
System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO
NASA Technical Reports Server (NTRS)
Olds, John R.
1994-01-01
This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.
NASA Astrophysics Data System (ADS)
Avila, Edward R.
The Electric Insertion Transfer Experiment (ELITE) is an Air Force Advanced Technology Transition Demonstration which is being executed as a cooperative Research and Development Agreement between the Phillips Lab and TRW. The objective is to build, test, and fly a solar-electric orbit transfer and orbit maneuvering vehicle, as a precursor to an operational electric orbit transfer vehicle (EOTV). This paper surveys some of the analysis tools used to do parametric studies and discusses the study results. The primary analysis tool was the Electric Vehicle Analyzer (EVA) developed by the Phillips Lab and modified by The Aerospace Corporation. It uses a simple orbit averaging approach to model low-thrust transfer performance, and runs in a PC environment. The assumptions used in deriving the EVA math model are presented. This tool and others surveyed were used to size the solar array power required for the spacecraft, and develop a baseline mission profile that meets the requirements of the ELITE mission.
Preliminary Thermal-Mechanical Sizing of Metallic TPS: Process Development and Sensitivity Studies
NASA Technical Reports Server (NTRS)
Poteet, Carl C.; Abu-Khajeel, Hasan; Hsu, Su-Yuen
2002-01-01
The purpose of this research was to perform sensitivity studies and develop a process to perform thermal and structural analysis and sizing of the latest Metallic Thermal Protection System (TPS) developed at NASA LaRC (Langley Research Center). Metallic TPS is a key technology for reducing the cost of reusable launch vehicles (RLV), offering the combination of increased durability and competitive weights when compared to other systems. Accurate sizing of metallic TPS requires combined thermal and structural analysis. Initial sensitivity studies were conducted using transient one-dimensional finite element thermal analysis to determine the influence of various TPS and analysis parameters on TPS weight. The thermal analysis model was then used in combination with static deflection and failure mode analysis of the sandwich panel outer surface of the TPS to obtain minimum weight TPS configurations at three vehicle stations on the windward centerline of a representative RLV. The coupled nature of the analysis requires an iterative analysis process, which will be described herein. Findings from the sensitivity analysis are reported, along with TPS designs at the three RLV vehicle stations considered.
Weber, Luisa; Meemken, Diana
2018-01-01
The process of cleaning and disinfection of animal transport vehicles after unloading animals at the abattoir is a critical control point regarding proper hygiene. It is an important step regarding the biosecurity. In the present study, a status quo analysis of the currently performed cleaning and disinfection measures of animal transport vehicles was carried out at the vehicle washing facilities of five different industrial abattoirs in Germany. For this purpose, a checklist was developed and validated to assess the washing procedure of transport vehicles in a standardised way. The evaluated phases of cleaning included the evaluation criteria "length of time per used floor", "visual cleaning success" and the "hygienic awareness of the driver". During disinfection, attention was paid to the internal and external surfaces of the transporter and to the methods used to disinfect them. In addition, the technical and structural equipment of the five different washing facilities were recorded using a questionnaire and compared to the legal regulations, respectively. At each location, approximately 150 vehicles of all delivery types (transport vehicles owned by the abattoir, external delivery companies and vehicles owned by the supplying farmers) were inspected so that in total a number of more than 750 vehicles were included in this study. The aim was to develop abattoir specific, as well as generally applicable intervention measures and to generate "standard-operation procedures" (SOP's) for the cleaning and disinfection of animal transporters. At two out of five locations vehicles have left the abattoir without cleaning and disinfection. In 31-97% of all vehicles, only a cleaning of the vehicle was carried out, a subsequent disinfection did not take place. A cleaning followed by disinfecting took place in only 3-59% of all vehicles. The results indicate a considerable need for improvement and standardisation in this relevant field of disease prevention.
Z-Pinch Pulsed Plasma Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Adams, Robert B.; Fabisinski, Leo; Fincher, Sharon; Maples, C. Dauphne; Miernik, Janie; Percy, Tom; Statham, Geoff; Turner, Matt; Cassibry, Jason;
2010-01-01
Fusion-based propulsion can enable fast interplanetary transportation. Magneto-inertial fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small reactor for fusion break even. The Z-Pinch/dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an axial current (I approximates 100 MA). Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4). This document presents a conceptual design of a Z-Pinch fusion propulsion system and a vehicle for human exploration. The purpose of this study is to apply Z-Pinch fusion principles to the design of a propulsion system for an interplanetary spacecraft. This study took four steps in service of that objective; these steps are identified below. 1. Z-Pinch Modeling and Analysis: There is a wealth of literature characterizing Z-Pinch physics and existing Z-Pinch physics models. In order to be useful in engineering analysis, simplified Z-Pinch fusion thermodynamic models are required to give propulsion engineers the quantity of plasma, plasma temperature, rate of expansion, etc. The study team developed these models in this study. 2. Propulsion Modeling and Analysis: While the Z-Pinch models characterize the fusion process itself, propulsion models calculate the parameters that characterize the propulsion system (thrust, specific impulse, etc.) The study team developed a Z-Pinch propulsion model and used it to determine the best values for pulse rate, amount of propellant per pulse, and mixture ratio of the D-T and liner materials as well as the resulting thrust and specific impulse of the system. 3. Mission Analysis: Several potential missions were studied. Trajectory analysis using data from the propulsion model was used to determine the duration of the propulsion burns, the amount of propellant expended to complete each mission considered. 4. Vehicle Design: To understand the applicability of Z-Pinch propulsion to interplanetary travel, it is necessary to design a concept vehicle that uses it -- the propulsion system significantly impacts the design of the electrical, thermal control, avionics and structural subsystems of a vehicle. The study team developed a conceptual design of an interplanetary vehicle that transports crew and cargo to Mars and back and can be reused for other missions. Several aspects of this vehicle are based on a previous crewed fusion vehicle study -- the Human Outer Planet Exploration (HOPE) Magnetized Target Fusion (MTF) vehicle. Portions of the vehicle design were used outright and others were modified from the MTF design in order to maintain comparability.
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.; Anderson, M. R.
1985-01-01
Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.
Ground and Range Operations for a Heavy-Lift Vehicle: Preliminary Thoughts
NASA Technical Reports Server (NTRS)
Rabelo, Luis; Zhu, Yanshen; Compton, Jeppie; Bardina, Jorge
2011-01-01
This paper discusses the ground and range operations for a Shuttle derived Heavy-Lift Vehicle being launched from the Kennedy Space Center on the Eastern range. Comparisons will be made between the Shuttle and a heavy lift configuration (SLS-ETF MPCV April 2011) by contrasting their subsystems. The analysis will also describe a simulation configuration with the potential to be utilized for heavy lift vehicle processing/range simulation modeling and the development of decision-making systems utilized by the range. In addition, a simple simulation model is used to provide the required critical thinking foundations for this preliminary analysis.
Analysis of space tug operating techniques. Volume 2: Study results
NASA Technical Reports Server (NTRS)
1972-01-01
The design requirements for space tug systems and cost analysis of the refurbishment phases are discussed. The vehicle is an integral propulsion stage using liquid hydrogen and liquid oxygen as propellants and is capable of operating either as a fully or a partially autonomous vehicle. Structural features are an integral liquid hydrogen tank, a liquid oxygen tank, a meteoroid shield, an aft conical docking and structural support ring, and a staged combustion main engine. The vehicle is constructed of major modules for ease of maintenance. Line drawings and block diagrams are included to explain the maintenance requirements for the subsystems.
Analysis and Design of Launch Vehicle Flight Control Systems
NASA Technical Reports Server (NTRS)
Wie, Bong; Du, Wei; Whorton, Mark
2008-01-01
This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.
Wind to Hydrogen in California: Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonia, O.; Saur, G.
2012-08-01
This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.
NASA Technical Reports Server (NTRS)
Hanley, G.
1978-01-01
The development of transportation systems to support the operations required for the orbital assembly of a 5-gigawatt satellite is discussed as well as the construction of a ground receiving antenna (rectenna). Topics covered include heavy lift launch vehicle configurations for Earth-to LEO transport; the use of chemical, nuclear, and electric orbit transfer vehicles for LEO to GEO operations; personnel transport systems; ground operations; end-to-end analysis of the construction, operation, and maintenance of the satellite and rectenna; propellant production and storage; and payload packaging.
The ac propulsion system for an electric vehicle, phase 1
NASA Astrophysics Data System (ADS)
Geppert, S.
1981-08-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
Robust flight design for an advanced launch system vehicle
NASA Astrophysics Data System (ADS)
Dhand, Sanjeev K.; Wong, Kelvin K.
Current launch vehicle trajectory design philosophies are generally based on maximizing payload capability. This approach results in an expensive trajectory design process for each mission. Two concepts of robust flight design have been developed to significantly reduce this cost: Standardized Trajectories and Command Multiplier Steering (CMS). These concepts were analyzed for an Advanced Launch System (ALS) vehicle, although their applicability is not restricted to any particular vehicle. Preliminary analysis has demonstrated the feasibility of these concepts at minimal loss in payload capability.
Issues of using Longer Heavier Vehicles on Roads
NASA Astrophysics Data System (ADS)
Matuszkova, R.; Heczko, M.; Cepil, J.; Radimsky, M.
2018-03-01
Many logistics companies aim to save on freight costs. Recently, not only on Czech roads and on motorways, longer and heavier vehicles that exceed dimensions’ limits appeared. For these vehicles, it is necessary to apply for a special permit, which is, however, much more liberal than the permit for oversized and overweight load transport. This paper informs about checking routes of these vehicles by swept path analysis and finding locations on roads that can generate both safety risks and traffic fluency problems.
The ac propulsion system for an electric vehicle, phase 1
NASA Technical Reports Server (NTRS)
Geppert, S.
1981-01-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure
NASA Technical Reports Server (NTRS)
Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew
2004-01-01
This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.
[Computer simulation by passenger wound analysis of vehicle collision].
Zou, Dong-Hua; Liu, Nning-Guo; Shen, Jie; Zhang, Xiao-Yun; Jin, Xian-Long; Chen, Yi-Jiu
2006-08-15
To reconstruct the course of vehicle collision, so that to provide the reference for forensic identification and disposal of traffic accidents. Through analyzing evidences left both on passengers and vehicles, technique of momentum impulse combined with multi-dynamics was applied to simulate the motion and injury of passengers as well as the track of vehicles. Model of computer stimulation perfectly reconstructed phases of the traffic collision, which coincide with details found by forensic investigation. Computer stimulation is helpful and feasible for forensic identification in traffic accidents.
NASA Technical Reports Server (NTRS)
Unal, Resit; Keating, Charles; Conway, Bruce; Chytka, Trina
2004-01-01
A comprehensive expert-judgment elicitation methodology to quantify input parameter uncertainty and analysis tool uncertainty in a conceptual launch vehicle design analysis has been developed. The ten-phase methodology seeks to obtain expert judgment opinion for quantifying uncertainties as a probability distribution so that multidisciplinary risk analysis studies can be performed. The calibration and aggregation techniques presented as part of the methodology are aimed at improving individual expert estimates, and provide an approach to aggregate multiple expert judgments into a single probability distribution. The purpose of this report is to document the methodology development and its validation through application to a reference aerospace vehicle. A detailed summary of the application exercise, including calibration and aggregation results is presented. A discussion of possible future steps in this research area is given.
Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack
2016-01-01
This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.
Orion Crew Exploration Vehicle Launch Abort System Guidance and Control Analysis Overview
NASA Technical Reports Server (NTRS)
Davidson, John B.; Kim, Sungwan; Raney, David L.; Aubuchon, Vanessa V.; Sparks, Dean W.; Busan, Ronald C.; Proud, Ryan W.; Merritt, Deborah S.
2008-01-01
Aborts during the critical ascent flight phase require the design and operation of Orion Crew Exploration Vehicle (CEV) systems to escape from the Crew Launch Vehicle (CLV) and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. Aborts from the launch pad to early in the flight of the CLV second stage are performed using the Launch Abort System (LAS). During this type of abort, the LAS Abort Motor is used to pull the Crew Module (CM) safely away from the CLV and Service Module (SM). LAS abort guidance and control studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the Orion CEV, an overview of the LAS ascent abort mode, and a summary of key LAS abort analysis methods and results.
NASA Technical Reports Server (NTRS)
Donahue, Benjamin
1994-01-01
Recently, one of the most comprehensive design studies of conceptual manned Mars vehicles, conducted since the Apollo era Mars mission studies of the 1960's, was completed. One of the tasks of the study involved the analysis of nuclear thermal propulsion spacecraft for Manned Mars exploration missions. This paper describes the specific effort aimed at vehicle configuration design. Over the course of the four year study, three configuration baselines were developed, each reflecting trade study cycle results of sequential phases of the study. Favorable attributes incorporated into the final concept, including a capability for on-orbit self-assembly and ease of launch vehicle packability, represent design solutions to configuration deficiencies plaguing nuclear propulsion Mars spacecraft design since the vehicle archetype originated in the 1950's. This paper contains a narrative summary of significant milestones in the effort, describes the evolution to the preferred configuration, and set forth the benefits derived from its utilization.
Aerodynamics and Aerothermodynamics of undulated re-entry vehicles
NASA Astrophysics Data System (ADS)
Kaushikh, K.; Arunvinthan, S.; Pillai, S. Nadaraja
2018-01-01
Aerodynamic and aerothermodynamic analysis is a fundamental basis for the design of a hypersonic vehicle. In this work, aerodynamic and aerothermodynamic analyses of a blunt body vehicle with undulations on its after-body are studied with the help of numerical simulations. A crew exploration vehicle (CEV) is taken for initial analysis and undulations with varying amplitude and wavelength are introduced on CEV's after-body. Numerical simulations were carried out for CEV and for CEV with undulations at Mach 3.0 and 7.0 for angles of attack ranging from -20° to +20° with increments of +5°. The results show that introduction of undulations did not have a significant impact on mono stability and lift-drag characteristics of the vehicle. It was also observed that introduction of undulations improved the aerothermodynamic characteristics of CEV. A reduction of about 36% in maximum heat flux at Mach 3.0 and about 21% at Mach 7.0 compared to the maximum heat flux for CEV was observed.
NASA Technical Reports Server (NTRS)
Burns, Lee; Decker, Ryan; Harrington, Brian; Merry, Carl
2008-01-01
The Kennedy Space Center (KSC) Range Reference Atmosphere (RRA) is a statistical model that summarizes wind and thermodynamic atmospheric variability from surface to 70 km. The National Aeronautics and Space Administration's (NASA) Space Shuttle program, which launches from KSC, utilizes the KSC RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the KSC RRA was recently completed. As part of the update, the Natural Environments Branch at NASA's Marshall Space Flight Center (MSFC) conducted a validation study and a comparison analysis to the existing KSC RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed by JSC/Ascent Flight Design Division to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.
NASA Technical Reports Server (NTRS)
Larsen, Nathan F.; Carnes, Ben L.
1993-01-01
Remotely sensing and classifying military vehicles in a battlefield environment have been the source of much research over the past 20 years. The ability to know where threat vehicles are located is an obvious advantage to military personnel. In the past active methods of ground vehicle detection such as radar have been used, but with the advancement of technology to locate these active sensors, passive sensors are preferred. Passive sensors detect acoustic emissions, seismic movement, electromagnetic radiation, etc., produced by the target and use this information to describe it. Deriving the mathematical models to classify vehicles in this manner has been, and is, quite complex and not always reliable. However, with the resurgence of artificial neural network (ANN) research in the past few years, developing models for this work may be a thing of the past. Preliminary results from an ANN analysis to the tank signatures recorded at the Joint Acoustic Propagation Experiment (JAPE) at the US Army White Sands Missile Range, NM, in July 1991, are presented.
Trajectory Dispersed Vehicle Process for Space Launch System
NASA Technical Reports Server (NTRS)
Statham, Tamara; Thompson, Seth
2017-01-01
The Space Launch System (SLS) vehicle is part of NASA's deep space exploration plans that includes manned missions to Mars. Manufacturing uncertainties in design parameters are key considerations throughout SLS development as they have significant effects on focus parameters such as lift-off-thrust-to-weight, vehicle payload, maximum dynamic pressure, and compression loads. This presentation discusses how the SLS program captures these uncertainties by utilizing a 3 degree of freedom (DOF) process called Trajectory Dispersed (TD) analysis. This analysis biases nominal trajectories to identify extremes in the design parameters for various potential SLS configurations and missions. This process utilizes a Design of Experiments (DOE) and response surface methodologies (RSM) to statistically sample uncertainties, and develop resulting vehicles using a Maximum Likelihood Estimate (MLE) process for targeting uncertainties bias. These vehicles represent various missions and configurations which are used as key inputs into a variety of analyses in the SLS design process, including 6 DOF dispersions, separation clearances, and engine out failure studies.
1976-01-01
Parawing Vehicle (M.S. Thesis, Virginia Polytechnic Inst) N66-29712*# NASA-TM-X-57693 33. Clemmons , Dewey L. Some Analysis of Parawing Behavior... Maurice P. Two Body Trajectory Analysis of a Parachute-Cargo Airdrop System 79. Glauert, H. Heavy Flexible Cable for Towing a Heavy Body below an
NREL: News - Advisor 2002-A Powerful Vehicle Simulation Tool Gets Better
Advisor 2002-A Powerful Vehicle Simulation Tool Gets Better Golden, Colo., June 11, 2002 A powerful analysis is made possible by co-simulation links to Avant!'s Saber and Ansoft's SIMPLORER�. Transient air conditioning system analysis is possible by co-simulation with C&R Technologies' SINDA/FLUINT
Adopting exergy analysis for use in aerospace
NASA Astrophysics Data System (ADS)
Hayes, David; Lone, Mudassir; Whidborne, James F.; Camberos, José; Coetzee, Etienne
2017-08-01
Thermodynamic analysis methods, based on an exergy metric, have been developed to improve system efficiency of traditional heat driven systems such as ground based power plants and aircraft propulsion systems. However, in more recent years interest in the topic has broadened to include applying these second law methods to the field of aerodynamics and complete aerospace vehicles. Work to date is based on highly simplified structures, but such a method could be shown to have benefit to the highly conservative and risk averse commercial aerospace sector. This review justifies how thermodynamic exergy analysis has the potential to facilitate a breakthrough in the optimization of aerospace vehicles based on a system of energy systems, through studying the exergy-based multidisciplinary design of future flight vehicles.
Aerobots as a Ubiquitous Part of Society
NASA Technical Reports Server (NTRS)
Young, Larry A.
2006-01-01
Small autonomous aerial robots (aerobots) have the potential to make significant positive contributions to modern society. Aerobots of various vehicle-types - CTOL, STOL, VTOL, and even possibly LTA - will be a part of a new paradigm for the distribution of goods and services. Aerobots as a class of vehicles may test the boundaries of aircraft design. New system analysis and design tools will be required in order to account for the new technologies and design parameters/constraints for such vehicles. The analysis tools also provide new approaches to defining/assessing technology goals and objectives and the technology portfolio necessary to accomplish those goals and objectives. Using the aerobot concept as an illustrative test case, key attributes of these analysis tools are discussed.
NASA Technical Reports Server (NTRS)
Bender, Robert L.; Reardon, John E.; Prendergast, Maurice J.; Schmitz, Craig P.; Brown, John R.
1992-01-01
A preliminary analysis of National Launch System ascent plume induced base heating environments has been completed to support the Induced Environments Panel's objective to assist in maturing the NLS vehicle (1.5 stage and heavy launch lift vehicle) design. Environments during ascent have been determined from this analysis for a few selected locations on the engine nozzles and base heat shield for both vehicles. The environments reflect early summer 1991 configurations and performance data and conservative methodology. A more complete and thorough analysis is under way to update these environments for the cycle 1 review in January 1992.
Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles
NASA Technical Reports Server (NTRS)
Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas;
2009-01-01
A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.
Simulation-Based Analysis of Reentry Dynamics for the Sharp Atmospheric Entry Vehicle
NASA Technical Reports Server (NTRS)
Tillier, Clemens Emmanuel
1998-01-01
This thesis describes the analysis of the reentry dynamics of a high-performance lifting atmospheric entry vehicle through numerical simulation tools. The vehicle, named SHARP, is currently being developed by the Thermal Protection Materials and Systems branch of NASA Ames Research Center, Moffett Field, California. The goal of this project is to provide insight into trajectory tradeoffs and vehicle dynamics using simulation tools that are powerful, flexible, user-friendly and inexpensive. Implemented Using MATLAB and SIMULINK, these tools are developed with an eye towards further use in the conceptual design of the SHARP vehicle's trajectory and flight control systems. A trajectory simulator is used to quantify the entry capabilities of the vehicle subject to various operational constraints. Using an aerodynamic database computed by NASA and a model of the earth, the simulator generates the vehicle trajectory in three-dimensional space based on aerodynamic angle inputs. Requirements for entry along the SHARP aerothermal performance constraint are evaluated for different control strategies. Effect of vehicle mass on entry parameters is investigated, and the cross range capability of the vehicle is evaluated. Trajectory results are presented and interpreted. A six degree of freedom simulator builds on the trajectory simulator and provides attitude simulation for future entry controls development. A Newtonian aerodynamic model including control surfaces and a mass model are developed. A visualization tool for interpreting simulation results is described. Control surfaces are roughly sized. A simple controller is developed to fly the vehicle along its aerothermal performance constraint using aerodynamic flaps for control. This end-to-end demonstration proves the suitability of the 6-DOF simulator for future flight control system development. Finally, issues surrounding real-time simulation with hardware in the loop are discussed.
Implementation Approach for Plug-in Electric Vehicles at Joint Base Lewis McChord. Task 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2014-12-01
This study focused on Joint Base Lewis McChord (JBLM), which is located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at JBLM to begin the review of vehicle mission assignments and the types of vehicles in service. In Task 2, daily operational characteristics of select vehicles were identified and vehicle movements were recorded in data loggers in order to characterize the vehicles’ missions. In Task 3, the results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whethermore » a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements0, as well as the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the JBLM fleet.« less
Objectives and Progress on Integrated Vehicle Ground Vibration Testing for the Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Asloms. Brice R.
2009-01-01
As NASA begins design and development of the Ares launch vehicles to replace the Space Shuttle and explore beyond low Earth orbit, Integrated Vehicle Ground Vibration Testing (IVGVT) will be a vital component of ensuring that those vehicles can perform the missions assigned to them. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. This data is then used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. The Ares Flight & Integrated Test Office (FITO) will be conducting IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2011 to 2012 using the venerable Test Stand (TS) 4550, which supported similar tests for the Saturn V and Space Shuttle vehicle stacks.
Use of Controller Area Network (CAN) Data to Support Performance Testing
2015-07-16
examples below highlight some common CAN data that have been recorded and utilized for vehicle analysis . This is not an exhaustive list. 3.1 Vehicle...sensor integrated into the data acquisition system. The acceptable error for engine speed data used in a system performance analysis is typically...data the test engineer was able to determine that the system was not functioning properly, and which test runs were invalid for analysis purposes
Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis
NASA Technical Reports Server (NTRS)
Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee
2016-01-01
The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.
Reduced-Order Aerothermoelastic Analysis of Hypersonic Vehicle Structures
NASA Astrophysics Data System (ADS)
Falkiewicz, Nathan J.
Design and simulation of hypersonic vehicles require consideration of a variety of disciplines due to the highly coupled nature of the flight regime. In order to capture all of the potential effects on vehicle dynamics, one must consider the aerodynamics, aerodynamic heating, heat transfer, and structural dynamics as well as the interactions between these disciplines. The problem is further complicated by the large computational expense involved in capturing all of these effects and their interactions in a full-order sense. While high-fidelity modeling techniques exist for each of these disciplines, the use of such techniques is computationally infeasible in a vehicle design and control system simulation setting for such a highly coupled problem. Early in the design stage, many iterations of analyses may need to be carried out as the vehicle design matures, thus requiring quick analysis turnaround time. Additionally, the number of states used in the analyses must be small enough to allow for efficient control simulation and design. As a result, alternatives to full-order models must be considered. This dissertation presents a fully coupled, reduced-order aerothermoelastic framework for the modeling and analysis of hypersonic vehicle structures. The reduced-order transient thermal solution is a modal solution based on the proper orthogonal decomposition. The reduced-order structural dynamic model is based on projection of the equations of motion onto a Ritz modal subspace that is identified a priori. The reduced-order models are assembled into a time-domain aerothermoelastic simulation framework which uses a partitioned time-marching scheme to account for the disparate time scales of the associated physics. The aerothermoelastic modeling framework is outlined and the formulations associated with the unsteady aerodynamics, aerodynamic heating, transient thermal, and structural dynamics are outlined. Results demonstrate the accuracy of the reduced-order transient thermal and structural dynamic models under variation in boundary conditions and flight conditions. The framework is applied to representative hypersonic vehicle control surface structures and a variety of studies are conducted to assess the impact of aerothermoelastic effects on hypersonic vehicle dynamics. The results presented in this dissertation demonstrate the ability of the proposed framework to perform efficient aerothermoelastic analysis.
Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data.
Kan, Zihan; Tang, Luliang; Kwan, Mei-Po; Zhang, Xia
2018-03-21
The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles' mobile activities ( MA ) and stationary activities ( SA ). First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS). Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA , SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles' activities in road networks.
Visualization Component of Vehicle Health Decision Support System
NASA Technical Reports Server (NTRS)
Jacob, Joseph; Turmon, Michael; Stough, Timothy; Siegel, Herbert; Walter, patrick; Kurt, Cindy
2008-01-01
The visualization front-end of a Decision Support System (DSS) also includes an analysis engine linked to vehicle telemetry, and a database of learned models for known behaviors. Because the display is graphical rather than text-based, the summarization it provides has a greater information density on one screen for evaluation by a flight controller.This tool provides a system-level visualization of the state of a vehicle, and drill-down capability for more details and interfaces to separate analysis algorithms and sensor data streams. The system-level view is a 3D rendering of the vehicle, with sensors represented as icons, tied to appropriate positions within the vehicle body and colored to indicate sensor state (e.g., normal, warning, anomalous state, etc.). The sensor data is received via an Information Sharing Protocol (ISP) client that connects to an external server for real-time telemetry. Users can interactively pan, zoom, and rotate this 3D view, as well as select sensors for a detail plot of the associated time series data. Subsets of the plotted data can be selected and sent to an external analysis engine to either search for a similar time series in an historical database, or to detect anomalous events. The system overview and plotting capabilities are completely general in that they can be applied to any vehicle instrumented with a collection of sensors. This visualization component can interface with the ISP for data streams used by NASA s Mission Control Center at Johnson Space Center. In addition, it can connect to, and display results from, separate analysis engine components that identify anomalies or that search for past instances of similar behavior. This software supports NASA's Software, Intelligent Systems, and Modeling element in the Exploration Systems Research and Technology Program by augmenting the capability of human flight controllers to make correct decisions, thus increasing safety and reliability. It was designed specifically as a tool for NASA's flight controllers to monitor the International Space Station and a future Crew Exploration Vehicle.
In-vehicle VOCs composition of unconditioned, newly produced cars.
Brodzik, Krzysztof; Faber, Joanna; Łomankiewicz, Damian; Gołda-Kopek, Anna
2014-05-01
The in-vehicle volatile organic compounds (VOCs) concentrations gains the attention of both car producers and users. In the present study, an attempt was made to determine if analysis of air samples collected from an unconditioned car cabin can be used as a quality control measure. The VOCs composition of in-vehicle air was analyzed by means of active sampling on Carbograph 1TD and Tenax TA sorbents, followed by thermal desorption and simultaneous analysis on flame ionization and mass detector (TD-GC/FID-MS). Nine newly produced cars of the same brand and model were chosen for this study. Within these, four of the vehicles were equipped with identical interior materials and five others differed in terms of upholstery and the presence of a sunroof; one car was convertible. The sampling event took place outside of the car assembly plant and the cars tested left the assembly line no later than 24 hr before the sampling took place. More than 250 compounds were present in the samples collected; the identification of more than 160 was confirmed by comparative mass spectra analysis and 80 were confirmed by both comparison with single/multiple compounds standards and mass spectra analysis. In general, aliphatic hydrocarbons represented more than 60% of the total VOCs (TVOC) determined. Depending on the vehicle, the concentration of aromatic hydrocarbons varied from 12% to 27% of total VOCs. The very short period between car production and sampling of the in-vehicle air permits the assumption that the entire TVOC originates from off-gassing of interior materials. The results of this study expand the knowledge of in-vehicle pollution by presenting information about car cabin air quality immediately after car production. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Repeatability study of replicate crash tests: A signal analysis approach.
Seppi, Jeremy; Toczyski, Jacek; Crandall, Jeff R; Kerrigan, Jason
2017-10-03
To provide an objective basis on which to evaluate the repeatability of vehicle crash test methods, a recently developed signal analysis method was used to evaluate correlation of sensor time history data between replicate vehicle crash tests. The goal of this study was to evaluate the repeatability of rollover crash tests performed with the Dynamic Rollover Test System (DRoTS) relative to other vehicle crash test methods. Test data from DRoTS tests, deceleration rollover sled (DRS) tests, frontal crash tests, frontal offset crash tests, small overlap crash tests, small overlap impact (SOI) crash tests, and oblique crash tests were obtained from the literature and publicly available databases (the NHTSA vehicle database and the Insurance Institute for Highway Safety TechData) to examine crash test repeatability. Signal analysis of the DRoTS tests showed that force and deformation time histories had good to excellent repeatability, whereas vehicle kinematics showed only fair repeatability due to the vehicle mounting method for one pair of tests and slightly dissimilar mass properties (2.2%) in a second pair of tests. Relative to the DRS, the DRoTS tests showed very similar or higher levels of repeatability in nearly all vehicle kinematic data signals with the exception of global X' (road direction of travel) velocity and displacement due to the functionality of the DRoTS fixture. Based on the average overall scoring metric of the dominant acceleration, DRoTS was found to be as repeatable as all other crash tests analyzed. Vertical force measures showed good repeatability and were on par with frontal crash barrier forces. Dynamic deformation measures showed good to excellent repeatability as opposed to poor repeatability seen in SOI and oblique deformation measures. Using the signal analysis method as outlined in this article, the DRoTS was shown to have the same or better repeatability of crash test methods used in government regulatory and consumer evaluation test protocols.
Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar
Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to themore » EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.« less
Vehicle dynamic analysis using neuronal network algorithms
NASA Astrophysics Data System (ADS)
Oloeriu, Florin; Mocian, Oana
2014-06-01
Theoretical developments of certain engineering areas, the emergence of new investigation tools, which are better and more precise and their implementation on-board the everyday vehicles, all these represent main influence factors that impact the theoretical and experimental study of vehicle's dynamic behavior. Once the implementation of these new technologies onto the vehicle's construction had been achieved, it had led to more and more complex systems. Some of the most important, such as the electronic control of engine, transmission, suspension, steering, braking and traction had a positive impact onto the vehicle's dynamic behavior. The existence of CPU on-board vehicles allows data acquisition and storage and it leads to a more accurate and better experimental and theoretical study of vehicle dynamics. It uses the information offered directly by the already on-board built-in elements of electronic control systems. The technical literature that studies vehicle dynamics is entirely focused onto parametric analysis. This kind of approach adopts two simplifying assumptions. Functional parameters obey certain distribution laws, which are known in classical statistics theory. The second assumption states that the mathematical models are previously known and have coefficients that are not time-dependent. Both the mentioned assumptions are not confirmed in real situations: the functional parameters do not follow any known statistical repartition laws and the mathematical laws aren't previously known and contain families of parameters and are mostly time-dependent. The purpose of the paper is to present a more accurate analysis methodology that can be applied when studying vehicle's dynamic behavior. A method that provides the setting of non-parametrical mathematical models for vehicle's dynamic behavior is relying on neuronal networks. This method contains coefficients that are time-dependent. Neuronal networks are mostly used in various types' system controls, thus being a non-linear process identification algorithm. The common use of neuronal networks for non-linear processes is justified by the fact that both have the ability to organize by themselves. That is why the neuronal networks best define intelligent systems, thus the word `neuronal' is sending one's mind to the biological neuron cell. The paper presents how to better interpret data fed from the on-board computer and a new way of processing that data to better model the real life dynamic behavior of the vehicle.
User experience with on-road electric vehicles in the U.S.A. and Canada
NASA Technical Reports Server (NTRS)
Sandberg, J. J.; Leschly, K.
1978-01-01
Approximately 3000 on-road electric passenger cars and delivery vans are now in use in the U.S.A. and Canada. The owners and operators of almost one-third of these vehicles have been surveyed directly in an attempt to determine the suitability of commercially sold electric vehicles for real on-road jobs. This paper is primarily concerned with the analysis of the engineering aspects of the user experience with electric vehicles, i.e., mileage and application, failure modes and rates, energy economy, maintenance requirements, life cycle costs, and vehicle performance characteristics. It is concluded that existing electric vehicles can perform satisfactorily in applications that have limited performance requirements, particularly in terms of range.
i3Drive, a 3D interactive driving simulator.
Ambroz, Miha; Prebil, Ivan
2010-01-01
i3Drive, a wheeled-vehicle simulator, can accurately simulate vehicles of various configurations with up to eight wheels in real time on a desktop PC. It presents the vehicle dynamics as an interactive animation in a virtual 3D environment. The application is fully GUI-controlled, giving users an easy overview of the simulation parameters and letting them adjust those parameters interactively. It models all relevant vehicle systems, including the mechanical models of the suspension, power train, and braking and steering systems. The simulation results generally correspond well with actual measurements, making the system useful for studying vehicle performance in various driving scenarios. i3Drive is thus a worthy complement to other, more complex tools for vehicle-dynamics simulation and analysis.
Measurement of in-vehicle volatile organic compounds under static conditions.
You, Ke-wei; Ge, Yun-shan; Hu, Bin; Ning, Zhan-wu; Zhao, Shou-tang; Zhang, Yan-ni; Xie, Peng
2007-01-01
The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spectrometer (TD-GC/MS). Air sampling and analysis was conducted under the requirement of USEPA Method TO-17. A room-size, environment test chamber was utilized to provide stable and accurate control of the required environmental conditions (temperature, humidity, horizontal and vertical airflow velocity, and background VOCs concentration). Static vehicle testing demonstrated that although the amount of total volatile organic compounds (TVOC) detected within each vehicle was relatively distinct (4940 microg/m3 in the new vehicle A, 1240 microg/m3 in used vehicle B, and 132 microg/m3 in used vehicle C), toluene, xylene, some aromatic compounds, and various C7-C12 alkanes were among the predominant VOC species in all three vehicles tested. In addition, tetramethyl succinonitrile, possibly derived from foam cushions was detected in vehicle B. The types and quantities of VOCs varied considerably according to various kinds of factors, such as, vehicle age, vehicle model, temperature, air exchange rate, and environment airflow velocity. For example, if the airflow velocity increases from 0.1 m/s to 0.7 m/s, the vehicle's air exchange rate increases from 0.15 h(-1) to 0.67 h(-1), and in-vehicle TVOC concentration decreases from 1780 to 1201 microg/m3.
Utah State University's T2 ODV mobility analysis
NASA Astrophysics Data System (ADS)
Davidson, Morgan E.; Bahl, Vikas; Wood, Carl G.
2000-07-01
In response to ultra-high maneuverability vehicle requirements, Utah State University (USU) has developed an autonomous vehicle with unique mobility and maneuverability capabilities. This paper describes a study of the mobility of the USU T2 Omni-Directional Vehicle (ODV). The T2 vehicle is a mid-scale (625 kg), second-generation ODV mobile robot with six independently driven and steered wheel assemblies. The six wheel, independent steering system is capable of unlimited steering rotation, presenting a unique solution to enhanced vehicle mobility requirements. This mobility study focuses on energy consumption in three basic experiments, comparing two modes of steering: Ackerman and ODV. The experiments are all performed on the same vehicle without any physical changes to the vehicle itself, providing a direct comparison these two steering methodologies. A computer simulation of the T2 mechanical and control system dynamics is described.
NASA Astrophysics Data System (ADS)
Dubarry, Matthieu; Devie, Arnaud; McKenzie, Katherine
2017-08-01
Vehicle-to-grid and Grid-to-vehicle strategies are often cited as promising to mitigate the intermittency of renewable energy on electric power grids. However, their impact on the vehicle battery degradation has not been investigated in detail. The aim of this work is to understand the impact of bidirectional charging on commercial Li-ion cells used in electric vehicles today. Results show that additional cycling to discharge vehicle batteries to the power grid, even at constant power, is detrimental to cell performance. This additional use of the battery packs could shorten the lifetime for vehicle use to less than five years. By contrast, the impact of delaying the charge in order to reduce the impact on the power grid is found to be negligible at room temperature, but could be significant in warmer climates.
Study on the performance of the articulated mechanism of tracked all-terrain vehicle
NASA Astrophysics Data System (ADS)
Meng, Zhongliang; Zang, Hao
2018-04-01
Tracked all-terrain vehicle consists of two vehicle bodies featured by superior performance, the running system which can meet the all-terrain requirement, the unique steering system, power system and the vehicle body protection system. This paper focuses on the study of the five freely articulated steering system of crawler-type all-terrain engineering vehicle. The study on the dynamic characteristics of the articulated steering system can't do without the dynamic analysis of the whole vehicle. Therefore, it first studies the overall model of the tracked all-terrain vehicle, and then based on the critical states where the overall model is situated under different road conditions, mathematical models of the articulated mechanism are built under different operating conditions and also the load bearing condition of the articulated mechanism is deduced.
An empirical analysis of farm vehicle crash injury severities on Iowa's public road system.
Gkritza, Konstantina; Kinzenbaw, Caroline R; Hallmark, Shauna; Hawkins, Neal
2010-07-01
Farm vehicle crashes are a major safety concern for farmers as well as all other users of the public road system in agricultural states. Using data on farm vehicle crashes that occurred on Iowa's public roads between 2004 and 2006, we estimate a multinomial logit model to identify crash-, farm vehicle-, and driver-specific factors that determine farm vehicle crash injury severity outcomes. Estimation findings indicate that there are crash patterns (rear-end manner of collision; single-vehicle crash; farm vehicle crossed the centerline or median) and conditions (obstructed vision and crash in rural area; dry road, dark lighting, speed limit 55 mph or higher, and harvesting season), as well as farm vehicle and driver-contributing characteristics (old farm vehicle, young farm vehicle driver), where targeted intervention can help reduce the severity of crash outcomes. Determining these contributing factors and their effect is the first step to identifying countermeasures and safety strategies in a bid to improve transportation safety for all users on the public road system in Iowa as well as other agricultural states. Copyright 2010 Elsevier Ltd. All rights reserved.
Emissions from U.S. waste collection vehicles.
Maimoun, Mousa A; Reinhart, Debra R; Gammoh, Fatina T; McCauley Bush, Pamela
2013-05-01
This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6-10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recordedmore » vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.« less
Crew Integration & Automation Testbed and Robotic Follower Programs
2001-05-30
Evolving Technologies for Reduced Crew Operation” Vehicle Tech Demo #1 (VTT) Vehicle Tech Demo #2 ( CAT ATD) Two Man Transition Future Combat...Simulation Advanced Electronic Architecture Concept Vehicle Shown with Onboard Safety Driver Advanced Interfaces CAT ATD Exit Criteria...Provide 1000 Hz control loop for critical real-time tasks CAT Workload IPT Process and Product Schedule Crew Task List Task Timelines Workload Analysis
40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...
40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...
40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...
40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...
40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...