Sample records for velocity linear induction

  1. Inductional Effects in a Halbach Magnet Motion Above Distributed Inductance

    NASA Astrophysics Data System (ADS)

    Tchatchoua, Yves; Conrow, Ary; Kim, Dong; Morgan, Daniel; Majewski, Walerian; Zafar, Zaeema

    2013-03-01

    We experimented with attempts to levitate a linear (bar) Halbach array of five 1'' Nd magnets above a linear inductive track. Next, in order to achieve a control over the relative velocity, we designed a different experiment. In it a large wheel with circumferentially positioned along its rim inducting coils rotates, while the magnet is suspended directly above the rim of the wheel on a force sensor. Faraday's Law with the Lenz's Rule is responsible for the lifting and drag forces on the magnet; the horizontal drag force is measured by another force sensor. Approximating the magnet's linear relative motion over inductors with a motion along a large circle, we may use formulas derived earlier in the literature for linear inductive levitation. We measured lift and drag forces as functions of relative velocity of the Halbach magnet and the inductive ``track,'' in an approximate agreement with the existing theory. We then vary the inductance and shape of the inductive elements to find the most beneficial choice for the lift/drag ratio at the lowest relative speed.

  2. Numerical analysis method for linear induction machines.

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1972-01-01

    A numerical analysis method has been developed for linear induction machines such as liquid metal MHD pumps and generators and linear motors. Arbitrary phase currents or voltages can be specified and the moving conductor can have arbitrary velocity and conductivity variations from point to point. The moving conductor is divided into a mesh and coefficients are calculated for the voltage induced at each mesh point by unit current at every other mesh point. Combining the coefficients with the mesh resistances yields a set of simultaneous equations which are solved for the unknown currents.

  3. High Velocity Linear Induction Launcher with Exit-Edge Compensation for Testing of Aerospace Components

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Stephen; Marriott, Darin

    2008-01-01

    Advances in ultra high speed linear induction electromagnetic launchers over the past decade have focused on magnetic compensation of the exit and entry-edge transient flux wave to produce efficient and compact linear electric machinery. The paper discusses two approaches to edge compensation in long-stator induction catapults with typical end speeds of 150 to 1,500 m/s. In classical linear induction machines, the exit-edge effect is manifest as two auxiliary traveling waves that produce a magnetic drag on the projectile and a loss of magnetic flux over the main surface of the machine. In the new design for the Stator Compensated Induction Machine (SCIM) high velocity launcher, the exit-edge effect is nulled by a dual wavelength machine or alternately the airgap flux is peaked at a location prior to the exit edge. A four (4) stage LIM catapult is presently being constructed for 180 m/s end speed operation using double-sided longitudinal flux machines. Advanced exit and entry edge compensation is being used to maximize system efficiency, and minimize stray heating of the reaction armature. Each stage will output approximately 60 kN of force and produce over 500 G s of acceleration on the armature. The advantage of this design is there is no ablation to the projectile and no sliding contacts, allowing repeated firing of the launcher without maintenance of any sort. The paper shows results of a parametric study for 500 m/s and 1,500 m/s linear induction launchers incorporating two of the latest compensation techniques for an air-core stator primary and an iron-core primary winding. Typical thrust densities for these machines are in the range of 150 kN/sq.m. to 225 kN/sq.m. and these compete favorably with permanent magnet linear synchronous machines. The operational advantages of the high speed SCIM launcher are shown by eliminating the need for pole-angle position sensors as would be required by synchronous systems. The stator power factor is also improved.

  4. Incorporating inductances in tissue-scale models of cardiac electrophysiology

    NASA Astrophysics Data System (ADS)

    Rossi, Simone; Griffith, Boyce E.

    2017-09-01

    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and we examine the effect of intracellular and extracellular inductances on the virtual electrode phenomenon.

  5. Hyphenation of ultra performance liquid chromatography (UPLC) with inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of bromine containing preservatives.

    PubMed

    Bendahl, Lars; Hansen, Steen Honoré; Gammelgaard, Bente; Sturup, Stefan; Nielsen, Camilla

    2006-02-24

    Ultra performance liquid chromatography (UPLC) was coupled to inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of three bromine-containing preservatives, monitoring the 79Br and 81Br isotopes simultaneously. Due to the efficiency of the 1.7 microm column packing material, the resolution of the test substances was only slightly affected when the linear flow velocity was increased from 0.5 to 1.9 mm s(-1). However, the sensitivity of ICP-MS detection decreased when the linear flow velocity was increased from 0.5 to 1.9 mm s(-1). Analytical figures of merit were determined at an intermediate and at a high linear velocity. The precision was better than 2.2% R.S.D. and regression analysis showed that a linear response was achieved at both flow rates (R2 > 0.9993, n = 36). The analysis time was less than 4.5 min at a flow rate of 50 microL min(-1) and limits of detection and quantification were better than 3.3 and 11 microg BrL(-1), respectively. The analysis time was reduced to 2.7 min when the flow rate was increased to 90 microL min(-1) and limits of detection and quantification were better than 20 and 65 microg BrL(-1), respectively. The method was applied for quantitative analysis of bromine-containing preservatives in commercially available cosmetic products.

  6. The limiting velocity effect in a magnetically held discharge with a moving wall

    NASA Astrophysics Data System (ADS)

    Drobyshevskii, E. M.; Zhukov, B. G.; Nazarov, E. V.; Rozov, S. I.; Sokolov, V. M.; Kurakin, R. O.

    1991-08-01

    Experiments are reported in which bodies with a mass of about 1 g were accelerated in nearly constant current regimes by using a discharge magnetically held against the channel wall, with maximum permissible accelerations of 3.5 x 10 exp 6 g and linear current densities of 60 kA/mm. A saturation of the velocity was observed at 4-6 mm/microsec. The velocity limit does not depend on the current intensity and duration or linear electrode inductance and is proportional to m exp -1/2; it is practically unaffected by the characteristics of body friction against the channel walls and by small deviations of the current pulse shape from its constant value. A simple empirical theory is proposed which provides an adequate description of the experimentally observed phenomena.

  7. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  8. New Fusion Concept Using Coaxial Passing Through Each Other Self-focusing Colliding Beams (Invention)

    NASA Astrophysics Data System (ADS)

    Chikvashvili, Ioseb

    2011-10-01

    In proposed Concept it is offered to use two ion beams directed coaxially at the same direction but with different velocities (center-of-mass collision energy should be sufficient for fusion), to direct oppositely the relativistic electron beam for only partial compensation of positive space charge and for allowing the combined beam's pinch capability, to apply the longitudinal electric field for compensation of alignment of velocities of reacting particles and also for compensation of energy losses of electrons via Bremsstrahlung. On base of Concept different types of reactor designs can be realized: Linear and Cyclic designs. In the simplest embodiment the Cyclic Reactor (design) may include: betatron type device (circular store of externally injected particles - induction accelerator), pulse high-current relativistic electron injector, pulse high-current slower ion injector, pulse high-current faster ion injector and reaction products extractor. Using present day technologies and materials (or a reasonable extrapolation of those) it is possible to reach: for induction linear injectors (ions&electrons) - currents of thousands A, repeatability - up to 10Hz, the same for high-current betatrons (FFAG, Stellatron, etc.). And it is possible to build the fusion reactor using the proposed Method just today.

  9. Measurements and effects of backstreaming ions produced at bremsstrahlung converter target in Dragon-I linear induction accelerator.

    PubMed

    Yu, Haijun; Zhu, Jun; Chen, Nan; Xie, Yutong; Jiang, Xiaoguo; Jian, Cheng

    2010-04-01

    Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 10(21)/m(3) and 2-3 mm/micros, respectively. The theoretical and experimental results of electron beam envelope with ions and without ions are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.

  10. Measurements and effects of backstreaming ions produced at bremsstrahlung converter target in Dragon-I linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Yu, Haijun; Zhu, Jun; Chen, Nan; Xie, Yutong; Jiang, Xiaoguo; Jian, Cheng

    2010-04-01

    Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 1021/m3 and 2-3 mm/μs, respectively. The theoretical and experimental results of electron beam envelope with ions and without ions are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.

  11. Fuzzy – PI controller to control the velocity parameter of Induction Motor

    NASA Astrophysics Data System (ADS)

    Malathy, R.; Balaji, V.

    2018-04-01

    The major application of Induction motor includes the usage of the same in industries because of its high robustness, reliability, low cost, highefficiency and good self-starting capability. Even though it has the above mentioned advantages, it also have some limitations: (1) the standard motor is not a true constant-speed machine, itsfull-load slip varies less than 1 % (in high-horsepower motors).And (2) it is not inherently capable of providing variable-speedoperation. In order to solve the above mentioned problem smart motor controls and variable speed controllers are used. Motor applications involve non linearity features, which can be controlled by Fuzzy logic controller as it is capable of handling those features with high efficiency and it act similar to human operator. This paper presents individuality of the plant modelling. The fuzzy logic controller (FLC)trusts on a set of linguistic if-then rules, a rule-based Mamdani for closed loop Induction Motor model. Themotor model is designed and membership functions are chosenaccording to the parameters of the motor model. Simulation results contains non linearity in induction motor model. A conventional PI controller iscompared practically to fuzzy logic controller using Simulink.

  12. Scaling and characterisation of a 2-DoF velocity amplified electromagnetic vibration energy harvester

    NASA Astrophysics Data System (ADS)

    O’Donoghue, D.; Frizzell, R.; Punch, J.

    2018-07-01

    Vibration energy harvesters (VEHs) offer an alternative to batteries for the autonomous operation of low-power electronics. Understanding the influence of scaling on VEHs is of great importance in the design of reduced scale harvesters. The nonlinear harvesters investigated here employ velocity amplification, a technique used to increase velocity through impacts, to improve the power output of multiple-degree-of-freedom VEHs, compared to linear resonators. Such harvesters, employing electromagnetic induction, are referred to as velocity amplified electromagnetic generators (VAEGs), with gains in power achieved by increasing the relative velocity between the magnet and coil in the transducer. The influence of scaling on a nonlinear 2-DoF VAEG is presented. Due to the increased complexity of VAEGs, compared to linear systems, linear scaling theory cannot be directly applied to VAEGs. Therefore, a detailed nonlinear scaling method is utilised. Experimental and numerical methods are employed. This nonlinear scaling method can be used for analysing the scaling behaviour of all nonlinear electromagnetic VEHs. It is demonstrated that the electromagnetic coupling coefficient degrades more rapidly with scale for systems with larger displacement amplitudes, meaning that systems operating at low frequencies will scale poorly compared to those operating at higher frequencies. The load power of the 2-DoF VAEG is predicted to scale as {P}L\\propto {s}5.51 (s = volume1/3), suggesting that achieving high power densities in a VAEG with low device volume is extremely challenging.

  13. Measurements and effects of backstreaming ions produced at bremsstrahlung converter target in Dragon-I linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Haijun; Zhu Jun; Chen Nan

    2010-04-15

    Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 10{sup 21}/m{sup 3} and 2-3 mm/{mu}s, respectively. The theoretical and experimental results of electron beam envelope with ions and without ionsmore » are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.« less

  14. Steady induction effects in geomagnetism. Part 1B: Geomagnetic estimation of steady surficial core motions: A non-linear inverse problem

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1993-01-01

    The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.

  15. Magnetic induction system for two-stage gun projectile velocity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, R L; Konrad, C H

    1984-05-01

    A magnetic induction technique for measuring projectile velocities has been implemented on Sandia's two-stage light gas gun. The system has been designed to allow for projectile velocity measurements to an accuracy of approx. 0.2 percent. The velocity system has been successfully tested in a velocity range of 3.5 km/s to 6.5 km/s.

  16. Techniques for correcting velocity and density fluctuations of ion beams in ion inducti on accelerators

    NASA Astrophysics Data System (ADS)

    Woo, K. M.; Yu, S. S.; Barnard, J. J.

    2013-06-01

    It is well known that the imperfection of pulse power sources that drive the linear induction accelerators can lead to time-varying fluctuation in the accelerating voltages, which in turn leads to longitudinal emittance growth. We show that this source of emittance growth is correctable, even in space-charge dominated beams with significant transients induced by space-charge waves. Two correction methods are proposed, and their efficacy in reducing longitudinal emittance is demonstrated with three-dimensional particle-in-cell simulations.

  17. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    NASA Astrophysics Data System (ADS)

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  18. Alfven waves associated with long cylindrical satellites

    NASA Technical Reports Server (NTRS)

    Venkataraman, N. S.; Gustafson, W. A.

    1973-01-01

    The Alfven wave excited by a long cylindrical satellite moving with a constant velocity at an angle relative to a uniform magnetic field has been calculated. Assuming a plasma with infinite conductivity, the linearized momentum equation and Maxwell's equations are applied to a cylindrical satellite carrying a variable current. The induced magnetic field is determined, and it is shown that the Alfven disturbance zone is of limited extent, depending on the satellite shape. The wave drag coefficient is calculated and shown to be small compared to the induction drag coefficient at all altitudes considered.

  19. A general theory of DC electromagnetic launchers

    NASA Astrophysics Data System (ADS)

    Engel, Thomas G.; Timpson, Erik J.

    2015-08-01

    The non-linear, transient operation of DC electromagnetic launchers (EMLs) complicates their theoretical understanding and prevents scaling studies and performance comparisons without the aid of detailed numerical models. This paper presents a general theory for DC electromagnetic launchers that has simplified these tasks by identifying critical EML parameters and relationships affecting the EML's voltage, current, and power scaling, as well as its performance and energy conversion efficiency. EML parameters and relationships discussed in this paper include the specific force, the operating mode, the launcher constant, the launcher characteristic velocity, the contact characteristic velocity, the energy conversion efficiency, and the kinetic power and voltage-current scaling relationship. The concepts of the ideal EML, same-scale comparisons, and EML impedance are discussed. This paper defines conditions needed for the EML to operate in the steady-state. A comparison of the general theory with experimental results of several different types of DC (i.e., non-induction) electromagnetic launchers ranging from medium velocity (100's m/s) to high velocity (1000's m/s) is performed. There is good agreement between the general theory and the experimental results.

  20. Comparison of Linear Induction Motor Theories for the LIMRV and TLRV Motors

    DOT National Transportation Integrated Search

    1978-01-01

    The Oberretl, Yamamura, and Mosebach theories of the linear induction motor are described and also applied to predict performance characteristics of the TLRV & LIMRV linear induction motors. The effect of finite motor width and length on performance ...

  1. The effect of the inductive electric field on ion poloidal rotation in all collisionality regimes for the primary ions in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Chengkang; Wang Shaojie; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031

    2007-11-15

    The expression for the poloidal rotation velocity of the primary ions that is caused by the parallel inductive electric field in tokamaks and valid in all collisionality regimes is derived via the Hirshman-Sigmar moment approach. Also the expression of the collisional impurity ions poloidal rotation velocity that is caused by the parallel inductive electric field in tokamaks is derived. The poloidal rotation velocities of the primary ions and the impurity ions are sensitive to the primary ion collisionality parameter and the impurity strength parameter. The poloidal rotation velocities of the primary ions and the impurity ions decrease with the primarymore » ion collisionality parameter and decrease with the impurity strength parameter.« less

  2. Suppression of Gain Ripples in Superconducting Traveling-Wave Kinetic Inductance Amplifiers

    NASA Astrophysics Data System (ADS)

    Bal, Mustafa; Erickson, Robert P.; Ku, Hsiang Sheng; Wu, Xian; Pappas, David P.

    Superconducting traveling-wave kinetic inductance (KIT) amplifiers demonstrated gain over a wide bandwidth with high dynamic range and low noise. However, the gain curve exhibits ripples. Impedance mismatch at the input and output ports of the KIT amplifier as wells as split ground planes of the coplanar waveguide (CPW) geometry are potential contributors to the ripple in the gain curve. Here we study the origin of these ripples in KIT amplifiers configured in CPW geometry using approximately 20 nm thick NbTiN films grown by reactive co-sputtering of NbN and TiN. Our NbTiN films have non-linear kinetic inductance as a function of current, described by L =L0 (1 +(I /I*) 2) , where I* = 15 . 96 +/- 0 . 11 mA measured by time domain reflectometry. We report the results of implementing an impedance taper that takes into account a significantly reduced phase velocity as it narrows, adding Au onto the CPW split grounds, as well as employing different designs of dispersion engineering. Qubit Measurements using KIT amplifiers will also be reported.

  3. Mössbauer spectra linearity improvement by sine velocity waveform followed by linearization process

    NASA Astrophysics Data System (ADS)

    Kohout, Pavel; Frank, Tomas; Pechousek, Jiri; Kouril, Lukas

    2018-05-01

    This note reports the development of a new method for linearizing the Mössbauer spectra recorded with a sine drive velocity signal. Mössbauer spectra linearity is a critical parameter to determine Mössbauer spectrometer accuracy. Measuring spectra with a sine velocity axis and consecutive linearization increases the linearity of spectra in a wider frequency range of a drive signal, as generally harmonic movement is natural for velocity transducers. The obtained data demonstrate that linearized sine spectra have lower nonlinearity and line width parameters in comparison with those measured using a traditional triangle velocity signal.

  4. A Simple Piece of Apparatus to Aid the Understanding of the Relationship between Angular Velocity and Linear Velocity

    ERIC Educational Resources Information Center

    Unsal, Yasin

    2011-01-01

    One of the subjects that is confusing and difficult for students to fully comprehend is the concept of angular velocity and linear velocity. It is the relationship between linear and angular velocity that students find difficult; most students understand linear motion in isolation. In this article, we detail the design, construction and…

  5. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  6. Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies.

    PubMed

    Liu, H; Genov, D A; Wu, D M; Liu, Y M; Steele, J M; Sun, C; Zhu, S N; Zhang, X

    2006-12-15

    A one-dimensional magnetic plasmon propagating in a linear chain of single split ring resonators is proposed. The subwavelength size resonators interact mainly through exchange of conduction current, resulting in stronger coupling as compared to the corresponding magneto-inductive interaction. Finite-difference time-domain simulations in conjunction with a developed analytical theory show that efficient energy transfer with signal attenuation of less then 0.57 dB/microm and group velocity higher than 1/4c can be achieved. The proposed novel mechanism of energy transport in the nanoscale has potential applications in subwavelength transmission lines for a wide range of integrated optical devices.

  7. Assessment of Advanced Logistics Delivery System (ALDS) Launch Systems Concepts

    DTIC Science & Technology

    2004-10-01

    highest force vs. rotor weight required, allows much higher magnetic field generation than the linear induction or linear permanent magnet motors , and...provides the highest force vs. rotor weight required, allows much higher magnetic generation than the linear induction or linear permanent magnet motors , and

  8. Heavy ion action on yeast cells: Inhibition of ribosomal-RNA synthesis, loss of colony forming ability and induction of mutants

    NASA Astrophysics Data System (ADS)

    Kiefer, J.; Rase, S.; Schöpfer, F.; Schneider, E.; Weber, K.; Kraft, G.

    The action of heavy ions (Ar to U) accelerated to specific energies up to about 10 MeV/u (u=atomic mass unit) on different functions of yeast cells was studied. Ribosomal-RNA synthesis is inhibited according to a single-hit mechanism. Inactivation cross-sections were linearly related to the ratio of the squares of the effective charge Z* and the velocity of the ions. It is concluded from the analysis that the range of the most energetic δ-electrons is larger than previously assumed. There is no such dependence for survival and induction of mutants. In both cases cross-sections increase with the ion's specific-energy indicating an important contribution of long-range δ-electrons. The analysis shows that diploid yeast is not killed by a single-hit mechanism even by very heavy ions if the track width is too small. The relative importance of the penumbral region is even more pronounced with the more sensitive strains.

  9. Quasi-linear regime of gravitational instability: Implication to density-velocity relation

    NASA Technical Reports Server (NTRS)

    Shandarin, Sergei F.

    1993-01-01

    The well known linear relation between density and peculiar velocity distributions is a powerful tool for studying the large-scale structure in the Universe. Potentially it can test the gravitational instability theory and measure Omega. At present it is used in both ways: the velocity is reconstructed, provided the density is given, and vice versa. Reconstructing the density from the velocity field usually makes use of the Zel'dovich approximation. However, the standard linear approximation in Eulerian space is used when the velocity is reconstructed from the density distribution. I show that the linearized Zel'dovich approximation, in other words the linear approximation in the Lagrangian space, is more accurate for reconstructing velocity. In principle, a simple iteration technique can recover both the density and velocity distributions in Lagrangian space, but its practical application may need an additional study.

  10. Mass sensitivity studies for an inductively driven railgun

    NASA Astrophysics Data System (ADS)

    Scanlon, J. J., III; Young, A. F.

    1991-01-01

    Those areas which result in substantial system mass reductions for an HPG (homopolar generator) driven EML (electromagnetic launcher) are identified. Sensitivity studies are performed by varying launch mass, peak acceleration, launcher efficiency, inductance gradient, injection velocity, barrel mass per unit length, fuel tankage and pump estimates, and component energy and power densities. Two major contributors to the system mass are the allowed number of shots per barrel versus the number required for the mission, and the barrel length. The effects of component performance parameters, such as friction coefficient, injection velocity, ablation coefficient, rail resistivity, armature voltage, peak acceleration, and inductance gradient on these two areas, are addressed.

  11. Numerical calculation of primary slot leakage inductance of a Single-sided HTS linear induction motor used for linear metro

    NASA Astrophysics Data System (ADS)

    Li, Dong; Wen, Yinghong; Li, Weili; Fang, Jin; Cao, Junci; Zhang, Xiaochen; Lv, Gang

    2017-03-01

    In the paper, the numerical method calculating asymmetric primary slot leakage inductances of Single-sided High-Temperature Superconducting (HTS) Linear Induction Motor (HTS LIM) is presented. The mathematical and geometric models of three-dimensional nonlinear transient electromagnetic field are established and the boundary conditions are also given. The established model is solved by time-stepping Finite Element Method (FEM). Then, the three-phase asymmetric primary slot leakage inductances under different operation conditions are calculated by using the obtained electromagnetic field distribution. The influences of the special effects such as longitudinal end effects, transversal edge effects, etc. on the primary slot leakage inductance are investigated. The presented numerical method is validated by experiments carried out on a 3.5 kW prototype with copper wires which has the same structures with the HTS LIM.

  12. Using nonlinear forecasting to learn the magnitude and phasing of time-varying sediment suspension in the surf zone

    USGS Publications Warehouse

    Jaffe, B.E.; Rubin, D.M.

    1996-01-01

    The time-dependent response of sediment suspension to flow velocity was explored by modeling field measurements collected in the surf zone during a large storm. Linear and nonlinear models were created and tested using flow velocity as input and suspended-sediment concentration as output. A sequence of past velocities (velocity history), as well as velocity from the same instant as the suspended-sediment concentration, was used as input; this velocity history length was allowed to vary. The models also allowed for a lag between input (instantaneous velocity or end of velocity sequence) and output (suspended-sediment concentration). Predictions of concentration from instantaneous velocity or instantaneous velocity raised to a power (up to 8) using linear models were poor (correlation coefficients between predicted and observed concentrations were less than 0.10). Allowing a lag between velocity and concentration improved linear models (correlation coefficient of 0.30), with optimum lag time increasing with elevation above the seabed (from 1.5 s at 13 cm to 8.5 s at 60 cm). These lags are largely due to the time for an observed flow event to effect the bed and mix sediment upward. Using a velocity history further improved linear models (correlation coefficient of 0.43). The best linear model used 12.5 s of velocity history (approximately one wave period) to predict concentration. Nonlinear models gave better predictions than linear models, and, as with linear models, nonlinear models using a velocity history performed better than models using only instantaneous velocity as input. Including a lag time between the velocity and concentration also improved the predictions. The best model (correlation coefficient of 0.58) used 3 s (approximately a quarter wave period) of the cross-shore velocity squared, starting at 4.5 s before the observed concentration, to predict concentration. Using a velocity history increases the performance of the models by specifying a more complete description of the dynamical forcing of the flow (including accelerations and wave phase and shape) responsible for sediment suspension. Incorporating such a velocity history and a lag time into the formulation of the forcing for time-dependent models for sediment suspension in the surf zone will greatly increase our ability to predict suspended-sediment transport.

  13. A theoretical study of the acoustic impedance of orifices in the presence of a steady grazing flow

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1976-01-01

    An analysis of the oscillatory fluid flow in the vicinity of a circular orifice with a steady grazing flow is presented. The study is similar to that of Hersh and Rogers but with the addition of the grazing flow. Starting from the momentum and continuity equations, a considerably simplified system of partial differential equations is developed with the assumption that the flow can be described by an oscillatory motion superimposed upon the known steady flow. The equations are seen to be linear in the region where the grazing flow effects are dominant, and a solution and the resulting orifice impedance are presented for this region. The nonlinearity appears to be unimportant for the usual conditions found in aircraft noise suppressors. Some preliminary conclusions of the study are that orifice resistance is directly proportional to grazing flow velocity (known previously from experimental data) and that the orifice inductive (mass reactance) end correction is not a function of grazing flow. This latter conclusion is contrary to the widely held notion that grazing flow removes the effect of the orifice inductive end correction. This conclusion also implies that the experimentally observed total inductance reduction with grazing flow might be in the flow within the orifice rather than in the end correction.

  14. Blending Velocities In Task Space In Computing Robot Motions

    NASA Technical Reports Server (NTRS)

    Volpe, Richard A.

    1995-01-01

    Blending of linear and angular velocities between sequential specified points in task space constitutes theoretical basis of improved method of computing trajectories followed by robotic manipulators. In method, generalized velocity-vector-blending technique provides relatively simple, common conceptual framework for blending linear, angular, and other parametric velocities. Velocity vectors originate from straight-line segments connecting specified task-space points, called "via frames" and represent specified robot poses. Linear-velocity-blending functions chosen from among first-order, third-order-polynomial, and cycloidal options. Angular velocities blended by use of first-order approximation of previous orientation-matrix-blending formulation. Angular-velocity approximation yields small residual error, quantified and corrected. Method offers both relative simplicity and speed needed for generation of robot-manipulator trajectories in real time.

  15. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, William M.

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  16. Chargeability measurements of selected pharmaceutical dry powders to assess their electrostatic charge control capabilities.

    PubMed

    Ramirez-Dorronsoro, Juan-Carlos; Jacko, Robert B; Kildsig, Dane O

    2006-01-01

    The purpose of this study was to develop an instrument (the Purdue instrument) and the corresponding methodologies to measure the electrostatic charge development (chargeability) of dry powders when they are in dynamic contact with stainless steel surfaces. The system used an inductive noncontact sensor located inside an aluminum Faraday cage and was optimized to measure the charging capabilities of a fixed volume of powder (0.5 cc). The chargeability of 5,5-diphenyl-hydantoin, calcium sulfate dihydrate, cimetidine, 3 grades of colloidal silicon dioxide, magnesium stearate, 4 grades of microcrystalline cellulose, salicylic acid, sodium carbonate, sodium salicylate, spray-dried lactose, and sulfinpyrazone were tested at 4 linear velocities, and the particle size distribution effect was assessed for 3 different grades of colloidal silicon dioxide and 4 different grades of microcrystalline cellulose. The chargeability values exhibited a linear relationship for the range of velocities studied, with colloidal silicon dioxide exhibiting the maximum negative chargeability and with spray-dried lactose being the only compound to exhibit positive chargeability. The instrument sensitivity was improved by a factor of 2 over the first generation version, and the electrostatic charge measurements were reproducible with relative standard deviations ranging from nondetectable to 33.7% (minimum of 3 replicates). These results demonstrate the feasibility of using the Purdue instrument to measure the electrostatic charge control capabilities of pharmaceutical dry powders with a reasonable level of precision.

  17. Introduction

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Briggs*, Richard J.

    The motivation for the initial development of linear induction accelerators starting in the early 1960s came mainly from applications requiring intense electron pulses with beam currents and a charge per pulse above the range accessible to RF accelerators, and with particle energies beyond the capabilities of single stage pulsed-power diodes. The linear induction accelerators developed to meet these needs utilize a series of induction cells containing magnetic cores (torroidal geometry) driven directly by pulse modulators (pulsed power sources). This multistage "one-to-one transformer" configuration with non-resonant, low impedance induction cells accelerates kilo-Ampere-scale electron beam current pulses in induction linacs.

  18. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  19. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher.

    PubMed

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  20. Critical system issues and modeling requirements: The problem of beam energy sweep in an electron linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, W.C.; Barrett, D.M.; Sampayan, S.E.

    1990-08-06

    In this paper we discuss system issues and modeling requirements within the context of energy sweep in an electron linear induction accelerator. When needed, particular parameter values are taken from the ETA-II linear induction accelerator at Lawrence Livermore National Laboratory. For this paper, the most important parameter is energy sweep during a pulse. It is important to have low energy sweep to satisfy the FEL resonance condition and to limit the beam corkscrew motion. It is desired to achieve {Delta}E/E = {plus minus}1% for a 50-ns flattop whereas the present level of performance is {Delta}E/E = {plus minus}1% in 10more » ns. To improve this situation we will identify a number of areas in which modeling could help increase understanding and improve our ability to design linear induction accelerators.« less

  1. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  2. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration that accompanies the radial compression of the plasma in conical theta pinches.

  3. Study of linear induction motor characteristics : the Mosebach model

    DOT National Transportation Integrated Search

    1976-05-31

    This report covers the Mosebach theory of the double-sided linear induction motor, starting with the ideallized model and accompanying assumptions, and ending with relations for thrust, airgap power, and motor efficiency. Solutions of the magnetic in...

  4. Study of linear induction motor characteristics : the Oberretl model

    DOT National Transportation Integrated Search

    1975-05-30

    The Oberretl theory of the double-sided linear induction motor (LIM) is examined, starting with the idealized model and accompanying assumptions, and ending with relations for predicted thrust, airgap power, and motor efficiency. The effect of varyin...

  5. System and method for investigating sub-surface features and 3D imaging of non-linear property, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt

    A system and a method for generating a three-dimensional image of a rock formation, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation are provided. A first acoustic signal includes a first plurality of pulses. A second acoustic signal from a second source includes a second plurality of pulses. A detected signal returning to the borehole includes a signal generated by a non-linear mixing process from the first and second acoustic signals in a non-linear mixing zone within an intersection volume. The received signal is processed to extract the signal over noise and/or signals resultingmore » from linear interaction and the three dimensional image of is generated.« less

  6. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals.

    PubMed

    Jasiewicz, Jan M; Allum, John H J; Middleton, James W; Barriskill, Andrew; Condie, Peter; Purcell, Brendan; Li, Raymond Che Tin

    2006-12-01

    We report on three different methods of gait event detection (toe-off and heel strike) using miniature linear accelerometers and angular velocity transducers in comparison to using standard pressure-sensitive foot switches. Detection was performed with normal and spinal-cord injured subjects. The detection of end contact (EC), normally toe-off, and initial contact (IC) normally, heel strike was based on either foot linear accelerations or foot sagittal angular velocity or shank sagittal angular velocity. The results showed that all three methods were as accurate as foot switches in estimating times of IC and EC for normal gait patterns. In spinal-cord injured subjects, shank angular velocity was significantly less accurate (p<0.02). We conclude that detection based on foot linear accelerations or foot angular velocity can correctly identify the timing of IC and EC events in both normal and spinal-cord injured subjects.

  7. Influence of Current Velocity on Uranium Adsorption from Seawater Using an Amidoxime-based Polymer Fiber Adsorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladshaw, Austin; Kuo, Li-Jung; Strivens, Jonathan

    2017-02-08

    Passive adsorption using amidoxime-based polymeric adsorbents is being developed for uranium recovery from seawater. The local oceanic current velocity where the adsorbent is deployed is a key variable in determining locations that will maximize uranium adsorption rates. Two independent experimental approaches using flow-through columns and recirculating flumes were used to assess the influence of linear velocity on uranium uptake kinetics by the adsorbent. Little to no difference was observed in the uranium adsorption rate vs. linear velocity for seawater exposure in flow-through columns. In contrast, adsorption results from seawater exposure in a recirculating flume showed a nearly linear trend withmore » current velocity. The difference in adsorbent performance between columns and flume can be attributed to (i) flow resistance provided by the adsorbent braid in the flume and (ii) enhancement in braid movement (fluttering) with increasing linear velocity.« less

  8. Influence of Current Velocity on Uranium Adsorption from Seawater Using an Amidoxime-Based Polymer Fiber Adsorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladshaw, Austin; Kuo, Li-Jung; Strivens, Jonathan

    2017-02-17

    Passive adsorption using amidoxime-based polymeric adsorbents is being developed for uranium recovery from seawater. The local oceanic current velocity where the adsorbent is deployed is a key variable in determining locations that will maximize uranium adsorption rates. Two independent experimental approaches using flow-through columns and recirculating flumes were used to assess the influence of linear velocity on uranium uptake kinetics by the adsorbent. Little to no difference was observed in the uranium adsorption rate vs. linear velocity for seawater exposure in flow-through columns. In contrast, adsorption results from seawater exposure in a recirculating flume showed a nearly linear trend withmore » current velocity. The difference in adsorbent performance between columns and flume can be attributed to (i) flow resistance provided by the adsorbent braid in the flume and (ii) enhancement in braid movement (fluttering) with increasing linear velocity.« less

  9. Differential adaptation of the linear and nonlinear components of the horizontal vestibuloocular reflex in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Clendaniel, Richard A.; Lasker, David M.; Minor, Lloyd B.; Shelhamer, M. J. (Principal Investigator)

    2002-01-01

    Previous work in squirrel monkeys has demonstrated the presence of linear and nonlinear components to the horizontal vestibuloocular reflex (VOR) evoked by high-acceleration rotations. The nonlinear component is seen as a rise in gain with increasing velocity of rotation at frequencies more than 2 Hz (a velocity-dependent gain enhancement). We have shown that there are greater changes in the nonlinear than linear component of the response after spectacle-induced adaptation. The present study was conducted to determine if the two components of the response share a common adaptive process. The gain of the VOR, in the dark, to sinusoidal stimuli at 4 Hz (peak velocities: 20-150 degrees /s) and 10 Hz (peak velocities: 20 and 100 degrees /s) was measured pre- and postadaptation. Adaptation was induced over 4 h with x0.45 minimizing spectacles. Sum-of-sines stimuli were used to induce adaptation, and the parameters of the stimuli were adjusted to invoke only the linear or both linear and nonlinear components of the response. Preadaptation, there was a velocity-dependent gain enhancement at 4 and 10 Hz. In postadaptation with the paradigms that only recruited the linear component, there was a decrease in gain and a persistent velocity-dependent gain enhancement (indicating adaptation of only the linear component). After adaptation with the paradigm designed to recruit both the linear and nonlinear components, there was a decrease in gain and no velocity-dependent gain enhancement (indicating adaptation of both components). There were comparable changes in the response to steps of acceleration. We interpret these results to indicate that separate processes drive the adaptation of the linear and nonlinear components of the response.

  10. Electro-Mechanical Actuator. DC Resonant Link Controller

    NASA Technical Reports Server (NTRS)

    Schreiner, Kenneth E.

    1996-01-01

    This report summarizes the work performed on the 68 HP electro-mechanical actuator (EMA) system developed on NASA contract for the Electrical Actuation (ELA) Technology Bridging Program. The system was designed to demonstrate the capability of large, high power linear ELAs for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, drive electronics and a linear actuator capable of up to 32,00 lbs loading at 7.4 inches/second. The drive electronics are based on the Resonant DC link concept and operate at a nominal frequency of 55 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response, step response and force-velocity tests were conducted at the MOOG Aerospace facility. A complete description of the system and all test results can be found in the body of the report.

  11. Applications of Electron Linear Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Westenskow*, Glen; Chen, Yu-Jiuan

    Linear Induction Accelerators (LIAs) can readily produce intense electron beams. For example, the ATA accelerator produced a 500 GW beam and the LIU-30 a 4 TW beam (see Chap. 2). Since the induction accelerator concept was proposed in the late 1950s [1, 2], there have been many proposed schemes to convert the beam power to other forms. Categories of applications that have been demonstrated for electron LIAs include:

  12. Linear induction accelerator

    DOEpatents

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  13. Form features provide a cue to the angular velocity of rotating objects

    PubMed Central

    Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul

    2013-01-01

    As an object rotates, each location on the object moves with an instantaneous linear velocity dependent upon its distance from the center of rotation, while the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different sized objects, as changing the size of an object changes the linear velocity of each location on the object’s surface, while maintaining the object’s angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PMID:23750970

  14. Form features provide a cue to the angular velocity of rotating objects.

    PubMed

    Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul

    2014-02-01

    As an object rotates, each location on the object moves with an instantaneous linear velocity, dependent upon its distance from the center of rotation, whereas the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different-sized objects, as changing the size of an object changes the linear velocity of each location on the object's surface, while maintaining the object's angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high-contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Magnetic Reconnection Processes Involving Modes Propagating in the Ion Diamagnetic Velocity Direction

    NASA Astrophysics Data System (ADS)

    Buratti, P.; Coppi, B.; Pucella, G.; Zhou, T.

    2013-10-01

    Experiments in weakly collisional plasma regimes, (e.g. neutral beam heated plasmas in the H-regime), measuring the Doppler shift associated with the plasma local rotation, have shown that the toroidal mode phase velocity vph in the frame with Er = 0 is in the direction of the ion diamagnetic velocity. For ohmically heated plasmas, with higher collisionalities, vph in the laboratory frame is in the direction of the electron diamagnetic velocity, but plasma rotation is reversed as well, and vph, in the Er = 0 frame, is in the ion diamagnetic velocity direction. Theoretically, two classes of reconnecting modes should emerge: drift-tearing modes and ``inductive modes'' that depend on the effects of a finite plasma inductivity. The former modes, with vph in the direction of the electron diamagnetic velocity, require the pre-excitation of a different kind of mode in order to become unstable in weakly collisional regimes. The second kind of modes has a growth rate associated with the relevant finite ion viscosity. A comprehensive theory is presented. Sponsored in part by the US DOE.

  16. Linear phase compressive filter

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  17. Evaluation of linear induction motor characteristics : the Yamamura model

    DOT National Transportation Integrated Search

    1975-04-30

    The Yamamura theory of the double-sided linear induction motor (LIM) excited by a constant current source is discussed in some detail. The report begins with a derivation of thrust and airgap power using the method of vector potentials and theorem of...

  18. Effect of Frequency and Spatial-Harmonics on Rotary and Linear Induction Motor Characteristics

    DOT National Transportation Integrated Search

    1972-03-01

    A computer analysis is made of the effect of current and MMF airgap harmonics on the output characteristics of rotary and linear induction motors. The current harmonics accompanying thyristor-control operation are evaluated by Fourier analyzing the p...

  19. Calibration of a magnetic induction system for measurement of hypervelocities

    NASA Astrophysics Data System (ADS)

    Breeze, S. P.

    1993-03-01

    A device to measure the velocity and to determine the character of a material launched in a flight tube during the execution of an experiment has been constructed. This measurement device provides a self generating signal, is nonintrusive, compact, and accurate. The signals are reproducible, and it is relatively inexpensive to procure. The MAgnetic Velocity Induction System (MAVIS) has been the technique used to measure projectile velocities in the two-stage light gas gun at Sandia for many years. Several experiments were conducted to study the MAVIS data signatures produced by various metal projectiles at velocities raging from 0.8 km/sec to nearly 7.0 km/sec, as well as fragmented metal projectiles, and a highly conductive carbon plasma. This report deals with the results of those calibration experiments. The data signature study may be used as an aid in the interpretation of the other test data records.

  20. Linear induction accelerator and pulse forming networks therefor

    DOEpatents

    Buttram, Malcolm T.; Ginn, Jerry W.

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  1. Molten metal feed system controlled with a traveling magnetic field

    DOEpatents

    Praeg, Walter F.

    1991-01-01

    A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

  2. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  3. Direct reading inductance meter

    NASA Technical Reports Server (NTRS)

    Kolby, R. B. (Inventor)

    1977-01-01

    A direct reading inductance meter comprised of a crystal oscillator and an LC tuned oscillator is presented. The oscillators function respectively to generate a reference frequency, f(r), and to generate an initial frequency, f(0), which when mixed produce a difference equal to zero. Upon connecting an inductor of small unknown value in the LC circuit to change its resonant frequency to f(x), a difference frequency (f(r)-f(x)) is produced that is very nearly a linear function of the inductance of the inductor. The difference frequency is measured and displayed on a linear scale in units of inductance.

  4. Free-piston engine linear generator for hybrid vehicles modeling study

    NASA Astrophysics Data System (ADS)

    Callahan, T. J.; Ingram, S. K.

    1995-05-01

    Development of a free piston engine linear generator was investigated for use as an auxiliary power unit for a hybrid electric vehicle. The main focus of the program was to develop an efficient linear generator concept to convert the piston motion directly into electrical power. Computer modeling techniques were used to evaluate five different designs for linear generators. These designs included permanent magnet generators, reluctance generators, linear DC generators, and two and three-coil induction generators. The efficiency of the linear generator was highly dependent on the design concept. The two-coil induction generator was determined to be the best design, with an efficiency of approximately 90 percent.

  5. Linear phase compressive filter

    DOEpatents

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  6. Task Space Angular Velocity Blending for Real-Time Trajectory Generation

    NASA Technical Reports Server (NTRS)

    Volpe, Richard A. (Inventor)

    1997-01-01

    The invention is embodied in a method of controlling a robot manipulator moving toward a target frame F(sub 0) with a target velocity v(sub 0) including a linear target velocity v and an angular target velocity omega(sub 0) to smoothly and continuously divert the robot manipulator to a subsequent frame F(sub 1) by determining a global transition velocity v(sub 1), the global transition velocity including a linear transition velocity v(sub 1) and an angular transition velocity omega(sub 1), defining a blend time interval 2(tau)(sub 0) within which the global velocity of the robot manipulator is to be changed from a global target velocity v(sub 0) to the global transition velocity v(sub 1) and dividing the blend time interval 2(tau)(sub 0) into discrete time segments (delta)t. During each one of the discrete time segments delta t of the blend interval 2(tau)(sub 0), a blended global velocity v of the manipulator is computed as a blend of the global target velocity v(sub 0) and the global transition velocity v(sub 1), the blended global velocity v including a blended angular velocity omega and a blended linear velocity v, and then, the manipulator is rotated by an incremental rotation corresponding to an integration of the blended angular velocity omega over one discrete time segment (delta)t.

  7. A measurement of forward-flight effects on the noise from a JT15D-1 turbofan engine in the NASA-Ames 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ahtye, W. F.

    1980-01-01

    A Pratt and Whitney JT15D-1 turbofan engine was tested in two facilities at Ames Research Center: the outdoor Static Test Facility and the 40- by 80-Foot Wind Tunnel. The primary purposes of the test were to determine the effects of forward velocity on the turbofan spectra in the forward quadrant for the cruise inlet and to compare these wind-tunnel spectra with outdoor spectra to determine the possibility of simulating forward-velocity effects from purely outdoor measurements. The wind-tunnel data show a reduction in the blade-passage frequency tones of the order of 10 dB with increasing forward velocity at subsonic fan-tip speeds. No forward-velocity variation was observed at supersonic tip speeds. Comparison of in-duct spectra for the cruise inlet at forward velocity, with spectra from outdoor tests with a distortion-control inlet shows excellent agreement for the in-duct data when allowance is made for different in-duct volumes. This is also reflected in good agreement for the far-field spectra at small forward angles. The comparisons of wind-tunnel and outdoor data also indicate that at least for the JT15D-1, it may be possible to approximate the shape of the far-field spectra at large directivity angles from an outdoor measurement with the cruise inlet, providing an effective inflow control device is used.

  8. Vortex conception of rotor and mutual effect of screw/propellers

    NASA Technical Reports Server (NTRS)

    Lepilkin, A. M.

    1986-01-01

    A vortex theory of screw/propellers with variable circulation according to the blade and its azimuth is proposed, the problem is formulated and circulation is expanded in a Fourier series. Equations are given for inductive velocities in space for crews, including those with an infinitely large number of blades and expansion of the inductive velocity by blade azimuth of a second screw. Multiparameter improper integrals are given as a combination of elliptical integrals and elementary functions, and it is shown how to reduce elliptical integrals of the third kind with a complex parameter to integrals with a real parameter.

  9. Spatial orientation perception and reflexive eye movements--a perspective, an overview, and some clinical implications

    NASA Technical Reports Server (NTRS)

    Guedry, F. E.; Paloski, W. F. (Principal Investigator)

    1996-01-01

    When head motion includes a linear velocity component, eye velocity required to track an earth-fixed target depends upon: a) angular and linear head velocity, b) target distance, and c) direction of gaze relative to the motion trajectory. Recent research indicates that eye movements (LVOR), presumably otolith-mediated, partially compensate for linear velocity in small head excursions on small devices. Canal-mediated eye velocity (AVOR), otolith-mediated eye velocity (LVOR), and Ocular Torsion (OT) can be measured, one by one, on small devices. However, response dynamics that depend upon the ratio of linear to angular velocity in the motion trajectory and on subject orientation relative to the trajectory are present in a centrifuge paradigm. With this paradigm, two 3-min runs yields measures of: LVOR differentially modulated by different subject orientations in the two runs; OT dynamics in four conditions; two directions of "steady-state" OT, and two directions of AVOR. Efficient assessment of the dynamics (and of the underlying central integrative processes) may require a centrifuge radius of 1.0 meters or more. Clinical assessment of the spatial orientation system should include evaluation of central integrative processes that determine the dynamics of these responses.

  10. Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.

    PubMed

    Hasegawa, Chihiro; Duffull, Stephen B

    2018-02-01

    Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.

  11. Assessing the impact of non-tidal atmospheric loading on a Kalman filter-based terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Abbondanza, Claudio; Altamimi, Zuheir; Chin, Toshio; Collilieux, Xavier; Dach, Rolf; Gross, Richard; Heflin, Michael; König, Rolf; Lemoine, Frank; Macmillan, Dan; Parker, Jay; van Dam, Tonie; Wu, Xiaoping

    2014-05-01

    The International Terrestrial Reference Frame (ITRF) adopts a piece-wise linear model to parameterize regularized station positions and velocities. The space-geodetic (SG) solutions from VLBI, SLR, GPS and DORIS used as input in the ITRF combination process account for tidal loading deformations, but ignore the non-tidal part. As a result, the non-linear signal observed in the time series of SG-derived station positions in part reflects non-tidal loading displacements not introduced in the SG data reduction. In this analysis, we assess the impact of non-tidal atmospheric loading (NTAL) corrections on the TRF computation. Focusing on the a-posteriori approach, (i) the NTAL model derived from the National Centre for Environmental Prediction (NCEP) surface pressure is removed from the SINEX files of the SG solutions used as inputs to the TRF determinations; (ii) adopting a Kalman-filter based approach, two distinct linear TRFs are estimated combining the 4 SG solutions with (corrected TRF solution) and without the NTAL displacements (standard TRF solution). Linear fits (offset and atmospheric velocity) of the NTAL displacements removed during step (i) are estimated accounting for the station position discontinuities introduced in the SG solutions and adopting different weighting strategies. The NTAL-derived (atmospheric) velocity fields are compared to those obtained from the TRF reductions during step (ii). The consistency between the atmospheric and the TRF-derived velocity fields is examined. We show how the presence of station position discontinuities in SG solutions degrades the agreement between the velocity fields and compare the effect of different weighting structure adopted while estimating the linear fits to the NTAL displacements. Finally, we evaluate the effect of restoring the atmospheric velocities determined through the linear fits of the NTAL displacements to the single-technique linear reference frames obtained by stacking the standard SG SINEX files. Differences between the velocity fields obtained restoring the NTAL displacements and the standard stacked linear reference frames are discussed.

  12. Analytic theory for the determination of velocity and stability of bubbles in a Hele-Shaw cell. I - Velocity selection. II - Stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1989-01-01

    An asymptotic theory is presented for the determination of velocity and linear stability of a steady symmetric bubble in a Hele-Shaw cell for small surface tension. First the bubble velocity relative to the fluid velocity at infinity is determined for small surface tension by means of a transcendentally small correction to the asymptotic series solution. In addition, a linear stability analysis shows that only the solution branch corresponding to the largest possible bubble velocity for given surface tension is stable, while all the others are unstable.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkin, E. R.; Bicknell, G. V., E-mail: parkin@mso.anu.edu.au

    Global three-dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when nonlinear motions-perhaps triggered by the onset of turbulence-upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once themore » disk has expelled the initially net flux field and settled into quasi-periodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with previous works. In particular, the globally averaged stress normalized to the gas pressure <{alpha}{sub P}>bar = 0.034, with notably higher values achieved for simulations with higher azimuthal resolution. Supplementary tests are performed using different numerical algorithms and resolutions. Convergence with resolution during the initial linear MRI growth phase is found for 23-35 cells per scale height (in the vertical direction).« less

  14. On the Validity of the Streaming Model for the Redshift-Space Correlation Function in the Linear Regime

    NASA Astrophysics Data System (ADS)

    Fisher, Karl B.

    1995-08-01

    The relation between the galaxy correlation functions in real-space and redshift-space is derived in the linear regime by an appropriate averaging of the joint probability distribution of density and velocity. The derivation recovers the familiar linear theory result on large scales but has the advantage of clearly revealing the dependence of the redshift distortions on the underlying peculiar velocity field; streaming motions give rise to distortions of θ(Ω0.6/b) while variations in the anisotropic velocity dispersion yield terms of order θ(Ω1.2/b2). This probabilistic derivation of the redshift-space correlation function is similar in spirit to the derivation of the commonly used "streaming" model, in which the distortions are given by a convolution of the real-space correlation function with a velocity distribution function. The streaming model is often used to model the redshift-space correlation function on small, highly nonlinear, scales. There have been claims in the literature, however, that the streaming model is not valid in the linear regime. Our analysis confirms this claim, but we show that the streaming model can be made consistent with linear theory provided that the model for the streaming has the functional form predicted by linear theory and that the velocity distribution is chosen to be a Gaussian with the correct linear theory dispersion.

  15. Understanding of Materials State and its Degradation using Non-Linear Ultrasound (NLU) Approaches

    DTIC Science & Technology

    2011-01-01

    Traditional ultrasonic NDE is based on linear theory and normally relies on measuring some particular parameter (sound velocity , attenuation... velocity in the material. In most cases this technique is not considered to be very practical as very small changes in velocity has to be measured. Hence...nonlinear elasticity) of the material the input wave distorts as it propagates. This is attributed to the difference in the wave velocities of the

  16. Predicting vertical jump height from bar velocity.

    PubMed

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  17. Predicting Vertical Jump Height from Bar Velocity

    PubMed Central

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-01-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s-2). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r2 = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r2 = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key points Vertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer. The relationship between the point at which bar acceleration is less than -9.81 m·s-2 and the real take-off is affected by the velocity of movement. Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance. PMID:25983572

  18. Relative Velocity as a Metric for Probability of Collision Calculations

    NASA Technical Reports Server (NTRS)

    Frigm, Ryan Clayton; Rohrbaugh, Dave

    2008-01-01

    Collision risk assessment metrics, such as the probability of collision calculation, are based largely on assumptions about the interaction of two objects during their close approach. Specifically, the approach to probabilistic risk assessment can be performed more easily if the relative trajectories of the two close approach objects are assumed to be linear during the encounter. It is shown in this analysis that one factor in determining linearity is the relative velocity of the two encountering bodies, in that the assumption of linearity breaks down at low relative approach velocities. The first part of this analysis is the determination of the relative velocity threshold below which the assumption of linearity becomes invalid. The second part is a statistical study of conjunction interactions between representative asset spacecraft and the associated debris field environment to determine the likelihood of encountering a low relative velocity close approach. This analysis is performed for both the LEO and GEO orbit regimes. Both parts comment on the resulting effects to collision risk assessment operations.

  19. The neural basis of attaining conscious awareness of sad mood.

    PubMed

    Smith, Ryan; Braden, B Blair; Chen, Kewei; Ponce, Francisco A; Lane, Richard D; Baxter, Leslie C

    2015-09-01

    The neural processes associated with becoming aware of sad mood are not fully understood. We examined the dynamic process of becoming aware of sad mood and recovery from sad mood. Sixteen healthy subjects underwent fMRI while participating in a sadness induction task designed to allow for variable mood induction times. Individualized regressors linearly modeled the time periods during the attainment of self-reported sad and baseline "neutral" mood states, and the validity of the linearity assumption was further tested using independent component analysis. During sadness induction the dorsomedial and ventrolateral prefrontal cortices, and anterior insula exhibited a linear increase in the blood oxygen level-dependent (BOLD) signal until subjects became aware of a sad mood and then a subsequent linear decrease as subjects transitioned from sadness back to the non-sadness baseline condition. These findings extend understanding of the neural basis of conscious emotional experience.

  20. Estimating cosmic velocity fields from density fields and tidal tensors

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan

    2012-10-01

    In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.

  1. Kinetics of the melting front movement in process of centrifugal induction surfacing of powder material with nanoscale modificaters

    NASA Astrophysics Data System (ADS)

    Sasnouski, I.; Kurylionak, A.

    2018-03-01

    For solving the problem of improving the powder coatings modified by nanostructure components obtained by induction surfacing method tribological characteristics it is necessary to study the kinetics of the powdered layer melting and define the minimum time of melting. For powdered layer predetermined temperature maintenance at sintering mode stage it is required to determine the temperature difference through blank thickness of the for one hundred-day of the define the warm-up swing on of the stocking up by solving the thermal conductivity stationary problem for quill (hollow) cylinder with internal heat source. Herewith, since in practice thickness of the cylinder wall is much less then its diameter and the temperature difference is comparatively small, the thermal conductivity dependence upon the temperature can be treated as negligible. As it was shown by our previous studies, in the induction heating process under powdered material centrifugal surfacing (i.e. before achieving the melting temperature) the temperature distribution in powdered layer thickness may be considered even. Hereinafter, considering the blank part induction heating process quasi-stationarity under Fo big values, it is possible to consider its internal surface heating as developing with constant velocity. As a result of development the melting front movement mathematical model in a powdered material with nanostructure modifiers the minimum surfacing time is defined. It allows to minimize negative impact of thermal influence on formation of applied coating structure, to raise productivity of the process, to lower power inputs and to ensure saving of nonferrous and high alloys by reducing the allowance for machining. The difference of developed mathematical model of melting front movement from previously known is that the surface temperature from which the heat transfer occures is a variable and varies with a time after the linear law.

  2. Two is better than one: joint statistics of density and velocity in concentric spheres as a cosmological probe

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Codis, S.; Hahn, O.; Pichon, C.; Bernardeau, F.

    2017-08-01

    The analytical formalism to obtain the probability distribution functions (PDFs) of spherically averaged cosmic densities and velocity divergences in the mildly non-linear regime is presented. A large-deviation principle is applied to those cosmic fields assuming their most likely dynamics in spheres is set by the spherical collapse model. We validate our analytical results using state-of-the-art dark matter simulations with a phase-space resolved velocity field finding a 2 per cent level agreement for a wide range of velocity divergences and densities in the mildly non-linear regime (˜10 Mpc h-1 at redshift zero), usually inaccessible to perturbation theory. From the joint PDF of densities and velocity divergences measured in two concentric spheres, we extract with the same accuracy velocity profiles and conditional velocity PDF subject to a given over/underdensity that are of interest to understand the non-linear evolution of velocity flows. Both PDFs are used to build a simple but accurate maximum likelihood estimator for the redshift evolution of the variance of both the density and velocity divergence fields, which have smaller relative errors than their sample variances when non-linearities appear. Given the dependence of the velocity divergence on the growth rate, there is a significant gain in using the full knowledge of both PDFs to derive constraints on the equation of state-of-dark energy. Thanks to the insensitivity of the velocity divergence to bias, its PDF can be used to obtain unbiased constraints on the growth of structures (σ8, f) or it can be combined with the galaxy density PDF to extract bias parameters.

  3. Systems and methods for estimating the structure and motion of an object

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dani, Ashwin P; Dixon, Warren

    2015-11-03

    In one embodiment, the structure and motion of a stationary object are determined using two images and a linear velocity and linear acceleration of a camera. In another embodiment, the structure and motion of a stationary or moving object are determined using an image and linear and angular velocities of a camera.

  4. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation.

    PubMed

    Gritti, Fabrice

    2016-11-18

    An new class of gradient liquid chromatography (GLC) is proposed and its performance is analyzed from a theoretical viewpoint. During the course of such gradients, both the solvent strength and the column temperature are simultaneously changed in time and space. The solvent and temperature gradients propagate along the chromatographic column at their own and independent linear velocity. This class of gradient is called combined solvent- and temperature-programmed gradient liquid chromatography (CST-GLC). The general expressions of the retention time, retention factor, and of the temporal peak width of the analytes at elution in CST-GLC are derived for linear solvent strength (LSS) retention models, modified van't Hoff retention behavior, linear and non-distorted solvent gradients, and for linear temperature gradients. In these conditions, the theory predicts that CST-GLC is equivalent to a unique and apparent dynamic solvent gradient. The apparent solvent gradient steepness is the sum of the solvent and temperature steepness. The apparent solvent linear velocity is the reciprocal of the steepness-averaged sum of the reciprocal of the actual solvent and temperature linear velocities. The advantage of CST-GLC over conventional GLC is demonstrated for the resolution of protein digests (peptide mapping) when applying smooth, retained, and linear acetonitrile gradients in combination with a linear temperature gradient (from 20°C to 90°C) using 300μm×150mm capillary columns packed with sub-2 μm particles. The benefit of CST-GLC is demonstrated when the temperature gradient propagates at the same velocity as the chromatographic speed. The experimental proof-of-concept for the realization of temperature ramps propagating at a finite and constant linear velocity is also briefly described. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Redshift-space distortions with the halo occupation distribution - II. Analytic model

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.

    2007-01-01

    We present an analytic model for the galaxy two-point correlation function in redshift space. The cosmological parameters of the model are the matter density Ωm, power spectrum normalization σ8, and velocity bias of galaxies αv, circumventing the linear theory distortion parameter β and eliminating nuisance parameters for non-linearities. The model is constructed within the framework of the halo occupation distribution (HOD), which quantifies galaxy bias on linear and non-linear scales. We model one-halo pairwise velocities by assuming that satellite galaxy velocities follow a Gaussian distribution with dispersion proportional to the virial dispersion of the host halo. Two-halo velocity statistics are a combination of virial motions and host halo motions. The velocity distribution function (DF) of halo pairs is a complex function with skewness and kurtosis that vary substantially with scale. Using a series of collisionless N-body simulations, we demonstrate that the shape of the velocity DF is determined primarily by the distribution of local densities around a halo pair, and at fixed density the velocity DF is close to Gaussian and nearly independent of halo mass. We calibrate a model for the conditional probability function of densities around halo pairs on these simulations. With this model, the full shape of the halo velocity DF can be accurately calculated as a function of halo mass, radial separation, angle and cosmology. The HOD approach to redshift-space distortions utilizes clustering data from linear to non-linear scales to break the standard degeneracies inherent in previous models of redshift-space clustering. The parameters of the occupation function are well constrained by real-space clustering alone, separating constraints on bias and cosmology. We demonstrate the ability of the model to separately constrain Ωm,σ8 and αv in models that are constructed to have the same value of β at large scales as well as the same finger-of-god distortions at small scales.

  6. Mapping of power consumption and friction reduction in piezoelectrically-assisted ultrasonic lubrication

    NASA Astrophysics Data System (ADS)

    Dong, Sheng; Dapino, Marcelo J.

    2015-04-01

    Ultrasonic lubrication has been proven effective in reducing dynamic friction. This paper investigates the relationship between friction reduction, power consumption, linear velocity, and normal stress. A modified pin-on-disc tribometer was adopted as the experimental set-up, and a Labview system was utilized for signal generation and data acquisition. Friction reduction was quantified for 0.21 to 5.31 W of electric power, 50 to 200 mm/s of linear velocity, and 23 to 70 MPa of normal stress. Friction reduction near 100% can be achieved under certain conditions. Lower linear velocity and higher electric power result in greater friction reduction, while normal stress has little effect on friction reduction. Contour plots of friction reduction, power consumption, linear velocity, and normal stress were created. An efficiency coefficient was proposed to calculate power requirements for a certain friction reduction or reduced friction for a given electric power.

  7. Measurement of viscous flow velocity and flow visualization using two magnetic resonance imagers

    NASA Astrophysics Data System (ADS)

    Boiko, A. V.; Akulov, A. E.; Chupakhin, A. P.; Cherevko, A. A.; Denisenko, N. S.; Savelov, A. A.; Stankevich, Yu. A.; Khe, A. K.; Yanchenko, A. A.; Tulupov, A. A.

    2017-03-01

    The accuracies of measuring the velocity field using clinical and research magnetic resonance imagers are compared. The flow velocity of a fluid simulating blood in a carotid artery model connected to a programmable pump was measured. Using phase-contrast magnetic resonance tomography, the velocity distributions in the carotid artery model were obtained and compared with the analytical solution for viscous liquid flow in a cylindrical tube (Poiseuille flow). It is found that the accuracy of the velocity measurement does not depend on the field induction and spatial resolution of the imagers.

  8. Calculation of Linear Stability of a Stratified Gas-Liquid Flow in an Inclined Plane Channel

    NASA Astrophysics Data System (ADS)

    Trifonov, Yu. Ya.

    2018-01-01

    Linear stability of liquid and gas counterflows in an inclined channel is considered. The full Navier-Stokes equations for both phases are linearized, and the dynamics of periodic disturbances is determined by means of solving a spectral problem in wide ranges of Reynolds numbers for the liquid and vapor velocity. Two unstable modes are found in the examined ranges: surface mode (corresponding to the Kapitsa waves at small velocities of the gas) and shear mode in the gas phase. The wave length and the phase velocity of neutral disturbances of both modes are calculated as functions of the Reynolds number for the liquid. It is shown that these dependences for the surface mode are significantly affected by the gas velocity.

  9. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    PubMed

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  10. Reliability of the Load-Velocity Relationship Obtained Through Linear and Polynomial Regression Models to Predict the One-Repetition Maximum Load.

    PubMed

    Pestaña-Melero, Francisco Luis; Haff, G Gregory; Rojas, Francisco Javier; Pérez-Castilla, Alejandro; García-Ramos, Amador

    2017-12-18

    This study aimed to compare the between-session reliability of the load-velocity relationship between (1) linear vs. polynomial regression models, (2) concentric-only vs. eccentric-concentric bench press variants, as well as (3) the within-participants vs. the between-participants variability of the velocity attained at each percentage of the one-repetition maximum (%1RM). The load-velocity relationship of 30 men (age: 21.2±3.8 y; height: 1.78±0.07 m, body mass: 72.3±7.3 kg; bench press 1RM: 78.8±13.2 kg) were evaluated by means of linear and polynomial regression models in the concentric-only and eccentric-concentric bench press variants in a Smith Machine. Two sessions were performed with each bench press variant. The main findings were: (1) first-order-polynomials (CV: 4.39%-4.70%) provided the load-velocity relationship with higher reliability than second-order-polynomials (CV: 4.68%-5.04%); (2) the reliability of the load-velocity relationship did not differ between the concentric-only and eccentric-concentric bench press variants; (3) the within-participants variability of the velocity attained at each %1RM was markedly lower than the between-participants variability. Taken together, these results highlight that, regardless of the bench press variant considered, the individual determination of the load-velocity relationship by a linear regression model could be recommended to monitor and prescribe the relative load in the Smith machine bench press exercise.

  11. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    NASA Technical Reports Server (NTRS)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  12. Stable Spheromaks Sustained by Neutral Beam Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T K; Jayakumar, R; McLean, H S

    It is shown that spheromak equilibria, stable at zero-beta but departing from the Taylor state, could be sustained by non-inductive current drive at acceptable power levels. Stability to both ideal MHD and tearing modes is verified using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive and pressure effects could point the way to improved fusion reactors.

  13. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  14. An Efficient Fuzzy Controller Design for Parallel Connected Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Usha, S.; Subramani, C.

    2018-04-01

    Generally, an induction motors are highly non-linear and has a complex time varying dynamics. This makes the speed control of an induction motor a challenging issue in the industries. But, due to the recent trends in the power electronic devices and intelligent controllers, the speed control of the induction motor is achieved by including non-linear characteristics also. Conventionally a single inverter is used to run one induction motor in industries. In the traction applications, two or more inductions motors are operated in parallel to reduce the size and cost of induction motors. In this application, the parallel connected induction motors can be driven by a single inverter unit. The stability problems may introduce in the parallel operation under low speed operating conditions. Hence, the speed deviations should be reduce with help of suitable controllers. The speed control of the parallel connected system is performed by PID controller and fuzzy logic controller. In this paper the speed response of the induction motor for the rating of IHP, 1440 rpm, and 50Hz with these controller are compared in time domain specifications. The stability analysis of the system also performed under low speed using matlab platform. The hardware model is developed for speed control using fuzzy logic controller which exhibited superior performances over the other controller.

  15. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    NASA Astrophysics Data System (ADS)

    Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik

    2015-06-01

    Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.

  16. MABE multibeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasti, D.E.; Ramirez, J.J.; Coleman, P.D.

    1985-01-01

    The Megamp Accelerator and Beam Experiment (MABE) was the technology development testbed for the multiple beam, linear induction accelerator approach for Hermes III, a new 20 MeV, 0.8 MA, 40 ns accelerator being developed at Sandia for gamma-ray simulation. Experimental studies of a high-current, single-beam accelerator (8 MeV, 80 kA), and a nine-beam injector (1.4 MeV, 25 kA/beam) have been completed, and experiments on a nine-beam linear induction accelerator are in progress. A two-beam linear induction accelerator is designed and will be built as a gamma-ray simulator to be used in parallel with Hermes III. The MABE pulsed power systemmore » and accelerator for the multiple beam experiments is described. Results from these experiments and the two-beam design are discussed. 11 refs., 6 figs.« less

  17. Wave-driven dynamo action in spherical magnetohydrodynamic systems.

    PubMed

    Reuter, K; Jenko, F; Tilgner, A; Forest, C B

    2009-11-01

    Hydrodynamic and magnetohydrodynamic numerical studies of a mechanically forced two-vortex flow inside a sphere are reported. The simulations are performed in the intermediate regime between the laminar flow and developed turbulence, where a hydrodynamic instability is found to generate internal waves with a characteristic m=2 zonal wave number. It is shown that this time-periodic flow acts as a dynamo, although snapshots of the flow as well as the mean flow are not dynamos. The magnetic fields' growth rate exhibits resonance effects depending on the wave frequency. Furthermore, a cyclic self-killing and self-recovering dynamo based on the relative alignment of the velocity and magnetic fields is presented. The phenomena are explained in terms of a mixing of nonorthogonal eigenstates of the time-dependent linear operator of the magnetic induction equation. The potential relevance of this mechanism to dynamo experiments is discussed.

  18. Dynamo action with wave motion.

    PubMed

    Tilgner, A

    2008-03-28

    It is shown that time dependent velocity fields in a fluid conductor can act as dynamos even when the same velocity fields frozen in at any particular time cannot. This effect is observed in propagating waves in which the time dependence is simply a steady drift of a fixed velocity pattern. The effect contributes to magnetic field generation in numerical models of planetary dynamos and relies on the property that eigenmodes of the induction equation are not all orthogonal to each other.

  19. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  20. First Stage of a Highly Reliable Reusable Launch System

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Pickrel, Jonathan B.; Sayles, Emily L.; Wright, Michael; Marriott, Darin; Holland, Leo; Kuznetsov, Stephen

    2009-01-01

    Electromagnetic launch assist has the potential to provide a highly reliable reusable first stage to a space access system infrastructure at a lower overall cost. This paper explores the benefits of a smaller system that adds the advantages of a high specific impulse air-breathing stage and supersonic launch speeds. The method of virtual specific impulse is introduced as a tool to emphasize the gains afforded by launch assist. Analysis shows launch assist can provide a 278-s virtual specific impulse for a first-stage solid rocket. Additional trajectory analysis demonstrates that a system composed of a launch-assisted first-stage ramjet plus a bipropellant second stage can provide a 48-percent gross lift-off weight reduction versus an all-rocket system. The combination of high-speed linear induction motors and ramjets is identified, as the enabling technologies and benchtop prototypes are investigated. The high-speed response of a standard 60 Hz linear induction motor was tested with a pulse width modulated variable frequency drive to 150 Hz using a 10-lb load, achieving 150 mph. A 300-Hz stator-compensated linear induction motor was constructed and static-tested to 1900 lbf average. A matching ramjet design was developed for use on the 300-Hz linear induction motor.

  1. Predicting High Explosive Detonation Velocities from Their Composition and Structure

    DTIC Science & Technology

    1978-09-01

    for a gamut of ideal explosives. The explosives ranged from nitroaromatics, cyclic and linear nitramines, nitrate esters and nitro-nitrato...structure is postulated for a gamut of explosives. Since detonation velocity, DQ, is density dependent, the linear regression plot. Figure 1, of the

  2. Two-Dimensional Analysis of Conical Pulsed Inductive Plasma Thruster Performance

    NASA Technical Reports Server (NTRS)

    Hallock, A. K.; Polzin, K. A.; Emsellem, G. D.

    2011-01-01

    A model of the maximum achievable exhaust velocity of a conical theta pinch pulsed inductive thruster is presented. A semi-empirical formula relating coil inductance to both axial and radial current sheet location is developed and incorporated into a circuit model coupled to a momentum equation to evaluate the effect of coil geometry on the axial directed kinetic energy of the exhaust. Inductance measurements as a function of the axial and radial displacement of simulated current sheets from four coils of different geometries are t to a two-dimensional expression to allow the calculation of the Lorentz force at any relevant averaged current sheet location. This relation for two-dimensional inductance, along with an estimate of the maximum possible change in gas-dynamic pressure as the current sheet accelerates into downstream propellant, enables the expansion of a one-dimensional circuit model to two dimensions. The results of this two-dimensional model indicate that radial current sheet motion acts to rapidly decouple the current sheet from the driving coil, leading to losses in axial kinetic energy 10-50 times larger than estimations of the maximum available energy in the compressed propellant. The decreased available energy in the compressed propellant as compared to that of other inductive plasma propulsion concepts suggests that a recovery in the directed axial kinetic energy of the exhaust is unlikely, and that radial compression of the current sheet leads to a loss in exhaust velocity for the operating conditions considered here.

  3. Is 3D true non linear traveltime tomography reasonable ?

    NASA Astrophysics Data System (ADS)

    Herrero, A.; Virieux, J.

    2003-04-01

    The data sets requiring 3D analysis tools in the context of seismic exploration (both onshore and offshore experiments) or natural seismicity (micro seismicity surveys or post event measurements) are more and more numerous. Classical linearized tomographies and also earthquake localisation codes need an accurate 3D background velocity model. However, if the medium is complex and a priori information not available, a 1D analysis is not able to provide an adequate background velocity image. Moreover, the design of the acquisition layouts is often intrinsically 3D and renders difficult even 2D approaches, especially in natural seismicity cases. Thus, the solution relies on the use of a 3D true non linear approach, which allows to explore the model space and to identify an optimal velocity image. The problem becomes then practical and its feasibility depends on the available computing resources (memory and time). In this presentation, we show that facing a 3D traveltime tomography problem with an extensive non-linear approach combining fast travel time estimators based on level set methods and optimisation techniques such as multiscale strategy is feasible. Moreover, because management of inhomogeneous inversion parameters is more friendly in a non linear approach, we describe how to perform a jointly non-linear inversion for the seismic velocities and the sources locations.

  4. Fluctuation dynamo and turbulent induction at small Prandtl number.

    PubMed

    Eyink, Gregory L

    2010-10-01

    We study the Lagrangian mechanism of the fluctuation dynamo at zero Prandtl number and infinite magnetic Reynolds number, in the Kazantsev-Kraichnan model of white-noise advection. With a rough velocity field corresponding to a turbulent inertial range, flux freezing holds only in a stochastic sense. We show that field lines arriving to the same point which were initially separated by many resistive lengths are important to the dynamo. Magnetic vectors of the seed field that point parallel to the initial separation vector arrive anticorrelated and produce an "antidynamo" effect. We also study the problem of "magnetic induction" of a spatially uniform seed field. We find no essential distinction between this process and fluctuation dynamo, both producing the same growth rates and small-scale magnetic correlations. In the regime of very rough velocity fields where fluctuation dynamo fails, we obtain the induced magnetic energy spectra. We use these results to evaluate theories proposed for magnetic spectra in laboratory experiments of turbulent induction.

  5. Characterization of a signal recording system for accurate velocity estimation using a VISAR

    NASA Astrophysics Data System (ADS)

    Rav, Amit; Joshi, K. D.; Singh, Kulbhushan; Kaushik, T. C.

    2018-02-01

    The linearity of a signal recording system (SRS) in time as well as in amplitude are important for the accurate estimation of the free surface velocity history of a moving target during shock loading and unloading when measured using optical interferometers such as a velocity interferometer system for any reflector (VISAR). Signal recording being the first step in a long sequence of signal processes, the incorporation of errors due to nonlinearity, and low signal-to-noise ratio (SNR) affects the overall accuracy and precision of the estimation of velocity history. In shock experiments the small duration (a few µs) of loading/unloading, the reflectivity of moving target surface, and the properties of optical components, control the amount of input of light to the SRS of a VISAR and this in turn affects the linearity and SNR of the overall measurement. These factors make it essential to develop in situ procedures for (i) minimizing the effect of signal induced noise and (ii) determine the linear region of operation for the SRS. Here we report on a procedure for the optimization of SRS parameters such as photodetector gain, optical power, aperture etc, so as to achieve a linear region of operation with a high SNR. The linear region of operation so determined has been utilized successfully to estimate the temporal history of the free surface velocity of the moving target in shock experiments.

  6. Effects of load on ground reaction force and lower limb kinematics during concentric squats.

    PubMed

    Kellis, Eleftherios; Arambatzi, Fotini; Papadopoulos, Christos

    2005-10-01

    The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P < 0.05). Bar linear velocity ranged from 0.54 +/- 0.11 to 2.50 +/- 0.50 m x s(-1) and decreased significantly with increasing external load (P < 0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P < 0.05). The force-barbell velocity curves were fitted using linear models with coefficients (r2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.

  7. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  8. Effect of Coannular Flow on Linearized Euler Equation Predictions of Jet Noise

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Shih, S.-H.; Mankbadi, Reda R.

    1997-01-01

    An improved version of a previously validated linearized Euler equation solver is used to compute the noise generated by coannular supersonic jets. Results for a single supersonic jet are compared to the results from both a normal velocity profile and an inverted velocity profile supersonic jet.

  9. Counterpulse railgun energy recovery circuit

    DOEpatents

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  10. Overpulse railgun energy recovery circuit

    DOEpatents

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  11. A pulse-forming network for particle path visualization. [at Ames Aeromechanics Water Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.

    1981-01-01

    A procedure is described for visualizing nonsteady fluid flow patterns over a wide velocity range using discrete nonluminous particles. The paramount element responsible for this capability is a pulse-forming network with variable inductance that is used to modulate the discharge of a fixed amount of electrical energy through a xenon flashtube. The selectable duration of the resultant light emission functions as a variable shutter so that particle path images of constant length can be recorded. The particles employed as flow markers are hydrogen bubbles that are generated by electrolysis in a water tunnel. Data are presented which document the characteristics of the electrical circuit and establish the relation of particle velocity to both section inductance and film exposure.

  12. Magnetic Footpoint Velocities: A Combination Of Minimum Energy Fit AndLocal Correlation Tracking

    NASA Astrophysics Data System (ADS)

    Belur, Ravindra; Longcope, D.

    2006-06-01

    Many numerical and time dependent MHD simulations of the solar atmosphererequire the underlying velocity fields which should be consistent with theinduction equation. Recently, Longcope (2004) introduced a new techniqueto infer the photospheric velocity field from sequence of vector magnetogramswhich are in agreement with the induction equation. The method, the Minimum Energy Fit (MEF), determines a set of velocities and selects the velocity which is smallest overall flow speed by minimizing an energy functional. The inferred velocity can be further constrained by information aboutthe velocity inferred from other techniques. With this adopted techniquewe would expect that the inferred velocity will be close to the photospheric velocity of magnetic footpoints. Here, we demonstrate that the inferred horizontal velocities from LCT can be used to constrain the MEFvelocities. We also apply this technique to actual vector magnetogramsequences and compare these velocities with velocities from LCT alone.This work is supported by DoD MURI and NSF SHINE programs.

  13. Evaluation of force-velocity and power-velocity relationship of arm muscles.

    PubMed

    Sreckovic, Sreten; Cuk, Ivan; Djuric, Sasa; Nedeljkovic, Aleksandar; Mirkov, Dragan; Jaric, Slobodan

    2015-08-01

    A number of recent studies have revealed an approximately linear force-velocity (F-V) and, consequently, a parabolic power-velocity (P-V) relationship of multi-joint tasks. However, the measurement characteristics of their parameters have been neglected, particularly those regarding arm muscles, which could be a problem for using the linear F-V model in both research and routine testing. Therefore, the aims of the present study were to evaluate the strength, shape, reliability, and concurrent validity of the F-V relationship of arm muscles. Twelve healthy participants performed maximum bench press throws against loads ranging from 20 to 70 % of their maximum strength, and linear regression model was applied on the obtained range of F and V data. One-repetition maximum bench press and medicine ball throw tests were also conducted. The observed individual F-V relationships were exceptionally strong (r = 0.96-0.99; all P < 0.05) and fairly linear, although it remains unresolved whether a polynomial fit could provide even stronger relationships. The reliability of parameters obtained from the linear F-V regressions proved to be mainly high (ICC > 0.80), while their concurrent validity regarding directly measured F, P, and V ranged from high (for maximum F) to medium-to-low (for maximum P and V). The findings add to the evidence that the linear F-V and, consequently, parabolic P-V models could be used to study the mechanical properties of muscular systems, as well as to design a relatively simple, reliable, and ecologically valid routine test of the muscle ability of force, power, and velocity production.

  14. Overpulse railgun energy recovery circuit

    DOEpatents

    Honig, Emanuel M.

    1989-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  15. Counterpulse railgun energy recovery circuit

    DOEpatents

    Honig, Emanuel M.

    1986-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  16. Gravitational induction

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Cherubini, Christian; Chicone, Carmen; Mashhoon, Bahram

    2008-11-01

    We study the linear post-Newtonian approximation to general relativity known as gravitoelectromagnetism (GEM); in particular, we examine the similarities and differences between GEM and electrodynamics. Notwithstanding some significant differences between them, we find that a special nonstationary metric in GEM can be employed to show explicitly that it is possible to introduce gravitational induction within GEM in close analogy with Faraday's law of induction and Lenz's law in electrodynamics. Some of the physical implications of gravitational induction are briefly discussed.

  17. Validation of high temporal resolution spiral phase velocity mapping of temporal patterns of left and right coronary artery blood flow against Doppler guidewire.

    PubMed

    Keegan, Jennifer; Raphael, Claire E; Parker, Kim; Simpson, Robin M; Strain, Stephen; de Silva, Ranil; Di Mario, Carlo; Collinson, Julian; Stables, Rod H; Wage, Ricardo; Drivas, Peter; Sugathapala, Malindie; Prasad, Sanjay K; Firmin, David N

    2015-10-02

    Temporal patterns of coronary blood flow velocity can provide important information on disease state and are currently assessed invasively using a Doppler guidewire. A non-invasive alternative would be beneficial as it would allow study of a wider patient population and serial scanning. A retrospectively-gated breath-hold spiral phase velocity mapping sequence (TR 19 ms) was developed at 3 Tesla. Velocity maps were acquired in 8 proximal right and 15 proximal left coronary arteries of 18 subjects who had previously had a Doppler guidewire study at the time of coronary angiography. Cardiovascular magnetic resonance (CMR) velocity-time curves were processed semi-automatically and compared with corresponding invasive Doppler data. When corrected for differences in heart rate between the two studies, CMR mean velocity through the cardiac cycle, peak systolic velocity (PSV) and peak diastolic velocity (PDV) were approximately 40 % of the peak Doppler values with a moderate - good linear relationship between the two techniques (R(2): 0.57, 0.64 and 0.79 respectively). CMR values of PDV/PSV showed a strong linear relationship with Doppler values with a slope close to unity (0.89 and 0.90 for right and left arteries respectively). In individual vessels, plots of CMR velocities at all cardiac phases against corresponding Doppler velocities showed a consistent linear relationship between the two with high R(2) values (mean +/-SD: 0.79 +/-.13). High temporal resolution breath-hold spiral phase velocity mapping underestimates absolute values of coronary flow velocity but allows accurate assessment of the temporal patterns of blood flow.

  18. Power spectrum estimation from peculiar velocity catalogues

    NASA Astrophysics Data System (ADS)

    Macaulay, E.; Feldman, H. A.; Ferreira, P. G.; Jaffe, A. H.; Agarwal, S.; Hudson, M. J.; Watkins, R.

    2012-09-01

    The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large-scale excess in the matter power spectrum and can appear to be in some tension with the Λ cold dark matter (ΛCDM) model. We use a composite catalogue of 4537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results by Macaulay et al., studying minimum variance moments of the velocity field, as calculated by Feldman, Watkins & Hudson. We find good agreement with the ΛCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1 with a 1σ uncertainty which includes the ΛCDM model. We find that the uncertainty in excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and non-linear clustering in simulated peculiar velocity catalogues and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.

  19. Development of a linearized unsteady aerodynamic analysis for cascade gust response predictions

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Hall, Kenneth C.

    1990-01-01

    A method for predicting the unsteady aerodynamic response of a cascade of airfoils to entropic, vortical, and acoustic gust excitations is being developed. Here, the unsteady flow is regarded as a small perturbation of a nonuniform isentropic and irrotational steady background flow. A splitting technique is used to decompose the linearized unsteady velocity into rotational and irrotational parts leading to equations for the complex amplitudes of the linearized unsteady entropy, rotational velocity, and velocity potential that are coupled only sequentially. The entropic and rotational velocity fluctuations are described by transport equations for which closed-form solutions in terms of the mean-flow drift and stream functions can be determined. The potential fluctuation is described by an inhomogeneous convected wave equation in which the source term depends on the rotational velocity field, and is determined using finite-difference procedures. The analytical and numerical techniques used to determine the linearized unsteady flow are outlined. Results are presented to indicate the status of the solution procedure and to demonstrate the impact of blade geometry and mean blade loading on the aerodynamic response of cascades to vortical gust excitations. The analysis described herein leads to very efficient predictions of cascade unsteady aerodynamic response phenomena making it useful for turbomachinery aeroelastic and aeroacoustic design applications.

  20. Parkes full polarization spectra of OH masers - II. Galactic longitudes 240° to 350°

    NASA Astrophysics Data System (ADS)

    Caswell, J. L.; Green, J. A.; Phillips, C. J.

    2014-04-01

    Full polarization measurements of 1665 and 1667 MHz OH masers at 261 sites of massive star formation have been made with the Parkes radio telescope. Here, we present the resulting spectra for 157 southern sources, complementing our previously published 104 northerly sources. For most sites, these are the first measurements of linear polarization, with good spectral resolution and complete velocity coverage. Our spectra exhibit the well-known predominance of highly circularly polarized features, interpreted as σ components of Zeeman patterns. Focusing on the generally weaker and rarer linear polarization, we found three examples of likely full Zeeman triplets (a linearly polarized π component, straddled in velocity by σ components), adding to the solitary example previously reported. We also identify 40 examples of likely isolated π components, contradicting past beliefs that π components might be extremely rare. These were recognized at 20 sites where a feature with high linear polarization on one transition is accompanied on the other transition by a matching feature, at the same velocity and also with significant linear polarization. Large velocity ranges are rare, but we find eight exceeding 25 km s-1, some of them indicating high-velocity blue-shifted outflows. Variability was investigated on time-scales of one year and over several decades. More than 20 sites (of 200) show high variability (intensity changes by factors of 4 or more) in some prominent features. Highly stable sites are extremely rare.

  1. Mechanical and biomechanical analysis of a linear piston design for angular-velocity-based orthotic control.

    PubMed

    Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan

    2013-01-01

    A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness.

  2. Investigations into the Effect of Current Velocity on Amidoxime-Based Polymeric Uranium Adsorbent Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.

    2015-12-01

    The Fuel Resources Program at the U.S. Department of Energy’s (DOE), Office of Nuclear Energy (DOE-NE) is developing adsorbent technology to extract uranium from seawater. This technology is being developed to provide a sustainable and economically viable supply of uranium fuel for nuclear reactors (DOE, 2010). Among the key environmental variables to understand for adsorbent deployment in the coastal ocean is what effect flow-rates or linear velocity has on uranium adsorption capacity. The goal is to find a flow conditions that optimize uranium adsorption capacity in the shortest exposure time. Understanding these criteria will be critical in choosing a locationmore » for deployment of a marine adsorbent farm. The objective of this study was to identify at what linear velocity the adsorption kinetics for uranium extraction starts to drop off due to limitations in mass transport of uranium to the surface of the adsorbent fibers. Two independent laboratory-based experimental approaches using flow-through columns and recirculating flumes for adsorbent exposure were used to assess the effect of flow-rate (linear velocity) on the kinetic uptake of uranium on amidoxime-based polymeric adsorbent material. Time series observations over a 56 day period were conducted with flow-through columns over a 35-fold range in linear velocity from 0.29 to 10.2 cm/s, while the flume study was conducted over a narrower 11-fold range, from 0.48 to 5.52 cm/s. These ranges were specifically chosen to focus on the lower end of oceanic currents and expand above and below the linear velocity of ~ 2.5 cm/s adopted for marine testing of adsorbent material at PNNL.« less

  3. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albaugh, Alex; Demerdash, Omar; Head-Gordon, Teresa, E-mail: thg@berkeley.edu

    2015-11-07

    We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the coursemore » of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well.« less

  4. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils

    PubMed Central

    Li, Jian; Wu, Dan; Han, Yan

    2016-01-01

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation. PMID:27706039

  5. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils.

    PubMed

    Li, Jian; Wu, Dan; Han, Yan

    2016-09-30

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.

  6. Chromatic induction from surrounding stimuli under perceptual suppression.

    PubMed

    Horiuchi, Koji; Kuriki, Ichiro; Tokunaga, Rumi; Matsumiya, Kazumichi; Shioiri, Satoshi

    2014-11-01

    The appearance of colors can be affected by their spatiotemporal context. The shift in color appearance according to the surrounding colors is called color induction or chromatic induction; in particular, the shift in opponent color of the surround is called chromatic contrast. To investigate whether chromatic induction occurs even when the chromatic surround is imperceptible, we measured chromatic induction during interocular suppression. A multicolor or uniform color field was presented as the surround stimulus, and a colored continuous flash suppression (CFS) stimulus was presented to the dominant eye of each subject. The subjects were asked to report the appearance of the test field only when the stationary surround stimulus is invisible by interocular suppression with CFS. The resulting shifts in color appearance due to chromatic induction were significant even under the conditions of interocular suppression for all surround stimuli. The magnitude of chromatic induction differed with the surround conditions, and this difference was preserved regardless of the viewing conditions. The chromatic induction effect was reduced by CFS, in proportion to the magnitude of chromatic induction under natural (i.e., no-CFS) viewing conditions. According to an analysis with linear model fitting, we revealed the presence of at least two kinds of subprocesses for chromatic induction that reside at higher and lower levels than the site of interocular suppression. One mechanism yields different degrees of chromatic induction based on the complexity of the surround, which is unaffected by interocular suppression, while the other mechanism changes its output with interocular suppression acting as a gain control. Our results imply that the total chromatic induction effect is achieved via a linear summation of outputs from mechanisms that reside at different levels of visual processing.

  7. SU-F-BRD-16: Relative Biological Effectiveness of Double-Strand Break Induction for Modeling Cell Survival in Pristine Proton Beams of Different Dose-Averaged Linear Energy Transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, C; Bronk, L; UT Graduate School of Biomedical Sciences at Houston, Houston, TX

    2015-06-15

    Purpose: High throughput in vitro experiments assessing cell survival following proton radiation indicate that both the alpha and the beta parameters of the linear quadratic model increase with increasing proton linear energy transfer (LET). We investigated the relative biological effectiveness (RBE) of double-strand break (DSB) induction as a means of explaining the experimental results. Methods: Experiments were performed with two lung cancer cell lines and a range of proton LET values (0.94 – 19.4 keV/µm) using an experimental apparatus designed to irradiate cells in a 96 well plate such that each column encounters protons of different dose-averaged LET (LETd). Traditionalmore » linear quadratic survival curve fitting was performed, and alpha, beta, and RBE values obtained. Survival curves were also fit with a model incorporating RBE of DSB induction as the sole fit parameter. Fitted values of the RBE of DSB induction were then compared to values obtained using Monte Carlo Damage Simulation (MCDS) software and energy spectra calculated with Geant4. Other parameters including alpha, beta, and number of DSBs were compared to those obtained from traditional fitting. Results: Survival curve fitting with RBE of DSB induction yielded alpha and beta parameters that increase with proton LETd, which follows from the standard method of fitting; however, relying on a single fit parameter provided more consistent trends. The fitted values of RBE of DSB induction increased beyond what is predicted from MCDS data above proton LETd of approximately 10 keV/µm. Conclusion: In order to accurately model in vitro proton irradiation experiments performed with high throughput methods, the RBE of DSB induction must increase more rapidly than predicted by MCDS above LETd of 10 keV/µm. This can be explained by considering the increased complexity of DSBs or the nature of intra-track pairwise DSB interactions in this range of LETd values. NIH Grant 2U19CA021239-35.« less

  8. Linearly exact parallel closures for slab geometry

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun

    2013-08-01

    Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).

  9. On the Effects of Training Inductive Reasoning: How Far Does It Transfer and How Long Do the Effects Persist?

    ERIC Educational Resources Information Center

    Tomic, Welko; Klauer, Karl Josef

    1996-01-01

    Reports on two training experiments in which it was expected that training in inductive reasoning would transfer to intelligence tests measuring inductive reasoning and on mathematics performance. Shows that transfer on intelligence tests as well as on mathematics performance was linearly dependent on the amount of prior training. (DSK)

  10. Microwave-field-driven acoustic modes in DNA.

    PubMed Central

    Edwards, G S; Davis, C C; Saffer, J D; Swicord, M L

    1985-01-01

    The direct coupling of a microwave field to selected DNA molecules is demonstrated using standard dielectrometry. The absorption is resonant with a typical lifetime of 300 ps. Such a long lifetime is unexpected for DNA in aqueous solution at room temperature. Resonant absorption at fundamental and harmonic frequencies for both supercoiled circular and linear DNA agrees with an acoustic mode model. Our associated acoustic velocities for linear DNA are very close to the acoustic velocity of the longitudinal acoustic mode independently observed on DNA fibers using Brillouin spectroscopy. The difference in acoustic velocities for supercoiled circular and linear DNA is discussed in terms of solvent shielding of the nonbonded potentials in DNA. Images FIGURE 5 FIGURE 6 FIGURE 7 PMID:3893557

  11. Demonstrating the Direction of Angular Velocity in Circular Motion

    ERIC Educational Resources Information Center

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-01-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics…

  12. Theory of the Lattice Boltzmann Equation: Symmetry properties of Discrete Velocity Sets

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Luo, Li-Shi

    2007-01-01

    In the lattice Boltzmann equation, continuous particle velocity space is replaced by a finite dimensional discrete set. The number of linearly independent velocity moments in a lattice Boltzmann model cannot exceed the number of discrete velocities. Thus, finite dimensionality introduces linear dependencies among the moments that do not exist in the exact continuous theory. Given a discrete velocity set, it is important to know to exactly what order moments are free of these dependencies. Elementary group theory is applied to the solution of this problem. It is found that by decomposing the velocity set into subsets that transform among themselves under an appropriate symmetry group, it becomes relatively straightforward to assess the behavior of moments in the theory. The construction of some standard two- and three-dimensional models is reviewed from this viewpoint, and procedures for constructing some new higher dimensional models are suggested.

  13. Preliminary results of Linear Induction Accelerator LIA-200

    NASA Astrophysics Data System (ADS)

    Sharma, Archana; Senthil, K.; Praveen Kumar, D. D.; Mitra, S.; Sharma, V.; Patel, A.; Sharma, D. K.; Rehim, R.; Kolge, T. S.; Saroj, P. C.; Acharya, S.; Amitava, Roy; Rakhee, M.; Nagesh, K. V.; Chakravarthy, D. P.

    2010-05-01

    Repetitive Pulsed Power Technology is being developed keeping in mind the potential applications of this technology in material modifications, disinfections of water, timber, and food pasteurization etc. BARC has indigenously developed a Linear Induction Accelerator (LIA-200) rated for 200 kV, 4 kA, 100 ns, 10 Hz. The satisfactory performance of all the sub-systems including solid state power modulator, amorphous core based pulsed transformers, magnetic switches, water capacitors, water pulse- forming line, induction adder and field-emission diode have been demonstrated. This paper presents some design details and operational results of this pulsed power system. It also highlights the need for further research and development to build reliable and economic high-average power systems for industrial applications.

  14. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    NASA Astrophysics Data System (ADS)

    Bykov, Yu. A.; Krastelev, E. G.; Popov, G. V.; Sedin, A. A.; Feduschak, V. F.

    2016-12-01

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350-400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted in the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.

  15. Linear transformer and primary low-inductance switch and capacitor modules for fast charging of PFL

    NASA Astrophysics Data System (ADS)

    Bykov, Yu A.; Krastelev, E. G.; Popov, G. V.; Sedin, A. A.; Feduschak, V. F.

    2017-05-01

    A step-up linear pulse transformer and a modular primary powering system were developed for fast (≈350 ns) charging of a pulse forming line (PFL) of a high-current electron accelerator. The linear transformer is assembled of a set of 20 inductors with circular ferromagnetic cores and one-turn primary windings. The secondary turn is formed by housing tube walls and a voltage adder with a film-glycerol insulation installed inside of the inductors. The primary powering system assembles 10 modules, each of them is a low-inductance site of two capacitors of 0,35 µF and one gas switch mounted at the same enclosure. The total stored energy is 5.5 kJ at the charging voltage of 40 kV. According to test results, the equivalent parameters at the output of the transformer are the next: a capacity - 17.5 nF, an inductance - 2 µH, a resistance - 3.2 Ohms.

  16. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Popov, G. V.

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350–400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted inmore » the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.« less

  17. Progress in CPI Microwave Tube Development

    NASA Astrophysics Data System (ADS)

    Wright, Edward L.; Bohlen, Heinz

    2006-01-01

    CPI continues its role as a leading supplier of state-of-the-art, high-power microwave tubes; from linear beam, velocity- and density-modulated devices, to high frequency gyro-devices. Klystrons are the device-of-choice for many high-power microwave applications, and can provide multi-megawatts to multi-kilowatts of power from UHF to W-band, respectively. A number of recent and on-going developments will be described. At UHF frequencies, the inductive output tube (IOT) has replaced the klystron for terrestrial NTSC and HDTV broadcast, due to its high efficiency and linearity, and is beginning to see use in scientific applications requiring 300 kW or less. Recent advances have enabled use well into L-band. CPI has developed a number of multiple-beam amplifiers. The VKL-8301 multiple-beam klystron (MBK) was built for the TESLA V/UV and x-ray FEL projects, and is a candidate RF source for the International Linear Collider (ILC). We have also contributed to the development of the U.S. Naval Research Laboratory (NRL) high-power fundamental-mode S-band MBK. The VHP-8330B multiple-beam, high-order mode (HOM) IOT shows great promise as a compact, CW UHF source for high power applications. These topics will be discussed, along with CPI's development capabilities for new and novel applications. Most important is our availability to provide design and fabrication services to organizations requiring CPI's manufacturing and process control infrastructure to build and test state-of-the-art devices.

  18. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  19. Hugoniot and refractive indices of bromoform under shock compression

    NASA Astrophysics Data System (ADS)

    Liu, Q. C.; Zeng, X. L.; Zhou, X. M.; Luo, S. N.

    2018-01-01

    We investigate physical properties of bromoform (liquid CHBr3) including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity-particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ˜21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ˜26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.

  20. Development of a linear induction motor based artificial muscle system.

    PubMed

    Gruber, A; Arguello, E; Silva, R

    2013-01-01

    We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries.

  1. What is the best method for assessing lower limb force-velocity relationship?

    PubMed

    Giroux, C; Rabita, G; Chollet, D; Guilhem, G

    2015-02-01

    This study determined the concurrent validity and reliability of force, velocity and power measurements provided by accelerometry, linear position transducer and Samozino's methods, during loaded squat jumps. 17 subjects performed squat jumps on 2 separate occasions in 7 loading conditions (0-60% of the maximal concentric load). Force, velocity and power patterns were averaged over the push-off phase using accelerometry, linear position transducer and a method based on key positions measurements during squat jump, and compared to force plate measurements. Concurrent validity analyses indicated very good agreement with the reference method (CV=6.4-14.5%). Force, velocity and power patterns comparison confirmed the agreement with slight differences for high-velocity movements. The validity of measurements was equivalent for all tested methods (r=0.87-0.98). Bland-Altman plots showed a lower agreement for velocity and power compared to force. Mean force, velocity and power were reliable for all methods (ICC=0.84-0.99), especially for Samozino's method (CV=2.7-8.6%). Our findings showed that present methods are valid and reliable in different loading conditions and permit between-session comparisons and characterization of training-induced effects. While linear position transducer and accelerometer allow for examining the whole time-course of kinetic patterns, Samozino's method benefits from a better reliability and ease of processing. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Doppler ultrasound to detect pulpal blood flow changes during local anaesthesia.

    PubMed

    Yoon, M J; Lee, S J; Kim, E; Park, S H

    2012-01-01

      To examine whether Doppler ultrasound can detect changes in pulpal blood flow after infiltration anaesthesia.   Changes in pulpal blood flow in maxillary central incisor teeth of 18 patients (mean age 26.7 years, 13 men, five women) after infiltration anaesthesia were examined. Before infiltration anaesthesia, the pulpal blood flow was measured using Doppler ultrasound. A local anaesthetic solution containing 2% lidocaine with 1:80,000 epinephrine was injected into the submucosa above the experimental tooth. The Doppler ultrasound test was carried out at 5, 10, 20, 30, 45 and 60 min after infiltration. The parameters were Vas (maximum linear velocity, cm s(-1) ), Vam (average linear velocity, cm s(-1) ) and Vakd (minimum linear velocity, cm s(-1) ), which are indicators of the level of blood flow. The mixed procedure at the 95% confidence interval was used to examine the changes in pulpal blood flow after the injection.   The linear velocity profiles (Vas, Vam, and Vakd) decreased sharply 5 min after anaesthesia and then reduced continuously for 30 min. The maximum degree of blood flow reduction in Vas, Vam and Vakd was 58%, 83% and 82%, respectively. After 30 min, the linear velocities increased gradually. The Vam returned to the pre-anaesthesia state at 60 minutes but the Vas and Vakd did not recover completely.   Doppler ultrasound can detect changes in pulpal blood flow after infiltration anaesthesia. In the future, Doppler ultrasound can be used as a tool for measuring pulpal blood flow. © 2011 International Endodontic Journal.

  3. Redshift-space distortions around voids

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Taylor, Andy; Peacock, John A.; Padilla, Nelson

    2016-11-01

    We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function (CCF) of voids and haloes in redshift space. In linear theory, this CCF contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the CCF near its origin. By extracting the monopole and quadrupole from the CCF, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter β to 9 per cent precision from an effective volume of 3( h-1Gpc)3 using voids with radius >25 h-1Mpc. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve measurements. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on β is reduced to 5 per cent. Voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.

  4. Form control in atmospheric pressure plasma processing of ground fused silica

    NASA Astrophysics Data System (ADS)

    Li, Duo; Wang, Bo; Xin, Qiang; Jin, Huiliang; Wang, Jun; Dong, Wenxia

    2014-08-01

    Atmospheric Pressure Plasma Processing (APPP) using inductively coupled plasma has demonstrated that it can achieve comparable removal rate on the optical surface of fused silica under the atmosphere pressure and has the advantage of inducing no sub-surface damage for its non-contact and chemical etching mechanism. APPP technology is a cost effective way, compared with traditional mechanical polishing, magnetorheological finishing and ion beam figuring. Thus, due to these advantages, this technology is being tested to fabricate large aperture optics of fused silica to help shorten the polishing time in optics fabrication chain. Now our group proposes to use inductively coupled plasma processing technology to fabricate ground surface of fused silica directly after the grinding stage. In this paper, form control method and several processing parameters are investigated to evaluate the removal efficiency and the surface quality, including the robustness of removal function, velocity control mode and tool path strategy. However, because of the high heat flux of inductively coupled plasma, the removal depth with time can be non-linear and the ground surface evolvement will be affected. The heat polishing phenomenon is founded. The value of surface roughness is reduced greatly, which is very helpful to reduce the time of follow-up mechanical polishing. Finally, conformal and deterministic polishing experiments are analyzed and discussed. The form error is less 3%, before and after the APPP, when 10μm depth of uniform removal is achieved on a 60×60mm ground fused silica. Also, a basin feature is fabricated to demonstrate the figuring capability and stability. Thus, APPP is a promising technology in processing the large aperture optics.

  5. USSR Report, Electronics and Electrical Engineering, No. 104

    DTIC Science & Technology

    1983-06-13

    shaping of silicon crystals during their growth is a modification of inductive contactless forming of rods and tubes directly from the melt on a...MANUFACTURING TECHNOLOGY Induction Systems for Electromagnetic Shaping of Silicon Crystal During.Growth (L. R. Lev; ELEKTROTEKHNIKA, Feb 83) • • • x...et al.; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: ELEKTROMEKHANIKA, Dec 82) 18 Basic Design of Linear- Induction Traction Motors for High-Speed

  6. Newton on Objects Moving in a Fluid--The Penetration Length

    ERIC Educational Resources Information Center

    Saslow, Wayne M.; Lu, Hong

    2008-01-01

    We solve for the motion of an object with initial velocity v[subscript 0] and subject only to the combined drag of forces linear and quadratic in the velocity. This problem was treated briefly by Newton, after he developed a theoretical argument for the quadratic term, which we now know is characteristic of turbulent flow. Linear drag introduces a…

  7. Quantification of toy sword kinematics with male pediatric volunteers.

    PubMed

    Beeman, Stephanie M; Rowson, Steven; Duma, Stefan M

    2014-01-01

    While extensive research in toy safety has been performed, data is unavailable with regard to the kinematics of toy swords. To improve upon design criteria, knowledge of a child’s physical capacity is essential. The purpose of this study was to quantify the linear and angular velocities generated by children swinging toy swords. A total of 36 male subjects, ages 4-14 years old, each participated in one trial. Subjects were instructed to swing a toy sword as fast and hard as possible for ~10 seconds. A Vicon motion analysis system was used to capture subject and sword kinematics. Peak linear and angular sword velocities were calculated. A strong correlation was identified between age and velocity. The 8-14 year old males were not significantly different. The 4 year old males generated significantly lower velocities than the 8-14 year old males. The 6 year old males produced significantly lower velocities than the 10- 14 year old males. It was concluded that age had a significant effect on the linear and angular velocities generated by children. The trends observed within this study likely result from typical pediatric and adolescent development. By accounting for the physical capabilities of a specific population, toys can be designed with decreased inherent risks of injury.

  8. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  9. Application of acoustic velocity meters for gaging discharge of three low-velocity tidal streams in the St. Johns River basin, northeast Florida

    USGS Publications Warehouse

    Sloat, J.V.; Gain, W.S.

    1995-01-01

    Index-velocity data collected with acoustic velocity meters, stage data, and cross-sectional area data were used to calculate discharge at three low-velocity, tidal streamflow stations in north-east Florida. Discharge at three streamflow stations was computed as the product of the channel cross-sectional area and the mean velocity as determined from an index velocity measured in the stream using an acoustic velocity meter. The tidal streamlflow stations used in the study were: Six Mile Creek near Picolata, Fla.; Dunns Creek near Satsuma, Fla.; and the St. Johns River at Buffalo Bluff. Cross-sectional areas at the measurement sections ranged from about 3,000 square feet at Six Mile Creek to about 18,500 square feet at St. Johns River at Buffalo Bluff. Physical characteristics for all three streams were similar except for drainage area. The topography primarily is low-relief, swampy terrain; stream velocities ranged from about -2 to 2 feet per second; and the average change in stage was about 1 foot. Instantaneous discharge was measured using a portable acoustic current meter at each of the three streams to develop a relation between the mean velocity in the stream and the index velocity measured by the acoustic velocity meter. Using least-squares linear regression, a simple linear relation between mean velocity and index velocity was determined. Index velocity was the only significant linear predictor of mean velocity for Six Mile Creek and St. Johns River at Buffalo Bluff. For Dunns Creek, both index velocity and stage were used to develop a multiple-linear predictor of mean velocity. Stage-area curves for each stream were developed from bathymetric data. Instantaneous discharge was computed by multiplying results of relations developed for cross-sectional area and mean velocity. Principal sources of error in the estimated discharge are identified as: (1) instrument errors associated with measurement of stage and index velocity, (2) errors in the representation of mean daily stage and index velocity due to natural variability over time and space, and (3) errors in cross-sectional area and mean-velocity ratings based on stage and index velocity. Standard errors for instantaneous discharge for the median cross-sectional area for Six Mile Creek, Dunns Creek, and St. Johns River at Buffalo Bluff were 94,360, and 1,980 cubic feet per second, respectively. Standard errors for mean daily discharge for the median cross-sectional area for Six Mile Creek, Dunns Creek, and St. Johns River at Buffalo Bluff were 25, 65, and 455 cubic feet per second, respectively. Mean daily discharge at the three sites ranged from about -500 to 1,500 cubic feet per second at Six Mile Creek and Dunns Creek and from about -500 to 15,000 cubic feet per second on the St. Johns River at Buffalo Bluff. For periods of high discharge, the AVM index-velocity method tended to produce estimates accurate with 2 to 6 percent. For periods of moderate discharge, errors in discharge may increase to more than 50 percent. At low flows, errors as a percentage of discharge increase toward infinity.

  10. Stochastic generation of MAC waves and implications for convection in Earth's core

    NASA Astrophysics Data System (ADS)

    Buffett, Bruce; Knezek, Nicholas

    2018-03-01

    Convection in Earth's core can sustain magnetic-Archemedes-Coriolis (MAC) waves through a variety of mechanisms. Buoyancy and Lorentz forces are viable sources for wave motion, together with the effects of magnetic induction. We develop a quantitative description for zonal MAC waves and assess the source mechanisms using a numerical dynamo model. The largest sources at conditions accessible to the dynamo model are due to buoyancy forces and magnetic induction. However, when these sources are extrapolated to conditions expected in Earth's core, the Lorentz force emerges as the dominant generation mechanism. This source is expected to produce wave velocities of roughly 2 km yr-1 when the internal magnetic field is characterized by a dimensionless Elsasser number of roughly Λ ≈ 10 and the root-mean-square convective velocity defines a magnetic Reynolds number of Rm ≈ 103. Our preferred model has a radially varying stratification and a constant (radial) background magnetic field. It predicts a broad power spectrum for the wave velocity with most power distributed across periods from 30 to 100 yr.

  11. Linearity and sex-specificity of impact force prediction during a fall onto the outstretched hand using a single-damper-model.

    PubMed

    Kawalilak, C E; Lanovaz, J L; Johnston, J D; Kontulainen, S A

    2014-09-01

    To assess the linearity and sex-specificity of damping coefficients used in a single-damper-model (SDM) when predicting impact forces during the worst-case falling scenario from fall heights up to 25 cm. Using 3-dimensional motion tracking and an integrated force plate, impact forces and impact velocities were assessed from 10 young adults (5 males; 5 females), falling from planted knees onto outstretched arms, from a random order of drop heights: 3, 5, 7, 10, 15, 20, and 25 cm. We assessed the linearity and sex-specificity between impact forces and impact velocities across all fall heights using analysis of variance linearity test and linear regression, respectively. Significance was accepted at P<0.05. Association between impact forces and impact velocities up to 25 cm was linear (P=0.02). Damping coefficients appeared sex-specific (males: 627 Ns/m, R(2)=0.70; females: 421 Ns/m; R(2)=0.81; sex combined: 532 Ns/m, R(2)=0.61). A linear damping coefficient used in the SDM proved valid for predicting impact forces from fall heights up to 25 cm. RESULTS suggested the use of sex-specific damping coefficients when estimating impact force using the SDM and calculating the factor-of-risk for wrist fractures.

  12. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve ideas are presented for physics teachers to implement in the laboratory or classroom. Topics covered include electromagnetic induction, microbalance, capacitors, determination of light velocity, and the compound pendulum. Information regarding laboratory equipment is also provided. (PS)

  13. Time-dependent Fracture Behaviour of Polyampholyte Hydrogels

    NASA Astrophysics Data System (ADS)

    Sun, Tao Lin; Luo, Feng; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    Recently, we report that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and self-healing hydrogels with excellent multiple mechanical functions. The randomness makes ionic bonds with a wide distribution of strength, via inter and intra chain complexation. As the breaking and reforming of ionic bonds are time dependent, the hydrogels exhibit rate dependent mechanical behaviour. We systematically studied the tearing energy by tearing test with various tearing velocity under different temperature, and the linear viscoelastic behaviour over a wide range of frequency and temperature. Results have shown that the tearing energy markedly increase with the crack velocity and decrease with the measured temperature. In accordance with the prediction of Williams, Landel, and Ferry (WLF) rate-temperature equivalence, a master curve of tearing energy dependence of crack velocity can be well constructed using the same shift factor from the linear viscoelastic data. The scaling relation of tearing energy as a function of crack velocity can be predicted well by the rheological data according to the developed linear fracture mechanics.

  14. On the persistence of unstable bump-on-tail electron velocity distributions in the earth's foreshock

    NASA Technical Reports Server (NTRS)

    Klimas, Alexander J.; Fitzenreiter, Richard J.

    1988-01-01

    This paper presents further evidence for the persistence of bump-on-tail unstable reduced velocity distributions in the earth's electron foreshock, which contradicts the understanding of quasi-linear saturation of the bump-on-tail instability. A modified theory for the saturation of the bump-on-tail instability in the earth's foreshock is proposed to explain the mechanism of this persistence, and the predictions are compared to the results of a numerical simulation of the electron plasma in the foreshock. The results support the thesis that quasi-linear saturation of the bump-on-tail instability is modified in the foreshock, due to the driven nature of the region, so that at saturation the stabilized velocity distribution still appears bump-on-tail unstable to linear plasma analysis.

  15. Automated Interval velocity picking for Atlantic Multi-Channel Seismic Data

    NASA Astrophysics Data System (ADS)

    Singh, Vishwajit

    2016-04-01

    This paper described the challenge in developing and testing a fully automated routine for measuring interval velocities from multi-channel seismic data. Various approaches are employed for generating an interactive algorithm picking interval velocity for continuous 1000-5000 normal moveout (NMO) corrected gather and replacing the interpreter's effort for manual picking the coherent reflections. The detailed steps and pitfalls for picking the interval velocities from seismic reflection time measurements are describe in these approaches. Key ingredients these approaches utilized for velocity analysis stage are semblance grid and starting model of interval velocity. Basin-Hopping optimization is employed for convergence of the misfit function toward local minima. SLiding-Overlapping Window (SLOW) algorithm are designed to mitigate the non-linearity and ill- possessedness of root-mean-square velocity. Synthetic data case studies addresses the performance of the velocity picker generating models perfectly fitting the semblance peaks. A similar linear relationship between average depth and reflection time for synthetic model and estimated models proposed picked interval velocities as the starting model for the full waveform inversion to project more accurate velocity structure of the subsurface. The challenges can be categorized as (1) building accurate starting model for projecting more accurate velocity structure of the subsurface, (2) improving the computational cost of algorithm by pre-calculating semblance grid to make auto picking more feasible.

  16. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability?

    PubMed

    García-Ramos, Amador; Pestaña-Melero, Francisco L; Pérez-Castilla, Alejandro; Rojas, Francisco J; Gregory Haff, G

    2018-05-01

    García-Ramos, A, Pestaña-Melero, FL, Pérez-Castilla, A, Rojas, FJ, and Haff, GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res 32(5): 1273-1279, 2018-This study aimed to compare between 3 velocity variables (mean velocity [MV], mean propulsive velocity [MPV], and peak velocity [PV]): (a) the linearity of the load-velocity relationship, (b) the accuracy of general regression equations to predict relative load (%1RM), and (c) the between-session reliability of the velocity attained at each percentage of the 1-repetition maximum (%1RM). The full load-velocity relationship of 30 men was evaluated by means of linear regression models in the concentric-only and eccentric-concentric bench press throw (BPT) variants performed with a Smith machine. The 2 sessions of each BPT variant were performed within the same week separated by 48-72 hours. The main findings were as follows: (a) the MV showed the strongest linearity of the load-velocity relationship (median r = 0.989 for concentric-only BPT and 0.993 for eccentric-concentric BPT), followed by MPV (median r = 0.983 for concentric-only BPT and 0.980 for eccentric-concentric BPT), and finally PV (median r = 0.974 for concentric-only BPT and 0.969 for eccentric-concentric BPT); (b) the accuracy of the general regression equations to predict relative load (%1RM) from movement velocity was higher for MV (SEE = 3.80-4.76%1RM) than for MPV (SEE = 4.91-5.56%1RM) and PV (SEE = 5.36-5.77%1RM); and (c) the PV showed the lowest within-subjects coefficient of variation (3.50%-3.87%), followed by MV (4.05%-4.93%), and finally MPV (5.11%-6.03%). Taken together, these results suggest that the MV could be the most appropriate variable for monitoring the relative load (%1RM) in the BPT exercise performed in a Smith machine.

  17. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karas’, V. I., E-mail: karas@kipt.kharkov.ua; Kornilov, E. A.; Manuilenko, O. V.

    2015-12-15

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov–Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and inmore » the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.« less

  18. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.

    2015-12-01

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov-Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.

  19. NASTRAN buckling study of a linear induction motor reaction rail

    NASA Technical Reports Server (NTRS)

    Williams, J. G.

    1973-01-01

    NASTRAN was used to study problems associated with the installation of a linear induction motor reaction rail test track. Specific problems studied include determination of the critical axial compressive buckling stress and establishment of the lateral stiffness of the reaction rail under combined loads. NASTRAN results were compared with experimentally obtained values and satisfactory agreement was obtained. The reaction rail was found to buckle at an axial compressive stress of 11,400 pounds per square inch. The results of this investigation were used to select procedures for installation of the reaction rail.

  20. Stable Spheromaks with Profile Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T K; Jayakumar, R

    A spheromak equilibrium with zero edge current is shown to be stable to both ideal MHD and tearing modes that normally produce Taylor relaxation in gun-injected spheromaks. This stable equilibrium differs from the stable Taylor state in that the current density j falls to zero at the wall. Estimates indicate that this current profile could be sustained by non-inductive current drive at acceptable power levels. Stability is determined using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive could point the way to improved fusion reactors.

  1. Comparison of linear synchronous and induction motors

    DOT National Transportation Integrated Search

    2004-06-01

    A propulsion prade study was conducted as part of the Colorado Maglev Project of FTA's Urban Maglev Technology Development Program to identify and evaluate prospective linear motor designs that could potentially meet the system performance requiremen...

  2. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    DTIC Science & Technology

    2016-02-29

    development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State... thermodynamic variable. This choice allows one to hide the non-linearity of the gas (total) thermal conductivity κ and can partially alle- 2 viate numerical

  3. A linear accelerator for simulated micrometeors.

    NASA Technical Reports Server (NTRS)

    Slattery, J. C.; Becker, D. G.; Hamermesh, B.; Roy, N. L.

    1973-01-01

    Review of the theory, design parameters, and construction details of a linear accelerator designed to impart meteoric velocities to charged microparticles in the 1- to 10-micron diameter range. The described linac is of the Sloan Lawrence type and, in a significant departure from conventional accelerator practice, is adapted to single particle operation by employing a square wave driving voltage with the frequency automatically adjusted from 12.5 to 125 kHz according to the variable velocity of each injected particle. Any output velocity up to about 30 km/sec can easily be selected, with a repetition rate of approximately two particles per minute.

  4. Gauge invariance of excitonic linear and nonlinear optical response

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Alireza; Pedersen, T. G.

    2018-05-01

    We study the equivalence of four different approaches to calculate the excitonic linear and nonlinear optical response of multiband semiconductors. These four methods derive from two choices of gauge, i.e., length and velocity gauges, and two ways of computing the current density, i.e., direct evaluation and evaluation via the time-derivative of the polarization density. The linear and quadratic response functions are obtained for all methods by employing a perturbative density-matrix approach within the mean-field approximation. The equivalence of all four methods is shown rigorously, when a correct interaction Hamiltonian is employed for the velocity gauge approaches. The correct interaction is written as a series of commutators containing the unperturbed Hamiltonian and position operators, which becomes equivalent to the conventional velocity gauge interaction in the limit of infinite Coulomb screening and infinitely many bands. As a case study, the theory is applied to hexagonal boron nitride monolayers, and the linear and nonlinear optical response found in different approaches are compared.

  5. A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting

    NASA Astrophysics Data System (ADS)

    Košnik, N.; Guštin, A. Z.; Mavrič, B.; Šarler, B.

    2016-03-01

    Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology.

  6. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water, which occurred preferentially at the pipe centre. For upward inclined multiphase flows RT#1 was found to give rise to water velocity profiles which are more consistent with results in the previous literature than was the case for RT#2—which leads to the tentative conclusion that the upward inclined multiphase flows investigated in the present study did not contain significant axisymmetric velocity components.

  7. Performance Effects of Adding a Parallel Capacitor to a Pulse Inductive Plasma Accelerator Powertrain

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in this paper the discussion is limit to planar geometries where the coil take the shape of a flat spiral. A recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT) and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).

  8. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.

    PubMed

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-02-01

    The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.

  9. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests

    PubMed Central

    Zivkovic, Milena Z.; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-01-01

    Abstract The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force–velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles. PMID:28469742

  10. Inductive Linear-Position Sensor/Limit-Sensor Units

    NASA Technical Reports Server (NTRS)

    Alhom, Dean; Howard, David; Smith, Dennis; Dutton, Kenneth

    2007-01-01

    A new sensor provides an absolute position measurement. A schematic view of a motorized linear-translation stage that contains, at each end, an electronic unit that functions as both (1) a non-contact sensor that measures the absolute position of the stage and (2) a non-contact equivalent of a limit switch that is tripped when the stage reaches the nominal limit position. The need for such an absolute linear position-sensor/limit-sensor unit arises in the case of a linear-translation stage that is part of a larger system in which the actual stopping position of the stage (relative to the nominal limit position) must be known. Because inertia inevitably causes the stage to run somewhat past the nominal limit position, tripping of a standard limit switch or other limit sensor does not provide the required indication of the actual stopping position. This innovative sensor unit operates on an electromagnetic-induction principle similar to that of linear variable differential transformers (LVDTs)

  11. Studies on Muon Induction Acceleration and an Objective Lens Design for Transmission Muon Microscope

    NASA Astrophysics Data System (ADS)

    Artikova, Sayyora; Yoshida, Mitsuhiro; Naito, Fujio

    Muon acceleration will be accomplished by a set of induction cells, where each increases the energy of the muon beam by an increment of up to 30 kV. The cells are arranged in a linear way resulting in total accelerating voltage of 300 kV. Acceleration time in the linac is about hundred nanoseconds. Induction field calculation is based on an electrostatic approximation. Beam dynamics in the induction accelerator is investigated and final beam focusing on specimen is realized by designing a pole piece lens.

  12. Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.

    PubMed

    Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A

    2011-01-01

    The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.

  13. A linear induction motor with a coated conductor superconducting secondary

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zheng, Shijun; Li, Jing; Ma, Guang Tong; Yen, Fei

    2018-07-01

    A linear induction motor system composed of a high-Tc superconducting secondary with close-ended coils made of REBCO coated conductor wire was designed and tested experimentally. The measured thrust, normal force and power loss are presented and explained by combining the flux dynamics inside superconductors with existing linear drive theory. It is found that an inherent capacitive component associated to the flux motion of vortices in the Type-II superconductor reduces the impedance of the coils; from such, the associated Lorentz forces are drastically increased. The resulting breakout thrust of the designed linear motor system was found to be extremely high (up to 4.7 kN/m2) while the associated normal forces only a fraction of the thrust. Compared to its conventional counterparts, high-Tc superconducting secondaries appear to be more feasible for use in maglev propulsion and electromagnetic launchers.

  14. Comparisons between designs for single-sided linear electric motors: Homopolar synchronous and induction

    NASA Astrophysics Data System (ADS)

    Nondahl, T. A.; Richter, E.

    1980-09-01

    A design study of two types of single sided (with a passive rail) linear electric machine designs, namely homopolar linear synchronous machines (LSM's) and linear induction machines (LIM's), is described. It is assumed the machines provide tractive effort for several types of light rail vehicles and locomotives. These vehicles are wheel supported and require tractive powers ranging from 200 kW to 3735 kW and top speeds ranging from 112 km/hr to 400 km/hr. All designs are made according to specified magnetic and thermal criteria. The LSM advantages are a higher power factor, much greater restoring forces for track misalignments, and less track heating. The LIM advantages are no need to synchronize the excitation frequency precisely to vehicle speed, simpler machine construction, and a more easily anchored track structure. The relative weights of the two machine types vary with excitation frequency and speed; low frequencies and low speeds favor the LSM.

  15. Population Genetics in Compressible Flows

    NASA Astrophysics Data System (ADS)

    Pigolotti, Simone; Benzi, Roberto; Jensen, Mogens H.; Nelson, David R.

    2012-03-01

    We study competition between two biological species advected by a compressible velocity field. Individuals are treated as discrete Lagrangian particles that reproduce or die in a density-dependent fashion. In the absence of a velocity field and fitness advantage, number fluctuations lead to a coarsening dynamics typical of the stochastic Fisher equation. We investigate three examples of compressible advecting fields: a shell model of turbulence, a sinusoidal velocity field and a linear velocity sink. In all cases, advection leads to a striking drop in the fixation time, as well as a large reduction in the global carrying capacity. We find localization on convergence zones, and very rapid extinction compared to well-mixed populations. For a linear velocity sink, one finds a bimodal distribution of fixation times. The long-lived states in this case are demixed configurations with a single interface, whose location depends on the fitness advantage.

  16. Review and statistical analysis of the use of ultrasonic velocity for estimating the porosity fraction in polycrystalline materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.

    1991-01-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semiempirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produces predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis of fully-dense materials are in good agreement with those calculated from elastic properties.

  17. Linear velocity fields in non-Gaussian models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  18. Review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.

    1990-01-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties.

  19. Development of a Low Inductance Linear Alternator for Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schifer, Nicholas A.

    2017-01-01

    The free-piston Stirling power convertor is a promising technology for high efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper, eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations, and compares the predictions with experimental data for one of the configurations that has been built and is currently being tested.

  20. Development of a Low-Inductance Linear Alternator for Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schifer, Nicholas A.

    2017-01-01

    The free-piston Stirling power convertor is a promising technology for high-efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-the-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations. Additionally, one of the configurations was built and tested at GRC, and the experimental data is compared with the predictions.

  1. Uncertainty based pressure reconstruction from velocity measurement with generalized least squares

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacheng; Scalo, Carlo; Vlachos, Pavlos

    2017-11-01

    A method using generalized least squares reconstruction of instantaneous pressure field from velocity measurement and velocity uncertainty is introduced and applied to both planar and volumetric flow data. Pressure gradients are computed on a staggered grid from flow acceleration. The variance-covariance matrix of the pressure gradients is evaluated from the velocity uncertainty by approximating the pressure gradient error to a linear combination of velocity errors. An overdetermined system of linear equations which relates the pressure and the computed pressure gradients is formulated and then solved using generalized least squares with the variance-covariance matrix of the pressure gradients. By comparing the reconstructed pressure field against other methods such as solving the pressure Poisson equation, the omni-directional integration, and the ordinary least squares reconstruction, generalized least squares method is found to be more robust to the noise in velocity measurement. The improvement on pressure result becomes more remarkable when the velocity measurement becomes less accurate and more heteroscedastic. The uncertainty of the reconstructed pressure field is also quantified and compared across the different methods.

  2. Cosmic velocity-gravity relation in redshift space

    NASA Astrophysics Data System (ADS)

    Colombi, Stéphane; Chodorowski, Michał J.; Teyssier, Romain

    2007-02-01

    We propose a simple way to estimate the parameter β ~= Ω0.6/b from 3D galaxy surveys, where Ω is the non-relativistic matter-density parameter of the Universe and b is the bias between the galaxy distribution and the total matter distribution. Our method consists in measuring the relation between the cosmological velocity and gravity fields, and thus requires peculiar velocity measurements. The relation is measured directly in redshift space, so there is no need to reconstruct the density field in real space. In linear theory, the radial components of the gravity and velocity fields in redshift space are expected to be tightly correlated, with a slope given, in the distant observer approximation, by We test extensively this relation using controlled numerical experiments based on a cosmological N-body simulation. To perform the measurements, we propose a new and rather simple adaptive interpolation scheme to estimate the velocity and the gravity field on a grid. One of the most striking results is that non-linear effects, including `fingers of God', affect mainly the tails of the joint probability distribution function (PDF) of the velocity and gravity field: the 1-1.5 σ region around the maximum of the PDF is dominated by the linear theory regime, both in real and redshift space. This is understood explicitly by using the spherical collapse model as a proxy of non-linear dynamics. Applications of the method to real galaxy catalogues are discussed, including a preliminary investigation on homogeneous (volume-limited) `galaxy' samples extracted from the simulation with simple prescriptions based on halo and substructure identification, to quantify the effects of the bias between the galaxy distribution and the total matter distribution, as well as the effects of shot noise.

  3. Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockhard, George; Rubio, Manuel

    2008-01-01

    An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.

  4. Ion velocity analysis of rotating structures in a magnetic linear plasma device

    NASA Astrophysics Data System (ADS)

    Claire, N.; Escarguel, A.; Rebont, C.; Doveil, F.

    2018-06-01

    The MISTRAL device is designed to produce a linear magnetized plasma column. It has been used a few years ago to study a nonlinear low frequency instability exhibiting an azimuthal number m = 2. By changing the experimental configuration of MISTRAL, this work shows experimental results on an m = 1 rotating instability with strongly different behavior. The spatio-temporal evolution of the ion velocity distribution function given by a laser-induced fluorescence diagnostic is measured to infer the radial and azimuthal velocities, ion fluxes, and electric fields. The naive image of a plasma exhibiting a global rotation is again invalidated in this m = 1 mode but in a different way. Contrary to the m = 2 mode, the rotation frequency of the instability is lower than the ion cyclotron frequency and ions exhibit a complex behavior with a radial outward flux inside the unstable arm and azimuthal ion fluxes always directed toward the unstable arm. The azimuthal ion velocity is close to zero inside the ionization region, whereas the radial ion velocity grows linearly with radius. The radial electric field is oriented inward inside the unstable arm and outward outside. An axial velocity perturbation is also present, indicating that contrary to the m = 2 mode, the m = 1 mode is not a flute mode. These results cannot be easily interpreted with existing theories.

  5. Magnetized stratified rotating shear waves.

    PubMed

    Salhi, A; Lehner, T; Godeferd, F; Cambon, C

    2012-02-01

    We present a spectral linear analysis in terms of advected Fourier modes to describe the behavior of a fluid submitted to four constraints: shear (with rate S), rotation (with angular velocity Ω), stratification, and magnetic field within the linear spectral theory or the shearing box model in astrophysics. As a consequence of the fact that the base flow must be a solution of the Euler-Boussinesq equations, only radial and/or vertical density gradients can be taken into account. Ertel's theorem no longer is valid to show the conservation of potential vorticity, in the presence of the Lorentz force, but a similar theorem can be applied to a potential magnetic induction: The scalar product of the density gradient by the magnetic field is a Lagrangian invariant for an inviscid and nondiffusive fluid. The linear system with a minimal number of solenoidal components, two for both velocity and magnetic disturbance fields, is eventually expressed as a four-component inhomogeneous linear differential system in which the buoyancy scalar is a combination of solenoidal components (variables) and the (constant) potential magnetic induction. We study the stability of such a system for both an infinite streamwise wavelength (k(1) = 0, axisymmetric disturbances) and a finite one (k(1) ≠ 0, nonaxisymmetric disturbances). In the former case (k(1) = 0), we recover and extend previous results characterizing the magnetorotational instability (MRI) for combined effects of radial and vertical magnetic fields and combined effects of radial and vertical density gradients. We derive an expression for the MRI growth rate in terms of the stratification strength, which indicates that purely radial stratification can inhibit the MRI instability, while purely vertical stratification cannot completely suppress the MRI instability. In the case of nonaxisymmetric disturbances (k(1) ≠ 0), we only consider the effect of vertical stratification, and we use Levinson's theorem to demonstrate the stability of the solution at infinite vertical wavelength (k(3) = 0): There is an oscillatory behavior for τ > 1+|K(2)/k(1)|, where τ = St is a dimensionless time and K(2) is the radial component of the wave vector at τ = 0. The model is suitable to describe instabilities leading to turbulence by the bypass mechanism that can be relevant for the analysis of magnetized stratified Keplerian disks with a purely azimuthal field. For initial isotropic conditions, the time evolution of the spectral density of total energy (kinetic + magnetic + potential) is considered. At k(3) = 0, the vertical motion is purely oscillatory, and the sum of the vertical (kinetic + magnetic) energy plus the potential energy does not evolve with time and remains equal to its initial value. The horizontal motion can induce a rapid transient growth provided K(2)/k(1)>1. This rapid growth is due to the aperiodic velocity vortex mode that behaves like K(h)/k(h) where k(h)(τ)=[k(1)(2) + (K(2) - k(1)τ)(2)](1/2) and K(h) =k(h)(0). After the leading phase (τ > K(2)/k(1)>1), the horizontal magnetic energy and the horizontal kinetic energy exhibit a similar (oscillatory) behavior yielding a high level of total energy. The contribution to energies coming from the modes k(1) = 0 and k(3) = 0 is addressed by investigating the one-dimensional spectra for an initial Gaussian dense spectrum. For a magnetized Keplerian disk with a purely vertical field, it is found that an important contribution to magnetic and kinetic energies comes from the region near k(1) = 0. The limit at k(1) = 0 of the streamwise one-dimensional spectra of energies, or equivalently, the streamwise two-dimensional (2D) energy, is then computed. The comparison of the ratios of these 2D quantities with their three-dimensional counterparts provided by previous direct numerical simulations shows a quantitative agreement.

  6. Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath

    NASA Astrophysics Data System (ADS)

    Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia

    2017-04-01

    Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.

  7. An insight on correlations between kinematic rupture parameters from dynamic ruptures on rough faults

    NASA Astrophysics Data System (ADS)

    Thingbijam, Kiran Kumar; Galis, Martin; Vyas, Jagdish; Mai, P. Martin

    2017-04-01

    We examine the spatial interdependence between kinematic parameters of earthquake rupture, which include slip, rise-time (total duration of slip), acceleration time (time-to-peak slip velocity), peak slip velocity, and rupture velocity. These parameters were inferred from dynamic rupture models obtained by simulating spontaneous rupture on faults with varying degree of surface-roughness. We observe that the correlations between these parameters are better described by non-linear correlations (that is, on logarithm-logarithm scale) than by linear correlations. Slip and rise-time are positively correlated while these two parameters do not correlate with acceleration time, peak slip velocity, and rupture velocity. On the other hand, peak slip velocity correlates positively with rupture velocity but negatively with acceleration time. Acceleration time correlates negatively with rupture velocity. However, the observed correlations could be due to weak heterogeneity of the slip distributions given by the dynamic models. Therefore, the observed correlations may apply only to those parts of rupture plane with weak slip heterogeneity if earthquake-rupture associate highly heterogeneous slip distributions. Our findings will help to improve pseudo-dynamic rupture generators for efficient broadband ground-motion simulations for seismic hazard studies.

  8. Linear Motor With Air Slide

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.

    1993-01-01

    Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.

  9. Measurement and control systems for an imaging electromagnetic flow metre.

    PubMed

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller. © 2013 ISA Published by ISA All rights reserved.

  10. Characterization of a commercial multileaf collimator used for intensity modulated radiation therapy.

    PubMed

    Low, D A; Sohn, J W; Klein, E E; Markman, J; Mutic, S; Dempsey, J F

    2001-05-01

    The characteristics of a commercial multileaf collimator (MLC) to deliver static and dynamic multileaf collimation (SMLC and DMLC, respectively) were investigated to determine their influence on intensity modulated radiation therapy (IMRT) treatment planning and quality assurance. The influence of MLC leaf positioning accuracy on sequentially abutted SMLC fields was measured by creating abutting fields with selected gaps and overlaps. These data were also used to measure static leaf positioning precision. The characteristics of high leaf-velocity DMLC delivery were measured with constant velocity leaf sequences starting with an open field and closing a single leaf bank. A range of 1-72 monitor units (MU) was used providing a range of leaf velocities. The field abutment measurements yielded dose errors (as a percentage of the open field max dose) of 16.7+/-0.7% mm(-1) and 12.8+/-0.7% mm(-1) for 6 MV and 18 MV photon beams, respectively. The MLC leaf positioning precision was 0.080+/-0.018 mm (single standard deviation) highlighting the excellent delivery hardware tolerances for the tested beam delivery geometry. The high leaf-velocity DMLC measurements showed delivery artifacts when the leaf sequence and selected monitor units caused the linear accelerator to move the leaves at their maximum velocity while modulating the accelerator dose rate to deliver the desired leaf and MU sequence (termed leaf-velocity limited delivery). According to the vendor, a unique feature to their linear accelerator and MLC is that the dose rate is reduced to provide the correct cm MU(-1) leaf velocity when the delivery is leaf-velocity limited. However, it was found that the system delivered roughly 1 MU per pulse when the delivery was leaf-velocity limited causing dose profiles to exhibit discrete steps rather than a smooth dose gradient. The root mean square difference between the steps and desired linear gradient was less than 3% when more than 4 MU were used. The average dose per MU was greater and less than desired for closing and opening leaf patterns, respectively, when the delivery was leaf-velocity limited. The results indicated that the dose delivery artifacts should be minor for most clinical cases, but limit the assumption of dose linearity when significantly reducing the delivered dose for dosimeter characterization studies or QA measurements.

  11. Cross-correlation focus method with an electrostatic sensor array for local particle velocity measurement in dilute gas-solid two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Jingyu; Gao, Wenbin; Ding, Hongbing; Wu, Weiping

    2015-11-01

    The gas-solid two-phase flow has been widely applied in the power, chemical and metallurgical industries. It is of great significance in the research of gas-solid two-phase flow to measure particle velocity at different locations in the pipeline. Thus, an electrostatic sensor array comprising eight arc-shaped electrodes was designed. The relationship between the cross-correlation (CC) velocity and the distribution of particle velocity, charge density and electrode spatial sensitivity was analysed. Then the CC sensitivity and its calculation method were proposed. According to the distribution of CC sensitivity, it was found that, between different electrode pairs, it had different focus areas. The CC focus method was proposed for particle velocity measurement at different locations and validated by a belt-style electrostatic induction experiment facility. Finally, the particle velocities at different locations with different flow conditions were measured to research the particle velocity distribution in a dilute horizontal pneumatic conveying pipeline.

  12. Generating log-normal mock catalog of galaxies in redshift space

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Makiya, Ryu; Chiang, Chi-Ting; Jeong, Donghui; Saito, Shun; Komatsu, Eiichiro

    2017-10-01

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear bias relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.

  13. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  14. The influence of continuous historical velocity difference information on micro-cooperative driving stability

    NASA Astrophysics Data System (ADS)

    Yang, Liang-Yi; Sun, Di-Hua; Zhao, Min; Cheng, Sen-Lin; Zhang, Geng; Liu, Hui

    2018-03-01

    In this paper, a new micro-cooperative driving car-following model is proposed to investigate the effect of continuous historical velocity difference information on traffic stability. The linear stability criterion of the new model is derived with linear stability theory and the results show that the unstable region in the headway-sensitivity space will be shrunk by taking the continuous historical velocity difference information into account. Through nonlinear analysis, the mKdV equation is derived to describe the traffic evolution behavior of the new model near the critical point. Via numerical simulations, the theoretical analysis results are verified and the results indicate that the continuous historical velocity difference information can enhance the stability of traffic flow in the micro-cooperative driving process.

  15. Mapping the Dark Matter with 6dFGS

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy R.; Magoulas, C.; Springob, C.; Colless, M.; Jones, H.; Lucey, J.; Erdogdu, P.; Campbell, L.

    2012-05-01

    Fundamental plane distances from the 6dF Galaxy Redshift Survey are fitted to a model of the density field within 200/h Mpc. Likelihood is maximized for a single value of the local galaxy density, as expected in linear theory for the relation between overdensity and peculiar velocity. The dipole of the inferred southern hemisphere early type galaxy peculiar velocities is calculated within 150/h Mpc, before and after correction for the individual galaxy velocities predicted by the model. The former agrees with that obtained by other peculiar velocity studies (e.g. SFI++). The latter is only of order 150 km/sec and consistent with the expectations of the standard cosmological model and recent forecasts of the cosmic mach number, which show linearly declining bulk flow with increasing scale.

  16. Heating and Acceleration of Charged Particles by Weakly Compressible Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Lynn, Jacob William

    We investigate the interaction between low-frequency magnetohydrodynamic (MHD) turbulence and a distribution of charged particles. Understanding this physics is central to understanding the heating of the solar wind, as well as the heating and acceleration of other collisionless plasmas. Our central method is to simulate weakly compressible MHD turbulence using the Athena code, along with a distribution of test particles which feel the electromagnetic fields of the turbulence. We also construct analytic models of transit-time damping (TTD), which results from the mirror force caused by compressible (fast or slow) MHD waves. Standard linear-theory models in the literature require an exact resonance between particle and wave velocities to accelerate particles. The models developed in this thesis go beyond standard linear theory to account for the fact that wave-particle interactions decorrelate over a short time, which allows particles with velocities off resonance to undergo acceleration and velocity diffusion. We use the test particle simulation results to calibrate and distinguish between different models for this velocity diffusion. Test particle heating is larger than the linear theory prediction, due to continued acceleration of particles with velocities off-resonance. We also include an artificial pitch-angle scattering to the test particle motion, representing the effect of high-frequency waves or velocity-space instabilities. For low scattering rates, we find that the scattering enforces isotropy and enhances heating by a modest factor. For much higher scattering rates, the acceleration is instead due to a non-resonant effect, as particles "frozen" into the fluid adiabatically gain and lose energy as eddies expand and contract. Lastly, we generalize our calculations to allow for relativistic test particles. Linear theory predicts that relativistic particles with velocities much higher than the speed of waves comprising the turbulence would undergo no acceleration; resonance-broadening modifies this conclusion and allows for a continued Fermi-like acceleration process. This may affect the observed spectra of black hole accretion disks by accelerating relativistic particles into a quasi-powerlaw tail.

  17. Seismic Linear Noise Attenuation with Use of Radial Transform

    NASA Astrophysics Data System (ADS)

    Szymańska-Małysa, Żaneta

    2018-03-01

    One of the goals of seismic data processing is to attenuate the recorded noise in order to enable correct interpretation of the image. Radial transform has been used as a very effective tool in the attenuation of various types of linear noise, both numerical and real (such as ground roll, direct waves, head waves, guided waves etc). The result of transformation from offset - time (X - T) domain into apparent velocity - time (R - T) domain is frequency separation between reflections and linear events. In this article synthetic and real seismic shot gathers were examined. One example was targeted at far offset area of dataset where reflections and noise had similar apparent velocities and frequency bands. Another example was a result of elastic modelling where linear artefacts were produced. Bandpass filtering and scaling operation executed in radial domain attenuated all discussed types of linear noise very effectively. After noise reduction all further processing steps reveal better results, especially velocity analysis, migration and stacking. In all presented cases signal-to-noise ratio was significantly increased and reflections covered previously by noise were revealed. Power spectra of filtered seismic records preserved real dynamics of reflections.

  18. Influence of Eccentricity and Angular Velocity on Force Effects on Rotor of Magnetorheological Damper

    NASA Astrophysics Data System (ADS)

    Šedivý, Dominik; Ferfecki, Petr; Fialová, Simona

    2018-06-01

    This article presents the evaluation of force effects on squeeze film damper rotor. The rotor is placed eccentrically and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were measured by using computational modeling. Damper was filled with magnetorheological fluid. Viscosity of this non-Newtonian fluid is given using Bingham rheology model. Yield stress is not constant and it is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width between rotor and stator. The simulations were made in finite volume method based solver. The motion of the inner ring of squeeze film damper was carried out by dynamic mesh. Numerical solution was solved for five different initial eccentricities and angular velocities of rotor motion.

  19. The motionally induced back-emf in railguns

    NASA Astrophysics Data System (ADS)

    Graneau, Peter; Thompson, Donald S.; Morrill, Susan L.

    1990-04-01

    Relative motion between armature and rails in the railgun produces induced emf's. The Lorentz force formula correctly predicts the emf present in the armature but it fails to acknowledge the induction of further emf's in the rails which are proportional to the relative velocity. It is easy to confirm the existence of the additional rail emf's behind and ahead of the armature, by voltage measurements across the muzzle and the breech of the railgun. Neumann's forgotten law of induction, which was first proposed in 1845, correctly accounts for the magnitude and position of all motionally induced emf components in the railgun circuit. The velocity dependent back-emf's in the rails coincide with the Ampere recoil forces in the railheads just behind the armature. Electric power extended in overcoming these back-emf's, and associated with the recoil forces, seem to store elastic strain energy in the rails.

  20. Slip control for LIM propelled transit vehicles

    NASA Astrophysics Data System (ADS)

    Wallace, A. K.; Parker, J. H.; Dawson, G. E.

    1980-09-01

    Short stator linear induction motors, with an iron-backed aluminum sheet reaction rail and powered by a controlled inverter, have been selected as the propulsion system for transit vehicles in an intermediate capacity system (12-20,000 pphpd). The linear induction motor is capable of adhesion independent braking and acceleration levels which permit safe, close headways. In addition, simple control is possible allowing moving block automatic train control. This paper presents a slip frequency control scheme for the LIM. Experimental results for motoring and braking obtained from a test vehicle are also presented. These values are compared with theoretical predictions.

  1. Simple Procedure to Compute the Inductance of a Toroidal Ferrite Core from the Linear to the Saturation Regions

    PubMed Central

    Salas, Rosa Ana; Pleite, Jorge

    2013-01-01

    We propose a specific procedure to compute the inductance of a toroidal ferrite core as a function of the excitation current. The study includes the linear, intermediate and saturation regions. The procedure combines the use of Finite Element Analysis in 2D and experimental measurements. Through the two dimensional (2D) procedure we are able to achieve convergence, a reduction of computational cost and equivalent results to those computed by three dimensional (3D) simulations. The validation is carried out by comparing 2D, 3D and experimental results. PMID:28809283

  2. On the linear stability of sheared and magnetized jets without current sheets - relativistic case

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Balsara, Dinshaw S.; Lyutikov, Maxim; Komissarov, Serguei S.

    2018-03-01

    In our prior series of papers, we studied the non-relativistic and relativistic linear stability analysis of magnetized jets that do not have current sheets. In this paper, we extend our analysis to relativistic jets with a velocity shear and a similar current sheet free structure. The jets that we study are realistic because we include a velocity shear, a current sheet free magnetic structure, a relativistic velocity and a realistic thermal pressure so as to achieve overall pressure balance in the unperturbed jet. In order to parametrize the velocity shear, we apply a parabolic profile to the jets' 4-velocity. We find that the velocity shear significantly improves the stability of relativistic magnetized jets. This fact is completely consistent with our prior stability analysis of non-relativistic, sheared jets. The velocity shear mainly plays a role in stabilizing the short wavelength unstable modes for the pinch as well as the kink instability modes. In addition, it also stabilizes the long wavelength fundamental pinch instability mode. We also visualize the pressure fluctuations of each unstable mode to provide a better physical understanding of the enhanced stabilization by the velocity shear. Our overall conclusion is that combining velocity shear with a strong and realistic magnetic field makes relativistic jets even more stable.

  3. Effect of gravity on terminal particle settling velocity on Moon, Mars and Earth

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2013-04-01

    Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases due to the interdependence of settling velocity, drag and friction. However, StokeśLaw, the common way of estimating the terminal velocity of a particle moving in a gas of liquid assumes a linear relationship between terminal velocity and gravity. For terrestrial applications, this "error" is not relevant, but it may strongly influence the terminal velocity achieved by settling particles on Mars. False estimates of these settling velocities will, in turn, affect the interpretation of particle sizes observed in sedimentary rocks on Mars. Wrong interpretations may occur, for example, when the texture of sedimentary rocks is linked to the amount and hydraulics of runoff and thus ultimately the environmental conditions on Mars at the time of their formation. A good understanding of particle behaviour in liquids on Mars is therefore essential. In principle, the effect of lower gravity on settling velocity can also be achieved by reducing the difference in density between particle and gas or liquid. However, the use of such analogues simulating the lower gravity on Mars on Earth is creates other problems because the properties (i.e. viscosity) and interaction of the liquids and sediment (i.e. flow around the boundary layer between liquid and particle) differ from those of water and mineral particles. An alternative for measuring the actual settling velocities of particles under Martian gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling tests within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation we report the results of such a test conducted during a reduced gravity flight in November 2012. The results explore the strength of the non-linearity in the gravity-settling velocity relationship for terrestrial, lunar and Martian gravity.

  4. Validation of a Video Analysis Software Package for Quantifying Movement Velocity in Resistance Exercises.

    PubMed

    Sañudo, Borja; Rueda, David; Pozo-Cruz, Borja Del; de Hoyo, Moisés; Carrasco, Luis

    2016-10-01

    Sañudo, B, Rueda, D, del Pozo-Cruz, B, de Hoyo, M, and Carrasco, L. Validation of a video analysis software package for quantifying movement velocity in resistance exercises. J Strength Cond Res 30(10): 2934-2941, 2016-The aim of this study was to establish the validity of a video analysis software package in measuring mean propulsive velocity (MPV) and the maximal velocity during bench press. Twenty-one healthy males (21 ± 1 year) with weight training experience were recruited, and the MPV and the maximal velocity of the concentric phase (Vmax) were compared with a linear position transducer system during a standard bench press exercise. Participants performed a 1 repetition maximum test using the supine bench press exercise. The testing procedures involved the simultaneous assessment of bench press propulsive velocity using 2 kinematic (linear position transducer and semi-automated tracking software) systems. High Pearson's correlation coefficients for MPV and Vmax between both devices (r = 0.473 to 0.993) were observed. The intraclass correlation coefficients for barbell velocity data and the kinematic data obtained from video analysis were high (>0.79). In addition, the low coefficients of variation indicate that measurements had low variability. Finally, Bland-Altman plots with the limits of agreement of the MPV and Vmax with different loads showed a negative trend, which indicated that the video analysis had higher values than the linear transducer. In conclusion, this study has demonstrated that the software used for the video analysis was an easy to use and cost-effective tool with a very high degree of concurrent validity. This software can be used to evaluate changes in velocity of training load in resistance training, which may be important for the prescription and monitoring of training programmes.

  5. A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Wu, D.; Shinagawa, H.

    1990-01-01

    The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.

  6. The Fundamental Solution of the Linearized Navier Stokes Equations for Spinning Bodies in Three Spatial Dimensions Time Dependent Case

    NASA Astrophysics Data System (ADS)

    Thomann, Enrique A.; Guenther, Ronald B.

    2006-02-01

    Explicit formulae for the fundamental solution of the linearized time dependent Navier Stokes equations in three spatial dimensions are obtained. The linear equations considered in this paper include those used to model rigid bodies that are translating and rotating at a constant velocity. Estimates extending those obtained by Solonnikov in [23] for the fundamental solution of the time dependent Stokes equations, corresponding to zero translational and angular velocity, are established. Existence and uniqueness of solutions of these linearized problems is obtained for a class of functions that includes the classical Lebesgue spaces L p (R 3), 1 < p < ∞. Finally, the asymptotic behavior and semigroup properties of the fundamental solution are established.

  7. Cluster analysis reveals seasonal variation of sperm subpopulations in extended boar semen

    PubMed Central

    IBĂNESCU, Iulian; LEIDING, Claus; BOLLWEIN, Heinrich

    2017-01-01

    This study aimed to identify motile sperm subpopulations in extended boar semen and to observe the presumptive seasonal variation in their distribution. Data from 4837 boar ejaculates collected over a two-year period were analyzed in terms of kinematic parameters by Computer Assisted Sperm Analysis (CASA). Individual sperm data were used to determine subgroups of motile sperm within the ejaculates using cluster analysis. Four motile sperm subpopulations (SP) were identified, with distinct movement patterns: SP1 sperm with high velocity and high linearity; SP2 sperm with high velocity but low linearity; SP3 sperm with low velocity but high linearity; and SP4 sperm with low velocity and low linearity. SP1 constituted the least overall proportion within the ejaculates (P < 0.05). Season of semen collection significantly influenced the different proportions of sperm subpopulations. Spring was characterized by similar proportions of SP1 and SP4 (NS) and higher proportions of SP3. Summer brought a decrease in both subgroups containing fast sperm (SP1 and SP2) (P < 0.05). During autumn, increases in SP2 and SP4 were recorded. Winter substantially affected the proportions of all sperm subpopulations (P < 0.05) and SP2 became the most represented subgroup, while SP1 (fast and linear) reached its highest proportion compared to other seasons. In conclusion, extended boar semen is structured in distinct motile sperm subpopulations whose proportions vary according to the season of collection. Summer and autumn seem to have a negative impact on the fast and linear subpopulation. Cluster analysis can be useful in revealing differences in semen quality that are not normally detected by classical evaluation based on mean values. PMID:29081440

  8. Alfvén simple waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Zank, G. P.; Burrows, R. H.; Ratkiewicz, R. E.

    2011-02-01

    Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ϕ, which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ϕ. This leads to an implicit equation for the phase function and a generalization of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure, and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigenequations require that the rate of change of the magnetic induction B with ϕ throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ϕ) or B(ϕ) are developed.

  9. Alfven Simple Waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Zank, G. P.; Burrows, R.

    2009-12-01

    Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ǎrphi which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ǎrphi. This leads to an implicit equation for the phase function, and a generalisation of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigen-equations require that the rate of change of the magnetic induction B with ǎrphi throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ǎrphi) or B(ǎrphi) are developed.

  10. An investigation of fluid flow during induction stroke of a water analog model of an IC engine using an innovative optical velocimetry concept: LIPA

    NASA Technical Reports Server (NTRS)

    Stier, Bernd; Falco, R. E.

    1994-01-01

    Optical measurements on an axisymmetrical quartz component engine research model were made to evaluate the flow field encountered during induction. The measurement technique is LIPA (Laser Induced Photochemical Anemometry), a non-intrusive velocimetry concept that provides an investigator of fluid flow with a tool to attain planar information about three-dimensional velocity and vorticity vectors in a single measurement step. The goal of this investigation is to further develop this measurement technique and apply it to study the induction stroke of a water analog model of a four-stroke internal combustion engine. The research conducted in the water analog model is a fundamental scientific inquiry into the flow fields that develop in the induction stroke of an engine at idling engine speeds. As this is the first investigation of its kind using LIPA technique, our goal has been to quantify, in a preliminary manner, the flow field features that develop during the intake stroke. In the process a more comprehensive understanding of the flow field features was developed, and tied to the quantification. The study evaluated the flow field of the intake stroke by estimating fields of velocity and vorticity. On the basis of these data, information about fluid dynamics during induction at engine speeds of 10, 20, and 30 RPM (corresponding to 170, 340, and 510 RPM respectively, when air is the flowing medium) for three different valve lifts was obtained. The overall development of the flow field, its energy content (kinetic, fluctuation) for the different settings of the engine parameters, vorticity information, and cyclic variations have been quantified. These have been discussed in terms of mixing performance.

  11. Using a Model to Describe Students' Inductive Reasoning in Problem Solving

    ERIC Educational Resources Information Center

    Canadas, Maria C.; Castro, Encarnacion; Castro, Enrique

    2009-01-01

    Introduction: We present some aspects of a wider investigation (Canadas, 2007), whose main objective is to describe and characterize inductive reasoning used by Spanish students in years 9 and 10 when they work on problems that involved linear and quadratic sequences. Method: We produced a test composed of six problems with different…

  12. A model of annular linear induction pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momozaki, Yoichi

    2016-10-27

    The present work explains how the magnetic field and the induced current are obtained when the distributed coils are powered by a 3 phase power supply.  From the magnetic field and the induced current, the thrust and the induction losses in the pump can be calculated to estimate the pump performance.

  13. [A capillary blood flow velocity detection system based on linear array charge-coupled devices].

    PubMed

    Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang

    2017-12-01

    In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.

  14. An evaluation of the accuracy of some radar wind profiling techniques

    NASA Technical Reports Server (NTRS)

    Koscielny, A. J.; Doviak, R. J.

    1983-01-01

    Major advances in Doppler radar measurement in optically clear air have made it feasible to monitor radial velocities in the troposphere and lower stratosphere. For most applications the three dimensional wind vector is monitored rather than the radial velocity. Measurement of the wind vector with a single radar can be made assuming a spatially linear, time invariant wind field. The components and derivatives of the wind are estimated by the parameters of a linear regression of the radial velocities on functions of their spatial locations. The accuracy of the wind measurement thus depends on the locations of the radial velocities. The suitability is evaluated of some of the common retrieval techniques for simultaneous measurement of both the vertical and horizontal wind components. The techniques considered for study are fixed beam, azimuthal scanning (VAD) and elevation scanning (VED).

  15. Characteristics of laser-induced plasma under reduced background pressure with Doppler spectroscopy of excited atomic species near the shockwave front

    NASA Astrophysics Data System (ADS)

    Dojić, Dejan; Skočić, Miloš; Bukvić, Srdjan

    2018-03-01

    We present measurements of Laser Induced Plasma expansion relying on classical, laterally resolved spectroscopy. Easy observable Doppler splitting of Cu I 324.75 nm spectral line provides measurement of radial expansion velocity in a straightforward way. The measurements are conducted in atmosphere of air, argon and hydrogen at low pressure in the range 20-200 Pa. We found that expansion velocity is linearly decreasing if pressure of surrounding gas increases, with velocity/pressure slope nearly the same for all three gases. Copper atoms have the highest expansion speed in argon ( ∼ 50 km/s) and the smallest speed in air ( ∼ 42 km/s). It is found that expansion velocity increases linearly with irradiance, while intensity of the spectral line is quite insensitive to the laser irradiance.

  16. Determination of plasma pinch time and effective current radius of double planar wire array implosions from current measurements on a 1-MA linear transformer driver

    NASA Astrophysics Data System (ADS)

    Steiner, Adam M.; Yager-Elorriaga, David A.; Patel, Sonal G.; Jordan, Nicholas M.; Gilgenbach, Ronald M.; Safronova, Alla S.; Kantsyrev, Victor L.; Shlyaptseva, Veronica V.; Shrestha, Ishor; Schmidt-Petersen, Maximillian T.

    2016-10-01

    Implosions of planar wire arrays were performed on the Michigan Accelerator for Inductive Z-pinch Experiments, a linear transformer driver (LTD) at the University of Michigan. These experiments were characterized by lower than expected peak currents and significantly longer risetimes compared to studies performed on higher impedance machines. A circuit analysis showed that the load inductance has a significant impact on the current output due to the comparatively low impedance of the driver; the long risetimes were also attributed to high variability in LTD switch closing times. A circuit model accounting for these effects was employed to measure changes in load inductance as a function of time to determine plasma pinch timing and calculate a minimum effective current-carrying radius. These calculations showed good agreement with available shadowgraphy and x-ray diode measurements.

  17. Are There Optical Solitary Wave Solutions in Linear Media with Group Velocity Dispersion?

    NASA Technical Reports Server (NTRS)

    Li, Zhonghao; Zhou, Guosheng

    1996-01-01

    A generalized exact optical bright solitary wave solution in a three dimensional dispersive linear medium is presented. The most interesting property of the solution is that it can exist in the normal group-velocity-dispersion (GVD) region. In addition, another peculiar feature is that it may achieve a condition of 'zero-dispersion' to the media so that a solitary wave of arbitrarily small amplitude may be propagated with no dependence on is pulse width.

  18. Nonlinear study of the parallel velocity/tearing instability using an implicit, nonlinear resistive MHD solver

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Finn, J. M.; Knoll, D. A.

    2000-10-01

    Recently, a new parallel velocity instability has been found.(J. M. Finn, Phys. Plasmas), 2, 12 (1995) This mode is a tearing mode driven unstable by curvature effects and sound wave coupling in the presence of parallel velocity shear. Under such conditions, linear theory predicts that tearing instabilities will grow even in situations in which the classical tearing mode is stable. This could then be a viable seed mechanism for the neoclassical tearing mode, and hence a non-linear study is of interest. Here, the linear and non-linear stages of this instability are explored using a fully implicit, fully nonlinear 2D reduced resistive MHD code,(L. Chacon et al), ``Implicit, Jacobian-free Newton-Krylov 2D reduced resistive MHD nonlinear solver,'' submitted to J. Comput. Phys. (2000) including viscosity and particle transport effects. The nonlinear implicit time integration is performed using the Newton-Raphson iterative algorithm. Krylov iterative techniques are employed for the required algebraic matrix inversions, implemented Jacobian-free (i.e., without ever forming and storing the Jacobian matrix), and preconditioned with a ``physics-based'' preconditioner. Nonlinear results indicate that, for large total plasma beta and large parallel velocity shear, the instability results in the generation of large poloidal shear flows and large magnetic islands even in regimes when the classical tearing mode is absolutely stable. For small viscosity, the time asymptotic state can be turbulent.

  19. A simple theory of motor protein kinetics and energetics. II.

    PubMed

    Qian, H

    2000-01-10

    A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.

  20. Racial Disparity in Renal Transplantation: Alemtuzumab the Great Equalizer?

    PubMed

    Smith, Alison A; John, Mira M; Dortonne, Isabelle S; Paramesh, Anil S; Killackey, Mary; Jaffe, Bernard M; Buell, Joseph F

    2015-10-01

    Racial disparity as a barrier to successful outcomes in renal transplants for African Americans has been well described. Numerous unsuccessful attempts have been made to identify specific immunologic and socioeconomic factors. The objective of our study was to determine whether alemtuzumab (AL) induction abolishes this discrepancy and improves allograft survival in African American recipients. A retrospective chart review of consecutive adult renal transplants was conducted between 2006 and 2014. Kaplan-Meier analysis and hazard ratios were calculated for the African Americans (AA) and white groups. Multiple linear regressions were performed to assess independent variables (race, retransplant, sex, donor type, induction agent) on allograft survival. A significant difference in allograft survival was identified between whites (n = 272) and AA (n = 445), with AA experiencing more graft losses (18.2% vs 12.1%, P = 0.0351). Induction with AL improved outcomes in all transplant recipients. Multiple linear regression identified that the strongest predictor of allograft failure was induction without AL (P < 0.0001). The data for a subset analysis matched for follow-up length demonstrated that whites compared with AA (n = 157, 67 whites and 90 AA) had lower rates of allograft failure in the absence of AL induction (14.9% vs 44.4%, P = 0.0156, hazard ratio = 2.077). In contrast, AL induction (n = 275, 105 whites and 170 AA) eliminated the racial disparity in allograft failure (5.7% vs 9.4%, P = 0.8248, hazard ratio = 1.504). This is the first study to describe the effects of AL induction therapy on AA renal transplant recipients beyond the first posttransplant year. Our early results suggest that AL induction therapy abolishes the disparity in renal allograft failure.

  1. Electrophoresis in strong electric fields.

    PubMed

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a function of the electric field strength, particle size, electrolyte concentration and the adsorbed polymer amount. It has been shown that the electrophoretic velocity of the particles/cells increases with field strength linearly up to about 100 and 200 V/cm (for cells) without and with adsorbed polymers both in pure water and in electrolyte solutions. In line with the theoretical predictions, in stronger fields substantial non-linear effects were recorded (V(ef)~E(3)). The ef velocity of unipolar ion-type conducting (ion-exchanger particles and fibres), electron-type conducting (magnesium and Mg/Al alloy) and semiconductor particles (graphite, activated carbon, pyrite, molybdenite) increases significantly with the electric field (V(ef)~E(2)) and the particle's size but is almost independent of the ionic strength. These trends are inconsistent with Smoluchowski's equation for dielectric particles, but are consistent with the Dukhin-Mishchuk theory of superfast electrophoresis.

  2. Investigation of the Impact of the Upstream Induction Zone on LIDAR Measurement Accuracy for Wind Turbine Control Applications using Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Simley, Eric; Y Pao, Lucy; Gebraad, Pieter; Churchfield, Matthew

    2014-06-01

    Several sources of error exist in lidar measurements for feedforward control of wind turbines including the ability to detect only radial velocities, spatial averaging, and wind evolution. This paper investigates another potential source of error: the upstream induction zone. The induction zone can directly affect lidar measurements and presents an opportunity for further decorrelation between upstream wind and the wind that interacts with the rotor. The impact of the induction zone is investigated using the combined CFD and aeroelastic code SOWFA. Lidar measurements are simulated upstream of a 5 MW turbine rotor and the true wind disturbances are found using a wind speed estimator and turbine outputs. Lidar performance in the absence of an induction zone is determined by simulating lidar measurements and the turbine response using the aeroelastic code FAST with wind inputs taken far upstream of the original turbine location in the SOWFA wind field. Results indicate that while measurement quality strongly depends on the amount of wind evolution, the induction zone has little effect. However, the optimal lidar preview distance and circular scan radius change slightly due to the presence of the induction zone.

  3. Hugoniot equation of state of rock materials under shock compression

    PubMed Central

    Braithwaite, C. H.; Zhao, J.

    2017-01-01

    Two sets of shock compression tests (i.e. conventional and reverse impact) were conducted to determine the shock response of two rock materials using a plate impact facility. Embedded manganin stress gauges were used for the measurements of longitudinal stress and shock velocity. Photon Doppler velocimetry was used to capture the free surface velocity of the target. Experimental data were obtained on a fine-grained marble and a coarse-grained gabbro over a shock pressure range of approximately 1.5–12 GPa. Gabbro exhibited a linear Hugoniot equation of state (EOS) in the pressure–particle velocity (P–up) plane, while for marble a nonlinear response was observed. The EOS relations between shock velocity (US) and particle velocity (up) are linearly fitted as US = 2.62 + 3.319up and US = 5.4 85 + 1.038up for marble and gabbro, respectively. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956506

  4. Acoustic property reconstruction of a neonate Yangtze finless porpoise's (Neophocaena asiaeorientalis) head based on CT imaging.

    PubMed

    Wei, Chong; Wang, Zhitao; Song, Zhongchang; Wang, Kexiong; Wang, Ding; Au, Whitlow W L; Zhang, Yu

    2015-01-01

    The reconstruction of the acoustic properties of a neonate finless porpoise's head was performed using X-ray computed tomography (CT). The head of the deceased neonate porpoise was also segmented across the body axis and cut into slices. The averaged sound velocity and density were measured, and the Hounsfield units (HU) of the corresponding slices were obtained from computed tomography scanning. A regression analysis was employed to show the linear relationships between the Hounsfield unit and both sound velocity and density of samples. Furthermore, the CT imaging data were used to compare the HU value, sound velocity, density and acoustic characteristic impedance of the main tissues in the porpoise's head. The results showed that the linear relationships between HU and both sound velocity and density were qualitatively consistent with previous studies on Indo-pacific humpback dolphins and Cuvier's beaked whales. However, there was no significant increase of the sound velocity and acoustic impedance from the inner core to the outer layer in this neonate finless porpoise's melon.

  5. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2015-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.

  6. Collision Based Blood Cell Distribution of the Blood Flow

    NASA Astrophysics Data System (ADS)

    Cinar, Yildirim

    2003-11-01

    Introduction: The goal of the study is the determination of the energy transferring process between colliding masses and the application of the results to the distribution of the cell, velocity and kinetic energy in arterial blood flow. Methods: Mathematical methods and models were used to explain the collision between two moving systems, and the distribution of linear momentum, rectilinear velocity, and kinetic energy in a collision. Results: According to decrease of mass of the second system, the velocity and momentum of constant mass of the first system are decreased, and linearly decreasing mass of the second system captures a larger amount of the kinetic energy and the rectilinear velocity of the collision system on a logarithmic scale. Discussion: The cause of concentration of blood cells at the center of blood flow an artery is not explained by Bernoulli principle alone but the kinetic energy and velocity distribution due to collision between the big mass of the arterial wall and the small mass of blood cells must be considered as well.

  7. Generating log-normal mock catalog of galaxies in redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Aniket; Makiya, Ryu; Saito, Shun

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear biasmore » relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.« less

  8. Air cooled turbine component having an internal filtration system

    DOEpatents

    Beeck, Alexander R [Orlando, FL

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  9. Beam breakup in an advanced linear induction accelerator

    DOE PAGES

    Ekdahl, Carl August; Coleman, Joshua Eugene; McCuistian, Brian Trent

    2016-07-01

    Two linear induction accelerators (LIAs) have been in operation for a number of years at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. A new multipulse LIA is being developed. We have computationally investigated the beam breakup (BBU) instability in this advanced LIA. In particular, we have explored the consequences of the choice of beam injector energy and the grouping of LIA cells. We find that within the limited range of options presently under consideration for the LIA architecture, there is little adverse effect on the BBU growth. The computational tool that we used for this investigation wasmore » the beam dynamics code linear accelerator model for DARHT (LAMDA). In conclusion, to confirm that LAMDA was appropriate for this task, we first validated it through comparisons with the experimental BBU data acquired on the DARHT accelerators.« less

  10. The development and testing of a linear induction motor being fed from the source with limited electric power

    NASA Astrophysics Data System (ADS)

    Tiunov, V. V.

    2018-02-01

    The report provides results of the research related to the tubular linear induction motors’ application. The motors’ design features, a calculation model, a description of test specimens for mining and electric power industry are introduced. The most attention is given to the single-phase motors for high voltage switches drives with the usage of inexpensive standard single-phase transformers for motors’ power supply. The method of the motor’s parameters determination, when the motor is being fed from the transformer, working in the overload mode, was described, and the results of it practical usage were good enough for the engineering practice.

  11. Emittance Growth in the DARHT-II Linear Induction Accelerator

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; McCuistian, B. Trent; Mostrom, Christopher B.; Schulze, Martin E.; Thoma, Carsten H.

    2017-11-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. Some of the possible causes for the emittance growth in the DARHT LIA have been investigated using particle-in-cell (PIC) codes, and are discussed in this article. The results suggest that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.

  12. An Induction Heating Method with Traveling Magnetic Field for Long Structure Metal

    NASA Astrophysics Data System (ADS)

    Sekine, Takamitsu; Tomita, Hideo; Obata, Shuji; Saito, Yukio

    A novel dismantlable adhesion method for recycling operation of interior materials is proposed. This method is applied a high frequency induction heating and a thermoplastic adhesive. For an adhesion of interior material to long steel stud, a conventional spiral coil as like IH cooking heater gives inadequateness for uniform heating to the stud. Therefore, we have proposed an induction heating method with traveling magnetic field for perfect long structures bonding. In this paper, we describe on the new adhesion method using the 20kHz, three-phase 200V inverter and linear induction coil. From induction heating characteristics to thin steel plates and long studs, the method is cleared the usefulness for uniform heating to long structures.

  13. Relating constrained motion to force through Newton's second law

    NASA Astrophysics Data System (ADS)

    Roithmayr, Carlos M.

    When a mechanical system is subject to constraints its motion is in some way restricted. In accordance with Newton's second law, motion is a direct result of forces acting on a system; hence, constraint is inextricably linked to force. The presence of a constraint implies the application of particular forces needed to compel motion in accordance with the constraint; absence of a constraint implies the absence of such forces. The objective of this thesis is to formulate a comprehensive, consistent, and concise method for identifying a set of forces needed to constrain the behavior of a mechanical system modeled as a set of particles and rigid bodies. The goal is accomplished in large part by expressing constraint equations in vector form rather than entirely in terms of scalars. The method developed here can be applied whenever constraints can be described at the acceleration level by a set of independent equations that are linear in acceleration. Hence, the range of applicability extends to servo-constraints or program constraints described at the velocity level with relationships that are nonlinear in velocity. All configuration constraints, and an important class of classical motion constraints, can be expressed at the velocity level by using equations that are linear in velocity; therefore, the associated constraint equations are linear in acceleration when written at the acceleration level. Two new approaches are presented for deriving equations governing motion of a system subject to constraints expressed at the velocity level with equations that are nonlinear in velocity. By using partial accelerations instead of the partial velocities normally employed with Kane's method, it is possible to form dynamical equations that either do or do not contain evidence of the constraint forces, depending on the analyst's interests.

  14. Nonlinear acoustic detection of weathered, low compliance landmines

    NASA Astrophysics Data System (ADS)

    Sabatier, James M.; Alberts, W. C. Kirkpatrick; Korman, Murray S.

    2005-09-01

    Two potential impediments to acoustic landmine detection are soil weathering processes and low compliance landmines. To bury landmines, the soil within a mine diameter is removed and replaced such that bulk density, compression, and shear strength all decrease, leaving an acoustic scar detectable with the linear acoustic measurement technique. After a few soil wetting and drying cycles, this contrast is reduced. Linear acoustic mine detection measurements were made on a low impedance contrast landmine before the first rainfall on several occasions over the subsequent 5 years. During this period of time, both the spatial and frequency resolution had to be increased to maintain an on/off target velocity ratio that allowed detection. In some cases, the landmine remains undetectable. To address this, two-tone nonlinear acoustic measurements have been made on these landmines. When the landmine is detectable with linear acoustics, two tones are broadcast at the frequency where the on/off target velocity ratio is the largest. For the cases when the landmine is undetectable, a two-tone sweep is performed and the operator observes the real-time velocity FFT, noting nonlinear sidebands. Next, two-tone tests are conducted at these sidebands to determine nonlinear velocity profiles. [Work supported by U.S. Army RDECOM, NVESD.

  15. Rotation motion of designed nano-turbine.

    PubMed

    Li, Jingyuan; Wang, Xiaofeng; Zhao, Lina; Gao, Xingfa; Zhao, Yuliang; Zhou, Ruhong

    2014-07-28

    Construction of nano-devices that can generate controllable unidirectional rotation is an important part of nanotechnology. Here, we design a nano-turbine composed of carbon nanotube and graphene nanoblades, which can be driven by fluid flow. Rotation motion of nano-turbine is quantitatively studied by molecular dynamics simulations on this model system. A robust linear relationship is achieved with this nano-turbine between its rotation rate and the fluid flow velocity spanning two orders of magnitude, and this linear relationship remains intact at various temperatures. More interestingly, a striking difference from its macroscopic counterpart is identified: the rotation rate is much smaller (by a factor of ~15) than that of the macroscopic turbine with the same driving flow. This discrepancy is shown to be related to the disruption of water flow at nanoscale, together with the water slippage at graphene surface and the so-called "dragging effect". Moreover, counterintuitively, the ratio of "effective" driving flow velocity increases as the flow velocity increases, suggesting that the linear dependence on the flow velocity can be more complicated in nature. These findings may serve as a foundation for the further development of rotary nano-devices and should also be helpful for a better understanding of the biological molecular motors.

  16. A Variational Property of the Velocity Distribution in a System of Material Particles

    ERIC Educational Resources Information Center

    Siboni, S.

    2009-01-01

    A simple variational property concerning the velocity distribution of a set of point particles is illustrated. This property provides a full characterization of the velocity distribution which minimizes the kinetic energy of the system for prescribed values of linear and angular momentum. Such a characterization is applied to discuss the kinetic…

  17. Experimental investigation of cooling perimeter and disturbance length effect on stability of Nb3Sn cable-in-conduit conductors

    NASA Astrophysics Data System (ADS)

    Armstrong, J. R.

    1992-02-01

    The stability of three coils, with similar parameters besides having differing strand diameters, was investigated experimentally using inductive heaters to input disturbances. One of the coils stability was also tested by doubling the inductive heated disturbance length to 10 cm. By computationally deriving approximate inductive heater input energy at 12 T, stability curves show fair agreement with zero-dimensional and one-dimensional computer predictions. Quench velocity and limiting currents also show good agreement with earlier work. Also, the stability measured on one of the coils below its limiting current by disturbing a 10 cm length of conductor was much less than the same samples stability using a 5 cm disturbance length.

  18. Progress on the PT-1 Prototype Plasmoid Thruster

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard H.; Martin, Adam K.

    2007-01-01

    The design and construction of a plasmoid thruster prototype is described. This thruster operates by expelling inductively formed plasmoids at high velocities. These plasmoids are field reversed configuration plasmas which are formed by reversing a magnetic flux frozen in an ionized gas inside a theta-pinch coil. The pinch coil is a unique multi-turn, multi-lead design chosen for optimization of inductance and field uniformity. A table-top bread-board demonstrator has been built at MSFC, and will be delivered to Radiance Technologies Inc. for further testing at the Auburn Space Power Institute.

  19. Local projection stabilization for linearized Brinkman-Forchheimer-Darcy equation

    NASA Astrophysics Data System (ADS)

    Skrzypacz, Piotr

    2017-09-01

    The Local Projection Stabilization (LPS) is presented for the linearized Brinkman-Forchheimer-Darcy equation with high Reynolds numbers. The considered equation can be used to model porous medium flows in chemical reactors of packed bed type. The detailed finite element analysis is presented for the case of nonconstant porosity. The enriched variant of LPS is based on the equal order interpolation for the velocity and pressure. The optimal error bounds for the velocity and pressure errors are justified numerically.

  20. Ion velocities in the presheath of electronegative, radio-frequency plasmas measured by low-energy cutoff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolewski, Mark A.; Wang, Yicheng; Goyette, Amanda

    2016-07-11

    Simple kinematic considerations indicate that, under certain conditions in radio-frequency (rf) plasmas, the amplitude of the low-energy peak in ion energy distributions (IEDs) measured at an electrode depends sensitively on ion velocities upstream, at the presheath/sheath boundary. By measuring this amplitude, the velocities at which ions exit the presheath can be determined and long-standing controversies regarding presheath transport can be resolved. Here, IEDs measured in rf-biased, inductively coupled plasmas in CF{sub 4} gas determined the presheath exit velocities of all significant positive ions: CF{sub 3}{sup +}, CF{sub 2}{sup +}, CF{sup +}, and F{sup +}. At higher bias voltages, we detectedmore » essentially the same velocity for all four ions. For all ions, measured velocities were significantly lower than the Bohm velocity and the electropositive ion sound speed. Neither is an accurate boundary condition for rf sheaths in electronegative gases: under certain low-frequency, high-voltage criteria defined here, either yields large errors in predicted IEDs. These results indicate that many widely used sheath models will need to be revised.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scofield, C.M.; Des Champs, N.H.

    This article examines a design concept for classroom air conditioning systems that guarantees minimum ventilation rates are met. The topics of the article include new ventilation requirements, design concept, outside air induction diffuser, low-velocity ducts and plenums, the relationship of humidity to school absenteeism rates, retrofit applications, and saving energy.

  2. Monitoring stress related velocity variation in concrete with a 2 x 10(-5) relative resolution using diffuse ultrasound.

    PubMed

    Larose, Eric; Hall, Stephen

    2009-04-01

    Ultrasonic waves propagating in solids have stress-dependent velocities. The relation between stress (or strain) and velocity forms the basis of non-linear acoustics. In homogeneous solids, conventional time-of-flight techniques have measured this dependence with spectacular precision. In heterogeneous media such as concrete, the direct (ballistic) wave around 500 kHz is strongly attenuated and conventional techniques are less efficient. In this manuscript, the effect of weak stress changes on the late arrivals constituting the acoustic diffuse coda is tracked. A resolution of 2 x 10(-5) in relative velocity change is attained which corresponds to a sensitivity to stress change of better than 50 kPa. Therefore, the technique described here provides an original way to measure the non-linear parameter with stress variations on the order of tens of kPa.

  3. Linear dispersion properties of ring velocity distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandas, Marek, E-mail: marek.vandas@asu.cas.cz; Hellinger, Petr; Institute of Atmospheric Physics, AS CR, Bocni II/1401, CZ-14100 Prague

    2015-06-15

    Linear properties of ring velocity distribution functions are investigated. The dispersion tensor in a form similar to the case of a Maxwellian distribution function, but for a general distribution function separable in velocities, is presented. Analytical forms of the dispersion tensor are derived for two cases of ring velocity distribution functions: one obtained from physical arguments and one for the usual, ad hoc ring distribution. The analytical expressions involve generalized hypergeometric, Kampé de Fériet functions of two arguments. For a set of plasma parameters, the two ring distribution functions are compared. At the parallel propagation with respect to the ambientmore » magnetic field, the two ring distributions give the same results identical to the corresponding bi-Maxwellian distribution. At oblique propagation, the two ring distributions give similar results only for strong instabilities, whereas for weak growth rates their predictions are significantly different; the two ring distributions have different marginal stability conditions.« less

  4. Shear wave velocity variation across the Taupo Volcanic Zone, New Zealand, from receiver function inversion

    USGS Publications Warehouse

    Bannister, S.; Bryan, C.J.; Bibby, H.M.

    2004-01-01

    The Taupo Volcanic Zone (TVZ), New Zealand is a region characterized by very high magma eruption rates and extremely high heat flow, which is manifest in high-temperature geothermal waters. The shear wave velocity structure across the region is inferred using non-linear inversion of receiver functions, which were derived from teleseismic earthquake data. Results from the non-linear inversion, and from forward synthetic modelling, indicate low S velocities at ???6- 16 km depth near the Rotorua and Reporoa calderas. We infer these low-velocity layers to represent the presence of high-level bodies of partial melt associated with the volcanism. Receiver functions at other stations are complicated by reverberations associated with near-surface sedimentary layers. The receiver function data also indicate that the Moho lies between 25 and 30 km, deeper than the 15 ?? 2 km depth previously inferred for the crust-mantle boundary beneath the TVZ. ?? 2004 RAS.

  5. Investigation of the sound generation mechanisms for in-duct orifice plates.

    PubMed

    Tao, Fuyang; Joseph, Phillip; Zhang, Xin; Stalnov, Oksana; Siercke, Matthias; Scheel, Henning

    2017-08-01

    Sound generation due to an orifice plate in a hard-walled flow duct which is commonly used in air distribution systems (ADS) and flow meters is investigated. The aim is to provide an understanding of this noise generation mechanism based on measurements of the source pressure distribution over the orifice plate. A simple model based on Curle's acoustic analogy is described that relates the broadband in-duct sound field to the surface pressure cross spectrum on both sides of the orifice plate. This work describes careful measurements of the surface pressure cross spectrum over the orifice plate from which the surface pressure distribution and correlation length is deduced. This information is then used to predict the radiated in-duct sound field. Agreement within 3 dB between the predicted and directly measured sound fields is obtained, providing direct confirmation that the surface pressure fluctuations acting over the orifice plates are the main noise sources. Based on the developed model, the contributions to the sound field from different radial locations of the orifice plate are calculated. The surface pressure is shown to follow a U 3.9 velocity scaling law and the area over which the surface sources are correlated follows a U 1.8 velocity scaling law.

  6. Prediction and Optimization of Phase Transformation Region After Spot Continual Induction Hardening Process Using Response Surface Method

    NASA Astrophysics Data System (ADS)

    Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Chen, Xuliang; Wang, Zhou

    2017-09-01

    The spot continual induction hardening (SCIH) process, which is a modified induction hardening, can be assembled to a five-axis cooperating computer numerical control machine tool to strengthen more than one small area or relatively large area on complicated component surface. In this study, a response surface method was presented to optimize phase transformation region after the SCIH process. The effects of five process parameters including feed velocity, input power, gap, curvature and flow rate on temperature, microstructure, microhardness and phase transformation geometry were investigated. Central composition design, a second-order response surface design, was employed to systematically estimate the empirical models of temperature and phase transformation geometry. The analysis results indicated that feed velocity has a dominant effect on the uniformity of microstructure and microhardness, domain size, oxidized track width, phase transformation width and height in the SCIH process while curvature has the largest effect on center temperature in the design space. The optimum operating conditions with 0.817, 0.845 and 0.773 of desirability values are expected to be able to minimize ratio (tempering region) and maximize phase transformation width for concave, flat and convex surface workpieces, respectively. The verification result indicated that the process parameters obtained by the model were reliable.

  7. A harmonic oscillator having “volleyball damping”

    NASA Astrophysics Data System (ADS)

    Mickens, R. E.; Oyedeji, K.; Rucker, S. A.

    2006-05-01

    Volleyball damping corresponds to linear damping up to a certain critical velocity, with zero damping above this value. The dynamics of a linear harmonic oscillator is investigated with this damping mechanism.

  8. Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Paloski, W. H. (Principal Investigator)

    1995-01-01

    Model simulations of the squirrel monkey vestibulo-ocular reflex (VOR) are presented for two motion paradigms: constant velocity eccentric rotation and roll tilt about a naso-occipital axis. The model represents the implementation of three hypotheses: the "internal model" hypothesis, the "gravito-inertial force (GIF) resolution" hypothesis, and the "compensatory VOR" hypothesis. The internal model hypothesis is based on the idea that the nervous system knows the dynamics of the sensory systems and implements this knowledge as an internal dynamic model. The GIF resolution hypothesis is based on the idea that the nervous system knows that gravity minus linear acceleration equals GIF and implements this knowledge by resolving the otolith measurement of GIF into central estimates of gravity and linear acceleration, such that the central estimate of gravity minus the central estimate of acceleration equals the otolith measurement of GIF. The compensatory VOR hypothesis is based on the idea that the VOR compensates for the central estimates of angular velocity and linear velocity, which sum in a near-linear manner. During constant velocity eccentric rotation, the model correctly predicts that: (1) the peak horizontal response is greater while "facing-motion" than with "back-to-motion"; (2) the axis of eye rotation shifts toward alignment with GIF; and (3) a continuous vertical response, slow phase downward, exists prior to deceleration. The model also correctly predicts that a torsional response during the roll rotation is the only velocity response observed during roll rotations about a naso-occipital axis. The success of this model in predicting the observed experimental responses suggests that the model captures the essence of the complex sensory interactions engendered by eccentric rotation and roll tilt.

  9. Cognitive regulation of saccadic velocity by reward prospect.

    PubMed

    Chen, Lewis L; Hung, Leroy Y; Quinet, Julie; Kosek, Kevin

    2013-08-01

    It is known that expectation of reward speeds up saccades. Past studies have also shown the presence of a saccadic velocity bias in the orbit, resulting from a biomechanical regulation over varying eccentricities. Nevertheless, whether and how reward expectation interacts with the biomechanical regulation of saccadic velocities over varying eccentricities remains unknown. We addressed this question by conducting a visually guided double-step saccade task. The role of reward expectation was tested in monkeys performing two consecutive horizontal saccades, one associated with reward prospect and the other not. To adequately assess saccadic velocity and avoid adaptation, we systematically varied initial eye positions, saccadic directions and amplitudes. Our results confirmed the existence of a velocity bias in the orbit, i.e., saccadic peak velocity decreased linearly as the initial eye position deviated in the direction of the saccade. The slope of this bias increased as saccadic amplitudes increased. Nevertheless, reward prospect facilitated velocity to a greater extent for saccades away from than for saccades toward the orbital centre, rendering an overall reduction in the velocity bias. The rate (slope) and magnitude (intercept) of reward modulation over this velocity bias were linearly correlated with amplitudes, similar to the amplitude-modulated velocity bias without reward prospect, which presumably resulted from a biomechanical regulation. Small-amplitude (≤ 5°) saccades received little modulation. These findings together suggest that reward expectation modulated saccadic velocity not as an additive signal but as a facilitating mechanism that interacted with the biomechanical regulation. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. An efficient finite element technique for sound propagation in axisymmetric hard wall ducts carrying high subsonic Mach number flows

    NASA Technical Reports Server (NTRS)

    Tag, I. A.; Lumsdaine, E.

    1978-01-01

    The general non-linear three-dimensional equation for acoustic potential is derived by using a perturbation technique. The linearized axisymmetric equation is then solved by using a finite element algorithm based on the Galerkin formulation for a harmonic time dependence. The solution is carried out in complex number notation for the acoustic velocity potential. Linear, isoparametric, quadrilateral elements with non-uniform distribution across the duct section are implemented. The resultant global matrix is stored in banded form and solved by using a modified Gauss elimination technique. Sound pressure levels and acoustic velocities are calculated from post element solutions. Different duct geometries are analyzed and compared with experimental results.

  11. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes.

    PubMed

    Bucs, Szilard S; Linares, Rodrigo Valladares; Marston, Jeremy O; Radu, Andrea I; Vrouwenvelder, Johannes S; Picioreanu, Cristian

    2015-12-15

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m·s(-1)) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m·s(-1)) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m·s(-1), thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Predicting the Maximum Dynamic Strength in Bench Press: The High Precision of the Bar Velocity Approach.

    PubMed

    Loturco, Irineu; Kobal, Ronaldo; Moraes, José E; Kitamura, Katia; Cal Abad, César C; Pereira, Lucas A; Nakamura, Fábio Y

    2017-04-01

    Loturco, I, Kobal, R, Moraes, JE, Kitamura, K, Cal Abad, CC, Pereira, LA, and Nakamura, FY. Predicting the maximum dynamic strength in bench press: the high precision of the bar velocity approach. J Strength Cond Res 31(4): 1127-1131, 2017-The aim of this study was to determine the force-velocity relationship and test the possibility of determining the 1 repetition maximum (1RM) in "free weight" and Smith machine bench presses. Thirty-six male top-level athletes from 3 different sports were submitted to a standardized 1RM bench press assessment (free weight or Smith machine, in randomized order), following standard procedures encompassing lifts performed at 40-100% of 1RM. The mean propulsive velocity (MPV) was measured in all attempts. A linear regression was performed to establish the relationships between bar velocities and 1RM percentages. The actual and predicted 1RM for each exercise were compared using a paired t-test. Although the Smith machine 1RM was higher (10% difference) than the free weight 1RM, in both cases the actual and predicted values did not differ. In addition, the linear relationship between MPV and percentage of 1RM (coefficient of determination ≥95%) allow determination of training intensity based on the bar velocity. The linear relationships between the MPVs and the relative percentages of 1RM throughout the entire range of loads enable coaches to use the MPV to accurately monitor their athletes on a daily basis and accurately determine their actual 1RM without the need to perform standard maximum dynamic strength assessments.

  13. Nonlinear Binormal Flow of Vortex Filaments

    NASA Astrophysics Data System (ADS)

    Strong, Scott; Carr, Lincoln

    2015-11-01

    With the current advances in vortex imaging of Bose-Einstein condensates occurring at the Universities of Arizona, São Paulo and Cambridge, interest in vortex filament dynamics is experiencing a resurgence. Recent simulations, Salman (2013), depict dissipative mechanisms resulting from vortex ring emissions and Kelvin wave generation associated with vortex self-intersections. As the local induction approximation fails to capture reconnection events, it lacks a similar dissipative mechanism. On the other hand, Strong&Carr (2012) showed that the exact representation of the velocity field induced by a curved segment of vortex contains higher-order corrections expressed in powers of curvature. This nonlinear binormal flow can be transformed, Hasimoto (1972), into a fully nonlinear equation of Schrödinger type. Continued transformation, Madelung (1926), reveals that the filament's square curvature obeys a quasilinear scalar conservation law with source term. This implies a broader range of filament dynamics than is possible with the integrable linear binormal flow. In this talk we show the affect higher-order corrections have on filament dynamics and discuss physical scales for which they may be witnessed in future experiments. Partially supported by NSF.

  14. Development of modular scalable pulsed power systems for high power magnetized plasma experiments

    NASA Astrophysics Data System (ADS)

    Bean, I. A.; Weber, T. E.; Adams, C. S.; Henderson, B. R.; Klim, A. J.

    2017-10-01

    New pulsed power switches and trigger drivers are being developed in order to explore higher energy regimes in the Magnetic Shock Experiment (MSX) at Los Alamos National Laboratory. To achieve the required plasma velocities, high-power (approx. 100 kV, 100s of kA), high charge transfer (approx. 1 C), low-jitter (few ns) gas switches are needed. A study has been conducted on the effects of various electrode geometries and materials, dielectric media, and triggering strategies; resulting in the design of a low-inductance annular field-distortion switch, optimized for use with dry air at 90 psig, and triggered by a low-jitter, rapid rise-time solid-state Linear Transformer Driver. The switch geometry and electrical characteristics are designed to be compatible with Syllac style capacitors, and are intended to be deployed in modular configurations. The scalable nature of this approach will enable the rapid design and implementation of a wide variety of high-power magnetized plasma experiments. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration. Approved for unlimited release, LA-UR-17-2578.

  15. Field-programmable gate array-controlled sweep velocity-locked laser pulse generator

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-05-01

    A field-programmable gate array (FPGA)-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL) is proposed. A distributed feedback laser with modulated injection current was used as a swept-frequency laser source. An open-loop predistortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using an FPGA to lock the output of a Mach-Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency-domain reflectometry system used to interrogate a subterahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.

  16. Inhomogeneous helicity effect in the solar angular-momentum transport

    NASA Astrophysics Data System (ADS)

    Yokoi, Nobumitsu

    2017-04-01

    Coupled with mean absolute vorticity Ω∗ (rotation and mean relative vorticity), inhomogeneous turbulent helicity is expected to contribute to the generation of global flow structure against the linear and angular momentum mixing due to turbulent or eddy viscosity. This inhomogeneous helicity effect was originally derived in Yokoi & Yoshizawa (1993) [1], and recently has been validated by direct numerical simulations (DNSs) of rotating helical turbulence [2]. Turbulence effect enters the mean-vorticity equation through the turbulent vortexmotive force ⟨u'×ω'⟩ [u': velocity fluctuation, ω'(= ∇× u'): vorticity fluctuation], which is the vorticity counterpart of the electromotive force ⟨u'× b'⟩ (b': magnetic fluctuation) in the mean magnetic-field induction. The mean velocity induction δU is proportional to the vortexmotive force. According to the theoretical result [1,2], it is expressed as δU = -νT∇×Ω∗-ηT(∇2H)Ω∗, where ηT is the transport coefficient, H = ⟨u'ṡω'⟩ the turbulent helicity, and Ω∗ the mean absolute vorticity. The first term corresponds to the enhanced diffusion due to turbulent viscosity νT. The second term expresses the large-scale flow generation due to inhomogeneous helicity. Since helicity is self-generated in rotating stratified turbulence [3], an inhomogeneous helicity distribution is expected to exist in the solar convection zone. A rising flow with expansion near the surface of the Sun generates a strongly negative helicity there [4]. This spatial distribution of helicity would lead to a positive Laplacian of turbulent helicity (∇2H > 0) in the subsurface layer of the Sun. In the combination with the large-scale vorticity associated with the meridional circulation, the inhomogeneous helicity effect works for accelerating the mean velocity in the azimuthal direction. The relevance of this inhomogeneous helicity effect in the solar convection zone is discussed further. References [1] Yokoi, N. and Yoshizawa, A., "Statistical analysis of the effects of helicity in inhomogeneous turbulence," Phys. Fluids A, 5, 464-477 (1993). [2] Yokoi, N. and Brandenburg, A., "Large-scale flow generation by inhomogeneous helicity," Phys. Rev. E, 93, 033125-1-14 (2016). [3] Marino, R., Mininni, P., Rosenberg, D., and Pouquet, A., "Emergence of helicity in rotating stratified turbulence," Phys. Rev. E, 87, 033016-1-9 (2013). [4] Duarte, L. D. V., Wicht, J., Browning, M. K., and Gastine, T., "Helicity inversion in spherical convection as a means for equatorward dynamo wave propagation," Mon. Not. Roy. Astron. Soc. 456, 1708-1722 (2016).

  17. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    NASA Astrophysics Data System (ADS)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  18. Action-angle formulation of generalized, orbit-based, fast-ion diagnostic weight functions

    NASA Astrophysics Data System (ADS)

    Stagner, L.; Heidbrink, W. W.

    2017-09-01

    Due to the usually complicated and anisotropic nature of the fast-ion distribution function, diagnostic velocity-space weight functions, which indicate the sensitivity of a diagnostic to different fast-ion velocities, are used to facilitate the analysis of experimental data. Additionally, when velocity-space weight functions are discretized, a linear equation relating the fast-ion density and the expected diagnostic signal is formed. In a technique known as velocity-space tomography, many measurements can be combined to create an ill-conditioned system of linear equations that can be solved using various computational methods. However, when velocity-space weight functions (which by definition ignore spatial dependencies) are used, velocity-space tomography is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostic measurements. In this work, we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e., orbit tomography. In depth derivations of orbit weight functions for the neutron, neutral particle analyzer, and fast-ion D-α diagnostics are also shown.

  19. Analytical and numerical study of the electro-osmotic annular flow of viscoelastic fluids.

    PubMed

    Ferrás, L L; Afonso, A M; Alves, M A; Nóbrega, J M; Pinho, F T

    2014-04-15

    In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    NASA Astrophysics Data System (ADS)

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; Sato, S. A.; Rehr, J. J.; Yabana, K.; Prendergast, David

    2018-05-01

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. Potential applications of the LCAO based scheme in the context of extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.

  1. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship.

    PubMed

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg), while 1 RM estimated by the Musclelab's software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg). Actual and estimated 1 RM were very highly correlated (r = 0.93, p<0.001) but largely different (Bias: 5.4 ± 5.7 kg, p < 0.001, ES = 1.37). The 95% limits of agreement were ±11.2 kg, which represented ±18% of actual 1 RM. It was concluded that 1 RM estimated from the force-velocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level. Key pointsSome commercial devices allow to estimate 1 RM from the force-velocity relationship.These estimations are valid. However, their accuracy is not high enough to be of practical help for training intensity prescription.Day-to-day reliability of force and velocity measured by the linear encoder has been shown to be very high, but the specific reliability of 1 RM estimated from the force-velocity relationship has to be determined before concluding to the usefulness of this approach in the monitoring of training induced adaptations.

  2. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship

    PubMed Central

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg), while 1 RM estimated by the Musclelab’s software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg). Actual and estimated 1 RM were very highly correlated (r = 0.93, p<0.001) but largely different (Bias: 5.4 ± 5.7 kg, p < 0.001, ES = 1.37). The 95% limits of agreement were ±11.2 kg, which represented ±18% of actual 1 RM. It was concluded that 1 RM estimated from the force-velocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level. Key points Some commercial devices allow to estimate 1 RM from the force-velocity relationship. These estimations are valid. However, their accuracy is not high enough to be of practical help for training intensity prescription. Day-to-day reliability of force and velocity measured by the linear encoder has been shown to be very high, but the specific reliability of 1 RM estimated from the force-velocity relationship has to be determined before concluding to the usefulness of this approach in the monitoring of training induced adaptations. PMID:24149641

  3. Vortex dynamics in type-II superconductors under strong pinning conditions

    NASA Astrophysics Data System (ADS)

    Thomann, A. U.; Geshkenbein, V. B.; Blatter, G.

    2017-10-01

    We study effects of pinning on the dynamics of a vortex lattice in a type-II superconductor in the strong-pinning situation and determine the force-velocity (or current-voltage) characteristic combining analytical and numerical methods. Our analysis deals with a small density np of defects that act with a large force fp on the vortices, thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine the velocity-dependent average pinning-force density 〈Fp(v ) 〉 and find that it changes on the velocity scale vp˜fp/η a03 , where η is the viscosity of vortex motion and a0 the distance between vortices. In the small pin-density limit, this velocity is much larger than the typical flow velocity vc˜Fc/η of the free vortex system at drives near the critical force density Fc=〈Fp(v =0 ) 〉 ∝npfp . As a result, we find a generic excess-force characteristic, a nearly linear force-velocity characteristic shifted by the critical force density Fc; the linear flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulomb's law of dry friction for the case of strong vortex pinning.

  4. Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer

    NASA Astrophysics Data System (ADS)

    Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří

    2014-10-01

    Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.

  5. Unsteady Propeller Hydrodynamics

    DTIC Science & Technology

    2001-06-01

    coupling routines, making the code more robust while decreasing the computation burden over currect methods. Finally, a higher order quadratic influence ... function technique was implemented within the wake to more accurately define the induction velocity at the trailing edge which has suffered in the past due to lack of discretization.

  6. Apparatus for Teaching Physics.

    ERIC Educational Resources Information Center

    Connolly, Walter, Ed.

    1990-01-01

    Provides the apparatus setup, experimental method, necessary formulas, and references for three measurement experiments: (1) "Determine the Magnetic Induction of a Coil with a Hall Element"; (2) "Measuring Magnetic Force and Magnetic Field of Small Permanent Magnets"; and (3) "Measurements of Sound Velocity by Means of PZT" (piezoelectric…

  7. Plasma studies of a linear magnetron operating in the range from DC to HiPIMS

    NASA Astrophysics Data System (ADS)

    Anders, André; Yang, Yuchen

    2018-01-01

    Plasma properties of magnetrons have been extensively studied in the past with the focus on small, research-style magnetrons with planar disk targets. In this contribution, we report on plasma diagnostics of a linear magnetron because the linear geometry is widely used in industry and, more importantly here, it provides the unique opportunity to align a linear racetrack section with a streak camera's entrance slit. This allows us to follow the evolution of plasma instabilities, i.e., localized ionization zones or spokes, as they travel along the racetrack. This report greatly extends our more limited and focused study on the structure and velocity of spokes [Anders and Yang, Appl. Phys. Lett. 111, 064103 (2017)]. Following recent plasma potential measurements [Panjan and Anders, J. Appl. Phys. 121, 063302 (2017)], we interpret optical emission information with localized electron heating. We confirm that for low direct current operation, spokes move in the -E ×B direction, and in the opposite direction in the high current mode. Streak images indicate slower spoke velocities near corners compared to spoke velocities in the straight sections of the racetrack. Spoke splitting and merging are observed supporting the interpretation that spoke motion represents a phase velocity of the region of greatest ionization and is not a motion of plasma. Fast camera investigations are supplemented by measurements of the energy distribution functions of ions emitted from the straight and curved regions of the racetrack, showing notable and reproducible differences.

  8. The Influences of Inductive Instruction and Resources on Students' Attitudes toward Reading: Evidence from PISA 2009

    ERIC Educational Resources Information Center

    Jhang, Fang-Hua

    2014-01-01

    The declining trend in the positive reading attitude of students' has concerned scholars. This paper aims to apply a 3-level hierarchical linear model to analyse how inductive instruction and resources influence both students' positive and negative attitudes towards reading. Approximately 470,000 15-year-old students, and their school principals,…

  9. Measuring the Power Spectrum with Peculiar Velocities

    NASA Astrophysics Data System (ADS)

    Macaulay, Edward; Feldman, H. A.; Ferreira, P. G.; Jaffe, A. H.; Agarwal, S.; Hudson, M. J.; Watkins, R.

    2012-01-01

    The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large scale excess in the matter power spectrum, and can appear to be in some tension with the LCDM model. We use a composite catalogue of 4,537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results from Macaulay et al. (2011), studying minimum variance moments of the velocity field, as calculated by Watkins, Feldman & Hudson (2009) and Feldman, Watkins & Hudson (2010). We find good agreement with the LCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1, although with a 1 sigma uncertainty which includes the LCDM model. We find that the uncertainty in the excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and nonlinear clustering in simulated peculiar velocity catalogues, and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.

  10. Measurement of angular velocity in the perception of rotation.

    PubMed

    Barraza, José F; Grzywacz, Norberto M

    2002-09-01

    Humans are sensitive to the parameters of translational motion, namely, direction and speed. At the same time, people have special mechanisms to deal with more complex motions, such as rotations and expansions. One wonders whether people may also be sensitive to the parameters of these complex motions. Here, we report on a series of experiments that explore whether human subjects can use angular velocity to evaluate how fast a rotational motion is. In four experiments, subjects were required to perform a task of speed-of-rotation discrimination by comparing two annuli of different radii in a temporal 2AFC paradigm. Results showed that humans could rely on a sensitive measurement of angular velocity to perform this discrimination task. This was especially true when the quality of the rotational signal was high (given by the number of dots composing the annulus). When the signal quality decreased, a bias towards linear velocity of 5-80% appeared, suggesting the existence of separate mechanisms for angular and linear velocity. This bias was independent from the reference radius. Finally, we asked whether the measurement of angular velocity required a rigid rotation, that is, whether the visual system makes only one global estimate of angular velocity. For this purpose, a random-dot disk was built such that all the dots were rotating with the same tangential speed, irrespectively of radius. Results showed that subjects do not estimate a unique global angular velocity, but that they perceive a non-rigid disk, with angular velocity falling inversely proportionally with radius.

  11. The Relationship between Pedal Force and Crank Angular Velocity in Sprint Cycling.

    PubMed

    Bobbert, Maarten Frank; Casius, L J Richard; Van Soest, Arthur J

    2016-05-01

    Relationships between tangential pedal force and crank angular velocity in sprint cycling tend to be linear. We set out to understand why they are not hyperbolic, like the intrinsic force-velocity relationship of muscles. We simulated isokinetic sprint cycling at crank angular velocities ranging from 30 to 150 rpm with a forward dynamic model of the human musculoskeletal system actuated by eight lower extremity muscle groups. The input of the model was muscle stimulation over time, which we optimized to maximize average power output over a cycle. Peak tangential pedal force was found to drop more with crank angular velocity than expected based on intrinsic muscle properties. This linearizing effect was not due to segmental dynamics but rather due to active state dynamics. Maximizing average power in cycling requires muscles to bring their active state from as high as possible during shortening to as low as possible during lengthening. Reducing the active state is a relatively slow process, and hence must be initiated a certain amount of time before lengthening starts. As crank angular velocity goes up, this amount of time corresponds to a greater angular displacement, so the instant of switching off extensor muscle stimulation must occur earlier relative to the angle at which pedal force was extracted for the force-velocity relationship. Relationships between pedal force and crank angular velocity in sprint cycling do not reflect solely the intrinsic force-velocity relationship of muscles but also the consequences of activation dynamics.

  12. On the Impact of a Quadratic Acceleration Term in the Analysis of Position Time Series

    NASA Astrophysics Data System (ADS)

    Bogusz, Janusz; Klos, Anna; Bos, Machiel Simon; Hunegnaw, Addisu; Teferle, Felix Norman

    2016-04-01

    The analysis of Global Navigation Satellite System (GNSS) position time series generally assumes that each of the coordinate component series is described by the sum of a linear rate (velocity) and various periodic terms. The residuals, the deviations between the fitted model and the observations, are then a measure of the epoch-to-epoch scatter and have been used for the analysis of the stochastic character (noise) of the time series. Often the parameters of interest in GNSS position time series are the velocities and their associated uncertainties, which have to be determined with the highest reliability. It is clear that not all GNSS position time series follow this simple linear behaviour. Therefore, we have added an acceleration term in the form of a quadratic polynomial function to the model in order to better describe the non-linear motion in the position time series. This non-linear motion could be a response to purely geophysical processes, for example, elastic rebound of the Earth's crust due to ice mass loss in Greenland, artefacts due to deficiencies in bias mitigation models, for example, of the GNSS satellite and receiver antenna phase centres, or any combination thereof. In this study we have simulated 20 time series with different stochastic characteristics such as white, flicker or random walk noise of length of 23 years. The noise amplitude was assumed at 1 mm/y-/4. Then, we added the deterministic part consisting of a linear trend of 20 mm/y (that represents the averaged horizontal velocity) and accelerations ranging from minus 0.6 to plus 0.6 mm/y2. For all these data we estimated the noise parameters with Maximum Likelihood Estimation (MLE) using the Hector software package without taken into account the non-linear term. In this way we set the benchmark to then investigate how the noise properties and velocity uncertainty may be affected by any un-modelled, non-linear term. The velocities and their uncertainties versus the accelerations for different types of noise are determined. Furthermore, we have selected 40 globally distributed stations that have a clear non-linear behaviour from two different International GNSS Service (IGS) analysis centers: JPL (Jet Propulsion Laboratory) and BLT (British Isles continuous GNSS Facility and University of Luxembourg Tide Gauge Benchmark Monitoring (TIGA) Analysis Center). We obtained maximum accelerations of -1.8±1.2 mm2/y and -4.5±3.3 mm2/y for the horizontal and vertical components, respectively. The noise analysis tests have shown that the addition of the non-linear term has significantly whitened the power spectra of the position time series, i.e. shifted the spectral index from flicker towards white noise.

  13. Average current per vacuum-arc cathode spot and spot velocity in a magnetic field on a CuCr50/50 nanocomposite

    NASA Astrophysics Data System (ADS)

    Zabello, K. K.; Poluyanova, I. N.; Yakovlev, V. V.; Shkol'nik, S. M.

    2017-11-01

    It has been shown that such cathode spot characteristics as the average current per spot and its dependence on tangential magnetic-field induction B t and the spot velocity and its dependence on B t for two CuCr50/50 specimens with very different structures (nanocomposite and "solid-state sintered" composite) almost coincide if the surface of contacts has been totally remelted before measurements with the use of moderate arc currents in the process of conditioning.

  14. Principles of Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Briggs*, Richard J.

    The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)

  15. Response simulation and theoretical calibration of a dual-induction resistivity LWD tool

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Ke, Shi-Zhen; Li, An-Zong; Chen, Peng; Zhu, Jun; Zhang, Wei

    2014-03-01

    In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vector finite element method (VFEM), the influences of the borehole, invaded zone, surrounding strata, and tool eccentricity are analyzed, and calibration loop parameters and calibration coefficients of the LWD tool are discussed. The results show that the tool has a greater depth of investigation than that of the existing electromagnetic propagation LWD tools and is more sensitive to azimuthal conductivity. Both deep and medium induction responses have linear relationships with the formation conductivity, considering optimal calibration loop parameters and calibration coefficients. Due to the different depths of investigation and resolution, deep induction and medium induction are affected differently by the formation model parameters, thereby having different correction factors. The simulation results can provide theoretical references for the research and interpretation of the dual-induction resistivity LWD tools.

  16. Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.; Cohen, Bernard; Raphan, Theodore; Berthoz, Alain; Clement, Gilles

    2005-01-01

    On Earth, eye velocity of horizontal optokinetic nystagmus (OKN) orients to gravito-inertial acceleration (GIA), the sum of linear accelerations acting on the head and body. We determined whether adaptation to micro-gravity altered this orientation and whether ocular pursuit exhibited similar properties. Eye movements of four astronauts were recorded with three-dimensional video-oculography. Optokinetic stimuli were stripes moving horizontally, vertically, and obliquely at 30 degrees/s. Ocular pursuit was produced by a spot moving horizontally or vertically at 20 degrees/s. Subjects were either stationary or were centrifuged during OKN with 1 or 0.5 g of interaural or dorsoventral centripetal linear acceleration. Average eye position during OKN (the beating field) moved into the quick-phase direction by 10 degrees during lateral and upward field movement in all conditions. The beating field did not shift up during downward OKN on Earth, but there was a strong upward movement of the beating field (9 degrees) during downward OKN in the absence of gravity; this likely represents an adaptation to the lack of a vertical 1-g bias in-flight. The horizontal OKN velocity axis tilted 9 degrees in the roll plane toward the GIA during interaural centrifugation, both on Earth and in space. During oblique OKN, the velocity vector tilted towards the GIA in the roll plane when there was a disparity between the direction of stripe motion and the GIA, but not when the two were aligned. In contrast, dorsoventral acceleration tilted the horizontal OKN velocity vector 6 degrees in pitch away from the GIA. Roll tilts of the horizontal OKN velocity vector toward the GIA during interaural centrifugation are consistent with the orientation properties of velocity storage, but pitch tilts away from the GIA when centrifuged while supine are not. We speculate that visual suppression during OKN may have caused the velocity vector to tilt away from the GIA during dorsoventral centrifugation. Vertical OKN and ocular pursuit did not exhibit orientation toward the GIA in any condition. Static full-body roll tilts and centrifugation generating an equivalent interaural acceleration produced the same tilts in the horizontal OKN velocity before and after flight. Thus, the magnitude of tilt in OKN velocity was dependent on the magnitude of interaural linear acceleration, rather than the tilt of the GIA with regard to the head. These results favor a 'filter' model of spatial orientation in which orienting eye movements are proportional to the magnitude of low frequency interaural linear acceleration, rather than models that postulate an internal representation of gravity as the basis for spatial orientation.

  17. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  18. The observation of AE events under uniaxial compression and the quantitative relationship between the anisotropy index and the main failure plane

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Wang, Enyuan; Chen, Dong; Li, Xuelong; Li, Nan

    2016-11-01

    In this paper, the P-wave velocities in different directions of sandstone samples under uniaxial compression are measured. The results indicate that the changes in the P-wave velocity in different directions are almost the same. In the initial stage of loading, the P-wave velocity exhibits a rising trend due to compaction and closure of preexisting fissures. As the stress increase, preexisting fissures are closed but induced fractures are not yet generated. The sandstone samples become denser and more uniform. The P-wave velocity remains in a steady state at a high level. In the late stage of loading, the P-wave velocity drops significantly due to the expansion and breakthrough of induced fractures. The P-wave velocity anisotropy index ε is analyzed during the process of loading. It can be observed that the change in the degree of wave velocity anisotropy can be divided into three stages: the AB stage, the BC stage and the CD stage, with a changing trend from decline to incline. In the initial stage of loading, the preexisting fissures have a randomized distribution, and the change is large-scale and uniform. The difference in each spatial point decreases gradually, and synchronization increases gradually. Thus, the P-wave velocity anisotropy declines. As the stress increases gradually, with the expansion and breakthrough of induced fractures, the difference in each spatial point increases. Before failure of rock samples, the violent change region of the rock samples' internal structure is focused on a narrow two-dimensional zone, and the rock samples' structural change is obviously local. Therefore, the degree of velocity anisotropy rises after declining, and it also has good corresponding relation among the AE count, the location of AE events and the degree of wave velocity anisotropy. The projection plane of the main fracture plane on the axis plane is recorded as M plane. Based on the AFF equation, for the CD stage, we analyze the quantitative relationship between the velocity anisotropy index ε and angle θ, which is the difference between the angle of the M plane and the X plane and the angle of the M plane and the Y plane from the theoretical point. The results indicate that 1/ε and cotθ/2 have good negative linear relationship that can be expressed as cotθ/2 = a ∗1/ε + b. According to experimental data, the linear fit of 1/ε and cotθ/2 is found, obtaining cotθ/2 = - 0.04721/ε + 0.03, with a linear fit index of 0.908. From an experimental point of view, the linear relationship between 1/ε and cotθ/2 is verified. Through this research, we propose a new method for quantitatively predicting the main fracture occurrence position by P-wave velocity anisotropy. This work has an important significance for understanding buckling failure of rocks.

  19. Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis.

    PubMed

    Gregersen, Misha Marie; Andersen, Mathias Baekbo; Soni, Gaurav; Meinhart, Carl; Bruus, Henrik

    2009-06-01

    For a microchamber filled with a binary electrolyte and containing a flat unbiased center electrode at one wall, we employ three numerical models to study the strength of the resulting induced-charge electro-osmotic (ICEO) flow rolls: (i) a full nonlinear continuum model resolving the double layer, (ii) a linear slip-velocity model not resolving the double layer and without tangential charge transport inside this layer, and (iii) a nonlinear slip-velocity model extending the linear model by including the tangential charge transport inside the double layer. We show that, compared to the full model, the slip-velocity models significantly overestimate the ICEO flow. This provides a partial explanation of the quantitative discrepancy between observed and calculated ICEO velocities reported in the literature. The discrepancy increases significantly for increasing Debye length relative to the electrode size, i.e., for nanofluidic systems. However, even for electrode dimensions in the micrometer range, the discrepancies in velocity due to the finite Debye length can be more than 10% for an electrode of zero height and more than 100% for electrode heights comparable to the Debye length.

  20. Spin-Orbit Torques and Anisotropic Magnetization Damping in Skyrmion Crystals

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil; Brataas, Arne

    2014-03-01

    We theoretically study the effects of reactive and dissipative homogeneous spin-orbit torques and anisotropic damping on the current-driven skyrmion dynamics in cubic chiral magnets. Our results demonstrate that spin-orbit torques play a significant role in the current-induced skyrmion velocity. The dissipative spin-orbit torque generates a relativistic Magnus force on the skyrmions, whereas the reactive spin-orbit torque yields a correction to both the drift velocity along the current direction and the transverse velocity associated with the Magnus force. The spin-orbit torque corrections to the velocity scale linearly with the skyrmion size, which is inversely proportional to the spin-orbit coupling. Consequently, the reactive spin-orbit torque correction can be the same order of magnitude as the non-relativistic contribution. More importantly, the dissipative spin-orbit torque can be the dominant force that causes a deflected motion of the skyrmions if the torque exhibits a linear or quadratic relationship with the spin-orbit coupling. In addition, we demonstrate that the skyrmion velocity is determined by anisotropic magnetization damping parameters governed by the skyrmion size.

  1. Modeling and controlling a robotic convoy using guidance laws strategies.

    PubMed

    Belkhouche, Fethi; Belkhouche, Boumediene

    2005-08-01

    This paper deals with the problem of modeling and controlling a robotic convoy. Guidance laws techniques are used to provide a mathematical formulation of the problem. The guidance laws used for this purpose are the velocity pursuit, the deviated pursuit, and the proportional navigation. The velocity pursuit equations model the robot's path under various sensors based control laws. A systematic study of the tracking problem based on this technique is undertaken. These guidance laws are applied to derive decentralized control laws for the angular and linear velocities. For the angular velocity, the control law is directly derived from the guidance laws after considering the relative kinematics equations between successive robots. The second control law maintains the distance between successive robots constant by controlling the linear velocity. This control law is derived by considering the kinematics equations between successive robots under the considered guidance law. Properties of the method are discussed and proven. Simulation results confirm the validity of our approach, as well as the validity of the properties of the method. Index Terms-Guidance laws, relative kinematics equations, robotic convoy, tracking.

  2. The Relation of Parental Guilt Induction to Child Internalizing Problems When a Caregiver Has a History of Depression

    PubMed Central

    Rakow, Aaron; McKee, Laura; Coffelt, Nicole; Champion, Jennifer; Fear, Jessica; Compas, Bruce

    2009-01-01

    The purpose of this study was to examine the relation between parental guilt induction and child internalizing problems in families where a caregiver had experienced depression. A total of 107 families, including 146 children (age 9–15), participated. Child-reported parental guilt induction, as well as three more traditionally studied parenting behaviors (warmth/involvement, monitoring, and discipline), were assessed, as was parent-report of child internalizing problem behavior. Linear Mixed Models Analysis indicated parental guilt induction was positively related to child internalizing problems in the context of the remaining three parenting behaviors. Implications of the findings for prevention and intervention parenting programs are considered. PMID:20090863

  3. Demonstrating the Direction of Angular Velocity in Circular Motion

    NASA Astrophysics Data System (ADS)

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-09-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics classrooms, the direction of an angular velocity vector is taught by the right-hand rule, a mnemonic tool intended to aid memory. A setup constructed for instructional purposes may provide students with a more easily understood and concrete method to observe the direction of the angular velocity. This article attempts to demonstrate the angular velocity vector using the observable motion of a screw mounted to a remotely operated toy car.

  4. Study on the plasma generation characteristics of an induction-triggered coaxial pulsed plasma thruster

    NASA Astrophysics Data System (ADS)

    Weisheng, CUI; Wenzheng, LIU; Jia, TIAN; Xiuyang, CHEN

    2018-02-01

    At present, spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT), which are known to be life-limiting components due to plasma corrosion and carbon deposition. A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions. We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle. The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes, contributing to a reduction in the electrode breakdown voltage. Additionally, it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments. The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases, and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity. The induction-triggered coaxial PPT we propose has a simplified trigger structure, and it is an effective attempt to optimize the micro-satellite thruster.

  5. Detailed computational procedure for design of cascade blades with prescribed velocity distributions in compressible potential flows

    NASA Technical Reports Server (NTRS)

    Costello, George R; Cummings, Robert L; Sinnette, John T , Jr

    1952-01-01

    A detailed step-by-step computational outline is presented for the design of two-dimensional cascade blades having a prescribed velocity distribution on the blade in a potential flow of the usual compressible fluid. The outline is based on the assumption that the magnitude of the velocity in the flow of the usual compressible nonviscous fluid is proportional to the magnitude of the velocity in the flow of a compressible nonviscous fluid with linear pressure-volume relation.

  6. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  7. The evolution of kicked stellar-mass black holes in star cluster environments

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Leigh, Nathan W. C.; Singh, Abhishek; Ford, K. E. Saavik; McKernan, Barry; Bellovary, Jillian

    2018-03-01

    We consider how dynamical friction acts on black holes that receive a velocity kick while located at the centre of a gravitational potential, analogous to a star cluster, due to either a natal kick or the anisotropic emission of gravitational waves during a black hole-black hole merger. Our investigation specifically focuses on how well various Chandrasekhar-based dynamical friction models can predict the orbital decay of kicked black holes with mbh ≲ 100 M⊙ due to an inhomogeneous background stellar field. In general, the orbital evolution of a kicked black hole follows that of a damped oscillator where two-body encounters and dynamical friction serve as sources of damping. However, we find models for approximating the effects of dynamical friction do not accurately predict the amount of energy lost by the black hole if the initial kick velocity vk is greater than the stellar velocity dispersion σ. For all kick velocities, we also find that two-body encounters with nearby stars can cause the energy evolution of a kicked BH to stray significantly from standard dynamical friction theory as encounters can sometimes lead to an energy gain. For larger kick velocities, we find the orbital decay of a black hole departs from classical theory completely as the black hole's orbital amplitude decays linearly with time as opposed to exponentially. Therefore, we have developed a linear decay formalism, which scales linearly with black hole mass and v_k/σ in order to account for the variations in the local gravitational potential.

  8. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    USGS Publications Warehouse

    Alsina, D.; Woodward, R.L.; Snieder, R.K.

    1996-01-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After correcting for the crustal thickness the phase velocity perturbations obtained from the subsequent linear waveform inversion for the different period bands are converted to a three-layer model of S velocity perturbations (layer 1, 25-100 km; layer 2, 100-200 km) layer 3, 200-300 km). We have applied this method on 275 high-quality Rayleigh waves recorded by a variety of instruments in North America (IRIS/USGS, IRIS/IDA, TERRAscope, RSTN). Sensitivity tests indicate that the lateral resolution is especially good in the densely sampled western continental United States, Mexico, and the Gulf of Mexico.

  9. Rotation Motion of Designed Nano-Turbine

    PubMed Central

    Li, Jingyuan; Wang, Xiaofeng; Zhao, Lina; Gao, Xingfa; Zhao, Yuliang; Zhou, Ruhong

    2014-01-01

    Construction of nano-devices that can generate controllable unidirectional rotation is an important part of nanotechnology. Here, we design a nano-turbine composed of carbon nanotube and graphene nanoblades, which can be driven by fluid flow. Rotation motion of nano-turbine is quantitatively studied by molecular dynamics simulations on this model system. A robust linear relationship is achieved with this nano-turbine between its rotation rate and the fluid flow velocity spanning two orders of magnitude, and this linear relationship remains intact at various temperatures. More interestingly, a striking difference from its macroscopic counterpart is identified: the rotation rate is much smaller (by a factor of ~15) than that of the macroscopic turbine with the same driving flow. This discrepancy is shown to be related to the disruption of water flow at nanoscale, together with the water slippage at graphene surface and the so-called “dragging effect”. Moreover, counterintuitively, the ratio of “effective” driving flow velocity increases as the flow velocity increases, suggesting that the linear dependence on the flow velocity can be more complicated in nature. These findings may serve as a foundation for the further development of rotary nano-devices and should also be helpful for a better understanding of the biological molecular motors. PMID:25068725

  10. An Application of the Vandermonde Determinant

    ERIC Educational Resources Information Center

    Xu, Junqin; Zhao, Likuan

    2006-01-01

    Eigenvalue is an important concept in Linear Algebra. It is well known that the eigenvectors corresponding to different eigenvalues of a square matrix are linear independent. In most of the existing textbooks, this result is proven using mathematical induction. In this note, a new proof using Vandermonde determinant is given. It is shown that this…

  11. The release of trapped gases from amorphous solid water films. I. "Top-down" crystallization-induced crack propagation probed using the molecular volcano.

    PubMed

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-03-14

    In this (Paper I) and the companion paper (Paper II; R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104502 (2013)), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization of ASW, a phenomenon that we termed the "molecular volcano." The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper, we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length distribution is independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2, or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ∕mol. This value is consistent with the crystallization growth rates reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization∕crack front into the film is in good agreement with the temperature programmed desorption results.

  12. The Release of Trapped Gases from Amorphous Solid Water Films: I. “Top-Down” Crystallization-Induced Crack Propagation Probed using the Molecular Volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    In this (Paper I) and the companion paper (Paper II) we investigate the mechanisms for the release of trapped gases from underneath of amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization ASW, a phenomenon that we termed the "molecular volcano". The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length and distributionmore » are independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2 or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ/mol. This value is consistent with the crystallization growth rate reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization/crack front into the film is in good agreement with the temperature programmed desorption results.« less

  13. Thin film coating process using an inductively coupled plasma

    DOEpatents

    Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.

    1990-01-30

    Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

  14. Signal processing related to the vestibulo-ocular reflex during combined angular rotation and linear translation of the head

    NASA Technical Reports Server (NTRS)

    McCrea, R. A.; Chen-Huang, C.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    The contributions of vestibular nerve afferents and central vestibular pathways to the angular (AVOR) and linear (LVOR) vestibulo-ocular reflex were studied in squirrel monkeys during fixation of near and far targets. Irregular vestibular afferents did not appear to be necessary for the LVOR, since when they were selectively silenced with galvanic currents the LVOR was essentially unaffected during both far- and near-target viewing. The linear translation signals generated by secondary AVOR neurons in the vestibular nuclei were, on average, in phase with head velocity, inversely related to viewing distance, and were nearly as strong as AVOR-related signals. We suggest that spatial-temporal transformation of linear head translation signals to angular eye velocity commands is accomplished primarily by the addition of viewing distance multiplied, centrally integrated, otolith regular afferent signals to angular VOR pathways.

  15. Proceedings: USACERL/ASCE First Joint Conference on Expert Systems, 29-30 June 1988

    DTIC Science & Technology

    1989-01-01

    Wong KOWLEDGE -BASED GRAPHIC DIALOGUES . o ...................... .... 80 D. L Mw 4 CONTENTS (Cont’d) ABSTRACTS ACCEPTED FOR PUBLICATION MAD, AN EXPERT...methodology of inductive shallow modeling was developed. Inductive systems may become powerful shallow modeling tools applicable to a large class of...analysis was conducted using a statistical package, Trajectories. Four different types of relationships were analyzed: linear, logarithmic, power , and

  16. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    DOE PAGES

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; ...

    2018-02-07

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. As a result, potential applications of the LCAO based scheme in the context ofmore » extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.« less

  17. Comparison of current meters used for stream gaging

    USGS Publications Warehouse

    Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.

    1994-01-01

    The U.S. Geological Survey (USGS) is field and laboratory testing the performance of several current meters used throughout the world for stream gaging. Meters tested include horizontal-axis current meters from Germany, the United Kingdom, and the People's Republic of China, and vertical-axis and electromagnetic current meters from the United States. Summarized are laboratory test results for meter repeatability, linearity, and response to oblique flow angles and preliminary field testing results. All current meters tested were found to under- and over-register velocities; errors usually increased as the velocity and angle of the flow increased. Repeatability and linearity of all meters tested were good. In the field tests, horizontal-axis meters, except for the two meters from the People's Republic of China, registered higher velocity than did the vertical-axis meters.

  18. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. As a result, potential applications of the LCAO based scheme in the context ofmore » extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.« less

  19. On Instability of Geostrophic Current with Linear Vertical Shear at Length Scales of Interleaving

    NASA Astrophysics Data System (ADS)

    Kuzmina, N. P.; Skorokhodov, S. L.; Zhurbas, N. V.; Lyzhkov, D. A.

    2018-01-01

    The instability of long-wave disturbances of a geostrophic current with linear velocity shear is studied with allowance for the diffusion of buoyancy. A detailed derivation of the model problem in dimensionless variables is presented, which is used for analyzing the dynamics of disturbances in a vertically bounded layer and for describing the formation of large-scale intrusions in the Arctic basin. The problem is solved numerically based on a high-precision method developed for solving fourth-order differential equations. It is established that there is an eigenvalue in the spectrum of eigenvalues that corresponds to unstable (growing with time) disturbances, which are characterized by a phase velocity exceeding the maximum velocity of the geostrophic flow. A discussion is presented to explain some features of the instability.

  20. Model-based Estimation for Pose, Velocity of Projectile from Stereo Linear Array Image

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuxin; Wen, Gongjian; Zhang, Xing; Li, Deren

    2012-01-01

    The pose (position and attitude) and velocity of in-flight projectiles have major influence on the performance and accuracy. A cost-effective method for measuring the gun-boosted projectiles is proposed. The method adopts only one linear array image collected by the stereo vision system combining a digital line-scan camera and a mirror near the muzzle. From the projectile's stereo image, the motion parameters (pose and velocity) are acquired by using a model-based optimization algorithm. The algorithm achieves optimal estimation of the parameters by matching the stereo projection of the projectile and that of the same size 3D model. The speed and the AOA (angle of attack) could also be determined subsequently. Experiments are made to test the proposed method.

  1. VizieR Online Data Catalog: HARPS timeseries data for HD41248 (Jenkins+, 2014)

    NASA Astrophysics Data System (ADS)

    Jenkins, J. S.; Tuomi, M.

    2017-05-01

    We modeled the HARPS radial velocities of HD 42148 by adopting the analysis techniques and the statistical model applied in Tuomi et al. (2014, arXiv:1405.2016). This model contains Keplerian signals, a linear trend, a moving average component with exponential smoothing, and linear correlations with activity indices, namely, BIS, FWHM, and chromospheric activity S index. We applied our statistical model outlined above to the full data set of radial velocities for HD 41248, combining the previously published data in Jenkins et al. (2013ApJ...771...41J) with the newly published data in Santos et al. (2014, J/A+A/566/A35), giving rise to a total time series of 223 HARPS (Mayor et al. 2003Msngr.114...20M) velocities. (1 data file).

  2. A Low Mass Translation Mechanism for Planetary FTIR Spectrometry using an Ultrasonic Piezo Linear Motor

    NASA Technical Reports Server (NTRS)

    Heverly, Matthew; Dougherty, Sean; Toon, Geoffrey; Soto, Alejandro; Blavier, Jean-Francois

    2004-01-01

    One of the key components of a Fourier Transform Infrared Spectrometer (FTIR) is the linear translation stage used to vary the optical path length between the two arms of the interferometer. This translation mechanism must produce extremely constant velocity motion across its entire range of travel to allow the instrument to attain high signal-to-noise ratio and spectral resolving power. A new spectrometer is being developed at the Jet Propulsion Laboratory under NASA s Planetary Instrument Definition and Development Program (PIDDP). The goal of this project is to build upon existing spaceborne FTIR spectrometer technology to produce a new instrument prototype that has drastically superior spectral resolution and substantially lower mass, making it feasible for planetary exploration. In order to achieve these goals, Alliance Spacesystems, Inc. (ASI) has developed a linear translation mechanism using a novel ultrasonic piezo linear motor in conjunction with a fully kinematic, fault tolerant linear rail system. The piezo motor provides extremely smooth motion, is inherently redundant, and is capable of producing unlimited travel. The kinematic rail uses spherical Vespel(R). rollers and bushings, which eliminates the need for wet lubrication, while providing a fault tolerant platform for smooth linear motion that will not bind under misalignment or structural deformation. This system can produce velocities from 10 - 100 mm/s with less than 1% velocity error over the entire 100-mm length of travel for a total mechanism mass of less than 850 grams. This system has performed over half a million strokes under vacuum without excessive wear or degradation in performance. This paper covers the design, development, and testing of this linear translation mechanism as part of the Planetary Atmosphere Occultation Spectrometer (PAOS) instrument prototype development program.

  3. Analysis, design, and testing of a low cost, direct force command linear proof mass actuator for structural control

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Shelley, Stuart; Jacobson, Mark

    1993-01-01

    In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.

  4. Linear Mechanisms and Pressure Fluctuations in Wall Turbulence

    NASA Astrophysics Data System (ADS)

    Septham, Kamthon; Morrison, Jonathan

    2014-11-01

    Full-domain, linear feedback control of turbulent channel flow at Reτ <= 400 via vU' at low wavenumbers is an effective method to attenuate turbulent channel flow such that it is relaminarised. The passivity-based control approach is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al .Phys .Fluids 2011). The linear forcing acts on the wall-normal velocity field and thus the pressure field via the linear (rapid) source term of the Poisson equation for pressure fluctuations, 2U'∂v/∂x . The minimum required spanwise wavelength resolution without losing control is constant at λz+ = 125, based on the wall friction velocity at t = 0 . The result shows that the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The effectiveness of linear control is qualitatively explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is much shorter than both the nonlinear and viscous timescales. The response of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control is examined and discussed.

  5. Hall Effect in a Moving Liquid

    ERIC Educational Resources Information Center

    Di Lieto, Alberto; Giuliano, Alessia; Maccarrone, Francesco; Paffuti, Giampiero

    2012-01-01

    A simple experiment, suitable for performing in an undergraduate physics laboratory, illustrates electromagnetic induction through the water entering into a cylindrical rubber tube by detecting the voltage developed across the tube in the direction transverse both to the flow velocity and to the magnetic field. The apparatus is a very simple…

  6. 38 CFR 4.56 - Evaluation of muscle disabilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... shrapnel fragment, without explosive effect of high velocity missile, residuals of debridement, or... findings. Entrance and (if present) exit scars, small or linear, indicating short track of missile through... missile or large low-velocity missile, with debridement, prolonged infection, or sloughing of soft parts...

  7. 38 CFR 4.56 - Evaluation of muscle disabilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... shrapnel fragment, without explosive effect of high velocity missile, residuals of debridement, or... findings. Entrance and (if present) exit scars, small or linear, indicating short track of missile through... missile or large low-velocity missile, with debridement, prolonged infection, or sloughing of soft parts...

  8. 38 CFR 4.56 - Evaluation of muscle disabilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... shrapnel fragment, without explosive effect of high velocity missile, residuals of debridement, or... findings. Entrance and (if present) exit scars, small or linear, indicating short track of missile through... missile or large low-velocity missile, with debridement, prolonged infection, or sloughing of soft parts...

  9. A direct method of extracting surface recombination velocity from an electron beam induced current line scan

    NASA Astrophysics Data System (ADS)

    Ong, Vincent K. S.

    1998-04-01

    The extraction of diffusion length and surface recombination velocity in a semiconductor with the use of an electron beam induced current line scan has traditionally been done by fitting the line scan into complicated theoretical equations. It was recently shown that a much simpler equation is sufficient for the extraction of diffusion length. The linearization coefficient is the only variable that is needed to be adjusted in the curve fitting process. However, complicated equations are still necessary for the extraction of surface recombination velocity. It is shown in this article that it is indeed possible to extract surface recombination velocity with a simple equation, using only one variable, the linearization coefficient. An intuitive feel for the reason behind the method was discussed. The accuracy of the method was verified with the use of three-dimensional computer simulation, and was found to be even slightly better than that of the best existing method.

  10. Frame sequences analysis technique of linear objects movement

    NASA Astrophysics Data System (ADS)

    Oshchepkova, V. Y.; Berg, I. A.; Shchepkin, D. V.; Kopylova, G. V.

    2017-12-01

    Obtaining data by noninvasive methods are often needed in many fields of science and engineering. This is achieved through video recording in various frame rate and light spectra. In doing so quantitative analysis of movement of the objects being studied becomes an important component of the research. This work discusses analysis of motion of linear objects on the two-dimensional plane. The complexity of this problem increases when the frame contains numerous objects whose images may overlap. This study uses a sequence containing 30 frames at the resolution of 62 × 62 pixels and frame rate of 2 Hz. It was required to determine the average velocity of objects motion. This velocity was found as an average velocity for 8-12 objects with the error of 15%. After processing dependencies of the average velocity vs. control parameters were found. The processing was performed in the software environment GMimPro with the subsequent approximation of the data obtained using the Hill equation.

  11. Force-Velocity Relationship of Upper Body Muscles: Traditional Versus Ballistic Bench Press.

    PubMed

    García-Ramos, Amador; Jaric, Slobodan; Padial, Paulino; Feriche, Belén

    2016-04-01

    This study aimed to (1) evaluate the linearity of the force-velocity relationship, as well as the reliability of maximum force (F0), maximum velocity (V0), slope (a), and maximum power (P0); (2) compare these parameters between the traditional and ballistic bench press (BP); and (3) determine the correlation of F0 with the directly measured BP 1-repetition maximum (1RM). Thirty-two men randomly performed 2 sessions of traditional BP and 2 sessions of ballistic BP during 2 consecutive weeks. Both the maximum and mean values of force and velocity were recorded when loaded by 20-70% of 1RM. All force-velocity relationships were strongly linear (r > .99). While F0 and P0 were highly reliable (ICC: 0.91-0.96, CV: 3.8-5.1%), lower reliability was observed for V0 and a (ICC: 0.49-0.81, CV: 6.6-11.8%). Trivial differences between exercises were found for F0 (ES: < 0.2), however the a was higher for the traditional BP (ES: 0.68-0.94), and V0 (ES: 1.04-1.48) and P0 (ES: 0.65-0.72) for the ballistic BP. The F0 strongly correlated with BP 1RM (r: 0.915-0.938). The force-velocity relationship is useful to assess the upper body maximal capabilities to generate force, velocity, and power.

  12. Factors influencing perceived angular velocity.

    PubMed

    Kaiser, M K; Calderone, J B

    1991-11-01

    The assumption that humans are able to perceive and process angular kinematics is critical to many structure-from-motion and optical flow models. The current studies investigate this sensitivity, and examine several factors likely to influence angular velocity perception. In particular, three factors are considered: (1) the extent to which perceived angular velocity is determined by edge transitions of surface elements, (2) the extent to which angular velocity estimates are influenced by instantaneous linear velocities of surface elements, and (3) whether element-velocity effects are related to three-dimensional (3-D) tangential velocities or to two-dimensional (2-D) image velocities. Edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities influenced perceived angular velocity; this bias was related to 2-D image velocity rather than 3-D tangential velocity. Despite these biases, however, judgments were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter was surprisingly good, for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  13. Current Sheet Formation in a Conical Theta Pinch Faraday Accelerator with Radio-frequency Assisted Discharge

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.

    2008-01-01

    Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.

  14. Design of a Low-Energy FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.; Owens, T.; Dankanich, J.

    2007-01-01

    The design of an electrodeless thruster that relies on a pulsed, rf-assisted discharge and electromagnetic acceleration using an inductive coil is presented. The thruster design is optimized using known performance,scaling parameters, and experimentally-determined design rules, with design targets for discharge energy, plasma exhaust velocity; and thrust efficiency of 100 J/pulse, 25 km/s, and 50%, respectively. Propellant is injected using a high-speed gas valve and preionized by a pulsed-RF signal supplied by a vector inversion generator, allowing for current sheet formation at lower discharge voltages and energies relative to pulsed inductive accelerators that do not employ preionization. The acceleration coil is designed to possess an inductance of at least 700 nH while the target stray (non-coil) inductance in the circuit is 70 nH. A Bernardes and Merryman pulsed power train or a pulse compression power train provide current to the acceleration coil and solid-state components are used to switch both powertrains.

  15. The turbulent recirculating flow field in a coreless induction furnace. A comparison of theoretical predictions with measurements

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation for the electromagnetic force field and the fluid flow field in a coreless induction furnace is presented. The fluid flow field was represented by writing the axisymmetric turbulent Navier-Stokes equation, containing the electromagnetic body force term. The electromagnetic body force field was calculated by using a technique of mutual inductances. The kappa-epsilon model was employed for evaluating the turbulent viscosity and the resultant differential equations were solved numerically. Theoretically predicted velocity fields are in reasonably good agreement with the experimental measurements reported by Hunt and Moore; furthermore, the agreement regarding the turbulent intensities are essentially quantitative. These results indicate that the kappa-epsilon model provides a good engineering representation of the turbulent recirculating flows occurring in induction furnaces. At this stage it is not clear whether the discrepancies between measurements and the predictions, which were not very great in any case, are attributable either to the model or to the measurement techniques employed.

  16. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  17. A metronome for controlling the mean velocity during the bench press exercise.

    PubMed

    Moras, Gerard; Rodríguez-Jiménez, Sergio; Busquets, Albert; Tous-Fajardo, Julio; Pozzo, Marco; Mujika, Iñigo

    2009-05-01

    Lifting velocity may have a great impact on strength training-induced adaptations. The purpose of this study was to validate a method including a metronome and a measurement tape as inexpensive tools for the estimation of mean lifting velocity during the bench press exercise. Fifteen subjects participated in this study. After determining their one repetition maximum (1RM) load, we estimated the maximum metronome rhythm (R) that each subject could maintain in the concentric phase for loads of 40 and 60% of 1RM. To estimate R, the 3 repetitions with highest concentric power, as measured by means of a linear encoder, were selected, and their average duration was calculated and converted to lifting rhythm in beats per minute (bpm) for each subject. The range of motion was measured using a regular tape and kept constant during all exercises. Subjects were instructed to begin with the barbell at arm lengths and lower it in correspondence with the metronome beep. They subsequently performed 5 repetitions at 3 different rhythms relative to R (50, 70, and 90% R) for each training load (40 and 60% of 1RM). A linear encoder was attached to the bar and used as a criterion to measure the vertical displacement over time. For each rhythm, the mean velocity was calculated with the metronome (time) and the reference distance and compared with that recorded by the linear encoder. The SEM for velocity between both testing methods ranged from 0.02 to 0.05 m.s (coefficient of variation, 4.0-6.4%; Pearson's correlation, 0.8-0.95). The present results showed that the use of a metronome and a measurement tape may be a valid method to estimate the mean velocity of execution during the bench press exercise. This simple method could help coaches and athletes achieve their strength training goals, which are partly determined by lifting velocity.

  18. Vestibular-Related Frontal Cortical Areas and Their Roles in Smooth-Pursuit Eye Movements: Representation of Neck Velocity, Neck-Vestibular Interactions, and Memory-Based Smooth-Pursuit

    PubMed Central

    Fukushima, Kikuro; Fukushima, Junko; Warabi, Tateo

    2011-01-01

    Smooth-pursuit eye movements are voluntary responses to small slow-moving objects in the fronto-parallel plane. They evolved in primates, who possess high-acuity foveae, to ensure clear vision about the moving target. The primate frontal cortex contains two smooth-pursuit related areas; the caudal part of the frontal eye fields (FEF) and the supplementary eye fields (SEF). Both areas receive vestibular inputs. We review functional differences between the two areas in smooth-pursuit. Most FEF pursuit neurons signal pursuit parameters such as eye velocity and gaze-velocity, and are involved in canceling the vestibulo-ocular reflex by linear addition of vestibular and smooth-pursuit responses. In contrast, gaze-velocity signals are rarely represented in the SEF. Most FEF pursuit neurons receive neck velocity inputs, while discharge modulation during pursuit and trunk-on-head rotation adds linearly. Linear addition also occurs between neck velocity responses and vestibular responses during head-on-trunk rotation in a task-dependent manner. During cross-axis pursuit–vestibular interactions, vestibular signals effectively initiate predictive pursuit eye movements. Most FEF pursuit neurons discharge during the interaction training after the onset of pursuit eye velocity, making their involvement unlikely in the initial stages of generating predictive pursuit. Comparison of representative signals in the two areas and the results of chemical inactivation during a memory-based smooth-pursuit task indicate they have different roles; the SEF plans smooth-pursuit including working memory of motion–direction, whereas the caudal FEF generates motor commands for pursuit eye movements. Patients with idiopathic Parkinson’s disease were asked to perform this task, since impaired smooth-pursuit and visual working memory deficit during cognitive tasks have been reported in most patients. Preliminary results suggested specific roles of the basal ganglia in memory-based smooth-pursuit. PMID:22174706

  19. Asymptotic Representations of Quantum Affine Superalgebras

    NASA Astrophysics Data System (ADS)

    Zhang, Huafeng

    2017-08-01

    We study representations of the quantum affine superalgebra associated with a general linear Lie superalgebra. In the spirit of Hernandez-Jimbo, we construct inductive systems of Kirillov-Reshetikhin modules based on a cyclicity result that we established previously on tensor products of these modules, and realize their inductive limits as modules over its Borel subalgebra, the so-called q-Yangian. A new generic asymptotic limit of the same inductive systems is proposed, resulting in modules over the full quantum affine superalgebra. We derive generalized Baxter's relations in the sense of Frenkel-Hernandez for representations of the full quantum group.

  20. High-voltage, low-inductance gas switch

    DOEpatents

    Gruner, Frederick R.; Stygar, William A.

    2016-03-22

    A low-inductance, air-insulated gas switch uses a de-enhanced annular trigger ring disposed between two opposing high voltage electrodes. The switch is DC chargeable to 200 kilovolts or more, triggerable, has low jitter (5 ns or less), has pre-fire and no-fire rates of no more than one in 10,000 shots, and has a lifetime of greater than 100,000 shots. Importantly, the switch also has a low inductance (less than 60 nH) and the ability to conduct currents with less than 100 ns rise times. The switch can be used with linear transformer drives or other pulsed-power systems.

  1. Relationship between linear velocity and tangential push force while turning to change the direction of the manual wheelchair.

    PubMed

    Hwang, Seonhong; Lin, Yen-Sheng; Hogaboom, Nathan S; Wang, Lin-Hwa; Koontz, Alicia M

    2017-08-28

    Wheelchair propulsion is a major cause of upper limb pain and injuries for manual wheelchair users with spinal cord injuries (SCIs). Few studies have investigated wheelchair turning biomechanics on natural ground surfaces. The purpose of this study was to investigate the relationship between tangential push force and linear velocity of the wheelchair during the turning portions of propulsion. Using an instrumented handrim, velocity and push force data were recorded for 25 subjects while they propel their own wheelchairs on a concrete floor along a figure-eight-shaped course at a maximum velocity. The braking force (1.03 N) of the inside wheel while turning was the largest of all other push forces (p<0.05). Larger changes in squared velocity while turning were significantly correlated with higher propulsive and braking forces used at the pre-turning, turning, and post-turning phases (p<0.05). Subjects with less change of velocity while turning needed less braking force to maneuver themselves successfully and safely around the turns. Considering the magnitude and direction of tangential force applied to the wheel, it seems that there are higher risks of injury and instability for upper limb joints when braking the inside wheel to turn. The results provide insight into wheelchair setup and mobility skills training for wheelchair users.

  2. Linear and angular control of circular walking in healthy older adults and subjects with cerebellar ataxia.

    PubMed

    Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B

    2012-05-01

    Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.

  3. The operation of a single-sided linear induction motor with squirrel-cage and solid-steel reaction rails

    NASA Astrophysics Data System (ADS)

    Eastham, A. R.; Katz, R. M.

    1980-09-01

    Two test programs have been conducted to evaluate the performance of a single-sided linear induction motor with a squirrel-cage reaction rail and with a solid steel reaction rail. A 1.73-m-long six-pole stator interacted with the rails mounted on the rim of a 7.6-m-diam wheel. A 64-channel data acquisition system allowed tests to be performed over a wide range of operating conditions at speeds up to 20 m/sec. Typical test results which compare and contrast the mechanical, electrical and magnetic behavior of the SLIMs are presented. The test data are being used to assess the SLIM as an integrated suspension/propulsion system and for other transportation applications.

  4. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress.

    PubMed

    Martin, Raleigh L; Kok, Jasper F

    2017-06-01

    Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation-the wind-driven transport of sand in hopping trajectories-scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces.

  5. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress

    PubMed Central

    Martin, Raleigh L.; Kok, Jasper F.

    2017-01-01

    Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation—the wind-driven transport of sand in hopping trajectories—scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces. PMID:28630907

  6. All You Need to Know about Videodiscs: One Easy Lesson.

    ERIC Educational Resources Information Center

    Padgett, Helen L.

    1993-01-01

    Explains videodisc technology and its uses in education. Topics addressed include formats of videodiscs, including CAV discs (constant angular velocity) and CLV discs (constant linear velocity); the three industry-standard levels of interactivity; bar codes; bar-code readers; and finding information on a videodisc. (LRW)

  7. Videodiscs in Schools: Selecting Essential Players and Videodiscs.

    ERIC Educational Resources Information Center

    Bennett, Priscilla

    1995-01-01

    Discusses the use of videodiscs in schools and suggests criteria for the selection of videodiscs and videodisc players. Topics include different videodisc formats, including CLV (constant linear velocity) and CAV (constant angular velocity); mapping; repurposing; content and age suitability; documentation; vendors; and Level I and Level II…

  8. Validity of the Water Hammer Formula for Determining Regional Aortic Pulse Wave Velocity: Comparison of One-Point and Two-Point (Foot-to-Foot) Measurements Using a Multisensor Catheter in Human.

    PubMed

    Hanya, Shizuo

    2013-01-01

    Lack of high-fidelity simultaneous measurements of pressure and flow velocity in the aorta has impeded the direct validation of the water-hammer formula for estimating regional aortic pulse wave velocity (AO-PWV1) and has restricted the study of the change of beat-to-beat AO-PWV1 under varying physiological conditions in man. Aortic pulse wave velocity was derived using two methods in 15 normotensive subjects: 1) the conventional two-point (foot-to-foot) method (AO-PWV2) and 2) a one-point method (AO-PWV1) in which the pressure velocity-loop (PV-loop) was analyzed based on the water hammer formula using simultaneous measurements of flow velocity (Vm) and pressure (Pm) at the same site in the proximal aorta using a multisensor catheter. AO-PWV1 was calculated from the slope of the linear regression line between Pm and Vm where wave reflection (Pb) was at a minimum in early systole in the PV-loop using the water hammer formula, PWV1 = (Pm/Vm)/ρ, where ρ is the blood density. AO-PWV2 was calculated using the conventional two-point measurement method as the distance/traveling time of the wave between 2 sites for measuring P in the proximal aorta. Beat-to-beat alterations of AO-PWV1 in relationship to aortic pressure and linearity of the initial part of the PV-loop during a Valsalva maneuver were also assessed in one subject. The initial part of the loop became steeper in association with the beat-to-beat increase in diastolic pressure in phase 4 during the Valsalva maneuver. The linearity of the initial part of the PV-loop was maintained consistently during the maneuver. Flow velocity vs. pressure in the proximal aorta was highly linear during early systole, with Pearson's coefficients ranging from 0.9954 to 0.9998. The average values of AO-PWV1 and AO-PWV2 were 6.3 ± 1.2 and 6.7 ± 1.3 m/s, respectively. The regression line of AO-PWV1 on AO-PWV2 was y = 0.95x + 0.68 (r = 0.93, p <0.001). This study concluded that the water-hammer formula (one-point method) provides a reliable and conventional estimate of beat-to-beat aortic regional pulse wave velocity consistently regardless of the changes in physiological states in human clinically. (English Translation of J Jpn Coll Angiol 2011; 51: 215-221).

  9. Validity of the Water Hammer Formula for Determining Regional Aortic Pulse Wave Velocity: Comparison of One-Point and Two-Point (Foot-to-Foot) Measurements Using a Multisensor Catheter in Human

    PubMed Central

    2013-01-01

    Background: Lack of high-fidelity simultaneous measurements of pressure and flow velocity in the aorta has impeded the direct validation of the water-hammer formula for estimating regional aortic pulse wave velocity (AO-PWV1) and has restricted the study of the change of beat-to-beat AO-PWV1 under varying physiological conditions in man. Methods: Aortic pulse wave velocity was derived using two methods in 15 normotensive subjects: 1) the conventional two-point (foot-to-foot) method (AO-PWV2) and 2) a one-point method (AO-PWV1) in which the pressure velocity-loop (PV-loop) was analyzed based on the water hammer formula using simultaneous measurements of flow velocity (Vm) and pressure (Pm) at the same site in the proximal aorta using a multisensor catheter. AO-PWV1 was calculated from the slope of the linear regression line between Pm and Vm where wave reflection (Pb) was at a minimum in early systole in the PV-loop using the water hammer formula, PWV1 = (Pm/Vm)/ρ, where ρ is the blood density. AO-PWV2 was calculated using the conventional two-point measurement method as the distance/traveling time of the wave between 2 sites for measuring P in the proximal aorta. Beat-to-beat alterations of AO-PWV1 in relationship to aortic pressure and linearity of the initial part of the PV-loop during a Valsalva maneuver were also assessed in one subject. Results: The initial part of the loop became steeper in association with the beat-to-beat increase in diastolic pressure in phase 4 during the Valsalva maneuver. The linearity of the initial part of the PV-loop was maintained consistently during the maneuver. Flow velocity vs. pressure in the proximal aorta was highly linear during early systole, with Pearson’s coefficients ranging from 0.9954 to 0.9998. The average values of AO-PWV1 and AO-PWV2 were 6.3 ± 1.2 and 6.7 ± 1.3 m/s, respectively. The regression line of AO-PWV1 on AO-PWV2 was y = 0.95x + 0.68 (r = 0.93, p <0.001). Conclusion: This study concluded that the water-hammer formula (one-point method) provides a reliable and conventional estimate of beat-to-beat aortic regional pulse wave velocity consistently regardless of the changes in physiological states in human clinically. (*English Translation of J Jpn Coll Angiol 2011; 51: 215-221) PMID:23825494

  10. Electric Field Feature of Moving Magnetic Field

    NASA Astrophysics Data System (ADS)

    Chen, You Jun

    2001-05-01

    A new fundamental relationship of electric field with magnetic field has been inferred from the fundamental experimental laws and theories of classical electromagnetics. It can be described as moving magnetic field has or gives electric feature. When a field with magnetic induction of B moves in the velocity of V, it will show electric field character, the electric field intensity E is E = B x V and the direction of E is in the direction of the vector B x V. It is improper to use the time-varying electromagnetics theories as the fundamental theory of the electromagnetics and group the electromagnetic field into static kind and time-varying kind for the static is relative to motional not only time-varying. The relationship of time variation of magnetic field induction or magnetic flux with electric field caused by magnetic field is fellowship not causality. Thus time-varying magnetic field can cause electric field is not a nature principle. Sometime the time variation of magnetic flux is equal to the negative electromotive force or the time variation of magnetic field induction is equal to the negative curl of electric field caused by magnetic field motion, but not always. And not all motion of magnetic field can cause time variation of magnetic field. Therefore Faraday-Lenz`s law can only be used as mathematics tool to calculate the quantity relation of the electricity with the magnetism in some case like the magnetic field moving in uniform medium. Faraday-Lenz`s law is unsuitable to be used in moving uniform magnetic field or there is magnetic shield. Key word: Motional magnetic field, Magnetic induction, Electric field intensity, Velocity, Faraday-Lenz’s law

  11. Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.

  12. Determining the effect of grain size and maximum induction upon coercive field of electrical steels

    NASA Astrophysics Data System (ADS)

    Landgraf, Fernando José Gomes; da Silveira, João Ricardo Filipini; Rodrigues-Jr., Daniel

    2011-10-01

    Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 μm). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B50 and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed.

  13. Biphasic force response to iso-velocity stretch in airway smooth muscle.

    PubMed

    Norris, Brandon A; Lan, Bo; Wang, Lu; Pascoe, Christopher D; Swyngedouw, Nicholas E; Paré, Peter D; Seow, Chun Y

    2015-10-01

    Airway smooth muscle (ASM) in vivo is constantly subjected to oscillatory strain due to tidal breathing and deep inspirations. ASM contractility is known to be adversely affected by strains, especially those of large amplitudes. Based on the cross-bridge model of contraction, it is likely that strain impairs force generation by disrupting actomyosin cross-bridge interaction. There is also evidence that strain modulates muscle stiffness and force through induction of cytoskeletal remodeling. However, the molecular mechanism by which strain alters smooth muscle function is not entirely clear. Here, we examine the response of ASM to iso-velocity stretches to probe the components within the muscle preparation that give rise to different features in the force response. We found in ASM that force response to a ramp stretch showed a biphasic feature, with the initial phase associated with greater muscle stiffness compared with that in the later phase, and that the transition between the phases occurred at a critical strain of ∼3.3%. Only strains with amplitudes greater than the critical strain could lead to reduction in force and stiffness of the muscle in the subsequent stretches. The initial-phase stiffness was found to be linearly related to the degree of muscle activation, suggesting that the stiffness stems mainly from attached cross bridges. Both phases were affected by the degree of muscle activation and by inhibitors of myosin light-chain kinase, PKC, and Rho-kinase. Different responses due to different interventions suggest that cross-bridge and cytoskeletal stiffness is regulated differently by the kinases. Copyright © 2015 the American Physiological Society.

  14. Ion Velocity Measurements in a Linear Hall Thruster (Postprint)

    DTIC Science & Technology

    2005-06-14

    Hall Thruster in a high vacuum environment. The ionized propellant velocities were measured using laser induced fluorescence of the excited state xenon ionic transition at 834.7 nm. Ion velocities were interrogated from the channel exit plane to a distance 30 mm from it. Both axial and cross-field (along the electron Hall current direction) velocities were measured. The results presented here, combined with those of previous work, highlight the high sensitivity of electron mobility inside and outside the channel, depending on the background gas density, type of wall

  15. Effects of the concentration of emulsion of oil-in-water on the propagation velocity and attenuation

    NASA Astrophysics Data System (ADS)

    Silva, L. S. F.; Bibiano, D. S.; Figueiredo, M. K. K.; Costa-Félix, R. P. B.

    2015-01-01

    Soybean oil is an important feedstock for production of biodiesel that generates about 20 % of oily effluents. This paper studied the effect of concentration of soybean oil-inwater emulsions, in the range from 6 000 to 14 000 ppm, on the propagation velocity and ultrasonic attenuation. The Emission-Reception method has shown that the propagation velocity depends linearly on the concentration. The behavior of attenuation is similar to the velocity. Thus, both parameters can be used to measure oils and greases content in water.

  16. Electromagnetic energy flux vector for a dispersive linear medium.

    PubMed

    Crenshaw, Michael E; Akozbek, Neset

    2006-05-01

    The electromagnetic energy flux vector in a dispersive linear medium is derived from energy conservation and microscopic quantum electrodynamics and is found to be of the Umov form as the product of an electromagnetic energy density and a velocity vector.

  17. Stabilization of Taylor-Couette flow due to time-periodic outer cylinder oscillation

    NASA Technical Reports Server (NTRS)

    Murray, B. T.; Mcfadden, G. B.; Coriell, S. R.

    1990-01-01

    The linear stability of circular Couette flow between concentric infinite cylinders is considered for the case when the inner cylinder is rotated at a constant angular velocity and the outer cylinder is driven sinusoidally in time with zero mean rotation. This configuration was studied experimentally by Walsh and Donnelly. The critical Reynolds numbers calculated from linear stability theory agree well with the experimental values, except at large modulation amplitudes and small frequencies. The theoretical values are obtained using Floquet theory implemented in two distinct approaches: a truncated Fourier series representation in time, and a fundamental solution matrix based on a Chebyshev pseudospectral representation in space. For large amplitude, low frequency modulation, the linear eigenfunctions are temporally complex, consisting of a quiescent region followed by rapid change in the perturbed flow velocities.

  18. A Laboratory Study of Vortical Structures in Rotating Convection Plumes

    NASA Astrophysics Data System (ADS)

    Fu, Hao; Sun, Shiwei; Wang, Yuan; Zhou, Bowen; Thermal Turbulence Research Team

    2015-11-01

    A laboratory study of the columnar vortex structure in rotating Rayleigh-Bénard convection is conducted. A rectangular water tank is uniformly heated from below and cooled from above, with Ra = (6 . 35 +/- 0 . 77) ×107 , Ta = 9 . 84 ×107 , Pr = 7 . 34 . The columnar vortices are vertically aligned and quasi steady. Two 2D PIV systems were used to measure velocity field. One system performs horizontal scans at 9 different heights every 13.6s, covering 62% of the total depth. The other system scans vertically to obtain the vertical velocity profile. The measured vertical vorticity profiles of most vortices are quasi-linear with height while the vertical velocities are nearly uniform with only a small curvature. A simple model to deduce vertical velocity profile from vertical vorticity profile is proposed. Under quasi-steady and axisymmetric conditions, a ``vortex core'' assumption is introduced to simplify vertical vorticity equation. A linear ODE about vertical velocity is obtained whenever a vertical vorticity profile is given and solved with experimental data as input. The result is approximately in agreement with the measurement. This work was supported by Undergraduates Training Project (J1103410).

  19. Enhancement of flow measurements using fluid-dynamic constraints

    NASA Astrophysics Data System (ADS)

    Egger, H.; Seitz, T.; Tropea, C.

    2017-09-01

    Novel experimental modalities acquire spatially resolved velocity measurements for steady state and transient flows which are of interest for engineering and biological applications. One of the drawbacks of such high resolution velocity data is their susceptibility to measurement errors. In this paper, we propose a novel filtering strategy that allows enhancement of the noisy measurements to obtain reconstruction of smooth divergence free velocity and corresponding pressure fields which together approximately comply to a prescribed flow model. The main step in our approach consists of the appropriate use of the velocity measurements in the design of a linearized flow model which can be shown to be well-posed and consistent with the true velocity and pressure fields up to measurement and modeling errors. The reconstruction procedure is then formulated as an optimal control problem for this linearized flow model. The resulting filter has analyzable smoothing and approximation properties. We briefly discuss the discretization of the approach by finite element methods and comment on the efficient solution by iterative methods. The capability of the proposed filter to significantly reduce data noise is demonstrated by numerical tests including the application to experimental data. In addition, we compare with other methods like smoothing and solenoidal filtering.

  20. Microscopic Statistical Characterisation of the Congested Traffic Flow and Some Salient Empirical Features

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Yoon, Ji Wei; Monterola, Christopher

    We present large scale, detailed analysis of the microscopic empirical data of the congested traffic flow, focusing on the non-linear interactions between the components of the many-body traffic system. By implementing a systematic procedure that averages over relatively unimportant factors, we extract the effective dependence of the acceleration on the gap between the vehicles, velocity and relative velocity. Such relationship is characterised not just by a few vehicles but the traffic system as a whole. Several interesting features of the detailed vehicle-to-vehicle interactions are revealed, including the stochastic distribution of the human responses, relative importance of the non-linear terms in different density regimes, symmetric response to the relative velocity, and the insensitivity of the acceleration to the velocity within a certain gap and velocity range. The latter leads to a multitude of steady-states without a fundamental diagram. The empirically constructed functional dependence of the acceleration on the important dynamical quantities not only gives the detailed collective driving behaviours of the traffic system, it also serves as the fundamental reference for the validations of the deterministic and stochastic microscopic traffic models in the literature.

  1. An extended heterogeneous car-following model accounting for anticipation driving behavior and mixed maximum speeds

    NASA Astrophysics Data System (ADS)

    Sun, Fengxin; Wang, Jufeng; Cheng, Rongjun; Ge, Hongxia

    2018-02-01

    The optimal driving speeds of the different vehicles may be different for the same headway. In the optimal velocity function of the optimal velocity (OV) model, the maximum speed vmax is an important parameter determining the optimal driving speed. A vehicle with higher maximum speed is more willing to drive faster than that with lower maximum speed in similar situation. By incorporating the anticipation driving behavior of relative velocity and mixed maximum speeds of different percentages into optimal velocity function, an extended heterogeneous car-following model is presented in this paper. The analytical linear stable condition for this extended heterogeneous traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulted from the cooperation between anticipation driving behavior and heterogeneous maximum speeds in the optimal velocity function. The analytical and numerical results all demonstrate that strengthening driver's anticipation effect can improve the stability of heterogeneous traffic flow, and increasing the lowest value in the mixed maximum speeds will result in more instability, but increasing the value or proportion of the part already having higher maximum speed will cause different stabilities at high or low traffic densities.

  2. Comparison of sequence of trunk and arm motions between short and long official distance groups in javelin throwing.

    PubMed

    Liu, Hui; Leigh, Steve; Yu, Bing

    2014-03-01

    The purpose of this study was to determine the effects of sequences of the trunk and arm angular motions on the performance of javelin throwing. In this study, 32 male and 30 female elite javelin throwers participated and were separated into a short official distance group or a long official distance group in each gender. Three-dimensional coordinates of 21 body landmarks and 3 marks on the javelin in the best trial were collected for each subject. Joint center linear velocities and selected trunk and arm segment and joint angles and angular velocities were calculated. The times of the initiations of the selected segment and joint angular motions and maximum angular velocities were determined. The sequences of the initiations of the selected segment and joint angular motions and maximum angular velocities were compared between short and long official distance groups and between genders. The results demonstrated that short and long official distance groups employed similar sequences of the trunk and arm motions. Male and female javelin throwers employed different sequences of the trunk and arm motions. The sequences of the trunk and arm motions were different from those of the maximal joint center linear velocities.

  3. Development of a Nonlinear Probability of Collision Tool for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    McKinley, David P.

    2006-01-01

    The Earth Observing System (EOS) spacecraft Terra, Aqua, and Aura fly in constellation with several other spacecraft in 705-kilometer mean altitude sun-synchronous orbits. All three spacecraft are operated by the Earth Science Mission Operations (ESMO) Project at Goddard Space Flight Center (GSFC). In 2004, the ESMO project began assessing the probability of collision of the EOS spacecraft with other space objects. In addition to conjunctions with high relative velocities, the collision assessment method for the EOS spacecraft must address conjunctions with low relative velocities during potential collisions between constellation members. Probability of Collision algorithms that are based on assumptions of high relative velocities and linear relative trajectories are not suitable for these situations; therefore an algorithm for handling the nonlinear relative trajectories was developed. This paper describes this algorithm and presents results from its validation for operational use. The probability of collision is typically calculated by integrating a Gaussian probability distribution over the volume swept out by a sphere representing the size of the space objects involved in the conjunction. This sphere is defined as the Hard Body Radius. With the assumption of linear relative trajectories, this volume is a cylinder, which translates into simple limits of integration for the probability calculation. For the case of nonlinear relative trajectories, the volume becomes a complex geometry. However, with an appropriate choice of coordinate systems, the new algorithm breaks down the complex geometry into a series of simple cylinders that have simple limits of integration. This nonlinear algorithm will be discussed in detail in the paper. The nonlinear Probability of Collision algorithm was first verified by showing that, when used in high relative velocity cases, it yields similar answers to existing high relative velocity linear relative trajectory algorithms. The comparison with the existing high velocity/linear theory will also be used to determine at what relative velocity the analysis should use the new nonlinear theory in place of the existing linear theory. The nonlinear algorithm was also compared to a known exact solution for the probability of collision between two objects when the relative motion is strictly circular and the error covariance is spherically symmetric. Figure I shows preliminary results from this comparison by plotting the probabilities calculated from the new algorithm and those from the exact solution versus the Hard Body Radius to Covariance ratio. These results show about 5% error when the Hard Body Radius is equal to one half the spherical covariance magnitude. The algorithm was then combined with a high fidelity orbit state and error covariance propagator into a useful tool for analyzing low relative velocity nonlinear relative trajectories. The high fidelity propagator is capable of using atmospheric drag, central body gravitational, solar radiation, and third body forces to provide accurate prediction of the relative trajectories and covariance evolution. The covariance propagator also includes a process noise model to ensure realistic evolutions of the error covariance. This paper will describe the integration of the nonlinear probability algorithm and the propagators into a useful collision assessment tool. Finally, a hypothetical case study involving a low relative velocity conjunction between members of the Earth Observation System constellation will be presented.

  4. Simple Motor Control Concept Results High Efficiency at High Velocities

    NASA Astrophysics Data System (ADS)

    Starin, Scott; Engel, Chris

    2013-09-01

    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  5. A statistical investigation of the single-point pdf of velocity and vorticity based on direct numerical simulations

    NASA Technical Reports Server (NTRS)

    Mortazavi, M.; Kollmann, W.; Squires, K.

    1987-01-01

    Vorticity plays a fundamental role in turbulent flows. The dynamics of vorticity in turbulent flows and the effect on single-point closure models were investigated. The approach was to use direct numerical simulations of turbulent flows to investigate the pdf of velocity and vorticity. The preliminary study of homogeneous shear flow has shown that the expectation of the fluctuating pressure gradient, conditioned with a velocity component, is linear in the velocity component, and that the coefficient is independent of velocity and vorticity. In addition, the work shows that the expectation of the pressure gradient, conditioned with a vorticity component, is essentially zero.

  6. Novel permanent magnet linear motor with isolated movers: analytical, numerical and experimental study.

    PubMed

    Yan, Liang; Peng, Juanjuan; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-10-01

    This paper proposes a novel permanent magnet linear motor possessing two movers and one stator. The two movers are isolated and can interact with the stator poles to generate independent forces and motions. Compared with conventional multiple motor driving system, it helps to increase the system compactness, and thus improve the power density and working efficiency. The magnetic field distribution is obtained by using equivalent magnetic circuit method. Following that, the formulation of force output considering armature reaction is carried out. Then inductances are analyzed with finite element method to investigate the relationships of the two movers. It is found that the mutual-inductances are nearly equal to zero, and thus the interaction between the two movers is negligible. A research prototype of the linear motor and a measurement apparatus on thrust force have been developed. Both numerical computation and experiment measurement are conducted to validate the analytical model of thrust force. Comparison shows that the analytical model matches the numerical and experimental results well.

  7. Design and Analysis of a Navigation System Using the Federated Filter

    DTIC Science & Technology

    1995-12-01

    There are a number of different sizes for INS states in each Kalman filter. In DKFSIM 3.3, the largest available is the so-called ABIAS model, which...REPRESENTATION PARAMETERS INS States - ABIAS Model 3 Position drifts Linearized propagation driven by ECEF velocity drifts 3 Velocity drifts

  8. The Fine Art of Using a Laserdisc in the Art Classroom.

    ERIC Educational Resources Information Center

    Porter, Sharon

    1998-01-01

    Laserdiscs are an efficient and flexible medium for art presentations in schools. This article discusses laserdiscs, also called videodiscs; distinguishes between constant linear velocity (CLV) and constant angular velocity (CAV) which allows more flexible access; describes the use of bar coding for access; and lists selected visual art…

  9. Inductive voltage adder (IVA) for submillimeter radius electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.

    The authors have already demonstrated the utility of inductive voltage adder accelerators for production of small-size electron beams. In this approach, the inductive voltage adder drives a magnetically immersed foilless diode to produce high-energy (10--20 MeV), high-brightness pencil electron beams. This concept was first demonstrated with the successful experiments which converted the linear induction accelerator RADLAC II into an IVA fitted with a small 1-cm radius cathode magnetically immersed foilless diode (RADLAC II/SMILE). They present here first validations of extending this idea to mm-scale electron beams using the SABRE and HERMES-III inductive voltage adders as test beds. The SABRE experimentsmore » are already completed and have produced 30-kA, 9-MeV electron beams with envelope diameter of 1.5-mm FWHM. The HERMES-III experiments are currently underway.« less

  10. Inductance position sensor for pneumatic cylinder

    NASA Astrophysics Data System (ADS)

    Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan

    2018-04-01

    The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  11. Least-squares finite element solution of 3D incompressible Navier-Stokes problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, Tsung-Liang; Povinelli, Louis A.

    1992-01-01

    Although significant progress has been made in the finite element solution of incompressible viscous flow problems. Development of more efficient methods is still needed before large-scale computation of 3D problems becomes feasible. This paper presents such a development. The most popular finite element method for the solution of incompressible Navier-Stokes equations is the classic Galerkin mixed method based on the velocity-pressure formulation. The mixed method requires the use of different elements to interpolate the velocity and the pressure in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for the existence of the solution. On the other hand, due to the lack of symmetry and positive definiteness of the linear equations arising from the mixed method, iterative methods for the solution of linear systems have been hard to come by. Therefore, direct Gaussian elimination has been considered the only viable method for solving the systems. But, for three-dimensional problems, the computer resources required by a direct method become prohibitively large. In order to overcome these difficulties, a least-squares finite element method (LSFEM) has been developed. This method is based on the first-order velocity-pressure-vorticity formulation. In this paper the LSFEM is extended for the solution of three-dimensional incompressible Navier-Stokes equations written in the following first-order quasi-linear velocity-pressure-vorticity formulation.

  12. Demonstration of ROV-based Underwater Electromagnetic Array Technology

    DTIC Science & Technology

    2017-05-25

    Volume Magnetic Source Model that Was Modified to Address EM Propagation through a Conductive Seawater Medium...16  Figure 7. Still Shots of the Integrated ROV- EM System (left) and the EM Sensor (right) Performing Bottom Following...of Defense DVL Doppler Velocity Log E Easting EOD Explosive Ordnance Disposal EM Electromagnetic EMI Electromagnetic Induction EMF

  13. Various Paths to Faraday's Law

    ERIC Educational Resources Information Center

    Redzic, Dragan V.

    2008-01-01

    In a recent note, the author presented a derivation of Faraday's law of electromagnetic induction for a closed filamentary circuit C(t) which is moving at relativistic velocities and also changing its shape as it moves via the magnetic vector potential. Recently, Kholmetskii et al, while correcting an error in an equation, showed that it can be…

  14. Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence

    NASA Astrophysics Data System (ADS)

    Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.

    2016-04-01

    > A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).

  15. Gaze holding deficits discriminate early from late onset cerebellar degeneration.

    PubMed

    Tarnutzer, Alexander A; Weber, K P; Schuknecht, B; Straumann, D; Marti, S; Bertolini, G

    2015-08-01

    The vestibulo-cerebellum calibrates the output of the inherently leaky brainstem neural velocity-to-position integrator to provide stable gaze holding. In healthy humans small-amplitude centrifugal nystagmus is present at extreme gaze-angles, with a non-linear relationship between eye-drift velocity and eye eccentricity. In cerebellar degeneration this calibration is impaired, resulting in pathological gaze-evoked nystagmus (GEN). For cerebellar dysfunction, increased eye drift may be present at any gaze angle (reflecting pure scaling of eye drift found in controls) or restricted to far-lateral gaze (reflecting changes in shape of the non-linear relationship) and resulting eyed-drift patterns could be related to specific disorders. We recorded horizontal eye positions in 21 patients with cerebellar neurodegeneration (gaze-angle = ±40°) and clinically confirmed GEN. Eye-drift velocity, linearity and symmetry of drift were determined. MR-images were assessed for cerebellar atrophy. In our patients, the relation between eye-drift velocity and gaze eccentricity was non-linear, yielding (compared to controls) significant GEN at gaze-eccentricities ≥20°. Pure scaling was most frequently observed (n = 10/18), followed by pure shape-changing (n = 4/18) and a mixed pattern (n = 4/18). Pure shape-changing patients were significantly (p = 0.001) younger at disease-onset compared to pure scaling patients. Atrophy centered around the superior/dorsal vermis, flocculus/paraflocculus and dentate nucleus and did not correlate with the specific drift behaviors observed. Eye drift in cerebellar degeneration varies in magnitude; however, it retains its non-linear properties. With different drift patterns being linked to age at disease-onset, we propose that the gaze-holding pattern (scaling vs. shape-changing) may discriminate early- from late-onset cerebellar degeneration. Whether this allows a distinction among specific cerebellar disorders remains to be determined.

  16. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  17. Comparison of linear and nonlinear models for coherent hemodynamics spectroscopy (CHS)

    NASA Astrophysics Data System (ADS)

    Sassaroli, Angelo; Kainerstorfer, Jana; Fantini, Sergio

    2015-03-01

    A recently proposed linear time-invariant hemodynamic model for coherent hemodynamics spectroscopy1 (CHS) relates the tissue concentrations of oxy- and deoxy-hemoglobin (outputs of the system) to given dynamics of the tissue blood volume, blood flow and rate constant of oxygen diffusion (inputs of the system). This linear model was derived in the limit of "small" perturbations in blood flow velocity. We have extended this model to a more general model (which will be referred to as the nonlinear extension to the original model) that yields the time-dependent changes of oxy and deoxy-hemoglobin concentrations in response to arbitrary dynamic changes in capillary blood flow velocity. The nonlinear extension to the model relies on a general solution of the partial differential equation that governs the spatio-temporal behavior of oxygen saturation of hemoglobin in capillaries and venules on the basis of dynamic (or time resolved) blood transit time. We show preliminary results where the CHS spectra obtained from the linear and nonlinear models are compared to quantify the limits of applicability of the linear model.

  18. Determination of hydrologic properties needed to calculate average linear velocity and travel time of ground water in the principal aquifer underlying the southeastern part of Salt Lake Valley, Utah

    USGS Publications Warehouse

    Freethey, G.W.; Spangler, L.E.; Monheiser, W.J.

    1994-01-01

    A 48-square-mile area in the southeastern part of the Salt Lake Valley, Utah, was studied to determine if generalized information obtained from geologic maps, water-level maps, and drillers' logs could be used to estimate hydraulic conduc- tivity, porosity, and slope of the potentiometric surface: the three properties needed to calculate average linear velocity of ground water. Estimated values of these properties could be used by water- management and regulatory agencies to compute values of average linear velocity, which could be further used to estimate travel time of ground water along selected flow lines, and thus to determine wellhead protection areas around public- supply wells. The methods used to estimate the three properties are based on assumptions about the drillers' descriptions, the depositional history of the sediments, and the boundary con- ditions of the hydrologic system. These assump- tions were based on geologic and hydrologic infor- mation determined from previous investigations. The reliability of the estimated values for hydro- logic properties and average linear velocity depends on the accuracy of these assumptions. Hydraulic conductivity of the principal aquifer was estimated by calculating the thickness- weighted average of values assigned to different drillers' descriptions of material penetrated during the construction of 98 wells. Using these 98 control points, the study area was divided into zones representing approximate hydraulic- conductivity values of 20, 60, 100, 140, 180, 220, and 250 feet per day. This range of values is about the same range of values used in developing a ground-water flow model of the principal aquifer in the early 1980s. Porosity of the principal aquifer was estimated by compiling the range of porosity values determined or estimated during previous investigations of basin-fill sediments, and then using five different values ranging from 15 to 35 percent to delineate zones in the study area that were assumed to be underlain by similar deposits. Delineation of the zones was based on depositional history of the area and the distri- bution of sediments shown on a surficial geologic map. Water levels in wells were measured twice in 1990: during late winter when ground-water with- drawals were the least and water levels the highest, and again in late summer, when ground- water withdrawals were the greatest and water levels the lowest. These water levels were used to construct potentiometric-contour maps and subsequently to determine the variability of the slope in the potentiometric surface in the area. Values for the three properties, derived from the described sources of information, were used to produce a map showing the general distribution of average linear velocity of ground water moving through the principal aquifer of the study area. Velocity derived ranged from 0.06 to 144 feet per day with a median of about 3 feet per day. Values were slightly faster for late summer 1990 than for late winter 1990, mainly because increased with- drawal of water during the summer created slightly steeper hydraulic-head gradients between the recharge area near the mountain front and the well fields farther to the west. The fastest average linear-velocity values were located at the mouth of Little Cottonwood Canyon and south of Dry Creek near the mountain front, where the hydraulic con- ductivity was estimated to be the largest because the drillers described the sediments to be pre- dominantly clean and coarse grained. Both of these areas also had steep slopes in the potentiometric surface. Other areas where average linear velocity was fast included small areas near pumping wells where the slope in the potentiometric surface was locally steepened. No apparent relation between average linear velocity and porosity could be seen in the mapped distributions of these two properties. Calculation of travel time along a flow line to a well in the southwestern part of the study area during the sum

  19. Non-Linear Dynamics of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries determines the power law index, using results of numerical simulations in the tidal environment. Aggregates can explain many dynamic aspects of the rings and can renew rings by shielding and recycling the material within them, depending on how long the mass is sequestered. We can ask: Are Saturn's rings a chaotic non-linear driven system?

  20. Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.

    PubMed

    Sassaroli, Angelo; Kainerstorfer, Jana M; Fantini, Sergio

    2016-01-21

    In this work, we are proposing an extension of a recent hemodynamic model (Fantini, 2014a), which was developed within the framework of a novel approach to the study of tissue hemodynamics, named coherent hemodynamics spectroscopy (CHS). The previous hemodynamic model, from a signal processing viewpoint, treats the tissue microvasculature as a linear time-invariant system, and considers changes of blood volume, capillary blood flow velocity and the rate of oxygen diffusion as inputs, and the changes of oxy-, deoxy-, and total hemoglobin concentrations (measured in near infrared spectroscopy) as outputs. The model has been used also as a forward solver in an inversion procedure to retrieve quantitative parameters that assess physiological and biological processes such as microcirculation, cerebral autoregulation, tissue metabolic rate of oxygen, and oxygen extraction fraction. Within the assumption of "small" capillary blood flow velocity oscillations the model showed that the capillary and venous compartments "respond" to this input as low pass filters, characterized by two distinct impulse response functions. In this work, we do not make the assumption of "small" perturbations of capillary blood flow velocity by solving without approximations the partial differential equation that governs the spatio-temporal behavior of hemoglobin saturation in capillary and venous blood. Preliminary comparison between the linear time-invariant model and the extended model (here identified as nonlinear model) are shown for the relevant parameters measured in CHS as a function of the oscillation frequency (CHS spectra). We have found that for capillary blood flow velocity oscillations with amplitudes up to 10% of the baseline value (which reflect typical scenarios in CHS), the discrepancies between CHS spectra obtained with the linear and nonlinear models are negligible. For larger oscillations (~50%) the linear and nonlinear models yield CHS spectra with differences within typical experimental errors, but further investigation is needed to assess the effect of these differences. Flow oscillations larger than 10-20% are not typically induced in CHS; therefore, the results presented in this work indicate that a linear hemodynamic model, combined with a method to elicit controlled hemodynamic oscillations (as done for CHS), is appropriate for the quantitative assessment of cerebral microcirculation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Linearized simulation of flow over wind farms and complex terrains.

    PubMed

    Segalini, Antonio

    2017-04-13

    The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  2. Linearized simulation of flow over wind farms and complex terrains

    NASA Astrophysics Data System (ADS)

    Segalini, Antonio

    2017-03-01

    The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results. This article is part of the themed issue 'Wind energy in complex terrains'.

  3. Non-linear power spectra in the synchronous gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jai-chan; Noh, Hyerim; Jeong, Donghui

    2015-05-01

    We study the non-linear corrections to the matter and velocity power spectra in the synchronous gauge (SG). For the leading correction to the non-linear power spectra, we consider the perturbations up to third order in a zero-pressure fluid in a flat cosmological background. Although the equations in the SG happen to coincide with those in the comoving gauge (CG) to linear order, they differ from second order. In particular, the second order hydrodynamic equations in the SG are apparently in the Lagrangian form, whereas those in the CG are in the Eulerian form. The non-linear power spectra naively presented inmore » the original SG show rather pathological behavior quite different from the result of the Newtonian theory even on sub-horizon scales. We show that the pathology in the nonlinear power spectra is due to the absence of the convective terms in, thus the Lagrangian nature of, the SG. We show that there are many different ways of introducing the corrective convective terms in the SG equations. However, the convective terms (Eulerian modification) can be introduced only through gauge transformations to other gauges which should be the same as the CG to the second order. In our previous works we have shown that the density and velocity perturbation equations in the CG exactly coincide with the Newtonian equations to the second order, and the pure general relativistic correction terms starting to appear from the third order are substantially suppressed compared with the relativistic/Newtonian terms in the power spectra. As a result, we conclude that the SG per se is an inappropriate coordinate choice in handling the non-linear matter and velocity power spectra of the large-scale structure where observations meet with theories.« less

  4. Factors influencing perceived angular velocity

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Calderone, Jack B.

    1991-01-01

    Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  5. Competitions between Rayleigh-Taylor instability and Kelvin-Helmholtz instability with continuous density and velocity profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, W. H.; He, X. T.; CAPT, Peking University, Beijing 100871

    2011-02-15

    In this research, competitions between Rayleigh-Taylor instability (RTI) and Kelvin-Helmholtz instability (KHI) in two-dimensional incompressible fluids within a linear growth regime are investigated analytically. Normalized linear growth rate formulas for both the RTI, suitable for arbitrary density ratio with continuous density profile, and the KHI, suitable for arbitrary density ratio with continuous density and velocity profiles, are obtained. The linear growth rates of pure RTI ({gamma}{sub RT}), pure KHI ({gamma}{sub KH}), and combined RTI and KHI ({gamma}{sub total}) are investigated, respectively. In the pure RTI, it is found that the effect of the finite thickness of the density transition layermore » (L{sub {rho}}) reduces the linear growth of the RTI (stabilizes the RTI). In the pure KHI, it is found that conversely, the effect of the finite thickness of the density transition layer increases the linear growth of the KHI (destabilizes the KHI). It is found that the effect of the finite thickness of the density transition layer decreases the ''effective'' or ''local'' Atwood number (A) for both the RTI and the KHI. However, based on the properties of {gamma}{sub RT}{proportional_to}{radical}(A) and {gamma}{sub KH}{proportional_to}{radical}(1-A{sup 2}), the effect of the finite thickness of the density transition layer therefore has a completely opposite role on the RTI and the KHI noted above. In addition, it is found that the effect of the finite thickness of the velocity shear layer (L{sub u}) stabilizes the KHI, and for the most cases, the combined effects of the finite thickness of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}) also stabilize the KHI. Regarding the combined RTI and KHI, it is found that there is a competition between the RTI and the KHI because of the completely opposite effect of the finite thickness of the density transition layer on these two kinds of instability. It is found that the competitions between the RTI and the KHI depend, respectively, on the Froude number, the density ratio of the light fluid to the heavy one, and the finite thicknesses of the density transition layer and the velocity shear layer. Furthermore, for the fixed Froude number, the linear growth rate ratio of the RTI to the KHI decreases with both the density ratio and the finite thickness of the density transition layer, but increases with the finite thickness of the velocity shear layer and the combined finite thicknesses of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}). In summary, our analytical results show that the effect of the finite thickness of the density transition layer stabilizes the RTI and the overall combined effects of the finite thickness of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}) also stabilize the KHI. Thus, it should be included in applications where the transition layer effect plays an important role, such as the formation of large-scale structures (jets) in high energy density physics and astrophysics and turbulent mixing.« less

  6. Dependence of sea-surface microwave emissivity on friction velocity as derived from SMMR/SASS

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.; Christensen, E. J.; Richardson, K. A.

    1981-01-01

    The sea-surface microwave emissivity is derived using SMMR brightness temperatures and SASS inferred friction velocities for three North Pacific Seasat passes. The results show the emissivity increasing linearly with friction velocity with no obvious break between the foam-free and foam regimes up to a friction velocity of about 70 cm/sec (15 m/sec wind speed). For horizontal polarization the sensitivity of emissivity to friction velocity greatly increases with frequency, while for vertical polarization the sensitivity is much less and is independent of frequency. This behavior is consistent with two-scale scattering theory. A limited amount of high friction velocity data above 70 cm/sec suggests an additional increase in emissivity due to whitecapping.

  7. Note: A pulsed laser ion source for linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-01

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  8. Radiation effects in Caenorhabditis elegans - Mutagenesis by high and low LET ionizing radiation

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Schubert, Wayne W.; Marshall, Tamara M.; Benton, Eric R.; Benton, Eugene V.

    1989-01-01

    The nematode C. elegans was used to measure the effectiveness of high-energy ionized particles in the induction of three types of genetic lesions. Recessive lethal mutations in a 40-map unit autosomal region, sterility, and X-chromosome nondisjunction or damage were investigated. Induction rates were measured as a function of linear energy transfer, LET(infinity), for nine ions of atomic nunmber 1-57 accelerated at the BEVALAC accelerator. Linear kinetics were observed for all three types of lesions within the dose/fluence ranges tested and were found to vary strongly as a function of particle LET(infinity). Relative biological effectiveness (RBE) values of up to 4.2 were measured, and action cross sections were calculated and compared to mutagenic responses in other systems.

  9. Pencil-like mm-size electron beams produced with linear inductive voltage adders

    NASA Astrophysics Data System (ADS)

    Mazarakis, M. G.; Poukey, J. W.; Rovang, D. C.; Maenchen, J. E.; Cordova, S. R.; Menge, P. R.; Pepping, R.; Bennett, L.; Mikkelson, K.; Smith, D. L.; Halbleib, J.; Stygar, W. A.; Welch, D. R.

    1997-02-01

    We present the design, analysis, and results of the high brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 12 MeV, current 35-40 kA, rms radius 0.5 mm, and pulse duration 40 ns full width at half-maximum. The accelerator is SABRE, a pulsed linear inductive voltage adder modified to higher impedance, and the electron source is a magnetically immersed foilless electron diode. 20-30 T solenoidal magnets are required to insulate the diode and contain the beam to its extremely small-sized (1 mm) envelope. These experiments are designed to push the technology to produce the highest possible electron current in a submillimeter radius beam. Design, numerical simulations, and experimental results are presented.

  10. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-07-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.

  11. Continuous Quantitative Measurements on a Linear Air Track

    ERIC Educational Resources Information Center

    Vogel, Eric

    1973-01-01

    Describes the construction and operational procedures of a spark-timing apparatus which is designed to record the back and forth motion of one or two carts on linear air tracks. Applications to measurements of velocity, acceleration, simple harmonic motion, and collision problems are illustrated. (CC)

  12. Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves

    NASA Technical Reports Server (NTRS)

    Airapetian, V.; Carpenter, K. G.; Ofman, L.

    2010-01-01

    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  13. Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins.

    PubMed

    Ishihara, Takashi; Kadoya, Toshihiko; Yamamoto, Shuichi

    2007-08-24

    We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.

  14. MarsSedEx I: feasibility test for sediment settling experiments under Martian gravity

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2013-04-01

    Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases. However, StokeśLaw, the common way of estimating the terminal velocity of a particle moving in a gas of liquid assumes a linear relationship between terminal velocity and gravity. For terrestrial applications, this "error" is not relevant, but it may strongly influence the terminal velocity achieved by settling particles in the Martian atmosphere or water bodies. In principle, the effect of gravity on settling velocity can also be achieved by reducing the difference in density between particle and gas or liquid. However, the use of analogues simulating the lower gravity on Mars on Earth is difficult because the properties and interaction of the liquids and materials differ from those of water and sediment, .i.e. the viscosity of the liquid or the interaction between charges surfaces and liquid molecules. An alternative for measuring the actual settling velocities of particles under Martian gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling tests within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation we report on the feasibility of such a test based on an experiment conducted during a reduced gravity flight in November 2012.

  15. Validity and reliability of simple measurement device to assess the velocity of the barbell during squats.

    PubMed

    Lorenzetti, Silvio; Lamparter, Thomas; Lüthy, Fabian

    2017-12-06

    The velocity of a barbell can provide important insights on the performance of athletes during strength training. The aim of this work was to assess the validity and reliably of four simple measurement devices that were compared to 3D motion capture measurements during squatting. Nine participants were assessed when performing 2 × 5 traditional squats with a weight of 70% of the 1 repetition maximum and ballistic squats with a weight of 25 kg. Simultaneously, data was recorded from three linear position transducers (T-FORCE, Tendo Power and GymAware), an accelerometer based system (Myotest) and a 3D motion capture system (Vicon) as the Gold Standard. Correlations between the simple measurement devices and 3D motion capture of the mean and the maximal velocity of the barbell, as well as the time to maximal velocity, were calculated. The correlations during traditional squats were significant and very high (r = 0.932, 0.990, p < 0.01) and significant and moderate to high (r = 0.552, 0.860, p < 0.01). The Myotest could only be used during the ballistic squats and was less accurate. All the linear position transducers were able to assess squat performance, particularly during traditional squats and especially in terms of mean velocity and time to maximal velocity.

  16. Accuracy Study of a 2-Component Point Doppler Velocimeter (PDV)

    NASA Technical Reports Server (NTRS)

    Kuhlman, John; Naylor, Steve; James, Kelly; Ramanath, Senthil

    1997-01-01

    A two-component Point Doppler Velocimeter (PDV) which has recently been developed is described, and a series of velocity measurements which have been obtained to quantify the accuracy of the PDV system are summarized. This PDV system uses molecular iodine vapor cells as frequency discriminating filters to determine the Doppler shift of laser light which is scattered off of seed particles in a flow. The majority of results which have been obtained to date are for the mean velocity of a rotating wheel, although preliminary data are described for fully-developed turbulent pipe flow. Accuracy of the present wheel velocity data is approximately +/- 1 % of full scale, while linearity of a single channel is on the order of +/- 0.5 % (i.e., +/- 0.6 m/sec and +/- 0.3 m/sec, out of 57 m/sec, respectively). The observed linearity of these results is on the order of the accuracy to which the speed of the rotating wheel has been set for individual data readings. The absolute accuracy of the rotating wheel data is shown to be consistent with the level of repeatability of the cell calibrations. The preliminary turbulent pipe flow data show consistent turbulence intensity values, and mean axial velocity profiles generally agree with pitot probe data. However, there is at present an offset error in the radial velocity which is on the order of 5-10 % of the mean axial velocity.

  17. Three-dimensional organization of vestibular-related eye movements to off-vertical axis rotation and linear translation in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Angelaki, D. E.

    1999-01-01

    During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8-58 degrees /s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions.

  18. Ion acoustic wave assisted laser beat wave terahertz generation in a plasma channel

    NASA Astrophysics Data System (ADS)

    Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav; Garg, Deepak

    2018-04-01

    Resonant excitation of terahertz (THz) radiation by non-linear mixing of two lasers in the presence of an electrostatic wave is investigated. The electrostatic wave assists in k matching and contributes to non-linear coupling. In this plasma channel, the electron plasma frequency becomes minimum on the axis. The beat frequency ponderomotive force imparts an oscillating velocity to the electrons. In the presence of an ion-acoustic wave, density perturbation due to the ion-acoustic wave couples with the oscillating velocity of the electrons and give rise to non-linear current that gives rise to an ion-acoustic wave frequency assisted THz radiation field. The normalized field amplitude of ion acoustic wave assisted THz varies inversely for ω/ωp . The field amplitude of ion acoustic wave assisted THz decreases as ω/ωp increases.

  19. The Rolling Can Investigation: Towards an Explanation

    ERIC Educational Resources Information Center

    Ireson, Gren; Twidle, John

    2005-01-01

    This paper presents a context lead approach to rotational dynamics. By using nothing more than two cans of cola the basic notions of linear velocity, angular velocity, moments of inertia and conservation of energy can be explored. The approach can be used equally well as both a demonstration or an investigative assignment. The same starting point…

  20. Flow-induced translocation of star polymers through a nanopore.

    PubMed

    Ding, Mingming; Duan, Xiaozheng; Shi, Tongfei

    2016-03-21

    We study the flow-induced translocation of the star polymers through a nanopore using a hybrid simulation method that incorporates a lattice-Boltzmann approach for the fluid into a molecular dynamics model for the polymer. Our simulation demonstrates the existence of an optimal forward arm number of the star polymers captured by the nanopore, and illustrates its significance in determining the critical velocity flux of the star polymer translocation through the nanopore. Importantly, we find that the critical velocity flux of the star polymers is independent of the arm polymerization degree, but exhibits a linear dependence on the arm number. Based on previous scaling arguments and our simulation results, we conclude a linear dependence of the critical velocity flux on the arm number of the star polymers, which can successfully describe the dynamics of the star polymer translocation. Our simulation results rationalize the experimental results for the dependence of the critical velocity flux on the arm polymerization degree and the arm number of the star polymers, which provide new insights for the characterization and the purification of the star polymers.

  1. Asymptotic scalings of developing curved pipe flow

    NASA Astrophysics Data System (ADS)

    Ault, Jesse; Chen, Kevin; Stone, Howard

    2015-11-01

    Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.

  2. Spatial filtering self-velocimeter for vehicle application using a CMOS linear image sensor

    NASA Astrophysics Data System (ADS)

    He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu

    2015-03-01

    The idea of using a spatial filtering velocimeter (SFV) to measure the velocity of a vehicle for an inertial navigation system is put forward. The presented SFV is based on a CMOS linear image sensor with a high-speed data rate, large pixel size, and built-in timing generator. These advantages make the image sensor suitable to measure vehicle velocity. The power spectrum of the output signal is obtained by fast Fourier transform and is corrected by a frequency spectrum correction algorithm. This velocimeter was used to measure the velocity of a conveyor belt driven by a rotary table and the measurement uncertainty is ˜0.54%. Furthermore, it was also installed on a vehicle together with a laser Doppler velocimeter (LDV) to measure self-velocity. The measurement result of the designed SFV is compared with that of the LDV. It is shown that the measurement result of the SFV is coincident with that of the LDV. Therefore, the designed SFV is suitable for a vehicle self-contained inertial navigation system.

  3. Three-Dimensional Simulation of Liquid Drop Dynamics Within Unsaturated Vertical Hele-Shaw Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai Huang; Paul Meakin

    A three-dimensional, multiphase fluid flow model with volume of fluid-interface tracking was developed and applied to study the multiphase dynamics of moving liquid drops of different sizes within vertical Hele-Shaw cells. The simulated moving velocities are significantly different from those obtained from a first-order analytical approximation, based on simple force-balance concepts. The simulation results also indicate that the moving drops can exhibit a variety of shapes and that the transition among these different shapes is largely determined by the moving velocities. More important, there is a transition from a linear moving regime at small capillary numbers, in which the capillarymore » number scales linearly with the Bond number, to a nonlinear moving regime at large capillary numbers, in which the moving drop releases a train of droplets from its trailing edge. The train of droplets forms a variety of patterns at different moving velocities.« less

  4. An extended car-following model considering random safety distance with different probabilities

    NASA Astrophysics Data System (ADS)

    Wang, Jufeng; Sun, Fengxin; Cheng, Rongjun; Ge, Hongxia; Wei, Qi

    2018-02-01

    Because of the difference in vehicle type or driving skill, the driving strategy is not exactly the same. The driving speeds of the different vehicles may be different for the same headway. Since the optimal velocity function is just determined by the safety distance besides the maximum velocity and headway, an extended car-following model accounting for random safety distance with different probabilities is proposed in this paper. The linear stable condition for this extended traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulting from multiple safety distance in the optimal velocity function. The cases of multiple types of safety distances selected with different probabilities are presented. Numerical results show that the traffic flow with multiple safety distances with different probabilities will be more unstable than that with single type of safety distance, and will result in more stop-and-go phenomena.

  5. Incremental harmonic balance method for predicting amplitudes of a multi-d.o.f. non-linear wheel shimmy system with combined Coulomb and quadratic damping

    NASA Astrophysics Data System (ADS)

    Zhou, J. X.; Zhang, L.

    2005-01-01

    Incremental harmonic balance (IHB) formulations are derived for general multiple degrees of freedom (d.o.f.) non-linear autonomous systems. These formulations are developed for a concerned four-d.o.f. aircraft wheel shimmy system with combined Coulomb and velocity-squared damping. A multi-harmonic analysis is performed and amplitudes of limit cycles are predicted. Within a large range of parametric variations with respect to aircraft taxi velocity, the IHB method can, at a much cheaper cost, give results with high accuracy as compared with numerical results given by a parametric continuation method. In particular, the IHB method avoids the stiff problems emanating from numerical treatment of aircraft wheel shimmy system equations. The development is applicable to other vibration control systems that include commonly used dry friction devices or velocity-squared hydraulic dampers.

  6. QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeheskel, O.

    2008-02-28

    The elastic moduli of {gamma}-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a toolmore » for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals.« less

  7. Analytical scalings of the linear Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Cobos, Francisco; Wouchuk, Juan Gustavo

    2017-11-01

    In the linear Richtmyer-Meshkov instability (RMI), hydrodynamic perturbations are generated behind the transmitted and reflected rippled fronts. The contact surface reaches an asymptotic normal velocity and two different tangential velocities at each side, which are always different for moderate to strong levels of compression, depending on the amount of vorticity generated by the corrugated shocks. We show analytical scaling laws for the ripple velocity (δvi∞)in different physical limits and approximate formulas are provided, valid for arbitrary initial pre-shock parameters. An asymptotic growth for the contact surface ripple of the form ψi(t) ψ∞ + δ vi∞t is obtained. The quantity ψ∞ is in general different from the initial post-shock ripple amplitude, in agreement with the early finding of. Comparison to simulations and experimental work is shown. F.C. acknowledges support from UCLM for a predoctoral fellowship. This work has received support from MINECO, JCCM, and UCLM (Spain).

  8. The Mach number of the cosmic flow - A critical test for current theories

    NASA Technical Reports Server (NTRS)

    Ostriker, Jeremiah P.; Suto, Yusushi

    1990-01-01

    A new cosmological, self-contained test using the ratio of mean velocity and the velocity dispersion in the mean flow frame of a group of test objects is presented. To allow comparison with linear theory, the velocity field must first be smoothed on a suitable scale. In the context of linear perturbation theory, the Mach number M(R) which measures the ratio of power on scales larger than to scales smaller than the patch size R, is independent of the perturbation amplitude and also of bias. An apparent inconsistency is found for standard values of power-law index n = 1 and cosmological density parameter Omega = 1, when comparing values of M(R) predicted by popular models with tentative available observations. Nonstandard models based on adiabatic perturbations with either negative n or small Omega value also fail, due to creation of unacceptably large microwave background fluctuations.

  9. Peeling linear inversion of upper mantle velocity structure with receiver functions

    NASA Astrophysics Data System (ADS)

    Shen, Xuzhang; Zhou, Huilan

    2012-02-01

    A peeling linear inversion method is presented to study the upper mantle (from Moho to 800 km depth) velocity structures with receiver functions. The influences of the crustal and upper mantle velocity ratio error on the inversion results are analyzed, and three valid measures are taken for its reduction. This method is tested with the IASP91 and the PREM models, and the upper mantle structures beneath the stations GTA, LZH, and AXX in northwestern China are then inverted. The results indicate that this inversion method is feasible to quantify upper mantle discontinuities, besides the discontinuities between 3 h M ( h M denotes the depth of Moho) and 5 h M due to the interference of multiples from Moho. Smoothing is used to overcome possible false discontinuities from the multiples and ensure the stability of the inversion results, but the detailed information on the depth range between 3 h M and 5 h M is sacrificed.

  10. Polar versus Cartesian velocity models for maneuvering target tracking with IMM

    NASA Astrophysics Data System (ADS)

    Laneuville, Dann

    This paper compares various model sets in different IMM filters for the maneuvering target tracking problem. The aim is to see whether we can improve the tracking performance of what is certainly the most widely used model set in the literature for the maneuvering target tracking problem: a Nearly Constant Velocity model and a Nearly Coordinated Turn model. Our new challenger set consists of a mixed Cartesian position and polar velocity state vector to describe the uniform motion segments and is augmented with the turn rate to obtain the second model for the maneuvering segments. This paper also gives a general procedure to discretize up to second order any non-linear continuous time model with linear diffusion. Comparative simulations on an air defence scenario with a 2D radar, show that this new approach improves significantly the tracking performance in this case.

  11. Calculations on the forces and moments for an oscillating wing-aileron combination in two-dimensional potential flow at sonic speed

    NASA Technical Reports Server (NTRS)

    Nelson, Herbert C; Berman, Julian H

    1953-01-01

    The linearized theory for compressible unsteady flow is used, as suggested in recent contributions to the subject, to obtain the velocity potential and the lift and moment for a thin harmonically oscillating, two-dimensional wing-aileron combination moving at sonic speed. The velocity potential is derived by considering the sonic case as the limit of the linearized supersonic theory. From the velocity potential explicit expressions for the lift and moment are developed for vertical translation and pitching of the wing and rotation of the aileron. The sonic results are compared and found to be consistent with previously obtained subsonic and supersonic results. Several figures are presented showing the variation of lift and moment with reduced frequency and Mach number and the influence of Mach number on some cases of bending-torsion flutter.

  12. Design of two-dimensional channels with prescribed velocity distributions along the channel walls

    NASA Technical Reports Server (NTRS)

    Stanitz, John D

    1953-01-01

    A general method of design is developed for two-dimensional unbranched channels with prescribed velocities as a function of arc length along the channel walls. The method is developed for both compressible and incompressible, irrotational, nonviscous flow and applies to the design of elbows, diffusers, nozzles, and so forth. In part I solutions are obtained by relaxation methods; in part II solutions are obtained by a Green's function. Five numerical examples are given in part I including three elbow designs with the same prescribed velocity as a function of arc length along the channel walls but with incompressible, linearized compressible, and compressible flow. One numerical example is presented in part II for an accelerating elbow with linearized compressible flow, and the time required for the solution by a Green's function in part II was considerably less than the time required for the same solution by relaxation methods in part I.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.

    Here we describe the first combination of a Distance-of-Flight Mass Spectrometry (DOFMS) instrument and an inductively coupled plasma (ICP) ion source. DOFMS is a velocity-based MS technique in which ions of a range of mass-to-charge (m/z) values are detected simultaneously along the length of a spatially selective detector. As a relative of time-of-flight (TOF) MS, DOFMS leverages benefits fromboth TOFMS and spatially dispersive MS. The simultaneous detection of groups of m/z values improves dynamic range by spreading ion signal across many detector elements and reduces correlated noise by signal ratioing. To ascertain the performance characteristics of the ICP-DOFMS instrument, wemore » have employed a microchannel-plate/phosphor detection assembly with a scientific CCD to capture images of the phosphor plate. With this simple (and commercially available) detection scheme, elemental detection limits from 2–30 ng L*1 and a linear dynamic range of 5 orders of magnitude (10–106 ng L1) have been demonstrated. Additionally, a competitive isotope-ratio precision of 0.1% RSD has been achieved with only a 6 s signal integration period. In addition to first figures of merit, this paper outlines technical considerations for the design of the ICP-DOFMS.« less

  14. Two-stream instability with time-dependent drift velocity

    DOE PAGES

    Qin, Hong; Davidson, Ronald C.

    2014-06-26

    The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.

  15. Stationary Plasma Thruster Ion Velocity Distribution

    NASA Technical Reports Server (NTRS)

    Manzella, David H.

    1994-01-01

    A nonintrusive velocity diagnostic based on laser induced fluorescence of the 5d4F(5/2)-6p4D(5/2) singly ionized xenon transition was used to interrogate the exhaust of a 1.5 kW Stationary Plasma Thruster (SPT). A detailed map of plume velocity vectors was obtained using a simplified, cost-effective, nonintrusive, semiconductor laser based scheme. Circumferential velocities on the order of 250 m/s were measured which implied induced momentum torques of approximately 5 x 10(exp -2) N-cm. Axial and radial velocities were evaluated one mm downstream of the cathode at several locations across the width of the annular acceleration channel. Radial velocities varied linearly with radial distance. A maximum radial velocity of 7500 m/s was measured 8 mm from the center of the channel. Axial velocities as large as 16,500 m/s were measured.

  16. Small-scale convection beneath the transverse ranges, California: Implications for interpretation of gravity anomalies

    NASA Technical Reports Server (NTRS)

    Humphreys, E. D.; Hager, B. H.

    1985-01-01

    Tomographic inversion of upper mantle P wave velocity heterogeneities beneath southern California shows two prominent features: an east-west trending curtain of high velocity material (up to 3% fast) in the upper 250 km beneath the Transverse Ranges and a region of low velocity material (up to 4% slow) in the 100 km beneath the Salton Trough. These seismic velocity anomalies were interpreted as due to small scale convection in the mantle. Using this hypothesis and assuming that temperature and density anomalies are linearly related to seismic velocity anomalies through standard coefficients of proportionality, leads to inferred variations of approx. + or - 300 C and approx. + or - 0.03 g/cc.

  17. An efficient closed-form solution for acoustic emission source location in three-dimensional structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xibing; Dong, Longjun, E-mail: csudlj@163.com; Australian Centre for Geomechanics, The University of Western Australia, Crawley, 6009

    This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.

  18. The effect of small streamwise velocity distortion on the boundary layer flow over a thin flat plate with application to boundary layer stability theory

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Leib, S. J.; Cowley, S. J.

    1990-01-01

    Researchers show how an initially linear spanwise disturbance in the free stream velocity field is amplified by leading edge bluntness effects and ultimately leads to a small amplitude but linear spanwise motion far downstream from the edge. This spanwise motion is imposed on the boundary layer flow and ultimately causes an order-one change in its profile shape. The modified profiles are highly unstable and can support Tollmein-Schlichting wave growth well upstream of the theoretical lower branch of the neutral stability curve for a Blasius boundary layer.

  19. Foundation stiffness in the linear modeling of wind turbines

    NASA Astrophysics Data System (ADS)

    Chiang, Chih-Hung; Yu, Chih-Peng; Chen, Yan-Hao; Lai, Jiunnren; Hsu, Keng-Tsang; Cheng, Chia-Chi

    2017-04-01

    Effects of foundation stiffness on the linear vibrations of wind turbine systems are of concerns for both planning and construction of wind turbine systems. Current study performed numerical modeling for such a problem using linear spectral finite elements. The effects of foundation stiffness were investigated for various combinations of shear wave velocity of soil, size of tower base plate, and pile length. Multiple piles are also included in the models such that the foundation stiffness can be analyzed more realistically. The results indicate that the shear wave velocity of soil and the size of tower base plate have notable effects on the dominant frequency of the turbine-tower system. The larger the lateral dimension, the stiffer the foundation. Large pile cap and multiple spaced piles result in higher stiffness than small pile cap and a mono-pile. The lateral stiffness of a mono-pile mainly depends on the shear wave velocity of soil with the exception for a very short pile that the end constraints may affect the lateral vibration of the superstructure. Effective pile length may be determined by comparing the simulation results of the frictional pile to those of the end-bearing pile.

  20. Contact Dependence and Velocity Crossover in Friction between Microscopic Solid/Solid Contacts.

    PubMed

    McGraw, Joshua D; Niguès, Antoine; Chennevière, Alexis; Siria, Alessandro

    2017-10-11

    Friction at the nanoscale differs markedly from that between surfaces of macroscopic extent. Characteristically, the velocity dependence of friction between apparent solid/solid contacts can strongly deviate from the classically assumed velocity independence. Here, we show that a nondestructive friction between solid tips with radius on the scale of hundreds of nanometers and solid hydrophobic self-assembled monolayers has a strong velocity dependence. Specifically, using laterally oscillating quartz tuning forks, we observe a linear scaling in the velocity at the lowest accessed velocities, typically hundreds of micrometers per second, crossing over into a logarithmic velocity dependence. This crossover is consistent with a general multicontact friction model that includes thermally activated breaking of the contacts at subnanometric elongation. We find as well a strong dependence of the friction on the dimensions of the frictional probe.

  1. Steady induction effects in geomagnetism. Part 1C: Geomagnetic estimation of steady surficial core motions: Application to the definitive geomagnetic reference field models

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1993-01-01

    In the source-free mantle/frozen-flux core magnetic earth model, the non-linear inverse steady motional induction problem was solved using the method presented in Part 1B. How that method was applied to estimate steady, broad-scale fluid velocity fields near the top of Earth's core that induce the secular change indicated by the Definitive Geomagnetic Reference Field (DGRF) models from 1945 to 1980 are described. Special attention is given to the derivation of weight matrices for the DGRF models because the weights determine the apparent significance of the residual secular change. The derived weight matrices also enable estimation of the secular change signal-to-noise ratio characterizing the DGRF models. Two types of weights were derived in 1987-88: radial field weights for fitting the evolution of the broad-scale portion of the radial geomagnetic field component at Earth's surface implied by the DGRF's, and general weights for fitting the evolution of the broad-scale portion of the scalar potential specified by these models. The difference is non-trivial because not all the geomagnetic data represented by the DGRF's constrain the radial field component. For radial field weights (or general weights), a quantitatively acceptable explication of broad-scale secular change relative to the 1980 Magsat epoch must account for 99.94271 percent (or 99.98784 percent) of the total weighted variance accumulated therein. Tolerable normalized root-mean-square weighted residuals of 2.394 percent (or 1.103 percent) are less than the 7 percent errors expected in the source-free mantle/frozen-flux core approximation.

  2. Dietary arginine and linear growth: the Copenhagen School Child Intervention Study.

    PubMed

    van Vught, Anneke J A H; Dagnelie, Pieter C; Arts, Ilja C W; Froberg, Karsten; Andersen, Lars B; El-Naaman, Bianca; Bugge, Anna; Nielsen, Birgit M; Heitman, Berit L

    2013-03-28

    The amino acid arginine is a well-known growth hormone (GH) stimulator and GH is an important modulator of linear growth. The aim of the present study was to investigate the effect of dietary arginine on growth velocity in children between 7 and 13 years of age. Data from the Copenhagen School Child Intervention Study during 2001-2 (baseline), and at 3-year and 7-year follow-up, were used. Arginine intake was estimated via a 7 d precoded food diary at baseline and 3-year follow-up. Data were analysed in a multilevel structure in which children were embedded within schools. Random intercept and slopes were defined to estimate the association between arginine intake and growth velocity, including the following covariates: sex; age; baseline height; energy intake; puberty stage at 7-year follow-up and intervention/control group. The association between arginine intake and growth velocity was significant for the third and fourth quintile of arginine intake (2.5-2.8 and 2.8-3.2 g/d, respectively) compared with the first quintile ( < 2.2 g/d) (P for trend = 0.04). Protein intake (excluding arginine) was significantly associated with growth velocity; however, the association was weaker than the association between arginine intake and growth velocity (P for trend = 0.14). The results of the present study suggest a dose-dependent physiological role of habitual protein intake, and specifically arginine intake, on linear growth in normally growing children. However, since the study was designed in healthy children, we cannot firmly conclude whether arginine supplementation represents a relevant clinical strategy. Further research is needed to investigate whether dietary arginine may represent a nutritional strategy potentially advantageous for the prevention and treatment of short stature.

  3. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmic flows and cosmic web from luminous red galaxies

    NASA Astrophysics Data System (ADS)

    Ata, Metin; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E.; Ferraro, Simone; Gil-Marín, Hector; McDonald, Patrick; Hernández Monteagudo, Carlos; Müller, Volker; Yepes, Gustavo; Autefage, Mathieu; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R.; Burden, Angela; Eisenstein, Daniel J.; Guo, Hong; Ho, Shirley; McBride, Cameron; Neyrinck, Mark; Olmstead, Matthew D.; Padmanabhan, Nikhil; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G.; Schlegel, David; Schneider, Donald P.; Seo, Hee-Jong; Streblyanska, Alina; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana

    2017-06-01

    We present a Bayesian phase-space reconstruction of the cosmic large-scale matter density and velocity fields from the Sloan Digital Sky Survey-III Baryon Oscillations Spectroscopic Survey Data Release 12 CMASS galaxy clustering catalogue. We rely on a given Λ cold dark matter cosmology, a mesh resolution in the range of 6-10 h-1 Mpc, and a lognormal-Poisson model with a redshift-dependent non-linear bias. The bias parameters are derived from the data and a general renormalized perturbation theory approach. We use combined Gibbs and Hamiltonian sampling, implemented in the argo code, to iteratively reconstruct the dark matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for coherent redshift space distortions. Our tests relying on accurate N-body-based mock galaxy catalogues show unbiased real space power spectra of the non-linear density field up to k ˜ 0.2 h Mpc-1, and vanishing quadrupoles down to r ˜ 20 h-1 Mpc. We also demonstrate that the non-linear cosmic web can be obtained from the tidal field tensor based on the Gaussian component of the reconstructed density field. We find that the reconstructed velocities have a statistical correlation coefficient compared to the true velocities of each individual light-cone mock galaxy of r ˜ 0.68 including about 10 per cent of satellite galaxies with virial motions (about r = 0.75 without satellites). The power spectra of the velocity divergence agree well with theoretical predictions up to k ˜ 0.2 h Mpc-1. This work will be especially useful to improve, for example, baryon acoustic oscillation reconstructions, kinematic Sunyaev-Zeldovich, integrated Sachs-Wolfe measurements or environmental studies.

  4. Lattice Boltzmann study on Kelvin-Helmholtz instability: roles of velocity and density gradients.

    PubMed

    Gan, Yanbiao; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun

    2011-05-01

    A two-dimensional lattice Boltzmann model with 19 discrete velocities for compressible fluids is proposed. The fifth-order weighted essentially nonoscillatory (5th-WENO) finite difference scheme is employed to calculate the convection term of the lattice Boltzmann equation. The validity of the model is verified by comparing simulation results of the Sod shock tube with its corresponding analytical solutions [G. A. Sod, J. Comput. Phys. 27, 1 (1978).]. The velocity and density gradient effects on the Kelvin-Helmholtz instability (KHI) are investigated using the proposed model. Sharp density contours are obtained in our simulations. It is found that the linear growth rate γ for the KHI decreases by increasing the width of velocity transition layer D(v) but increases by increasing the width of density transition layer D(ρ). After the initial transient period and before the vortex has been well formed, the linear growth rates γ(v) and γ(ρ), vary with D(v) and D(ρ) approximately in the following way, lnγ(v)=a-bD(v) and γ(ρ)=c+elnD(ρ)(D(ρ)D(ρ)(E) the linear growth rate γ(ρ) does not vary significantly any more. One can use the hybrid effects of velocity and density transition layers to stabilize the KHI. Our numerical simulation results are in general agreement with the analytical results [L. F. Wang et al., Phys. Plasma 17, 042103 (2010)]. © 2011 American Physical Society

  5. Reliability and Validity Assessment of a Linear Position Transducer

    PubMed Central

    Garnacho-Castaño, Manuel V.; López-Lastra, Silvia; Maté-Muñoz, José L.

    2015-01-01

    The objectives of the study were to determine the validity and reliability of peak velocity (PV), average velocity (AV), peak power (PP) and average power (AP) measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain) during two resistance exercises, bench press (BP) and full back squat (BS), performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2). Intraclass correlation coefficients (ICCs) indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W). Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W). Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP) make this device a useful tool for monitoring resistance training. Key points This study determined the validity and reliability of peak velocity, average velocity, peak power and average power measurements made using a linear position transducer The Tendo Weight-lifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and power. PMID:25729300

  6. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field)

    NASA Astrophysics Data System (ADS)

    Fujita, Shigetaka; Harima, Takashi

    2016-03-01

    The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  7. On recovering distributed IP information from inductive source time domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Kang, Seogi; Oldenburg, Douglas W.

    2016-10-01

    We develop a procedure to invert time domain induced polarization (IP) data for inductive sources. Our approach is based upon the inversion methodology in conventional electrical IP (EIP), which uses a sensitivity function that is independent of time. However, significant modifications are required for inductive source IP (ISIP) because electric fields in the ground do not achieve a steady state. The time-history for these fields needs to be evaluated and then used to define approximate IP currents. The resultant data, either a magnetic field or its derivative, are evaluated through the Biot-Savart law. This forms the desired linear relationship between data and pseudo-chargeability. Our inversion procedure has three steps: (1) Obtain a 3-D background conductivity model. We advocate, where possible, that this be obtained by inverting early-time data that do not suffer significantly from IP effects. (2) Decouple IP responses embedded in the observations by forward modelling the TEM data due to a background conductivity and subtracting these from the observations. (3) Use the linearized sensitivity function to invert data at each time channel and recover pseudo-chargeability. Post-interpretation of the recovered pseudo-chargeabilities at multiple times allows recovery of intrinsic Cole-Cole parameters such as time constant and chargeability. The procedure is applicable to all inductive source survey geometries but we focus upon airborne time domain EM (ATEM) data with a coincident-loop configuration because of the distinctive negative IP signal that is observed over a chargeable body. Several assumptions are adopted to generate our linearized modelling but we systematically test the capability and accuracy of the linearization for ISIP responses arising from different conductivity structures. On test examples we show: (1) our decoupling procedure enhances the ability to extract information about existence and location of chargeable targets directly from the data maps; (2) the horizontal location of a target body can be well recovered through inversion; (3) the overall geometry of a target body might be recovered but for ATEM data a depth weighting is required in the inversion; (4) we can recover estimates of intrinsic τ and η that may be useful for distinguishing between two chargeable targets.

  8. Comparison of Viscous and Pressure Energy Exchange in Fluid Flow Induction

    DTIC Science & Technology

    1981-06-01

    phases of the same fluid). 14 VSt PRIMARY JET NOZZLE HIGH VELOCITY CORE SUCT SECONFFARY FLUID FIGURE 1: A SIMPLE JET PUMP A.- ~is * II. BACKGROUND A...ratio. As the helix gets tighter, as from the twenty to thirty-five degree nozzles, the angular speed of the nozzle increases and the number of

  9. Induction and repair of DNA double-strand breaks in rat cerebellar cortex exposed to 60Co γ-rays

    NASA Astrophysics Data System (ADS)

    Bulanova, T. S.; Zadneprianetc, M. G.; Ježková, L.; Kruglyakova, E. A.; Smirnova, E. V.; Boreyko, A. V.

    2018-01-01

    The induction and repair of DNA double-strand breaks are studied using the immunohistochemical staining procedure of paraffin-embedded rat cerebellum tissues after exposure to γ-rays of 60Co. The dose dependence of radiation-induced colocalized γH2AX/53BP1 foci is studied and its linear character is established. It is shown that these foci are efficiently eliminated 24 h after irradiation.

  10. RELATIONS BETWEEN DAIRY FOOD INTAKE AND ARTERIAL STIFFNESS: PULSE WAVE VELOCITY AND PULSE PRESSURE

    PubMed Central

    Crichton, Georgina E.; Elias, Merrrill F.; Dore, Gregory A.; Abhayaratna, Walter P.; Robbins, Michael A.

    2012-01-01

    Modifiable risk factors, such as diet, are becomingly increasingly important in the management of cardiovascular disease, one of the greatest major causes of death and disease burden. Few studies have examined the role of diet as a possible means of reducing arterial stiffness, as measured by pulse wave velocity, an independent predictor of cardiovascular events and all-cause mortality. The aim of this study was to investigate whether dairy food intake is associated with measures of arterial stiffness including carotid-femoral pulse wave velocity and pulse pressure. A cross-sectional analysis of a subset of the Maine Syracuse Longitudinal Study sample was performed. A linear decrease in pulse wave velocity was observed across increasing intakes of dairy food consumption (ranging from never/rarely to daily dairy food intake). The negative linear relationship between pulse wave velocity and intake of dairy food was independent of demographic variables, other cardiovascular disease risk factors and nutrition variables. The pattern of results was very similar for pulse pressure, while no association between dairy food intake and lipid levels was found. Further intervention studies are needed to ascertain whether dairy food intake may be an appropriate dietary intervention for the attenuation of age-related arterial stiffening and reduction of cardiovascular disease risk. PMID:22431583

  11. POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in

    2016-12-10

    For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-componentmore » supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.« less

  12. Surface wave tomography of the European crust and upper mantle from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    LU, Y.; Stehly, L.; Paul, A.

    2017-12-01

    We present a high-resolution 3-D Shear wave velocity model of the European crust and upper mantle derived from ambient seismic noise tomography. In this study, we collect 4 years of continuous vertical-component seismic recordings from 1293 broadband stations across Europe (10W-35E, 30N-75N). We analyze group velocity dispersion from 5s to 150s for cross-correlations of more than 0.8 million virtual source-receiver pairs. 2-D group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. 3-D velocity model is obtained by merging 1-D models inverted at each pixel through a two-step data-driven inversion algorithm: a non-linear Bayesian Monte Carlo inversion, followed by a linearized inversion. Resulting S-wave velocity model and Moho depth are compared with previous geophysical studies: 1) The crustal model and Moho depth show striking agreement with active seismic imaging results. Moreover, it even provides new valuable information such as a strong difference of the European Moho along two seismic profiles in the Western Alps (Cifalps and ECORS-CROP). 2) The upper mantle model displays strong similarities with published models even at 150km deep, which is usually imaged using earthquake records.

  13. Low Pressure Flame Blowoff from the Forward Stagnation Region of a Blunt-Nosed Cast PMMA Cylinder in Axial Mixed Convective Flow

    NASA Technical Reports Server (NTRS)

    Marcum, J. W.; Rachow, P.; Ferkul, P. V.; Olson, S. L.

    2017-01-01

    Low-pressure blowoff experiments were conducted with a stagnation flame stabilized on the forward tip of cast PMMA rods in a vertical wind tunnel. Pressure, forced flow velocity, gravity, and ambient oxygen concentration were varied. Stagnation flame blowoff is determined from a time-stamped video recording of the test. The blowoff pressure is determined from test section pressure transducer data that is synchronized with the time stamp. The forced flow velocity is also determined from the choked flow orifice pressure. Most of the tests were performed in normal gravity, but a handful of microgravity tests were also conducted to determine the influence of buoyant flow velocity on the blowoff limits. The blowoff limits are found to have a linear dependence between the partial pressure of oxygen and the total pressure, regardless of forced flow velocity and gravity level. The flow velocity (forced and/or buoyant) affects the blowoff pressure through the critical Damkohler number residence time, which dictates the partial pressure of oxygen at blowoff. This is because the critical stretch rate increases linearly with increasing pressure at low pressure (sub-atmospheric pressures) since a second-order overall reaction rate with two-body reactions dominates in this pressure range.

  14. Dependences of Ratio of the Luminosity to Ionization on Velocity and Chemical Composition of Meteors

    NASA Technical Reports Server (NTRS)

    Narziev, M.

    2011-01-01

    On the bases of results simultaneous photographic and radio echo observations, the results complex radar and television observations of meteors and also results of laboratory modeling of processes of a luminescence and ionization, correlation between of luminous intensity Ip to linear electronic density q from of velocities and chemical structure are investigated. It is received that by increasing value of velocities of meteors and decrease of nuclear weight of substance of particles, lg Ip/q decreased more than one order.

  15. Velocity Memory Effect for polarized gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.

  16. Motion planning in velocity affine mechanical systems

    NASA Astrophysics Data System (ADS)

    Jakubiak, Janusz; Tchoń, Krzysztof; Magiera, Władysław

    2010-09-01

    We address the motion planning problem in specific mechanical systems whose linear and angular velocities depend affinely on control. The configuration space of these systems encompasses the rotation group, and the motion planning involves the system orientation. Derivation of the motion planning algorithm for velocity affine systems has been inspired by the continuation method. Performance of this algorithm is illustrated with examples of the kinematics of a serial nonholonomic manipulator, the plate-ball kinematics and the attitude control of a rigid body.

  17. Nonlinear wavenumber shift of large amplitude Langmuir waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dehui, E-mail: dhli@ipp.ac.cn; Wang, Shaojie

    2016-07-15

    Nonlinear particle-in-cell simulation is carried out to investigate the nonlinear behavior of the Langmuir wave launched with a fixed frequency in a uniform plasma. It is found that in the strong driving case, the launched wave propagates in a phase velocity larger than that predicted by the linear theory; there appears a nonlinear down-shift of wavenumber. The phase velocity of the nonlinear wave and the down-shift of the wavenumber are demonstrated to be determined by the velocity of nonlinearly accelerated resonant electrons.

  18. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Markarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc), but here we surmise its existence in the thin disk at z less than 200 pc. The most unexpected and unexplained term within the Ogorodnikov-Milne model is the first-degree magnetic harmonic, representing a rigid rotation of the stellar field about the axis -Y pointing opposite to the direction of rotation. This harmonic comes out with a statistically robust coefficient of 6.2 +/- 0.9 km s(exp -1) kpc(exp -1) and is also present in the velocity field of more distant stars. The ensuing upward vertical motion of stars in the general direction of the Galactic center and the downward motion in the anticenter direction are opposite to the vector field expected from the stationary Galactic warp model.

  19. An aerodynamic study on flexed blades for VAWT applications

    NASA Astrophysics Data System (ADS)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-12-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.

  20. Analytic theory for the determination of velocity and stability of bubbles in a Hele-Shaw cell. Part 1: Velocity selection

    NASA Technical Reports Server (NTRS)

    Tanveer, Saleh

    1989-01-01

    An asymptotic theory is presented for the determination of velocity and linear stability of a steady symmetric bubble in a Hele-Shaw cell for small surface tension. In the first part, the bubble velocity U relative to the fluid velocity at infinity is determined for small surface tension T by determining transcendentally small correction to the asymptotic series solution. It is found that for any relative bubble velocity U in the interval (U(c),2), solutions exist at a countably infinite set of values of T (which has zero as its limit point) corresponding to the different branches of bubble solutions. U(c) decreases monotonically from 2 to 1 as the bubble area increases from 0 to infinity. However, for a bubble of arbitrarily given size, as T approaches 0, solution exists on any given branch with relative bubble velocity U satisfying the relation 2-U = cT to the 2/3 power, where c depends on the branch but is independent of the bubble area. The analytical evidence further suggests that there are no solutions for U greater than 2. These results are in agreement with earlier analytical results for a finger. In Part 2, an analytic theory is presented for the determination of the linear stability of the bubble in the limit of zero surface tension. Only the solution branch corresponding to the largest possible U for given surface tension is found to be stable, while all the others are unstable, in accordance with earlier numerical results.

  1. Time domain viscoelastic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Giroux, Bernard

    2017-06-01

    Viscous attenuation can have a strong impact on seismic wave propagation, but it is rarely taken into account in full waveform inversion (FWI). When viscoelasticity is considered in time domain FWI, the displacement formulation of the wave equation is usually used instead of the popular velocity-stress formulation. However, inversion schemes rely on the adjoint equations, which are quite different for the velocity-stress formulation than for the displacement formulation. In this paper, we apply the adjoint state method to the isotropic viscoelastic wave equation in the velocity-stress formulation based on the generalized standard linear solid rheology. By applying linear transformations to the wave equation before deriving the adjoint state equations, we obtain two symmetric sets of partial differential equations for the forward and adjoint variables. The resulting sets of equations only differ by a sign change and can be solved by the same numerical implementation. We also investigate the crosstalk between parameter classes (velocity and attenuation) of the viscoelastic equation. More specifically, we show that the attenuation levels can be used to recover the quality factors of P and S waves, but that they are very sensitive to velocity errors. Finally, we present a synthetic example of viscoelastic FWI in the context of monitoring CO2 geological sequestration. We show that FWI based on our formulation can indeed recover P- and S-wave velocities and their attenuation levels when attenuation is high enough. Both changes in velocity and attenuation levels recovered with FWI can be used to track the CO2 plume during and after injection. Further studies are required to evaluate the performance of viscoelastic FWI on real data.

  2. Preserved hyperaemic response in (distal) string sign left internal mammary artery grafts.

    PubMed

    Hartman, Joost; Kelder, Hans; Ackerstaff, Rob; van Swieten, Henry; Vermeulen, Freddy; Bogers, Ad

    2007-02-01

    To correlate supraclavicular ultrasonography at rest and in hyperaemic response with angiographically patent and (distal) 'string sign' left internal mammary artery (LIMA) to left anterior descending (LAD) area grafts. Fifty-three patients with LIMA to LAD area grafting were prospectively entered in a follow-up study. Arteriography (native and LIMA) was performed at 1.4+/-0.8 years postoperatively and ultrasonography was performed at rest, in hyperaemic response and 2min after hyperaemic response at 1.8+/-0.8 years postoperatively and was compared to arteriography. Ultrasonographic parameters analysed were systolic and diastolic peak velocity, systolic and diastolic velocity integral, diastolic/systolic peak velocity ratio and diastolic/total velocity integral ratio. One patient was excluded because obesity hampered ultrasonography. Arteriography demonstrated functional grafts in 43 patients (group I), sequential distal 'string sign grafts' in 4 patients (group II) and total 'string sign grafts' in 5 patients (group III). Between the groups all ultrasonographic velocities showed a significant linear relation (p

  3. Portable Conduction Velocity Experiments Using Earthworms for the College and High School Neuroscience Teaching Laboratory

    ERIC Educational Resources Information Center

    Shannon, Kyle M.; Gage, Gregory J.; Jankovic, Aleksandra; Wilson, W. Jeffrey; Marzullo, Timothy C.

    2014-01-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities…

  4. Computer Solution of the Two-Dimensional Tether Ball: Problem to Illustrate Newton's Second Law.

    ERIC Educational Resources Information Center

    Zimmerman, W. Bruce

    Force diagrams involving angular velocity, linear velocity, centripetal force, work, and kinetic energy are given with related equations of motion expressed in polar coordinates. The computer is used to solve differential equations, thus reducing the mathematical requirements of the students. An experiment is conducted using an air table to check…

  5. Definition of Contravariant Velocity Components

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Mao; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This is an old issue in computational fluid dynamics (CFD). What is the so-called contravariant velocity or contravariant velocity component? In the article, we review the basics of tensor analysis and give the contravariant velocity component a rigorous explanation. For a given coordinate system, there exist two uniquely determined sets of base vector systems - one is the covariant and another is the contravariant base vector system. The two base vector systems are reciprocal. The so-called contravariant velocity component is really the contravariant component of a velocity vector for a time-independent coordinate system, or the contravariant component of a relative velocity between fluid and coordinates, for a time-dependent coordinate system. The contravariant velocity components are not physical quantities of the velocity vector. Their magnitudes, dimensions, and associated directions are controlled by their corresponding covariant base vectors. Several 2-D (two-dimensional) linear examples and 2-D mass-conservation equation are used to illustrate the details of expressing a vector with respect to the covariant and contravariant base vector systems, respectively.

  6. Effects of non-tidal atmospheric loading on a Kalman filter-based terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Abbondanza, C.; Altamimi, Z.; Chin, T. M.; Collilieux, X.; Dach, R.; Heflin, M. B.; Gross, R. S.; König, R.; Lemoine, F. G.; MacMillan, D. S.; Parker, J. W.; van Dam, T. M.; Wu, X.

    2013-12-01

    The International Terrestrial Reference Frame (ITRF) adopts a piece-wise linear model to parameterize regularized station positions and velocities. The space-geodetic (SG) solutions from VLBI, SLR, GPS and DORIS global networks used as input in the ITRF combination process account for tidal loading deformations, but ignore the non-tidal part. As a result, the non-linear signal observed in the time series of SG-derived station positions in part reflects non-tidal loading displacements not introduced in the SG data reduction. In this analysis, the effect of non-tidal atmospheric loading (NTAL) corrections on the TRF is assessed adopting a Remove/Restore approach: (i) Focusing on the a-posteriori approach, the NTAL model derived from the National Center for Environmental Prediction (NCEP) surface pressure is removed from the SINEX files of the SG solutions used as inputs to the TRF determinations. (ii) Adopting a Kalman-filter based approach, a linear TRF is estimated combining the 4 SG solutions free from NTAL displacements. (iii) Linear fits to the NTAL displacements removed at step (i) are restored to the linear reference frame estimated at (ii). The velocity fields of the (standard) linear reference frame in which the NTAL model has not been removed and the one in which the model has been removed/restored are compared and discussed.

  7. Multiphysics Modeling of an Annular Linear Induction Pump With Applications to Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Kilbane, J.; Polzin, K. A.

    2014-01-01

    An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.

  8. Emittance Growth in the DARHT-II Linear Induction Accelerator

    DOE PAGES

    Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; ...

    2017-10-03

    The dual-axis radiographic hydrodynamic test (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT-II LIA, we measure an emittance higher than predicted by theoretical simulations, and even though this accelerator produces submillimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell codes. Finally,more » the simulations establish that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.« less

  9. Measurements of reduced corkscrew motion on the ETA-II linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, S.L.; Brand, H.R.; Chambers, F.W.

    1991-05-01

    The ETA-II linear induction accelerator is used to drive a microwave free electron laser (FEL). Corkscrew motion, which previously limited performance, has been reduced by: (1) an improved pulse distribution system which reduces energy sweep, (2) improved magnetic alignment achieved with a stretched wire alignment technique (SWAT) and (3) a unique magnetic tuning algorithm. Experiments have been carried out on a 20-cell version of ETA-II operating at 1500 A and 2.7 MeV. The measured transverse beam motion is less than 0.5 mm for 40 ns of the pulse, an improvement of a factor of 2 to 3 over previous results.more » Details of the computerized tuning procedure, estimates of the corkscrew phase, and relevance of these results to future FEL experiments are presented. 11 refs.« less

  10. Emittance Growth in the DARHT-II Linear Induction Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.

    The dual-axis radiographic hydrodynamic test (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT-II LIA, we measure an emittance higher than predicted by theoretical simulations, and even though this accelerator produces submillimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell codes. Finally,more » the simulations establish that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.« less

  11. What Can We Learn from Hugoniot Temperature as a Function of Shock Velocity?

    NASA Astrophysics Data System (ADS)

    LI, M.; Jeanloz, R.

    2015-12-01

    Shock-wave experiments traditionally rely on impact techniques, whereby measured shock velocity (US) can be related to material velocity (up), determined from the impact velocity (= 2up for a symmetric impact), and resulting in the empirically observed linear US-up equation of state: US = c0 + s up. Modern experiments relying on laser-driven compression have the advantage of reaching higher pressures than laboratory impact experiments, but up is typically not determined; instead, Hugoniot temperature (TH) and shock velocity are more readily measured. Assuming a linear US-up equation of state and that the Grüneisen parameter has the volume dependence g(V) = g0 (V/V0), measurements of the Hugoniot temperature as a function of shock velocity provide constraints on the specific heat along the Hugoniot CVH(US) = V0 f(US)[c0 g0 TH - s US dTH/dUS]-1 where the Walsh-Christian (1955) function f(US) = - (US - c0)2 US/(V0 s c0) = TH dSH/dVH gives the entropy change along the Hugoniot (subscripts 0 and H indicate zero-pressure and Hugoniot states, respectively). In this sense, TH(US) measurements are similar to calorimetry experiments. If specific heat and Grüneisen parameter are determined independently (e.g., from wave-velocity measurements and experiments on porous samples), the TH(US) analog to the linear US-up equation of state is TH(US) = {T0 exp(g0 /s) - ò[V0 c0 f(x)/(s x CV)] exp[c0 g0 /(s x)] dx} exp[- c0 g0 /(s US)] where the integration is from x = c0 to x = US. In addition, experiments can be considered with: 1) different initial volume, as in a porous sample; 2) different initial internal energy, as in a sample heated at constant volume; and 3) different initial volume and internal energy, as in a sample initially heated at ambient pressure. From these four initial states, we get four different Hugoniot curves, and can also consider the effect of phase transition latent heat. Temperature as a function of shock velocity may thus be benefit the analysis of melting and other phase transitions with small volume change and finite latent heat.

  12. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal responses

    NASA Technical Reports Server (NTRS)

    Minor, L. B.; Lasker, D. M.; Backous, D. D.; Hullar, T. E.; Shelhamer, M. J. (Principal Investigator)

    1999-01-01

    The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in five squirrel monkeys with intact vestibular function. The VOR evoked by steps of acceleration in darkness (3,000 degrees /s(2) reaching a velocity of 150 degrees /s) began after a latency of 7.3 +/- 1.5 ms (mean +/- SD). Gain of the reflex during the acceleration was 14.2 +/- 5.2% greater than that measured once the plateau head velocity had been reached. A polynomial regression was used to analyze the trajectory of the responses to steps of acceleration. A better representation of the data was obtained from a polynomial that included a cubic term in contrast to an exclusively linear fit. For sinusoidal rotations of 0.5-15 Hz with a peak velocity of 20 degrees /s, the VOR gain measured 0.83 +/- 0.06 and did not vary across frequencies or animals. The phase of these responses was close to compensatory except at 15 Hz where a lag of 5.0 +/- 0.9 degrees was noted. The VOR gain did not vary with head velocity at 0.5 Hz but increased with velocity for rotations at frequencies of >/=4 Hz (0. 85 +/- 0.04 at 4 Hz, 20 degrees /s; 1.01 +/- 0.05 at 100 degrees /s, P < 0.0001). No responses to these rotations were noted in two animals that had undergone bilateral labyrinthectomy indicating that inertia of the eye had a negligible effect for these stimuli. We developed a mathematical model of VOR dynamics to account for these findings. The inputs to the reflex come from linear and nonlinear pathways. The linear pathway is responsible for the constant gain across frequencies at peak head velocity of 20 degrees /s and also for the phase lag at higher frequencies being less than that expected based on the reflex delay. The frequency- and velocity-dependent nonlinearity in VOR gain is accounted for by the dynamics of the nonlinear pathway. A transfer function that increases the gain of this pathway with frequency and a term related to the third power of head velocity are used to represent the dynamics of this pathway. This model accounts for the experimental findings and provides a method for interpreting responses to these stimuli after vestibular lesions.

  13. Higher order contribution to the propagation characteristics of low frequency transverse waves in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Misra, A. P.; Chowdhury, A. Roy; Paul, S. N.

    2004-09-01

    Characteristic features of low frequency transverse wave propagating in a magnetised dusty plasma have been analysed considering the effect of dust-charge fluctu- ation. The distinctive behaviours of both the left circularly polarised and right circularly polarised waves have been exhibited through the analysis of linear and non-linear disper- sion relations. The phase velocity, group velocity, and group travel time for the waves have been obtained and their propagation characteristics have been shown graphically with the variations of wave frequency, dust density and amplitude of the wave. The change in non-linear wave number shift and Faraday rotation angle have also been exhibited with respect to the plasma parameters. It is observed that the effects of dust particles are significant only when the higher order contributions are considered. This may be referred to as the `dust regime' in plasma.

  14. Linear estimation of coherent structures in wall-bounded turbulence at Re τ = 2000

    NASA Astrophysics Data System (ADS)

    Oehler, S.; Garcia–Gutiérrez, A.; Illingworth, S.

    2018-04-01

    The estimation problem for a fully-developed turbulent channel flow at Re τ = 2000 is considered. Specifically, a Kalman filter is designed using a Navier–Stokes-based linear model. The estimator uses time-resolved velocity measurements at a single wall-normal location (provided by DNS) to estimate the time-resolved velocity field at other wall-normal locations. The estimator is able to reproduce the largest scales with reasonable accuracy for a range of wavenumber pairs, measurement locations and estimation locations. Importantly, the linear model is also able to predict with reasonable accuracy the performance that will be achieved by the estimator when applied to the DNS. A more practical estimation scheme using the shear stress at the wall as measurement is also considered. The estimator is still able to estimate the largest scales with reasonable accuracy, although the estimator’s performance is reduced.

  15. Transfer Alignment Error Compensator Design Based on Robust State Estimation

    NASA Astrophysics Data System (ADS)

    Lyou, Joon; Lim, You-Chol

    This paper examines the transfer alignment problem of the StrapDown Inertial Navigation System (SDINS), which is subject to the ship’s roll and pitch. Major error sources for velocity and attitude matching are lever arm effect, measurement time delay and ship-body flexure. To reduce these alignment errors, an error compensation method based on state augmentation and robust state estimation is devised. A linearized error model for the velocity and attitude matching transfer alignment system is derived first by linearizing the nonlinear measurement equation with respect to its time delay and dominant Y-axis flexure, and by augmenting the delay state and flexure state into conventional linear state equations. Then an H∞ filter is introduced to account for modeling uncertainties of time delay and the ship-body flexure. The simulation results show that this method considerably decreases azimuth alignment errors considerably.

  16. Proton-driven electromagnetic instabilities in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Abraham-Shrauner, B.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.

    1979-01-01

    Electromagnetic instabilities of the field-aligned, right-hand circularly polarized magnetosonic wave and the left-hand circularly polarized Alfven wave driven by two drifted proton components are analyzed for model parameters determined from Imp 7 solar wind proton data measured during high-speed flow conditions. Growth rates calculated using bi-Lorentzian forms for the main and beam proton as well as core and halo electron velocity distributions do not differ significantly from those calculated using bi-Maxwellian forms. Using distribution parameters determined from 17 measured proton spectra, we show that considering the uncertainties the magnetosonic wave may be linearly stable and the Alfven wave is linearly unstable. Because proton velocity distribution function shapes are observed to persist for times long compared to the proton gyroperiod, the latter result suggests that linear stability theory fails for proton-driven ion cyclotron waves in the high-speed solar wind.

  17. Note: A pulsed laser ion source for linear induction accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H., E-mail: bamboobbu@hotmail.com; School of Physics, Peking University, Beijing 100871; Zhang, K.

    2015-01-15

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  18. MAGNETIC METHOD FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES

    DOEpatents

    Josephson, V.

    1960-01-26

    A device is described for producing high-energy plasmas comprising a tapered shock tube of dielectric material and having a closed small end, an exceedingly low-inductance coll supported about and axially aligned with the small end of the tapered tube. an elongated multiturn coil supported upon the remninder of the exterior wall of the shock tube. a potential source and switch connected in series with the low-inductance coil, a potential source and switch connected in series with the elongated coil, means for hermetically sealing the large end of the tube, means for purging the tube of gases, and means for admitting a selected gas into the shock tube.

  19. Non-Linear Dynamics of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    2015-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects of the rings and can renew rings by shielding and recycling the material within them, depending on how long the mass is sequestered. We can ask: Are Saturn's rings a chaotic non-linear driven system?

  20. Monitoring the Deformation of High-Rise Buildings in Shanghai Luijiazui Zone by Tomo-Psinsar

    NASA Astrophysics Data System (ADS)

    Zhou, L. F.; Ma, P. F.; Xia, Y.; Xie, C. H.

    2018-05-01

    In this study, we utilize a Tomography-based Persistent Scatterers Interferometry (Tomo-PSInSAR) approach for monitoring the deformation performances of high-rise buildings, i.e. SWFC and Jin Mao Tower, in Shanghai Lujiazui Zone. For the purpose of this study, we use 31 Stripmap acquisitions from TerraSAR-X missions, spanning from December 2009 to February 2013. Considering thermal expansion, creep and shrinkage are two long-term movements that occur in high-rise buildings with concrete structures, we use an extended 4-D SAR phase model, and three parameters (height, deformation velocity, and thermal amplitude) are estimated simultaneously. Moreover, we apply a two-tier network strategy to detect single and double PSs with no need for preliminary removal of the atmospheric phase screen (APS) in the study area, avoiding possible error caused by the uncertainty in spatiotemporal filtering. Thermal expansion is illustrated in the thermal amplitude map, and deformation due to creep and shrinkage is revealed in the linear deformation velocity map. The thermal amplitude map demonstrates that the derived thermal amplitude of the two high-rise buildings both dilate and contract periodically, which is highly related to the building height due to the upward accumulative effect of thermal expansion. The linear deformation velocity map reveals that SWFC is subject to deformation during the new built period due to creep and shrinkage, which is height-dependent movements in the linear velocity map. It is worth mention that creep and shrinkage induces movements that increase with the increasing height in the downward direction. In addition, the deformation rates caused by creep and shrinkage are largest at the beginning and gradually decrease, and at last achieve a steady state as time goes infinity. On the contrary, the linear deformation velocity map shows that Jin Mao Tower is almost stable, and the reason is that it is an old built building, which is not influenced by creep and shrinkage as the load is relaxed and dehydration proceeds. This study underlines the potential of the Tomo-PSInSAR solution for the monitoring deformation performance of high-rise buildings, which offers a quantitative indicator to local authorities and planners for assessing potential damages.

  1. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  2. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, Howard T.

    1993-01-01

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  3. Inhaled corticosteroids in children with persistent asthma: effects on growth.

    PubMed

    Zhang, Linjie; Prietsch, Sílvio O M; Ducharme, Francine M

    2014-07-17

    Treatment guidelines for asthma recommend inhaled corticosteroids (ICS) as first-line therapy for children with persistent asthma. Although ICS treatment is generally considered safe in children, the potential systemic adverse effects related to regular use of these drugs have been and continue to be a matter of concern, especially the effects on linear growth. To assess the impact of ICS on the linear growth of children with persistent asthma and to explore potential effect modifiers such as characteristics of available treatments (molecule, dose, length of exposure, inhalation device) and of treated children (age, disease severity, compliance with treatment). We searched the Cochrane Airways Group Specialised Register of trials (CAGR), which is derived from systematic searches of bibliographic databases including CENTRAL, MEDLINE, EMBASE, CINAHL, AMED and PsycINFO; we handsearched respiratory journals and meeting abstracts. We also conducted a search of ClinicalTrials.gov and manufacturers' clinical trial databases to look for potential relevant unpublished studies. The literature search was conducted in January 2014. Parallel-group randomised controlled trials comparing daily use of ICS, delivered by any type of inhalation device for at least three months, versus placebo or non-steroidal drugs in children up to 18 years of age with persistent asthma. Two review authors independently performed study selection, data extraction and assessment of risk of bias in included studies. We conducted meta-analyses using the Cochrane statistical package RevMan 5.2 and Stata version 11.0. We used the random-effects model for meta-analyses. We used mean differences (MDs) and 95% CIs as the metrics for treatment effects. A negative value for MD indicates that ICS have suppressive effects on linear growth compared with controls. We performed a priori planned subgroup analyses to explore potential effect modifiers, such as ICS molecule, daily dose, inhalation device and age of the treated child. We included 25 trials involving 8471 (5128 ICS-treated and 3343 control) children with mild to moderate persistent asthma. Six molecules (beclomethasone dipropionate, budesonide, ciclesonide, flunisolide, fluticasone propionate and mometasone furoate) [corrected] given at low or medium daily doses were used during a period of three months to four to six years. Most trials were blinded and over half of the trials had drop out rates of over 20%.Compared with placebo or non-steroidal drugs, ICS produced a statistically significant reduction in linear growth velocity (14 trials with 5717 participants, MD -0.48 cm/y, 95% CI -0.65 to -0.30, moderate quality evidence) and in the change from baseline in height (15 trials with 3275 participants; MD -0.61 cm/y, 95% CI -0.83 to -0.38, moderate quality evidence) during a one-year treatment period.Subgroup analysis showed a statistically significant group difference between six molecules in the mean reduction of linear growth velocity during one-year treatment (Chi² = 26.1, degrees of freedom (df) = 5, P value < 0.0001). The group difference persisted even when analysis was restricted to the trials using doses equivalent to 200 μg/d hydrofluoroalkane (HFA)-beclomethasone. Subgroup analyses did not show a statistically significant impact of daily dose (low vs medium), inhalation device or participant age on the magnitude of ICS-induced suppression of linear growth velocity during a one-year treatment period. However, head-to-head comparisons are needed to assess the effects of different drug molecules, dose, inhalation device or patient age. No statistically significant difference in linear growth velocity was found between participants treated with ICS and controls during the second year of treatment (five trials with 3174 participants; MD -0.19 cm/y, 95% CI -0.48 to 0.11, P value 0.22). Of two trials that reported linear growth velocity in the third year of treatment, one trial involving 667 participants showed similar growth velocity between the budesonide and placebo groups (5.34 cm/y vs 5.34 cm/y), and another trial involving 1974 participants showed lower growth velocity in the budesonide group compared with the placebo group (MD -0.33 cm/y, 95% CI -0.52 to -0.14, P value 0.0005). Among four trials reporting data on linear growth after treatment cessation, three did not describe statistically significant catch-up growth in the ICS group two to four months after treatment cessation. One trial showed accelerated linear growth velocity in the fluticasone group at 12 months after treatment cessation, but there remained a statistically significant difference of 0.7 cm in height between the fluticasone and placebo groups at the end of the three-year trial.One trial with follow-up into adulthood showed that participants of prepubertal age treated with budesonide 400 μg/d for a mean duration of 4.3 years had a mean reduction of 1.20 cm (95% CI -1.90 to -0.50) in adult height compared with those treated with placebo. Regular use of ICS at low or medium daily doses is associated with a mean reduction of 0.48 cm/y in linear growth velocity and a 0.61-cm change from baseline in height during a one-year treatment period in children with mild to moderate persistent asthma. The effect size of ICS on linear growth velocity appears to be associated more strongly with the ICS molecule than with the device or dose (low to medium dose range). ICS-induced growth suppression seems to be maximal during the first year of therapy and less pronounced in subsequent years of treatment. However, additional studies are needed to better characterise the molecule dependency of growth suppression, particularly with newer molecules (mometasone, ciclesonide), to specify the respective role of molecule, daily dose, inhalation device and patient age on the effect size of ICS, and to define the growth suppression effect of ICS treatment over a period of several years in children with persistent asthma.

  4. A study of generator performance with linear permanent magnet in various coil configuration and rotor-stator geometry

    NASA Astrophysics Data System (ADS)

    Asy'ari, Hasyim; Sarjito, Prasetio, Septian Heri

    2017-04-01

    The aim of the research work describe in this paper was to design and optimize a permanent magnet linear generator for renewable energy power plants. It is cover of first stage of designing stator and rotor permanent magnet linear generator. Stator design involves determining dimensions, number of slots, diameter of wire, and the number of winding in each slot. The design of the rotor includes rotor manufacture of PVC pipe material, 10 pieces of permanent magnet type ferrite 271 mikroweber, and resin. The second stage was to assemble the stator and rotor that has been done in the first stage to be a permanent magnet linear generator. The third stage was to install a permanent magnet linear generator with induction motors. Further stage was to test performance of a permanent magnet linear generator by utilizing of induction motor as a prime mover experimentally. In this study, permanent magnet linear generator with a rotor consists of five pairs of permanent magnets. The stator consists of 6 slots of the stator frame, each slot mounted stator coil of 200, 300, 400, 500, and 800 windings, and dimensions of wire used was 0.4 mm. The stator frame was made from acrylic. Results of the experiment that, permanent magnet linear generator when no load was able to generate a DC voltage of 14.5 volts at 300 rpm, and at the output of the linear generator when it is connected to the DC fan as a load only generated of 6.7 volts. It concludes that permanent magnet linear generator output can be used as an input device hybrid system. Data obtained from this experiment in laboratory scale can be developed in a larger scale by varying the type of magnet being used, the number of windings, and the speed used to generate more power.

  5. Measuring Ultrasonic Acoustic Velocity in a Thin Sheet of Graphite Epoxy Composite

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A method for measuring the acoustic velocity in a thin sheet of a graphite epoxy composite (GEC) material was investigated. This method uses two identical acoustic-emission (AE) sensors, one to transmit and one to receive. The delay time as a function of distance between sensors determines a bulk velocity. A lightweight fixture (balsa wood in the current implementation) provides a consistent method of positioning the sensors, thus providing multiple measurements of the time delay between sensors at different known distances. A linear fit to separation, x, versus delay time, t, will yield an estimate of the velocity from the slope of the line.

  6. The Baade-Wesselink projection factor of the δ-Scuti stars AI Vel and β Cas

    NASA Astrophysics Data System (ADS)

    Guiglion, G.; Nardetto, N.; Domiciano de Souza, A.; Mathias, P.; Mourard, D.; Poretti, E.

    2012-12-01

    The Baade-Wesselink method of distance determination is based on the oscillations of pulsating stars. After determining the angular diameter and the linear radius variations, the distance is derived by a simple ratio. The linear radius variation is measured by integrating the pulsation velocity (hereafter V_{puls}) over one pulsating cycle. However, from observations we have only access to the radial velocity (V_{rad}) because of the projection along the line-of-sight. The projection factor, used to convert the radial velocity into the pulsation velocity, is defined by: p = V_{puls} / V_{rad}. We aim to derive the projection factor for two δ-Scuti stars, the high amplitude pulsator AI Vel and the fast rotator β Cas. The geometric component of the projection factor is derived using a limb-darkening model of the intensity distribution of AI Vel, and a fast rotator model for β Cas. Then, by comparing the radial velocity curves of several spectral lines forming at different levels in the atmosphere, we derive directly the velocity gradient (in a part of the atmosphere of the star) using SOPHIE/OHP data for β Cas and HARPS/ESO data for AI Vel, which is used to derive a dynamical projection factor for both stars. We find p = 1.44 ± 0.05 for AI Vel and p = 1.41 ± 0.25 for β Cas. By comparing Cepheids and δ-Scuti stars, these results bring valuable insights into the dynamical structure of pulsating star atmospheres.

  7. Surface wave tomography of Europe from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Stehly, Laurent; Paul, Anne

    2017-04-01

    We present a European scale high-resolution 3-D shear wave velocity model derived from ambient seismic noise tomography. In this study, we collect 4 years of continuous seismic recordings from 1293 stations across much of the European region (10˚W-35˚E, 30˚N-75˚N), which yields more than 0.8 million virtual station pairs. This data set compiles records from 67 seismic networks, both permanent and temporary from the EIDA (European Integrated Data Archive). Rayleigh wave group velocity are measured at each station pair using the multiple-filter analysis technique. Group velocity maps are estimated through a linearized tomographic inversion algorithm at period from 5s to 100s. Adaptive parameterization is used to accommodate heterogeneity in data coverage. We then apply a two-step data-driven inversion method to obtain the shear wave velocity model. The two steps refer to a Monte Carlo inversion to build the starting model, followed by a linearized inversion for further improvement. Finally, Moho depth (and its uncertainty) are determined over most of our study region by identifying and analysing sharp velocity discontinuities (and sharpness). The resulting velocity model shows good agreement with main geological features and previous geophyical studies. Moho depth coincides well with that obtained from active seismic experiments. A focus on the Greater Alpine region (covered by the AlpArray seismic network) displays a clear crustal thinning that follows the arcuate shape of the Alps from the southern French Massif Central to southern Germany.

  8. Psychophysical scaling of circular vection (CV) produced by optokinetic (OKN) motion: individual differences and effects of practice.

    PubMed

    Kennedy, R S; Hettinger, L J; Harm, D L; Ordy, J M; Dunlap, W P

    1996-01-01

    Vection (V) refers to the compelling visual illusion of self-motion experienced by stationary individuals when viewing moving visual surrounds. The phenomenon is of theoretical interest because of its relevance for understanding the neural basis of ordinary self-motion perception, and of practical importance because it is the experience that makes simulation, virtual reality displays, and entertainment devices more vicarious. This experiment was performed to address whether an optokinetically induced vection illusion exhibits monotonic and stable psychometric properties and whether individuals differ reliably in these (V) perceptions. Subjects were exposed to varying velocities of the circular vection (CV) display in an optokinetic (OKN) drum 2 meters in diameter in 5 one-hour daily sessions extending over a 1 week period. For grouped data, psychophysical scalings of velocity estimates showed that exponents in a Stevens' type power function were essentially linear (slope = 0.95) and largely stable over sessions. Latencies were slightly longer for the slowest and fastest induction stimuli, and the trend over sessions for average latency was longer as a function of practice implying time course adaptation effects. Test-retest reliabilities for individual slope and intercept measures were moderately strong (r = 0.45) and showed no evidence of superdiagonal form. This implies stability of the individual circularvection (CV) sensitivities. Because the individual CV scores were stable, reliabilities were improved by averaging 4 sessions in order to provide a stronger retest reliability (r = 0.80). Individual latency responses were highly reliable (r = 0.80). Mean CV latency and motion sickness symptoms were greater in males than in females. These individual differences in CV could be predictive of other outcomes, such as susceptibility to disorientation or motion sickness, and for CNS localization of visual-vestibular interactions in the experience of self-motion.

  9. A Differential Monolithically Integrated Inductive Linear Displacement Measurement Microsystem

    PubMed Central

    Podhraški, Matija; Trontelj, Janez

    2016-01-01

    An inductive linear displacement measurement microsystem realized as a monolithic Application-Specific Integrated Circuit (ASIC) is presented. The system comprises integrated microtransformers as sensing elements, and analog front-end electronics for signal processing and demodulation, both jointly fabricated in a conventional commercially available four-metal 350-nm CMOS process. The key novelty of the presented system is its full integration, straightforward fabrication, and ease of application, requiring no external light or magnetic field source. Such systems therefore have the possibility of substituting certain conventional position encoder types. The microtransformers are excited by an AC signal in MHz range. The displacement information is modulated into the AC signal by a metal grating scale placed over the microsystem, employing a differential measurement principle. Homodyne mixing is used for the demodulation of the scale displacement information, returned by the ASIC as a DC signal in two quadrature channels allowing the determination of linear position of the target scale. The microsystem design, simulations, and characterization are presented. Various system operating conditions such as frequency, phase, target scale material and distance have been experimentally evaluated. The best results have been achieved at 4 MHz, demonstrating a linear resolution of 20 µm with steel and copper scale, having respective sensitivities of 0.71 V/mm and 0.99 V/mm. PMID:26999146

  10. A Differential Monolithically Integrated Inductive Linear Displacement Measurement Microsystem.

    PubMed

    Podhraški, Matija; Trontelj, Janez

    2016-03-17

    An inductive linear displacement measurement microsystem realized as a monolithic Application-Specific Integrated Circuit (ASIC) is presented. The system comprises integrated microtransformers as sensing elements, and analog front-end electronics for signal processing and demodulation, both jointly fabricated in a conventional commercially available four-metal 350-nm CMOS process. The key novelty of the presented system is its full integration, straightforward fabrication, and ease of application, requiring no external light or magnetic field source. Such systems therefore have the possibility of substituting certain conventional position encoder types. The microtransformers are excited by an AC signal in MHz range. The displacement information is modulated into the AC signal by a metal grating scale placed over the microsystem, employing a differential measurement principle. Homodyne mixing is used for the demodulation of the scale displacement information, returned by the ASIC as a DC signal in two quadrature channels allowing the determination of linear position of the target scale. The microsystem design, simulations, and characterization are presented. Various system operating conditions such as frequency, phase, target scale material and distance have been experimentally evaluated. The best results have been achieved at 4 MHz, demonstrating a linear resolution of 20 µm with steel and copper scale, having respective sensitivities of 0.71 V/mm and 0.99 V/mm.

  11. A user's guide for V174, a program using a finite difference method to analyze transonic flow over oscillating wings

    NASA Technical Reports Server (NTRS)

    Butler, T. D.; Weatherill, W. H.; Sebastian, J. D.; Ehlers, F. E.

    1977-01-01

    The design and usage of a pilot program using a finite difference method for calculating the pressure distributions over harmonically oscillating wings in transonic flow are discussed. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The steady velocity potential which must be obtained from some other program, is required for input. The unsteady differential equation is linear, complex in form with spatially varying coefficients. Because sinusoidal motion is assumed, time is not a variable. The numerical solution is obtained through a finite difference formulation and a line relaxation solution method.

  12. Infiltration modeling guidelines for commercial building energy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowri, Krishnan; Winiarski, David W.; Jarnagin, Ronald E.

    This report presents a methodology for modeling air infiltration in EnergyPlus to account for envelope air barrier characteristics. Based on a review of various infiltration modeling options available in EnergyPlus and sensitivity analysis, the linear wind velocity coefficient based on DOE-2 infiltration model is recommended. The methodology described in this report can be used to calculate the EnergyPlus infiltration input for any given building level infiltration rate specified at known pressure difference. The sensitivity analysis shows that EnergyPlus calculates the wind speed based on zone altitude, and the linear wind velocity coefficient represents the variation in infiltration heat loss consistentmore » with building location and weather data.« less

  13. A users guide for A344: A program using a finite difference method to analyze transonic flow over oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Ehlers, F. E.

    1979-01-01

    The design and usage of a pilot program for calculating the pressure distributions over harmonically oscillating airfoils in transonic flow are described. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equations for small disturbances. The steady velocity potential which must be obtained from some other program, was required for input. The unsteady equation, as solved, is linear with spatially varying coefficients. Since sinusoidal motion was assumed, time was not a variable. The numerical solution was obtained through a finite difference formulation and either a line relaxation or an out of core direct solution method.

  14. Scalar rate correlation at a turbulent liquid free surface - A two-regime correlation for high Schmidt numbers

    NASA Technical Reports Server (NTRS)

    Khoo, Boo-Cheong; Sonin, Ain A.

    1992-01-01

    An experimental correlation is derived for gas absorption at a turbulent, shear-free liquid interface. The correlation is expressed in terms of the liquid-side turbulence intensity, liquid-side macroscale, and the properties of the diffusing gas and solvent. The transfer coefficient increases linearly with rms velocity up to a point where the eddy Reynolds number reaches a critical (Schmidt number dependent) value. At higher velocities, there is a more rapid linear rise. The slope of the lower Reynolds number region is proportional to the square root of the diffusivity; at Reynolds numbers much higher than that of the break point, the slope becomes independent of diffusivity.

  15. The elastic theory of shells using geometric algebra

    PubMed Central

    Lasenby, J.; Agarwal, A.

    2017-01-01

    We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible. PMID:28405404

  16. The elastic theory of shells using geometric algebra.

    PubMed

    Gregory, A L; Lasenby, J; Agarwal, A

    2017-03-01

    We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible.

  17. Linear induction accelerators made from pulse-line cavities with external pulse injection.

    PubMed

    Smith, I

    1979-06-01

    Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator.

  18. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    PubMed

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  19. Quantitative angle-insensitive flow measurement using relative standard deviation OCT

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-01

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo.

  20. Soil amplification with a strong impedance contrast: Boston, Massachusetts

    USGS Publications Warehouse

    Baise, Laurie G.; Kaklamanos, James; Berry, Bradford M; Thompson, Eric M.

    2016-01-01

    In this study, we evaluate the effect of strong sediment/bedrock impedance contrasts on soil amplification in Boston, Massachusetts, for typical sites along the Charles and Mystic Rivers. These sites can be characterized by artificial fill overlying marine sediments overlying glacial till and bedrock, where the depth to bedrock ranges from 20 to 80 m. The marine sediments generally consist of organic silts, sand, and Boston Blue Clay. We chose these sites because they represent typical foundation conditions in the city of Boston, and the soil conditions are similar to other high impedance contrast environments. The sediment/bedrock interface in this region results in an impedance ratio on the order of ten, which in turn results in a significant amplification of the ground motion. Using stratigraphic information derived from numerous boreholes across the region paired with geologic and geomorphologic constraints, we develop a depth-to-bedrock model for the greater Boston region. Using shear-wave velocity profiles from 30 locations, we develop average velocity profiles for sites mapped as artificial fill, glaciofluvial deposits, and bedrock. By pairing the depth-to-bedrock model with the surficial geology and the average shear-wave velocity profiles, we can predict soil amplification in Boston. We compare linear and equivalent-linear site response predictions for a soil layer of varying thickness over bedrock, and assess the effects of varying the bedrock shear-wave velocity (VSb) and quality factor (Q). In a moderate seismicity region like Boston, many earthquakes will result in ground motions that can be modeled with linear site response methods. We also assess the effect of bedrock depth on soil amplification for a generic soil profile in artificial fill, using both linear and equivalent-linear site response models. Finally, we assess the accuracy of the model results by comparing the predicted (linear site response) and observed site response at the Northeastern University (NEU) vertical seismometer array during the 2011 M 5.8 Mineral, Virginia, earthquake. Site response at the NEU vertical array results in amplification on the order of 10 times at a period between 0.7-0.8 s. The results from this study provide evidence that the mean short-period and mean intermediate-period amplification used in design codes (i.e., from the Fa and Fv site coefficients) may underpredict soil amplification in strong impedance contrast environments such as Boston.

  1. Measuring ion velocity distribution functions through high-aspect ratio holes in inductively coupled plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunge, G., E-mail: gilles.cunge@cea.fr; Darnon, M.; Dubois, J.

    2016-02-29

    Several issues associated with plasma etching of high aspect ratio structures originate from the ions' bombardment of the sidewalls of the feature. The off normal angle incident ions are primarily due to their temperature at the sheath edge and possibly to charging effects. We have measured the ion velocity distribution function (IVDF) at the wafer surface in an industrial inductively coupled plasma reactor by using multigrid retarding field analyzers (RFA) in front of which we place 400 μm thick capillary plates with holes of 25, 50, and 100 μm diameters. The RFA then probes IVDF at the exit of the holes withmore » Aspect Ratios (AR) of 16, 8, and 4, respectively. The results show that the ion flux dramatically drops with the increase in AR. By comparing the measured IVDF with an analytical model, we concluded that the ion temperature is 0.27 eV in our plasma conditions. The charging effects are also observed and are shown to significantly reduce the ion energy at the bottom of the feature but only with a “minor” effect on the ion flux and the shape of the IVDF.« less

  2. Characterization of an inductively coupled plasma source with convergent nozzle

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Clements, Kathryn; Edgren, Josh; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2015-11-01

    The inductively heated plasma generator (IPG6-B) located in the CASPER labs at Baylor University has recently been characterized for both air, nitrogen and helium. A primary area of research within the intended scope of the instrument is the analysis of material degradation under high heat fluxes such as those imposed by a plasma during atmospheric entry of a spacecraft and at the divertor within various fusion experiment. In order to achieve higher flow velocities and respectively higher heat fluxes, a new exit flange has been designed to allow the installation of nozzles with varying geometries at the exit of the plasma generator. This paper will discuss characterization of the plasma generator for a convergent nozzle accelerating the plasma jet to supersonic velocity. The diagnostics employed include a cavity calorimeter to measure the total plasma power, a Pitot probe to measure stagnation pressure and a heat flux probe to measure the local heat flux. Radial profiles of stagnation pressure and heat flux allowing the determination of the local plasma enthalpy in the plasma jet will be presented. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.

  3. Induction-related cost of patients with acute myeloid leukaemia in France.

    PubMed

    Nerich, Virginie; Lioure, Bruno; Rave, Maryline; Recher, Christian; Pigneux, Arnaud; Witz, Brigitte; Escoffre-Barbe, Martine; Moles, Marie-Pierre; Jourdan, Eric; Cahn, Jean Yves; Woronoff-Lemsi, Marie-Christine

    2011-04-01

    The economic profile of acute myeloid leukaemia (AML) is badly known. The few studies published on this disease are now relatively old and include small numbers of patients. The purpose of this retrospective study was to evaluate the induction-related cost of 500 patients included in the AML 2001 trial, and to determine the explanatory factors of cost. "Induction" patient's hospital stay from admission for "induction" to discharge after induction. The study was performed from the French Public Health insurance perspective, restrictive to hospital institution costs. The average management of a hospital stay for "induction" was evaluated according to the analytical accounting of Besançon University Teaching Hospital and the French public Diagnosis-Related Group database. Multiple linear regression was used to search for explanatory factors. Only direct medical costs were included: treatment and hospitalisation. Mean induction-related direct medical cost was estimated at €41,852 ± 6,037, with a mean length of hospital stay estimated at 36.2 ± 10.7 days. After adjustment for age, sex and performance status, only two explanatory factors were found: an additional induction course and salvage course increased induction-related cost by 38% (± 4) and 15% (± 1) respectively, in comparison to one induction. These explanatory factors were associated with a significant increase in the mean length of hospital stay: 45.8 ± 11.6 days for 2 inductions and 38.5 ± 15.5 if the patient had a salvage course, in comparison to 32.9 ± 7.7 for one induction (P < 10⁻⁴). This result is robust and was confirmed by sensitivity analysis. Consideration of economic constraints in health care is now a reality. Only the control of length of hospital stay may lead to a decrease in induction-related cost for patients with AML.

  4. Hall effect in a moving liquid

    NASA Astrophysics Data System (ADS)

    Di Lieto, Alberto; Giuliano, Alessia; Maccarrone, Francesco; Paffuti, Giampiero

    2012-01-01

    A simple experiment, suitable for performing in an undergraduate physics laboratory, illustrates electromagnetic induction through the water entering into a cylindrical rubber tube by detecting the voltage developed across the tube in the direction transverse both to the flow velocity and to the magnetic field. The apparatus is a very simple example of an electromagnetic flowmeter, a device which is commonly used both in industrial and physiological techniques. The phenomenology observed is similar to that of the Hall effect in the absence of an electric current in the direction of motion of the carriers. The experimental results show a dependence on the intensity of the magnetic field and on the carrier velocity, in good agreement with the theory. Discussion of the system, based on classical electromagnetism, indicates that the effect depends only on the flow rate, and is independent both of the velocity profile and of the electrical conductivity of the medium.

  5. Flexible arms provide constant force for pressure switch calibration

    NASA Technical Reports Server (NTRS)

    Cain, D. E.; Kunz, R. W.

    1966-01-01

    In-place calibration of a pressure switch is provided by a system of radially oriented flexing arms which, when rotated at a known velocity, convert the centrifugal force of the arms to a linear force along the shaft. The linear force, when applied to a pressure switch diaphragm, can then be calculated.

  6. System and method for generating 3D images of non-linear properties of rock formation using surface seismic or surface to borehole seismic or both

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.

    A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acousticmore » waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.« less

  7. Linear thermal circulator based on Coriolis forces.

    PubMed

    Li, Huanan; Kottos, Tsampikos

    2015-02-01

    We show that the presence of a Coriolis force in a rotating linear lattice imposes a nonreciprocal propagation of the phononic heat carriers. Using this effect we propose the concept of Coriolis linear thermal circulator which can control the circulation of a heat current. A simple model of three coupled harmonic masses on a rotating platform permits us to demonstrate giant circulating rectification effects for moderate values of the angular velocities of the platform.

  8. Analytic theory for the determination of velocity and stability of bubbles in a Hele-Shaw cell. Part 2: Stability

    NASA Technical Reports Server (NTRS)

    Tanveer, Saleh

    1989-01-01

    The analysis is extended to determine the linear stability of a bubble in a Hele-Shaw cell analytically. Only the solution branch corresponding to largest possible bubble velocity U for given surface tension is found to be stable, while all the others are unstable, in accordance with earlier numerical results.

  9. Modelling the Dynamics of Bodies Self-Propelled by Exponential Mass Exhaustion

    ERIC Educational Resources Information Center

    Rodrigues, Hilario; Pinho, Marcos Oliveira; Portes, Dirceu, Jr.; Santiago, Arnaldo Jose

    2008-01-01

    We present a study of the ascending vertical motion of a self-propelled body under a uniform gravitational field suffering the action of two different types of air friction forces: linear on the velocity, which is valid for slowly moving bodies, and quadratic on the velocity. We study the special case where the thrust force is a decreasing…

  10. Joint probabilistic determination of earthquake location and velocity structure: application to local and regional events

    NASA Astrophysics Data System (ADS)

    Beucler, E.; Haugmard, M.; Mocquet, A.

    2016-12-01

    The most widely used inversion schemes to locate earthquakes are based on iterative linearized least-squares algorithms and using an a priori knowledge of the propagation medium. When a small amount of observations is available for moderate events for instance, these methods may lead to large trade-offs between outputs and both the velocity model and the initial set of hypocentral parameters. We present a joint structure-source determination approach using Bayesian inferences. Monte-Carlo continuous samplings, using Markov chains, generate models within a broad range of parameters, distributed according to the unknown posterior distributions. The non-linear exploration of both the seismic structure (velocity and thickness) and the source parameters relies on a fast forward problem using 1-D travel time computations. The a posteriori covariances between parameters (hypocentre depth, origin time and seismic structure among others) are computed and explicitly documented. This method manages to decrease the influence of the surrounding seismic network geometry (sparse and/or azimuthally inhomogeneous) and a too constrained velocity structure by inferring realistic distributions on hypocentral parameters. Our algorithm is successfully used to accurately locate events of the Armorican Massif (western France), which is characterized by moderate and apparently diffuse local seismicity.

  11. The effect of Helicobacter pylori infection on growth velocity in young children from poor urban communities in Ecuador.

    PubMed

    Egorov, Andrey I; Sempértegui, Fernando; Estrella, Bertha; Egas, Josefina; Naumova, Elena N; Griffiths, Jeffrey K

    2010-09-01

    To characterize the potential effects of Helicobacter infections on growth velocity in low socioeconomic status young children in a developing country. Children were recruited in poor suburbs of Quito, Ecuador. Normally nourished, mildly and substantially malnourished children (defined using weight-for-age Z-scores at recruitment) formed equal strata. Six height and weight measurements were collected during one year. Enrollment and exit serum samples were analyzed for anti-Helicobacter IgG and exit non-diarrheal feces tested for Helicobacter antigen. Among 124 participants (enrollment age 19 ± 9 months), 76 (61%) excreted fecal antigen at exit (were infected). Of these, 44 were seropositive at least once (chronic infections) and 32 tested seronegative both times (new or acute phase infections). The adjusted linear growth velocity during follow-up in children with new infections was reduced by 9.7 (3.8, 15.6) mm/year compared to uninfected controls and 6.4 (0.0, 12.9) mm/year compared to children with chronic infections. The effects of Helicobacter infections on ponderal growth were not significant. These results suggest that linear growth velocity is reduced in young children during the initial phase of Helicobacter infection. Published by Elsevier Ltd.

  12. High-Speed Friction-Stir Welding To Enable Aluminum Tailor-Welded Blanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John

    Current joining technologies for automotive aluminum alloys are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding has been traditionally applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translatemore » to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum welded components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability utilizing a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.« less

  13. Laser induced fluorescence measurements of ion velocity and temperature of drift turbulence driven sheared plasma flow in a linear helicon plasma device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty Thakur, S.; Fedorczak, N.; Manz, P.

    2012-08-15

    Using laser induced fluorescence (LIF), radial profiles of azimuthal ion fluid velocity and ion temperature are measured in the controlled shear de-correlation experiment (CSDX) linear helicon plasma device. Ion velocities and temperatures are derived from the measured Doppler broadened velocity distribution functions of argon ions. The LIF system employs a portable, high power (>300 mW), narrowband ({approx}1 MHz) tunable diode laser-based system operating at 668.614 nm. Previous studies in CSDX have shown the existence of a radially sheared azimuthal flow as measured with time delay estimation methods and Mach probes. Here, we report the first LIF measurements of sheared plasmamore » fluid flow in CSDX. Above a critical magnetic field, the ion fluid flow profile evolves from radially uniform to peaked on axis with a distinct reversed flow region at the boundary, indicating the development of a sheared azimuthal flow. Simultaneously, the ion temperature also evolves from a radially uniform profile to a profile with a gradient. Measurements in turbulent and coherent drift wave mode dominated plasmas are compared.« less

  14. Factors associated with arterial stiffness in children aged 9-10 years

    PubMed Central

    Batista, Milena Santos; Mill, José Geraldo; Pereira, Taisa Sabrina Silva; Fernandes, Carolina Dadalto Rocha; Molina, Maria del Carmen Bisi

    2015-01-01

    OBJECTIVE To analyze the factors associated with stiffness of the great arteries in prepubertal children. METHODS This study with convenience sample of 231 schoolchildren aged 9-10 years enrolled in public and private schools in Vitória, ES, Southeastern Brazil, in 2010-2011. Anthropometric and hemodynamic data, blood pressure, and pulse wave velocity in the carotid-femoral segment were obtained. Data on current and previous health conditions were obtained by questionnaire and notes on the child’s health card. Multiple linear regression was applied to identify the partial and total contribution of the factors in determining the pulse wave velocity values. RESULTS Among the students, 50.2% were female and 55.4% were 10 years old. Among those classified in the last tertile of pulse wave velocity, 60.0% were overweight, with higher mean blood pressure, waist circumference, and waist-to-height ratio. Birth weight was not associated with pulse wave velocity. After multiple linear regression analysis, body mass index (BMI) and diastolic blood pressure remained in the model. CONCLUSIONS BMI was the most important factor in determining arterial stiffness in children aged 9-10 years. PMID:25902563

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serkovic Loli, L. N.; Sanchez, E. A.; Grizzi, O.

    A combined experimental and theoretical study of the energy loss of protons in fluorides and organic films is presented. The measurements were performed in fresh AlF{sub 3}, LiF, and N,N{sup '}-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxdiimide (EP-PTCDI) evaporated in situ on self-supported C or Ag foils, covering the very low energy range from 25 keV down to 0.7 keV. The transmission method is used in combination with time-of-flight (TOF) spectrometry. In the case of fluorides with large band gap energies (AlF{sub 3} and LiF), the experimental stopping power increases almost linearly with the mean projectile velocity showing a velocity threshold at about 0.1 a.u. Thesemore » features are well reproduced by a model based on quantum scattering theory that takes into account the velocity distribution and the excitation of the active 2p electrons in the F{sup -} anions, and the properties of the electronic bands of the insulators. In the case of the semiconductor organic film with a lower gap, the experimental stopping power increases linearly with the mean projectile velocity without presenting a clear threshold. This trend is also reproduced by the proposed model.« less

  16. Enabling high speed friction stir welding of aluminum tailor welded blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  17. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  18. Plasma Measurements in an Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.

    2007-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current sheet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster[1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). A benchtop FARAD thruster was designed following guidelines and similarity performance parameters presented in Refs. [3,4]. This design is described in detail in Ref. [5]. In this paper, we present the temporally and spatially resolved measurements of the preionized plasma and inductively-accelerated current sheet in the FARAD thruster operating with a Vector Inversion Generator (VIG) to preionize the gas and a Bernardes and Merryman circuit topology to provide inductive acceleration. The acceleration stage operates on the order of 100 J/pulse. Fast-framing photography will be used to produce a time-resolved, global view of the evolving current sheet. Local diagnostics used include a fast ionization gauge capable of mapping the gas distribution prior to plasma initiation; direct measurement of the induced magnetic field using B-dot probes, induced azimuthal current measurement using a mini-Rogowski coil, and direct probing of the number density and electron temperature using triple probes.

  19. An extended continuum model considering optimal velocity change with memory and numerical tests

    NASA Astrophysics Data System (ADS)

    Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng

    2018-01-01

    In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.

  20. Correlation of right atrial appendage velocity with left atrial appendage velocity and brain natriuretic Peptide.

    PubMed

    Kim, Bu-Kyung; Heo, Jung-Ho; Lee, Jae-Woo; Kim, Hyun-Soo; Choi, Byung-Joo; Cha, Tae-Joon

    2012-03-01

    Left atrial appendage (LAA) anatomy and function have been well characterized both in healthy and diseased people, whereas relatively little attention has been focused on the right atrial appendage (RAA). We sought to evaluate RAA flow velocity and to compare these parameters with LAA indices and with a study of biomarkers, such as brain natriuretic peptide, among patients with sinus rhythm (SR) and atrial fibrillation (AF). In a series of 79 consecutive patients referred for transesophageal echocardiography, 43 patients (23 with AF and 20 controls) were evaluated. AF was associated with a decrease in flow velocity for both LAA and RAA [LAA velocity-SR vs. AF: 61 ± 22 vs. 29 ± 18 m/sec (p < 0.01), RAA velocity-SR vs. AF: 46 ± 20 vs. 19 ± 8 m/sec (p < 0.01)]. Based on simple linear regression analysis, LAA velocity and RAA velocity were positively correlated, and RAA velocity was inversely correlated with brain natriuretic peptide (BNP). AF was associated with decreased RAA and LAA flow velocities. RAA velocity was found to be positively correlated with LAA velocity and negatively correlated with BNP. The plasma BNP concentration may serve as a determinant of LAA and RAA functions.

  1. Multiple beam induction accelerators for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Barnard, John J.; Faltens, Andris; Friedman, Alex; Waldron, William L.

    2014-01-01

    Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (≥10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

  2. Remotely detected vehicle mass from engine torque-induced frame twisting

    NASA Astrophysics Data System (ADS)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.

    2017-06-01

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.

  3. Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures

    NASA Astrophysics Data System (ADS)

    Bhowmick, Aklant K.; Abarzhi, Snezhana

    2016-11-01

    We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.

  4. Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures

    NASA Astrophysics Data System (ADS)

    Bhowmick, Aklant K.; Abarzhi, Snezhana

    2016-10-01

    We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.

  5. One-dimensional wave bottom boundary layer model comparison: specific eddy viscosity and turbulence closure models

    USGS Publications Warehouse

    Puleo, J.A.; Mouraenko, O.; Hanes, D.M.

    2004-01-01

    Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.

  6. Suppression of phase mixing in drift-kinetic plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J. T., E-mail: joseph.parker@stfc.ac.uk; OCIAM, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG; Brasenose College, Radcliffe Square, Oxford OX1 4AJ

    2016-07-15

    Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to large velocity-space scales due to “anti-phase-mixing” modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, and temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.

  7. Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization?

    PubMed

    Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun

    2013-04-12

    The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized).

  8. Field measurements of the linear and nonlinear shear moduli of cemented alluvium using dynamically loaded surface footings

    NASA Astrophysics Data System (ADS)

    Park, Kwangsoo

    In this dissertation, a research effort aimed at development and implementation of a direct field test method to evaluate the linear and nonlinear shear modulus of soil is presented. The field method utilizes a surface footing that is dynamically loaded horizontally. The test procedure involves applying static and dynamic loads to the surface footing and measuring the soil response beneath the loaded area using embedded geophones. A wide range in dynamic loads under a constant static load permits measurements of linear and nonlinear shear wave propagation from which shear moduli and associated shearing strains are evaluated. Shear wave velocities in the linear and nonlinear strain ranges are calculated from time delays in waveforms monitored by geophone pairs. Shear moduli are then obtained using the shear wave velocities and the mass density of a soil. Shear strains are determined using particle displacements calculated from particle velocities measured at the geophones by assuming a linear variation between geophone pairs. The field test method was validated by conducting an initial field experiment at sandy site in Austin, Texas. Then, field experiments were performed on cemented alluvium, a complex, hard-to-sample material. Three separate locations at Yucca Mountain, Nevada were tested. The tests successfully measured: (1) the effect of confining pressure on shear and compression moduli in the linear strain range and (2) the effect of strain on shear moduli at various states of stress in the field. The field measurements were first compared with empirical relationships for uncemented gravel. This comparison showed that the alluvium was clearly cemented. The field measurements were then compared to other independent measurements including laboratory resonant column tests and field seismic tests using the spectral-analysis-of-surface-waves method. The results from the field tests were generally in good agreement with the other independent test results, indicating that the proposed method has the ability to directly evaluate complex material like cemented alluvium in the field.

  9. Determination of elastic moduli from measured acoustic velocities.

    PubMed

    Brown, J Michael

    2018-06-01

    Methods are evaluated in solution of the inverse problem associated with determination of elastic moduli for crystals of arbitrary symmetry from elastic wave velocities measured in many crystallographic directions. A package of MATLAB functions provides a robust and flexible environment for analysis of ultrasonic, Brillouin, or Impulsive Stimulated Light Scattering datasets. Three inverse algorithms are considered: the gradient-based methods of Levenberg-Marquardt and Backus-Gilbert, and a non-gradient-based (Nelder-Mead) simplex approach. Several data types are considered: body wave velocities alone, surface wave velocities plus a side constraint on X-ray-diffraction-based axes compressibilities, or joint body and surface wave velocities. The numerical algorithms are validated through comparisons with prior published results and through analysis of synthetic datasets. Although all approaches succeed in finding low-misfit solutions, the Levenberg-Marquardt method consistently demonstrates effectiveness and computational efficiency. However, linearized gradient-based methods, when applied to a strongly non-linear problem, may not adequately converge to the global minimum. The simplex method, while slower, is less susceptible to being trapped in local misfit minima. A "multi-start" strategy (initiate searches from more than one initial guess) provides better assurance that global minima have been located. Numerical estimates of parameter uncertainties based on Monte Carlo simulations are compared to formal uncertainties based on covariance calculations. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Spin-orbit torques and anisotropic magnetization damping in skyrmion crystals

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil M. D.; Brataas, Arne

    2014-02-01

    The length scale of the magnetization gradients in chiral magnets is determined by the relativistic Dzyaloshinskii-Moriya interaction. Thus, even conventional spin-transfer torques are controlled by the relativistic spin-orbit coupling in these systems, and additional relativistic corrections to the current-induced torques and magnetization damping become important for a complete understanding of the current-driven magnetization dynamics. We theoretically study the effects of reactive and dissipative homogeneous spin-orbit torques and anisotropic damping on the current-driven skyrmion dynamics in cubic chiral magnets. Our results demonstrate that spin-orbit torques play a significant role in the current-induced skyrmion velocity. The dissipative spin-orbit torque generates a relativistic Magnus force on the skyrmions, whereas the reactive spin-orbit torque yields a correction to both the drift velocity along the current direction and the transverse velocity associated with the Magnus force. The spin-orbit torque corrections to the velocity scale linearly with the skyrmion size, which is inversely proportional to the spin-orbit coupling. Consequently, the reactive spin-orbit torque correction can be the same order of magnitude as the nonrelativistic contribution. More importantly, the dissipative spin-orbit torque can be the dominant force that causes a deflected motion of the skyrmions if the torque exhibits a linear or quadratic relationship with the spin-orbit coupling. In addition, we demonstrate that the skyrmion velocity is determined by anisotropic magnetization damping parameters governed by the skyrmion size.

  11. Model of separation performance of bilinear gradients in scanning format counter-flow gradient electrofocusing techniques.

    PubMed

    Shameli, Seyed Mostafa; Glawdel, Tomasz; Ren, Carolyn L

    2015-03-01

    Counter-flow gradient electrofocusing allows the simultaneous concentration and separation of analytes by generating a gradient in the total velocity of each analyte that is the sum of its electrophoretic velocity and the bulk counter-flow velocity. In the scanning format, the bulk counter-flow velocity is varying with time so that a number of analytes with large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Studies have shown that nonlinear (such as a bilinear) velocity gradients along the separation channel can improve both peak capacity and separation resolution simultaneously, which cannot be realized by using a single linear gradient. Developing an effective separation system based on the scanning counter-flow nonlinear gradient electrofocusing technique usually requires extensive experimental and numerical efforts, which can be reduced significantly with the help of analytical models for design optimization and guiding experimental studies. Therefore, this study focuses on developing an analytical model to evaluate the separation performance of scanning counter-flow bilinear gradient electrofocusing methods. In particular, this model allows a bilinear gradient and a scanning rate to be optimized for the desired separation performance. The results based on this model indicate that any bilinear gradient provides a higher separation resolution (up to 100%) compared to the linear case. This model is validated by numerical studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Critical Latitude in Tidal Dynamics Using the Kara Sea as an Example

    NASA Astrophysics Data System (ADS)

    Kagan, B. A.; Sofina, E. V.; Timofeev, A. A.

    2018-03-01

    It is well known that, within the linear nonviscous equations of tidal dynamics, the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components unlimitedly increase when approaching the critical latitude. It is also known that the linear equations of tidal dynamics with a constant and specified vertical eddy viscosity indicate the occurrence of significant tidal velocity shears in the near-bottom layer, which are responsible for increasing the baroclinic tidal energy dissipation, the turbulent kinetic energy, and the thickness of the bottom boundary layer. The first circumstance—the growth of the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components—is due to the elimination in the original equations of small terms, which are small everywhere except for the critical latitude zone. The second circumstance—the occurrence of significant tidal velocity shears—is due to the fact that internal tidal waves, which induce the dissipation of the baroclinic tidal energy and the diapycnal diffusion, are either not taken into account or described inadequately. It is suggested that diapycnal diffusion can lead to the degeneration (complete or partial) of tidal velocity shears, with all the ensuing consequences. The aforesaid is confirmed by simulation results obtained using the QUODDY-4 high-resolution three-dimensional finite-element hydrostatic model along the 66.25° E section, which passes in the Kara Sea across the critical latitude.

  13. Simulating the cold dark matter-neutrino dipole with TianNu

    DOE PAGES

    Inman, Derek; Yu, Hao-Ran; Zhu, Hong-Ming; ...

    2017-04-20

    Measurements of neutrino mass in cosmological observations rely on two-point statistics that are hindered by significant degeneracies with the optical depth and galaxy bias. The relative velocity effect between cold dark matter and neutrinos induces a large scale dipole in the matter density field and may be able to provide orthogonal constraints to standard techniques. In this paper, we numerically investigate this dipole in the TianNu simulation, which contains cold dark matter and 50 meV neutrinos. We first compute the dipole using a new linear response technique where we treat the displacement caused by the relative velocity as a phasemore » in Fourier space and then integrate the matter power spectrum over redshift. Then, we compute the dipole numerically in real space using the simulation density and velocity fields. We find excellent agreement between the linear response and N-body methods. Finally, utilizing the dipole as an observational tool requires two tracers of the matter distribution that are differently biased with respect to the neutrino density.« less

  14. The effect of inlet boundary conditions in image-based CFD modeling of aortic flow

    NASA Astrophysics Data System (ADS)

    Madhavan, Sudharsan; Kemmerling, Erica Cherry

    2016-11-01

    CFD of cardiovascular flow is a growing and useful field, but simulations are subject to a number of sources of uncertainty which must be quantified. Our work focuses on the uncertainty introduced by the selection of inlet boundary conditions in an image-based, patient-specific model of the aorta. Specifically, we examined the differences between plug flow, fully developed parabolic flow, linear shear flows, skewed parabolic flow profiles, and Womersley flow. Only the shape of the inlet velocity profile was varied-all other parameters were held constant between simulations, including the physiologically realistic inlet flow rate waveform and outlet flow resistance. We found that flow solutions with different inlet conditions did not exhibit significant differences beyond 1 . 75 inlet diameters from the aortic root. Time averaged wall shear stress (TAWSS) was also calculated. The linear shear velocity boundary condition solution exhibited the highest spatially averaged TAWSS, about 2 . 5 % higher than the fully developed parabolic velocity boundary condition, which had the lowest spatially averaged TAWSS.

  15. The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion

    NASA Astrophysics Data System (ADS)

    Leyva, J. Francisco; Málaga, Carlos; Plaza, Ramón G.

    2013-11-01

    This paper studies a reaction-diffusion-chemotaxis model for bacterial aggregation patterns on the surface of thin agar plates. It is based on the non-linear degenerate cross diffusion model proposed by Kawasaki et al. (1997) [5] and it includes a suitable nutrient chemotactic term compatible with such type of diffusion, as suggested by Ben-Jacob et al. (2000) [20]. An asymptotic estimation predicts the growth velocity of the colony envelope as a function of both the nutrient concentration and the chemotactic sensitivity. It is shown that the growth velocity is an increasing function of the chemotactic sensitivity. High resolution numerical simulations using Graphic Processing Units (GPUs), which include noise in the diffusion coefficient for the bacteria, are presented. The numerical results verify that the chemotactic term enhances the velocity of propagation of the colony envelope. In addition, the chemotaxis seems to stabilize the formation of branches in the soft-agar, low-nutrient regime.

  16. From the Boltzmann to the Lattice-Boltzmann Equation:. Beyond BGK Collision Models

    NASA Astrophysics Data System (ADS)

    Philippi, Paulo Cesar; Hegele, Luiz Adolfo; Surmas, Rodrigo; Siebert, Diogo Nardelli; Dos Santos, Luís Orlando Emerich

    In this work, we present a derivation for the lattice-Boltzmann equation directly from the linearized Boltzmann equation, combining the following main features: multiple relaxation times and thermodynamic consistency in the description of non isothermal compressible flows. The method presented here is based on the discretization of increasingly order kinetic models of the Boltzmann equation. Following a Gross-Jackson procedure, the linearized collision term is developed in Hermite polynomial tensors and the resulting infinite series is diagonalized after a chosen integer N, establishing the order of approximation of the collision term. The velocity space is discretized, in accordance with a quadrature method based on prescribed abscissas (Philippi et al., Phys. Rev E 73, 056702, 2006). The problem of describing the energy transfer is discussed, in relation with the order of approximation of a two relaxation-times lattice Boltzmann model. The velocity-step, temperature-step and the shock tube problems are investigated, adopting lattices with 37, 53 and 81 velocities.

  17. Evolution of microstructure and elastic wave velocities in dehydrated gypsum samples

    NASA Astrophysics Data System (ADS)

    Milsch, Harald; Priegnitz, Mike

    2012-12-01

    We report on changes in P and S-wave velocities and rock microstructure induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air, at ambient pressure, and temperatures between 378 and 423 K. Dehydration did not proceed homogeneously but via a reaction front moving sample inwards separating an outer highly porous rim from the remaining gypsum which, above approximately 393 (±5) K, concurrently decomposed into hemihydrate. Overall porosity was observed to continuously increase with reaction progress from approximately 2% for fully hydrated samples to 30% for completely dehydrated ones. Concurrently, P and S-wave velocities linearly decreased with porosity from 5.2 and 2.7 km/s to 1.0 and 0.7 km/s, respectively. It is concluded that a linearized empirical Raymer-type model extended by a critical porosity term and based on the respective time dependent mineral and pore volumes reasonably replicates the P and S-wave data in relation to reaction progress and porosity.

  18. Laser Interferometry Measurements of Cold-Sprayed Copper Thermite Shocked to 30 GPa

    NASA Astrophysics Data System (ADS)

    Neel, Christopher; Lacina, David

    2015-06-01

    Plate impact experiments were conducted on a cold-sprayed Al-CuO thermite at peak stresses varying between 5-30 GPa to determine the Hugoniot and characterize any shock induced energetic reaction. Photon Doppler Velocimetry (PDV) measurements were used to obtain particle velocity histories and shock speed information for both the shock loading and unloading behavior of the material. Low stress experiments (<20GPa) exhibited a linearly increasing shock speed with increasing particle velocity. However, an obvious change in slope (i.e. a ``kink'') is present in the Hugoniot at stresses above ~ 20 GPa which follow a linear increase up to the highest stresses attained in this work. The change in Hugoniot curve suggests a volume-increasing reaction occurs in this shocked Al-CuO thermite near 20 GPa, but an analysis of the measured particle velocity histories does not support this assertion. To better characterize any shock-induced thermite reactions, emission spectroscopy measurements were obtained at stresses above and below 20 GPa.

  19. A Microfluidics-based Pulpal Arteriole Blood Flow Phantom for Validation of Doppler Ultrasound Devices in Pulpal Blood Flow Velocity Measurement.

    PubMed

    Kim, Dohyun; Park, Sung-Ho

    2016-11-01

    Recently, Doppler ultrasound has been used for the measurement of pulpal blood flow in human teeth. However, the reliability of this method has not been verified. In this study, we developed a model to simulate arteriole blood flow within the dental pulp by using microfluidics. This arteriole simulator, or flow phantom, was used to determine the reliability of measurements obtained by using a Doppler ultrasound device. A microfluidic chip was fabricated by using the soft lithography technique, and blood-mimicking fluid was pumped through the channel by a microfluidic system. A Doppler ultrasound device was used for the measurement of flow velocity. The peak, mean, and minimal flow velocities obtained from the phantom and the Doppler ultrasound device were compared by using linear regression analysis and Pearson correlation coefficient. Bland-Altman analyses were performed to evaluate the velocity differences between the flow generated by the phantom and the flow measurements made with the Doppler ultrasound device. The microfluidic system was able to generate the flow profiles as intended, and the fluid flow could be monitored and controlled by the software program. There were excellent linear correlations between the peak, mean, and minimal flow velocities of the phantom and those of the Doppler ultrasound device (r = 0.94-0.996, P < .001). However, the velocities were overestimated by the Doppler ultrasound device. This phantom provides opportunities for research and education involving the Doppler ultrasound technique in dentistry. Although Doppler ultrasound can be an effective tool for the measurement of pulpal blood flow velocity, it is essential to validate and calibrate the device before clinical use. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. The Reliability of Individualized Load-Velocity Profiles.

    PubMed

    Banyard, Harry G; Nosaka, K; Vernon, Alex D; Haff, G Gregory

    2017-11-15

    This study examined the reliability of peak velocity (PV), mean propulsive velocity (MPV), and mean velocity (MV) in the development of load-velocity profiles (LVP) in the full depth free-weight back squat performed with maximal concentric effort. Eighteen resistance-trained men performed a baseline one-repetition maximum (1RM) back squat trial and three subsequent 1RM trials used for reliability analyses, with 48-hours interval between trials. 1RM trials comprised lifts from six relative loads including 20, 40, 60, 80, 90, and 100% 1RM. Individualized LVPs for PV, MPV, or MV were derived from loads that were highly reliable based on the following criteria: intra-class correlation coefficient (ICC) >0.70, coefficient of variation (CV) ≤10%, and Cohen's d effect size (ES) <0.60. PV was highly reliable at all six loads. Importantly, MPV and MV were highly reliable at 20, 40, 60, 80 and 90% but not 100% 1RM (MPV: ICC=0.66, CV=18.0%, ES=0.10, standard error of the estimate [SEM]=0.04m·s -1 ; MV: ICC=0.55, CV=19.4%, ES=0.08, SEM=0.04m·s -1 ). When considering the reliable ranges, almost perfect correlations were observed for LVPs derived from PV 20-100% (r=0.91-0.93), MPV 20-90% (r=0.92-0.94) and MV 20-90% (r=0.94-0.95). Furthermore, the LVPs were not significantly different (p>0.05) between trials, movement velocities, or between linear regression versus second order polynomial fits. PV 20-100% , MPV 20-90% , and MV 20-90% are reliable and can be utilized to develop LVPs using linear regression. Conceptually, LVPs can be used to monitor changes in movement velocity and employed as a method for adjusting sessional training loads according to daily readiness.

Top