Inferring Lower Boundary Driving Conditions Using Vector Magnetic Field Observations
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Linton, Mark; Leake, James; MacNeice, Peter; Allred, Joel
2012-01-01
Low-beta coronal MHD simulations of realistic CME events require the detailed specification of the magnetic fields, velocities, densities, temperatures, etc., in the low corona. Presently, the most accurate estimates of solar vector magnetic fields are made in the high-beta photosphere. Several techniques have been developed that provide accurate estimates of the associated photospheric plasma velocities such as the Differential Affine Velocity Estimator for Vector Magnetograms and the Poloidal/Toroidal Decomposition. Nominally, these velocities are consistent with the evolution of the radial magnetic field. To evolve the tangential magnetic field radial gradients must be specified. In addition to estimating the photospheric vector magnetic and velocity fields, a further challenge involves incorporating these fields into an MHD simulation. The simulation boundary must be driven, consistent with the numerical boundary equations, with the goal of accurately reproducing the observed magnetic fields and estimated velocities at some height within the simulation. Even if this goal is achieved, many unanswered questions remain. How can the photospheric magnetic fields and velocities be propagated to the low corona through the transition region? At what cadence must we observe the photosphere to realistically simulate the corona? How do we model the magnetic fields and plasma velocities in the quiet Sun? How sensitive are the solutions to other unknowns that must be specified, such as the global solar magnetic field, and the photospheric temperature and density?
Accelerating 4D flow MRI by exploiting vector field divergence regularization.
Santelli, Claudio; Loecher, Michael; Busch, Julia; Wieben, Oliver; Schaeffter, Tobias; Kozerke, Sebastian
2016-01-01
To improve velocity vector field reconstruction from undersampled four-dimensional (4D) flow MRI by penalizing divergence of the measured flow field. Iterative image reconstruction in which magnitude and phase are regularized separately in alternating iterations was implemented. The approach allows incorporating prior knowledge of the flow field being imaged. In the present work, velocity data were regularized to reduce divergence, using either divergence-free wavelets (DFW) or a finite difference (FD) method using the ℓ1-norm of divergence and curl. The reconstruction methods were tested on a numerical phantom and in vivo data. Results of the DFW and FD approaches were compared with data obtained with standard compressed sensing (CS) reconstruction. Relative to standard CS, directional errors of vector fields and divergence were reduced by 55-60% and 38-48% for three- and six-fold undersampled data with the DFW and FD methods. Velocity vector displays of the numerical phantom and in vivo data were found to be improved upon DFW or FD reconstruction. Regularization of vector field divergence in image reconstruction from undersampled 4D flow data is a valuable approach to improve reconstruction accuracy of velocity vector fields. © 2014 Wiley Periodicals, Inc.
Absolute Geostrophic Velocity Inverted from World Ocean Atlas 2013 (WOAV13) with the P-Vector Method
2015-11-01
The WOAV13 dataset comprises 3D global gridded climatological fields of absolute geostrophic velocity inverted...from World Ocean Atlas-2013 (WOA13) temperature and salinity fields using the P-vector method. It provides a climatological velocity field that is... climatology Dataset Identifier: gov.noaa.nodc:0121576 Creator: NOAP Lab, Department of Oceanography, Naval Postgraduate School, Monterey, CA Title
Vector Doppler: spatial sampling analysis and presentation techniques for real-time systems
NASA Astrophysics Data System (ADS)
Capineri, Lorenzo; Scabia, Marco; Masotti, Leonardo F.
2001-05-01
The aim of the vector Doppler (VD) technique is the quantitative reconstruction of a velocity field independently of the ultrasonic probe axis to flow angle. In particular vector Doppler is interesting for studying vascular pathologies related to complex blood flow conditions. Clinical applications require a real-time operating mode and the capability to perform Doppler measurements over a defined volume. The combination of these two characteristics produces a real-time vector velocity map. In previous works the authors investigated the theory of pulsed wave (PW) vector Doppler and developed an experimental system capable of producing off-line 3D vector velocity maps. Afterwards, for producing dynamic velocity vector maps, we realized a new 2D vector Doppler system based on a modified commercial echograph. The measurement and presentation of a vector velocity field requires a correct spatial sampling that must satisfy the Shannon criterion. In this work we tackled this problem, establishing a relationship between sampling steps and scanning system characteristics. Another problem posed by the vector Doppler technique is the data representation in real-time that should be easy to interpret for the physician. With this in mine we attempted a multimedia solution that uses both interpolated images and sound to represent the information of the measured vector velocity map. These presentation techniques were experimented for real-time scanning on flow phantoms and preliminary measurements in vivo on a human carotid artery.
Westerdale, John; Belohlavek, Marek; McMahon, Eileen M; Jiamsripong, Panupong; Heys, Jeffrey J; Milano, Michele
2011-02-01
We performed an in vitro study to assess the precision and accuracy of particle imaging velocimetry (PIV) data acquired using a clinically available portable ultrasound system via comparison with stereo optical PIV. The performance of ultrasound PIV was compared with optical PIV on a benchmark problem involving vortical flow with a substantial out-of-plane velocity component. Optical PIV is capable of stereo image acquisition, thus measuring out-of-plane velocity components. This allowed us to quantify the accuracy of ultrasound PIV, which is limited to in-plane acquisition. The system performance was assessed by considering the instantaneous velocity fields without extracting velocity profiles by spatial averaging. Within the 2-dimensional correlation window, using 7 time-averaged frames, the vector fields were found to have correlations of 0.867 in the direction along the ultrasound beam and 0.738 in the perpendicular direction. Out-of-plane motion of greater than 20% of the in-plane vector magnitude was found to increase the SD by 11% for the vectors parallel to the ultrasound beam direction and 8.6% for the vectors perpendicular to the beam. The results show a close correlation and agreement of individual velocity vectors generated by ultrasound PIV compared with optical PIV. Most of the measurement distortions were caused by out-of-plane velocity components.
The velocity field of growing ear cartilage.
Cox, R W; Peacock, M A
1978-01-01
The velocity vector field of the growing rabbit ear cartilage has been investigated between 12 and 299 days. Empirical curves have been computed for path lines and for velocities between 12 and 87 days. The tissue movement has been found to behave as an irrotational flow of material. Stream lines and velocity equipotential lines have been calculated and provide akinematic description of the changes during growth. The importance of a knowledge of the velocity vector in physical descriptions of growth and morphological differentiation at the tissue and cellular levels is emphasized. PMID:689993
NASA Astrophysics Data System (ADS)
Borisov, A.
2018-05-01
The current issue of studying the vector velocity field in a cyclone-separator with a screw insert is considered in the article. Modeling of the velocity vector field in SolidWorks was carried out, tangential, axial and radial velocities were investigated. Also, a software and hardware complex was developed that makes it possible to obtain data on the speed inside a cyclone separator. The results of the experiment showed that on flour dusts the efficiency of the cyclone separator in question was more than 99.5%, with an air flow rate of 376 m3 / h, 472 m3 / h and 516 m3 / h, and ΔP less than 600 Pa. The velocity in the inlet branch of the screw insert was 18-20 m / s, and at the exit of the screw insert the airflow velocity is 50-70 m / s.
Identification of cardiac rhythm features by mathematical analysis of vector fields.
Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K
2005-01-01
Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.
HMI Measured Doppler Velocity Contamination from the SDO Orbit Velocity
NASA Astrophysics Data System (ADS)
Scherrer, Phil; HMI Team
2016-10-01
The Problem: The SDO satellite is in an inclined Geo-sync orbit which allows uninterrupted views of the Sun nearly 98% of the time. This orbit has a velocity of about 3,500 m/s with the solar line-of-sight component varying with time of day and time of year. Due to remaining calibration errors in wavelength filters the orbit velocity leaks into the line-of-sight solar velocity and magnetic field measurements. Since the same model of the filter is used in the Milne-Eddington inversions used to generate the vector magnetic field data, the orbit velocity also contaminates the vector magnetic products. These errors contribute 12h and 24h variations in most HMI data products and are known as the 24-hour problem. Early in the mission we made a patch to the calibration that corrected the disk mean velocity. The resulting LOS velocity has been used for helioseismology with no apparent problems. The velocity signal has about a 1% scale error that varies with time of day and with velocity, i.e. it is non-linear for large velocities. This causes leaks into the LOS field (which is simply the difference between velocity measured in LCP and RCP rescaled for the Zeeman splitting). This poster reviews the measurement process, shows examples of the problem, and describes recent work at resolving the issues. Since the errors are in the filter characterization it makes most sense to work first on the LOS data products since they, unlike the vector products, are directly and simply related to the filter profile without assumptions on the solar atmosphere, filling factors, etc. Therefore this poster is strictly limited to understanding how to better understand the filter profiles as they vary across the field and with time of day and time in years resulting in velocity errors of up to a percent and LOS field estimates with errors up to a few percent (of the standard LOS magnetograph method based on measuring the differences in wavelength of the line centroids in LCP and RCP light). We expect that when better filter profiles are available it will be possible to generate improved vector field data products as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, Kazuo
2014-03-15
We study the three-dimensional magnetohydrodynamics system and obtain its regularity criteria in terms of only two velocity vector field components eliminating the condition on the third component completely. The proof consists of a new decomposition of the four nonlinear terms of the system and estimating a component of the magnetic vector field in terms of the same component of the velocity vector field. This result may be seen as a component reduction result of many previous works [C. He and Z. Xin, “On the regularity of weak solutions to the magnetohydrodynamic equations,” J. Differ. Equ. 213(2), 234–254 (2005); Y. Zhou,more » “Remarks on regularities for the 3D MHD equations,” Discrete Contin. Dyn. Syst. 12(5), 881–886 (2005)].« less
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Makarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...
Estimation of 3-D conduction velocity vector fields from cardiac mapping data.
Barnette, A R; Bayly, P V; Zhang, S; Walcott, G P; Ideker, R E; Smith, W M
2000-08-01
A method to estimate three-dimensional (3-D) conduction velocity vector fields in cardiac tissue is presented. The speed and direction of propagation are found from polynomial "surfaces" fitted to space-time (x, y, z, t) coordinates of cardiac activity. The technique is applied to sinus rhythm and paced rhythm mapped with plunge needles at 396-466 sites in the canine myocardium. The method was validated on simulated 3-D plane and spherical waves. For simulated data, conduction velocities were estimated with an accuracy of 1%-2%. In experimental data, estimates of conduction speeds during paced rhythm were slower than those found during normal sinus rhythm. Vector directions were also found to differ between different types of beats. The technique was able to distinguish between premature ventricular contractions and sinus beats and between sinus and paced beats. The proposed approach to computing velocity vector fields provides an automated, physiological, and quantitative description of local electrical activity in 3-D tissue. This method may provide insight into abnormal conduction associated with fatal ventricular arrhythmias.
Vertical amplitude phase structure of a low-frequency acoustic field in shallow water
NASA Astrophysics Data System (ADS)
Kuznetsov, G. N.; Lebedev, O. V.; Stepanov, A. N.
2016-11-01
We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5-12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.
Magnetic Footpoint Velocities: A Combination Of Minimum Energy Fit AndLocal Correlation Tracking
NASA Astrophysics Data System (ADS)
Belur, Ravindra; Longcope, D.
2006-06-01
Many numerical and time dependent MHD simulations of the solar atmosphererequire the underlying velocity fields which should be consistent with theinduction equation. Recently, Longcope (2004) introduced a new techniqueto infer the photospheric velocity field from sequence of vector magnetogramswhich are in agreement with the induction equation. The method, the Minimum Energy Fit (MEF), determines a set of velocities and selects the velocity which is smallest overall flow speed by minimizing an energy functional. The inferred velocity can be further constrained by information aboutthe velocity inferred from other techniques. With this adopted techniquewe would expect that the inferred velocity will be close to the photospheric velocity of magnetic footpoints. Here, we demonstrate that the inferred horizontal velocities from LCT can be used to constrain the MEFvelocities. We also apply this technique to actual vector magnetogramsequences and compare these velocities with velocities from LCT alone.This work is supported by DoD MURI and NSF SHINE programs.
Application of the scalar and vector potentials to the aerodynamics of jets
NASA Technical Reports Server (NTRS)
Russell, H. L.; Skifstad, J. G.
1973-01-01
The applicability of a method based on the Stokes potentials (vector and scalar potentials) to computations associated with the aerodynamics of jets was examined. The aerodynamic field near the nozzle could be represented and that the influence of a nonuniform velocity profile at the nozzle exit plane could be determined. Also computations were made for an axisymmetric jet exhausting into a quiescient atmosphere. The velocity at the axis of the jet, and the location of the half-velocity points along the jet yield accurate aerodynamic field computations. Inconsistencies among the different theoretical characterizations of jet flowfields are shown.
Spatial attenuation of different sound field components in a water layer and shallow-water sediments
NASA Astrophysics Data System (ADS)
Belov, A. I.; Kuznetsov, G. N.
2017-11-01
The paper presents the results of an experimental study of spatial attenuation of low-frequency vector-scalar sound fields in shallow water. The experiments employed a towed pneumatic cannon and spatially separated four-component vector-scalar receiver modules. Narrowband analysis of received signals made it possible to estimate the attenuation coefficients of the first three modes in the frequency of range of 26-182 Hz and calculate the frequency dependences of the sound absorption coefficients in the upper part of bottom sediments. We analyze the experimental and calculated (using acoustic calibration of the waveguide) laws of the drop in sound pressure and orthogonal vector projections of the oscillation velocity. It is shown that the vertical projection of the oscillation velocity vector decreases significantly faster than the sound pressure field.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Markarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc), but here we surmise its existence in the thin disk at z less than 200 pc. The most unexpected and unexplained term within the Ogorodnikov-Milne model is the first-degree magnetic harmonic, representing a rigid rotation of the stellar field about the axis -Y pointing opposite to the direction of rotation. This harmonic comes out with a statistically robust coefficient of 6.2 +/- 0.9 km s(exp -1) kpc(exp -1) and is also present in the velocity field of more distant stars. The ensuing upward vertical motion of stars in the general direction of the Galactic center and the downward motion in the anticenter direction are opposite to the vector field expected from the stationary Galactic warp model.
A comparison of in situ measurements of vector-E and - vector-V x vector-B from Dynamics Explorer 2
NASA Technical Reports Server (NTRS)
Hanson, W. B.; Coley, W. R.; Heelis, R. A.; Maynard, N. C.; Aggson, T. L.
1993-01-01
Dynamics Explorer-2 provided the first opportunity to make a direct comparison of in situ measurements of the high-latitude convection electric field by two distinctly different techniques. The vector electric field instrument (VEFI) used antennae to measure the intrinsic electric fields and the ion drift meter (IDM) and retarding potential analyzer (RPA) measured the ion drift velocity vector, from which the convection electric field can be deduced. The data from three orbits having large electric fields at high latitude are presented, one at high, one at medium, and one at low altitudes. The general agreement between the two measurements of electric field is very good, with typical differences at high latitudes of the order of a few millivolts per meter, but there are some regions where the particle fluxes are extremely large (e.g., the cusp) and the disagreement is worse, probably because of IDM difficulties. The auroral zone potential patterns derived from the two devices are in excellent agreement for two of the cases, but not in the third, where bad attitude data may be the problem. At low latitudes there are persistent differences in the measurements of a few millivolts per meter, though these differences are quite constant from orbit to orbit. This problem seems to arise from some shortcoming in the VEFI measurments. Overall, however, these measurements confirm the concept of `frozen-in' plasma that drifts with velocity vector-E x vector-B/B(exp 2) within the measurement errors of the two techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Naselsky, Pavel; Mohayaee, Roya, E-mail: liuhao@nbi.dk, E-mail: roya@iap.fr, E-mail: naselsky@nbi.dk
2016-06-01
The existence of critical points for the peculiar velocity field is a natural feature of the correlated vector field. These points appear at the junctions of velocity domains with different orientations of their averaged velocity vectors. Since peculiar velocities are the important cause of the scatter in the Hubble expansion rate, we propose that a more precise determination of the Hubble constant can be made by restricting analysis to a subsample of observational data containing only the zones around the critical points of the peculiar velocity field, associated with voids and saddle points. On large-scales the critical points, where themore » first derivative of the gravitational potential vanishes, can easily be identified using the density field and classified by the behavior of the Hessian of the gravitational potential. We use high-resolution N-body simulations to show that these regions are stable in time and hence are excellent tracers of the initial conditions. Furthermore, we show that the variance of the Hubble flow can be substantially minimized by restricting observations to the subsample of such regions of vanishing velocity instead of aiming at increasing the statistics by averaging indiscriminately using the full data sets, as is the common approach.« less
NASA Astrophysics Data System (ADS)
Ma, Hongliang; Xu, Shijie
2014-09-01
This paper presents an improved real-time sequential filter (IRTSF) for magnetometer-only attitude and angular velocity estimation of spacecraft during its attitude changing (including fast and large angular attitude maneuver, rapidly spinning or uncontrolled tumble). In this new magnetometer-only attitude determination technique, both attitude dynamics equation and first time derivative of measured magnetic field vector are directly leaded into filtering equations based on the traditional single vector attitude determination method of gyroless and real-time sequential filter (RTSF) of magnetometer-only attitude estimation. The process noise model of IRTSF includes attitude kinematics and dynamics equations, and its measurement model consists of magnetic field vector and its first time derivative. The observability of IRTSF for small or large angular velocity changing spacecraft is evaluated by an improved Lie-Differentiation, and the degrees of observability of IRTSF for different initial estimation errors are analyzed by the condition number and a solved covariance matrix. Numerical simulation results indicate that: (1) the attitude and angular velocity of spacecraft can be estimated with sufficient accuracy using IRTSF from magnetometer-only data; (2) compared with that of RTSF, the estimation accuracies and observability degrees of attitude and angular velocity using IRTSF from magnetometer-only data are both improved; and (3) universality: the IRTSF of magnetometer-only attitude and angular velocity estimation is observable for any different initial state estimation error vector.
Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico
2015-01-01
Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288
NASA Technical Reports Server (NTRS)
2005-01-01
A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements, and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle-tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus the velocity. Combining these two techniques makes use of the higher spatial resolution available from the particle tracking. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two-staged velocimetric technique can measure particle velocities with high spatial resolution over a broad range of seeding densities.
Acoustic nonreciprocity in Coriolis mean flow systems.
Naghdi, Masoud; Farzbod, Farhad
2018-01-01
One way to break acoustic reciprocity is to have a moving wave propagation medium. If the acoustic wave vector and the moving fluid velocity are collinear, the wave vector shift caused by the fluid flow can be used to break. In this paper, an alternative approach is investigated in which the fluid velocity enters the differential equation of the system as a cross product term with the wave vector. A circular field where the fluid velocity increases radially has a Coriolis acceleration term. In such a system, the acoustic wave enters from the central wall and exits from the perimeter wall. In this paper, the differential equation is solved numerically and the effect of fluid velocity on the nonreciprocity factor is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bemporad, G.A.; Rubin, H.
This manuscript concerns the onset of thermohaline convection in a solar pond subject to field conditions as well as a small scale laboratory test section simulating the solar pond performance. The onset of thermohaline convection is analyzed in this study by means of a linear stability analysis in which the flow field perturbations are expended in sets of complete orthonormal functions satisfying the boundary conditions of the flow field. The linear stability analysis is first performed with regard to an advanced solar pond (ASP) subject to field conditions in which thermohaline convection develops in planes perpendicular to the unperturbed flowmore » velocity vector. In the laboratory simulator of the ASP the width and depth are of the same order of magnitude. In this case it is found that the side walls delay the onset of convection in planes perpendicular to the unperturbed flow velocity vector. The presence of the side walls may cause the planes parallel to the flow velocity to be the most susceptible to the development on all three spatial variables, are predicted. They may develop in planes parallel or perpendicular to the unperturbed velocity vector according to the value of the Reynolds number of the unperturbed flow and the ratio between the width and depth of the ASP simulator.« less
Application of optical correlation techniques to particle imaging velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Edwards, Robert V.
1988-01-01
Pulsed laser sheet velocimetry yields nonintrusive measurements of velocity vectors across an extended 2-dimensional region of the flow field. The application of optical correlation techniques to the analysis of multiple exposure laser light sheet photographs can reduce and/or simplify the data reduction time and hardware. Here, Matched Spatial Filters (MSF) are used in a pattern recognition system. Usually MSFs are used to identify the assembly line parts. In this application, the MSFs are used to identify the iso-velocity vector contours in the flow. The patterns to be recognized are the recorded particle images in a pulsed laser light sheet photograph. Measurement of the direction of the partical image displacements between exposures yields the velocity vector. The particle image exposure sequence is designed such that the velocity vector direction is determined unambiguously. A global analysis technique is used in comparison to the more common particle tracking algorithms and Young's fringe analysis technique.
Vorticity and energy diagnostics from the 2000 Cassini Jupiter flyby
NASA Astrophysics Data System (ADS)
Young, R. M. B.; Read, P. L.; Armstrong, D.; Lancaster, A.
2011-10-01
The Cassini spacecraft flew by Jupiter in December 2000, returning hundreds of images near closest approach [1]. We have been analysing the images spanning four Jupiter rotation periods at closest approach using automated cloud tracking software to obtain horizontal velocity fields. Our method has some advantages over other methods used for this purpose in that it accounts for both cloud deformation and rotation in addition to the standard translation. We shall present detailed horizontal velocity vectors and related vorticity and energy fields over four Jupiter rotation periods. We also intend to produce derived energy and turbulence diagnostics that will help us to understand the interplay between processes acting on different length scales. It may also be possible to relate these diagnostics to 'zonostrophic' jets and small-scale turbulence studied in the laboratory using the Coriolis rotating tank, work itself motivated by jets in giant planet atmospheres [2]. In the future we intend to combine velocity fields with temperature data to produce fully-3D velocity and potential vorticity fields for Jupiter's troposphere and stratosphere. The cloud tracking method is based on correlation image velocimetry (CIV) and was originally developed by the Coriolis facility team at LEGI, Université de Grenoble [3], where it is used to extract velocity fields from data obtained in their 13m diameter rotating tank experiment. The method has two stages. First, velocity vectors are calculated using translation only, where the velocity is defined by the highest correlation between two images taken 63 minutes apart of a small pixel patch moving within a larger search box. In the second stage the correlation analysis is repeated, but instead of just translation of the pixel patch, rotation and deformation (shearing, stretching) are taken into account. We use the first stage velocity field as an estimate of the velocity vector and search within a small window around this, including sub-pixel translations, to refine the velocity. We have also been involved with a collaborative effort comparing methods used for cloud tracking in planetary atmospheres [4], and will summarise the progress of this work as well.
Levin, Dovid; Habets, Emanuël A P; Gannot, Sharon
2010-10-01
An acoustic vector sensor provides measurements of both the pressure and particle velocity of a sound field in which it is placed. These measurements are vectorial in nature and can be used for the purpose of source localization. A straightforward approach towards determining the direction of arrival (DOA) utilizes the acoustic intensity vector, which is the product of pressure and particle velocity. The accuracy of an intensity vector based DOA estimator in the presence of noise has been analyzed previously. In this paper, the effects of reverberation upon the accuracy of such a DOA estimator are examined. It is shown that particular realizations of reverberation differ from an ideal isotropically diffuse field, and induce an estimation bias which is dependent upon the room impulse responses (RIRs). The limited knowledge available pertaining the RIRs is expressed statistically by employing the diffuse qualities of reverberation to extend Polack's statistical RIR model. Expressions for evaluating the typical bias magnitude as well as its probability distribution are derived.
Reciprocity relationships in vector acoustics and their application to vector field calculations.
Deal, Thomas J; Smith, Kevin B
2017-08-01
The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.
Results of the non-nulling calibration of five-hole pressure probe
NASA Astrophysics Data System (ADS)
Bereznai, J.; Mlynár, P.; Masaryk, M.
2017-09-01
In the laboratory of the Institute of Energy Machinery, Faculty of Mechanical Engineering in Bratislava were produced amount of pressure probes of different designs. Special position among themselves are five-hole pressure probe with tip of sphere or wedge used to determine the velocity vector in a unknown flow fields. Such probes have to be calibrated during blowing an air stream of known velocity magnitude and components of the velocity vector at different angles of attack, when the characteristic information about pressures on a sensitive part of the measuring probe is obtained.
A vector scanning processing technique for pulsed laser velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Edwards, Robert V.
1989-01-01
Pulsed laser sheet velocimetry yields nonintrusive measurements of two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high precision (1 pct) velocity estimates, but can require several hours of processing time on specialized array processors. Under some circumstances, a simple, fast, less accurate (approx. 5 pct), data reduction technique which also gives unambiguous velocity vector information is acceptable. A direct space domain processing technique was examined. The direct space domain processing technique was found to be far superior to any other techniques known, in achieving the objectives listed above. It employs a new data coding and reduction technique, where the particle time history information is used directly. Further, it has no 180 deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 minutes on an 80386 based PC, producing a 2-D velocity vector map of the flow field. Hence, using this new space domain vector scanning (VS) technique, pulsed laser velocimetry data can be reduced quickly and reasonably accurately, without specialized array processing hardware.
Ponderomotive Force in the Presence of Electric Fields
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.
2013-01-01
This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.
Three-dimensional flow field measurements in a radial inflow turbine scroll using LDV
NASA Technical Reports Server (NTRS)
Malak, M. F.; Hamed, A.; Tabakoff, W.
1986-01-01
The results of an experimental study of the three-dimensional flow field in a radial inflow turbine scroll are presented. A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle. The cold flow experimental results are presented for through-flow velocity contours and the cross velocity vectors.
NASA Astrophysics Data System (ADS)
Assi, Kondo Claude; Gay, Etienne; Chnafa, Christophe; Mendez, Simon; Nicoud, Franck; Abascal, Juan F. P. J.; Lantelme, Pierre; Tournoux, François; Garcia, Damien
2017-09-01
We propose a regularized least-squares method for reconstructing 2D velocity vector fields within the left ventricular cavity from single-view color Doppler echocardiographic images. Vector flow mapping is formulated as a quadratic optimization problem based on an {{\\ell }2} -norm minimization of a cost function composed of a Doppler data-fidelity term and a regularizer. The latter contains three physically interpretable expressions related to 2D mass conservation, Dirichlet boundary conditions, and smoothness. A finite difference discretization of the continuous problem was adopted in a polar coordinate system, leading to a sparse symmetric positive-definite system. The three regularization parameters were determined automatically by analyzing the L-hypersurface, a generalization of the L-curve. The performance of the proposed method was numerically evaluated using (1) a synthetic flow composed of a mixture of divergence-free and curl-free flow fields and (2) simulated flow data from a patient-specific CFD (computational fluid dynamics) model of a human left heart. The numerical evaluations showed that the vector flow fields reconstructed from the Doppler components were in good agreement with the original velocities, with a relative error less than 20%. It was also demonstrated that a perturbation of the domain contour has little effect on the rebuilt velocity fields. The capability of our intraventricular vector flow mapping (iVFM) algorithm was finally illustrated on in vivo echocardiographic color Doppler data acquired in patients. The vortex that forms during the rapid filling was clearly deciphered. This improved iVFM algorithm is expected to have a significant clinical impact in the assessment of diastolic function.
Acquisition and Reduction Procedures for MOF Doppler-Magnetograms. [solar observation
NASA Technical Reports Server (NTRS)
Cacciani, Alessandro; Ricci, D.; Rosati, P.; Rhodes, Edward J., Jr.; Smith, E.; Tomczyk, Steven; Ulrich, Roger K.
1988-01-01
Defects in the first magneto-optical filter (MOF) magnetograms, particularly the problem of the apparent contamination between velocity and magnetic fields, are discussed. It is found that a correct acquisition and reduction procedure gives cleaner results. A vector magnetograph is suggested. The vector field at coronal levels is calculated, using one MOF longitudinal magnetogram.
Laser transit anemometer measurements of a JANNAF nozzle base velocity flow field
NASA Technical Reports Server (NTRS)
Hunter, William W., Jr.; Russ, C. E., Jr.; Clemmons, J. I., Jr.
1990-01-01
Velocity flow fields of a nozzle jet exhausting into a supersonic flow were surveyed. The measurements were obtained with a laser transit anemometer (LTA) system in the time domain with a correlation instrument. The LTA data is transformed into the velocity domain to remove the error that occurs when the data is analyzed in the time domain. The final data is shown in velocity vector plots for positions upstream, downstream, and in the exhaust plane of the jet nozzle.
Velocity Field Measurements of Human Coughing Using Time Resolved Particle Image Velocimetry
NASA Astrophysics Data System (ADS)
Khan, T.; Marr, D. R.; Higuchi, H.; Glauser, M. N.
2003-11-01
Quantitative fluid mechanics analysis of human coughing has been carried out using new Time Resolved Particle Image Velocimetry (TRPIV). The study involves measurement of velocity vector time-histories and velocity profiles. It is focused on the average normal human coughing. Some work in the past on cough mechanics has involved measurement of flow rates, tidal volumes and sub-glottis pressure. However, data of unsteady velocity vector field of the exiting highly time-dependent jets is not available. In this study, human cough waveform data are first acquired in vivo using conventional respiratory instrumentation for various volunteers of different gender/age groups. The representative waveform is then reproduced with a coughing/breathing simulator (with or without a manikin) for TRPIV measurements and analysis. The results of this study would be useful not only for designing of indoor air quality and heating, ventilation and air conditioning systems, but also for devising means of protection against infectious diseases.
The acoustic vector sensor: a versatile battlefield acoustics sensor
NASA Astrophysics Data System (ADS)
de Bree, Hans-Elias; Wind, Jelmer W.
2011-06-01
The invention of the Microflown sensor has made it possible to measure acoustic particle velocity directly. An acoustic vector sensor (AVS) measures the particle velocity in three directions (the source direction) and the pressure. The sensor is a uniquely versatile battlefield sensor because its size is a few millimeters and it is sensitive to sound from 10Hz to 10kHz. This article shows field tests results of acoustic vector sensors, measuring rifles, heavy artillery, fixed wing aircraft and helicopters. Experimental data shows that the sensor is suitable as a ground sensor, mounted on a vehicle and on a UAV.
NASA Technical Reports Server (NTRS)
Krall, K. R.; Smith, J. B., Jr.; Hagyard, M. J.; West, E. A.; Cummings, N. P.
1982-01-01
Sheared photospheric velocity fields inferred from spot motions for April 5-7, 1980, are compared with both transverse magnetic field orientation changes and with the region's flare history. Rapid spot motions and high inferred velocity shear coincide with increased field alignment along the longitudinal neutral line and with increased flare activity, while a later decrease in velocity shear precedes a more relaxed magnetic configuration and decrease in flare activity. It is estimated that magnetic reconfiguration produced by the relative velocities of the spots could cause storage of about 10 to the 32nd erg/day, while flares occurring during this time expended no more than about 10 to the 31st erg/day.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Requerey, Iker S.; Cobo, B. Ruiz; Iniesta, J. C. Del Toro
We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe i line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footpoint is weakermore » (1100 G) and displays an upflow, while the negative polarity footpoint is stronger (2200 G) and shows a downflow. This configuration is naturally interpreted as a siphon flow along an arched magnetic flux tube.« less
The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance
NASA Astrophysics Data System (ADS)
Hoeksema, J. Todd; Liu, Yang; Hayashi, Keiji; Sun, Xudong; Schou, Jesper; Couvidat, Sebastien; Norton, Aimee; Bobra, Monica; Centeno, Rebecca; Leka, K. D.; Barnes, Graham; Turmon, Michael
2014-09-01
The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The basic vector-field frame list cadence is 135 seconds, but to reduce noise the filtergrams are combined to derive data products every 720 seconds. The primary 720 s observables were released in mid-2010, including Stokes polarization parameters measured at six wavelengths, as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180∘ azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne-Eddington inversion is performed on all full-disk HMI observations. The disambiguation, until recently run only on HARP regions, is now implemented for the full disk. Vector and scalar quantities in the patches are used to derive active region indices potentially useful for forecasting; the data maps and indices are collected in the SHARP data series, hmi.sharp_720s. Definitive SHARP processing is completed only after the region rotates off the visible disk; quick-look products are produced in near real time. Patches are provided in both CCD and heliographic coordinates. HMI provides continuous coverage of the vector field, but has modest spatial, spectral, and temporal resolution. Coupled with limitations of the analysis and interpretation techniques, effects of the orbital velocity, and instrument performance, the resulting measurements have a certain dynamic range and sensitivity and are subject to systematic errors and uncertainties that are characterized in this report.
A complete set of two-dimensional harmonic vortices on a spherical surface
NASA Astrophysics Data System (ADS)
Esparza, Christian; Rendón, Pablo Luis; Ley Koo, Eugenio
2018-03-01
The solutions of the Euler equations on a spherical surface are constructed, starting from a vector velocity potential A in the radial direction and with a two-dimensional spherical harmonic variation of order m and well-defined parity under \\varphi \\mapsto -\\varphi . The solutions are well-behaved on the entire surface and continuous at the position of a parallel circle θ ={θ }0, where the vorticity is shown to be harmonically distributed. The velocity field is evaluated as the curl of the vector potential: it is shown that the velocity is divergenceless and distributed on the spherical surface. Its polar components at the parallel circle are shown to be continuous, confirming its divergenceless nature, while its azimuthal components are discontinuous at the circle, and their discontinuity is a measure of the vorticity in the radial direction. A closed form for the velocity field lines is also obtained in terms of fixed values of the scalar harmonic function associated with the vector potential. Additionally, the connections of the solutions on a spherical surface with their circular, elliptic and bipolar counterparts on the equatorial plane are implemented via stereographic projections.
Einstein-aether theory with a Maxwell field: General formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, Alexander B., E-mail: Alexander.Balakin@kpfu.ru; Lemos, José P.S., E-mail: joselemos@ist.utl.pt
We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shearmore » and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.« less
An optical flow-based method for velocity field of fluid flow estimation
NASA Astrophysics Data System (ADS)
Głomb, Grzegorz; Świrniak, Grzegorz; Mroczka, Janusz
2017-06-01
The aim of this paper is to present a method for estimating flow-velocity vector fields using the Lucas-Kanade algorithm. The optical flow measurements are based on the Particle Image Velocimetry (PIV) technique, which is commonly used in fluid mechanics laboratories in both research institutes and industry. Common approaches for an optical characterization of velocity fields base on computation of partial derivatives of the image intensity using finite differences. Nevertheless, the accuracy of velocity field computations is low due to the fact that an exact estimation of spatial derivatives is very difficult in presence of rapid intensity changes in the PIV images, caused by particles having small diameters. The method discussed in this paper solves this problem by interpolating the PIV images using Gaussian radial basis functions. This provides a significant improvement in the accuracy of the velocity estimation but, more importantly, allows for the evaluation of the derivatives in intermediate points between pixels. Numerical analysis proves that the method is able to estimate even a separate vector for each particle with a 5× 5 px2 window, whereas a classical correlation-based method needs at least 4 particle images. With the use of a specialized multi-step hybrid approach to data analysis the method improves the estimation of the particle displacement far above 1 px.
Using a constraint on the parallel velocity when determining electric fields with EISCAT
NASA Technical Reports Server (NTRS)
Caudal, G.; Blanc, M.
1988-01-01
A method is proposed to determine the perpendicular components of the ion velocity vector (and hence the perpendicular electric field) from EISCAT tristatic measurements, in which one introduces an additional constraint on the parallel velocity, in order to take account of our knowledge that the parallel velocity of ions is small. This procedure removes some artificial features introduced when the tristatic geometry becomes too unfavorable. It is particularly well suited for the southernmost or northernmost positions of the tristatic measurements performed by meridian scan experiments (CP3 mode).
Phased-array vector velocity estimation using transverse oscillations.
Pihl, Michael J; Marcher, Jonne; Jensen, Jorgen A
2012-12-01
A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicability of the method. A phased-array transducer has a smaller footprint and a larger field of view than a linear array, and is therefore more suited for, e.g., cardiac imaging. The method relies on suitable TO fields, and a beamforming strategy employing diverging TO beams is proposed. The implementation of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process. Therefore, three performance metrics are proposed. They are calculated based on the complex TO spectrum of the combined TO fields. It is hypothesized that the performance metrics are related to the performance of the velocity estimates. The simulations show that the squared correlation values range from 0.79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations of a parabolic flow at a depth of 10 cm, a relative (to the peak velocity) bias and standard deviation of 4% and 8%, respectively, are obtained. Overall, the simulations show that the TO method implemented on a phased-array transducer is robust with relative standard deviations around 10% in most cases. The flow-rig measurements show similar results. At a depth of 9.5 cm using 32 emissions per estimate, the relative standard deviation is 9% and the relative bias is -9%. At the center of the vessel, the velocity magnitude is estimated to be 0.25 ± 0.023 m/s, compared with an expected peak velocity magnitude of 0.25 m/s, and the beam-to-flow angle is calculated to be 89.3° ± 0.77°, compared with an expected angle value between 89° and 90°. For steering angles up to ±20° degrees, the relative standard deviation is less than 20%. The results also show that a 64-element transducer implementation is feasible, but with a poorer performance compared with a 128-element transducer. The simulation and experimental results demonstrate that the TO method is suitable for use in conjunction with a phased-array transducer, and that 2-D vector velocity estimation is possible down to a depth of 15 cm.
Conversion of magnetic field energy into kinetic energy in the solar wind
NASA Technical Reports Server (NTRS)
Whang, Y. C.
1972-01-01
The outflow of the solar magnetic field energy (the radial component of the Poynting vector) per steradian is inversely proportional to the solar wind velocity. It is a decreasing function of the heliocentric distance. When the magnetic field effect is included in the one-fluid model of the solar wind, the transformation of magnetic field energy into kinetic energy during the expansion process increases the solar wind velocity at 1 AU by 17 percent.
Pollitz, F.F.
2005-01-01
The M7.9 2002 Denali earthquake, Alaska, is one of the largest strike-slip earthquakes ever recorded. The postseismic GPS velocity field around the 300-km-long rupture is characterized by very rapid horizontal velocity up to ???300 mm/yr for the first 0.1 years and slower but still elevated horizontal velocity up to ???100 mm/yr for the succeeding 1.5 years. I find that the spatial and temporal pattern of the displacement field may be explained by a transient mantle rheology. Representing the regional upper mantle as a Burghers body, I infer steady state and transient viscosities of ??1 = 2.8 ?? 1018 Pa s and ??2 = 1.0 ?? 1017 Pa s, respectively, corresponding to material relaxation times of 1.3 and 0.05 years. The lower crustal viscosity is poorly constrained by the considered horizontal velocity field, and the quoted mantle viscosities assume a steady state lower crust viscosity that is 7??1. Systematic bias in predicted versus observed velocity vectors with respect to a fixed North America during the first 3-6 months following the earthquake is reduced when all velocity vectors are referred to a fixed site. This suggests that the post-Denali GPS time series for the first 1.63 years are shaped by a combination of a common mode noise source during the first 3-6 months plus viscoelastic relaxation controlled by a transient mantle rheology.
Surface representations of two- and three-dimensional fluid flow topology
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1990-01-01
We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.
A multidomain spectral collocation method for the Stokes problem
NASA Technical Reports Server (NTRS)
Landriani, G. Sacchi; Vandeven, H.
1989-01-01
A multidomain spectral collocation scheme is proposed for the approximation of the two-dimensional Stokes problem. It is shown that the discrete velocity vector field is exactly divergence-free and we prove error estimates both for the velocity and the pressure.
Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight
NASA Technical Reports Server (NTRS)
Moore, Steven T.; Cohen, Bernard; Raphan, Theodore; Berthoz, Alain; Clement, Gilles
2005-01-01
On Earth, eye velocity of horizontal optokinetic nystagmus (OKN) orients to gravito-inertial acceleration (GIA), the sum of linear accelerations acting on the head and body. We determined whether adaptation to micro-gravity altered this orientation and whether ocular pursuit exhibited similar properties. Eye movements of four astronauts were recorded with three-dimensional video-oculography. Optokinetic stimuli were stripes moving horizontally, vertically, and obliquely at 30 degrees/s. Ocular pursuit was produced by a spot moving horizontally or vertically at 20 degrees/s. Subjects were either stationary or were centrifuged during OKN with 1 or 0.5 g of interaural or dorsoventral centripetal linear acceleration. Average eye position during OKN (the beating field) moved into the quick-phase direction by 10 degrees during lateral and upward field movement in all conditions. The beating field did not shift up during downward OKN on Earth, but there was a strong upward movement of the beating field (9 degrees) during downward OKN in the absence of gravity; this likely represents an adaptation to the lack of a vertical 1-g bias in-flight. The horizontal OKN velocity axis tilted 9 degrees in the roll plane toward the GIA during interaural centrifugation, both on Earth and in space. During oblique OKN, the velocity vector tilted towards the GIA in the roll plane when there was a disparity between the direction of stripe motion and the GIA, but not when the two were aligned. In contrast, dorsoventral acceleration tilted the horizontal OKN velocity vector 6 degrees in pitch away from the GIA. Roll tilts of the horizontal OKN velocity vector toward the GIA during interaural centrifugation are consistent with the orientation properties of velocity storage, but pitch tilts away from the GIA when centrifuged while supine are not. We speculate that visual suppression during OKN may have caused the velocity vector to tilt away from the GIA during dorsoventral centrifugation. Vertical OKN and ocular pursuit did not exhibit orientation toward the GIA in any condition. Static full-body roll tilts and centrifugation generating an equivalent interaural acceleration produced the same tilts in the horizontal OKN velocity before and after flight. Thus, the magnitude of tilt in OKN velocity was dependent on the magnitude of interaural linear acceleration, rather than the tilt of the GIA with regard to the head. These results favor a 'filter' model of spatial orientation in which orienting eye movements are proportional to the magnitude of low frequency interaural linear acceleration, rather than models that postulate an internal representation of gravity as the basis for spatial orientation.
Representation and display of vector field topology in fluid flow data sets
NASA Technical Reports Server (NTRS)
Helman, James; Hesselink, Lambertus
1989-01-01
The visualization of physical processes in general and of vector fields in particular is discussed. An approach to visualizing flow topology that is based on the physics and mathematics underlying the physical phenomenon is presented. It involves determining critical points in the flow where the velocity vector vanishes. The critical points, connected by principal lines or planes, determine the topology of the flow. The complexity of the data is reduced without sacrificing the quantitative nature of the data set. By reducing the original vector field to a set of critical points and their connections, a representation of the topology of a two-dimensional vector field that is much smaller than the original data set but retains with full precision the information pertinent to the flow topology is obtained. This representation can be displayed as a set of points and tangent curves or as a graph. Analysis (including algorithms), display, interaction, and implementation aspects are discussed.
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1995-01-01
Particle Image Velocimetry provides a means of measuring the instantaneous 2-component velocity field across a planar region of a seeded flowfield. In this work only two camera, single exposure images are considered where both cameras have the same view of the illumination plane. Two competing techniques which yield unambiguous velocity vector direction information have been widely used for reducing the single exposure, multiple image data: cross-correlation and particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. The correlation technique requires identification of the correlation peak on the correlation plane corresponding to the average displacement of particles across the subregion. Noise on the images and particle dropout contribute to spurious peaks on the correlation plane, leading to misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak on the correlation plane, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus velocity. The advantage of this technique is the improved spatial resolution which is available from the particle tracking operation. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two staged approach offers a velocimetric technique capable of measuring particle velocities with high spatial resolution over a broad range of seeding densities.
NASA Technical Reports Server (NTRS)
Kao, David
1999-01-01
The line integral convolution (LIC) technique has been known to be an effective tool for depicting flow patterns in a given vector field. There have been many extensions to make it run faster and reveal useful flow information such as velocity magnitude, motion, and direction. There are also extensions to unsteady flows and 3D vector fields. Surprisingly, none of these extensions automatically highlight flow features, which often represent the most important and interesting physical flow phenomena. In this sketch, a method for highlighting flow direction in LIC images is presented. The method gives an intuitive impression of flow direction in the given vector field and automatically reveals saddle points in the flow.
Optimum instantaneous impulsive orbital injection to attain a specified asymptotic velocity vector.
NASA Technical Reports Server (NTRS)
Bean, W. C.
1971-01-01
A nalysis of the necessary conditions of Battin for instantaneous orbital injection, with consideration of the uniqueness of his solution, and of the further problem which arises in the degenerate case when radius vector and asymptotic vector are separated by 180 deg. It is shown that when the angular separation between radius vector and asymptotic velocity vector satisfies theta not equal to 180 deg, there are precisely two insertion-velocity vectors which permit attainment of the target asymptotic velocity vector, one yielding posigrade, the other retrograde motion. When theta equals to 180 deg, there is a family of insertion-velocity vectors which permit attainment of a specified asymptotic velocity vector with a unique insertion-velocity vector for every arbitrary orientation of a target unit angular momentum vector.
Generation of auroral kilometric radiation by a finite-size source in a dipole magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burinskaya, T. M., E-mail: tburinsk@iki.rssi.ru; Shevelev, M. M.
2016-10-15
Generation, amplification, and propagation of auroral kilometric radiation in a narrow three-dimensional plasma cavity in which a weakly relativistic electron beam propagates is studied in the geometrical optics approximation. It is shown that the waves that start with a group velocity directed earthward and have optimal relation between the wave vector components determining the linear growth rate and the wave residence time inside the amplification region undergo the largest amplification. Taking into account the longitudinal velocity of fast electrons results in the shift of the instability domain toward wave vectors directed to the Earth and leads to a change inmore » the dispersion relation, due to which favorable conditions are created for the generation of waves with frequencies above the cutoff frequency for the cold background plasma at the wave generation altitude. The amplification factor for these waves is lower than for waves that have the same wave vectors but are excited by the electron beams with lower velocities along the magnetic field. For waves excited at frequencies below the cutoff frequency of the background plasma at the generation altitude, the amplification factor increases with increasing longitudinal electron velocity, because these waves reside for a longer time in the amplification region.« less
NASA Astrophysics Data System (ADS)
Quintero-Chavarria, E.; Ochoa Gutierrez, L. H.
2016-12-01
Applications of the Self-potential Method in the fields of Hydrogeology and Environmental Sciences have had significant developments during the last two decades with a strong use on groundwater flows identification. Although only few authors deal with the forward problem's solution -especially in geophysics literature- different inversion procedures are currently being developed but in most cases they are compared with unconventional groundwater velocity fields and restricted to structured meshes. This research solves the forward problem based on the finite element method using the St. Venant's Principle to transform a point dipole, which is the field generated by a single vector, into a distribution of electrical monopoles. Then, two simple aquifer models were generated with specific boundary conditions and head potentials, velocity fields and electric potentials in the medium were computed. With the model's surface electric potential, the inverse problem is solved to retrieve the source of electric potential (vector field associated to groundwater flow) using deterministic and stochastic approaches. The first approach was carried out by implementing a Tikhonov regularization with a stabilized operator adapted to the finite element mesh while for the second a hierarchical Bayesian model based on Markov chain Monte Carlo (McMC) and Markov Random Fields (MRF) was constructed. For all implemented methods, the result between the direct and inverse models was contrasted in two ways: 1) shape and distribution of the vector field, and 2) magnitude's histogram. Finally, it was concluded that inversion procedures are improved when the velocity field's behavior is considered, thus, the deterministic method is more suitable for unconfined aquifers than confined ones. McMC has restricted applications and requires a lot of information (particularly in potentials fields) while MRF has a remarkable response especially when dealing with confined aquifers.
Performance of velocity vector estimation using an improved dynamic beamforming setup
NASA Astrophysics Data System (ADS)
Munk, Peter; Jensen, Joergen A.
2001-05-01
Estimation of velocity vectors using transverse spatial modulation has previously been presented. Initially, the velocity estimation was improved using an approximated dynamic beamformer setup instead of a static combined with a new velocity estimation scheme. A new beamformer setup for dynamic control of the acoustic field, based on the Pulsed Plane Wave Decomposition (PPWD), is presented. The PPWD gives an unambiguous relation between a given acoustic field and the time functions needed on an array transducer for transmission. Applying this method for the receive beamformation results in a setup of the beamformer with different filters for each channel for each estimation depth. The method of the PPWD is illustrated by analytical expressions of the decomposed acoustic field and these results are used for simulation. Results of velocity estimates using the new setup are given on the basis of simulated and experimental data. The simulation setup is an attempt to approximate the situation present when performing a scanning of the carotid artery with a linear array. Measurement of the flow perpendicular to the emission direction is possible using the approach of transverse spatial modulation. This is most often the case in a scanning of the carotid artery, where the situation is handled by an angled Doppler setup in the present ultrasound scanners. The modulation period of 2 mm is controlled for a range of 20-40 mm which covers the typical range of the carotid artery. A 6 MHz array on a 128-channel system is simulated. The flow setup in the simulation is based on a vessel with a parabolic flow profile for a 60 and 90-degree flow angle. The experimental results are based on the backscattered signal from a sponge mounted in a stepping device. The bias and std. Dev. Of the velocity estimate are calculated for four different flow angles (50,60,75 and 90 degrees). The velocity vector is calculated using the improved 2D estimation approach at a range of depths.
NASA Astrophysics Data System (ADS)
Rumyantseva, O. D.; Shurup, A. S.
2017-01-01
The paper considers the derivation of the wave equation and Helmholtz equation for solving the tomographic problem of reconstruction combined scalar-vector inhomogeneities describing perturbations of the sound velocity and absorption, the vector field of flows, and perturbations of the density of the medium. Restrictive conditions under which the obtained equations are meaningful are analyzed. Results of numerical simulation of the two-dimensional functional-analytical Novikov-Agaltsov algorithm for reconstructing the flow velocity using the the obtained Helmholtz equation are presented.
Rotation Detection Using the Precession of Molecular Electric Dipole Moment
NASA Astrophysics Data System (ADS)
Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun
2017-11-01
We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.
Reviving the shear-free perfect fluid conjecture in general relativity
NASA Astrophysics Data System (ADS)
Sikhonde, Muzikayise E.; Dunsby, Peter K. S.
2017-12-01
Employing a Mathematica symbolic computer algebra package called xTensor, we present (1+3) -covariant special case proofs of the shear-free perfect fluid conjecture in general relativity. We first present the case where the pressure is constant, and where the acceleration is parallel to the vorticity vector. These cases were first presented in their covariant form by Senovilla et al. We then provide a covariant proof for the case where the acceleration and vorticity vectors are orthogonal, which leads to the existence of a Killing vector along the vorticity. This Killing vector satisfies the new constraint equations resulting from the vanishing of the shear. Furthermore, it is shown that in order for the conjecture to be true, this Killing vector must have a vanishing spatially projected directional covariant derivative along the velocity vector field. This in turn implies the existence of another basic vector field along the direction of the vorticity for the conjecture to hold. Finally, we show that in general, there exists a basic vector field parallel to the acceleration for which the conjecture is true.
On classical mechanical systems with non-linear constraints
NASA Astrophysics Data System (ADS)
Terra, Gláucio; Kobayashi, Marcelo H.
2004-03-01
In the present work, we analyze classical mechanical systems with non-linear constraints in the velocities. We prove that the d'Alembert-Chetaev trajectories of a constrained mechanical system satisfy both Gauss' principle of least constraint and Hölder's principle. In the case of a free mechanics, they also satisfy Hertz's principle of least curvature if the constraint manifold is a cone. We show that the Gibbs-Maggi-Appell (GMA) vector field (i.e. the second-order vector field which defines the d'Alembert-Chetaev trajectories) conserves energy for any potential energy if, and only if, the constraint is homogeneous (i.e. if the Liouville vector field is tangent to the constraint manifold). We introduce the Jacobi-Carathéodory metric tensor and prove Jacobi-Carathéodory's theorem assuming that the constraint manifold is a cone. Finally, we present a version of Liouville's theorem on the conservation of volume for the flow of the GMA vector field.
Fluctuation dynamo and turbulent induction at small Prandtl number.
Eyink, Gregory L
2010-10-01
We study the Lagrangian mechanism of the fluctuation dynamo at zero Prandtl number and infinite magnetic Reynolds number, in the Kazantsev-Kraichnan model of white-noise advection. With a rough velocity field corresponding to a turbulent inertial range, flux freezing holds only in a stochastic sense. We show that field lines arriving to the same point which were initially separated by many resistive lengths are important to the dynamo. Magnetic vectors of the seed field that point parallel to the initial separation vector arrive anticorrelated and produce an "antidynamo" effect. We also study the problem of "magnetic induction" of a spatially uniform seed field. We find no essential distinction between this process and fluctuation dynamo, both producing the same growth rates and small-scale magnetic correlations. In the regime of very rough velocity fields where fluctuation dynamo fails, we obtain the induced magnetic energy spectra. We use these results to evaluate theories proposed for magnetic spectra in laboratory experiments of turbulent induction.
NASA Astrophysics Data System (ADS)
Batmunkh, N.; Sannikova, T. N.; Kholshevnikov, K. V.
2018-04-01
The motion of a zero-mass point under the action of gravitation toward a central body and a perturbing acceleration P is considered. The magnitude of P is taken to be small compared to the main acceleration due to the gravitation of the central body, and the components of the vector P are taken to be constant in a reference frame with its origin at the central body and its axes directed along the velocity vector, normal to the velocity vector in the plane of the osculating orbit, and along the binormal. The equations in the mean elements were obtained in an earlier study. The algorithm used to solve these equations is given in this study. This algorithm is analogous to one constructed earlier for the case when P is constant in a reference frame tied to the radius vector. The properties of the solutions are similar. The main difference is that, in the most important cases, the quadratures to which the solution reduces lead to non-elementary functions. However, they can be expressed as series in powers of the eccentricity e that converge for e < 1, and often also for e = 1.
Numerical methods for incompressible viscous flows with engineering applications
NASA Technical Reports Server (NTRS)
Rose, M. E.; Ash, R. L.
1988-01-01
A numerical scheme has been developed to solve the incompressible, 3-D Navier-Stokes equations using velocity-vorticity variables. This report summarizes the development of the numerical approximation schemes for the divergence and curl of the velocity vector fields and the development of compact schemes for handling boundary and initial boundary value problems.
Creating analytically divergence-free velocity fields from grid-based data
NASA Astrophysics Data System (ADS)
Ravu, Bharath; Rudman, Murray; Metcalfe, Guy; Lester, Daniel R.; Khakhar, Devang V.
2016-10-01
We present a method, based on B-splines, to calculate a C2 continuous analytic vector potential from discrete 3D velocity data on a regular grid. A continuous analytically divergence-free velocity field can then be obtained from the curl of the potential. This field can be used to robustly and accurately integrate particle trajectories in incompressible flow fields. Based on the method of Finn and Chacon (2005) [10] this new method ensures that the analytic velocity field matches the grid values almost everywhere, with errors that are two to four orders of magnitude lower than those of existing methods. We demonstrate its application to three different problems (each in a different coordinate system) and provide details of the specifics required in each case. We show how the additional accuracy of the method results in qualitatively and quantitatively superior trajectories that results in more accurate identification of Lagrangian coherent structures.
Definition of Contravariant Velocity Components
NASA Technical Reports Server (NTRS)
Hung, Ching-Mao; Kwak, Dochan (Technical Monitor)
2002-01-01
This is an old issue in computational fluid dynamics (CFD). What is the so-called contravariant velocity or contravariant velocity component? In the article, we review the basics of tensor analysis and give the contravariant velocity component a rigorous explanation. For a given coordinate system, there exist two uniquely determined sets of base vector systems - one is the covariant and another is the contravariant base vector system. The two base vector systems are reciprocal. The so-called contravariant velocity component is really the contravariant component of a velocity vector for a time-independent coordinate system, or the contravariant component of a relative velocity between fluid and coordinates, for a time-dependent coordinate system. The contravariant velocity components are not physical quantities of the velocity vector. Their magnitudes, dimensions, and associated directions are controlled by their corresponding covariant base vectors. Several 2-D (two-dimensional) linear examples and 2-D mass-conservation equation are used to illustrate the details of expressing a vector with respect to the covariant and contravariant base vector systems, respectively.
An evaluation of the accuracy of some radar wind profiling techniques
NASA Technical Reports Server (NTRS)
Koscielny, A. J.; Doviak, R. J.
1983-01-01
Major advances in Doppler radar measurement in optically clear air have made it feasible to monitor radial velocities in the troposphere and lower stratosphere. For most applications the three dimensional wind vector is monitored rather than the radial velocity. Measurement of the wind vector with a single radar can be made assuming a spatially linear, time invariant wind field. The components and derivatives of the wind are estimated by the parameters of a linear regression of the radial velocities on functions of their spatial locations. The accuracy of the wind measurement thus depends on the locations of the radial velocities. The suitability is evaluated of some of the common retrieval techniques for simultaneous measurement of both the vertical and horizontal wind components. The techniques considered for study are fixed beam, azimuthal scanning (VAD) and elevation scanning (VED).
Evolutionary programming-based univector field navigation method for past mobile robots.
Kim, Y J; Kim, J H; Kwon, D S
2001-01-01
Most of navigation techniques with obstacle avoidance do not consider the robot orientation at the target position. These techniques deal with the robot position only and are independent of its orientation and velocity. To solve these problems this paper proposes a novel univector field method for fast mobile robot navigation which introduces a normalized two dimensional vector field. The method provides fast moving robots with the desired posture at the target position and obstacle avoidance. To obtain the sub-optimal vector field, a function approximator is used and trained by evolutionary programming. Two kinds of vector fields are trained, one for the final posture acquisition and the other for obstacle avoidance. Computer simulations and real experiments are carried out for a fast moving mobile robot to demonstrate the effectiveness of the proposed scheme.
Mueller, David S.; Rehmel, Mike S.; Wagner, Chad R.
2007-01-01
In 2003, Teledyne RD Instruments introduced the StreamPro acoustic Doppler current profiler which does not include an internal compass. During stationary moving-bed tests the StreamPro often tends to swim or kite from the end of the tether (the instrument rotates then moves laterally in the direction of the rotation). Because the StreamPro does not have an internal compass, it cannot account for the rotation. This rotation and lateral movement of the StreamPro on the end of the tether generates a false upstream velocity, which cannot be easily distinguished from a moving-bed bias velocity. A field test was completed to demonstrate that this rotation and lateral movement causes a false upstream boat velocity. The vector dot product of the boat velocity and the unit vector of the depth-averaged water velocity is shown to be an effective method to account for the effect of the rotation and lateral movement.
NASA Astrophysics Data System (ADS)
Deparis, Olivier; Lambin, Philippe
2018-01-01
In periodic optical media, the group velocity is defined as the gradient with respect to wave-vector of the corresponding Bloch mode frequency dispersion curve, forming the photonic band structure. Instead of deducing it from the numerically computed photonic crystal band structure, the group velocity can be calculated directly from the integral of the Poynting vector over the crystal unit cell, the physical meaning of which is immediately perceivable. The related formula, which can be regarded as the application of Hellmann-Feynman theorem to electromagnetism, has been reported previously though without proof. We provide hereafter a full derivation of that formula starting from Maxwell's equations and we discuss its usefulness in photonics.
NASA Technical Reports Server (NTRS)
Balasubramaniam, K. S.; West, E. A.
1991-01-01
The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.
Evolution of vector magnetic fields and the August 27 1990 X-3 flare
NASA Technical Reports Server (NTRS)
Wang, Haimin
1992-01-01
Vector magnetic fields in an active region of the sun are studied by means of continuous observations of magnetic-field evolution emphasizing magnetic shear build-up. The vector magnetograms are shown to measure magnetic fields correctly based on concurrent observations and a comparison of the transverse field with the H alpha fibril structure. The morphology and velocity pattern are examined, and these data and the shear build-up suggest that the active region's two major footprints are separated by a region with flows, new flux emergence, and several neutral lines. The magnetic shear appears to be caused by the collision and shear motion of two poles of opposite polarities. The transverse field is shown to turn from potential to sheared during the process of flux cancellation, and this effect can be incorporated into existing models of magnetic flux cancellation.
Inhomogeneity and velocity fields effects on scattering polarization in solar prominences
NASA Astrophysics Data System (ADS)
Milić, I.; Faurobert, M.
2015-10-01
One of the methods for diagnosing vector magnetic fields in solar prominences is the so called "inversion" of observed polarized spectral lines. This inversion usually assumes a fairly simple generative model and in this contribution we aim to study the possible systematic errors that are introduced by this assumption. On two-dimensional toy model of a prominence, we first demonstrate importance of multidimensional radiative transfer and horizontal inhomogeneities. These are able to induce a significant level of polarization in Stokes U, without the need for the magnetic field. We then compute emergent Stokes spectrum from a prominence which is pervaded by the vector magnetic field and use a simple, one-dimensional model to interpret these synthetic observations. We find that inferred values for the magnetic field vector generally differ from the original ones. Most importantly, the magnetic field might seem more inclined than it really is.
The peculiar velocities of rich clusters in the hot and cold dark matter scenarios
NASA Technical Reports Server (NTRS)
Rhee, George F.; West, Michael J.; Villumsen, Jens V.
1993-01-01
We present the results of a study of the peculiar velocities of rich clusters of galaxies. The peculiar motion of rich clusters in various cosmological scenarios is of interest for a number of reasons. Observationally, one can measure the peculiar motion of clusters to greater distances than galaxies because cluster peculiar motions can be determined to greater accuracy. One can also test the slope of distance indicator relations using clusters to see if galaxy properties vary with environment. We have used N-body simulations to measure the amplitude and rms cluster peculiar velocity as a function of bias parameter in the hot and cold dark matter scenarios. In addition to measuring the mean and rms peculiar velocity of clusters in the two models, we determined whether the peculiar velocity vector of a given cluster is well aligned with the gravity vector due to all the particles in the simulation and the gravity vector due to the particles present only in the clusters. We have investigated the peculiar velocities of rich clusters of galaxies in the cold dark matter and hot dark matter galaxy formation scenarios. We have derived peculiar velocities and associated errors for the scenarios using four values of the bias parameter ranging from b = 1 to b = 2.5. The growth of the mean peculiar velocity with scale factor has been determined and compared to that predicted by linear theory. In addition, we have compared the orientation of force and velocity in these simulations to see if a program such as that proposed by Bertschinger and Dekel (1989) for elliptical galaxy peculiar motions can be applied to clusters. The method they describe enables one to recover the density field from large scale redshift distance samples. The method makes it possible to do this when only radial velocities are known by assuming that the velocity field is curl free. Our analysis suggests that this program if applied to clusters is only realizable for models with a low value of the bias parameter, i.e., models in which the peculiar velocities of clusters are large enough that the errors do not render the analysis impracticable.
A Probabilistic Cell Tracking Algorithm
NASA Astrophysics Data System (ADS)
Steinacker, Reinhold; Mayer, Dieter; Leiding, Tina; Lexer, Annemarie; Umdasch, Sarah
2013-04-01
The research described below was carried out during the EU-Project Lolight - development of a low cost, novel and accurate lightning mapping and thunderstorm (supercell) tracking system. The Project aims to develop a small-scale tracking method to determine and nowcast characteristic trajectories and velocities of convective cells and cell complexes. The results of the algorithm will provide a higher accuracy than current locating systems distributed on a coarse scale. Input data for the developed algorithm are two temporally separated lightning density fields. Additionally a Monte Carlo method minimizing a cost function is utilizied which leads to a probabilistic forecast for the movement of thunderstorm cells. In the first step the correlation coefficients between the first and the second density field are computed. Hence, the first field is shifted by all shifting vectors which are physically allowed. The maximum length of each vector is determined by the maximum possible speed of thunderstorm cells and the difference in time for both density fields. To eliminate ambiguities in determination of directions and velocities, the so called Random Walker of the Monte Carlo process is used. Using this method a grid point is selected at random. Moreover, one vector out of all predefined shifting vectors is suggested - also at random but with a probability that is related to the correlation coefficient. If this exchange of shifting vectors reduces the cost function, the new direction and velocity are accepted. Otherwise it is discarded. This process is repeated until the change of cost functions falls below a defined threshold. The Monte Carlo run gives information about the percentage of accepted shifting vectors for all grid points. In the course of the forecast, amplifications of cell density are permitted. For this purpose, intensity changes between the investigated areas of both density fields are taken into account. Knowing the direction and speed of thunderstorm cells is important for nowcasting. Therefore, the presented method is based on IC discharges which account for most lightning discharges and occur minutes before the first CG discharge. The cell tracking algorithm will be used as part of the integrated LoLight system. The research leading to these results has received funding from the European Union's Seventh Framework Programme managed by REA-Research Executive Agency http://ec.europa.eu/research/rea ([FP7/2007-2013] [FP7/2007-2011]) under grant agreement n° [262200].
Origin and structures of solar eruptions II: Magnetic modeling
NASA Astrophysics Data System (ADS)
Guo, Yang; Cheng, Xin; Ding, MingDe
2017-07-01
The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.
Theory of relativistic Brownian motion in the presence of electromagnetic field in (1+1) dimension
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Annesh; Bandyopadhyay, M.; Bhamidipati, C.
2018-04-01
In this work, we consider the relativistic generalization of the theory of Brownian motion for the (1+1) dimensional case, which is again consistent with Einstein's special theory of relativity and reduces to standard Brownian motion in the Newtonian limit. All the generalizations are made considering Special theory of relativity into account. The particle under consideration has a velocity close to the speed of light and is a free Brownian particle suspended in a heat bath. With this generalization the velocity probability density functions are also obtained using Ito, Stratonovich and Hanggi-Klimontovich approach of pre-point, mid-point and post-point discretization rule. Subsequently, in our work, we have obtained the relativistic Langevin equations in the presence of an electromagnetic field. Finally, taking a special case of a constant vector potential and a constant electric field into account the Langevin equations are solved for the momentum and subsequently the velocity of the particle. Using a similar approach to the Fokker-planck equations of motion, the velocity distributions are also obtained in the presence of a constant vector potential and are plotted, which shows essential deviations from the one obtained without a potential. Our constant potential model can be realized in an optical potential.
Sine Rotation Vector Method for Attitude Estimation of an Underwater Robot
Ko, Nak Yong; Jeong, Seokki; Bae, Youngchul
2016-01-01
This paper describes a method for estimating the attitude of an underwater robot. The method employs a new concept of sine rotation vector and uses both an attitude heading and reference system (AHRS) and a Doppler velocity log (DVL) for the purpose of measurement. First, the acceleration and magnetic-field measurements are transformed into sine rotation vectors and combined. The combined sine rotation vector is then transformed into the differences between the Euler angles of the measured attitude and the predicted attitude; the differences are used to correct the predicted attitude. The method was evaluated according to field-test data and simulation data and compared to existing methods that calculate angular differences directly without a preceding sine rotation vector transformation. The comparison verifies that the proposed method improves the attitude estimation performance. PMID:27490549
Development of a Closed-Loop Strap Down Attitude System for an Ultrahigh Altitude Flight Experiment
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Fife, Mike; Brashear, Logan
1997-01-01
A low-cost attitude system has been developed for an ultrahigh altitude flight experiment. The experiment uses a remotely piloted sailplane, with the wings modified for flight at altitudes greater than 100,000 ft. Mission requirements deem it necessary to measure the aircraft pitch and bank angles with accuracy better than 1.0 deg and heading with accuracy better than 5.0 deg. Vehicle cost restrictions and gross weight limits make installing a commercial inertial navigation system unfeasible. Instead, a low-cost attitude system was developed using strap down components. Monte Carlo analyses verified that two vector measurements, magnetic field and velocity, are required to completely stabilize the error equations. In the estimating algorithm, body-axis observations of the airspeed vector and the magnetic field are compared against the inertial velocity vector and a magnetic-field reference model. Residuals are fed back to stabilize integration of rate gyros. The effectiveness of the estimating algorithm was demonstrated using data from the NASA Dryden Flight Research Center Systems Research Aircraft (SRA) flight tests. The algorithm was applied with good results to a maximum 10' pitch and bank angles. Effects of wind shears were evaluated and, for most cases, can be safely ignored.
NASA Astrophysics Data System (ADS)
Wiederkehr, A. W.; Schmutz, H.; Motsch, M.; Merkt, F.
2012-08-01
Cold samples of oxygen molecules in supersonic beams have been decelerated from initial velocities of 390 and 450 m s-1 to final velocities in the range between 150 and 280 m s-1 using a 90-stage Zeeman decelerator. (2 + 1) resonance-enhanced-multiphoton-ionization (REMPI) spectra of the 3sσ g 3Π g (C) ? two-photon transition of O2 have been recorded to characterize the state selectivity of the deceleration process. The decelerated molecular sample was found to consist exclusively of molecules in the J ‧‧ = 2 spin-rotational component of the X ? ground state of O2. Measurements of the REMPI spectra using linearly polarized laser radiation with polarization vector parallel to the decelerator axis, and thus to the magnetic-field vector of the deceleration solenoids, further showed that only the ? magnetic sublevel of the N‧‧ = 1, J ‧‧ = 2 spin-rotational level is populated in the decelerated sample, which therefore is characterized by a fully oriented total-angular-momentum vector. By maintaining a weak quantization magnetic field beyond the decelerator, the polarization of the sample could be maintained over the 5 cm distance separating the last deceleration solenoid and the detection region.
NASA Astrophysics Data System (ADS)
Zasimova, Marina; Ivanov, Nikolay
2018-05-01
The goal of the study is to validate Large Eddy Simulation (LES) data on mixing ventilation in an isothermal room at conditions of benchmark experiments by Hurnik et al. (2015). The focus is on the accuracy of the mean and rms velocity fields prediction in the quasi-free jet zone of the room with 3D jet supplied from a sidewall rectangular diffuser. Calculations were carried out using the ANSYS Fluent 16.2 software with an algebraic wall-modeled LES subgrid-scale model. CFD results on the mean velocity vector are compared with the Laser Doppler Anemometry data. The difference between the mean velocity vector and the mean air speed in the jet zone, both LES-computed, is presented and discussed.
Micro PIV Measurements of the Internal Flow of an Amoeba proteus
NASA Astrophysics Data System (ADS)
Resagk, Christian; Lobutova, Elka; Li, Ling; Voges, Danja
2011-11-01
We report about micro PIV measurements of the internal flow in the protoplasm of an amoeba. The velocity data shall give information about the mechanism of the change of amoeba's contour during its locomotion in water. The experimental data is used for an analytical modeling of the locomotion mechanism with the help of a variable contour and finally for the development of locomotion principles for micro robots. The experimental set-up consists of a microscope and a CCD camera with 12 frames per second and image analysis software. The illumination of the amoeba was done by the built-in microscope halogen lamp. We use the phase contrast configuration to capture images of the amoeba moving in water. We applied an electrical field to the water channel in order to control the movement of the amoeba in one direction. During this motion we measured time dependent velocity vector fields of the protoplasm flow, estimated velocity profiles and analyzed time series of the maximum velocity. The velocity vector plots are calculated from the images by using cross correlation and naturally occurring particles in the protoplasm. Beside the analyses of the internal flow we recorded the motion of the center of gravity and the variation of the sectional area.
Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli
2012-01-01
A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.
Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV)
NASA Astrophysics Data System (ADS)
Falahatpisheh, Ahmad; Kheradvar, Arash
2015-11-01
Measurement of 3D flow field inside the cardiac chambers has proven to be a challenging task. Current laser-based 3D PIV methods estimate the third component of the velocity rather than directly measuring it and also cannot be used to image the opaque heart chambers. Modern echocardiography systems are equipped with 3D probes that enable imaging the entire 3D opaque field. However, this feature has not yet been employed for 3D vector characterization of blood flow. For the first time, we introduce a method that generates velocity vector field in 4D based on volumetric echocardiographic images. By assuming the conservation of brightness in 3D, blood speckles are tracked. A hierarchical 3D PIV method is used to account for large particle displacement. The discretized brightness transport equation is solved in a least square sense in interrogation windows of size 163 voxels. We successfully validate the method in analytical and experimental cases. Volumetric echo data of a left ventricle is then processed in the systolic phase. The expected velocity fields were successfully predicted by V-Echo-PIV. In this work, we showed a method to image blood flow in 3D based on volumetric images of human heart using no contrast agent.
[Factors for Degaussing of a Cochlear Implant Magnet in the MR Scanner].
Koganezawa, Takumi; Uchiyama, Naoko; Teshigawara, Mai; Ogura, Akio
This study examined the conditions influencing degauss of the magnet using magnetic resonance imaging (MRI). Poly methyl methacrylate (PMMA) was used to fix the measurement magnets to the MRI bed at angles from 0° to 180° for the magnetic flux vector of static magnetic field. The PMMA was moved in the MRI magnetic field. Magnetic flux density was measured before and after bed movement, and the rate of degauss was calculated. The contents examined are as follows: (1) the angle of the magnetic flux vector of the measurement magnets for the magnetic flux vector of the static magnetic field, (2) the number of movements, (3) moving velocity, and (4) the movement on the spatial gradient of magnetic field. Mann-Whitney U test was used for statistical analysis of the data. In conclusion, the effect of the angle of the magnetic flux vector of the implant magnet was high under the conditions of degauss in this study. Therefore, during the MRI examination of a patient with a cochlear implant magnet, the operators identified the directions of the magnetic flux vector and static magnetic field of the implant magnet.
Preflare magnetic and velocity fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.
1986-01-01
A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares
Sodars and their application for investigation of the turbulent structure of the lower atmosphere
NASA Astrophysics Data System (ADS)
Krasnenko, N. P.; Shamanaeva, L. G.
2016-11-01
Possibilities of sodar application for investigation of the spatiotemporal dynamics of three components of wind velocity vector, longitudinal and transverse structural functions of wind velocity field, structural characteristics of temperature and wind velocity, turbulent kinetic energy dissipation rate, and outer scales of temperature and dynamic turbulence in the atmospheric boundary layer are analyzed. The original closed iterative algorithm of sodar data processing taking into account the classical and molecular absorption and the turbulent sound attenuation on the propagation path is used that allows the vertical profiles of the characteristics of temperature and wind velocity field to be reconstructed simultaneously and their interrelations to be investigated. It is demonstrated how the structure of temperature and wind turbulence is visualised in real time.
How the geomagnetic field vector reverses polarity
Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.
1985-01-01
A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.
Hamiltonian and Thermodynamic Modeling of Quantum Turbulence
NASA Astrophysics Data System (ADS)
Grmela, Miroslav
2010-10-01
The state variables in the novel model introduced in this paper are the fields playing this role in the classical Landau-Tisza model and additional fields of mass, entropy (or temperature), superfluid velocity, and gradient of the superfluid velocity, all depending on the position vector and another tree dimensional vector labeling the scale, describing the small-scale structure developed in 4He superfluid experiencing turbulent motion. The fluxes of mass, momentum, energy, and entropy in the position space as well as the fluxes of energy and entropy in scales, appear in the time evolution equations as explicit functions of the state variables and of their conjugates. The fundamental thermodynamic relation relating the fields to their conjugates is left in this paper undetermined. The GENERIC structure of the equations serves two purposes: (i) it guarantees that solutions to the governing equations, independently of the choice of the fundamental thermodynamic relation, agree with the observed compatibility with thermodynamics, and (ii) it is used as a guide in the construction of the novel model.
High-quality and interactive animations of 3D time-varying vector fields.
Helgeland, Anders; Elboth, Thomas
2006-01-01
In this paper, we present an interactive texture-based method for visualizing three-dimensional unsteady vector fields. The visualization method uses a sparse and global representation of the flow, such that it does not suffer from the same perceptual issues as is the case for visualizing dense representations. The animation is made by injecting a collection of particles evenly distributed throughout the physical domain. These particles are then tracked along their path lines. At each time step, these particles are used as seed points to generate field lines using any vector field such as the velocity field or vorticity field. In this way, the animation shows the advection of particles while each frame in the animation shows the instantaneous vector field. In order to maintain a coherent particle density and to avoid clustering as time passes, we have developed a novel particle advection strategy which produces approximately evenly-spaced field lines at each time step. To improve rendering performance, we decouple the rendering stage from the preceding stages of the visualization method. This allows interactive exploration of multiple fields simultaneously, which sets the stage for a more complete analysis of the flow field. The final display is rendered using texture-based direct volume rendering.
INVESTIGATION OF HELICITY AND ENERGY FLUX TRANSPORT IN THREE EMERGING SOLAR ACTIVE REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemareddy, P., E-mail: vemareddy@iiap.res.in
We report the results of an investigation of helicity and energy flux transport from three emerging solar active regions (ARs). Using time sequence vector magnetic field observations obtained from the Helioseismic Magnetic Imager, the velocity field of plasma flows is derived by the differential affine velocity estimator for vector magnetograms. In three cases, the magnetic fluxes evolve to pump net positive, negative, and mixed-sign helicity flux into the corona. The coronal helicity flux is dominantly coming from the shear term that is related to horizontal flux motions, whereas energy flux is dominantly contributed by the emergence term. The shear helicity fluxmore » has a phase delay of 5–14 hr with respect to absolute magnetic flux. The nonlinear curve of coronal energy versus relative helicity identifies the configuration of coronal magnetic fields, which is approximated by a fit of linear force-free fields. The nature of coronal helicity related to the particular pattern of evolving magnetic fluxes at the photosphere has implications for the generation mechanism of two kinds of observed activity in the ARs.« less
von Kármán–Howarth and Corrsin equations closure based on Lagrangian description of the fluid motion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divitiis, Nicola de, E-mail: n.dedivitiis@gmail.com
A new approach to obtain the closure formulas for the von Kármán–Howarth and Corrsin equations is presented, which is based on the Lagrangian representation of the fluid motion, and on the Liouville theorem associated to the kinematics of a pair of fluid particles. This kinematics is characterized by the finite scale separation vector which is assumed to be statistically independent from the velocity field. Such assumption is justified by the hypothesis of fully developed turbulence and by the property that this vector varies much more rapidly than the velocity field. This formulation leads to the closure formulas of von Kármán–Howarthmore » and Corrsin equations in terms of longitudinal velocity and temperature correlations following a demonstration completely different with respect to the previous works. Some of the properties and the limitations of the closed equations are discussed. In particular, we show that the times of evolution of the developed kinetic energy and temperature spectra are finite quantities which depend on the initial conditions.« less
Acousto-Optical Vector Matrix Product Processor: Implementation Issues
1989-04-25
power by a factor of 3.8. The acoustic velocity in longitudinal TeO2 is 4200 m/s, almost the same as the 4100 m/s acoustic velocity in dense flint glass ...field via an Interaction Model AOD150 dense flint glass Bragg Cell. The cell’s specifications are listed in the table below. BRAGG CELL SPECIFICATIONS...39 ns intervals). Since the speed of sound in dense flint glass is 4100 m/s, the acoustic field generated in a 10 As interval is distributed over a 4.1
Artificial Potential Field Controllers for Robust Communications in a Network of Swarm Robots
2005-05-18
vectors are less than 90◦ apart. Algorithm 1 The Algorithm for generating a feasible set of vectors P ← set of high priority vectors Csum ← [( LOS1 +R1...the 46 C program was finished reading and writing the values to the serial line it would delete the timing file. Only after the timing file had been... deleted would the base station write new values for the wheel velocities. The timing file kept both the Linux PC and the base station synchronized so
Dislocation dynamics and crystal plasticity in the phase-field crystal model
NASA Astrophysics Data System (ADS)
Skaugen, Audun; Angheluta, Luiza; Viñals, Jorge
2018-02-01
A phase-field model of a crystalline material is introduced to develop the necessary theoretical framework to study plastic flow due to dislocation motion. We first obtain the elastic stress from the phase-field crystal free energy under weak distortion and show that it obeys the stress-strain relation of linear elasticity. We focus next on dislocations in a two-dimensional hexagonal lattice. They are composite topological defects in the weakly nonlinear amplitude equation expansion of the phase field, with topological charges given by the standard Burgers vector. This allows us to introduce a formal relation between the dislocation velocity and the evolution of the slowly varying amplitudes of the phase field. Standard dissipative dynamics of the phase-field crystal model is shown to determine the velocity of the dislocations. When the amplitude expansion is valid and under additional simplifications, we find that the dislocation velocity is determined by the Peach-Koehler force. As an application, we compute the defect velocity for a dislocation dipole in two setups, pure glide and pure climb, and compare it with the analytical predictions.
Application of Vectors to Relative Velocity
ERIC Educational Resources Information Center
Tin-Lam, Toh
2004-01-01
The topic 'relative velocity' has recently been introduced into the Cambridge Ordinary Level Additional Mathematics syllabus under the application of Vectors. In this note, the results of relative velocity and the 'reduction to rest' technique of teaching relative velocity are derived mathematically from vector algebra, in the hope of providing…
Crustal velocity field near the big bend of California's San Andreas fault
Snay, R.A.; Cline, M.W.; Philipp, C.R.; Jackson, D.D.; Feng, Y.; Shen, Z.-K.; Lisowski, M.
1996-01-01
We use geodetic data spanning the 1920-1992 interval to estimate the horizontal velocity field near the big bend segment of California's San Andreas fault (SAF). More specifically, we estimate a horizontal velocity vector for each node of a two-dimensional grid that has a 15-min-by-15-min mesh and that extends between latitudes 34.0??N and 36.0??N and longitudes 117.5??W and 120.5??W. For this estimation process, we apply bilinear interpolation to transfer crustal deformation information from geodetic sites to the grid nodes. The data include over a half century of triangulation measurements, over two decades of repeated electronic distance measurements, a decade of repeated very long baseline interferometry measurements, and several years of Global Positioning System measurements. Magnitudes for our estimated velocity vectors have formal standard errors ranging from 0.7 to 6.8 mm/yr. Our derived velocity field shows that (1) relative motion associated with the SAF exceeds 30 mm/yr and is distributed on the Earth's surface across a band (> 100 km wide) that is roughly centered on this fault; (2) when velocities are expressed relative to a fixed North America plate, the motion within our primary study region has a mean orientation of N44??W ?? 2?? and the surface trace of the SAF is congruent in shape to nearby contours of constant speed yet this trace is oriented between 5?? and 10?? counterclockwise relative to these contours; and (3) large strain rates (shear rates > 150 nrad/yr and/or areal dilatation rates < -150 nstr/yr) exist near the Garlock fault, near the White Wolf fault, and in the Ventura basin.
NASA Astrophysics Data System (ADS)
Yang, Kai; Longcope, Dana; Guo, Yang; Ding, Mingde
2017-08-01
Numerous proposed coronal heating mechanisms have invoked magnetic reconnection in some role. Testing such a mechanism requires a method of measuring magnetic reconnection coupled with a prediction of the heat delivered by reconnection at the observed rate. In the absence of coronal reconnection, field line footpoints move at the same velocity as the plasma they find themselves in. The rate of coronal reconnection is therefore related to any discrepancy observed between footpoint motion and that of the local plasma — so-called slipping motion. We propose a novel method to measure this velocity discrepancy by combining a sequence of non-linear force-free field extrapolations with maps of photospheric velocity. We obtain both from a sequence of vector magnetograms of an active region (AR). We then propose a method of computing the coronal heating produced under the assumption the observed slipping velocity was due entirely to coronal reconnection. This heating rate is used to predict density and temperature at points along an equilibrium loop. This, in turn, is used to synthesize emission in EUV and SXR bands. We perform this analysis using a sequence of HMI vector magnetograms of a particular AR and compare synthesized images to observations of the same AR made by SDO. We also compare differential emission measure inferred from those observations to that of the modeled corona.
NASA Astrophysics Data System (ADS)
Yasuzuka, Syuma; Koga, Hiroaki; Yamamura, Yasuhisa; Saito, Kazuya; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Yamada, Jun-ichi
2017-08-01
Resistance measurements have been performed to investigate the dimensionality and the in-plane anisotropy of the upper critical field (Hc2) for β-(BDA-TTP)2SbF6 in fields H up to 15 T and at temperatures T from 1.5 to 7.5 K, where BDA-TTP stands for 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. The upper critical fields parallel and perpendicular to the conduction layer are determined and dimensional crossover from anisotropic three-dimensional behavior to two-dimensional behavior is found at around 6 K. When the direction of H is varied within the conducting layer at 6.0 K, Hc2 shows twofold symmetry: Hc2 along the minimum Fermi wave vector (maximum Fermi velocity) is larger than that along the maximum Fermi wave vector (minimum Fermi velocity). The normal-state magnetoresistance has twofold symmetry similar to Hc2 and shows a maximum when the magnetic field is nearly parallel to the maximum Fermi wave vector. This tendency is consistent with the Fermi surface anisotropy. At 3.5 K, we found clear fourfold symmetry of Hc2 despite the fact that the normal-state magnetoresistance shows twofold symmetry arising from the Fermi surface anisotropy. The origin of the fourfold symmetry of Hc2 is discussed in terms of the superconducting gap structure in β-(BDA-TTP)2SbF6.
NASA Astrophysics Data System (ADS)
Itatani, Keiichi; Okada, Takashi; Uejima, Tokuhisa; Tanaka, Tomohiko; Ono, Minoru; Miyaji, Kagami; Takenaka, Katsu
2013-07-01
We have developed a system to estimate velocity vector fields inside the cardiac ventricle by echocardiography and to evaluate several flow dynamical parameters to assess the pathophysiology of cardiovascular diseases. A two-dimensional continuity equation was applied to color Doppler data using speckle tracking data as boundary conditions, and the velocity component perpendicular to the echo beam line was obtained. We determined the optimal smoothing method of the color Doppler data, and the 8-pixel standard deviation of the Gaussian filter provided vorticity without nonphysiological stripe shape noise. We also determined the weight function at the bilateral boundaries given by the speckle tracking data of the ventricle or vascular wall motion, and the weight function linear to the distance from the boundary provided accurate flow velocities not only inside the vortex flow but also around near-wall regions on the basis of the results of the validation of a digital phantom of a pipe flow model.
Experimental investigation of the Multipoint Ultrasonic Flowmeter
NASA Astrophysics Data System (ADS)
Jakub, Filipský
2018-06-01
The Multipoint Ultrasonic Flowmeter is a vector tomographic device capable of reconstructing all three components of velocity field based solely on boundary ultrasonic measurements. Computer simulations have shown the feasibility of such a device and have been published previously. This paper describes an experimental investigation of achievable accuracy of such a method. Doubled acoustic tripoles used to obtain information of the solenoidal part of vector field show extremely short differences between the Time Of Flights (TOFs) of individual sensors and are therefore sensitive to parasitic effects of TOF measurements. Sampling at 40MHz and correlation method is used to measure the TOF.
Demonstrating the Direction of Angular Velocity in Circular Motion
NASA Astrophysics Data System (ADS)
Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan
2015-09-01
Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics classrooms, the direction of an angular velocity vector is taught by the right-hand rule, a mnemonic tool intended to aid memory. A setup constructed for instructional purposes may provide students with a more easily understood and concrete method to observe the direction of the angular velocity. This article attempts to demonstrate the angular velocity vector using the observable motion of a screw mounted to a remotely operated toy car.
Relativistic Transverse Gravitational Redshift
NASA Astrophysics Data System (ADS)
Mayer, A. F.
2012-12-01
The parametrized post-Newtonian (PPN) formalism is a tool for quantitative analysis of the weak gravitational field based on the field equations of general relativity. This formalism and its ten parameters provide the practical theoretical foundation for the evaluation of empirical data produced by space-based missions designed to map and better understand the gravitational field (e.g., GRAIL, GRACE, GOCE). Accordingly, mission data is interpreted in the context of the canonical PPN formalism; unexpected, anomalous data are explained as similarly unexpected but apparently real physical phenomena, which may be characterized as ``gravitational anomalies," or by various sources contributing to the total error budget. Another possibility, which is typically not considered, is a small modeling error in canonical general relativity. The concept of the idealized point-mass spherical equipotential surface, which originates with Newton's law of gravity, is preserved in Einstein's synthesis of special relativity with accelerated reference frames in the form of the field equations. It was not previously realized that the fundamental principles of relativity invalidate this concept and with it the idea that the gravitational field is conservative (i.e., zero net work is done on any closed path). The ideal radial free fall of a material body from arbitrarily-large range to a point on such an equipotential surface (S) determines a unique escape-velocity vector of magnitude v collinear to the acceleration vector of magnitude g at this point. For two such points on S separated by angle dφ , the Equivalence Principle implies distinct reference frames experiencing inertial acceleration of identical magnitude g in different directions in space. The complete equivalence of these inertially-accelerated frames to their analogous frames at rest on S requires evaluation at instantaneous velocity v relative to a local inertial observer. Because these velocity vectors are not parallel, a symmetric energy potential exists between the frames that is quantified by the instantaneous Δ {v} = v\\cdot{d}φ between them; in order for either frame to become indistinguishable from the other, such that their respective velocity and acceleration vectors are parallel, a change in velocity is required. While the qualitative features of general relativity imply this phenomenon (i.e., a symmetric potential difference between two points on a Newtonian `equipotential surface' that is similar to a friction effect), it is not predicted by the field equations due to a modeling error concerning time. This is an error of omission; time has fundamental geometric properties implied by the principles of relativity that are not reflected in the field equations. Where b is the radius and g is the gravitational acceleration characterizing a spherical geoid S of an ideal point-source gravitational field, an elegant derivation that rests on first principles shows that for two points at rest on S separated by a distance d << b, a symmetric relativistic redshift exists between these points of magnitude z = gd2/bc^2, which over 1 km at Earth sea level yields z ˜{10-17}. It can be tested with a variety of methods, in particular laser interferometry. A more sophisticated derivation yields a considerably more complex predictive formula for any two points in a gravitational field.
Tensor-based tracking of the aorta in phase-contrast MR images
NASA Astrophysics Data System (ADS)
Azad, Yoo-Jin; Malsam, Anton; Ley, Sebastian; Rengier, Fabian; Dillmann, Rüdiger; Unterhinninghofen, Roland
2014-03-01
The velocity-encoded magnetic resonance imaging (PC-MRI) is a valuable technique to measure the blood flow velocity in terms of time-resolved 3D vector fields. For diagnosis, presurgical planning and therapy control monitoring the patient's hemodynamic situation is crucial. Hence, an accurate and robust segmentation of the diseased vessel is the basis for further methods like the computation of the blood pressure. In the literature, there exist some approaches to transfer the methods of processing DT-MR images to PC-MR data, but the potential of this approach is not fully exploited yet. In this paper, we present a method to extract the centerline of the aorta in PC-MR images by applying methods from the DT-MRI. On account of this, in the first step the velocity vector fields are converted into tensor fields. In the next step tensor-based features are derived and by applying a modified tensorline algorithm the tracking of the vessel course is accomplished. The method only uses features derived from the tensor imaging without the use of additional morphology information. For evaluation purposes we applied our method to 4 volunteer as well as 26 clinical patient datasets with good results. In 29 of 30 cases our algorithm accomplished to extract the vessel centerline.
The Near Wake of Bluff Bodies in Stratified Fluids and the Emergence of Late Wake Characteristics
2010-10-29
including suggestions for reducing this burden to Department of Defense. Washington Headquarters Services, Directorate for Information Operations and...represents the orthnormal coordinate vectors in a Cartesian coordinate system , u = i^ei is the velocity vector field, P is pressure, p is the density, and... different characteristics depending upon the Reynolds number, the Froude number, and possibly the diffusivity [22] of the flow. In turn, the
Pinotti, M; Paone, N
1996-06-01
A laser Doppler anemometer (LDA) was used to obtain the mean velocity and the Reynolds stress fields in the inner channels of a well-known centrifugal vaneless pump (Bio-pump). Effects of the excessive flow resistance against which an occlusive pump operates in some surgical situations, such as cardiopulmonary bypass, are illustrated. The velocity vector field obtained from LDA measurements reveals that the constraint-forced vortex provides pumping action in a restricted area in the core of the pump. In such situations, recirculating zones dominate the flow and consequently increase the damage to blood cells and raise the risk of thrombus formation in the device. Reynolds normal and shear stress fields were obtained in the entry flow for the channel formed by two rotating cones to illustrate the effects of flow disturbances on the potential for blood cell damage.
Pinotti, Marcos; Paone, Nicola
1996-05-01
A laser Doppler anemometer (LDA) was used to obtain the mean velocity and the Reynolds stress fields in the inner channels of a well-known centrifugal vaneless pump (Bio-pump). Effects of the excessive flow resistance against which an occlusive pump operates in some surgical situations, such as cardiopulmonary bypass, are illustrated. The velocity vector field obtained from LDA measurements reveals that the constraint-forced vortex provides pumping action in a restricted area in the core of the pump. In such situations, recirculating zones dominate the flow and consequently increase the damage to blood cells and raise the risk of thrombus formation in the device. Reynolds normal and shear stress fields were obtained in the entry flow for the channel formed by two rotating cones to illustrate the effects of flow disturbances on the potential for blood cell damage. © 1996 International Society for Artificial Organs.
NASA Astrophysics Data System (ADS)
Lian, Huan; Soulopoulos, Nikolaos; Hardalupas, Yannis
2017-09-01
The experimental evaluation of the topological characteristics of the turbulent flow in a `box' of homogeneous and isotropic turbulence (HIT) with zero mean velocity is presented. This requires an initial evaluation of the effect of signal noise on measurement of velocity invariants. The joint probability distribution functions (pdfs) of experimentally evaluated, noise contaminated, velocity invariants have a different shape than the corresponding noise-free joint pdfs obtained from the DNS data of the Johns Hopkins University (JHU) open resource HIT database. A noise model, based on Gaussian and impulsive Salt and Pepper noise, is established and added artificially to the DNS velocity vector field of the JHU database. Digital filtering methods, based on Median and Wiener Filters, are chosen to eliminate the modeled noise source and their capacity to restore the joint pdfs of velocity invariants to that of the noise-free DNS data is examined. The remaining errors after filtering are quantified by evaluating the global mean velocity, turbulent kinetic energy and global turbulent homogeneity, assessed through the behavior of the ratio of the standard deviation of the velocity fluctuations in two directions, the energy spectrum of the velocity fluctuations and the eigenvalues of the rate-of-strain tensor. A method of data filtering, based on median filtered velocity using different median filter window size, is used to quantify the clustering of zero velocity points of the turbulent field using the radial distribution function (RDF) and Voronoï analysis to analyze the 2D time-resolved particle image velocimetry (TR-PIV) velocity measurements. It was found that a median filter with window size 3 × 3 vector spacing is the effective and efficient approach to eliminate the experimental noise from PIV measured velocity images to a satisfactory level and extract the statistical two-dimensional topological turbulent flow patterns.
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
NASA Astrophysics Data System (ADS)
Koulouri, Alexandra; Brookes, Mike; Rimpiläinen, Ville
2017-01-01
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field.
NASA Astrophysics Data System (ADS)
Yang, DeSen; Zhu, ZhongRui
2012-12-01
This work investigates the direction-of-arrival (DOA) estimation for a uniform circular acoustic Vector-Sensor Array (UCAVSA) mounted around a cylindrical baffle. The total pressure field and the total particle velocity field near the surface of the cylindrical baffle are analyzed theoretically by applying the method of spatial Fourier transform. Then the so-called modal vector-sensor array signal processing algorithm, which is based on the decomposed wavefield representations, for the UCAVSA mounted around the cylindrical baffle is proposed. Simulation and experimental results show that the UCAVSA mounted around the cylindrical baffle has distinct advantages over the same manifold of traditional uniform circular pressure-sensor array (UCPSA). It is pointed out that the acoustic Vector-Sensor (AVS) could be used under the condition of the cylindrical baffle and that the UCAVSA mounted around the cylindrical baffle could also combine the anti-noise performance of the AVS with spatial resolution performance of array system by means of modal vector-sensor array signal processing algorithms.
High-quality animation of 2D steady vector fields.
Lefer, Wilfrid; Jobard, Bruno; Leduc, Claire
2004-01-01
Simulators for dynamic systems are now widely used in various application areas and raise the need for effective and accurate flow visualization techniques. Animation allows us to depict direction, orientation, and velocity of a vector field accurately. This paper extends a former proposal for a new approach to produce perfectly cyclic and variable-speed animations for 2D steady vector fields (see [1] and [2]). A complete animation of an arbitrary number of frames is encoded in a single image. The animation can be played using the color table animation technique, which is very effective even on low-end workstations. A cyclic set of textures can be produced as well and then encoded in a common animation format or used for texture mapping on 3D objects. As compared to other approaches, the method presented in this paper produces smoother animations and is more effective, both in memory requirements to store the animation, and in computation time.
Biot-Savart helicity versus physical helicity: A topological description of ideal flows
NASA Astrophysics Data System (ADS)
Sahihi, Taliya; Eshraghi, Homayoon
2014-08-01
For an isentropic (thus compressible) flow, fluid trajectories are considered as orbits of a family of one parameter, smooth, orientation-preserving, and nonsingular diffeomorphisms on a compact and smooth-boundary domain in the Euclidian 3-space which necessarily preserve a finite measure, later interpreted as the fluid mass. Under such diffeomorphisms the Biot-Savart helicity of the pushforward of a divergence-free and tangent to the boundary vector field is proved to be conserved and since these circumstances present an isentropic flow, the conservation of the "Biot-Savart helicity" is established for such flows. On the other hand, the well known helicity conservation in ideal flows which here we call it "physical helicity" is found to be an independent constant with respect to the Biot-Savart helicity. The difference between these two helicities reflects some topological features of the domain as well as the velocity and vorticity fields which is discussed and is shown for simply connected domains the two helicities coincide. The energy variation of the vorticity field is shown to be formally the same as for the incompressible flow obtained before. For fluid domains consisting of several disjoint solid tori, at each time, the harmonic knot subspace of smooth vector fields on the fluid domain is found to have two independent base sets with a special type of orthogonality between these two bases by which a topological description of the vortex and velocity fields depending on the helicity difference is achieved since this difference is shown to depend only on the harmonic knot parts of velocity, vorticity, and its Biot-Savart vector field. For an ideal magnetohydrodynamics (MHD) flow three independent constant helicities are reviewed while the helicity of magnetic potential is generalized for non-simply connected domains by inserting a special harmonic knot field in the dynamics of the magnetic potential. It is proved that the harmonic knot part of the vorticity in hydrodynamics and the magnetic field in MHD is presented by constant coefficients (fluxes) when expanded in terms of one of the time dependent base functions.
Statistical Theory of the Ideal MHD Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, J. V.
2012-01-01
A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the rotation axis.
The effect of leg preference on postural stability in healthy athletes.
Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Hupperets, Maarten D W; van Dieën, Jaap H
2014-01-03
In research regarding postural stability, leg preference is often tested and controlled for. However, leg preference may vary between tasks. As athletes are a group of interest for postural stability testing, we evaluated the effect of five leg preference tasks categorization (step up, hop, ball kick, balance, pick up) on single-leg postural stability of 16 field hockey athletes. The 'center of pressure speed' was calculated as the primary outcome variable of single-leg postural stability. Secondary variables were 'mean length of the GRF vector in the horizontal plane', 'mean length of the ankle angular velocity vector', and 'mean length of the hip angular velocity vector', as well as the separate outcomes per degree of freedom. Results showed that leg preference was inconsistent between leg preference tasks. Moreover, the primary and secondary variables yielded no significant difference between the preferred and non-preferred legs, regardless of the applied leg preference task categorization (p>0.05). The present findings do not support the usability of leg preference tasks in controlling for bias of postural stability. In conclusion, none of the applied leg preference tasks revealed a significant effect on postural stability in healthy field hockey athletes. © 2013 Published by Elsevier Ltd.
Velocities along Byrd Glacier, East Antarctica, derived from Automatic Feature Tracking
NASA Astrophysics Data System (ADS)
Stearns, L. A.; Hamilton, G. S.
2003-12-01
Automatic feature tracking techniques are applied to recently acquired ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery in order to determine the velocity field of Byrd Glacier, East Antarctica. The software IMCORR tracks the displacement of surface features (crevasses, drift mounds) in time sequential images, to produce the velocity field. Due to its high resolution, ASTER imagery is ideally suited for detecting small features changes. The produced result is a dense array of velocity vectors, which allows more thorough characterization of glacier dynamics. Byrd Glacier drains approximately 20.5 km3 of ice into the Ross Ice Shelf every year. Previous studies have determined ice velocities for Byrd Glacier by using photogrammetry, field measurements and manual feature tracking. The most recent velocity data is from 1986 and, as evident in the West Antarctic ice streams, substantial changes in velocity can occur on decadal time scales. The application of ASTER-based velocities fills this time lapse, and increased temporal resolution allows for a more complete analysis of Byrd Glacier. The ASTER-derived ice velocities are used in updating mass balance and force budget calculations to assess the stability of Byrd Glacier. Ice thickness information from BEDMAP, surface slopes from the OSUDEM and a compilation of accumulation rates are used to complete the calculations.
River velocities from sequential multispectral remote sensing images
NASA Astrophysics Data System (ADS)
Chen, Wei; Mied, Richard P.
2013-06-01
We address the problem of extracting surface velocities from a pair of multispectral remote sensing images over rivers using a new nonlinear multiple-tracer form of the global optimal solution (GOS). The derived velocity field is a valid solution across the image domain to the nonlinear system of equations obtained by minimizing a cost function inferred from the conservation constraint equations for multiple tracers. This is done by deriving an iteration equation for the velocity, based on the multiple-tracer displaced frame difference equations, and a local approximation to the velocity field. The number of velocity equations is greater than the number of velocity components, and thus overly constrain the solution. The iterative technique uses Gauss-Newton and Levenberg-Marquardt methods and our own algorithm of the progressive relaxation of the over-constraint. We demonstrate the nonlinear multiple-tracer GOS technique with sequential multispectral Landsat and ASTER images over a portion of the Potomac River in MD/VA, and derive a dense field of accurate velocity vectors. We compare the GOS river velocities with those from over 12 years of data at four NOAA reference stations, and find good agreement. We discuss how to find the appropriate spatial and temporal resolutions to allow optimization of the technique for specific rivers.
Rectangular subsonic jet flow field measurements
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.; Swan, David H.
1990-01-01
Flow field measurements of three subsonic rectangular cold air jets are presented. The three cases had aspect ratios of 1x2, 1x4 at a Mach number of 0.09 and an aspect ratio of 1x2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemometer system. The data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data are presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made.
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.; Chriss, Randall M.; Strazisar, Anthony J.; Wood, Jerry R.
1995-01-01
A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.
Incompressible Deformation Estimation Algorithm (IDEA) from Tagged MR Images
Liu, Xiaofeng; Abd-Elmoniem, Khaled Z.; Stone, Maureen; Murano, Emi Z.; Zhuo, Jiachen; Gullapalli, Rao P.; Prince, Jerry L.
2013-01-01
Measuring the three-dimensional motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the two-dimensional motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the three-dimensional displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a three-dimensional displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue. PMID:21937342
NASA Technical Reports Server (NTRS)
Steinmetz, G. G.
1986-01-01
The development of an electronic primary flight display format aligned with the aircraft velocity vector, a simulation evaluation comparing this format with an electronic attitude-aligned primary flight display format, and a flight evaluation of the velocity-vector-aligned display format are described. Earlier tests in turbulent conditions with the electronic attitude-aligned display format had exhibited unsteadiness. A primary objective of aligning the display format with the velocity vector was to take advantage of a velocity-vector control-wheel steering system to provide steadiness of display during turbulent conditions. Better situational awareness under crosswind conditions was also achieved. The evaluation task was a curved, descending approach with turbulent and crosswind conditions. Primary flight display formats contained computer-drawn perspective runway images and flight-path angle information. The flight tests were conducted aboard the NASA Transport Systems Research Vehicle (TSRV). Comparative results of the simulation and flight tests were principally obtained from subjective commentary. Overall, the pilots preferred the display format aligned with the velocity vector.
Flow disturbance due to presence of the vane anemometer
NASA Astrophysics Data System (ADS)
Bujalski, M.; Gawor, M.; Sobczyk, J.
2014-08-01
This paper presents the results of the preliminary experimental investigations of the disturbance of velocity field resulting from placing a vane anemometer in the analyzed air flow. Experiments were conducted in a wind tunnel with a closed loop. For the measurement process, Particle Image Velocimetry (PIV) method was used to visualize the flow structure and evaluate the instantaneous, two-dimensional velocity vector fields. Regions of inflow on the vane anemometer as well as flow behind it were examined. Ensemble averaged velocity distribution and root-mean-square (RMS) velocity fluctuations were determined. The results below are presented in the form of contour-velocity maps and profile plots. In order to investigate velocity fluctuations in the wake of vane anemometer with high temporal resolution hot-wire anemometry (HWA) technique was used. Frequency analysis by means of Fast Fourier Transform was carried out. The obtained results give evidence to a significant spatially and temporally complex flow disturbance in the vicinity of analyzed instrument.
Logarithmic violation of scaling in anisotropic kinematic dynamo model
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2016-01-01
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t')/k⊥d-1 +ξ , where k⊥ = |k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L.
NASA Astrophysics Data System (ADS)
Marco, F. J.; Martínez, M. J.; López, J. A.
2015-04-01
The high quality of Hipparcos data in position, proper motion, and parallax has allowed for studies about stellar kinematics with the aim of achieving a better physical understanding of our galaxy, based on accurate calculus of the Ogorodnikov-Milne model (OMM) parameters. The use of discrete least squares is the most common adjustment method, but it may lead to errors mainly because of the inhomogeneous spatial distribution of the data. We present an example of the instability of this method using the case of a function given by a linear combination of Legendre polynomials. These polynomials are basic in the use of vector spherical harmonics, which have been used to compute the OMM parameters by several authors, such as Makarov & Murphy, Mignard & Klioner, and Vityazev & Tsvetkov. To overcome the former problem, we propose the use of a mixed method (see Marco et al.) that includes the extension of the functions of residuals to any point on the celestial sphere. The goal is to be able to work with continuous variables in the calculation of the coefficients of the vector spherical harmonic developments with stability and efficiency. We apply this mixed procedure to the study of the kinematics of the stars in our Galaxy, employing the Hipparcos velocity field data to obtain the OMM parameters. Previously, we tested the method by perturbing the Vectorial Spherical Harmonics model as well as the velocity vector field.
Santitissadeekorn, N; Bollt, E M
2007-06-01
In this paper, we present an approach to approximate the Frobenius-Perron transfer operator from a sequence of time-ordered images, that is, a movie dataset. Unlike time-series data, successive images do not provide a direct access to a trajectory of a point in a phase space; more precisely, a pixel in an image plane. Therefore, we reconstruct the velocity field from image sequences based on the infinitesimal generator of the Frobenius-Perron operator. Moreover, we relate this problem to the well-known optical flow problem from the computer vision community and we validate the continuity equation derived from the infinitesimal operator as a constraint equation for the optical flow problem. Once the vector field and then a discrete transfer operator are found, then, in addition, we present a graph modularity method as a tool to discover basin structure in the phase space. Together with a tool to reconstruct a velocity field, this graph-based partition method provides us with a way to study transport behavior and other ergodic properties of measurable dynamical systems captured only through image sequences.
NASA Technical Reports Server (NTRS)
Daly, P. W.; Rijnbeek, R. P.; Sckopke, N.; Russell, C. T.; Saunders, M. A.
1984-01-01
The distribution of energetic ion anisotropies in flux transfer events (FTEs) about the dayside magnetopause has been determined for ISEE 2 crossings of the boundary in 1977 and 1978. When the events are sorted according to the sign of the east-west component of the magnetic field in the magnetosphere, a clear correlation is observed on the northern morningside. When the field is eastward, particles flow antiparallel to the field, implying field line connection to the Northern Hemisphere; when the field is westward, the opposite is true. On the afternoonside, the particle anisotropies are correlated with latitude. Explanations for this pattern are discussed which involve FTE formation at low latitudes with subsequent motion at a velocity given by the vector superposition of the Alfven velocity from the release of magnetic tension and the magnetosheath bulk flow velocity. Evidence that the geomagnetic and not the geocentric solar magnetospheric equator is the source of FTEs is considered.
Peroni, M; Golland, P; Sharp, G C; Baroni, G
2011-01-01
Deformable Image Registration is a complex optimization algorithm with the goal of modeling a non-rigid transformation between two images. A crucial issue in this field is guaranteeing the user a robust but computationally reasonable algorithm. We rank the performances of four stopping criteria and six stopping value computation strategies for a log domain deformable registration. The stopping criteria we test are: (a) velocity field update magnitude, (b) vector field Jacobian, (c) mean squared error, and (d) harmonic energy. Experiments demonstrate that comparing the metric value over the last three iterations with the metric minimum of between four and six previous iterations is a robust and appropriate strategy. The harmonic energy and vector field update magnitude metrics give the best results in terms of robustness and speed of convergence.
NASA Astrophysics Data System (ADS)
van de Moortele, Pierre-Francois; Amili, Omid; Coletti, Filippo; Toloui, Mostafa
2017-11-01
Cardiovascular flows are predominantly laminar. Nevertheless, transient and even turbulent flows have been observed in the vicinity of the heart (e.g. valves, ascending aorta, valvular/vascular stenosis). Effective in-vivo hemodynamic-based diagnostics in these sites require both high-resolution velocity measurements (especially in the near-vessel wall regions) and accurate evaluation of blood flow turbulence level (e.g. in terms of TKE). In addition to phase contrast (PC), appropriately designed PC-MRI sequences provide intravoxel incoherent motion encoding, a unique tool for simultaneous, non-invasive evaluation of velocity 3D vector fields and Reynolds stresses in cardiovascular flows in vivo. However, limited spatial and temporal resolution of PC-MRI result in inaccuracies in the estimation of hemodynamics (e.g. WSS) and of flow turbulence characteristics. This study aims to assess whether SNR gains at higher magnetic field could overcome these limits, providing more accurate velocity and turbulence characterization at higher spatial resolution. Experiments are conducted on MR Scanners at 3 and 7 Tesla with a U-bent pipe flow shaped phantom. 3D velocity fields, Reynolds stresses and TKE are analyzed and compared to a reference PIV experiments.
Dinehart, R.L.; Burau, J.R.
2005-01-01
A strategy of repeated surveys by acoustic Doppler current profiler (ADCP) was applied in a tidal river to map velocity vectors and suspended-sediment indicators. The Sacramento River at the junction with the Delta Cross Channel at Walnut Grove, California, was surveyed over several tidal cycles in the Fall of 2000 and 2001 with a vessel-mounted ADCP. Velocity profiles were recorded along flow-defining survey paths, with surveys repeated every 27 min through a diurnal tidal cycle. Velocity vectors along each survey path were interpolated to a three-dimensional Cartesian grid that conformed to local bathymetry. A separate array of vectors was interpolated onto a grid from each survey. By displaying interpolated vector grids sequentially with computer animation, flow dynamics of the reach could be studied in three-dimensions as flow responded to the tidal cycle. Velocity streamtraces in the grid showed the upwelling of flow from the bottom of the Sacramento River channel into the Delta Cross Channel. The sequential display of vector grids showed that water in the canal briefly returned into the Sacramento River after peak flood tides, which had not been known previously. In addition to velocity vectors, ADCP data were processed to derive channel bathymetry and a spatial indicator for suspended-sediment concentration. Individual beam distances to bed, recorded by the ADCP, were transformed to yield bathymetry accurate enough to resolve small bedforms within the study reach. While recording velocity, ADCPs also record the intensity of acoustic backscatter from particles suspended in the flow. Sequential surveys of backscatter intensity were interpolated to grids and animated to indicate the spatial movement of suspended sediment through the study reach. Calculation of backscatter flux through cross-sectional grids provided a first step for computation of suspended-sediment discharge, the second step being a calibrated relation between backscatter intensity and sediment concentration. Spatial analyses of ADCP data showed that a strategy of repeated surveys and flow-field interpolation has the potential to simplify computation of flow and sediment discharge through complex waterways. The use of trade, product, industry, or firm names in this report is for descriptive purposes only and does not constitute endorsement of products by the US Government. ?? 2005 Elsevier B.V. All rights reserved.
Definition of Contravariant Velocity Components
NASA Technical Reports Server (NTRS)
Hung, Ching-moa; Kwak, Dochan (Technical Monitor)
2002-01-01
In this paper we have reviewed the basics of tensor analysis in an attempt to clarify some misconceptions regarding contravariant and covariant vector components as used in fluid dynamics. We have indicated that contravariant components are components of a given vector expressed as a unique combination of the covariant base vector system and, vice versa, that the covariant components are components of a vector expressed with the contravariant base vector system. Mathematically, expressing a vector with a combination of base vector is a decomposition process for a specific base vector system. Hence, the contravariant velocity components are decomposed components of velocity vector along the directions of coordinate lines, with respect to the covariant base vector system. However, the contravariant (and covariant) components are not physical quantities. Their magnitudes and dimensions are controlled by their corresponding covariant (and contravariant) base vectors.
Fine-scale features in the far-field of a turbulent jet
NASA Astrophysics Data System (ADS)
Buxton, Oliver; Ganapathisubramani, Bharathram
2008-11-01
The structure of a fully turbulent axisymmetric jet, at Reynolds number based on jet exit conditions of 5000, is investigated with cinematographic (1 kHz) stereoscopic PIV in a plane normal to the jet axis. Taylor's hypothesis is employed to calculate all three velocity gradients in the axial direction. The technique's resolution allows all terms of the velocity gradient tensor, hence strain rate tensor and kinetic energy dissipation, to be computed at each point within the plane. The data reveals that the vorticity field is dominated by high enstrophy tube-like structures. Conversely, the dissipation field appears to consist of sheet-like structures. Several criteria for isolating these strongly swirling vortical structures from the background turbulence were employed. One such technique involves isolating points in which the velocity gradient tensor has a real and a pair of complex conjugate eigenvectors. Once identified, the alignment of the various structures with relation to the vorticity vector and the real velocity gradient tensor eigenvector is investigated. The effect of the strain field on the geometry of the structures is also examined.
Full-field drift Hamiltonian particle orbits in 3D geometry
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Graves, J. P.; Brunner, S.; Isaev, M. Yu
2011-02-01
A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic flux surfaces. A redefinition of the guiding centre velocity to eliminate the motion due to finite equilibrium radial magnetic fields and the choice of a gauge condition that sets the radial component of the electromagnetic vector potential to zero are invoked to guarantee that the Boozer angular coordinates retain the canonical structure. The canonical momenta are identified and the guiding centre particle radial drift motion and parallel gyroradius evolution are derived. The particle coordinate position is linearly modified by wave-particle interactions. All the nonlinear wave-wave interactions appear explicitly only in the evolution of the parallel gyroradius. The radial variation of the electrostatic potential is related to the binormal component of the displacement vector for MHD-type perturbations. The electromagnetic vector potential projections can then be determined from the electrostatic potential and the radial component of the MHD displacement vector.
Systematic measurements of ion-proton differential streaming in the solar wind.
Berger, L; Wimmer-Schweingruber, R F; Gloeckler, G
2011-04-15
The small amount of heavy ions in the highly rarefied solar wind are sensitive tracers for plasma-physics processes, which are usually not accessible in the laboratory. We have analyzed differential streaming between heavy ions and protons in the solar wind at 1 AU. 3D velocity vector and magnetic field measurements from the Solar Wind Electron Proton Alpha Monitor and the Magnetometer aboard the Advanced Composition Explorer were used to reconstruct the ion-proton difference vector v(ip) = v(i) - v(p) from the 12 min 1D Solar Wind Ion Composition Spectrometer observations. We find that all 44 analyzed heavy ions flow along the interplanetary magnetic field at velocities which are smaller than, but comparable to, the local Alfvén speed C(A). The flow speeds of 35 of the 44 ion species lie within the range of ±0.15C(A) around 0.55C(A), the flow speed of He(2+).
The generalized formula for angular velocity vector of the moving coordinate system
NASA Astrophysics Data System (ADS)
Ermolin, Vladislav S.; Vlasova, Tatyana V.
2018-05-01
There are various ways for introducing the concept of the instantaneous angular velocity vector. In this paper we propose a method based on introducing of this concept by construction of the solution for the system of kinematic equations. These equations connect the function vectors defining the motion of the basis, and their derivatives. Necessary and sufficient conditions for the existence and uniqueness of the solution of this system are established. The instantaneous angular velocity vector is a solution of the algebraic system of equations. It is built explicitly. The derived formulas for the angular velocity vector generalize the earlier results, both for a basis of an affine oblique coordinate system and for an orthonormal basis.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2015-10-01
In this work we study the generalization of the problem considered in [Phys. Rev. E 91, 013002 (2015), 10.1103/PhysRevE.91.013002] to the case of finite correlation time of the environment (velocity) field. The model describes a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow. Inertial-range asymptotic behavior is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and preassigned pair correlation function. Due to the presence of distinguished direction n , all the multiloop diagrams in this model vanish, so that the results obtained are exact. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to the two nontrivial fixed points of the RG equations. Their stability depends on the relation between the exponents in the energy spectrum E ∝k⊥1 -ξ and the dispersion law ω ∝k⊥2 -η . In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the corrections to ordinary scaling are polynomials of logarithms of the integral turbulence scale L .
Janson, Natalia B; Marsden, Christopher J
2017-12-05
It is well known that architecturally the brain is a neural network, i.e. a collection of many relatively simple units coupled flexibly. However, it has been unclear how the possession of this architecture enables higher-level cognitive functions, which are unique to the brain. Here, we consider the brain from the viewpoint of dynamical systems theory and hypothesize that the unique feature of the brain, the self-organized plasticity of its architecture, could represent the means of enabling the self-organized plasticity of its velocity vector field. We propose that, conceptually, the principle of cognition could amount to the existence of appropriate rules governing self-organization of the velocity field of a dynamical system with an appropriate account of stimuli. To support this hypothesis, we propose a simple non-neuromorphic mathematical model with a plastic self-organized velocity field, which has no prototype in physical world. This system is shown to be capable of basic cognition, which is illustrated numerically and with musical data. Our conceptual model could provide an additional insight into the working principles of the brain. Moreover, hardware implementations of plastic velocity fields self-organizing according to various rules could pave the way to creating artificial intelligence of a novel type.
Dislocation models of interseismic deformation in the western United States
Pollitz, F.F.; McCrory, P.; Svarc, J.; Murray, J.
2008-01-01
The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ???2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ???1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ???100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ???1000 km from the major plate boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, John
This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of thismore » vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.« less
Near-Wall Velocity Field Measurements of a Very Low Momentum Flux Transverse Jet
2014-06-01
nozzle was used to generate olive oil droplets approximately 1 μm in diameter with approximately 20 particles per 32 x 32 px interrogation region...pair, two for each window size, 64 x 64 px and 32 x 32 px. Vectors with cross-correlation peak ratios Q < 1.7 were eliminated and replaced with a... vector whose value was interpolated by using values of its nearest neighbors. III. Results and Discussion A total of five momentum flux ratios were
NASA Astrophysics Data System (ADS)
Tóth, Balázs
2018-03-01
Some new dual and mixed variational formulations based on a priori nonsymmetric stresses will be developed for linearly coupled irreversible thermoelastodynamic problems associated with second sound effect according to the Lord-Shulman theory. Having introduced the entropy flux vector instead of the entropy field and defining the dissipation and the relaxation potential as the function of the entropy flux, a seven-field dual and mixed variational formulation will be derived from the complementary Biot-Hamilton-type variational principle, using the Lagrange multiplier method. The momentum-, the displacement- and the infinitesimal rotation vector, and the a priori nonsymmetric stress tensor, the temperature change, the entropy field and its flux vector are considered as the independent field variables of this formulation. In order to handle appropriately the six different groups of temporal prescriptions in the relaxed- and/or the strong form, two variational integrals will be incorporated into the seven-field functional. Then, eliminating the entropy from this formulation through the strong fulfillment of the constitutive relation for the temperature change with the use of the Legendre transformation between the enthalpy and Gibbs potential, a six-field dual and mixed action functional is obtained. As a further development, the elimination of the momentum- and the velocity vector from the six-field principle through the a priori satisfaction of the kinematic equation and the constitutive relation for the momentum vector leads to a five-field variational formulation. These principles are suitable for the transient analyses of the structures exposed to a thermal shock of short temporal domain or a large heat flux.
2010-12-29
propellant mass [kg] msc = mass of the spacecraft [kg] MMP = multi-mode propulsion = position in the Geocentric Equatorial Reference...thrust burn time [s] Tsc = thrust of the spacecraft [N] = vector between current and final velocity vector = velocity vector in the Geocentric ...Equatorial Reference Frame of spacecraft in intended orbit [km/s] = velocity vector in the Geocentric Equatorial Reference Frame of spacecraft in
Near-wall similarity in a pressure-driven three-dimensional turbulent boundary layer
NASA Technical Reports Server (NTRS)
Pierce, F. J.; Mcallister, J. E.
1980-01-01
Mean velocity, measured wall pressure and wall shear stress fields were made in a three dimensional pressure-driven turbulent boundary layer created by a cylinder with trailing edge placed normal to a flat plate floor. The direct force wall shear stress measurements were made with floating element direct force sensing shear meter that responded to both the magnitude and direction of the local wall shear stress. The ability of 10 near wall similarity models to describe the near wall velocity field for the measured flow under a wide range of skewing conditions and a variety of pressure gradient and wall shear vector orientations was used.
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koulouri, Alexandra, E-mail: koulouri@uni-muenster.de; Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT; Brookes, Mike
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In thismore » paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field. - Highlights: • Vector tomography is used to reconstruct electric fields generated by dipole sources. • Inverse solutions are based on longitudinal and transverse line integral measurements. • Transverse line integral measurements are used as a sparsity constraint. • Numerical procedure to approximate the line integrals is described in detail. • Patterns of the studied electric fields are correctly estimated.« less
Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.
Lenge, Matteo; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Liebgott, Hervé
2015-12-01
Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field. Such RF images are then processed by a 2-D phase-based displacement estimator to produce 2-D vector flow maps at thousands of frames per second. First, the capability of generating TOs after PW transmissions was thoroughly investigated by varying the lateral wavelength, the burst length, and the transmission frequency. Over the entire region of interest, the generated lateral wavelengths, compared with the designed ones, presented bias and standard deviation of -3.3 ± 5.7% and 10.6 ± 7.4% in simulations and experiments, respectively. The performance of the ultrafast vector flow mapping method was also assessed by evaluating the differences between the estimated velocities and the expected ones. Both simulations and experiments show overall biases lower than 20% when varying the beam-to-flow angle, the peak velocity, and the depth of interest. In vivo applications of the method on the common carotid and the brachial arteries are also presented.
Superenergy flux of Einstein-Rosen waves
NASA Astrophysics Data System (ADS)
Domínguez, P. J.; Gallegos, A.; Macías-Díaz, J. E.; Vargas-Rodríguez, H.
In this work, we consider the propagation speed of the superenergy flux associated to the Einstein-Rosen cylindrical waves propagating in vacuum and over the background of the gravitational field of an infinitely long mass line distribution. The velocity of the flux is determined considering the reference frame in which the super-Poynting vector vanishes. This reference frame is then considered as comoving with the flux. The explicit expressions for the velocities are given with respect to a reference frame at rest with the symmetry axis.
Dipole interaction of the Quincke rotating particles.
Dolinsky, Yu; Elperin, T
2012-02-01
We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.
Dipole interaction of the Quincke rotating particles
NASA Astrophysics Data System (ADS)
Dolinsky, Yu.; Elperin, T.
2012-02-01
We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.
High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging
Persoons, Tim; O’Donovan, Tadhg S.
2011-01-01
The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods. PMID:22346564
NASA Astrophysics Data System (ADS)
Sun, Jiajia; Shi, Zongqian; Jia, Shenli; Zhang, Pengbo
2017-04-01
Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system.
PDT - PARTICLE DISPLACEMENT TRACKING SOFTWARE
NASA Technical Reports Server (NTRS)
Wernet, M. P.
1994-01-01
Particle Imaging Velocimetry (PIV) is a quantitative velocity measurement technique for measuring instantaneous planar cross sections of a flow field. The technique offers very high precision (1%) directionally resolved velocity vector estimates, but its use has been limited by high equipment costs and complexity of operation. Particle Displacement Tracking (PDT) is an all-electronic PIV data acquisition and reduction procedure which is simple, fast, and easily implemented. The procedure uses a low power, continuous wave laser and a Charged Coupled Device (CCD) camera to electronically record the particle images. A frame grabber board in a PC is used for data acquisition and reduction processing. PDT eliminates the need for photographic processing, system costs are moderately low, and reduced data are available within seconds of acquisition. The technique results in velocity estimate accuracies on the order of 5%. The software is fully menu-driven from the acquisition to the reduction and analysis of the data. Options are available to acquire a single image or 5- or 25-field series of images separated in time by multiples of 1/60 second. The user may process each image, specifying its boundaries to remove unwanted glare from the periphery and adjusting its background level to clearly resolve the particle images. Data reduction routines determine the particle image centroids and create time history files. PDT then identifies the velocity vectors which describe the particle movement in the flow field. Graphical data analysis routines are included which allow the user to graph the time history files and display the velocity vector maps, interpolated velocity vector grids, iso-velocity vector contours, and flow streamlines. The PDT data processing software is written in FORTRAN 77 and the data acquisition routine is written in C-Language for 80386-based IBM PC compatibles running MS-DOS v3.0 or higher. Machine requirements include 4 MB RAM (3 MB Extended), a single or multiple frequency RGB monitor (EGA or better), a math co-processor, and a pointing device. The printers supported by the graphical analysis routines are the HP Laserjet+, Series II, and Series III with at least 1.5 MB memory. The data acquisition routines require the EPIX 4-MEG video board and optional 12.5MHz oscillator, and associated EPIX software. Data can be acquired from any CCD or RS-170 compatible video camera with pixel resolution of 600hX400v or better. PDT is distributed on one 5.25 inch 360K MS-DOS format diskette. Due to the use of required proprietary software, executable code is not provided on the distribution media. Compiling the source code requires the Microsoft C v5.1 compiler, Microsoft QuickC v2.0, the Microsoft Mouse Library, EPIX Image Processing Libraries, the Microway NDP-Fortran-386 v2.1 compiler, and the Media Cybernetics HALO Professional Graphics Kernal System. Due to the complexities of the machine requirements, COSMIC strongly recommends the purchase and review of the documentation prior to the purchase of the program. The source code, and sample input and output files are provided in PKZIP format; the PKUNZIP utility is included. PDT was developed in 1990. All trade names used are the property of their respective corporate owners.
Three-dimensional Hybrid Simulation Study of Anisotropic Turbulence in the Proton Kinetic Regime
NASA Astrophysics Data System (ADS)
Vasquez, Bernard J.; Markovskii, Sergei A.; Chandran, Benjamin D. G.
2014-06-01
Three-dimensional numerical hybrid simulations with particle protons and quasi-neutralizing fluid electrons are conducted for a freely decaying turbulence that is anisotropic with respect to the background magnetic field. The turbulence evolution is determined by both the combined root-mean-square (rms) amplitude for fluctuating proton bulk velocity and magnetic field and by the ratio of perpendicular to parallel wavenumbers. This kind of relationship had been considered in the past with regard to interplanetary turbulence. The fluctuations nonlinearly evolve to a turbulent phase whose net wave vector anisotropy is usually more perpendicular than the initial one, irrespective of the initial ratio of perpendicular to parallel wavenumbers. Self-similar anisotropy evolution is found as a function of the rms amplitude and parallel wavenumber. Proton heating rates in the turbulent phase vary strongly with the rms amplitude but only weakly with the initial wave vector anisotropy. Even in the limit where wave vectors are confined to the plane perpendicular to the background magnetic field, the heating rate remains close to the corresponding case with finite parallel wave vector components. Simulation results obtained as a function of proton plasma to background magnetic pressure ratio β p in the range 0.1-0.5 show that the wave vector anisotropy also weakly depends on β p .
Naff, R.L.; Haley, D.F.; Sudicky, E.A.
1998-01-01
In this, the first of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, various aspects of the modelling effort are examined. In particular, the need to save on core memory causes one to use only specific realizations that have certain initial characteristics; in effect, these transport simulations are conditioned by these characteristics. Also, the need to independently estimate length scales for the generated fields is discussed. The statistical uniformity of the flow field is investigated by plotting the variance of the seepage velocity for vector components in the x, y, and z directions. Finally, specific features of the velocity field itself are illuminated in this first paper. In particular, these data give one the opportunity to investigate the effective hydraulic conductivity in a flow field which is approximately statistically uniform; comparisons are made with first- and second-order perturbation analyses. The mean cloud velocity is examined to ascertain whether it is identical to the mean seepage velocity of the model. Finally, the variance in the cloud centroid velocity is examined for the effect of source size and differing strengths of local transverse dispersion.
Block modeling of crustal deformation in Tierra del Fuego from GNSS velocities
NASA Astrophysics Data System (ADS)
Mendoza, L.; Richter, A.; Fritsche, M.; Hormaechea, J. L.; Perdomo, R.; Dietrich, R.
2015-05-01
The Tierra del Fuego (TDF) main island is divided by a major transform boundary between the South America and Scotia tectonic plates. Using a block model, we infer slip rates, locking depths and inclinations of active faults in TDF from inversion of site velocities derived from Global Navigation Satellite System observations. We use interseismic velocities from 48 sites, obtained from field measurements spanning 20 years. Euler vectors consistent with a simple seismic cycle are estimated for each block. In addition, we introduce far-field information into the modeling by applying constraints on Euler vectors of major tectonic plates. The difference between model and observed surface deformation near the Magallanes Fagnano Fault System (MFS) is reduced by considering finite dip in the forward model. For this tectonic boundary global plate circuits models predict relative movements between 7 and 9 mm yr- 1, while our regional model indicates that a strike-slip rate of 5.9 ± 0.2 mm yr- 1 is accommodated across the MFS. Our results indicate faults dipping 66- 4+ 6° southward, locked to a depth of 11- 5+ 5 km, which are consistent with geological models for the MFS. However, normal slip also dominates the fault perpendicular motion throughout the eastern MFS, with a maximum rate along the Fagnano Lake.
Demonstrating the Direction of Angular Velocity in Circular Motion
ERIC Educational Resources Information Center
Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan
2015-01-01
Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics…
Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating
NASA Astrophysics Data System (ADS)
Józefczak, A.; Hornowski, T.; Závišová, V.; Skumiel, A.; Kubovčíková, M.; Timko, M.
2014-03-01
The ultrasonic propagation in the water-based magnetic fluid with doubled layered surfactant shell was studied. The measurements were carried out both in the presence as well as in the absence of the external magnetic field. The thickness of the surfactant shell was evaluated by comparing the mean size of magnetic grain extracted from magnetization curve with the mean hydrodynamic diameter obtained from differential centrifugal sedimentation method. The thickness of surfactant shell was used to estimate volume fraction of the particle aggregates consisted of magnetite grain and surfactant layer. From the ultrasonic velocity measurements in the absence of the applied magnetic field, the adiabatic compressibility of the particle aggregates was determined. In the external magnetic field, the magnetic fluid studied in this article becomes acoustically anisotropic, i.e., velocity and attenuation of the ultrasonic wave depend on the angle between the wave vector and the direction of the magnetic field. The results of the ultrasonic measurements in the external magnetic field were compared with the hydrodynamic theory of Ovchinnikov and Sokolov (velocity) and with the internal chain dynamics model of Shliomis, Mond and Morozov (attenuation).
Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating.
Józefczak, A; Hornowski, T; Závišová, V; Skumiel, A; Kubovčíková, M; Timko, M
2014-01-01
The ultrasonic propagation in the water-based magnetic fluid with doubled layered surfactant shell was studied. The measurements were carried out both in the presence as well as in the absence of the external magnetic field. The thickness of the surfactant shell was evaluated by comparing the mean size of magnetic grain extracted from magnetization curve with the mean hydrodynamic diameter obtained from differential centrifugal sedimentation method. The thickness of surfactant shell was used to estimate volume fraction of the particle aggregates consisted of magnetite grain and surfactant layer. From the ultrasonic velocity measurements in the absence of the applied magnetic field, the adiabatic compressibility of the particle aggregates was determined. In the external magnetic field, the magnetic fluid studied in this article becomes acoustically anisotropic, i.e., velocity and attenuation of the ultrasonic wave depend on the angle between the wave vector and the direction of the magnetic field. The results of the ultrasonic measurements in the external magnetic field were compared with the hydrodynamic theory of Ovchinnikov and Sokolov (velocity) and with the internal chain dynamics model of Shliomis, Mond and Morozov (attenuation).
Validation of a multi-sensor hotwire probe for boundary layer enstrophy measurements
NASA Astrophysics Data System (ADS)
Zimmerman, Spencer; Morrill-Winter, Caleb; Klewicki, Joseph
2016-11-01
A multi-sensor hotwire probe capable of measuring the velocity and vorticity vectors has been designed and implemented in a turbulent boundary layer with the goal of educing the means by which the associated momentum transport is maintained under increasing scale separation between the velocity and vorticity fields with increasing Reynolds number. The capacity of this sensor to accurately measure each component of velocity and vorticity is first evaluated via synthetic experiment. The three-dimensional velocity field from the DNS of Sillero et al. is used to compute effective cooling for each sensor element, and the resulting signals are interpreted via two-dimensional calibration surfaces such as would be used to process physical experimental data. Results from this virtual validation experiment are presented and suggest the sensor is capable of resolving key features of the velocity and vorticity fields at physically achievable spatial resolutions. Results from measurements collected at the Flow Physics Facility (FPF) at the University of New Hampshire are presented alongside these projections and exhibit very good agreement in trend, but with some differences in magnitude. The support of the Australian Research Council and the National Science Foundation is gratefully acknowledged.
Spatial orientation of caloric nystagmus in semicircular canal-plugged monkeys.
Arai, Yasuko; Yakushin, Sergei B; Cohen, Bernard; Suzuki, Jun-Ichi; Raphan, Theodore
2002-08-01
We studied caloric nystagmus before and after plugging all six semicircular canals to determine whether velocity storage contributed to the spatial orientation of caloric nystagmus. Monkeys were stimulated unilaterally with cold ( approximately 20 degrees C) water while upright, supine, prone, right-side down, and left-side down. The decline in the slow phase velocity vector was determined over the last 37% of the nystagmus, at a time when the response was largely due to activation of velocity storage. Before plugging, yaw components varied with the convective flow of endolymph in the lateral canals in all head orientations. Plugging blocked endolymph flow, eliminating convection currents. Despite this, caloric nystagmus was readily elicited, but the horizontal component was always toward the stimulated (ipsilateral) side, regardless of head position relative to gravity. When upright, the slow phase velocity vector was close to the yaw and spatial vertical axes. Roll components became stronger in supine and prone positions, and vertical components were enhanced in side down positions. In each case, this brought the velocity vectors toward alignment with the spatial vertical. Consistent with principles governing the orientation of velocity storage, when the yaw component of the velocity vector was positive, the cross-coupled pitch or roll components brought the vector upward in space. Conversely, when yaw eye velocity vector was downward in the head coordinate frame, i.e., negative, pitch and roll were downward in space. The data could not be modeled simply by a reduction in activity in the ipsilateral vestibular nerve, which would direct the velocity vector along the roll direction. Since there is no cross coupling from roll to yaw, velocity storage alone could not rotate the vector to fit the data. We postulated, therefore, that cooling had caused contraction of the endolymph in the plugged canals. This contraction would deflect the cupula toward the plug, simulating ampullofugal flow of endolymph. Inhibition and excitation induced by such cupula deflection fit the data well in the upright position but not in lateral or prone/supine conditions. Data fits in these positions required the addition of a spatially orientated, velocity storage component. We conclude, therefore, that three factors produce cold caloric nystagmus after canal plugging: inhibition of activity in ampullary nerves, contraction of endolymph in the stimulated canals, and orientation of eye velocity to gravity through velocity storage. Although the response to convection currents dominates the normal response to caloric stimulation, velocity storage probably also contributes to the orientation of eye velocity.
IBMISPS (International Brain Mapping & Intraoperative Surgical Planning Symposium)
2005-12-01
they received the 2005 Excellence in R, D & E award for their contribution in the feild of prosthetics and brain imaging. Excellence in Educational...specific bipolar magnetic gradient pulses which measure the velocity vector components of motion. Presented here are the development of dynamic MR...movies of quantitative velocity vector components, 30 frames per second. The 3 velocity vector maps with tensor analysis produced maps of the
NASA Astrophysics Data System (ADS)
Liu, Lingli; Zheng, Hairong; Williams, Logan; Zhang, Fuxing; Wang, Rui; Hertzberg, Jean; Shandas, Robin
2008-03-01
We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.
Adaptive vector validation in image velocimetry to minimise the influence of outlier clusters
NASA Astrophysics Data System (ADS)
Masullo, Alessandro; Theunissen, Raf
2016-03-01
The universal outlier detection scheme (Westerweel and Scarano in Exp Fluids 39:1096-1100, 2005) and the distance-weighted universal outlier detection scheme for unstructured data (Duncan et al. in Meas Sci Technol 21:057002, 2010) are the most common PIV data validation routines. However, such techniques rely on a spatial comparison of each vector with those in a fixed-size neighbourhood and their performance subsequently suffers in the presence of clusters of outliers. This paper proposes an advancement to render outlier detection more robust while reducing the probability of mistakenly invalidating correct vectors. Velocity fields undergo a preliminary evaluation in terms of local coherency, which parametrises the extent of the neighbourhood with which each vector will be compared subsequently. Such adaptivity is shown to reduce the number of undetected outliers, even when implemented in the afore validation schemes. In addition, the authors present an alternative residual definition considering vector magnitude and angle adopting a modified Gaussian-weighted distance-based averaging median. This procedure is able to adapt the degree of acceptable background fluctuations in velocity to the local displacement magnitude. The traditional, extended and recommended validation methods are numerically assessed on the basis of flow fields from an isolated vortex, a turbulent channel flow and a DNS simulation of forced isotropic turbulence. The resulting validation method is adaptive, requires no user-defined parameters and is demonstrated to yield the best performances in terms of outlier under- and over-detection. Finally, the novel validation routine is applied to the PIV analysis of experimental studies focused on the near wake behind a porous disc and on a supersonic jet, illustrating the potential gains in spatial resolution and accuracy.
Modeling and simulation of flow field in giant magnetostrictive pump
NASA Astrophysics Data System (ADS)
Zhao, Yapeng; Ren, Shiyong; Lu, Quanguo
2017-09-01
Recent years, there has been significant research in the design and analysis of giant magnetostrictive pump. In this paper, the flow field model of giant magnetostrictive pump was established and the relationship between pressure loss and working frequency of piston was studied by numerical simulation method. Then, the influence of different pump chamber height on pressure loss in giant magnetostrictive pump was studied by means of flow field simulation. Finally, the fluid pressure and velocity vector distribution in giant magnetostrictive pump chamber were simulated.
NASA Astrophysics Data System (ADS)
Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George; Hines, Glenn
2011-06-01
An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high-resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over various terrains. The sensor was one of several sensors tested in this field test by NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F.; Lockhard, George; Amzajerdian, Farzin; Petway, Larry B.; Barnes, Bruce; Hines, Glenn D.
2011-01-01
An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over vegetation free terrain. The sensor was one of several sensors tested in this field test by NASA?s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.
NASA Astrophysics Data System (ADS)
Mittelstaedt, Eric; Davaille, Anne; van Keken, Peter E.; Gracias, Nuno; Escartin, Javier
2010-10-01
Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g., rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperature-dependent viscosity. Results show that average RMS errors are ˜5%-7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck'09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ˜10°C-15°C effluent reach ˜5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2-D flows where background objects have a small spatial scale, such as sand or gravel.
NASA Technical Reports Server (NTRS)
Ketchum, Eleanor A. (Inventor)
2000-01-01
A computer-implemented method and apparatus for determining position of a vehicle within 100 km autonomously from magnetic field measurements and attitude data without a priori knowledge of position. An inverted dipole solution of two possible position solutions for each measurement of magnetic field data are deterministically calculated by a program controlled processor solving the inverted first order spherical harmonic representation of the geomagnetic field for two unit position vectors 180 degrees apart and a vehicle distance from the center of the earth. Correction schemes such as a successive substitutions and a Newton-Raphson method are applied to each dipole. The two position solutions for each measurement are saved separately. Velocity vectors for the position solutions are calculated so that a total energy difference for each of the two resultant position paths is computed. The position path with the smaller absolute total energy difference is chosen as the true position path of the vehicle.
Software-type Wave-Particle Interaction Analyzer on board the ARASE satellite
NASA Astrophysics Data System (ADS)
Katoh, Y.; Kojima, H.; Hikishima, M.; Takashima, T.; Asamura, K.; Miyoshi, Y.; Kasahara, Y.; Kasahara, S.; Mitani, T.; Higashio, N.; Matsuoka, A.; Ozaki, M.; Yagitani, S.; Yokota, S.; Matsuda, S.; Kitahara, M.; Shinohara, I.
2017-12-01
Wave-Particle Interaction Analyzer (WPIA) is a new type of instrumentation recently proposed by Fukuhara et al. (2009) for direct and quantitative measurements of wave-particle interactions. WPIA computes an inner product W(ti) = qE(ti)·vi, where ti is the detection timing of the i-th particle, E(ti) is the wave electric field vector at ti, and q and vi is the charge and the velocity vector of the i-th particle, respectively. Since W(ti) is the gain or the loss of the kinetic energy of the i-th particle, by accumulating W for detected particles, we obtain the net amount of the energy exchange in the region of interest. Software-type WPIA (S-WPIA) is installed in the ARASE satellite as a software function running on the mission data processor. S-WPIA on board the ARASE satellite uses electromagnetic field waveform measured by Waveform Capture (WFC) of Plasma Wave Experiment (PWE) and velocity vectors detected by Medium-Energy Particle Experiments - Electron Analyzer (MEP-e), High-Energy Electron Experiments (HEP), and Extremely High-Energy Electron Experiment (XEP). The prime target of S-WPIA is the measurement of the energy exchange between whistler-mode chorus emissions and energetic electrons in the inner magnetosphere. It is essential for S-WPIA to synchronize instruments in the time resolution better than the time scale of wave-particle interactions. Since the typical frequency of chorus emissions is a few kHz in the inner magnetosphere, the time resolution better than 10 micro-sec should be realized so as to measure the relative phase angle between wave and velocity vectors with the accuracy enough to detect the sign of W correctly. In the ARASE satellite, a dedicated system has been developed in order to realize the required time resolution for the inter-instruments communications. In this presentation, we show the principle of the WPIA and its significance as well as the implementation of S-WPIA on the ARASE satellite.
Rectangular subsonic jet flow field measurements
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.; Swan, David H.
1989-01-01
Flow field measurements are presented of 3 subsonic rectangular cold air jets. The 3 cases presented had aspect ratios of 1 x 2, 1 x 4 at a Mach number of 0.09 and an aspect ratio of 1 x 2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemoneter system. The presented data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data is presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made. All tabular data are available in ASCII format on MS-DOS compatible disks.
Analyzing angular distributions for two-step dissociation mechanisms in velocity map imaging.
Straus, Daniel B; Butler, Lynne M; Alligood, Bridget W; Butler, Laurie J
2013-08-15
Increasingly, velocity map imaging is becoming the method of choice to study photoinduced molecular dissociation processes. This paper introduces an algorithm to analyze the measured net speed, P(vnet), and angular, β(vnet), distributions of the products from a two-step dissociation mechanism, where the first step but not the second is induced by absorption of linearly polarized laser light. Typically, this might be the photodissociation of a C-X bond (X = halogen or other atom) to produce an atom and a momentum-matched radical that has enough internal energy to subsequently dissociate (without the absorption of an additional photon). It is this second step, the dissociation of the unstable radicals, that one wishes to study, but the measured net velocity of the final products is the vector sum of the velocity imparted to the radical in the primary photodissociation (which is determined by taking data on the momentum-matched atomic cophotofragment) and the additional velocity vector imparted in the subsequent dissociation of the unstable radical. The algorithm allows one to determine, from the forward-convolution fitting of the net velocity distribution, the distribution of velocity vectors imparted in the second step of the mechanism. One can thus deduce the secondary velocity distribution, characterized by a speed distribution P(v1,2°) and an angular distribution I(θ2°), where θ2° is the angle between the dissociating radical's velocity vector and the additional velocity vector imparted to the product detected from the subsequent dissociation of the radical.
Determination of key parameters of vector multifractal vector fields
NASA Astrophysics Data System (ADS)
Schertzer, D. J. M.; Tchiguirinskaia, I.
2017-12-01
For too long time, multifractal analyses and simulations have been restricted to scalar-valued fields (Schertzer and Tchiguirinskaia, 2017a,b). For instance, the wind velocity multifractality has been mostly analysed in terms of scalar structure functions and with the scalar energy flux. This restriction has had the unfortunate consequences that multifractals were applicable to their full extent in geophysics, whereas it has inspired them. Indeed a key question in geophysics is the complexity of the interactions between various fields or they components. Nevertheless, sophisticated methods have been developed to determine the key parameters of scalar valued fields. In this communication, we first present the vector extensions of the universal multifractal analysis techniques to multifractals whose generator belong to a Levy-Clifford algebra (Schertzer and Tchiguirinskaia, 2015). We point out further extensions noting the increased complexity. For instance, the (scalar) index of multifractality becomes a matrice. Schertzer, D. and Tchiguirinskaia, I. (2015) `Multifractal vector fields and stochastic Clifford algebra', Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), p. 123127. doi: 10.1063/1.4937364. Schertzer, D. and Tchiguirinskaia, I. (2017) `An Introduction to Multifractals and Scale Symmetry Groups', in Ghanbarian, B. and Hunt, A. (eds) Fractals: Concepts and Applications in Geosciences. CRC Press, p. (in press). Schertzer, D. and Tchiguirinskaia, I. (2017b) `Pandora Box of Multifractals: Barely Open ?', in Tsonis, A. A. (ed.) 30 Years of Nonlinear Dynamics in Geophysics. Berlin: Springer, p. (in press).
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2015-01-01
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field-theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t') /k⊥d -1 +ξ , where k⊥=|k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction ("direction of the flow")—the d -dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131, 381 (1990), 10.1007/BF02161420]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: Instead of powerlike corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L . The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for the correlation functions of arbitrary order.
Multifractal Analysis of Velocity Vector Fields and a Continuous In-Scale Cascade Model
NASA Astrophysics Data System (ADS)
Fitton, G.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.
2012-04-01
In this study we have compared the multifractal analyses of small-scale surface-layer wind velocities from two different datasets. The first dataset consists of six-months of wind velocity and temperature measurements at the heights 22, 23 and 43m. The measurements came from 3D sonic anemometers with a 10Hz data output rate positioned on a mast in a wind farm test site subject to wake turbulence effects. The location of the test site (Corsica, France) meant the large scale structures were subject to topography effects that therefore possibly caused buoyancy effects. The second dataset (Germany) consists of 300 twenty minute samples of horizontal wind velocity magnitudes simultaneously recorded at several positions on two masts. There are eight propeller anemometers on each mast, recording velocity magnitude data at 2.5Hz. The positioning of the anemometers is such that there are effectively two grids. One grid of 3 rows by 4 columns and a second of 5 rows by 2 columns. The ranges of temporal scale over which the analyses were done were from 1 to 103 seconds for both datasets. Thus, under the universal multifractal framework we found both datasets exhibit parameters α ≈ 1.5 and C1 ≈ 0.1. The parameters α and C1, measure respectively the multifractality and mean intermittency of the scaling field. A third parameter, H, quantifies the divergence from conservation of the field (e.g. H = 0 for the turbulent energy flux density). To estimate the parameters we used the ratio of the scaling moment function of the energy flux and of the velocity increments. This method was particularly useful when estimating the parameter α over larger scales. In fact it was not possible to obtain a reasonable estimate of alpha using the usual double trace moment method. For each case the scaling behaviour of the wind was almost isotropic when the scale ranges remained close to the sphero-scale. For the Corsica dataset this could be seen by the agreement of the spectral exponents of the order of 1.5 for all three components. Given we have only the horizontal wind components over a grid for the Germany dataset the comparable probability distributions of horizontal and vertical velocity increments shows the field is isotropic. The Germany dataset allows us to compare the spatial velocity increments with that of the temporal. We briefly mentioned above that the winds in Corsica were subject to vertical forcing effects over large scales. This means the velocity field scaled as 11/5 i.e. Bolgiano-Obukhov instead of Kolmogorov's. To test this we were required to invoke Taylor's frozen turbulence hypothesis since the data was a one point measurement. Having vertical and horizontal velocity increments means we can further justify the claims of an 11/5 scaling law for vertical shears of the velocity and test the validity of the Taylor's hypothesis. We used the results to first simulate the velocity components using continuous in-scale cascades and then discuss the reconstruction of the full vector fields.
Conical refraction of elastic waves in absorbing crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alshits, V. I., E-mail: alshits@ns.crys.ras.ru; Lyubimov, V. N.
2011-10-15
The absorption-induced acoustic-axis splitting in a viscoelastic crystal with an arbitrary anisotropy is considered. It is shown that after 'switching on' absorption, the linear vector polarization field in the vicinity of the initial degeneracy point having an orientation singularity with the Poincare index n = {+-}1/2, transforms to a planar distribution of ellipses with two singularities n = {+-}1/4 corresponding to new axes. The local geometry of the slowness surface of elastic waves is studied in the vicinity of new degeneracy points and a self-intersection line connecting them. The absorption-induced transformation of the classical picture of conical refraction is studied.more » The ellipticity of waves at the edge of the self-intersection wedge in a narrow interval of propagation directions drastically changes from circular at the wedge ends to linear in the middle of the wedge. For the wave normal directed to an arbitrary point of this wedge, during movement of the displacement vector over the corresponding polarization ellipse, the wave ray velocity s runs over the same cone describing refraction in a crystal without absorption. In this case, the end of the vector moves along a universal ellipse whose plane is orthogonal to the acoustic axis for zero absorption. The areal velocity of this movement differs from the angular velocity of the displacement vector on the polarization ellipse only by a constant factor, being delayed by {pi}/2 in phase. When the wave normal is localized at the edge of the wedge in its central region, the movement of vector s along the universal ellipse becomes drastically nonuniform and the refraction transforms from conical to wedge-like.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, Alexander B.; Popov, Vladimir A., E-mail: alexander.balakin@kpfu.ru, E-mail: vladipopov@mail.ru
In the framework of the Einstein-aether theory we consider a cosmological model, which describes the evolution of the unit dynamic vector field with activated rotational degree of freedom. We discuss exact solutions of the Einstein-aether theory, for which the space-time is of the Gödel-type, the velocity four-vector of the aether motion is characterized by a non-vanishing vorticity, thus the rotational vectorial modes can be associated with the source of the universe rotation. The main goal of our paper is to study the motion of test relativistic particles with a vectorial internal degree of freedom (spin or polarization), which is coupledmore » to the unit dynamic vector field. The particles are considered as the test ones in the given space-time background of the Gödel-type; the spin (polarization) coupling to the unit dynamic vector field is modeled using exact solutions of three types. The first exact solution describes the aether with arbitrary Jacobson's coupling constants; the second one relates to the case, when the Jacobson's constant responsible for the vorticity is vanishing; the third exact solution is obtained using three constraints for the coupling constants. The analysis of the exact expressions, which are obtained for the particle momentum and for the spin (polarization) four-vector components, shows that the interaction of the spin (polarization) with the unit vector field induces a rotation, which is additional to the geodesic precession of the spin (polarization) associated with the universe rotation as a whole.« less
Ψ-model of micro- and macrosystems
NASA Astrophysics Data System (ADS)
Perepelkin, E. E.; Sadovnikov, B. I.; Inozemtseva, N. G.
2017-08-01
A mathematical model (referred as Ψ-model for convenience) has been developed, which allows describing certain class of micro- and macrosystems. Ψ-model is based on quantum mechanics and classical mechanics of continuous media. Ψ-model describes micro- and macrosystems, in which vector field of velocities of probability flows, charge, mass has specific spiral structure. The field of velocities has spiral structure on concentric spherical surfaces. The velocity field is not defined and has a characteristic property on the poles of sphere and on the axis and tends to zero at infinity. The behavior of Ψ-model can be described in the general case with time-dependent periodic singular solution of the Schrödinger equation. The goal of this paper is to choose a particular probability flux in the continuity equation which we solve in this paper and deduce from it the solution of the Schrödinger equation. For example, in the frame of approach the problem with modified Coulomb potential was considered.
Structure analysis of turbulent liquid phase by POD and LSE techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munir, S., E-mail: shahzad-munir@comsats.edu.pk; Muthuvalu, M. S.; Siddiqui, M. I.
2014-10-24
In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energymore » containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields.« less
Generalized Case ``Van Kampen theory for electromagnetic oscillations in a magnetized plasma
NASA Astrophysics Data System (ADS)
Bairaktaris, F.; Hizanidis, K.; Ram, A. K.
2017-10-01
The Case-Van Kampen theory is set up to describe electrostatic oscillations in an unmagnetized plasma. Our generalization to electromagnetic oscillations in magnetized plasma is formulated in the relativistic position-momentum phase space of the particles. The relativistic Vlasov equation includes the ambient, homogeneous, magnetic field, and space-time dependent electromagnetic fields that satisfy Maxwell's equations. The standard linearization technique leads to an equation for the perturbed distribution function in terms of the electromagnetic fields. The eigenvalues and eigenfunctions are obtained from three integrals `` each integral being over two different components of the momentum vector. Results connecting phase velocity, frequency, and wave vector will be presented. Supported in part by the Hellenic National Programme on Controlled Thermonuclear Fusion associated with the EUROfusion Consortium, and by DoE Grant DE-FG02-91ER-54109.
Ab initio velocity-field curves in monoclinic β-Ga2O3
NASA Astrophysics Data System (ADS)
Ghosh, Krishnendu; Singisetti, Uttam
2017-07-01
We investigate the high-field transport in monoclinic β-Ga2O3 using a combination of ab initio calculations and full band Monte Carlo (FBMC) simulation. Scattering rate calculation and the final state selection in the FBMC simulation use complete wave-vector (both electron and phonon) and crystal direction dependent electron phonon interaction (EPI) elements. We propose and implement a semi-coarse version of the Wannier-Fourier interpolation method [Giustino et al., Phys. Rev. B 76, 165108 (2007)] for short-range non-polar optical phonon (EPI) elements in order to ease the computational requirement in FBMC simulation. During the interpolation of the EPI, the inverse Fourier sum over the real-space electronic grids is done on a coarse mesh while the unitary rotations are done on a fine mesh. This paper reports the high field transport in monoclinic β-Ga2O3 with deep insight into the contribution of electron-phonon interactions and velocity-field characteristics for electric fields ranging up to 450 kV/cm in different crystal directions. A peak velocity of 2 × 107 cm/s is estimated at an electric field of 200 kV/cm.
Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks
NASA Technical Reports Server (NTRS)
Wilson, L. B., III
2012-01-01
We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves.
Closed-form integrator for the quaternion (euler angle) kinematics equations
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor)
2000-01-01
The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.
Asymptotic stability of spectral-based PDF modeling for homogeneous turbulent flows
NASA Astrophysics Data System (ADS)
Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca
2015-11-01
Engineering models of turbulence, based on one-point statistics, neglect spectral information inherent in a turbulence field. It is well known, however, that the evolution of turbulence is dictated by a complex interplay between the spectral modes of velocity. For example, for homogeneous turbulence, the pressure-rate-of-strain depends on the integrated energy spectrum weighted by components of the wave vectors. The Interacting Particle Representation Model (IPRM) (Kassinos & Reynolds, 1996) and the Velocity/Wave-Vector PDF model (Van Slooten & Pope, 1997) emulate spectral information in an attempt to improve the modeling of turbulence. We investigate the evolution and asymptotic stability of the IPRM using three different approaches. The first approach considers the Lagrangian evolution of individual realizations (idealized as particles) of the stochastic process defined by the IPRM. The second solves Lagrangian evolution equations for clusters of realizations conditional on a given wave vector. The third evolves the solution of the Eulerian conditional PDF corresponding to the aforementioned clusters. This last method avoids issues related to discrete particle noise and slow convergence associated with Lagrangian particle-based simulations.
2016-09-01
Fiberglass wedges are attached to the walls , ceiling and floor of the inner room. Absorption : Reflection of sounds from the side walls is minimized...average of the instantaneous intensity of a sound wave, and it can be expressed as . (1.2) Since vector sensors measure both acoustic pressure and...particle velocity of sound at a point, they can be used to obtain the acoustic intensity at a field point. 2. Cardioid-type Beam Patterns Formed
Crustal block structure by GPS data using neural network in the Northern Tien Shan
NASA Astrophysics Data System (ADS)
Kostuk, A.; Carmenate, D.
2010-05-01
For over ten years regular GPS measurements have been carried out by Research Station RAS in the Central Asia. The results of these measurements have not only proved the conclusion that the Earth's crust meridional compression equals in total about 17 mm/year from the Tarim massif to the Kazakh shield, but have also allowed estimating deformation behavior in the region. As is known, deformation behavior of continental crust is an actively discussed issue. On the one hand, the Earth's crust is presented as a set of microplates (blocks) and deformation here is a result of shifting along the blocks boundaries, on the other hand, lithospheric deformation is distributed by volume and meets the rheological model of nonlinear viscous fluid. This work represents an attempt to detect the block structure of the surface of the Northern Tien Shan using GPS velocity fields. As a significant difference from analogous works, appears the vector field clustering with the help of neural network used as a classifier by many criteria that allows dividing input space into areas and using of all three components of GPS velocity. In this case, we use such a feature of neural networks as self-organization. Among the mechanisms of self-organization there are two main classes: self-organization based on the Hebb associative rule and the mechanism of neuronal competition based on the generalized Kohonen rule. In this case, we use an approach of self-organizing networks in which we take neuronal competition as an algorithm for their training. As a rule, these are single-layer networks where each neuron is connected to all components of m-dimensional input vector. GPS vectors of the Central Asian velocity field located within the territory of the Northern Tien Shan were used as input patterns. Measurements at GPS sites were fulfilled in 36 hour-long sessions by double-frequency receivers Trimble and Topcon. In so doing, measurement discreteness equaled 30 seconds; the data were processed by GAMITGLOBK programs. An overall period of measurements lasted from 1995 to 2005. Those GPS vectors were admitted to processing that had an estimated error no more than 1 mm per year for each of the three components. In general, an obtained cluster structure reflecting the block structure of the Earth's crust of the Northern Tien Shan is proved by the location of active faults. Certainly, the structure analysis of GPS velocity field is a rather complicated task that yet does not have a definite solution; however, obtained results indicate the possibility of using of neural networks for solving such a problem.
NASA Astrophysics Data System (ADS)
Bobra, M. G.; Sun, X.; Hoeksema, J. T.; Turmon, M.; Liu, Y.; Hayashi, K.; Barnes, G.; Leka, K. D.
2014-09-01
A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches ( SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are available within approximately three hours of observation; definitive science products are produced approximately five weeks later. SHARP data are available at jsoc.stanford.edu and maps are available in either of two different coordinate systems. This article describes the SHARP data products and presents examples of SHARP data and parameters.
Thermal noise model of antiferromagnetic dynamics: A macroscopic approach
NASA Astrophysics Data System (ADS)
Li, Xilai; Semenov, Yuriy; Kim, Ki Wook
In the search for post-silicon technologies, antiferromagnetic (AFM) spintronics is receiving widespread attention. Due to faster dynamics when compared with its ferromagnetic counterpart, AFM enables ultra-fast magnetization switching and THz oscillations. A crucial factor that affects the stability of antiferromagnetic dynamics is the thermal fluctuation, rarely considered in AFM research. Here, we derive from theory both stochastic dynamic equations for the macroscopic AFM Neel vector (L-vector) and the corresponding Fokker-Plank equation for the L-vector distribution function. For the dynamic equation approach, thermal noise is modeled by a stochastic fluctuating magnetic field that affects the AFM dynamics. The field is correlated within the correlation time and the amplitude is derived from the energy dissipation theory. For the distribution function approach, the inertial behavior of AFM dynamics forces consideration of the generalized space, including both coordinates and velocities. Finally, applying the proposed thermal noise model, we analyze a particular case of L-vector reversal of AFM nanoparticles by voltage controlled perpendicular magnetic anisotropy (PMA) with a tailored pulse width. This work was supported, in part, by SRC/NRI SWAN.
Reynolds Stress Closure for Inertial Frames and Rotating Frames
NASA Astrophysics Data System (ADS)
Petty, Charles; Benard, Andre
2017-11-01
In a rotating frame-of-reference, the Coriolis acceleration and the mean vorticity field have a profound impact on the redistribution of kinetic energy among the three components of the fluctuating velocity. Consequently, the normalized Reynolds (NR) stress is not objective. Furthermore, because the Reynolds stress is defined as an ensemble average of a product of fluctuating velocity vector fields, its eigenvalues must be non-negative for all turbulent flows. These fundamental properties (realizability and non-objectivity) of the NR-stress cannot be compromised in computational fluid dynamic (CFD) simulations of turbulent flows in either inertial frames or in rotating frames. The recently developed universal realizable anisotropic prestress (URAPS) closure for the NR-stress depends explicitly on the local mean velocity gradient and the Coriolis operator. The URAPS-closure is a significant paradigm shift from turbulent closure models that assume that dyadic-valued operators associated with turbulent fluctuations are objective.
NASA Astrophysics Data System (ADS)
Sergeev, D. A.; Kandaurov, A. A.; Troitskaya, Yu I.
2017-11-01
In this paper we describe PIV-system specially designed for the study of the hydrophysical processes in large-scale benchmark setup of promising fast reactor. The system allows the PIV-measurements for the conditions of complicated configuration of the reactor benchmark, reflections and distortions section of the laser sheet, blackout, in the closed volume. The use of filtering techniques and method of masks images enabled us to reduce the number of incorrect measurement of flow velocity vectors by an order. The method of conversion of image coordinates and velocity field in the reference model of the reactor using a virtual 3D simulation targets, without loss of accuracy in comparison with a method of using physical objects in filming area was released. The results of measurements of velocity fields in various modes, both stationary (workers), as well as in non-stationary (emergency).
NASA Technical Reports Server (NTRS)
Vial, J. C.
1986-01-01
The structure of prominences and the diagnostic techniques used to evaluate their physical parameters are discussed. These include electron temperature, various densities (n sub p, n sub e, n sub l), ionization degree, velocities, and magnetic field vector. UV and radio measurements have already evidenced the existence of different temperature regions, corresponding to different geometrical locations, e.g., the so called Prominence-Corona (P-C) interface. Velocity measurements are important for considering formation and mass balance of prominences but there are conflicting velocity measurements which have led to the basic question: what structure is actually observed at a given wavelength; what averaging is performed within the projected slit area during the exposure time? In optically thick lines, the question of the formation region of the radiation along the line of sight is also not a trivial one. The same is true for low resolution measurements of the magnetic field. Coupling diagnostics with structure is now a general preoccupation.
Implementation of a Personal Computer Based Parameter Estimation Program
1992-03-01
if necessary and identify by biock nunrbet) FEILD GROUP SUBGROUP Il’arunietar uetinkatlUln 19 ABSTRACT (continue on reverse it necessary and identity...model constant ix L,M,N X,Y,Z moment components Lp: •sbc.’.• T’ = sb C . r, - 2 V C, , L, = _sb 2 C 2V C L8,=qsbC 1 , Lw Scale of the turbulence M Vector ...u,v,w X,Y,Z velocity components V Vector velocity V Magnitude of velocity vector w9 Z velocity due to gust X.. x-distance to normal acclerometer X.P x
The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences
NASA Astrophysics Data System (ADS)
Schwalbe, Ellen; Maas, Hans-Gerd
2017-12-01
This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.
Identifying Turbulent Structures through Topological Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bremer, Peer-Timo; Gruber, Andrea; Bennett, Janine C.
2016-01-01
A new method of extracting vortical structures from a turbulent flow is proposed whereby topological segmentation of an indicator function scalar field is used to identify the regions of influence of the individual vortices. This addresses a long-standing challenge in vector field topological analysis: indicator functions commonly used produce a scalar field based on the local velocity vector field; reconstructing regions of influence for a particular structure requires selecting a threshold to define vortex extent. In practice, the same threshold is rarely meaningful throughout a given flow. By also considering the topology of the indicator field function, the characteristics ofmore » vortex strength and extent can be separated and the ambiguity in the choice of the threshold reduced. The proposed approach is able to identify several types of vortices observed in a jet in cross-flow configuration simultaneously where no single threshold value for a selection of common indicator functions appears able to identify all of these vortex types.« less
1985-12-01
Incoherent *scatter observations and their interpretation, 3. Atmos. Tarr. Phys., 34, 351-364, 1972. Bohnk&,R., and Harper,R., Vector measurements of F...equatorial F-region, 3. Atmos. Terr. Phys., 39, 1159-1168, 1977. Rishbeth, H., Ganguly,S., Walker,3.C., Feild -aligned and field-perpendicular velocities
3D-MHD Simulations of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Bayliss, R. A.; Forest, C. B.; Wright, J. C.; O'Connell, R.
2003-10-01
Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations are used to predict behavior of the experiment. The code solves the self-consistent full evolution of the magnetic and velocity fields. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James [Proc. R. Soc. Lond. A 425. 407-429 (1989)]. Initial results indicate that saturation of the magnetic field occurs so that the resulting perturbed backreaction of the induced magnetic field changes the velocity field such that it would no longer be linearly unstable, suggesting non-linear terms are necessary for explaining the resulting state. Saturation and self-excitation depend in detail upon the magnetic Prandtl number.
Group velocity locked vector dissipative solitons in a high repetition rate fiber laser
NASA Astrophysics Data System (ADS)
Luo, Yiyang; Li, Lei; Liu, Deming; Sun, Qizhen; Wu, Zhichao; Xu, Zhilin; Tang, Dingyuan; Fu, Songnian; Zhao, Luming
2016-08-01
Vectorial nature of dissipative solitons (DSs) with high repetition rates is studied for the first time in a normal-dispersion fiber laser. Despite the fact that the formed DSs are strongly chirped and the repetition rate is greater than 100 MHz, polarization locked and polarization rotating group velocity locked vector DSs can be formed under 129.3 MHz fundamental mode-locking and 258.6 MHz harmonic mode-locking of the fiber laser, respectively. The two orthogonally polarized components of these vector DSs possess distinctly different central wavelengths and travel together at the same group velocity in the laser cavity, resulting in a gradual spectral edge and small steps on the optical spectra, which can be considered as an auxiliary indicator of the group velocity locked vector DSs.
NASA Astrophysics Data System (ADS)
Mikheev, N. I.; Goltsman, A. E.; Salekhova, I. G.; Saushin, I. I.
2017-11-01
The results of an experimental evaluation of the third-order moments profiles of velocity fluctuations and their partial derivatives in a zero pressure-gradient turbulent boundary layer are presented. Profiles of characteristics are estimated on the basis of the dynamics of two-component instantaneous velocity vector fields measured by the optical method Smoke Image Velocimetry (SIV). Comparison SIV-measurements with the results of measurements by a thermoanemometer and DNS data with similar Reθ and Reτ showed good agreement between the profiles of +, +, ∂+/∂y+ и ∂+/∂y+ obtained by SIV and DNS.
The role of unsteady buoyancy flux on transient eruption plume velocity structure and evolution
NASA Astrophysics Data System (ADS)
Chojnicki, K. N.; Clarke, A. B.; Phillips, J. C.
2010-12-01
Volcanic vent exit velocities, eruption column velocity profiles, and atmospheric entrainment are important parameters that control the evolution of explosive volcanic eruption plumes. New data sets tracking short-term variability in such parameters are becoming more abundant in volcanology and are being used to indirectly estimate eruption source conditions such vent flux, material properties of the plume, and source mechanisms. However, inadequate theory describing the relationships between time-varying source fluxes and evolution of unsteady turbulent flows such as eruption plumes, limits the interpretation potential of these data sets. In particular, the relative roles of gas-thrust and buoyancy in volcanic explosions is known to generate distinct differences in the ascent dynamics. Here we investigate the role of initial buoyancy in unsteady, short-duration eruption dynamics through scaled laboratory experiments and provide an empirical description of the relationship between unsteady source flux and plume evolution. The experiments involved source fluids of various densities (960-1000 kg/m3) injected, with a range of initial momentum and buoyancy, into a tank of fresh water through a range of vent diameters (3-15 mm). A scaled analysis was used to determine the fundamental parameters governing the evolution of the laboratory plumes as a function of unsteady source conditions. The subsequent model can be applied to predict flow front propagation speeds, and maximum flow height and width of transient volcanic eruption plumes which can not be adequately described by existing steady approximations. In addition, the model describes the relative roles of momentum or gas-thrust and buoyancy in plume motion which is suspected to be a key parameter in quantitatively defining explosive eruption style. The velocity structure of the resulting flows was measured using the Particle Image Velocimetry (PIV) technique in which velocity vector fields were generated from displacements in time-resolved video images of particles in the flow interior. Cross-sectional profiles of vertical velocity and entrainment of ambient fluid were characterized using the resulting velocity vector maps. These data elucidate the relationship between flow front velocity and internal velocity structure which may improve interpretations of field measurements of volcanic explosions. The velocity maps also demonstrate the role of buoyancy in enhancing ambient entrainment and converting vertical velocity to horizontal velocity, which may explain why buoyancy at the vent leads to faster deceleration of the flow.
Satellite angular velocity estimation based on star images and optical flow techniques.
Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele
2013-09-25
An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.
Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques
Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele
2013-01-01
An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components. PMID:24072023
NASA Technical Reports Server (NTRS)
Pinsky, L. S.; Hagstrom, R.
1975-01-01
A magnetic monopole traversing a dielectric medium at a velocity greater than the phase velocity of light in that medium, will give rise to Cerenkov radiation with the electric field tangent to the cone generated by the photon wave propagation vector, and the magnetic field normal to that surface. This is the opposite polarization to that encountered with an electric charge. It is proposed that either by inserting a linearly polarizing layer between the radiator and the photographic emulsion, or by selecting a linearly polarizing material as the radiator, one could directly observe the field polarization by examining the photographic image and thus uniquely identify a magnetic monopole. The ability of the detector is further enhanced by the index of refraction dependence of the Cerenkov output from a magnetic monopole.
Coplanar Doppler Lidar Retrieval of Rotors from T-REX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Michael; Calhoun, Ron; Fernando, H. J. S.
2010-03-01
Two coherent Doppler lidars were deployed during the Terrain-induced Rotor EXperiment (T-REX). Coplanar Range Height Indicator (RHI) scans by the lidars (along the same azimuthal angle) allowed retrieval of two-dimensional velocity vectors on a vertical/cross-barrier plane using the least squares method. Vortices are shown to evolve and advect in the flow field, allowing analysis of their behavior in the mountain-wave-boundary layer system. The locations, magnitudes, and evolution of the vortices can be studied through calculated fields of velocity, vorticity, streamlines, and swirl. Two classes of vortical motions are identified: rotors and sub-rotors, which differ in scale and behavior. The levelmore » of coordination of the two lidars and the nature of the output (i.e., in range-gates) creates inherent restrictions on the spatial and temporal resolution of retrieved fields.« less
NASA Astrophysics Data System (ADS)
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-04-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
NASA Astrophysics Data System (ADS)
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-03-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
Vortex model of open channel flows with gravel beds
NASA Astrophysics Data System (ADS)
Belcher, Brian James
Turbulent structures are known to be important physical processes in gravel-bed rivers. A number of limitations exist that prohibit the advancement and prediction of turbulence structures for optimization of civil infrastructure, biological habitats and sediment transport in gravel-bed rivers. This includes measurement limitations that prohibit characterization of size and strength of turbulent structures in the riverine environment for different case studies as well as traditional numerical modeling limitations that prohibit modeling and prediction of turbulent structure for heterogeneous beds under high Reynolds number flows using the Navier-Stokes equations. While these limitations exist, researchers have developed various theories for the structure of turbulence in boundary layer flows including large eddies in gravel-bed rivers. While these theories have varied in details and applicable conditions, a common hypothesis has been a structural organization in the fluid which links eddies formed at the wall to coherent turbulent structures such as large eddies which may be observed vertically across the entire flow depth in an open channel. Recently physics has also seen the advancement of topological fluid mechanical ideas concerned with the study of vortex structures, braids, links and knots in velocity vector fields. In the present study the structural organization hypothesis is investigated with topological fluid mechanics and experimental results which are used to derive a vortex model for gravel-bed flows. Velocity field measurements in gravel-bed flow conditions in the laboratory were used to characterize temporal and spatial structures which may be attributed to vortex motions and reconnection phenomena. Turbulent velocity time series data were measured with ADV and decomposed using statistical decompositions to measure turbulent length scales. PIV was used to measure spatial velocity vector fields which were decomposed with filtering techniques for flow visualization. Under the specific conditions of a turbulent burst the fluid domain is organized as a braided flow of vortices connected by prime knot patterns of thin-cored flux tubes embedded on an abstract vortex surface itself having topology of a Klein bottle. This model explains observed streamline patterns in the vicinity of a strong turbulent burst in a gravel-bed river as a coherent structure in the turbulent velocity field. KEY WORDS: Open channel flow, turbulence, gravel-bed rivers, coherent structures, velocity distributions
Statistical analysis of dispersion relations in turbulent solar wind fluctuations using Cluster data
NASA Astrophysics Data System (ADS)
Perschke, C.; Narita, Y.
2012-12-01
Multi-spacecraft measurements enable us to resolve three-dimensional spatial structures without assuming Taylor's frozen-in-flow hypothesis. This is very useful to study frequency-wave vector diagram in solar wind turbulence through direct determination of three-dimensional wave vectors. The existence and evolution of dispersion relation and its role in fully-developed plasma turbulence have been drawing attention of physicists, in particular, if solar wind turbulence represents kinetic Alfvén or whistler mode as the carrier of spectral energy among different scales through wave-wave interactions. We investigate solar wind intervals of Cluster data for various flow velocities with a high-resolution wave vector analysis method, Multi-point Signal Resonator technique, at the tetrahedral separation about 100 km. Magnetic field data and ion data are used to determine the frequency- wave vector diagrams in the co-moving frame of the solar wind. We find primarily perpendicular wave vectors in solar wind turbulence which justify the earlier discussions about kinetic Alfvén or whistler wave. The frequency- wave vector diagrams confirm (a) wave vector anisotropy and (b) scattering in frequencies.
NASA Technical Reports Server (NTRS)
Ziegler, H.; Woller, P. T.
1973-01-01
Procedures have been developed for determining the flow field about jets with velocity stratification exhausting into a crossflow. Jets with three different types of exit velocity stratification have been considered: (1) jets with a relatively high velocity core; (2) jets with a relatively low velocity core; and (3) jets originating from a vaned nozzle. The procedure developed for a jet originating from a high velocity core nozzle is to construct an equivalent nozzle having the same mass flow and thrust but having a uniform exit velocity profile. Calculations of the jet centerline and induced surface static pressures have been shown to be in good agreement with test data for a high velocity core nozzle. The equivalent ideal nozzle has also been shown to be a good representation for jets with a relatively low velocity core and for jets originating from a vaned nozzle in evaluating jet-induced flow fields. For the singular case of a low velocity core nozzle, namely a nozzle with a dead air core, and for the vaned nozzle, an alternative procedure has been developed. The internal mixing which takes place in the jet core has been properly accounted for in the equations of motion governing the jet development. Calculations of jet centerlines and induced surface static pressures show good agreement with test data these nozzles.
Yang, Woo-In; Shim, Chi Y; Bang, Woo D; Oh, Chang M; Chang, Hyuk J; Chung, Namsik; Ha, Jong-Won
2011-12-01
Arterial elastic properties change with aging. Measurements of pulse wave velocity and augmentation index are useful for the evaluation of arterial stiffness. However, they likely represent only global characteristics of the arterial tree rather than local vascular alterations. The aim of this study was to evaluate whether local vascular properties assessed by velocity vector imaging differed with aging. Vascular properties of carotid arteries with ages were assessed in 100 healthy volunteers (52 men) ranging from 20 to 68 years using velocity vector imaging. The peak circumferential strain and strain rate of the six segments in left common carotid arteries were analyzed and the standard deviation of the time to peak circumferential strain and strain rate of the six segments, representing the synchronicity of the arterial expansion, were calculated. Central blood pressure, augmentation index and pulse wave velocity were assessed by commercially available radial artery tonometry, the SphygmoCor system (AtCor Medical, West Ryde, Australia). A validated generalized transfer function was used to acquire the central aortic pressures and pressure waveforms. Pulse wave velocity, augmentation index and velocity vector imaging parameters showed significant changes with age. However, the age-related changes in pulse wave velocity, augmentation index and velocity vector imaging parameters were different. The increase in pulse wave velocity was more prominent in older individuals, whereas the changes in augmentation index and carotid strain and strain rate were evident earlier, at the age of 30 years. Unlike augmentation index, which showed little change in older individuals, the standard deviation of time to peak strain and strain rate showed a steady increase from younger to older individuals. Asynchronous arterial expansion could be a useful discriminative marker of vascular aging independent of individual's age.
General Relativity Exactly Described by Use of Newton's Laws within a Curved Geometry
NASA Astrophysics Data System (ADS)
Savickas, David
2014-03-01
The connection between general relativity and Newtonian mechanics is shown to be much closer than generally recognized. When Newton's second law is written in a curved geometry by using the physical components of a vector as defined in tensor calculus, and by replacing distance within the momentum's velocity by the vector metric ds in a curved geometry, the second law can then be easily shown to be exactly identical to the geodesic equation of motion occurring in general relativity. By using a time whose vector direction is constant, as similarly occurs in Newtonian mechanics, this equation can be separated into two equations one of which is a curved three-dimensional equation of motion and the other is an equation for energy. For the gravitational field of an isolated particle, they yield the Schwarzschild equations. They can be used to describe gravitation for any array of masses for which the Newtonian gravitational potential is known, and is applied here to describe motion in the gravitational field of a thin mass-rod.
A vector scanning processing technique for pulsed laser velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Edwards, Robert V.
1989-01-01
Pulsed-laser-sheet velocimetry yields two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high-precision (1-percent) velocity estimates, but can require hours of processing time on specialized array processors. Sometimes, however, a less accurate (about 5 percent) data-reduction technique which also gives unambiguous velocity vector information is acceptable. Here, a direct space-domain processing technique is described and shown to be far superior to previous methods in achieving these objectives. It uses a novel data coding and reduction technique and has no 180-deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 min on an 80386-based PC, producing a two-dimensional velocity-vector map of the flowfield. Pulsed-laser velocimetry data can thus be reduced quickly and reasonably accurately, without specialized array processing hardware.
Umeyama, Motohiko
2012-04-13
This paper investigates the velocity and the trajectory of water particles under surface waves, which propagate at a constant water depth, using particle image velocimetry (PIV). The vector fields and vertical distributions of velocities are presented at several phases in one wave cycle. The third-order Stokes wave theory was employed to express the physical quantities. The PIV technique's ability to measure both temporal and spatial variations of the velocity was proved after a series of attempts. This technique was applied to the prediction of particle trajectory in an Eulerian scheme. Furthermore, the measured particle path was compared with the positions found theoretically by integrating the Eulerian velocity to the higher order of a Taylor series expansion. The profile of average travelling distance is also presented with a solution of zero net mass flux in a closed wave flume.
Numerical modelling of the Madison Dynamo Experiment.
NASA Astrophysics Data System (ADS)
Bayliss, R. A.; Wright, J. C.; Forest, C. B.; O'Connell, R.; Truitt, J. L.
2000-10-01
Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a newly developed 3-D pseudo-spectral simulation of the MHD equations; results of the simulations will be compared to the experimental results obtained from the experiment. The code, Dynamo, is in Fortran90 and allows for full evolution of the magnetic and velocity fields. The induction equation governing B and the Navier-Stokes equation governing V are solved. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James (M.L. Dudley and R.W. James, Time-dependant kinematic dynamos with stationary flows, Proc. R. Soc. Lond. A 425, p. 407 (1989)). Initial results on magnetic field saturation, generated by the simultaneous evolution of magnetic and velocity fields be presented using a variety of mechanical forcing terms.
Pioneer 7 observations of plasma flow and field reversal regions in the distant geomagnetic tail
NASA Technical Reports Server (NTRS)
Walker, R. C.; Lazarus, A. J.; Villante, U.
1975-01-01
The present paper gives the results of an extensive analysis of plasma and magnetic-field data from Pioneer 7 taken in the geomagnetic tail approximately 1000 earth radii downstream from earth. The principal observations are: (1) measurable fluxes of protons in the tail, flowing away from earth, sometimes with a double-peaked velocity distribution; (2) field reversal regions in which the field changes from radial to antiradial by a vector rotation in the north-south plane; and (3) general characteristics of the tail similar to those observed near earth with good correlation between taillike magnetic fields and plasma.
Data-driven Model of the ICME Propagation through the Solar Corona and Inner Heliosphere
NASA Astrophysics Data System (ADS)
Yalim, M. S.; Pogorelov, N.; Singh, T.; Liu, Y.
2017-12-01
The solar wind (SW) emerging from the Sun is the main driving mechanism of solar events which may lead to geomagnetic storms that are the primary causes of space weather disturbances that affect the magnetic environment of Earth and may have hazardous effects on the space-borne and ground-based technological systems as well as human health. Therefore, accurate modeling of the SW is very important to understand the underlying mechanisms of such storms.Getting ready for the Parker Solar Probe mission, we have developed a data-driven magnetohydrodynamic (MHD) model of the global solar corona which utilizes characteristic boundary conditions implemented within the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) - a collection of problem oriented routines incorporated into the Chombo adaptive mesh refinement framework developed at Lawrence Berkeley National Laboratory. Our global solar corona model can be driven by both synoptic and synchronic vector magnetogram data obtained by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) and the horizontal velocity data on the photosphere obtained by applying the Differential Affine Velocity Estimatorfor Vector Magnetograms (DAVE4VM) method on the HMI-observed vector magnetic fields.Our CME generation model is based on Gibson-Low-type flux ropes the parameters of which are determined from analysis of observational data from STEREO/SECCHI, SDO/AIA and SOHO/LASCO, and by applying the Graduate Cylindrical Shell model for the flux rope reconstruction.In this study, we will present the results of three-dimensional global simulations of ICME propagation through our characteristically-consistent MHD model of the background SW from the Sun to Earth driven by HMI-observed vector magnetic fields and validate our results using multiple spacecraft data at 1 AU.
F = qv x B:v Is with Respect to What?
ERIC Educational Resources Information Center
Scheller, Kent W.; Pickett, Thomas J.
2013-01-01
In introductory physics classes, we typically introduce the magnetic force, F = qv x B, on a moving charge and its vector nature using a right-hand rule, as described by numerous textbooks. When presented to students, it is often assumed that the velocity of the charge used in this calculation is relative to the magnetic field in which it travels.…
NASA Astrophysics Data System (ADS)
Nikoueeyan, Pourya; Naughton, Jonathan
2016-11-01
Particle Image Velocimetry is a common choice for qualitative and quantitative characterization of unsteady flows associated with moving bodies (e.g. pitching and plunging airfoils). Characterizing the separated flow behavior is of great importance in understanding the flow physics and developing predictive reduced-order models. In most studies, the model under investigation moves within a fixed camera field-of-view, and vector fields are calculated based on this fixed coordinate system. To better characterize the genesis and evolution of vortical structures in these unsteady flows, the velocity fields need to be transformed into the moving-body frame of reference. Data converted to this coordinate system allow for a more detailed analysis of the flow field using advanced statistical tools. In this work, a pitching NACA0015 airfoil has been used to demonstrate the capability of photogrammetry for such an analysis. Photogrammetry has been used first to locate the airfoil within the image and then to determine an appropriate mask for processing the PIV data. The photogrammetry results are then further used to determine the rotation matrix that transforms the velocity fields to airfoil coordinates. Examples of the important capabilities such a process enables are discussed. P. Nikoueeyan is supported by a fellowship from the University of Wyoming's Engineering Initiative.
Achieving Consistent Doppler Measurements from SDO/HMI Vector Field Inversions
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.; Barnes, Graham
2016-01-01
NASA's Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft-Sun velocity varies by +/-3 kms-1 over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne-Eddington inversions in the HMI pipeline. The procedure ultimately uses 32 velocity-dependent coefficients to adjust 10 million pixels-a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.
Global Solutions to Repulsive Hookean Elastodynamics
NASA Astrophysics Data System (ADS)
Hu, Xianpeng; Masmoudi, Nader
2017-01-01
The global existence of classical solutions to the three dimensional repulsive Hookean elastodynamics around an equilibrium is considered. By linearization and Hodge's decomposition, the compressible part of the velocity, the density, and the compressible part of the transpose of the deformation gradient satisfy Klein-Gordon equations with speed {√{2}}, while the incompressible parts of the velocity and of the transpose of the deformation gradient satisfy wave equations with speed one. The space-time resonance method combined with the vector field method is used in a novel way to obtain the decay of the solution and hence global existence.
Compressible flow in a diffusing S-duct with flow separation
NASA Technical Reports Server (NTRS)
Vakili, A. D.; Wu, J. M.; Bhat, M. K.; Liver, P.
1987-01-01
Local flow velocity vectors, as well as static and total pressures along ten radial traverses, were obtained at six stations for secondary flows in a diffusing 30-30-deg S-duct with circular cross section. The strong secondary flow measured in the first bend continued into the second with new vorticity produced in the opposite direction. Contour plots representing the transverse velocity field, as well as total and static pressure contours, have been obtained. As a result of the secondary flow and subsequent separation, substantial total pressure distortion is noted to occur at the duct exit.
Electro-gravity via geometric chrononfield
NASA Astrophysics Data System (ADS)
Suchard, Eytan H.
2017-05-01
In De Sitter / Anti De Sitter space-time and in other geometries, reference sub-manifolds from which proper time is measured along integral curves, are described as events. We introduce here a foliation with the help of a scalar field. The scalar field need not be unique but from the gradient of the scalar field, an intrinsic Reeb vector of the foliations perpendicular to the gradient vector is calculated. The Reeb vector describes the acceleration of a physical particle that moves along the integral curves that are formed by the gradient of the scalar field. The Reeb vector appears as a component of an anti-symmetric matrix which is a part of a rank-2, 2-Form. The 2-form is extended into a non-degenerate 4-form and into rank-4 matrix of a 2-form, which when multiplied by a velocity of a particle, becomes the acceleration of the particle. The matrix has one U(1) degree of freedom and an additional SU(2) degrees of freedom in two vectors that span the plane perpendicular to the gradient of the scalar field and to the Reeb vector. In total, there are U(1) x SU(2) degrees of freedom. SU(3) degrees of freedom arise from three dimensional foliations but require an additional symmetry to exist in order to have a valid covariant meaning. Matter in the Einstein Grossmann equation is replaced by the action of the acceleration field, i.e. by a geometric action which is not anticipated by the metric alone. This idea leads to a new formalism that replaces the conventional stress-energy-momentum-tensor. The formalism will be mainly developed for classical physics but will also be discussed for quantized physics based on events instead of particles. The result is that a positive charge manifests small attracting gravity and a stronger but small repelling acceleration field that repels even uncharged particles that have a rest mass. Negative charge manifests a repelling anti-gravity but also a stronger acceleration field that attracts even uncharged particles that have rest mass. Preliminary version: http://sciencedomain.org/abstract/9858
Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M.
2013-01-01
This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8–14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited. PMID:23857257
Jiang, Jingfeng; Johnson, Kevin; Valen-Sendstad, Kristian; Mardal, Kent-Andre; Wieben, Oliver; Strother, Charles
2011-01-01
Purpose: Our purpose was to compare quantitatively velocity fields in and around experimental canine aneurysms as measured using an accelerated 4D PC-MR angiography (MRA) method and calculated based on animal-specific CFD simulations. Methods: Two animals with a surgically created bifurcation aneurysm were imaged using an accelerated 4D PC-MRA method. Meshes were created based on the geometries obtained from the PC-MRA and simulations using “subject-specific” pulsatile velocity waveforms and geometries were then solved using a commercial CFD solver. Qualitative visual assessments and quantitative comparisons of the time-resolved velocity fields obtained from the PC-MRA measurements and the CFD simulations were performed using a defined similarity metric combining both angular and magnitude differences of vector fields. Results: PC-MRA and image-based CFD not only yielded visually consistent representations of 3D streamlines in and around both aneurysms, but also showed good agreement with regard to the spatial velocity distributions. The estimated similarity between time-resolved velocity fields from both techniques was reasonably high (mean value >0.60; one being the highest and zero being the lowest). Relative differences in inflow and outflow zones among selected planes were also reasonable (on the order of 10%–20%). The correlation between CFD-calculated and PC-MRA-measured time-averaged wall shear stresses was low (0.22 and 0.31, p < 0.001). Conclusions: In two experimental canine aneurysms, PC-MRA and image-based CFD showed favorable agreement in intra-aneurismal velocity fields. Combining these two complementary techniques likely will further improve the ability to characterize and interpret the complex flow that occurs in human intracranial aneurysms. PMID:22047395
NASA Technical Reports Server (NTRS)
Bean, W. C.
1971-01-01
Comparison of two-impulse and three-impulse orbital transfer, using data from a 63-case numerical study. For each case investigated for which coplanarity of the regressing assembly parking ellipse was attained with the target asymptotic velocity vector, a two-impulse maneuver (or a one-impulse equivalent) was found for which the velocity expenditure was within 1% of a reference absolute minimum lower bound. Therefore, for the coplanar cases, use of a minimum delta-V three-impulse maneuver afforded scant improvement in velocity penalty. However, as the noncoplanarity of the parking ellipse and the target asymptotic velocity vector increased, there was a significant increase in the superiority of minimum delta-V three-impulse maneuvers for slowing the growth of velocity expenditure. It is concluded that a multiple-impulse maneuver should be contemplated if nonnominal launch conditions could occur.
Visualization of flow by vector analysis of multidirectional cine MR velocity mapping.
Mohiaddin, R H; Yang, G Z; Kilner, P J
1994-01-01
We describe a noninvasive method for visualization of flow and demonstrate its application in a flow phantom and in the great vessels of healthy volunteers and patients with aortic and pulmonary arterial disease. The technique uses multidirectional MR velocity mapping acquired in selected planes. Maps of orthogonal velocity components were then processed into a graphic form immediately recognizable as flow. Cine MR velocity maps of orthogonal velocity components in selected planes were acquired in a flow phantom, 10 healthy volunteers, and 13 patients with dilated great vessels. Velocities were presented by multiple computer-generated streaks whose orientation, length, and movement corresponded to velocity vectors in the chosen plane. The velocity vector maps allowed visualization of complex patterns of primary and secondary flow in the thoracic aorta and pulmonary arteries. The technique revealed coherent, helical forward blood movements in the normal thoracic aorta during midsystole and a reverse flow during early diastole. Abnormal flow patterns with secondary vortices were seen in patients with dilated arteries. The potential of MR velocity vector mapping for in vitro and in vivo visualization of flow patterns is demonstrated. Although this study was limited to two-directional flow in a single anatomical plane, the method provides information that might advance our understanding of the human vascular system in health and disease. Further developments to reduce the acquisition time and the handling and presenting of three-directional velocity data are required to enhance the capability of this method.
Full field gas phase velocity measurements in microgravity
NASA Technical Reports Server (NTRS)
Griffin, Devon W.; Yanis, William
1995-01-01
Measurement of full-field velocities via Particle Imaging Velocimetry (PIV) is common in research efforts involving fluid motion. While such measurements have been successfully performed in the liquid phase in a microgravity environment, gas-phase measurements have been beset by difficulties with seeding and laser strength. A synthesis of techniques developed at NASA LeRC exhibits promise in overcoming these difficulties. Typical implementation of PIV involves forming the light from a pulsed laser into a sheet that is some fraction of a millimeter thick and 50 or more millimeters wide. When a particle enters this sheet during a pulse, light scattered from the particle is recorded by a detector, which may be a film plane or a CCD array. Assuming that the particle remains within the boundaries of the sheet for the second pulse and can be distinguished from neighboring particles, comparison of the two images produces an average velocity vector for the time between the pulses. If the concentration of particles in the sampling volume is sufficiently large but the particles remain discrete, a full field map may be generated.
ERIC Educational Resources Information Center
Barniol, Pablo; Zavala, Genaro
2014-01-01
In this article we compare students' understanding of vector concepts in problems with no physical context, and with three mechanics contexts: force, velocity, and work. Based on our "Test of Understanding of Vectors," a multiple-choice test presented elsewhere, we designed two isomorphic shorter versions of 12 items each: a test with no…
Systems and Methods for Determining Inertial Navigation System Faults
NASA Technical Reports Server (NTRS)
Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)
2017-01-01
An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.
NASA Astrophysics Data System (ADS)
Nath, G.; Sinha, A. K.
2017-01-01
The propagation of a cylindrical shock wave in an ideal gas in the presence of a constant azimuthal magnetic field with consideration for the axisymmetric rotational effects is investigated. The ambient medium is assumed to have the radial, axial, and azimuthal velocity components. The fluid velocities and density of the ambient medium are assumed to vary according to an exponential law. Nonsimilar solutions are obtained by taking into account the vorticity vector and its components. The dependences of the characteristics of the problem on the Alfven-Mach number and time are obtained. It is shown that the presence of a magnetic field has a decaying effect on the shock wave. The pressure and density are shown to vanish at the inner surface (piston), and hence a vacuum forms at the line of symmetry.
Orion Exploration Flight Test-1 Contingency Drogue Deploy Velocity Trigger
NASA Technical Reports Server (NTRS)
Gay, Robert S.; Stochowiak, Susan; Smith, Kelly
2013-01-01
As a backup to the GPS-aided Kalman filter and the Barometric altimeter, an "adjusted" velocity trigger is used during entry to trigger the chain of events that leads to drogue chute deploy for the Orion Multi-Purpose Crew Vehicle (MPCV) Exploration Flight Test-1 (EFT-1). Even though this scenario is multiple failures deep, the Orion Guidance, Navigation, and Control (GN&C) software makes use of a clever technique that was taken from the Mars Science Laboratory (MSL) program, which recently successfully landing the Curiosity rover on Mars. MSL used this technique to jettison the heat shield at the proper time during descent. Originally, Orion use the un-adjusted navigated velocity, but the removal of the Star Tracker to save costs for EFT-1, increased attitude errors which increased inertial propagation errors to the point where the un-adjusted velocity caused altitude dispersions at drogue deploy to be too large. Thus, to reduce dispersions, the velocity vector is projected onto a "reference" vector that represents the nominal "truth" vector at the desired point in the trajectory. Because the navigation errors are largely perpendicular to the truth vector, this projection significantly reduces dispersions in the velocity magnitude. This paper will detail the evolution of this trigger method for the Orion project and cover the various methods tested to determine the reference "truth" vector; and at what point in the trajectory it should be computed.
Aviation Trainer Technology Test Plan. Volume II. Software Development
1991-11-25
feild values in new node *Ieg>X=x newg->X = Y newg->Len =len; newg->Help =help; newg->Ignore = ignore; newg->Format = format; newg->Validation - NULL;I... vector : North long varVFE; /* F-16A velocity vector : East long varVFU; /* F-16A velocity vector : Up */ long varH; /* plane heading */ long varC; /* plane...31\\\\ETH523.sys" parmsdr.args=getds(); parmsdr.non7=OxOO; /*save interrupt vector for future restoration */ cSavvecso; rc=getdso; rc=cInitParameters
NASA Astrophysics Data System (ADS)
Martin, E. H.; Klepper, C. C.; Isler, R. C.; Goniche, M.; Caughman, J. B. O.
2014-10-01
Recently, the RF electric field vector (ELH) in front of a lower hybrid (LH) launcher, operating at 3.7 GHz, at the low field side of the Tore Supra tokamak was determined by spectroscopic analysis of passive Dβ spectral emission from the near-antenna plasma. The ELH was determined by globally minimizing the χ associated with the experimental and theoretical spectral line profile. The theoretical profile is calculated from a non-perturbative solution to the Schrödinger equation, which includes the magnetic and dynamic electric field vectors. The magnitude, the direction, and the scaling with LH power of the measured ELH were fairly consistent with those calculated from a full-wave LH model. In addition to ELH the inboard and an outboard neutral flow was determined from the Doppler shifts associated with the Dα and Dβ spectral profiles. It was found that excitation of the LH wave induced both an inboard and outboard co-current neutral flow, which is linearly dependent on injected power; preliminary results indicate ICRH decreases the LH wave-induced co-current neutral flow. Neutral flow velocities are consistent with measurements of ion flow velocities obtained by charge exchange recombination spectroscopy. Work supported by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC., and by the European Communities under the contract of Assoc. EURATOM-CEA and within the framework of the EFDA.
Nath, G; Sahu, P K
2016-01-01
A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.
Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery
NASA Technical Reports Server (NTRS)
Pope, P. A.; Emery, W. J.; Radebaugh, M.
1992-01-01
High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared brightness temperature imagery yielded a velocity field which did agree with the subjective analysis of the motion and that derived from the visible gradient imagery. Differences between the visible and infrared derived velocities were 14.9 cm/s in speed and 56.7 degrees in direction. Both of these velocity fields also agreed well with the motion expected from considerations of the ocean bottom topography and wind and tidal forcing in the study area during the 2.175 hour time interval.
An X-Ray Source for Lithography Based on a Quasi-Optical Maser Undulator
1989-05-09
an electron, c is the speed of light in vacuo, B is the peak magnetic induction and X is the period of the planar undulator or wiggler, the wavelength...relativistic motion is given 11 p = Le’ Y 6 [2 - X )2] (4) where = v/c is the particle velocity normalized to the speAd of light , and § /c, where v = -v is...k0 z + Wt),) (7) where E is the amplitude of the electric field, w is the radian frequency A and k a (0,0,k ) is the wave- vector . ez is a unit vector
Wave Telescope Technique for MMS Magnetometer
NASA Technical Reports Server (NTRS)
Narita, Y.; Plaschke, F.; Nakamura, R.; Baumjojann, W.; Magnes, W.; Fischer, D.; Voros, Z.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.;
2016-01-01
Multipoint measurements are a powerful method in studying wavefields in space plasmas.The wave telescope technique is tested against magnetic field fluctuations in the terrestrial magnetosheath measured by the four Magnetospheric Multiscale (MMS) spacecraft on a spatial scale of about 20 km.The dispersion relation diagram and the wave vector distribution are determined for the first time in the ion-kinetic range. Moreover, the dispersion relation diagram is determined in a proxy plasma restframe by regarding the low-frequency dispersion relation as a Doppler relation and compensating for the apparent phase velocity. Fluctuations are highly compressible, and the wave vectors have an angle of about 60 from the mean magnetic field. We interpret that the measured fluctuations represent akinetic-drift mirror mode in the magnetosheath which is dispersive and in a turbulent state accompanied by a sideband formation.
Quasi-steady-state analysis of coupled flashing ratchets.
Levien, Ethan; Bressloff, Paul C
2015-10-01
We perform a quasi-steady-state (QSS) reduction of a flashing ratchet to obtain a Brownian particle in an effective potential. The resulting system is analytically tractable and yet preserves essential dynamical features of the full model. We first use the QSS reduction to derive an explicit expression for the velocity of a simple two-state flashing ratchet. In particular, we determine the relationship between perturbations from detailed balance, which are encoded in the transitions rates of the flashing ratchet, and a tilted-periodic potential. We then perform a QSS analysis of a pair of elastically coupled flashing ratchets, which reduces to a Brownian particle moving in a two-dimensional vector field. We suggest that the fixed points of this vector field accurately approximate the metastable spatial locations of the coupled ratchets, which are, in general, impossible to identify from the full system.
Large-Scale Survey of the Structure of the Dayside Magnetopause by MMS
NASA Astrophysics Data System (ADS)
Paschmann, G.; Haaland, S. E.; Phan, T. D.; Sonnerup, B. U. Ö.; Burch, J. L.; Torbert, R. B.; Gershman, D. J.; Dorelli, J. C.; Giles, B. L.; Pollock, C.; Saito, Y.; Lavraud, B.; Russell, C. T.; Strangeway, R. J.; Baumjohann, W.; Fuselier, S. A.
2018-03-01
This paper describes the generation and initial utilization of a database containing 80 vector and scalar quantities, for a total of 8,670 magnetopause and magnetosheath current sheet crossings by MMS1, using plasma and magnetic field data from the Fast Plasma Investigation, Fluxgate Magnetometer, and Hot Plasma Composition Analyzer instruments, augmented by solar wind and interplanetary magnetic field data from CDAWeb. Based on a determination of the current sheet width, measured and calculated vector and scalar quantities are stored for the two sides of the current sheet and for selected times within the current sheet. The only manual operations were the classification of the current sheets according to the type of boundary, the character of the magnetic field transition, and the quality of the current sheet fit. To characterize the database, histograms of selected key quantities are presented. We then give the statistics for the duration, motion, and thicknesses of the magnetopause current sheet, using single-spacecraft techniques for the determination of the normal velocities, obtaining median results of 12.9 s, 38.5 km/s, and 705.4 km, respectively. When scaled to the ion inertial length, the median thickness became 12.6; there were no thicknesses less than one. Next, we apply the Walén relation to find crossings that are rotational discontinuities and thus may indicate ongoing magnetic reconnection. For crossings where the velocities in the outflow region exceed the velocity on the magnetosheath side by at least 250 km/s, 47% meet our rotational discontinuity criteria. If we require the outflow to exceed 250 km/s along the L direction, then the percentage rises to 68%.
A dual potential formulation of the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Gegg, S. G.; Pletcher, R. H.; Steger, J. L.
1989-01-01
A dual potential formulation for numerically solving the Navier-Stokes equations is developed and presented. The velocity field is decomposed using a scalar and vector potential. Vorticity and dilatation are used as the dependent variables in the momentum equations. Test cases in two dimensions verify the capability to solve flows using approximations from potential flow to full Navier-Stokes simulations. A three-dimensional incompressible flow formulation is also described. An interesting feature of this approach to solving the Navier-Stokes equations is the decomposition of the velocity field into a rotational part (vector potential) and an irrotational part (scalar potential). The Helmholtz decomposition theorem allows this splitting of the velocity field. This approach has had only limited use since it increases the number of dependent variables in the solution. However, it has often been used for incompressible flows where the solution scheme is known to be fast and accurate. This research extends the usage of this method to fully compressible Navier-Stokes simulations by using the dilatation variable along with vorticity. A time-accurate, iterative algorithm is used for the uncoupled solution of the governing equations. Several levels of flow approximation are available within the framework of this method. Potential flow, Euler and full Navier-Stokes solutions are possible using the dual potential formulation. Solution efficiency can be enhanced in a straightforward way. For some flows, the vorticity and/or dilatation may be negligible in certain regions (e.g., far from a viscous boundary in an external flow). It is possible to drop the calculation of these variables then and optimize the solution speed. Also, efficient Poisson solvers are available for the potentials. The relative merits of non-primitive variables versus primitive variables for solution of the Navier-Stokes equations are also discussed.
NASA Astrophysics Data System (ADS)
Perestoronin, A. V.
2017-03-01
An approach to the solution of the relativistic problem of the motion of a classical charged particle in the field of a monochromatic plane wave with an arbitrary polarization (linear, circular, or elliptic) is proposed. It is based on the analysis of the 4-vector equation of motion of the charged particle together with the 4-vector and tensor equations for the components of the electromagnetic field tensor of a monochromatic plane wave. This approach provides analytical expressions for the time-averaged square of the 4-acceleration of the charge, as well as for the averaged values of any quantities periodic in the time of the reference frame. Expressions for the integral power of scattered radiation, which is proportional to the time-averaged square of the 4-acceleration of the charge, and for the integral scattering cross section, which is the ratio of the power of scattered radiation to the intensity of incident radiation, are obtained for an arbitrary inertial reference frame. An expression for the scattering cross section, which coincides with the known results at the circular and linear polarizations of the incident waves and describes the case of elliptic polarization of the incident wave, is obtained for the reference frame where the charged particle is on average at rest. An expression for the scattering cross section including relativistic effects and the nonzero drift velocity of a particle in this system is obtained for the laboratory reference frame, where the initial velocity of the charged particle is zero. In the case of the circular polarization of the incident wave, the scattering cross section in the laboratory frame is equal to the Thompson cross section.
Research on Extrusion of Rubber Composites Reinforced by Short Fibers Orientation Based on FEA
NASA Astrophysics Data System (ADS)
Zhang, Dewei; Wang, Chuansheng; Shen, Bo; Li, Shaoming; Bian, Huiguang
2018-06-01
In recent years, rubber composites reinforced by short fibers has been researched deeply, because of its good performances such as higher wear resistance, higher cut resistance and so on. Some research results indicated that if short fibers get orientation in rubber composites, the performances of rubber products could be promoted greatly. But how to make short fibers get orientation in rubber matrix during extrusion is still a real problem. And there are many parameters affect the short fibers orientation. So, in this paper, the effects of die structure including expansion-die and dam-expansion-die on extrusion flow field of short fiber and rubber composite material during extrusion process has been researched by Polyflow. And the FEA results about the pressure field, velocity field and the velocity vector of the rubber composites flow field indicate that, comparing with expansion-die and the dam-expansion-die, the latter one is better for the extrusion process of rubber composites and making short fibers get radial orientation in rubber matrix.
Analysis of the stress field and strain rate in Zagros-Makran transition zone
NASA Astrophysics Data System (ADS)
Ghorbani Rostam, Ghasem; Pakzad, Mehrdad; Mirzaei, Noorbakhsh; Sakhaei, Seyed Reza
2018-01-01
Transition boundary between Zagros continental collision and Makran oceanic-continental subduction can be specified by two wide limits: (a) Oman Line is the seismicity boundary with a sizeable reduction in seismicity rate from Zagros in the west to Makran in the east; and (b) the Zendan-Minab-Palami (ZMP) fault system is believed to be a prominent tectonic boundary. The purpose of this paper is to analyze the stress field in the Zagros-Makran transition zone by the iterative joint inversion method developed by Vavrycuk (Geophysical Journal International 199:69-77, 2014). The results suggest a rather uniform pattern of the stress field around these two boundaries. We compare the results with the strain rates obtained from the Global Positioning System (GPS) network stations. In most cases, the velocity vectors show a relatively good agreement with the stress field except for the Bandar Abbas (BABS) station which displays a relatively large deviation between the stress field and the strain vector. This deviation probably reflects a specific location of the BABS station being in the transition zone between Zagros continental collision and Makran subduction zones.
Specific features of the flow structure in a reactive type turbine stage
NASA Astrophysics Data System (ADS)
Chernikov, V. A.; Semakina, E. Yu.
2017-04-01
The results of experimental studies of the gas dynamics for a reactive type turbine stage are presented. The objective of the studies is the measurement of the 3D flow fields in reference cross sections, experimental determination of the stage characteristics, and analysis of the flow structure for detecting the sources of kinetic energy losses. The integral characteristics of the studied stage are obtained by averaging the results of traversing the 3D flow over the area of the reference cross sections before and behind the stage. The averaging is performed using the conservation equations for mass, total energy flux, angular momentum with respect to the axis z of the turbine, entropy flow, and the radial projection of the momentum flux equation. The flow parameter distributions along the channel height behind the stage are obtained in the same way. More thorough analysis of the flow structure is performed after interpolation of the experimentally measured point parameter values and 3D flow velocities behind the stage. The obtained continuous velocity distributions in the absolute and relative coordinate systems are presented in the form of vector fields. The coordinates of the centers and the vectors of secondary vortices are determined using the results of point measurements of velocity vectors in the cross section behind the turbine stage and their subsequent interpolation. The approach to analysis of experimental data on aerodynamics of the turbine stage applied in this study allows one to find the detailed space structure of the working medium flow, including secondary coherent vortices at the root and peripheral regions of the air-gas part of the stage. The measured 3D flow parameter fields and their interpolation, on the one hand, point to possible sources of increased power losses, and, on the other hand, may serve as the basis for detailed testing of CFD models of the flow using both integral and local characteristics. The comparison of the numerical and experimental results, as regards local characteristics, using statistical methods yields the quantitative estimate of their agreement.
Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements
NASA Astrophysics Data System (ADS)
Wang, Wei; Qiao, Xuejun; Yang, Shaomin; Wang, Dijin
2017-02-01
In this study, we present a new synthesis of GPS velocities for tectonic deformation within the Tibetan Plateau and its surrounding areas, a combined data set of ˜1854 GPS-derived horizontal velocity vectors. Assuming that crustal deformation is localized along major faults, a block modelling approach is employed to interpret the GPS velocity field. We construct a 30-element block model to describe present-day deformation in western China, with half of them located within the Tibetan Plateau, and the remainder located in its surrounding areas. We model the GPS velocities simultaneously for the effects of block rotations and elastic strain induced by the bounding faults. Our model yields a good fit to the GPS data with a mean residual of 1.08 mm a-1 compared to the mean uncertainty of 1.36 mm a-1 for each velocity component, indicating a good agreement between the predicted and observed velocities. The major strike-slip faults such as the Altyn Tagh, Xianshuihe, Kunlun and Haiyuan faults have relatively uniform slip rates in a range of 5-12 mm a-1 along most of their segments, and the estimated fault slip rates agree well with previous geologic and geodetic results. Blocks having significant residuals are located at the southern and southeastern Tibetan Plateau, suggesting complex tectonic settings and further refinement of accurate definition of block geometry in these regions.
NASA Astrophysics Data System (ADS)
Zimmerman, S.; Morrill-Winter, C.; Klewicki, J.
2017-10-01
A multi-sensor hot-wire probe for simultaneously measuring all three components of velocity and vorticity in boundary layers has been designed, fabricated and implemented in experiments up to large Reynolds numbers. The probe consists of eight hot-wires, compactly arranged in two pairs of orthogonal ×-wire arrays. The ×-wire sub-arrays are symmetrically configured such that the full velocity and vorticity vectors are resolved about a single central location. During its design phase, the capacity of this sensor to accurately measure each component of velocity and vorticity was first evaluated via a synthetic experiment in a set of well-resolved DNS fields. The synthetic experiments clarified probe geometry effects, allowed assessment of various processing schemes, and predicted the effects of finite wire length and wire separation on turbulence statistics. The probe was subsequently fabricated and employed in large Reynolds number experiments in the Flow Physics Facility wind tunnel at the University of New Hampshire. Comparisons of statistics from the actual probe with those from the simulated sensor exhibit very good agreement in trend, but with some differences in magnitude. These comparisons also reveal that the use of gradient information in processing the probe data can significantly improve the accuracy of the spanwise velocity measurement near the wall. To the authors' knowledge, the present are the largest Reynolds number laboratory-based measurements of all three vorticity components in boundary layers.
Design of thrust vectoring exhaust nozzles for real-time applications using neural networks
NASA Technical Reports Server (NTRS)
Prasanth, Ravi K.; Markin, Robert E.; Whitaker, Kevin W.
1991-01-01
Thrust vectoring continues to be an important issue in military aircraft system designs. A recently developed concept of vectoring aircraft thrust makes use of flexible exhaust nozzles. Subtle modifications in the nozzle wall contours produce a non-uniform flow field containing a complex pattern of shock and expansion waves. The end result, due to the asymmetric velocity and pressure distributions, is vectored thrust. Specification of the nozzle contours required for a desired thrust vector angle (an inverse design problem) has been achieved with genetic algorithms. This approach is computationally intensive and prevents the nozzles from being designed in real-time, which is necessary for an operational aircraft system. An investigation was conducted into using genetic algorithms to train a neural network in an attempt to obtain, in real-time, two-dimensional nozzle contours. Results show that genetic algorithm trained neural networks provide a viable, real-time alternative for designing thrust vectoring nozzles contours. Thrust vector angles up to 20 deg were obtained within an average error of 0.0914 deg. The error surfaces encountered were highly degenerate and thus the robustness of genetic algorithms was well suited for minimizing global errors.
Kim, Keonwook
2013-08-23
The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably.
Polarized Kink Waves in Magnetic Elements: Evidence for Chromospheric Helical Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stangalini, M.; Giannattasio, F.; Erdélyi, R.
In recent years, new high spatial resolution observations of the Sun's atmosphere have revealed the presence of a plethora of small-scale magnetic elements down to the resolution limit of the current cohort of solar telescopes (∼100–120 km on the solar photosphere). These small magnetic field concentrations, due to the granular buffeting, can support and guide several magnetohydrodynamic wave modes that would eventually contribute to the energy budget of the upper layers of the atmosphere. In this work, exploiting the high spatial and temporal resolution chromospheric data acquired with the Swedish 1 m Solar Telescope, and applying the empirical mode decompositionmore » technique to the tracking of the solar magnetic features, we analyze the perturbations of the horizontal velocity vector of a set of chromospheric magnetic elements. We find observational evidence that suggests a phase relation between the two components of the velocity vector itself, resulting in its helical motion.« less
Blending Velocities In Task Space In Computing Robot Motions
NASA Technical Reports Server (NTRS)
Volpe, Richard A.
1995-01-01
Blending of linear and angular velocities between sequential specified points in task space constitutes theoretical basis of improved method of computing trajectories followed by robotic manipulators. In method, generalized velocity-vector-blending technique provides relatively simple, common conceptual framework for blending linear, angular, and other parametric velocities. Velocity vectors originate from straight-line segments connecting specified task-space points, called "via frames" and represent specified robot poses. Linear-velocity-blending functions chosen from among first-order, third-order-polynomial, and cycloidal options. Angular velocities blended by use of first-order approximation of previous orientation-matrix-blending formulation. Angular-velocity approximation yields small residual error, quantified and corrected. Method offers both relative simplicity and speed needed for generation of robot-manipulator trajectories in real time.
A new approach to impulsive rendezvous near circular orbit
NASA Astrophysics Data System (ADS)
Carter, Thomas; Humi, Mayer
2012-04-01
A new approach is presented for the problem of planar optimal impulsive rendezvous of a spacecraft in an inertial frame near a circular orbit in a Newtonian gravitational field. The total characteristic velocity to be minimized is replaced by a related characteristic-value function and this related optimization problem can be solved in closed form. The solution of this problem is shown to approach the solution of the original problem in the limit as the boundary conditions approach those of a circular orbit. Using a form of primer-vector theory the problem is formulated in a way that leads to relatively easy calculation of the optimal velocity increments. A certain vector that can easily be calculated from the boundary conditions determines the number of impulses required for solution of the optimization problem and also is useful in the computation of these velocity increments. Necessary and sufficient conditions for boundary conditions to require exactly three nonsingular non-degenerate impulses for solution of the related optimal rendezvous problem, and a means of calculating these velocity increments are presented. A simple example of a three-impulse rendezvous problem is solved and the resulting trajectory is depicted. Optimal non-degenerate nonsingular two-impulse rendezvous for the related problem is found to consist of four categories of solutions depending on the four ways the primer vector locus intersects the unit circle. Necessary and sufficient conditions for each category of solutions are presented. The region of the boundary values that admit each category of solutions of the related problem are found, and in each case a closed-form solution of the optimal velocity increments is presented. Similar results are presented for the simpler optimal rendezvous that require only one-impulse. For brevity degenerate and singular solutions are not discussed in detail, but should be presented in a following study. Although this approach is thought to provide simpler computations than existing methods, its main contribution may be in establishing a new approach to the more general problem.
NASA Astrophysics Data System (ADS)
Gliß, Jonas; Stebel, Kerstin; Kylling, Arve; Sudbø, Aasmund
2018-02-01
Accurate gas velocity measurements in emission plumes are highly desirable for various atmospheric remote sensing applications. The imaging technique of UV SO2 cameras is commonly used to monitor SO2 emissions from volcanoes and anthropogenic sources (e.g. power plants, ships). The camera systems capture the emission plumes at high spatial and temporal resolution. This allows the gas velocities in the plume to be retrieved directly from the images. The latter can be measured at a pixel level using optical flow (OF) algorithms. This is particularly advantageous under turbulent plume conditions. However, OF algorithms intrinsically rely on contrast in the images and often fail to detect motion in low-contrast image areas. We present a new method to identify ill-constrained OF motion vectors and replace them using the local average velocity vector. The latter is derived based on histograms of the retrieved OF motion fields. The new method is applied to two example data sets recorded at Mt Etna (Italy) and Guallatiri (Chile). We show that in many cases, the uncorrected OF yields significantly underestimated SO2 emission rates. We further show that our proposed correction can account for this and that it significantly improves the reliability of optical-flow-based gas velocity retrievals. In the case of Mt Etna, the SO2 emissions of the north-eastern crater are investigated. The corrected SO2 emission rates range between 4.8 and 10.7 kg s-1 (average of 7.1 ± 1.3 kg s-1) and are in good agreement with previously reported values. For the Guallatiri data, the emissions of the central crater and a fumarolic field are investigated. The retrieved SO2 emission rates are between 0.5 and 2.9 kg s-1 (average of 1.3 ± 0.5 kg s-1) and provide the first report of SO2 emissions from this remotely located and inaccessible volcano.
Time-dependent London approach: Dissipation due to out-of-core normal excitations by moving vortices
Kogan, V. G.
2018-03-19
The dissipative currents due to normal excitations are included in the London description. The resulting time-dependent London equations are solved for a moving vortex and a moving vortex lattice. It is shown that the field distribution of a moving vortex loses its cylindrical symmetry. It experiences contraction that is stronger in the direction of the motion than in the direction normal to the velocity v. The London contribution of normal currents to dissipation is small relative to the Bardeen-Stephen core dissipation at small velocities, but it approaches the latter at high velocities, where this contribution is no longer proportional tomore » v 2. Here, to minimize the London contribution to dissipation, the vortex lattice is oriented so as to have one of the unit cell vectors along the velocity. This effect is seen in experiments and predicted within the time-dependent Ginzburg-Landau theory.« less
Time-dependent London approach: Dissipation due to out-of-core normal excitations by moving vortices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogan, V. G.
The dissipative currents due to normal excitations are included in the London description. The resulting time-dependent London equations are solved for a moving vortex and a moving vortex lattice. It is shown that the field distribution of a moving vortex loses its cylindrical symmetry. It experiences contraction that is stronger in the direction of the motion than in the direction normal to the velocity v. The London contribution of normal currents to dissipation is small relative to the Bardeen-Stephen core dissipation at small velocities, but it approaches the latter at high velocities, where this contribution is no longer proportional tomore » v 2. Here, to minimize the London contribution to dissipation, the vortex lattice is oriented so as to have one of the unit cell vectors along the velocity. This effect is seen in experiments and predicted within the time-dependent Ginzburg-Landau theory.« less
Time-dependent London approach: Dissipation due to out-of-core normal excitations by moving vortices
NASA Astrophysics Data System (ADS)
Kogan, V. G.
2018-03-01
The dissipative currents due to normal excitations are included in the London description. The resulting time-dependent London equations are solved for a moving vortex and a moving vortex lattice. It is shown that the field distribution of a moving vortex loses its cylindrical symmetry. It experiences contraction that is stronger in the direction of the motion than in the direction normal to the velocity v . The London contribution of normal currents to dissipation is small relative to the Bardeen-Stephen core dissipation at small velocities, but it approaches the latter at high velocities, where this contribution is no longer proportional to v2. To minimize the London contribution to dissipation, the vortex lattice is oriented so as to have one of the unit cell vectors along the velocity. This effect is seen in experiments and predicted within the time-dependent Ginzburg-Landau theory.
Wang, Xuan; Li, Lei; Geng, Ying; Wang, Hanxiao; Su, Lei; Zhao, Luming
2018-02-01
By using a polarization manipulation and projection system, we numerically decomposed the group-velocity-locked-vector-dissipative solitons (GVLVDSs) from a normal dispersion fiber laser and studied the combination of the projections of the phase-modulated components of the GVLVDS through a polarization beam splitter. Pulses with a structure similar to a high-order vector soliton could be obtained, which could be considered as a pseudo-high-order GVLVDS. It is found that, although GVLVDSs are intrinsically different from group-velocity-locked-vector solitons generated in fiber lasers operated in the anomalous dispersion regime, similar characteristics for the generation of pseudo-high-order GVLVDS are obtained. However, pulse chirp plays a significant role on the generation of pseudo-high-order GVLVDS.
A projection method for low speed flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colella, P.; Pao, K.
The authors propose a decomposition applicable to low speed, inviscid flows of all Mach numbers less than 1. By using the Hodge decomposition, they may write the velocity field as the sum of a divergence-free vector field and a gradient of a scalar function. Evolution equations for these parts are presented. A numerical procedure based on this decomposition is designed, using projection methods for solving the incompressible variables and a backward-Euler method for solving the potential variables. Numerical experiments are included to illustrate various aspects of the algorithm.
Spectral Density of Laser Beam Scintillation in Wind Turbulence. Part 1; Theory
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1997-01-01
The temporal spectral density of the log-amplitude scintillation of a laser beam wave due to a spatially dependent vector-valued crosswind (deterministic as well as random) is evaluated. The path weighting functions for normalized spectral moments are derived, and offer a potential new technique for estimating the wind velocity profile. The Tatarskii-Klyatskin stochastic propagation equation for the Markov turbulence model is used with the solution approximated by the Rytov method. The Taylor 'frozen-in' hypothesis is assumed for the dependence of the refractive index on the wind velocity, and the Kolmogorov spectral density is used for the refractive index field.
Monte-Carlo Method Application for Precising Meteor Velocity from TV Observations
NASA Astrophysics Data System (ADS)
Kozak, P.
2014-12-01
Monte-Carlo method (method of statistical trials) as an application for meteor observations processing was developed in author's Ph.D. thesis in 2005 and first used in his works in 2008. The idea of using the method consists in that if we generate random values of input data - equatorial coordinates of the meteor head in a sequence of TV frames - in accordance with their statistical distributions we get a possibility to plot the probability density distributions for all its kinematical parameters, and to obtain their mean values and dispersions. At that the theoretical possibility appears to precise the most important parameter - geocentric velocity of a meteor - which has the highest influence onto precision of meteor heliocentric orbit elements calculation. In classical approach the velocity vector was calculated in two stages: first we calculate the vector direction as a vector multiplication of vectors of poles of meteor trajectory big circles, calculated from two observational points. Then we calculated the absolute value of velocity independently from each observational point selecting any of them from some reasons as a final parameter. In the given method we propose to obtain a statistical distribution of velocity absolute value as an intersection of two distributions corresponding to velocity values obtained from different points. We suppose that such an approach has to substantially increase the precision of meteor velocity calculation and remove any subjective inaccuracies.
MHD Turbulence, div B = 0 and Lattice Boltzmann Simulations
NASA Astrophysics Data System (ADS)
Phillips, Nate; Keating, Brian; Vahala, George; Vahala, Linda
2006-10-01
The question of div B = 0 in MHD simulations is a crucial issue. Here we consider lattice Boltzmann simulations for MHD (LB-MHD). One introduces a scalar distribution function for the velocity field and a vector distribution function for the magnetic field. This asymmetry is due to the different symmetries in the tensors arising in the time evolution of these fields. The simple algorithm of streaming and local collisional relaxation is ideally parallelized and vectorized -- leading to the best sustained performance/PE of any code run on the Earth Simulator. By reformulating the BGK collision term, a simple implicit algorithm can be immediately transformed into an explicit algorithm that permits simulations at quite low viscosity and resistivity. However the div B is not an imposed constraint. Currently we are examining a new formulations of LB-MHD that impose the div B constraint -- either through an entropic like formulation or by introducing forcing terms into the momentum equations and permitting simpler forms of relaxation distributions.
Surface growth kinematics via local curve evolution.
Moulton, Derek E; Goriely, Alain
2014-01-01
A mathematical framework is developed to model the kinematics of surface growth for objects that can be generated by evolving a curve in space, such as seashells and horns. Growth is dictated by a growth velocity vector field defined at every point on a generating curve. A local orthonormal basis is attached to each point of the generating curve and the velocity field is given in terms of the local coordinate directions, leading to a fully local and elegant mathematical structure. Several examples of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying growth process. Direct access to cell tracks and local orientation enables for connections to be made to the underlying growth process.
NASA Astrophysics Data System (ADS)
Rowland, David R.
2018-01-01
Based on a calculation of the Poynting vector flux in the neighbourhood of an accelerating point charge, Singal (2016 Eur. J. Phys. 37 045210) has claimed that the instantaneous rate of energy radiated by the charge differs from the Larmor formula. It is argued in this comment that Singal’s proposed formula for the radiated power is physically untenable because it predicts a negative rate of energy loss in physically realisable situations. The cause of Singal’s erroneous conclusion is identified as being a failure to realise that the bound electromagnetic field energy of an accelerating charge differs by the Schott energy from the bound field energy of a charge moving at a constant velocity equal to the current velocity of the accelerating charge. References to the salient literature are provided.
Robot Training With Vector Fields Based on Stroke Survivors' Individual Movement Statistics.
Wright, Zachary A; Lazzaro, Emily; Thielbar, Kelly O; Patton, James L; Huang, Felix C
2018-02-01
The wide variation in upper extremity motor impairments among stroke survivors necessitates more intelligent methods of customized therapy. However, current strategies for characterizing individual motor impairments are limited by the use of traditional clinical assessments (e.g., Fugl-Meyer) and simple engineering metrics (e.g., goal-directed performance). Our overall approach is to statistically identify the range of volitional movement capabilities, and then apply a robot-applied force vector field intervention that encourages under-expressed movements. We investigated whether explorative training with such customized force fields would improve stroke survivors' (n = 11) movement patterns in comparison to a control group that trained without forces (n = 11). Force and control groups increased Fugl-Meyer UE scores (average of 1.0 and 1.1, respectively), which is not considered clinically meaningful. Interestingly, participants from both groups demonstrated dramatic increases in their range of velocity during exploration following only six days of training (average increase of 166.4% and 153.7% for the Force and Control group, respectively). While both groups showed evidence of improvement, we also found evidence that customized forces affected learning in a systematic way. When customized forces were active, we observed broader distributions of velocity that were not present in the controls. Second, we found that these changes led to specific changes in unassisted motion. In addition, while the shape of movement distributions changed significantly for both groups, detailed analysis of the velocity distributions revealed that customized forces promoted a greater proportion of favorable changes. Taken together, these results provide encouraging evidence that patient-specific force fields based on individuals' movement statistics can be used to create new movement patterns and shape them in a customized manner. To the best of our knowledge, this paper is the first to directly link engineering assessments of stroke survivors' exploration movement behaviors to the design of customized robot therapy.
NASA Technical Reports Server (NTRS)
Anz-Meador, Phillip D.; Liou, Jer-Chyi; Cooke, William J.; Koehler, H.
2010-01-01
An examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was conducted at NASA Goddard Space Flight Center (GSFC) during the summer of 2009. Immediately apparent was a distinct biasing of the largest 45 impact features towards one side of the radiator, in contrast to an approximately uniform distribution of smaller impacts. Such a distribution may be a consequence of the HST s attitude history and pointing requirements for the cold radiator, or of environmental effects, such as an anisotropic distribution of the responsible population in that size regime. Understanding the size-dependent spatial distribution of impact features is essential to the general analysis of these features. We have obtained from GSFC a 15 minute temporal resolution record of the state vector (Earth Centered Inertial position and velocity) and HST attitude, consisting of the orientation of the velocity and HST-sun vectors in HST body coordinates. This paper reviews the actual state vector and attitude history of the radiator in the context of the randomly tumbling plate assumption and assesses the statistical likelihood (or collection efficiency) of the radiator for the micrometeoroid and orbital debris environments. The NASA Marshall Space Flight Center s Meteoroid Environment Model is used to assess the micrometeoroid component. The NASA Orbital Debris Engineering Model (ORDEM) is used to model the orbital debris component. Modeling results are compared with observations of the impact feature spatial distribution, and the relative contribution of each environmental component are examined in detail.
SAR Product Improvements and Enhancements - SARprises
2013-09-30
paper on current fields at Orkney, Scotland, was accepted for publication in IEEE - TGARS and is currently in press (available on IEEE Xplore as Early...Sea surface velocity vector retrieval using dual-beam interferometry: First demonstration, IEEE TGARS, 43, 2494- 2502, 2005. [2] Chapron, B., F...Bight by airborne along-track interferometric SAR, Proc. IGARSS 2002, 1822-1824, IEEE , 2002. [4] Bjerklie, D.M., S.L. Dingman, C.J. Vorosmarty, C.H
ACHIEVING CONSISTENT DOPPLER MEASUREMENTS FROM SDO /HMI VECTOR FIELD INVERSIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.
NASA’s Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft–Sun velocity varies by ±3 km s{sup −1} over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne–Eddington inversions in the HMI pipeline. The procedure ultimately uses 32more » velocity-dependent coefficients to adjust 10 million pixels—a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.« less
Doppler Global Velocimeter Development for the Large Wind Tunnels at Ames Research Center
NASA Technical Reports Server (NTRS)
Reinath, Michael S.
1997-01-01
Development of an optical, laser-based flow-field measurement technique for large wind tunnels is described. The technique uses laser sheet illumination and charged coupled device detectors to rapidly measure flow-field velocity distributions over large planar regions of the flow. Sample measurements are presented that illustrate the capability of the technique. An analysis of measurement uncertainty, which focuses on the random component of uncertainty, shows that precision uncertainty is not dependent on the measured velocity magnitude. For a single-image measurement, the analysis predicts a precision uncertainty of +/-5 m/s. When multiple images are averaged, this uncertainty is shown to decrease. For an average of 100 images, for example, the analysis shows that a precision uncertainty of +/-0.5 m/s can be expected. Sample applications show that vectors aligned with an orthogonal coordinate system are difficult to measure directly. An algebraic transformation is presented which converts measured vectors to the desired orthogonal components. Uncertainty propagation is then used to show how the uncertainty propagates from the direct measurements to the orthogonal components. For a typical forward-scatter viewing geometry, the propagation analysis predicts precision uncertainties of +/-4, +/-7, and +/-6 m/s, respectively, for the U, V, and W components at 68% confidence.
Coanda-Assisted Spray Manipulation Collar for a Commercial Plasma Spray Gun
NASA Astrophysics Data System (ADS)
Mabey, K.; Smith, B. L.; Whichard, G.; McKechnie, T.
2011-06-01
A Coanda-assisted Spray Manipulation (CSM) collar was retrofitted to a Praxair SG-100 plasma spray gun. The CSM device makes it possible to change the direction of (vector) the plasma jet and powder without moving the gun. The two-piece retrofit device replaces the standard faceplate. Two separate collars were tested: one designed for small vector angles and one for larger vector angles. It was demonstrated that the small-angle device could modify the trajectory of zirconia powder up to several degrees. Doing so could realign the plasma with the powder resulting in increased powder temperature and velocity. The large-angle device was capable of vectoring the plasma jet up to 45°. However, the powder did not vector as much. Under large-angle vectoring, the powder velocity and temperature decreased steadily with vector angle. Both devices were tested using a supersonic configuration to demonstrate that CSM is capable of vectoring supersonic plasmas.
NASA Astrophysics Data System (ADS)
Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga
2016-02-01
We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.
On the expansion of ionospheric plasma into the near-wake of the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Stone, N. H.; Wright, K. H., Jr.; Samir, U.; Hwang, K. S.
1988-01-01
During the Spacelab 2 mission, while the Plasma Diagnostics Package was attached to the Remote Manipulator System, differential ion vector measurements were obtained in the near wake at a distance of 4-5 Shuttle radii. The Orbiter's wake was found to fill in at a much faster rate than can be explained by simple thermal motion. The measurements strongly suggest that filling of the Orbiter's wake is produced by the process of 'collisionless plasma expansion into a vacuum' and that, for oblique angles of the magnetic field and velocity vectors, the near wake plasma depletion a few radii downstream is not sensitive to the body scale size.
Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.
Kuzuu, K; Hasegawa, S
2015-11-01
A technique for estimating an acoustic field in a resonance tube is suggested. The estimation of an acoustic field in a resonance tube is important for the development of the thermoacoustic engine, and can be conducted employing two sensors to measure pressure. While this measurement technique is known as the two-sensor method, care needs to be taken with the location of pressure sensors when conducting pressure measurements. In the present study, particle image velocimetry (PIV) is employed instead of a pressure measurement by a sensor, and two-dimensional velocity vector images are extracted as sequential data from only a one- time recording made by a video camera of PIV. The spatial velocity amplitude is obtained from those images, and a pressure distribution is calculated from velocity amplitudes at two points by extending the equations derived for the two-sensor method. By means of this method, problems relating to the locations and calibrations of multiple pressure sensors are avoided. Furthermore, to verify the accuracy of the present method, the experiments are conducted employing the conventional two-sensor method and laser Doppler velocimetry (LDV). Then, results by the proposed method are compared with those obtained with the two-sensor method and LDV.
NASA Technical Reports Server (NTRS)
Winckelmans, G. S.; Lund, T. S.; Carati, D.; Wray, A. A.
1996-01-01
Subgrid-scale models for Large Eddy Simulation (LES) in both the velocity-pressure and the vorticity-velocity formulations were evaluated and compared in a priori tests using spectral Direct Numerical Simulation (DNS) databases of isotropic turbulence: 128(exp 3) DNS of forced turbulence (Re(sub(lambda))=95.8) filtered, using the sharp cutoff filter, to both 32(exp 3) and 16(exp 3) synthetic LES fields; 512(exp 3) DNS of decaying turbulence (Re(sub(Lambda))=63.5) filtered to both 64(exp 3) and 32(exp 3) LES fields. Gaussian and top-hat filters were also used with the 128(exp 3) database. Different LES models were evaluated for each formulation: eddy-viscosity models, hyper eddy-viscosity models, mixed models, and scale-similarity models. Correlations between exact versus modeled subgrid-scale quantities were measured at three levels: tensor (traceless), vector (solenoidal 'force'), and scalar (dissipation) levels, and for both cases of uniform and variable coefficient(s). Different choices for the 1/T scaling appearing in the eddy-viscosity were also evaluated. It was found that the models for the vorticity-velocity formulation produce higher correlations with the filtered DNS data than their counterpart in the velocity-pressure formulation. It was also found that the hyper eddy-viscosity model performs better than the eddy viscosity model, in both formulations.
NASA Astrophysics Data System (ADS)
Chen, Shuai; Wang, Lumin; Huang, Hongliang; Zhang, Xun
2017-10-01
From August 25 to 29, 2014, the project team carried out the experiment of Antarctic krill trawl in the Beihai Bay of the South China Sea. In order to understand the flow field of the network model in the course of the experiment, it is necessary to record the speed of the ship and to grasp the flow field of the ocean. Therefore, the ocean velocity is measured during the experiment. The flow rate in this experiment was measured using an acoustic Doppler flow meter (Vectoring Plus, Nortek, Norway). In order to compensate for the flow rate error caused by ship drift, the drift condition of the ship was also measured by the positioning device (Snapdragon MSM8274AB, Qualcomm, USA) used in the flow rate measurement. The results show that the actual velocity of the target sea area is in the range of 0.06-0.49 m / s and the direction is 216.17-351.70. And compared with the previous research, the influencing factors were analysed. This study proves that it is feasible to use point Doppler flow meter for velocity study in trawl model experiment.
Cosmic microwave background polarization signals from tangled magnetic fields.
Seshadri, T R; Subramanian, K
2001-09-03
Tangled, primordial cosmic magnetic fields create small rotational velocity perturbations on the last scattering surface of the cosmic microwave background radiation. For fields which redshift to a present value of B0 = 3 x 10(-9) G, these vector modes are shown to generate polarization anisotropies of order 0.1-4 microK on small angular scales (500
Visualization tool for the world ocean surface currents
NASA Astrophysics Data System (ADS)
Kasyanov, S.; Nikitin, O.
2003-04-01
Fortran-based software for the world ocean surface currents visualization functioning on the Windows platform (95 and higher) has been developed. The software works with the global interpolated drifting buoys data set (1979-2002) from the WOCE Surface Velocity Program and the global bottom relief five-minute resolution data set (ETOPO5). These data sets loaded in binary form into operative memory of a PC (256 Mb or better more), together with the software compose the world ocean surface currents visualization tool. The tool allows researches to process data on-line in any region of the world ocean, display data in different visualization forms, calculate currents velocity statistics and save chosen images as graphic files. It provides displays of buoy movement (animation), maps of buoy trajectories, averaged (by prescribed time and space grid intervals) current vector and modulus fields, fields of current mean and eddy kinetic energies and their ratio, current steadiness coefficient and sea surface temperature. Any trajectory may be selected simply by clicking it on any summary map of trajectories (or by given buoy number). It may then be viewed and analyzed in detail, while graphs of velocity (components, module and vector) and water temperature variations along this trajectory may be displayed. The description of the previous version of the tool and some screen shots are available at http://zhurnal.ape.relarn.ru/articles/2001/154.pdf(in Russian) and will be available (in English) at http://csit.ugatu.ac.ru (CSIT '2001, Proceedings, v.2, p. 32-41, Nikitin O.P. et al).
Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI
NASA Astrophysics Data System (ADS)
Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger
2015-03-01
In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.
NASA Astrophysics Data System (ADS)
Belyaev, M. Yu.; Volkov, O. N.; Monakhov, M. I.; Sazonov, V. V.
2017-09-01
The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station ( ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.
Influence of vorticity distribution on singularities in linearized supersonic flow
NASA Astrophysics Data System (ADS)
Gopal, Vijay; Maddalena, Luca
2018-05-01
The linearized steady three-dimensional supersonic flow can be analyzed using a vector potential approach which transforms the governing equation to a standard form of two-dimensional wave equation. Of particular interest are the canonical horseshoe line-vortex distribution and the resulting induced velocity field in supersonic flow. In this case, the singularities are present at the vortex line itself and also at the surface of the cone of influence originating from the vertices of the horseshoe structure. This is a characteristic of the hyperbolic nature of the flow which renders the study of supersonic vortex dynamics a challenging task. It is conjectured in this work that the presence of the singularity at the cone of influence is associated with the step-function nature of the vorticity distribution specified in the canonical case. At the phenomenological level, if one considers the three-dimensional steady supersonic flow, then a sudden appearance of a line-vortex will generate a ripple of singularities in the induced velocity field which convect downstream and laterally spread, at the most, to the surface of the cone of influence. Based on these findings, this work includes an exploration of potential candidates for vorticity distributions that eliminate the singularities at the cone of influence. The analysis of the resulting induced velocity field is then compared with the canonical case, and it is observed that the singularities were successfully eliminated. The manuscript includes an application of the proposed method to study the induced velocity field in a confined supersonic flow.
The Seismo-Generated Electric Field Probed by the Ionospheric Ion Velocity
NASA Astrophysics Data System (ADS)
(Tiger) Liu, Jann-Yenq
2017-04-01
The ion density, ion temperature, and the ion velocity probed by IPEI (ionospheric Plasma and Electrodynamics Instrument) onboard ROCSAT (i.e. FORMOSAT-1), and the global ionospheric map (GIM) of the total electron content (TEC) derived from measurements of ground-based GPS receivers are employed to study seismo-ionospheric precursors (SIPs) of the 31 March 2002 M6.8 Earthquake in Taiwan. The GIM TEC and ROCSAT/IPEI ion density significantly decrease specifically over the epicenter area 1-5 days before the earthquake, which suggests that the associated SIPs have observed. The ROCSAT/IPEI ion temperature reveals no significant changes before and after the earthquake, while the latitude-time-TEC plots extracted from the GIMs along the Taiwan longitude illustrate that the equatorial ionization anomaly significantly weakens and moves equatorward, which indicates that the daily dynamo electric field has been disturbed and cancelled by possible seismo-generated electric field on 2 days before (29 March) the earthquake. Here, for the first time a vector parameter of ion velocity is employed to study SIPs. It is found that ROCSAT/IPEI ion velocity becomes significantly downward, which confirms that a westward electric field of about 0.91mV/m generated during the earthquake preparation period being essential 1-5 days before the earthquake. Liu, J. Y., and C. K. Chao (2016), An observing system simulation experiment for FORMOSAT-5/AIP detecting seismo-ionospheric precursors, Terrestrial Atmospheric and Oceanic Sciences, DOI: 10.3319/TAO.2016.07.18.01(EOF5).
Motion-based nearest vector metric for reference frame selection in the perception of motion.
Agaoglu, Mehmet N; Clarke, Aaron M; Herzog, Michael H; Ögmen, Haluk
2016-05-01
We investigated how the visual system selects a reference frame for the perception of motion. Two concentric arcs underwent circular motion around the center of the display, where observers fixated. The outer (target) arc's angular velocity profile was modulated by a sine wave midflight whereas the inner (reference) arc moved at a constant angular speed. The task was to report whether the target reversed its direction of motion at any point during its motion. We investigated the effects of spatial and figural factors by systematically varying the radial and angular distances between the arcs, and their relative sizes. We found that the effectiveness of the reference frame decreases with increasing radial- and angular-distance measures. Drastic changes in the relative sizes of the arcs did not influence motion reversal thresholds, suggesting no influence of stimulus form on perceived motion. We also investigated the effect of common velocity by introducing velocity fluctuations to the reference arc as well. We found no effect of whether or not a reference frame has a constant motion. We examined several form- and motion-based metrics, which could potentially unify our findings. We found that a motion-based nearest vector metric can fully account for all the data reported here. These findings suggest that the selection of reference frames for motion processing does not result from a winner-take-all process, but instead, can be explained by a field whose strength decreases with the distance between the nearest motion vectors regardless of the form of the moving objects.
Rotations with Rodrigues' Vector
ERIC Educational Resources Information Center
Pina, E.
2011-01-01
The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…
Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method. PMID:25873987
Motion estimation using the firefly algorithm in ultrasonic image sequence of soft tissue.
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.
Observations of velocity shear driven plasma turbulence
NASA Technical Reports Server (NTRS)
Kintner, P. M., Jr.
1976-01-01
Electrostatic and magnetic turbulence observations from HAWKEYE-1 during the low altitude portion of its elliptical orbit over the Southern Hemisphere are presented. The magnetic turbulence is confined near the auroral zone and is similar to that seen at higher altitudes by HEOS-2 in the polar cusp. The electrostatic turbulence is composed of a background component with a power spectral index of 1.89 + or - .26 and an intense component with a power spectral index of 2.80 + or - .34. The intense electrostatic turbulence and the magnetic turbulence correlate with velocity shears in the convective plasma flow. Since velocity shear instabilities are most unstable to wave vectors perpendicular to the magnetic field, the shear correlated turbulence is anticipated to be two dimensional in character and to have a power spectral index of 3 which agrees with that observed in the intense electrostatic turbulence.
Large- and small-scale constraints on power spectra in Omega = 1 universes
NASA Technical Reports Server (NTRS)
Gelb, James M.; Gradwohl, Ben-Ami; Frieman, Joshua A.
1993-01-01
The CDM model of structure formation, normalized on large scales, leads to excessive pairwise velocity dispersions on small scales. In an attempt to circumvent this problem, we study three scenarios (all with Omega = 1) with more large-scale and less small-scale power than the standard CDM model: (1) cold dark matter with significantly reduced small-scale power (inspired by models with an admixture of cold and hot dark matter); (2) cold dark matter with a non-scale-invariant power spectrum; and (3) cold dark matter with coupling of dark matter to a long-range vector field. When normalized to COBE on large scales, such models do lead to reduced velocities on small scales and they produce fewer halos compared with CDM. However, models with sufficiently low small-scale velocities apparently fail to produce an adequate number of halos.
Numerical simulation using vorticity-vector potential formulation
NASA Technical Reports Server (NTRS)
Tokunaga, Hiroshi
1993-01-01
An accurate and efficient computational method is needed for three-dimensional incompressible viscous flows in engineering applications. On solving the turbulent shear flows directly or using the subgrid scale model, it is indispensable to resolve the small scale fluid motions as well as the large scale motions. From this point of view, the pseudo-spectral method is used so far as the computational method. However, the finite difference or the finite element methods are widely applied for computing the flow with practical importance since these methods are easily applied to the flows with complex geometric configurations. However, there exist several problems in applying the finite difference method to direct and large eddy simulations. Accuracy is one of most important problems. This point was already addressed by the present author on the direct simulations on the instability of the plane Poiseuille flow and also on the transition to turbulence. In order to obtain high efficiency, the multi-grid Poisson solver is combined with the higher-order, accurate finite difference method. The formulation method is also one of the most important problems in applying the finite difference method to the incompressible turbulent flows. The three-dimensional Navier-Stokes equations have been solved so far in the primitive variables formulation. One of the major difficulties of this method is the rigorous satisfaction of the equation of continuity. In general, the staggered grid is used for the satisfaction of the solenoidal condition for the velocity field at the wall boundary. However, the velocity field satisfies the equation of continuity automatically in the vorticity-vector potential formulation. From this point of view, the vorticity-vector potential method was extended to the generalized coordinate system. In the present article, we adopt the vorticity-vector potential formulation, the generalized coordinate system, and the 4th-order accurate difference method as the computational method. We present the computational method and apply the present method to computations of flows in a square cavity at large Reynolds number in order to investigate its effectiveness.
NASA Astrophysics Data System (ADS)
Xanthos, Savvas; Gong, Minwei; Andreopoulos, Yiannis
2010-01-01
Further analysis of the experimental data of the velocity gradient tensor first published by Xanthos et al. [J. Fluid Mech. 584, 301 (2007)] has been carried out and new results are reported here to provide additional insights on the effects of expansion waves interacting with isotropic turbulence. The flow field was generated by the reflection of an incoming shock wave at the open end of a large scale shock tube facility which interacted with the induced flow behind the incident shock wave which passed through a turbulence generating grid. In the present configuration the interaction is free from streamline curvature effects, which cause additional effects on turbulence. The strength of the applied expansive straining was 240 s-1. Rectangular pattern grids of different mesh sizes were used to generate isotropic and homogeneous turbulence with turbulent Reynolds number Reλ based on Taylor's microscale between 450 and 488. Lateral vorticity fluctuations and fluctuations of enstrophy and all stretching vector components are drastically reduced during the interaction. Residual attenuation in the postinteraction flow field was found only in the lateral vorticity fluctuations and in the longitudinal stretching term S11Ω1. Helicity and the helicity angle were computed from the data and the orientation angle of the vorticity vector in reference to the velocity vector was determined. Large fluctuations of the helicity angle were observed which extend from 0° to 180° with most probable values close to 30° and 130° and a mean value of 85°. Rotational dissipation rate was found to be high at these angles. The time-dependent signals of enstrophy, vortex stretching/tilting vector, and dissipation rate were found to exhibit a rather strong intermittent behavior which is characterized by high amplitude bursts followed by low level activities. It was found that the observed strong dissipative events are mostly associated with strong activities in the longitudinal stretching S11Ω1 rather than with events in the lateral components.
3-D Flow Visualization with a Light-field Camera
NASA Astrophysics Data System (ADS)
Thurow, B.
2012-12-01
Light-field cameras have received attention recently due to their ability to acquire photographs that can be computationally refocused after they have been acquired. In this work, we describe the development of a light-field camera system for 3D visualization of turbulent flows. The camera developed in our lab, also known as a plenoptic camera, uses an array of microlenses mounted next to an image sensor to resolve both the position and angle of light rays incident upon the camera. For flow visualization, the flow field is seeded with small particles that follow the fluid's motion and are imaged using the camera and a pulsed light source. The tomographic MART algorithm is then applied to the light-field data in order to reconstruct a 3D volume of the instantaneous particle field. 3D, 3C velocity vectors are then determined from a pair of 3D particle fields using conventional cross-correlation algorithms. As an illustration of the concept, 3D/3C velocity measurements of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. Future experiments are planned to use the camera to study the influence of wall permeability on the 3-D structure of the turbulent boundary layer.Schematic illustrating the concept of a plenoptic camera where each pixel represents both the position and angle of light rays entering the camera. This information can be used to computationally refocus an image after it has been acquired. Instantaneous 3D velocity field of a turbulent boundary layer determined using light-field data captured by a plenoptic camera.
Heat and Mass Transfer in the Over-Shower Zone of a Cooling Tower with Flow Rotation
NASA Astrophysics Data System (ADS)
Kashani, M. M. Hemmasian; Dobrego, K. V.
2013-11-01
The influence of flow rotation in the over-shower zone of a natural draft wet cooling tower (NDCT) on heat and mass transfer in this zone is investigated numerically. The 3D geometry of an actual NDCT and three models of the induced rotation velocity fields are utilized for calculations. Two phases (liquid and gaseous) and three components are taken into consideration. The interphase heat exchange, heat transfer to the walls, condensation-evaporation intensity field, and other parameters are investigated as functions of the induced rotation intensity (the inclination of the velocity vector at the periphery). It is shown that the induced flow rotation intensifies the heat and mass transfer in the over-shower zone of an NDCT. Flow rotation leads to specific redistribution of evaporation-condensation areas in an NDCT and stimulates water condensation near its walls.
Measurements of compressible secondary flow in a circular S-duct
NASA Technical Reports Server (NTRS)
Vakili, A.; Wu, J. M.; Liver, P.; Bhat, M. K.
1983-01-01
This paper presents the results of an experimental study of secondary flow in a circular cross section 30 deg - 30 deg S-duct with entrance Mach number of 0.6. Local flow velocity vectors have been measured along the length of the duct at six stations. These measurements have been made using a five-port cone probe. Static and total pressure profiles in the transverse planes are obtained from the cone probe measurements. Wall static pressure measurements along three azimuth angles of 0 deg, 90 deg, and 180 deg along the duct are also made. Contour plots presenting the three dimensional velocity field as well as the total- and static-pressure fields are obtained. Surface oil flow visualization technique has been used to provide details of the flow on the S-duct boundaries. The experimental observations have been compared with typical computational results.
NASA Technical Reports Server (NTRS)
Miura, A.; Pritchett, P. L.
1982-01-01
A general stability analysis is given of the Kevin-Helmholtz instability, for the case of sheared MHD flow of finite thickness in a compressible plasma which allows for the arbitrary orientation of the magnetic field, velocity flow, and wave vector in the plane perpendicular to the velocity gradient. The stability problem is reduced to the solution of a single second-order differential equation including a gravitational term to represent the coupling between the Kelvin-Helmholtz mode and the interchange mode. Compressibility and a magnetic field component parallel to the flow are found to be stabilizing effects, with destabilization of only the fast magnetosonic mode in the transverse case, and the presence of both Alfven and slow magnetosonic components in the parallel case. Analysis results are used in a discussion of the stability of sheared plasma flow at the magnetopause boundary and in the solar wind.
NASA Astrophysics Data System (ADS)
Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan
2016-09-01
The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.
Direct numerical simulation of curved turbulent channel flow
NASA Technical Reports Server (NTRS)
Moser, R. D.; Moin, P.
1984-01-01
Low Reynolds number, mildly curved, turbulent channel flow has been simulated numerically without subgrid scale models. A new spectral numerical method developed for this problem was used, and the computations were performed with 2 million degrees of freedom. A variety of statistical and structural information has been extracted from the computed flow fields. These include mean velocity, turbulence stresses, velocity skewness, and flatness factors, space time correlations and spectra, all the terms in the Reynolds stress balance equations, and contour and vector plots of instantaneous velocity fields. The effects of curvature on this flow were determined by comparing the concave and convex sides of the channel. The observed effects are consistent with experimental observations for mild curvature. The most significant difference in the turbulence statistics between the concave and convex sides was in the Reynolds shear stress. This was accompanied by significant differences in the terms of the Reynolds shear stress balance equations. In addition, it was found that stationary Taylor-Gortler vortices were present and that they had a significant effect on the flow by contributing to the mean Reynolds shear stress, and by affecting the underlying turbulence.
Siegert, F; Weijer, C J; Nomura, A; Miike, H
1994-01-01
We describe the application of a novel image processing method, which allows quantitative analysis of cell and tissue movement in a series of digitized video images. The result is a vector velocity field showing average direction and velocity of movement for every pixel in the frame. We apply this method to the analysis of cell movement during different stages of the Dictyostelium developmental cycle. We analysed time-lapse video recordings of cell movement in single cells, mounds and slugs. The program can correctly assess the speed and direction of movement of either unlabelled or labelled cells in a time series of video images depending on the illumination conditions. Our analysis of cell movement during multicellular development shows that the entire morphogenesis of Dictyostelium is characterized by rotational cell movement. The analysis of cell and tissue movement by the velocity field method should be applicable to the analysis of morphogenetic processes in other systems such as gastrulation and neurulation in vertebrate embryos.
Thermodynamic equilibrium with acceleration and the Unruh effect
NASA Astrophysics Data System (ADS)
Becattini, F.
2018-04-01
We address the problem of thermodynamic equilibrium with constant acceleration along the velocity field lines in a quantum relativistic statistical mechanics framework. We show that for a free scalar quantum field, after vacuum subtraction, all mean values vanish when the local temperature T is as low as the Unruh temperature TU=A /2 π where A is the magnitude of the acceleration four-vector. We argue that the Unruh temperature is an absolute lower bound for the temperature of any accelerated fluid at global thermodynamic equilibrium. We discuss the conditions of this bound to be applicable in a local thermodynamic equilibrium situation.
Parvulescu Revisited: Small Tank Acoustics for Bioacousticians.
Rogers, Peter H; Hawkins, Anthony D; Popper, Arthur N; Fay, Richard R; Gray, Michael D
2016-01-01
Researchers often perform hearing studies on fish in small tanks. The acoustic field in such a tank is considerably different from the acoustic field that occurs in the animal's natural environment. The significance of these differences is magnified by the nature of the fish's auditory system where either acoustic pressure (a scalar), acoustic particle velocity (a vector), or both may serve as the stimulus. It is essential for the underwater acoustician to understand the acoustics of small tanks to be able to carry out valid auditory research in the laboratory and to properly compare and interpret the results of others.
STOL landing thrust: Reverser jet flowfields
NASA Technical Reports Server (NTRS)
Kotansky, D. R.; Glaze, L. W.
1987-01-01
Analysis tools and modeling concepts for jet flow fields encountered upon use of thrust reversers for high performance military aircraft are described. A semi-empirical model of the reverser ground wall jet interaction with the uniform cross flow due to aircraft forward velocity is described. This ground interaction model is used to demonstrate exhaust gas ingestion conditions. The effects of control of exhaust jet vector angle, lateral splay, and moving versus fixed ground simulation are discussed. The Adler/Baron jet-in-cross flow model is used in conjunction with three dimensional panel methods to investigate the upper surface jet induced flow field.
Second-order cosmological perturbations. I. Produced by scalar-scalar coupling in synchronous gauge
NASA Astrophysics Data System (ADS)
Wang, Bo; Zhang, Yang
2017-11-01
We present a systematic study of the 2nd-order scalar, vector, and tensor metric perturbations in the Einstein-de Sitter Universe in synchronous coordinates. For the scalar-scalar coupling between 1st-order perturbations, we decompose the 2nd-order perturbed Einstein equation into the respective field equations of 2nd-order scalar, vector, and tensor perturbations, and obtain their solutions with general initial conditions. In particular, the decaying modes of solution are included, the 2nd-order vector is generated even if the 1st-order vector is absent, and the solution of the 2nd-order tensor corrects that in literature. We perform general synchronous-to-synchronous gauge transformations up to 2nd order generated by a 1st-order vector field ξ(1 )μ and a 2nd-order ξ(2 )μ . All the residual gauge modes of 2nd-order metric perturbations and density contrast are found, and their number is substantially reduced when the transformed 3-velocity of dust is set to zero. Moreover, we show that only ξ(2 )μ is effective in carrying out 2nd-order transformations that we consider, because ξ(1 )μ has been used in obtaining the 1st-order perturbations. Holding the 1st-order perturbations fixed, the transformations by ξ(2 )μ on the 2nd-order perturbations have the same structure as those by ξ(1 )μ on the 1st-order perturbations.
The size distributions of fragments ejected at a given velocity from impact craters
NASA Technical Reports Server (NTRS)
O'Keefe, John D.; Ahrens, Thomas J.
1987-01-01
The mass distribution of fragments that are ejected at a given velocity for impact craters is modeled to allow extrapolation of laboratory, field, and numerical results to large scale planetary events. The model is semi-empirical in nature and is derived from: (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationship between maximum ejecta fragment size and crater diameter, (4) measurements and theory of maximum ejecta size versus ejecta velocity, and (5) an assumption on the functional form for the distribution of fragments ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity is broad, e.g., 68 percent of the mass of the ejecta at a given velocity contains fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. The broad distribution suggests that in impact processes, additional comminution of ejecta occurs after the upward initial shock has passed in the process of the ejecta velocity vector rotating from an initially downward orientation. This additional comminution produces the broader size distribution in impact ejecta as compared to that obtained in simple brittle failure experiments.
Kim, Keonwook
2013-01-01
The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably. PMID:23979482
Velocity Estimate Following Air Data System Failure
2008-03-01
39 Figure 3.3. Sampled Two Vector Approach .................................................................... 40 Figure 3.4...algorithm design in terms of reference frames, equations of motion, and velocity triangles describing the vector relationship between airspeed, wind speed...2.2.1 Reference Frames The flight of an aircraft through the air mass can be described in specific coordinate systems [ Nelson 1998]. To determine how
Velocity field calculation for non-orthogonal numerical grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G. P.
2015-03-01
Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation,more » and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non-orthogonal grid, Darcy velocity components are rigorously derived in this study from normal fluxes to cell faces, which are assumed to be provided by or readily computed from porous-medium simulation code output. The normal fluxes are presumed to satisfy mass balances for every computational cell, and if so, the derived velocity fields are consistent with these mass balances. Derivations are provided for general two-dimensional quadrilateral and three-dimensional hexagonal systems, and for the commonly encountered special cases of perfectly vertical side faces in 2D and 3D and a rectangular footprint in 3D.« less
Global velocity constrained cloud motion prediction for short-term solar forecasting
NASA Astrophysics Data System (ADS)
Chen, Yanjun; Li, Wei; Zhang, Chongyang; Hu, Chuanping
2016-09-01
Cloud motion is the primary reason for short-term solar power output fluctuation. In this work, a new cloud motion estimation algorithm using a global velocity constraint is proposed. Compared to the most used Particle Image Velocity (PIV) algorithm, which assumes the homogeneity of motion vectors, the proposed method can capture the accurate motion vector for each cloud block, including both the motional tendency and morphological changes. Specifically, global velocity derived from PIV is first calculated, and then fine-grained cloud motion estimation can be achieved by global velocity based cloud block researching and multi-scale cloud block matching. Experimental results show that the proposed global velocity constrained cloud motion prediction achieves comparable performance to the existing PIV and filtered PIV algorithms, especially in a short prediction horizon.
Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Herrero, Federico
2011-01-01
Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also provides a general approach that can obtain non-equilibrium distributions as may exist in the upper regions of the thermosphere, above 500 km and into the exosphere. Finally, WATS serves as a mass spectrometer, with very low mass resolution of roughly 1 part in 3, but easily separating atomic oxygen from molecular nitrogen.
Vector solitons with polarization instability and locked polarization in a fiber laser
NASA Astrophysics Data System (ADS)
Tang, Dingkang; Zhang, Jian-Guo; Liu, Yuanshan
2012-07-01
We investigate the characteristics of vector solitons with and without locked phase velocities of orthogonal polarization components in a specially-designed laser cavity which is formed by a bidirectional fiber loop together with a semiconductor saturable absorber mirror. The characteristics of the two states are compared in the temporal and spectrum domain, respectively. Both of the two states exhibit the characteristic of mode locking while the two orthogonal polarization components are not resolved. However, for the vector soliton with unlocked phase velocities, identical intensity varies after passing through a polarization beam splitter (PBS) outside the laser cavity. Contrary to the polarization rotation locked vector soliton, the intensity does not change periodically. For the polarization-locked vector soliton (PLVS), the identical pulse intensity is still obtained after passing through the PBS and can be observed on the oscilloscope screen after photodetection. A coupler instead of a circulator is integrated in the laser cavity and strong interaction on the polarization resolved spectra of the PLVS is observed. By comparing the two states, we conclude that interaction between the two orthogonal components contributes to the locked phase velocities.
Analysis of sediment particle velocity in wave motion based on wave flume experiments
NASA Astrophysics Data System (ADS)
Krupiński, Adam
2012-10-01
The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project "Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment" launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and "transforming" mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.
Effective-medium theory of elastic waves in random networks of rods.
Katz, J I; Hoffman, J J; Conradi, M S; Miller, J G
2012-06-01
We formulate an effective medium (mean field) theory of a material consisting of randomly distributed nodes connected by straight slender rods, hinged at the nodes. Defining wavelength-dependent effective elastic moduli, we calculate both the static moduli and the dispersion relations of ultrasonic longitudinal and transverse elastic waves. At finite wave vector k the waves are dispersive, with phase and group velocities decreasing with increasing wave vector. These results are directly applicable to networks with empty pore space. They also describe the solid matrix in two-component (Biot) theories of fluid-filled porous media. We suggest the possibility of low density materials with higher ratios of stiffness and strength to density than those of foams, aerogels, or trabecular bone.
Continental Deformation in Madagascar from GNSS Observations
NASA Astrophysics Data System (ADS)
Stamps, D. S.; Rajaonarison, T.; Rambolamanana, G.; Herimitsinjo, N.; Carrillo, R.; Jesmok, G.
2015-12-01
D.S. Stamps, T. Rajaonarison, G. Rambolamanana Madagascar is the easternmost continental segment of the East African Rift System (EARS). Plate reconstructions assume the continental island behaves as a rigid block, but studies of geologically recent kinematics suggest Madagascar undergoes extension related to the broader EARS. In this work we test for rigidity of Madagascar in two steps. First, we quantify surface motions using a novel dataset of episodic and continuous GNSS observations that span Madagascar from north to south. We established a countrywide network of precision benchmarks fixed in bedrock and with open skyview in 2010 that we measured for 48-72 hours with dual frequency receivers. The benchmarks were remeasured in 2012 and 2014. We processed the episodic GNSS data with ABPO, the only continuous GNSS station in Madagascar with >2.5 years of data, for millimeter precision positions and velocities at 7 locations using GAMIT-GLOBK. Our velocity field shows 2 mm/yr of differential motion between southern and northern Madagascar. Second, we test a suite of kinematic predictions from previous studies and find residual velocities are greater than 95% uncertainties. We also calculate angular velocity vectors assuming Madagascar moves with the Lwandle plate or the Somalian plate. Our new velocity field in Madagascar is inconsistent with all models that assume plate rigidity at the 95% uncertainty level; this result indicates the continental island undergoes statistically significant internal deformation.
Plate kinematics of Nubia Somalia using a combined DORIS and GPS solution
NASA Astrophysics Data System (ADS)
Nocquet, J.-M.; Willis, P.; Garcia, S.
2006-11-01
We have used up to 12 years of data to assess DORIS performance for geodynamics applications. We first examine the noise characteristics of the DORIS time-series of weekly station coordinates to derive realistic estimates of velocity uncertainties. We find that a combination of white and flicker noise best explains the DORIS time-series noise characteristics. Second, weekly solutions produced by the Institut Géographique National/Jet Propulsion Laboratory (IGN/JPL) DORIS Analysis Centre are combined to derive a global velocity field. This solution is combined with two independent GPS solutions, including 11 sites on Nubia and 5 on the Somalia plate. The combination indicates that DORIS horizontal velocities have an average accuracy of 3 mm/year, with best-determined sites having velocity accuracy better than 1 mm/year (one-sigma levels). Using our combined velocity field, we derive an updated plate kinematics model with a focus on the Nubia Somalia area. Including DORIS data improves the precision of the angular velocity vector for Nubia by 15%. Our proposed model provides robust bounds on the maximum opening rates along the East African Rift (4.7 6.7 mm/year). It indicates opening rates 15 and 7% slower than values predicted by NUVEL-1A for the southern Atlantic Ocean and Indian Ocean, respectively. These differences are likely to arise from the fact that NUVEL-1A considered Africa as a single non-deforming plate, while here we use a more refined approach.
Pirat, Bahar; McCulloch, Marti L; Zoghbi, William A
2006-09-01
This study sought to demonstrate that a novel speckle-tracking method can be used to assess right ventricular (RV) global and regional systolic function. Fifty-eight patients with pulmonary arterial hypertension (11 men; mean age 53 +/- 14 years) and 19 age-matched controls were studied. Echocardiographic images in apical planes were analyzed by conventional manual tracing for volumes and ejection fractions and by novel software (Axius Velocity Vector Imaging). Myocardial velocity, strain rate, and strain were determined at the basal, mid, and apical segments of the RV free wall and ventricular septum by Velocity Vector Imaging. RV volumes and ejection fractions obtained with manual tracing correlated strongly with the same indexes obtained by the Velocity Vector Imaging method in all subjects (r = 0.95 to 0.98, p < 0.001 for all). Peak systolic myocardial velocities, strain rate, and strain were significantly impaired in patients with pulmonary arterial hypertension compared with controls and were most altered in patients with the most severe pulmonary arterial hypertension (p < 0.05 for all). Pulmonary artery systolic pressure and a Doppler index of pulmonary vascular resistance were independent predictors of RV strain (r = -0.61 and r = -0.65, respectively, p < 0.05 for both). In conclusion, the new automated Velocity Vector Imaging method provides simultaneous quantitation of global and regional RV function that is angle independent and can be applied retrospectively to already stored digital images.
The influence of electric field and confinement on cell motility.
Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C
2013-01-01
The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.
Doppler Lidar Vector Retrievals and Atmospheric Data Visualization in Mixed/Augmented Reality
NASA Astrophysics Data System (ADS)
Cherukuru, Nihanth Wagmi
Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm control and short term wind prediction require knowledge of the vector wind field. Over the past couple of years, multiple works on lidars have explored three primary methods of retrieving wind vectors viz., using homogeneous windfield assumption, computationally extensive variational methods and the use of multiple Doppler lidars. Building on prior research, the current three-part study, first demonstrates the capabilities of single and dual Doppler lidar retrievals in capturing downslope windstorm-type flows occurring at Arizona's Barringer Meteor Crater as a part of the METCRAX II field experiment. Next, to address the need for a reliable and computationally efficient vector retrieval for adaptive wind farm control applications, a novel 2D vector retrieval based on a variational formulation was developed and applied on lidar scans from an offshore wind farm and validated with data from a cup and vane anemometer installed on a nearby research platform. Finally, a novel data visualization technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented to visualize data from atmospheric sensors. MR is an environment in which the user's visual perception of the real world is enhanced with live, interactive, computer generated sensory input (in this case, data from atmospheric sensors like Doppler lidars). A methodology using modern game development platforms is presented and demonstrated with lidar retrieved wind fields. In the current study, the possibility of using this technology to visualize data from atmospheric sensors in mixed reality is explored and demonstrated with lidar retrieved wind fields as well as a few earth science datasets for education and outreach activities.
An Alternative Treatment of Heat Flow for Charge Transport in Semiconductor Devices (Postprint)
2010-07-01
is tantamount to treating them as ideal gases. A three-dimensional ideal Fermi gas is spherically symmetric in momentum space, and its distribution in...the first mo- ment of the Boltzmann equation using the momentum relax- ation time and effective mass approximations.13 Neglecting any magnetic field and...where the integral is over all momentum vectors k, v is electron velocity, k is the momentum relaxation time, and kf denotes the gradient in momentum
PIV Investigations of the Flow Field in the Volute of a Rotary Blood Pump
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Kadambi, Jaikrishnan R.; Mehta, Mehul; Smith, William A.; Wernet, Mark P.
2004-01-01
A full-size acrylic model of a rotary blood pump was developed in order to utilize Particle Image Velocimetry (PIV) to make measurements of the fluid velocities and turbulent stresses throughout the device. The development of an understanding of the hemodynamics within the blood pump is critical to the development and validation of computational models. A blood analog solution, consisting of sodium iodide solution and glycerin, was developed to match physiological kinematic viscosity. The refractive indecies of the fluid, the pump casing and the impeller were matched to facilitate the use of PIV to make velocity measurements. Velocity measurements made in the volute exit/diffuser region are presented for pumps speeds of 3000-3850 rpm. At each speed data were obtained at a physiological pressure of 90 mmHg and at a maximum flow condition. Four hundred data pairs were used for each resultant mean velocity vector value, representing greater than an order of magnitude more data pairs than reported previously in the literature on similar devices and resulting in velocity uncertainty levels of approximately 2.9%.
PIV Investigations of the Flow Field in the Volute of a Rotary Blood Pump
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Kadambi, Jaikrishnan R.; Smith, William A.; Wernet, Mark P.
2004-01-01
A full-size acrylic model of a rotary blood pump was developed in order to utilize Particle Image Velocimetry (PIV) to make measurements of the fluid velocities and turbulent stresses throughout the device. The development of an understanding of the hemodynamics within the blood pump is critical to the development and validation of computational models. A blood analog solution, consisting of sodium iodide solution and glycerin, was developed to match physiological kinematic viscosity. The refractive indices of the fluid, the pump casing, and the impeller were matched to facilitate the use of PIV to make velocity measurements. Velocity measurements made in the volute exit/diffuser region are presented for pumps speeds of 3000-3850 rpm. At each speed data were obtained at a physiological pressure of 12 kPa and at a maximum flow condition. Four hundred data pairs were used for each resultant mean velocity vector value, representing greater than an order of magnitude more data pairs than reported previously in the literature on similar devices and resulting in velocity uncertainty levels of approximately 22.9%.
Turbulence Modeling Effects on the Prediction of Equilibrium States of Buoyant Shear Flows
NASA Technical Reports Server (NTRS)
Zhao, C. Y.; So, R. M. C.; Gatski, T. B.
2001-01-01
The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate, Epsilon(0) equations were considered. The emphasis of this paper is focused on the effects of the Epsilon(0)-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate (if change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters. Calculations show that the Epsilon(0)-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular Epsilon(0)-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the Epsilon(0)-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence.
Chaffin, deceased, Roger J.; Dawson, Ralph; Fritz, Ian J.; Osbourn, Gordon C.; Zipperian, Thomas E.
1989-01-01
A field effect transistor comprises a semiconductor having a source, a drain, a channel and a gate in operational relationship. The semiconductor is a strained layer superlattice comprising alternating quantum well and barrier layers, the quantum well layers and barrier layers being selected from the group of layer pairs consisting of InGaAs/AlGaAs, InAs/InAlGaAs, and InAs/InAlAsP. The layer thicknesses of the quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice which has a superlattice conduction band energy level structure in k-vector space which includes a lowest energy .GAMMA.-valley and a next lowest energy L-valley, each k-vector corresponding to one of the orthogonal directions defined by the planes of said layers and the directions perpendicular thereto. The layer thicknesses of the quantum well layers are selected to provide a superlattice L.sub.2D -valley which has a shape which is substantially more two-dimensional than that of said bulk L-valley.
Investigation of transverse oscillation method.
Udesen, Jesper; Jensen, Jørgen Arendt
2006-05-01
Conventional ultrasound scanners can display only the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation (TO) method overcomes this limitation by introducing a TO and an axial oscillation in the pulse echo field. The theory behind the creation of the double oscillation pulse echo field is explained as well as the theory behind the estimation of the vector velocity. A parameter study of the method is performed, using the ultrasound simulation program Field II. A virtual linear-array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal-to-noise ratio (SNR), and type of echo-canceling filter used. Using an experimental scanner, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic flow in a blood mimicking fluid, and the fluid is scanned under different flow-to-beam angles. The relative standard deviation on the transverse velocity estimate is found to be less than 10% for all angles between 50 degrees and 90 degrees. Furthermore, the TO method is evaluated in the flowrig using pulsatile flow, which resembles the flow in the femoral artery. The estimated volume flow as a function of time is compared to the volume flow derived from a conventional axial method at a flow-to-beam angle of 60 degrees. It is found that the method is highly sensitive to the angle between the flow and the beam direction. Also, the choice of echo canceling filter affects the performance significantly.
NASA Astrophysics Data System (ADS)
Malherbe, J.-M.; Roudier, T.; Stein, R.; Frank, Z.
2018-01-01
We compare horizontal velocities, vertical magnetic fields, and the evolution of trees of fragmenting granules (TFG, also named families of granules) derived in the quiet Sun at disk center from observations at solar minimum and maximum of the Solar Optical Telescope (SOT on board Hinode) and results of a recent 3D numerical simulation of the magneto-convection. We used 24-hour sequences of a 2D field of view (FOV) with high spatial and temporal resolution recorded by the SOT Broad band Filter Imager (BFI) and Narrow band Filter Imager (NFI). TFG were evidenced by segmentation and labeling of continuum intensities. Horizontal velocities were obtained from local correlation tracking (LCT) of proper motions of granules. Stokes V provided a proxy of the line-of-sight magnetic field (BLOS). The MHD simulation (performed independently) produced granulation intensities, velocity, and magnetic field vectors. We discovered that TFG also form in the simulation and show that it is able to reproduce the main properties of solar TFG: lifetime and size, associated horizontal motions, corks, and diffusive index are close to observations. The largest (but not numerous) families are related in both cases to the strongest flows and could play a major role in supergranule and magnetic network formation. We found that observations do not reveal any significant variation in TFG between solar minimum and maximum.
Ubiquitous and Continuous Propagating Disturbances in the Solar Corona
NASA Astrophysics Data System (ADS)
Morgan, Huw; Hutton, Joseph
2018-02-01
A new processing method applied to Atmospheric Imaging Assembly/Solar Dynamic Observatory observations reveals continuous propagating faint motions throughout the corona. The amplitudes are small, typically 2% of the background intensity. An hour’s data are processed from four AIA channels for a region near disk center, and the motions are characterized using an optical flow method. The motions trace the underlying large-scale magnetic field. The motion vector field describes large-scale coherent regions that tend to converge at narrow corridors. Large-scale vortices can also be seen. The hotter channels have larger-scale regions of coherent motion compared to the cooler channels, interpreted as the typical length of magnetic loops at different heights. Regions of low mean and high time variance in velocity are where the dominant motion component is along the line of sight as a result of a largely vertical magnetic field. The mean apparent magnitude of the optical velocities are a few tens of km s‑1, with different distributions in different channels. Over time, the velocities vary smoothly between a few km s‑1 to 100 km s‑1 or higher, varying on timescales of minutes. A clear bias of a few km s‑1 toward positive x-velocities is due to solar rotation and may be used as calibration in future work. All regions of the low corona thus experience a continuous stream of propagating disturbances at the limit of both spatial resolution and signal level. The method provides a powerful new diagnostic tool for tracing the magnetic field, and to probe motions at sub-pixel scales, with important implications for models of heating and of the magnetic field.
A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish.
Oteiza, Pablo; Odstrcil, Iris; Lauder, George; Portugues, Ruben; Engert, Florian
2017-07-27
When flying or swimming, animals must adjust their own movement to compensate for displacements induced by the flow of the surrounding air or water. These flow-induced displacements can most easily be detected as visual whole-field motion with respect to the animal's frame of reference. Despite this, many aquatic animals consistently orient and swim against oncoming flows (a behaviour known as rheotaxis) even in the absence of visual cues. How animals achieve this task, and its underlying sensory basis, is still unknown. Here we show that, in the absence of visual information, larval zebrafish (Danio rerio) perform rheotaxis by using flow velocity gradients as navigational cues. We present behavioural data that support a novel algorithm based on such local velocity gradients that fish use to avoid getting dragged by flowing water. Specifically, we show that fish use their mechanosensory lateral line to first sense the curl (or vorticity) of the local velocity vector field to detect the presence of flow and, second, to measure its temporal change after swim bouts to deduce flow direction. These results reveal an elegant navigational strategy based on the sensing of flow velocity gradients and provide a comprehensive behavioural algorithm, also applicable for robotic design, that generalizes to a wide range of animal behaviours in moving fluids.
Pre-stack separation of PP and split PS waves in HTI media
NASA Astrophysics Data System (ADS)
Lu, Jun; Wang, Yun; Yang, Yuyong; Chen, Jingyi
2017-07-01
Separation of PP and split PS waves in transversely isotropic media with a horizontal axis of symmetry is crucial for imaging subsurface targets and for fracture prediction in a multicomponent seismic survey using P-wave sources. In conventional multicomponent processing, when a low velocity zone is present near the surface, it is often assumed that the vertical Z-component mainly records P modes and that the horizontal X- and Y-components record S modes, including split PS waves. However, this assumption does not hold when the ubiquitous presence of azimuthal anisotropy makes near surface velocity structures more complicated. Seismic wavefields recorded in each component therefore generally represent a complex waveform formed by PP and split PS waves, seriously distorting velocity analysis and seismic imaging. Most previous studies on wave separation have tended to separate P and S modes using pre-stack data and to separate split S modes using post-stack sections, under the assumption of orthogonal polarization. However, split S modes can hardly maintain their original orthogonal polarizations during propagation to the surface due to stratigraphic heterogeneity. Here, without assuming orthogonal polarization, we present a method for pre-stack separation of PP, PS1 and PS2 waves using all three components. The core of our method is the rotation of wave vectors from the Cartesian coordinate system established by Z-, R- and T-axes to a coordinate system established by the true PP-, PS1- and PS2-wave vector directions. Further, we propose a three-component superposition approach to obtain base wave vectors for the coordinate system transformation. Synthetic data testing results confirm that the performance of our wave separation method is stable under different noise levels. Application to field data from Southwest China reveals the potential of our proposed method.
Almendros, J.; Chouet, B.; Dawson, P.
2001-01-01
We present a probabilistic method to locate the source of seismic events using seismic antennas. The method is based on a comparison of the event azimuths and slownesses derived from frequency-slowness analyses of array data, with a slowness vector model. Several slowness vector models are considered including both homogeneous and horizontally layered half-spaces and also a more complex medium representing the actual topography and three-dimensional velocity structure of the region under study. In this latter model the slowness vector is obtained from frequency-slowness analyses of synthetic signals. These signals are generated using the finite difference method and include the effects of topography and velocity structure to reproduce as closely as possible the behavior of the observed wave fields. A comparison of these results with those obtained with a homogeneous half-space demonstrates the importance of structural and topographic effects, which, if ignored, lead to a bias in the source location. We use synthetic seismograms to test the accuracy and stability of the method and to investigate the effect of our choice of probability distributions. We conclude that this location method can provide the source position of shallow events within a complex volcanic structure such as Kilauea Volcano with an error of ??200 m. Copyright 2001 by the American Geophysical Union.
Shape functions for velocity interpolation in general hexahedral cells
Naff, R.L.; Russell, T.F.; Wilson, J.D.
2002-01-01
Numerical methods for grids with irregular cells require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element (CVMFE) methods, vector shape functions approximate velocities and vector test functions enforce a discrete form of Darcy's law. In this paper, a new vector shape function is developed for use with irregular, hexahedral cells (trilinear images of cubes). It interpolates velocities and fluxes quadratically, because as shown here, the usual Piola-transformed shape functions, which interpolate linearly, cannot match uniform flow on general hexahedral cells. Truncation-error estimates for the shape function are demonstrated. CVMFE simulations of uniform and non-uniform flow with irregular meshes show first- and second-order convergence of fluxes in the L2 norm in the presence and absence of singularities, respectively.
A hybrid method for accurate star tracking using star sensor and gyros.
Lu, Jiazhen; Yang, Lie; Zhang, Hao
2017-10-01
Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.
NASA Astrophysics Data System (ADS)
Maeda, Moe; Nagaoka, Ryo; Ikeda, Hayato; Yaegashi, So; Saijo, Yoshifumi
2018-07-01
Color Doppler method is widely used for noninvasive diagnosis of heart diseases. However, the method can measure one-dimensional (1D) blood flow velocity only along an ultrasonic beam. In this study, diverging waves with two different angles were irradiated from a cardiac sector probe to estimate a two-dimensional (2D) blood flow vector from each velocity measured with the angles. The feasibility of the proposed method was evaluated in experiments using flow poly(vinyl alcohol) (PVA) gel phantoms. The 2D velocity vectors obtained with the proposed method were compared with the flow vectors obtained with the particle image velocimetry (PIV) method. Root mean square errors of the axial and lateral components were 11.3 and 29.5 mm/s, respectively. The proposed method was also applied to echo data from the left ventricle of the heart. The inflow from the mitral valve in diastole and the ejection flow concentrating in the aorta in systole were visualized.
NASA Astrophysics Data System (ADS)
Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin
2018-05-01
The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.
Study on the mapping of dark matter clustering from real space to redshift space
NASA Astrophysics Data System (ADS)
Zheng, Yi; Song, Yong-Seon
2016-08-01
The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc-1, considering the resolution of future experiments.
Augmentation method of XPNAV in Mars orbit based on Phobos and Deimos observations
NASA Astrophysics Data System (ADS)
Rong, Jiao; Luping, Xu; Zhang, Hua; Cong, Li
2016-11-01
Autonomous navigation for Mars probe spacecraft is required to reduce the operation costs and enhance the navigation performance in the future. X-ray pulsar-based navigation (XPNAV) is a potential candidate to meet this requirement. This paper addresses the use of the Mars' natural satellites to improve XPNAV for Mars probe spacecraft. Two observation variables of the field angle and natural satellites' direction vectors of Mars are added into the XPNAV positioning system. The measurement model of field angle and direction vectors is formulated by processing satellite image of Mars obtained from optical camera. This measurement model is integrated into the spacecraft orbit dynamics to build the filter model. In order to estimate position and velocity error of the spacecraft and reduce the impact of the system noise on navigation precision, an adaptive divided difference filter (ADDF) is applied. Numerical simulation results demonstrate that the performance of ADDF is better than Unscented Kalman Filter (UKF) DDF and EKF. In view of the invisibility of Mars' natural satellites in some cases, a visibility condition analysis is given and the augmented XPNAV in a different visibility condition is numerically simulated. The simulation results show that the navigation precision is evidently improved by using the augmented XPNAV based on the field angle and natural satellites' direction vectors of Mars in a comparison with the conventional XPNAV.
Visualization of Underfill Flow in Ball Grid Array (BGA) using Particle Image Velocimetry (PIV)
NASA Astrophysics Data System (ADS)
Ng, Fei Chong; Abas, Aizat; Abustan, Ismail; Remy Rozainy, Z. Mohd; Abdullah, MZ; Jamaludin, Ali b.; Kon, Sharon Melissa
2018-05-01
This paper presents the experimental methodology using particle image velocimetry (PIV) to study the underfill process of ball grid array (BGA) chip package. PIV is a non-intrusive approach to visualize the flow behavior of underfill across the solder ball array. The BGA model of three different configurations – perimeter, middle empty and full array – were studied in current research. Through PIV experimental works, the underfill velocity distribution and vector fields for each BGA models were successfully obtained. It is found that perimeter has the shortest filling time resulting to a higher underfill velocity. Therefore, it is concluded that the flow behavior of underfill in BGA can be justified thoroughly with the aid of PIV.
Swadling, G F; Lebedev, S V; Hall, G N; Patankar, S; Stewart, N H; Smith, R A; Harvey-Thompson, A J; Burdiak, G C; de Grouchy, P; Skidmore, J; Suttle, L; Suzuki-Vidal, F; Bland, S N; Kwek, K H; Pickworth, L; Bennett, M; Hare, J D; Rozmus, W; Yuan, J
2014-11-01
A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.
NASA Technical Reports Server (NTRS)
Shriver, E. L.
1972-01-01
The coaxial plasma accelerator for use as a projectile accelerator is discussed. The accelerator is described physically and analytically by solution of circuit equations, and by solving for the magnetic pressures which are formed by the j cross B vector forces on the plasma. It is shown that the plasma density must be increased if the accelerator is to be used as a projectile accelerator. Three different approaches to increasing plasma density are discussed. When a magnetic field containment scheme was used to increase the plasma density, glass beads of 0.66 millimeter diameter were accelerated to 7 to 8 kilometers per second velocities. Glass beads of smaller diameter were accelerated to more than twice this velocity.
NASA Astrophysics Data System (ADS)
Chamot-Rooke, N.; Le Pichon, X.
1999-12-01
GPS measurements acquired over Southeast Asia in 1994 and 1996 in the framework of the GEODYSSEA program revealed that a large piece of continental lithosphere comprising the Indochina Peninsula, Sunda shelf and part of Indonesia behaves as a rigid `Sundaland' platelet. A direct adjustment of velocity vectors obtained in a Eurasian frame of reference shows that Sundaland block is rotating clockwise with respect to Eurasia around a pole of rotation located south of Australia. We present here an additional check of Sundaland motion that uses earthquakes slip vectors at Sunda and Philippine trenches. Seven sites of the GEODYSSEA network are close to the trenches and not separated from them by large active faults (two at Sumatra Trench, three at Java Trench and two at the Philippine Trench). The difference between the vector at the station and the adjacent subducting plate vector defines the relative subduction motion and should thus be aligned with the subduction earthquake slip vectors. We first derive a frame-free solution that minimizes the upper plate (or Sundaland) motion. When corrected for Australia-Eurasia and Philippines-Eurasia NUVEL1-A motion, the misfit between GPS and slip vectors azimuths is significant at 95% confidence, indicating that the upper plate does not belong to Eurasia. We then examine the range of solutions compatible with the slip vectors azimuths and conclude that the minimum velocity of Sundaland is a uniform 7-10 mm/a eastward velocity. However, introducing the additional constraint of the fit of the GEODYSSEA sites with the Australian IGS reference ones, or tie with the NTUS Singapore station, leads to a much narrower range of solutions. We conclude that Sundaland has an eastward velocity of about 10 mm/a on its southern boundary increasing to 16-18 mm/a on its northern boundary.
Oceanographic and meteorological research based on the data products of SEASAT
NASA Technical Reports Server (NTRS)
Pierson, W. J. (Principal Investigator)
1983-01-01
De-aliased SEASAT SASS vector winds obtained during the GOASEX (Gulf of Alaska SEASAT Experiment) program were processed to obtain superobservations centered on a one degree by one degree grid. The results provide values for the combined effects of mesoscale variability and communication noise on the individual SASS winds. Each grid point of the synoptic field provides the mean synoptic east-west and north-south wind components plus estimates of the standard deviations of these means. These superobservations winds are then processed further to obtain synoptic scale vector winds stress fiels, the horizontal divergence of the wind, the curl of the wind stress and the vertical velocity at 200 m above the sea surface, each with appropriate standard deviations for each grid point value. The resulting fields appear to be consistant over large distances and to agree with, for example, geostationary cloud images obtained concurrently. Their quality is far superior to that of analyses based on conventional data.
3D Visualization of Global Ocean Circulation
NASA Astrophysics Data System (ADS)
Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.
2015-12-01
Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.
Synoptic scale wind field properties from the SEASAT SASS
NASA Technical Reports Server (NTRS)
Pierson, W. J., Jr.; Sylvester, W. B.; Salfi, R. E.
1984-01-01
Dealiased SEASAT SEASAT A Scatterometer System SASS vector winds obtained during the Gulf Of Alaska SEASAT Experiment GOASEX program are processed to obtain superobservations centered on a one degree by one degree grid. The grid. The results provide values for the combined effects of mesoscale variability and communication noise on the individual SASS winds. These superobservations winds are then processed further to obtain estimates of synoptic scale vector winds stress fields, the horizontal divergence of the wind, the curl of the wind stress and the vertical velocity at 200 m above the sea surface, each with appropriate standard deviations of the estimates for each grid point value. They also explain the concentration of water vapor, liquid water and precipitation found by means of the SMMR Scanning Multichannel Microwave Radiometer at fronts and occlusions in terms of strong warm, moist air advection in the warm air sector accompanied by convergence in the friction layer. Their quality is far superior to that of analyses based on conventional data, which are shown to yield many inconsistencies.
Yan, H; Sun, G A; Peng, S M; Zhang, Y; Fu, C; Guo, H; Liu, B Q
2015-10-30
We have constrained possible new interactions which produce nonrelativistic potentials between polarized neutrons and unpolarized matter proportional to ασ[over →]·v[over →] where σ[over →] is the neutron spin and v[over →] is the relative velocity. We use existing data from laboratory measurements on the very long T_{1} and T_{2} spin relaxation times of polarized ^{3}He gas in glass cells. Using the best available measured T_{2} of polarized ^{3}He gas atoms as the polarized source and the Earth as an unpolarized source, we obtain constraints on two new interactions. We present a new experimental upper bound on possible vector-axial-vector (V_{VA}) type interactions for ranges between 1 and 10^{8} m. In combination with previous results, we set the most stringent experiment limits on g_{V}g_{A} ranging from ~μm to ~10^{8} m. We also report what is to our knowledge the first experimental upper limit on the possible torsion fields induced by the Earth on its surface. Dedicated experiments could further improve these bounds by a factor of ~100. Our method of analysis also makes it possible to probe many velocity dependent interactions which depend on the spins of both neutrons and other particles which have never been searched for before experimentally.
Samani, Afshin; Kristiansen, Mathias
2018-01-01
We investigated the effect of low and high bar velocity on inter- and intrasubject similarity of muscle synergies during bench press. A total of 13 trained male subjects underwent two exercise conditions: a slow- and a fast-velocity bench press. Surface electromyography was recorded from 13 muscles, and muscle synergies were extracted using a nonnegative matrix factorization algorithm. The intrasubject similarity across conditions and intersubject similarity within conditions were computed for muscle synergy vectors and activation coefficients. Two muscle synergies were sufficient to describe the dataset variability. For the second synergy activation coefficient, the intersubject similarity within the fast-velocity condition was greater than the intrasubject similarity of the activation coefficient across the conditions. An opposite pattern was observed for the first muscle synergy vector. We concluded that the activation coefficients are robust within conditions, indicating a robust temporal pattern of muscular activity across individuals, but the muscle synergy vector seemed to be individually assigned.
Electromagnetic energy flux vector for a dispersive linear medium.
Crenshaw, Michael E; Akozbek, Neset
2006-05-01
The electromagnetic energy flux vector in a dispersive linear medium is derived from energy conservation and microscopic quantum electrodynamics and is found to be of the Umov form as the product of an electromagnetic energy density and a velocity vector.
Deployment and Intelligent Nanosatellite Operations Colorado Final Technical Report
2006-09-28
environmental factors will cause disturbance torques during orbit around the Earth . These factors are solar radiation pressure from the sun , aerodynamic...software. The 3- axis sensing of the magnetometer allows a vector the B- field of the Earth to be sensed. Geopack 2003 then can be utilized with the orbit ...gradient torque can be represented as the following: g, ; 3wo21 Eq. 2-11 where ow is the angular velocity of the spacecraft as it orbits the earth . DINO’s
Mean-flow measurements of the flow field diffusing bend
NASA Technical Reports Server (NTRS)
Mcmillan, O. J.
1982-01-01
Time-average measurements of the low-speed turbulent flow in a diffusing bend are presented. The experimental geometry consists of parallel top and bottom walls and curved diverging side walls. The turning of the center line of this channel is 40 deg, the area ratio is 1.5 and the ratios of height and center-line length to throat width are 1.5 and 3, respectively. The diffusing bend is preceded and followed by straight constant area sections. The inlet boundary layers on the parallel walls are artificially thickened and occupy about 30% of the channel height; those on the side walls develop naturally and are about half as thick. The free-stream speed at the inlet was approximately 30 m/sec for all the measurements. Inlet boundary layer mean velocity and turbulence intensity profiles are presented, as are data for wall static pressures, and at six cross sections, surveys of the velocity-vector and static-pressure fields. The dominant feature of the flow field is a pair of counter-rotating streamwise vortices formed by the cross-stream pressure gradient in the bend on which an overall deceleration is superimposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahbarnia, Kian; Brown, Benjamin P.; Clark, Mike M.
2012-11-10
For the first time, we have directly measured the transport of a vector magnetic field by isotropic turbulence in a high Reynolds number liquid metal flow. In analogy with direct measurements of the turbulent Reynolds stress (turbulent viscosity) that governs momentum transport, we have measured the turbulent electromotive force (emf) by simultaneously measuring three components of velocity and magnetic fields, and computed the correlations that lead to mean-field current generation. Furthermore, we show that this turbulent emf tends to oppose and cancel out the local current, acting to increase the effective resistivity of the medium, i.e., it acts as anmore » enhanced magnetic diffusivity. This has important implications for turbulent transport in astrophysical objects, particularly in dynamos and accretion disks.« less
Zhu, S N; Wu, Z C; Fu, S N; Zhao, L M
2018-03-20
Details of various composites of the projections originated from a fundamental group-velocity-locked vector dissipative soliton (GVLVDS) are both experimentally and numerically explored. By combining the projections from the orthogonal polarization components of the GVLVDS, a high-order vector soliton structure with a double-humped pulse profile along one polarization and a single-humped pulse profile along the orthogonal polarization can be observed. Moreover, by de-chirping the composite double-humped pulse, the time separation between the two humps is reduced from 15.36 ps to 1.28 ps, indicating that the frequency chirp of the GVLVDS contributes significantly to the shaping of the double-humped pulse profile.
Nicolas, Gaëlle; Tisseuil, Clément; Conte, Annamaria; Allepuz, Alberto; Pioz, Maryline; Lancelot, Renaud; Gilbert, Marius
2018-01-01
Several epidemics caused by different bluetongue virus (BTV) serotypes occurred in European ruminants since the early 2000. Studies on the spatial distribution of these vector-borne infections and the main vector species highlighted contrasted eco-climatic regions characterized by different dominant vector species. However, little work was done regarding the factors associated with the velocity of these epidemics. In this study, we aimed to quantify and compare the velocity of BTV epidemic that have affected different European countries under contrasted eco-climatic conditions and to relate these estimates to spatial factors such as temperature and host density. We used the thin plate spline regression interpolation method in combination with trend surface analysis to quantify the local velocity of different epidemics that have affected France (BTV-8 2007-2008, BTV-1 2008-2009), Italy (BTV-1 2014), Andalusia in Spain (BTV-1 2007) and the Balkans (BTV-4 2014). We found significant differences in the local velocity of BTV spread according to the country and epidemics, ranging from 7.9km/week (BTV-1 2014 Italy) to 24.4km/week (BTV-1 2008 France). We quantify and discuss the effect of temperature and local host density on this velocity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
The average magnetic field draping and consistent plasma properties of the Venus magnetotail
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Spence, H. E.; Russell, C. T.; Saunders, M. A.
1986-01-01
The detailed average draping pattern of the magnetic field in the deep Venus magnetotail is examined. The variability of the data ordered by spatial location is studied, and the groundwork is laid for developing a coordinate system which measured locations with respect to the tail structures. The reconstruction of the tail in the presence of flapping using a new technique is shown, and the average variations in the field components are examined, including the average field vectors, cross-tail current density distribution, and J x B forces as functions of location across the tail. The average downtail velocity is derived as a function of distance, and a simple model based on the field variations is defined from which the average plasma acceleration is obtained as a function of distance, density, and temperature.
Enhanced Line Integral Convolution with Flow Feature Detection
NASA Technical Reports Server (NTRS)
Lane, David; Okada, Arthur
1996-01-01
The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain. The method produces a flow texture image based on the input velocity field defined in the domain. Because of the nature of the algorithm, the texture image tends to be blurry. This sometimes makes it difficult to identify boundaries where flow separation and reattachments occur. We present techniques to enhance LIC texture images and use colored texture images to highlight flow separation and reattachment boundaries. Our techniques have been applied to several flow fields defined in 3D curvilinear multi-block grids and scientists have found the results to be very useful.
Alfven waves in spiral interplanetary field
NASA Technical Reports Server (NTRS)
Whang, Y. C.
1973-01-01
A theoretical study is presented of the Alfven waves in the spiral interplanetary magnetic field. The Alfven waves under consideration are arbitrary, large amplitude, non-monochromatic, microscale waves of any polarization. They superpose on a mesoscale background flow of thermally anisotropic plasma. Using WKB approximation, an analytical solution for the amplitude vectors is obtained as a function of the background flow properties: density, velocity, Alfven speed, thermal anisotropy, and the spiral angel. The necessary condition for the validity of the WKB solution is discussed. The intensity of fluctuations is calculated as a function of heliocentric distance. Relative intensity of fluctuations as compared with the magnitude of the background field has its maximum in the region near l au. Thus outside of this region, the solar wind is less turbulent.
NASA Astrophysics Data System (ADS)
Kuzmiak, Vladimir; Maradudin, Alexei A.
1998-09-01
We study the distribution of the electromagnetic field of the eigenmodes and corresponding group velocities associated with the photonic band structures of two-dimensional periodic systems consisting of an array of infinitely long parallel metallic rods whose intersections with a perpendicular plane form a simple square lattice. We consider both nondissipative and lossy metallic components characterized by a complex frequency-dependent dielectric function. Our analysis is based on the calculation of the complex photonic band structure obtained by using a modified plane-wave method that transforms the problem of solving Maxwell's equations into the problem of diagonalizing an equivalent non-Hermitian matrix. In order to investigate the nature and the symmetry properties of the eigenvectors, which significantly affect the optical properties of the photonic lattices, we evaluate the associated field distribution at the high symmetry points and along high symmetry directions in the two-dimensional first Brillouin zone of the periodic system. By considering both lossless and lossy metallic rods we study the effect of damping on the spatial distribution of the eigenvectors. Then we use the Hellmann-Feynman theorem and the eigenvectors and eigenfrequencies obtained from a photonic band-structure calculation based on a standard plane-wave approach applied to the nondissipative system to calculate the components of the group velocities associated with individual bands as functions of the wave vector in the first Brillouin zone. From the group velocity of each eigenmode the flow of energy is examined. The results obtained indicate a strong directional dependence of the group velocity, and confirm the experimental observation that a photonic crystal is a potentially efficient tool in controlling photon propagation.
Effects of Cocos Ridge Collision on the Western Caribbean: Is there a Panama Block?
NASA Astrophysics Data System (ADS)
Kobayashi, D.; La Femina, P. C.; Geirsson, H.; Chichaco, E.; Abrego M, A. A.; Fisher, D. M.; Camacho, E. I.
2011-12-01
It has been recognized that the subduction and collision of the Cocos Ridge, a 2 km high aseismic ridge standing on >20 km thick oceanic crust of the Cocos plate, drives upper plate deformation in southern Central America. Recent studies of Global Positioning System (GPS) derived horizontal velocities relative to the Caribbean Plate showed a radial pattern centered on the Cocos Ridge axis where Cocos-Caribbean convergence is orthogonal, and margin-parallel velocities to the northwest. Models of the full three-dimensional GPS velocity field and earthquake slip vectors demonstrate low mechanical coupling along the Middle America subduction zone in Nicaragua and El Salvador, and a broad zone of high coupling beneath the Osa Peninsula, where the Cocos Ridge intersects the margin. These results suggest that Cocos Ridge collision may be the main driver for trench-parallel motion of the fore arc to the northwest and for uplift and shortening of the outer fore arc in southern Central America, whereby thickened and hence buoyant Cocos Ridge crust acts as an indenter causing the tectonic escape of the fore arc. These studies, however, were not able to constrain well the pattern of surface deformation east-southeast of the ridge axis due to a lack of GPS stations, and Cocos Ridge collision may be responsible for the kinematics and deformation of the proposed Panama block. Recent reinforcement of the GPS network in southeastern Costa Rica and Panama has increased the spatial and temporal resolution of the network and made it possible to further investigate surface deformation of southern Central America and the Panama block. We present a new regional surface velocity field for Central America from geodetic GPS data collected at 11 recently-installed and 178 existing episodic, semi-continuous, and continuous GPS sites in Nicaragua, Costa Rica, and Panama. We investigate the effects of Cocos Ridge collision on the Panama block through kinematic block modeling. Published earthquake relocation and geologic data are used to define block boundaries and fault geometries. We invert the three-dimensional GPS velocity vectors and earthquake slip vectors to estimate the magnitude and spatial distribution of interplate mechanical coupling on active plate and block boundaries around the Panama block; the Middle America Trench - South Panama Deformed Belt, the Central Costa Rican Deformed Belt, and the North Panama Deformed Belt in particular, and the rates of relative plate motion between the Panama block and the adjacent Cocos, Nazca, and Caribbean plates. This study tests whether the Panama block responds to the ridge collision as a rigid tectonic block or as a deforming zone consisting of multiple blocks.
Determination of regional Euler pole parameters for Eastern Austria
NASA Astrophysics Data System (ADS)
Umnig, Elke; Weber, Robert; Schartner, Matthias; Brueckl, Ewald
2017-04-01
The horizontal motion of lithospheric plates can be described as rotations around a rotation axes through the Earth's center. The two possible points where this axes intersects the surface of the Earth are called Euler poles. The rotation is expressed by the Euler parameters in terms of angular velocities together with the latitude and longitude of the Euler pole. Euler parameters were calculated from GPS data for a study area in Eastern Austria. The observation network is located along the Mur-Mürz Valley and the Vienna Basin. This zone is part of the Vienna Transfer Fault, which is the major fault system between the Eastern Alps and the Carpathians. The project ALPAACT (seismological and geodetic monitoring of ALpine-PAnnonian ACtive Tectonics) investigated intra plate tectonic movements within the Austrian part in order to estimate the seismic hazard. Precise site coordinate time series established from processing 5 years of GPS observations are available for the regional network spanning the years from 2010.0 to 2015.0. Station velocities with respect to the global reference frame ITRF2008 have been computed for 23 sites. The common Euler vector was estimated on base of a subset of reliable site velocities, for stations directly located within the area of interest. In a further step a geokinematic interpretation shall be carried out. Therefore site motions with respect to the Eurasian Plate are requested. To obtain this motion field different variants are conceivable. In a simple approach the mean ITRF2008 velocity of IGS site GRAZ can be adopted as Eurasian rotational velocity. An improved alternative is to calculate site-specific velocity differences between the Euler rotation and the individual site velocities. In this poster presentation the Euler parameters, the residual motion field as well as first geokinematic interpretation results are presented.
Spectra of turbulently advected scalars that have small Schmidt number
NASA Astrophysics Data System (ADS)
Hill, Reginald J.
2017-09-01
Exact statistical equations are derived for turbulent advection of a passive scalar having diffusivity much larger than the kinematic viscosity, i.e., small Schmidt number. The equations contain all terms needed for precise direct numerical simulation (DNS) quantification. In the appropriate limit, the equations reduce to the classical theory for which the scalar spectrum is proportional to the energy spectrum multiplied by k-4, which, in turn, results in the inertial-diffusive range power law, k-17 /3. The classical theory was derived for the case of isotropic velocity and scalar fields. The exact equations are simplified for less restrictive cases: (1) locally isotropic scalar fluctuations at dissipation scales with no restriction on symmetry of the velocity field, (2) isotropic velocity field with averaging over all wave-vector directions with no restriction on the symmetry of the scalar, motivated by that average being used for DNS, and (3) isotropic velocity field with axisymmetric scalar fluctuations, motivated by the mean-scalar-gradient-source case. The equations are applied to recently published DNSs of passive scalars for the cases of a freely decaying scalar and a mean-scalar-gradient source. New terms in the exact equations are estimated for those cases and are found to be significant; those terms cause the deviations from the classical theory found by the DNS studies. A new formula for the mean-scalar-gradient case explains the variation of the scalar spectra for the DNS of the smallest Schmidt-number cases. Expansion in Legendre polynomials reveals the effect of axisymmetry. Inertial-diffusive-range formulas for both the zero- and second-order Legendre contributions are given. Exact statistical equations reveal what must be quantified using DNS to determine what causes deviations from asymptotic relationships.
Elliptic-symmetry vector optical fields.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian
2014-08-11
We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dósa, M.; Erdős, G., E-mail: dosa.melinda@wigner.mta.hu
Open magnetic flux in the heliosphere is determined from the radial component of the magnetic field vector measured onboard interplanetary space probes. Previous Ulysses research has shown remarkable independence of the flux density from heliographic latitude, explained by super-radial expansion of plasma. Here we are investigating whether any longitudinal variation exists in the 50 year long OMNI magnetic data set. The heliographic longitude of origin of the plasma package was determined by applying a correction according to the solar wind travel time. Significant recurrent enhancements of the magnetic flux density were observed throughout solar cycle 23, lasting for several years.more » Similar, long-lasting recurring features were observed in the solar wind velocity, temperature and the deviation angle of the solar wind velocity vector from the radial direction. Each of the recurrent features has a recurrence period slightly differing from the Carrington rotation rate, although they show a common trend in time. Examining the coronal temperature data of ACE leads to the possible explanation that these long-term structures are caused by slow–fast solar wind interaction regions. A comparison with MESSENGER data measured at 0.5 au shows that these longitudinal magnetic modulations do not exist closer to the Sun, but are the result of propagation.« less
Measurement Capabilities of Single-Pulse Planar Doppler Velocimetry
NASA Technical Reports Server (NTRS)
McKenzie, Robert L.; Kutler, Paul F. (Technical Monitor)
1994-01-01
Preliminary investigations are described of a method that is capable of measuring instantaneous, 3-D, velocity vectors everywhere in a light sheet generated by a pulsed laser. The technique, here called Planar Doppler Velocimetry (PDV), is a variation of a new concept for velocity measurements that was called Doppler Global Velocimetry (DGV) in its original disclosure. The concept relies on the use of a narrowband laser and measurements of the Doppler shift of scattered light from particles moving with a flow. The Doppler shift is recorded as a variation in transmission through a sharp-edged spectral filter provided by iodine vapor in a cell. Entire fields of velocity can be determined by using a solid-state camera to record the intensity variations throughout the field of view. However, the implementation of DGV has been centered principally on the use of high power, continuous-wave, ion lasers and measurement times that are determined by the 30-ms framing times of standard video cameras. Hence, they provide velocity fields that are averaged in time at least over that period. On the other hand, the PDV concept described in this presentation incorporates a high energy, repetitively pulsed, Nd-YAG laser that is injection-seeded to make it narrowband and then frequency-doubled to provide light at frequencies absorbed by the iodine vapor. The duration of each pulse is less than 10 nanoseconds. When used in combination with nonstandard, scientific quality, solid state cameras, a sequence of images can be obtained that provides instantaneous velocity vectors everywhere in the field of view. The investigations described in this paper include an accurate characterization of the iodine cell spectral behavior and its influence on the PDV measurements, a derivation of the PDV signal analysis requirements, and the unique aspects of the pulsed laser behavior related to this application. In addition, PDV measurements are to be demonstrated using data from a rotating wheel target and from the flow of a subsonic jet. Initially, single optical fiber light collection and photomultiplier detectors will be substituted for solid state cameras. Those results will allow the determination of the fundamental limitations of the PDV technique without the complications of image acquisition and processing. They will then be used to provide an analysis of the measurement capabilities of PDV both in small aerodynamic research wind tunnels and in large wind tunnels designed for production airframe and propulsion testing. Future plans include the implementation of solid state cameras and the development of the required image acquisition and processing software. Eventually, the PDV technique will be applied to an aerodynamic research program related to transonic wing flutter.
Versatile generation of optical vector fields and vector beams using a non-interferometric approach.
Tripathi, Santosh; Toussaint, Kimani C
2012-05-07
We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.
Interaction of a neutral cloud moving through a magnetized plasma
NASA Technical Reports Server (NTRS)
Goertz, C. K.; Lu, G.
1990-01-01
Current collection by outgassing probes in motion relative to a magnetized plasma may be significantly affected by plasma processes that cause electron heating and cross field transport. Simulations of a neutral gas cloud moving across a static magnetic field are discussed. The authors treat a low-Beta plasma and use a 2-1/2 D electrostatic code linked with the authors' Plasma and Neutral Interaction Code (PANIC). This study emphasizes the understanding of the interface between the neutral gas cloud and the surrounding plasma where electrons are heated and can diffuse across field lines. When ionization or charge exchange collisions occur a sheath-like structure is formed at the surface of the neutral gas. In that region the crossfield component of the electric field causes the electron to E times B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating. The thermal electron current is significantly enhanced due to this heating.
A numerical study of three-dimensional vortex breakdown
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Ash, Robert L.
1987-01-01
A numerical simulation of bubble-type vortex breakdown using a unique discrete form of the full 3-D, unsteady incompressible Navier-Stokes equations was performed. The Navier-Stokes equations were written in a vorticity-velocity form and the physical problem was not restricted to axisymmetric flow. The problem was parametized on a Rossby- Reynolds-number basis. Utilization of this parameter duo was shown to dictate the form of the free-field boundary condition specification and allowed control of axial breakdown location within the computational domain. The structure of the breakdown bubble was studied through time evolution plots of planar projected velocity vectors as well as through plots of particle traces and vortex lines. These results compared favorably with previous experimental studies. In addition, profiles of all three velocity components are presented at various axial stations and a Fourier analysis was performed to identify the dominant circumferential modes. The dynamics of the breakdown process were studied through plots of axial variation of rate of change of integrated total energy and rate of change of integrated enstrophy, as well as through contour plots of velocity, vorticity and pressure.
Application and principles of photon-doppler velocimetry for explosives testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briggs, Matthew Ellsworth; Hill, Larry; Hull, Larry
2010-01-01
The velocimetry technique PDV is easier to field than its predecessors VISAR and Fabry-Perot, works on a broader variety of experiments, and is more accurate and simple to analyze. Experiments and analysis have now demonstrated the accuracy, precision and interpretation of what PDV does and does not measure, and the successful application of POV to basic and applied detonation problems. We present a selection of results intended to help workers assess the capabilities of PDV. First we present general considerations about the technique: various PDV configurations, single-signal, multisignal (e.g., triature) and frequency-shifted PDV; what types of motion are sensed andmore » missed by PDV; analysis schemes for velocity and position extraction; accuracy and precision of the results; and, experimental considerations for probe selection and positioning. We then present the status of various applications: detonation speeds and wall motion in cylinder tests, breakout velocity distributions from bare HE, ejecta, measurements from fibers embedded in HE, projectile velocity, resolving 2 and 3-D velocity vectors. This paper is an overview of work done by many groups around the world.« less
Ion Velocity Measurements for the Ionospheric Connections Explorer
NASA Astrophysics Data System (ADS)
Heelis, R. A.; Stoneback, R. A.; Perdue, M. D.; Depew, M. D.; Morgan, W. A.; Mankey, M. W.; Lippincott, C. R.; Harmon, L. L.; Holt, B. J.
2017-10-01
The Ionospheric Connections Explorer (ICON) payload includes an Ion Velocity Meter (IVM) to provide measurements of the ion drift motions, density, temperature and major ion composition at the satellite altitude near 575 km. The primary measurement goal for the IVM is to provide the meridional ion drift perpendicular to the magnetic field with an accuracy of 7.5 m s-1 for all daytime conditions encountered by the spacecraft within 15° of the magnetic equator. The IVM will derive this parameter utilizing two sensors, a retarding potential analyzer (RPA) and an ion drift meter (IDM) that have a robust and successful flight heritage. The IVM described here incorporates improvements in the design and operation to produce the most sensitive device that has been fielded to date. It will specify the ion drift vector, from which the component perpendicular to the magnetic field will be derived. In addition it will specify the total ion density, the ion temperature and the fractional ion composition. These data will be used in conjunction with measurements from the other ICON instruments to uncover the important connections between the dynamics of the neutral atmosphere and the ionosphere through the generation of dynamo currents perpendicular to the magnetic field and collisional forces parallel to the magnetic field. Here the configuration and operation of the IVM instrument are described, as well as the procedures by which the ion drift velocity is determined. A description of the subsystem characteristics, which allow a determination of the expected uncertainties in the derived parameters, is also given.
Detection of Accelerating Targets in Clutter Using a De-Chirping Technique
2014-06-01
Academy, also in Canberra, working on the the- ory and simulation of spatial optical solitons and light-induced optical switching in nonlinear...signal gain in the receiver. UNCLASSIFIED 1 DSTO–RR–0399 UNCLASSIFIED target along the velocity vector , or equivalently by radar platform. The change of...the tracker uses range rate in its track initiation logic. (2) Lateral acceleration perpendicular to the velocity vector - the target is turning and
A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish
Oteiza, Pablo; Odstrcil, Iris; Lauder, George; Portugues, Ruben; Engert, Florian
2017-01-01
When flying or swimming, animals must adjust their own movement to compensate for displacements induced by the flow of the surrounding air or water1. These flow-induced displacements can most easily be detected as visual whole-field motion with respect to the animal’s frame of reference2. In spite of this, many aquatic animals consistently orient and swim against oncoming flows (a behavior known as rheotaxis) even in the absence of visual cues3,4. How animals achieve this task, and its underlying sensory basis, is still unknown. Here we show that in the absence of visual information, larval zebrafish (Danio rerio) perform rheotaxis by using flow velocity gradients as navigational cues. We present behavioral data that support a novel algorithm based on such local velocity gradients that fish use to efficiently avoid getting dragged by flowing water. Specifically, we show that fish use their mechanosensory lateral line to first sense the curl (or vorticity) of the local velocity vector field to detect the presence of flow and, second, measure its temporal change following swim bouts to deduce flow direction. These results reveal an elegant navigational strategy based on the sensing of flow velocity gradients and provide a comprehensive behavioral algorithm, also applicable for robotic design, that generalizes to a wide range of animal behaviors in moving fluids. PMID:28700578
NASA Astrophysics Data System (ADS)
Jiang, Weiping; Ma, Jun; Li, Zhao; Zhou, Xiaohui; Zhou, Boye
2018-05-01
The analysis of the correlations between the noise in different components of GPS stations has positive significance to those trying to obtain more accurate uncertainty of velocity with respect to station motion. Previous research into noise in GPS position time series focused mainly on single component evaluation, which affects the acquisition of precise station positions, the velocity field, and its uncertainty. In this study, before and after removing the common-mode error (CME), we performed one-dimensional linear regression analysis of the noise amplitude vectors in different components of 126 GPS stations with a combination of white noise, flicker noise, and random walking noise in Southern California. The results show that, on the one hand, there are above-moderate degrees of correlation between the white noise amplitude vectors in all components of the stations before and after removal of the CME, while the correlations between flicker noise amplitude vectors in horizontal and vertical components are enhanced from un-correlated to moderately correlated by removing the CME. On the other hand, the significance tests show that, all of the obtained linear regression equations, which represent a unique function of the noise amplitude in any two components, are of practical value after removing the CME. According to the noise amplitude estimates in two components and the linear regression equations, more accurate noise amplitudes can be acquired in the two components.
NASA Technical Reports Server (NTRS)
Tarbell, T.; Frank, Z.; Gilbreth, C.; Shine, R.; Title, A.; Topka, K.; Wolfson, J.
1989-01-01
SOUP is a versatile, visible-light solar observatory, built for space or balloon flight. It is designed to study magnetic and velocity fields in the solar atmosphere with high spatial resolution and temporal uniformity, which cannot be achieved from the surface of the earth. The SOUP investigation is carried out by the Lockheed Palo Alto Research Laboratory, under contract to NASA's Marshall Space Flight Center. Co-investigators include staff members at a dozen observatories and universities in the U.S. and Europe. The primary objectives of the SOUP experiment are: to measure vector magnetic and velocity fields in the solar atmosphere with much better spatial resolution than can be achieved from the ground; to study the physical processes that store magnetic energy in active regions and the conditions that trigger its release; and to understand how magnetic flux emerges, evolves, combines, and disappears on spatial scales of 400 to 100,000 km. SOUP is designed to study intensity, magnetic, and velocity fields in the photosphere and low chromosphere with 0.5 arcsec resolution, free of atmospheric disturbances. The instrument includes: a 30 cm Cassegrain telescope; an active mirror for image stabilization; broadband film and TV cameras; a birefringent filter, tunable over 5100 to 6600 A with 0.05 A bandpass; a 35 mm film camera and a digital CCD camera behind the filter; and a high-speed digital image processor.
NASA Astrophysics Data System (ADS)
Tarbell, T.; Frank, Z.; Gilbreth, C.; Shine, R.; Title, A.; Topka, K.; Wolfson, J.
SOUP is a versatile, visible-light solar observatory, built for space or balloon flight. It is designed to study magnetic and velocity fields in the solar atmosphere with high spatial resolution and temporal uniformity, which cannot be achieved from the surface of the earth. The SOUP investigation is carried out by the Lockheed Palo Alto Research Laboratory, under contract to NASA's Marshall Space Flight Center. Co-investigators include staff members at a dozen observatories and universities in the U.S. and Europe. The primary objectives of the SOUP experiment are: to measure vector magnetic and velocity fields in the solar atmosphere with much better spatial resolution than can be achieved from the ground; to study the physical processes that store magnetic energy in active regions and the conditions that trigger its release; and to understand how magnetic flux emerges, evolves, combines, and disappears on spatial scales of 400 to 100,000 km. SOUP is designed to study intensity, magnetic, and velocity fields in the photosphere and low chromosphere with 0.5 arcsec resolution, free of atmospheric disturbances. The instrument includes: a 30 cm Cassegrain telescope; an active mirror for image stabilization; broadband film and TV cameras; a birefringent filter, tunable over 5100 to 6600 A with 0.05 A bandpass; a 35 mm film camera and a digital CCD camera behind the filter; and a high-speed digital image processor.
Global and local Joule heating effects seen by DE 2
NASA Technical Reports Server (NTRS)
Heelis, R. A.; Coley, W. R.
1988-01-01
In the altitude region between 350 and 550 km, variations in the ion temperature principally reflect similar variations in the local frictional heating produced by a velocity difference between the ions and the neutrals. Here, the distribution of the ion temperature in this altitude region is shown, and its attributes in relation to previous work on local Joule heating rates are discussed. In addition to the ion temperature, instrumentation on the DE 2 satellite also provides a measure of the ion velocity vector representative of the total electric field. From this information, the local Joule heating rate is derived. From an estimate of the height-integrated Pedersen conductivity it is also possible to estimate the global (height-integrated) Joule heating rate. Here, the differences and relationships between these various parameters are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F., E-mail: swadling@imperial.ac.uk; Lebedev, S. V.; Hall, G. N.
2014-11-15
A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7–14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnosticsmore » are used to constrain analysis, increasing the accuracy of interpretation.« less
NASA Astrophysics Data System (ADS)
Kim, Soo Jeong; Lee, Dong Hyuk; Song, Inchang; Kim, Nam Gook; Park, Jae-Hyeung; Kim, JongHyo; Han, Man Chung; Min, Byong Goo
1998-07-01
Phase-contrast (PC) method of magnetic resonance imaging (MRI) has bee used for quantitative measurements of flow velocity and volume flow rate. It is a noninvasive technique which provides an accurate two-dimensional velocity image. Moreover, Phase Contrast Cine magnetic resonance imaging combines the flow dependent contrast of PC-MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. However, the accuracy of the data acquired from the single through-plane velocity encoding can be reduced by the effect of flow direction, because in many practical cases flow directions are not uniform throughout the whole region of interest. In this study, we present dynamic three-dimensional velocity vector mapping method using PC-MRI which can visualize the complex flow pattern through 3D volume rendered images displayed dynamically. The direction of velocity mapping can be selected along any three orthogonal axes. By vector summation, the three maps can be combined to form a velocity vector map that determines the velocity regardless of the flow direction. At the same time, Cine method is used to observe the dynamic change of flow. We performed a phantom study to evaluate the accuracy of the suggested PC-MRI in continuous and pulsatile flow measurement. Pulsatile flow wave form is generated by the ventricular assistant device (VAD), HEMO-PULSA (Biomedlab, Seoul, Korea). We varied flow velocity, pulsatile flow wave form, and pulsing rate. The PC-MRI-derived velocities were compared with Doppler-derived results. The velocities of the two measurements showed a significant linear correlation. Dynamic three-dimensional velocity vector mapping was carried out for two cases. First, we applied to the flow analysis around the artificial heart valve in a flat phantom. We could observe the flow pattern around the valve through the 3-dimensional cine image. Next, it is applied to the complex flow inside the polymer sac that is used as ventricle in totally implantable artificial heart (TAH). As a result we could observe the flow pattern around the valves of the sac, though complex flow can not be detected correctly in the conventional phase contrast method. In addition, we could calculate the cardiac output from TAH sac by quantitative measurement of the volume of flow across the outlet valve.
Fractal planetary rings: Energy inequalities and random field model
NASA Astrophysics Data System (ADS)
Malyarenko, Anatoliy; Ostoja-Starzewski, Martin
2017-12-01
This study is motivated by a recent observation, based on photographs from the Cassini mission, that Saturn’s rings have a fractal structure in radial direction. Accordingly, two questions are considered: (1) What Newtonian mechanics argument in support of such a fractal structure of planetary rings is possible? (2) What kinematics model of such fractal rings can be formulated? Both challenges are based on taking planetary rings’ spatial structure as being statistically stationary in time and statistically isotropic in space, but statistically nonstationary in space. An answer to the first challenge is given through an energy analysis of circular rings having a self-generated, noninteger-dimensional mass distribution [V. E. Tarasov, Int. J. Mod Phys. B 19, 4103 (2005)]. The second issue is approached by taking the random field of angular velocity vector of a rotating particle of the ring as a random section of a special vector bundle. Using the theory of group representations, we prove that such a field is completely determined by a sequence of continuous positive-definite matrix-valued functions defined on the Cartesian square F2 of the radial cross-section F of the rings, where F is a fat fractal.
Small Deflection Energy Analyzer for Energy and Angular Distributions
NASA Technical Reports Server (NTRS)
Herrero, Federico A.
2009-01-01
The development of the Small Deflection Energy Analyzer (SDEA) charged-particle spectrometer for energy and angle distributions responds to a longstanding need to measure the wind velocity vector in Earth s thermosphere, and to obtain the ion-drift vector in the ionosphere. The air and ions above 120 km are endowed with bulk velocities and temperatures just like air near the ground, but with separate spatial and temporal variations. It is important to understand these not only for study of the physics and chemistry of the Sun-Earth connection, but also for spacecraft orbit predictions, and communications through the ionosphere. The SDEA consists of a pair of parallel conducting plates separated by a small distance, with an entrance slit on one end, and an exit slit on the other. A voltage applied to these plates develops an electric field between the plates, and this field deflects ions passing through it. If an ion has too little energy, it will strike one of the plates. If it has too much, it will strike the back wall. An ion with the amount of energy being searched for will have its trajectory bent just enough to exit the back slit. The SDEA units are compact, rectangular, and operate with low voltages. The units can be built up into small arrays. These arrays could be used either to widen the field of view or to sharpen an existing one. This approach can also be used to obtain angular distributions in two planes simultaneously, thus cutting down the ion source power requirements in half. This geometry has enabled a new mass-spectrometer concept that can provide miniaturized mass spectrometers for use in industrial plants, air-pollution monitoring, and noxious-gas detection.
Study on the mapping of dark matter clustering from real space to redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yi; Song, Yong-Seon, E-mail: yizheng@kasi.re.kr, E-mail: ysong@kasi.re.kr
The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown inmore » this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc{sup -1}, considering the resolution of future experiments.« less
Polarization rotation locking of vector solitons in a fiber ring laser.
Zhao, L M; Tang, D Y; Zhang, H; Wu, X
2008-07-07
Polarization rotation of vector solitons in a fiber ring laser was experimentally studied. It was observed that the period of vector soliton polarization rotation could be locked to the cavity roundtrip time or multiple of it. We further show that multiple vector solitons can be formed in a fiber laser, and all the vector solitons have the same group velocity in cavity, however, their instantaneous polarization ellipse orientations could be orthogonal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, Christoph
We show that there is exact dragging of the axis directions of local inertial frames by a weighted average of the cosmological energy currents via gravitomagnetism for all linear perturbations of all Friedmann-Robertson-Walker (FRW) universes and of Einstein's static closed universe, and for all energy-momentum-stress tensors and in the presence of a cosmological constant. This includes FRW universes arbitrarily close to the Milne Universe and the de Sitter universe. Hence the postulate formulated by Ernst Mach about the physical cause for the time-evolution of inertial axes is shown to hold in general relativity for linear perturbations of FRW universes. -more » The time-evolution of local inertial axes (relative to given local fiducial axes) is given experimentally by the precession angular velocity {omega}-vector{sub gyro} of local gyroscopes, which in turn gives the operational definition of the gravitomagnetic field: B-vector{sub g}{identical_to}-2{omega}-vector{sub gyro}. The gravitomagnetic field is caused by energy currents J-vector{sub {epsilon}} via the momentum constraint, Einstein's G{sup 0-}circumflex{sub i-circumflex} equation, (-{delta}+{mu}{sup 2})A-vector{sub g}=-16{pi}G{sub N}J-vector{sub {epsilon}} with B-vector{sub g}=curl A-vector{sub g}. This equation is analogous to Ampere's law, but it holds for all time-dependent situations. {delta} is the de Rham-Hodge Laplacian, and {delta}=-curl curl for the vorticity sector in Riemannian 3-space. - In the solution for an open universe the 1/r{sup 2}-force of Ampere is replaced by a Yukawa force Y{sub {mu}}(r)=(-d/dr)[(1/R)exp(-{mu}r)], form-identical for FRW backgrounds with K=(-1,0). Here r is the measured geodesic distance from the gyroscope to the cosmological source, and 2{pi}R is the measured circumference of the sphere centered at the gyroscope and going through the source point. The scale of the exponential cutoff is the H-dot radius, where H is the Hubble rate, dot is the derivative with respect to cosmic time, and {mu}{sup 2}=-4(dH/dt). Analogous results hold in closed FRW universes and in Einstein's closed static universe.--We list six fundamental tests for the principle formulated by Mach: all of them are explicitly fulfilled by our solutions.--We show that only energy currents in the toroidal vorticity sector with l=1 can affect the precession of gyroscopes. We show that the harmonic decomposition of toroidal vorticity fields in terms of vector spherical harmonics X-vector{sub lm}{sup -} has radial functions which are form-identical for the 3-sphere, the hyperbolic 3-space, and Euclidean 3-space, and are form-identical with the spherical Bessel-, Neumann-, and Hankel functions. - The Appendix gives the de Rham-Hodge Laplacian on vorticity fields in Riemannian 3-spaces by equations connecting the calculus of differential forms with the curl notation. We also give the derivation the Weitzenboeck formula for the difference between the de Rham-Hodge Laplacian {delta} and the ''rough'' Laplacian {nabla}{sup 2} on vector fields.« less
Time-to-Passage Judgments in Nonconstant Optical Flow Fields
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Hecht, Heiko
1995-01-01
The time until an approaching object will pass an observer (time to passage, or TTP) is optically specified by a global flow field even in the absence of local expansion or size cues. Kaiser and Mowafy have demonstrated that observers are in fact sensitive to this global flow information. The present studies investigate two factors that are usually ignored in work related to TTP: (1) non-constant motion functions and (2) concomitant eye rotation. Non-constant velocities violate an assumption of some TTP derivations, and eye rotations may complicate heading extraction. Such factors have practical significance, for example, in the case of a pilot accelerating an aircraft or executing a roll. In our studies, a flow field of constant-sized stars was presented monocularly on a large screen. TIP judgments had to be made on the basis of one target star. The flow field varied in its acceleration pattern and its roll component. Observers did not appear to utilize acceleration information. In particular, TTP with decelerating motion were consistently underestimated. TTP judgments were fairly robust with respect to roll, even when roll axis and track vector were decoupled. However, substantial decoupling between heading and track vector led to a decrement in performance, in both the presence and the absence of roll.
Three-dimensional flow measurements in a vaneless radial turbine scroll
NASA Technical Reports Server (NTRS)
Tabakoff, W.; Wood, B.; Vittal, B. V. R.
1982-01-01
The flow behavior in a vaneless radial turbine scroll was examined experimentally. The data was obtained using the slant sensor technique of hot film anemometry. This method used the unsymmetric heat transfer characteristics of a constant temperature hot film sensor to detect the flow direction and magnitude. This was achieved by obtaining a velocity vector measurement at three sensor positions with respect to the flow. The true magnitude and direction of the velocity vector was then found using these values and a Newton-Raphson numerical technique. The through flow and secondary flow velocity components are measured at various points in three scroll sections.
Inertial modes in a rotating triaxial ellipsoid
Vantieghem, S.
2014-01-01
In this work, we present an algorithm that enables computation of inertial modes and their corresponding frequencies in a rotating triaxial ellipsoid. The method consists of projecting the inertial mode equation onto finite-dimensional bases of polynomial vector fields. It is shown that this leads to a well-posed eigenvalue problem, and hence, that eigenmodes are of polynomial form. Furthermore, these results shed new light onto the question whether the eigenmodes form a complete basis, i.e. whether any arbitrary velocity field can be expanded in a sum of inertial modes. Finally, we prove that two intriguing integral properties of inertial modes in rotating spheres and spheroids also extend to triaxial ellipsoids. PMID:25104908
NASA Astrophysics Data System (ADS)
Taut, A.; Berger, L.; Drews, C.; Bower, J.; Keilbach, D.; Lee, M. A.; Moebius, E.; Wimmer-Schweingruber, R. F.
2017-12-01
Complementary to the direct neutral particle measurements performed by e.g. IBEX, the measurement of PickUp Ions (PUIs) constitutes a diagnostic tool to investigate the local interstellar medium. PUIs are former neutral particles that have been ionized in the inner heliosphere. Subsequently, they are picked up by the solar wind and its frozen-in magnetic field. Due to this process, a characteristic Velocity Distribution Function (VDF) with a sharp cutoff evolves, which carries information about the PUI's injection speed and thus the former neutral particle velocity. The symmetry of the injection speed about the interstellar flow vector is used to derive the interstellar flow longitude from PUI measurements. Using He PUI data obtained by the PLASTIC sensor on STEREO A, we investigate how this concept may be affected by systematic errors. The PUI VDF strongly depends on the orientation of the local interplanetary magnetic field. Recently injected PUIs with speeds just below the cutoff speed typically form a highly anisotropic torus distribution in velocity space, which leads to a longitudinal transport for certain magnetic field orientation. Therefore, we investigate how the selection of magnetic field configurations in the data affects the result for the interstellar flow longitude that we derive from the PUI cutoff. Indeed, we find that the results follow a systematic trend with the filtered magnetic field angles that can lead to a shift of the result up to 5°. In turn, this means that every value for the interstellar flow longitude derived from the PUI cutoff is affected by a systematic error depending on the utilized magnetic field orientations. Here, we present our observations, discuss possible reasons for the systematic trend we discovered, and indicate selections that may minimize the systematic errors.
The problem of exact interior solutions for rotating rigid bodies in general relativity
NASA Technical Reports Server (NTRS)
Wahlquist, H. D.
1993-01-01
The (3 + 1) dyadic formalism for timelike congruences is applied to derive interior solutions for stationary, axisymmetric, rigidly rotating bodies. In this approach the mathematics is formulated in terms of three-space-covariant, first-order, vector-dyadic, differential equations for a and Omega, the acceleration and angular velocity three-vectors of the rigid body; for T, the stress dyadic of the matter; and for A and B, the 'electric' and 'magnetic' Weyl curvature dyadics which describe the gravitational field. It is shown how an appropriate ansatz for the forms of these dyadics can be used to discover exact rotating interior solutions such as the perfect fluid solution first published in 1968. By incorporating anisotropic stresses, a generalization is found of that previous solution and, in addition, a very simple new solution that can only exist in toroidal configurations.
Automation of the guiding center expansion
NASA Astrophysics Data System (ADS)
Burby, J. W.; Squire, J.; Qin, H.
2013-07-01
We report on the use of the recently developed Mathematica package VEST (Vector Einstein Summation Tools) to automatically derive the guiding center transformation. Our Mathematica code employs a recursive procedure to derive the transformation order-by-order. This procedure has several novel features. (1) It is designed to allow the user to easily explore the guiding center transformation's numerous non-unique forms or representations. (2) The procedure proceeds entirely in cartesian position and velocity coordinates, thereby producing manifestly gyrogauge invariant results; the commonly used perpendicular unit vector fields e1,e2 are never even introduced. (3) It is easy to apply in the derivation of higher-order contributions to the guiding center transformation without fear of human error. Our code therefore stands as a useful tool for exploring subtle issues related to the physics of toroidal momentum conservation in tokamaks.
Automation of The Guiding Center Expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. W. Burby, J. Squire and H. Qin
2013-03-19
We report on the use of the recently-developed Mathematica package VEST (Vector Einstein Summation Tools) to automatically derive the guiding center transformation. Our Mathematica code employs a recursive procedure to derive the transformation order-by-order. This procedure has several novel features. (1) It is designed to allow the user to easily explore the guiding center transformation's numerous nonunique forms or representations. (2) The procedure proceeds entirely in cartesian position and velocity coordinates, thereby producing manifestly gyrogauge invariant results; the commonly-used perpendicular unit vector fields e1, e2 are never even introduced. (3) It is easy to apply in the derivation of higher-ordermore » contributions to the guiding center transformation without fear of human error. Our code therefore stands as a useful tool for exploring subtle issues related to the physics of toroidal momentum conservation in tokamaks« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemach, Charles; Kurien, Susan
These notes present an account of the Local Wave Vector (LWV) model of a turbulent flow defined throughout physical space. The previously-developed Local Wave Number (LWN) model is taken as a point of departure. Some general properties of turbulent fields and appropriate notation are given first. The LWV model is presently restricted to incompressible flows and the incompressibility assumption is introduced at an early point in the discussion. The assumption that the turbulence is homogeneous is also introduced early on. This assumption can be relaxed by generalizing the space diffusion terms of LWN, but the present discussion is focused onmore » a modeling of homogeneous turbulence.« less
Stage-structured infection transmission and a spatial epidemic: a model for Lyme disease.
Caraco, Thomas; Glavanakov, Stephan; Chen, Gang; Flaherty, Joseph E; Ohsumi, Toshiro K; Szymanski, Boleslaw K
2002-09-01
A greater understanding of the rate at which emerging disease advances spatially has both ecological and applied significance. Analyzing the spread of vector-borne disease can be relatively complex when the vector's acquisition of a pathogen and subsequent transmission to a host occur in different life stages. A contemporary example is Lyme disease. A long-lived tick vector acquires infection during the larval blood meal and transmits it as a nymph. We present a reaction-diffusion model for the ecological dynamics governing the velocity of the current epidemic's spread. We find that the equilibrium density of infectious tick nymphs (hence the risk of human disease) can depend on density-independent survival interacting with biotic effects on the tick's stage structure. The local risk of infection reaches a maximum at an intermediate level of adult tick mortality and at an intermediate rate of juvenile tick attacks on mammalian hosts. If the juvenile tick attack rate is low, an increase generates both a greater density of infectious nymphs and an increased spatial velocity. However, if the juvenile attack rate is relatively high, nymph density may decline while the epidemic's velocity still increases. Velocities of simulated two-dimensional epidemics correlate with the model pathogen's basic reproductive number (R0), but calculating R0 involves parameters of both host infection dynamics and the vector's stage-structured dynamics.
Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Zhang, He
2016-11-20
Angular velocity information is a requisite for a spacecraft guidance, navigation, and control system. In this paper, an approach for angular velocity estimation based merely on star vector measurement with an improved current statistical model Kalman filter is proposed. High-precision angular velocity estimation can be achieved under dynamic conditions. The amount of calculation is also reduced compared to a Kalman filter. Different trajectories are simulated to test this approach, and experiments with real starry sky observation are implemented for further confirmation. The estimation accuracy is proved to be better than 10-4 rad/s under various conditions. Both the simulation and the experiment demonstrate that the described approach is effective and shows an excellent performance under both static and dynamic conditions.
Strain accumulation and rotation in western Oregon and southwestern Washington
Svarc, J.L.; Savage, J.C.; Prescott, W.H.; Murray, M.H.
2002-01-01
Velocities of 75 geodetic monuments in western Oregon and southwestern Washington extending from the coast to more than 300 km inland have been determined from GPS surveys over the interval 1992-2000. The average standard deviation in each of the horizontal velocity components is ??? 1 mm yr-1. The observed velocity field is approximated by a combination of rigid rotation (Euler vector relative to interior North America: 43. 40??N ?? 0.14??, 119.33??W ?? 0.28??, and 0.822 ?? 0.057?? Myr-1 clockwise; quoted uncertainties are standard deviations), uniform regional strain rate (??EE = -7.4 ?? 1.8, ??EN = -3.4 ?? 1.0, and ??NN = -5.0 ?? 0.8 nstrain yr-1, extension reckoned positive), and a dislocation model representing subduction of the Juan de Fuca plate beneath North America. Subduction south of 44.5??N was represented by a 40-km-wide locked thrust and subduction north of 44.5??N by a 75-km-wide locked thrust.
NASA Astrophysics Data System (ADS)
Ree, J. H.; Kim, S.; Yoon, H. S.; Choi, B. K.; Park, P. H.
2017-12-01
The GPS-determined, pre-, co- and post-seismic crustal deformations of the Korean peninsula with respect to the 2011 Tohoku-Oki earthquake (Baek et al., 2012, Terra Nova; Kim et al., 2015, KSCE Jour. of Civil Engineering) are all stretching ones (extensional; horizontal stretching rate larger than horizontal shortening rate). However, focal mechanism solutions of earthquakes indicate that South Korea has been at compressional regime dominated by strike- and reverse-slip faultings. We reevaluated the velocity field of GPS data to see any effect of the Tohoku-Oki earthquake on the Korean crustal deformation and seismicity. To calculate the velocity gradient tensor of GPS sites, we used a gridding method based on least-square collocation (LSC). This LSC method can overcome shortcomings of the segmentation methods including the triangulation method. For example, an undesirable, abrupt change in components of velocity field occurs at segment boundaries in the segmentation methods. It is also known that LSC method is more useful in evaluating deformation patterns in intraplate areas with relatively small displacements. Velocity vectors of South Korea, pointing in general to 113° before the Tohoku-Oki earthquake, instantly changed their direction toward the epicenter (82° on average) during the Tohoku-Oki earthquake, and then gradually returned to the original position about 2 years after the Tohoku-Oki earthquake. Our calculation of velocity gradient tensors after the Tohoku-Oki earthquake shows that the stretching and rotating fields are quite heterogeneous, and that both stretching and shortening areas exist in South Korea. In particular, after the post-seismic relaxation ceased (i.e., from two years after the Tohoku-Oki earthquake), regions with thicker and thinner crusts tend to be shortening and stretching, respectively, in South Korea. Furthermore, the straining rate is larger in the regions with thinner crust. Although there is no meaningful correlation between seismicity and crustal straining pattern of South Korea at present, the seismicity tends to be localized along boundaries between areas with opposite vorticity, particularly for velocity field for one year after the Tohoku-Oki earthquake.
Electric Field Feature of Moving Magnetic Field
NASA Astrophysics Data System (ADS)
Chen, You Jun
2001-05-01
A new fundamental relationship of electric field with magnetic field has been inferred from the fundamental experimental laws and theories of classical electromagnetics. It can be described as moving magnetic field has or gives electric feature. When a field with magnetic induction of B moves in the velocity of V, it will show electric field character, the electric field intensity E is E = B x V and the direction of E is in the direction of the vector B x V. It is improper to use the time-varying electromagnetics theories as the fundamental theory of the electromagnetics and group the electromagnetic field into static kind and time-varying kind for the static is relative to motional not only time-varying. The relationship of time variation of magnetic field induction or magnetic flux with electric field caused by magnetic field is fellowship not causality. Thus time-varying magnetic field can cause electric field is not a nature principle. Sometime the time variation of magnetic flux is equal to the negative electromotive force or the time variation of magnetic field induction is equal to the negative curl of electric field caused by magnetic field motion, but not always. And not all motion of magnetic field can cause time variation of magnetic field. Therefore Faraday-Lenz`s law can only be used as mathematics tool to calculate the quantity relation of the electricity with the magnetism in some case like the magnetic field moving in uniform medium. Faraday-Lenz`s law is unsuitable to be used in moving uniform magnetic field or there is magnetic shield. Key word: Motional magnetic field, Magnetic induction, Electric field intensity, Velocity, Faraday-Lenz’s law
NASA Astrophysics Data System (ADS)
Beebe, R. F.; Ingersoll, A. P.; Hunt, G. E.; Mitchell, J. L.; Muller, J.-P.
1980-01-01
Voyager 1 narrow-angle images were used to obtain displacements of features down to 100 to 200 km in size over intervals of 10 hours. A global map of velocity vectors and longitudinally averaged zonal wind vectors as functions of the latitude, is presented and discussed
DC Electric Fields, Associated Plasma Drifts, and Irregularities Observed on the C/NOFS Satellite
NASA Technical Reports Server (NTRS)
Pfaff, R.; Freudenreich, H.; Klenzing, J.
2011-01-01
Results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics and irregularities inherent to the Earth s low latitude ionosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elghozi, Thomas; Mavromatos, Nick E.; Sakellariadou, Mairi
In a previous publication by some of the authors (N.E.M., M.S. and M.F.Y.), we have argued that the ''D-material universe'', that is a model of a brane world propagating in a higher-dimensional bulk populated by collections of D-particle stringy defects, provides a model for the growth of large-scale structure in the universe via the vector field in its spectrum. The latter corresponds to D-particle recoil velocity excitations as a result of the interactions of the defects with stringy matter and radiation on the brane world. In this article, we first elaborate further on the results of the previous study onmore » the galactic growth era and analyse the circumstances under which the D-particle recoil velocity fluid may ''mimic'' dark matter in galaxies. A lensing phenomenology is also presented for some samples of galaxies, which previously were known to provide tension for modified gravity (TeVeS) models. The current model is found in agreement with these lensing data. Then we discuss a cosmic evolution for the D-material universe by analysing the conditions under which the late eras of this universe associated with large-scale structure are connected to early epochs, where inflation takes place. It is shown that inflation is induced by dense populations of D-particles in the early universe, with the rôle of the inflaton field played by the condensate of the D-particle recoil-velocity fields under their interaction with relativistic stringy matter, only for sufficiently large brane tensions and low string mass scales compared to the Hubble scale. On the other hand, for large string scales, where the recoil-velocity condensate fields are weak, inflation cannot be driven by the D-particle defects alone. In such cases inflation may be driven by dilaton (or other moduli) fields in the underlying string theory.« less
Observations of Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Koval, A.; Szabo, Adam; Breneman, A.; Cattell, C. A.; Goetz, K.; Kellogg, P. J.; Kersten, K.; Kasper, J. C.; Maruca, B. A.;
2012-01-01
We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. They have rest frame frequencies f(sub ci) < f much < f(sub ce) and wave numbers 0.02 approx < k rho (sub ce) approx <. 5.0. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves. Al though the precursors can have delta B/B(sub o) as large as 2, fluxgate magnetometer measurements show relatively laminar shock transitions in three of the four events.
Elastic and acoustic wavefield decompositions and application to reverse time migrations
NASA Astrophysics Data System (ADS)
Wang, Wenlong
P- and S-waves coexist in elastic wavefields, and separation between them is an essential step in elastic reverse-time migrations (RTMs). Unlike the traditional separation methods that use curl and divergence operators, which do not preserve the wavefield vector component information, we propose and compare two vector decomposition methods, which preserve the same vector components that exist in the input elastic wavefield. The amplitude and phase information is automatically preserved, so no amplitude or phase corrections are required. The decoupled propagation method is extended from elastic to viscoelastic wavefields. To use the decomposed P and S vector wavefields and generate PP and PS images, we create a new 2D migration context for isotropic, elastic RTM which includes PS vector decomposition; the propagation directions of both incident and reflected P- and S-waves are calculated directly from the stress and particle velocity definitions of the decomposed P- and S-wave Poynting vectors. Then an excitation-amplitude image condition that scales the receiver wavelet by the source vector magnitude produces angle-dependent images of PP and PS reflection coefficients with the correct polarities, polarization, and amplitudes. It thus simplifies the process of obtaining PP and PS angle-domain common-image gathers (ADCIGs); it is less effort to generate ADCIGs from vector data than from scalar data. Besides P- and S-waves decomposition, separations of up- and down-going waves are also a part of processing of multi-component recorded data and propagating wavefields. A complex trace based up/down separation approach is extended from acoustic to elastic, and combined with P- and S-wave decomposition by decoupled propagation. This eliminates the need for a Fourier transform over time, thereby significantly reducing the storage cost and improving computational efficiency. Wavefield decomposition is applied to both synthetic elastic VSP data and propagating wavefield snapshots. Poynting vectors obtained from the particle-velocity and stress fields after P/S and up/down decompositions are much more accurate than those without. The up/down separation algorithm is also applicable in acoustic RTMs, where both (forward-time extrapolated) source and (reverse-time extrapolated) receiver wavefields are decomposed into up-going and down-going parts. Together with the crosscorrelation imaging condition, four images (down-up, up-down, up-up and down-down) are generated, which facilitate the analysis of artifacts and the imaging ability of the four images. Artifacts may exist in all the decomposed images, but their positions and types are different. The causes of artifacts in different images are explained and illustrated with sketches and numerical tests.
Masuda, Kasumi; Asanuma, Toshihiko; Taniguchi, Asuka; Uranishi, Ayumi; Ishikura, Fuminobu; Beppu, Shintaro
2008-03-01
The purpose of this study was to investigate the diagnostic value of velocity vector imaging (VVI) for detecting acute myocardial ischemia and whether VVI can accurately demonstrate the spatial extent of ischemic risk area. Using a tracking algorithm, VVI can display velocity vectors of regional wall motion overlaid onto the B-mode image and allows the quantitative assessment of myocardial mechanics. However, its efficacy for diagnosing myocardial ischemia has not been evaluated. In 18 dogs with flow-limiting stenosis and/or total occlusion of the coronary artery, peak systolic radial velocity (V(SYS)), radial velocity at mitral valve opening (V(MVO)), peak systolic radial strain, and the percent change in wall thickening (%WT) were measured in the normal and risk areas and compared to those at baseline. Sensitivity and specificity for detecting the stenosis and occlusion were analyzed in each parameter. The area of inward velocity vectors at mitral valve opening (MVO) detected by VVI was compared to the risk area derived from real-time myocardial contrast echocardiography (MCE). Twelve image clips were randomly selected from the baseline, stenosis, and occlusions to determine the intra- and inter-observer agreement for the VVI parameters. The left circumflex coronary flow was reduced by 44.3 +/- 9.0% during stenosis and completely interrupted during occlusion. During coronary artery occlusion, inward motion at MVO was observed in the risk area. Percent WT, peak systolic radial strain, V(SYS), and V(MVO) changed significantly from values at baseline. During stenosis, %WT, peak systolic radial strain, and V(SYS) did not differ from those at baseline; however, V(MVO) was significantly increased (-0.12 +/- 0.60 cm/s vs. -0.96 +/- 0.55 cm/s, p = 0.015). Sensitivity and specificity of V(MVO) for detecting ischemia were superior to those of other parameters. The spatial extent of inward velocity vectors at MVO correlated well with that of the risk area derived from MCE (r = 0.74, p < 0.001 with a linear regression). The assessment of VVI at MVO permits easy detection of dyssynchronous wall motion during acute myocardial ischemia that cannot be diagnosed by conventional measurement of systolic wall thickness. The spatial extent of inward motion at MVO suggests the size of the risk area.
Conductivity independent scaling laws for convection and magnetism in fast rotating planets
NASA Astrophysics Data System (ADS)
Starchenko, S.
2012-09-01
In the limit of negligible molecular diffusivity, viscosity and magnetic diffusivity effects, I derive scaling laws for convection and magnetism from the first principles for fast rotating planets. In the Earth, Jupiter, Saturn and ancient dynamo active Mars it is reasonable to suppose domination of magnetic energy over kinetic one that results in the typical magnetic field B proportional to the third root of the buoyancy flux F [3] driving the convection, while B is independent on conductivity σ and angular rotation rate Ω. The same scaling law was previously obtained via compilation of many numerical planetary dynamo simulations [1-3]. Besides, I obtained scaling laws for typical hydrodynamic scale h, velocity V, Archimedean acceleration A, electromagnetic scale d and sinus of the angle between magnetic and velocity vector s. In Uranus, Neptune and Ganymede a local magnetic Reynolds number rm=μσVd~1 with magnetic permeability in vacuum μ. Correspondent magnetic energy could be of order kinetic energy resulting in relatively lower magnetic field strength B=(μρ)1/2V with density ρ. That may explain magnetic field values and nondipolar structures in Uranus, Neptune and Ganymede.
Hybrid simulation of the shock wave trailing the Moon
NASA Astrophysics Data System (ADS)
Israelevich, P.; Ofman, L.
2012-04-01
Standing shock wave behind the Moon was predicted be Michel (1967) but never observed nor simulated. We use 1D hybrid code in order to simulate the collapse of the plasma-free cavity behind the Moon and for the first time to model the formation of this shock. Starting immediately downstream of the obstacle we consider the evolution of plasma expansion into the cavity in the frame of reference moving along with the solar wind. Well-known effects as electric charging of the cavity affecting the plasma flow and counter streaming ion beams in the wake are reproduced. Near the apex of the inner Mach cone where the plasma flows from the opposite sides of the obstacle meet, a shock wave arises. The shock is produced by the interaction of oppositely directed proton beams in the plane containing solar wind velocity and interplanetary magnetic field vectors. In the direction across the magnetic field and the solar wind velocity, the shock results from the interaction of the plasma flow with the region of the enhanced magnetic field inside the cavity that plays the role of magnetic barrier. The appearance of the standing shock wave is expected at the distance of ~ 7RM downstream of the Moon.
NASA Technical Reports Server (NTRS)
Coley, W. R.
1986-01-01
The establishment of the latitudinal and longitudinal structure of the low latitude dynamo electric (DE) field was initiated using data primarily from the Unified Abstract (UA) files of the Atmosphere Explorer E (AE-E) satellite. Mass plots of the vertical ion drift values were made for 1977, 1978, and 1979. The average diurnal variation of V sub v within 20 degrees of the dip equator is remarkably similar to that obtained at Jicamarca in the same years. The average meridional ion drift velocity vectors, obtained as a function of latitude by combining the average vertical and horizontal (nearly north-south) ion drift values from the AE-E, showed the expected variations with local time and season based on the well known equatorial fountain effect theory. The average diurnal variation of the vertical drift was found for four different ranges of dip latitude for a northern solstice season. The effect of the transequatorial neutral winds was as evident in this plotting format as in the meridional or fountain effect format. Finally, the average vertical drift velocity V sub v, not the east-west electric field E sub ew, was found to be approximately independent of longitude, as expected from the dynamo theory.
High Resolution Digital Radar Imaging of Rotating Objects
1980-06-01
associated with it is called motion compensation. 1.2. Problem Description Consider a rigid body as shown in figure 1.1 rotating with its axis normal to the...vector of an arbitrary point B on the target referenced to the target reference point C as shown in Fig. 3.1.1. The entire rigid body is moving with...relationships. Since x is a vector on a rigid body , its tangential velocity (ixx-) is the only velocity component it has. Hence, Ad _T X. Also from
NASA Astrophysics Data System (ADS)
Gershman, D. J.; Figueroa-Vinas, A.; Dorelli, J.; Goldstein, M. L.; Shuster, J. R.; Avanov, L. A.; Boardsen, S. A.; Stawarz, J. E.; Schwartz, S. J.; Schiff, C.; Lavraud, B.; Saito, Y.; Paterson, W. R.; Giles, B. L.; Pollock, C. J.; Strangeway, R. J.; Russell, C. T.; Torbert, R. B.; Moore, T. E.; Burch, J. L.
2017-12-01
Measurements from the Fast Plasma Investigation (FPI) on NASA's Magnetospheric Multiscale (MMS) mission have enabled unprecedented analyses of kinetic-scale plasma physics. FPI regularly provides estimates of current density and pressure gradients of sufficient accuracy to evaluate the relative contribution of terms in plasma equations of motion. In addition, high-resolution three-dimensional velocity distribution functions of both ions and electrons provide new insights into kinetic-scale processes. As an example, for a monochromatic kinetic Alfven wave (KAW) we find non-zero, but out-of-phase parallel current density and electric field fluctuations, providing direct confirmation of the conservative energy exchange between the wave field and particles. In addition, we use fluctuations in current density and magnetic field to calculate the perpendicular and parallel wavelengths of the KAW. Furthermore, examination of the electron velocity distribution inside the KAW reveals a population of electrons non-linearly trapped in the kinetic-scale magnetic mirror formed between successive wave peaks. These electrons not only contribute to the wave's parallel electric field but also account for over half of the density fluctuations within the wave, supplying an unexpected mechanism for maintaining quasi-neutrality in a KAW. Finally, we demonstrate that the employed wave vector determination technique is also applicable to broadband fluctuations found in Earth's turbulent magnetosheath.
TH-A-BRF-08: Deformable Registration of MRI and CT Images for MRI-Guided Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H; Wen, N; Gordon, J
2014-06-15
Purpose: To evaluate the quality of a commercially available MRI-CT image registration algorithm and then develop a method to improve the performance of this algorithm for MRI-guided prostate radiotherapy. Methods: Prostate contours were delineated on ten pairs of MRI and CT images using Eclipse. Each pair of MRI and CT images was registered with an intensity-based B-spline algorithm implemented in Velocity. A rectangular prism that contains the prostate volume was partitioned into a tetrahedral mesh which was aligned to the CT image. A finite element method (FEM) was developed on the mesh with the boundary constraints assigned from the Velocitymore » generated displacement vector field (DVF). The resultant FEM displacements were used to adjust the Velocity DVF within the prism. Point correspondences between the CT and MR images identified within the prism could be used as additional boundary constraints to enforce the model deformation. The FEM deformation field is smooth in the interior of the prism, and equal to the Velocity displacements at the boundary of the prism. To evaluate the Velocity and FEM registration results, three criteria were used: prostate volume conservation and center consistence under contour mapping, and unbalanced energy of their deformation maps. Results: With the DVFs generated by the Velocity and FEM simulations, the prostate contours were warped from MRI to CT images. With the Velocity DVFs, the prostate volumes changed 10.2% on average, in contrast to 1.8% induced by the FEM DVFs. The average of the center deviations was 0.36 and 0.27 cm, and the unbalance energy was 2.65 and 0.38 mJ/cc3 for the Velocity and FEM registrations, respectively. Conclusion: The adaptive FEM method developed can be used to reduce the error of the MIbased registration algorithm implemented in Velocity in the prostate region, and consequently may help improve the quality of MRI-guided radiation therapy.« less
Estimation of River Bathymetry from ATI-SAR Data
NASA Astrophysics Data System (ADS)
Almeida, T. G.; Walker, D. T.; Farquharson, G.
2013-12-01
A framework for estimation of river bathymetry from surface velocity observation data is presented using variational inverse modeling applied to the 2D depth-averaged, shallow-water equations (SWEs) including bottom friction. We start with with a cost function defined by the error between observed and estimated surface velocities, and introduce the SWEs as a constraint on the velocity field. The constrained minimization problem is converted to an unconstrained minimization through the use of Lagrange multipliers, and an adjoint SWE model is developed. The adjoint model solution is used to calculate the gradient of the cost function with respect to river bathymetry. The gradient is used in a descent algorithm to determine the bathymetry that yields a surface velocity field that is a best-fit to the observational data. In applying the algorithm, the 2D depth-averaged flow is computed assuming a known, constant discharge rate and a known, uniform bottom-friction coefficient; a correlation relating surface velocity and depth-averaged velocity is also used. Observation data was collected using a dual beam squinted along-track-interferometric, synthetic-aperture radar (ATI-SAR) system, which provides two independent components of the surface velocity, oriented roughly 30 degrees fore and aft of broadside, offering high-resolution bank-to-bank velocity vector coverage of the river. Data and bathymetry estimation results are presented for two rivers, the Snohomish River near Everett, WA and the upper Sacramento River, north of Colusa, CA. The algorithm results are compared to available measured bathymetry data, with favorable results. General trends show that the water-depth estimates are most accurate in shallow regions, and performance is sensitive to the accuracy of the specified discharge rate and bottom friction coefficient. The results also indicate that, for a given reach, the estimated water depth reaches a maximum that is smaller than the true depth; this apparent maximum depth scales with the true river depth and discharge rate, so that the deepest parts of the river show the largest bathymetry errors.
GRACE gravity field recovery using refined acceleration approach
NASA Astrophysics Data System (ADS)
Li, Zhao; van Dam, Tonie; Weigelt, Matthias
2017-04-01
Since 2002, the GRACE mission has yielded monthly gravity field solutions with such a high level of quality that we have been able to observe so many changes to the Earth mass system. Based on GRACE L1B observations, a number of official monthly gravity field models have been developed and published using different methods, e.g. the CSR RL05, JPL RL05, and GFZ RL05 are being computed by a dynamic approach, the ITSG and Tongji GRACE are generated using what is known as the short-arc approach, the AIUB models are computed using celestial mechanics approach, and the DMT-1 model is calculated by means of an acceleration approach. Different from the DMT-1 model, which links the gravity field parameters directly to the bias-corrected range measurements at three adjacent epochs, in this work we present an alternative acceleration approach which connects range accelerations and velocity differences to the gradient of the gravitational potential. Due to the fact that GPS derived velocity difference is provided at a lower precision, we must reduce this approach to residual quantities using an a priori gravity field which allows us to subsequently neglect the residual velocity difference term. We find that this assumption would cause a problem in the low-degree gravity field coefficient, particularly for degree 2 and also from degree 16 to 26. To solve this problem, we present a new way of handling the residual velocity difference term, that is to treat this residual velocity difference term as unknown but estimable quantity, as it depends on the unknown residual gravity field parameters and initial conditions. In other word, we regard the kinematic orbit position vectors as pseudo observations, and the corrections of orbits are estimated together with both the geopotential coefficients and the accelerometer scale/bias by using a weighted least square adjustment. The new approach is therefore a refinement of the existing approach but offers a better approximation to reality. This result is especially important in view of the upcoming GRACE Follow-On mission, which will be equipped with a laser ranging instrument offering a higher precision. Our validation results show that this refined acceleration approach could produce monthly GRACE gravity solutions at the same level of precision as the other approaches.
Particle image velocimetry of a flow at a vaulted wall.
Kertzscher, U; Berthe, A; Goubergrits, L; Affeld, K
2008-05-01
The assessment of flow along a vaulted wall (with two main finite radii of curvature) is of general interest; in biofluid mechanics, it is of special interest. Unlike the geometry of flows in engineering, flow geometry in nature is often determined by vaulted walls. Specifically the flow adjacent to the wall of blood vessels is particularly interesting since this is where either thrombi are formed or atherosclerosis develops. Current measurement methods have problems assessing the flow along vaulted walls. In contrast with conventional particle image velocimetry (PIV), this new method, called wall PIV, allows the investigation of a flow adjacent to transparent flexible surfaces with two finite radii of curvature. Using an optical method which allows the observation of particles up to a predefined depth enables the visualization solely of the boundary layer flow. This is accomplished by adding a specific dye to the fluid which absorbs the monochromatic light used to illuminate the region of observation. The obtained images can be analysed with the methods of conventional PIV and result in a vector field of the velocities along the wall. With wall PIV, the steady flow adjacent to the vaulted wall of a blood pump was investigated and the resulting velocity field as well as the velocity fluctuations were assessed.
Study of compressible flow through a rectangular-to-semiannular transition duct
NASA Technical Reports Server (NTRS)
Foster, Jeffry; Okiishi, Theodore H.; Wendt, Bruce J.; Reichert, Bruce A.
1995-01-01
Detailed flow field measurements are presented for compressible flow through a diffusing rectangular-to-semiannular transition duct. Comparisons are made with published computational results for flow through the duct. Three-dimensional velocity vectors and total pressures were measured at the exit plane of the diffuser model. The inlet flow was also measured. These measurements are made using calibrated five-hole probes. Surface oil flow visualization and surface static pressure data were also taken. The study was conducted with an inlet Mach number of 0.786. The diffuser Reynolds based on the inlet centerline velocity and the exit diameter of the diffuser was 3,200,000. Comparison of the measured data with previously published computational results are made. Data demonstrating the ability of vortex generators to reduce flow separation and circumferential distortion is also presented.
Exact Descriptions of General Relativity Derived from Newtonian Mechanics within Curved Geometries
NASA Astrophysics Data System (ADS)
Savickas, David
2015-04-01
General relativity and Newtonian mechanics are shown to be exactly related when Newton's second law is written in a curved geometry by using the physical components of a vector as is defined in tensor calculus. By replacing length within the momentum's velocity by the vector metric in a curved geometry the second law can then be shown to be exactly identical to the geodesic equation of motion occurring in general relativity. When time's vector direction is constant, as similarly occurs in Newtonian mechanics, this equation can be reduced to a curved three-dimensional equation of motion that yields the the Schwarzschild equations of motion for an isolated particle. They can be used to describe gravitational behavior for any array of masses for which the Newtonian gravitational potential is known, and is shown to describe a mass particle's behavior in the gravitational field of a thin mass-rod. This use of Newton's laws allows relativistic behavior to be described in a physically comprehensible manner. D. Savickas, Int. J. Mod. Phys. D 23 1430018, (2014).
NASA Astrophysics Data System (ADS)
Schlickeiser, R.
2012-01-01
A systematic calculation of the electromagnetic properties (Poynting vector, electromagnetic energy, and pressure) of the collective transverse fluctuations in unmagnetized plasmas with velocity-anisotropic plasma particle distributions functions is presented. Time-averaged electromagnetic properties for monochromatic weakly damped wave-like fluctuations and space-averaged electromagnetic properties for monochromatic weakly propagating and aperiodic fluctuations are calculated. For aperiodic fluctuations, the Poynting vector as well as the sum of the space-averaged electric and magnetic field energy densities vanish. However, aperiodic fluctuations possess a positive pressure given by its magnetic energy density. This finite pressure density pa of aperiodic fluctuations has important consequences for the dynamics of cosmic unmagnetized plasmas such as the intergalactic medium after reionization. Adopting the standard cosmological evolution model, we show that this additional pressure changes the expansion law of the universe leading to further deceleration. Negative vacuum pressure counterbalances this deceleration to an accelerating universe provided that the negative vacuum pressure is greater than 1.5pa, which we estimate to be of the order 2.1 . 10-16 dyn cm-2.
NASA Technical Reports Server (NTRS)
Whitesides, R. H.; Ghosh, A.; Jenkins, S. L.; Bacchus, D. L.
1989-01-01
A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru a scaling analysis and the results compared well with the 3-D computational fluid dynamics computer model.
NASA Technical Reports Server (NTRS)
Steinmetz, G. G.
1980-01-01
Using simulation, an improved longitudinal velocity vector control wheel steering mode and an improved electronic display format for an advanced flight system were developed and tested. Guidelines for the development phase were provided by test pilot critique summaries of the previous system. The results include performances from computer generated step column inputs across the full airplane speed and configuration envelope, as well as piloted performance results taken from a reference line tracking task and an approach to landing task conducted under various environmental conditions. The analysis of the results for the reference line tracking and approach to landing tasks indicates clearly detectable improvement in pilot tracking accuracy with a reduction in physical workload. The original objectives of upgrading the longitudinal axis of the velocity vector control wheel steering mode were successfully met when measured against the test pilot critique summaries and the original purpose outlined for this type of augment control mode.
Nonlinear chiral plasma transport in rotating coordinates
NASA Astrophysics Data System (ADS)
Dayi, Ömer F.; Kilinçarslan, Eda
2017-08-01
The nonlinear transport features of inhomogeneous chiral plasma in the presence of electromagnetic fields, in rotating coordinates are studied within the relaxation time approach. The chiral distribution functions up to second order in the electric field in rotating coordinates and the derivatives of chemical potentials are established by solving the Boltzmann transport equation. First, the vector and axial current densities in the weakly ionized chiral plasma for vanishing magnetic field are calculated. They involve the rotational analogues of the Hall effect as well as several new terms arising from the Coriolis and fictitious centrifugal forces. Then in the short relaxation time regime the angular velocity and electromagnetic fields are treated as perturbations. The current densities are obtained by retaining the terms up to second order in perturbations. The time evolution equations of the inhomogeneous chemical potentials are derived by demanding that collisions conserve the particle number densities.
Research on external flow field of a car based on reverse engineering
NASA Astrophysics Data System (ADS)
Hu, Shushan; Liu, Ronge
2018-05-01
In this paper, the point cloud data of FAW-VOLKSWAGEN car body shape is obtained by three coordinate measuring instrument and laser scanning method. The accurate three dimensional model of the car is obtained using CATIA software reverse modelling technology. The car body is gridded, the calculation field and boundary condition type of the car flow field are determined, and the numerical simulation is carried out in Hyper Mesh software. The pressure cloud diagram, velocity vector diagram, air resistance coefficient and lift coefficient of the car are obtained. The calculation results reflect the aerodynamic characteristics of the car's external flow field. The motion of the separation flow on the surface of the vehicle body is well simulated, and the area where the vortex motion is relatively intense has been determined. The results provide a theoretical basis for improving and optimizing the body shape.
Kinetic theory for electrostatic waves due to transverse velocity shears
NASA Technical Reports Server (NTRS)
Ganguli, G.; Lee, Y. C.; Palmadesso, P. J.
1988-01-01
A kinetic theory in the form of an integral equation is provided to study the electrostatic oscillations in a collisionless plasma immersed in a uniform magnetic field and a nonuniform transverse electric field. In the low temperature limit the dispersion differential equation is recovered for the transverse Kelvin-Helmholtz modes for arbitrary values of K parallel, where K parallel is the component of the wave vector in the direction of the external magnetic field assumed in the z direction. For higher temperatures the ion-cyclotron-like modes described earlier in the literature by Ganguli, Lee and Plamadesso are recovered. In this article, the integral equation is reduced to a second-order differential equation and a study is made of the kinetic Kelvin-Helmholtz and ion-cyclotron-like modes that constitute the two branches of oscillation in a magnetized plasma including a transverse inhomogeneous dc electric field.
Tsunami: ocean dynamo generator.
Sugioka, Hiroko; Hamano, Yozo; Baba, Kiyoshi; Kasaya, Takafumi; Tada, Noriko; Suetsugu, Daisuke
2014-01-08
Secondary magnetic fields are induced by the flow of electrically conducting seawater through the Earth's primary magnetic field ('ocean dynamo effect'), and hence it has long been speculated that tsunami flows should produce measurable magnetic field perturbations, although the signal-to-noise ratio would be small because of the influence of the solar magnetic fields. Here, we report on the detection of deep-seafloor electromagnetic perturbations of 10-micron-order induced by a tsunami, which propagated through a seafloor electromagnetometer array network. The observed data extracted tsunami characteristics, including the direction and velocity of propagation as well as sea-level change, first to verify the induction theory. Presently, offshore observation systems for the early forecasting of tsunami are based on the sea-level measurement by seafloor pressure gauges. In terms of tsunami forecasting accuracy, the integration of vectored electromagnetic measurements into existing scalar observation systems would represent a substantial improvement in the performance of tsunami early-warning systems.
Brynteson, Matthew D; Butler, Laurie J
2015-02-07
We present a model which accurately predicts the net speed distributions of products resulting from the unimolecular decomposition of rotationally excited radicals. The radicals are produced photolytically from a halogenated precursor under collision-free conditions so they are not in a thermal distribution of rotational states. The accuracy relies on the radical dissociating with negligible energetic barrier beyond the endoergicity. We test the model predictions using previous velocity map imaging and crossed laser-molecular beam scattering experiments that photolytically generated rotationally excited CD2CD2OH and C3H6OH radicals from brominated precursors; some of those radicals then undergo further dissociation to CD2CD2 + OH and C3H6 + OH, respectively. We model the rotational trajectories of these radicals, with high vibrational and rotational energy, first near their equilibrium geometry, and then by projecting each point during the rotation to the transition state (continuing the rotational dynamics at that geometry). This allows us to accurately predict the recoil velocity imparted in the subsequent dissociation of the radical by calculating the tangential velocities of the CD2CD2/C3H6 and OH fragments at the transition state. The model also gives a prediction for the distribution of angles between the dissociation fragments' velocity vectors and the initial radical's velocity vector. These results are used to generate fits to the previously measured time-of-flight distributions of the dissociation fragments; the fits are excellent. The results demonstrate the importance of considering the precession of the angular velocity vector for a rotating radical. We also show that if the initial angular momentum of the rotating radical lies nearly parallel to a principal axis, the very narrow range of tangential velocities predicted by this model must be convoluted with a J = 0 recoil velocity distribution to achieve a good result. The model relies on measuring the kinetic energy release when the halogenated precursor is photodissociated via a repulsive excited state but does not include any adjustable parameters. Even when different conformers of the photolytic precursor are populated, weighting the prediction by a thermal conformer population gives an accurate prediction for the relative velocity vectors of the fragments from the highly rotationally excited radical intermediates.
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Linton, Mark; Muglach, Karin; Welsch, Brian; Hageman, Jacob
2010-01-01
The imminent launch of Solar Dynamics Observatory (SDO) will carry the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with I" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SDO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." This talk will describe these major science and predictive advances that will be delivered by SDO /HMI.
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Linton, M.; Muglach, K.; Hoeksema, T.
2010-01-01
The Solar Dynamics Observatory (SDO) is carrying the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with 1" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SAO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." Our presentation will describe these major science and predictive advances that will be delivered by SDO/HMI.
Electromagnetic and magnetic vector potential bio-information and water.
Smith, Cyril William
2015-10-01
This work developed over the past 40 years starting from dielectric measurements on enzymes and the subsequent finding that the measurements were affected by electric, magnetic, electromagnetic fields and quantum fields. A request for help in the diagnosis and therapy of chemically sensitive patients who had become sensitive to their electromagnetic environment came in 1982. The same symptoms could be provoked by a chemical or a frequency challenge and this led to an appreciation of the synergy between chemical and frequency environmental sensitivities. Experimental cooperation with theoretical physicist Herbert Fröhlich FRS and others led to an understanding of the physics of coherent water in living systems and a mechanism for the memory of water for coherent frequencies. In a coherent system there are interacting frequencies proportionate to any velocity the system will support, in particular the velocity of light and the velocity of coherence diffusion. Thus, there can be biological interaction between the optical, microwave and ELF spectral regions. Frequency modulation of light scattered by bio-fields and its retention in recorded images is discussed. A 'nil-potent' frequency can erase a frequency signature and thence affect a biological system. Homeopathy is interpreted through the biological effects of coherent frequencies derived from the frequency signature of the 'Mother Tincture' and developed through dilution and succussion. A homeopathic potency has a frequency signature therefore it must be able to have a biological effect. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Two-dimensional surface river flow patterns measured with paired RiverSondes
Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.
2007-01-01
Two RiverSondes were operated simultaneously in close proximity in order to provide a two-dimensional map of river surface velocity. The initial test was carried out at Threemile Slough in central California. The two radars were installed about 135 m apart on the same bank of the channel. Each radar used a 3-yagi antenna array and determined signal directions using direction finding. The slough is approximately 200 m wide, and each radar processed data out to about 300 m, with a range resolution of 15 m and an angular resolution of 1 degree. Overlapping radial vector data from the two radars were combined to produce total current vectors at a grid spacing of 10 m, with updates every 5 minutes. The river flow in the region, which has a maximum velocity of about 0.8 m/s, is tidally driven with flow reversals every 6 hours, and complex flow patterns were seen during flow reversal. The system performed well with minimal mutual interference. The ability to provide continuous, non-contact two-dimensional river surface flow measurements will be useful in several unique settings, such as studies of flow at river junctions where impacts to juvenile fish migration are significant. Additional field experiments are planned this year on the Sacramento River. ?? 2007 IEEE.
Two-dimensional surface river flow patterns measured with paired RiverSondes
Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.
2008-01-01
Two RiverSondes were operated simultaneously in close proximity in order to provide a two-dimensional map of river surface velocity. The initial test was carried out at Threemile Slough in central California. The two radars were installed about 135 m apart on the same bank of the channel. Each radar used a 3-yagi antenna array and determined signal directions using direction finding. The slough is approximately 200 m wide, and each radar processed data out to about 300 m, with a range resolution of 15 m and an angular resolution of 1 degree. Overlapping radial vector data from the two radars were combined to produce total current vectors at a grid spacing of 10 m, with updates every 5 minutes. The river flow in the region, which has a maximum velocity of about 0.8 m/s, is tidally driven with flow reversals every 6 hours, and complex flow patterns were seen during flow reversal. The system performed well with minimal mutual interference. The ability to provide continuous, non-contact two-dimensional river surface flow measurements will be useful in several unique settings, such as studies of flow at river junctions where impacts to juvenile fish migration are significant. Additional field experiments are planned this year on the Sacramento River. ?? 2007 IEEE.
Modeling and Theory of RF Antenna Systems on Proto-MPEX
NASA Astrophysics Data System (ADS)
Piotrowicz, P. A.; Caneses, J. F.; Goulding, R. H.; Green, D.; Caughman, J. B. O.; Ruzic, D. N.; Proto-MPEX Team
2017-10-01
The RF wave coupling of the helicon and ICH antennas installed on the Prototype Material Plasma Exposure eXperiment (MPEX) has been explored theoretically and via a full wave model implemented in COMSOL Multiphysics. The high-density mode in Proto-MPEX has been shown to occur when exciting radial eigenmodes of the plasma column which coincides with entering a Trivelpiece Gould (TG) anti-resonant regime, therefore suppressing edge heating in favor of core power deposition. The fast wave launched by the helicon antenna has a large wavelength and travels at a steep group velocity angle with the background magnetic field; for this reason the fast wave launched by the helicon antenna efficiently couples power to the core plasma. However, the ICH heating scheme relies on a small wavelength slow wave to couple power to the core of the plasma column. Coupling slow wave power to the core of the plasma column is sensitive to the location of the Alfven resonance. The wave-vector and group velocity vector of the slow wave in this parameter regime undergoes a drastic change in behavior when approaching the Alfven resonance. Full wave simulation results and dispersion analysis will be presented with suggestions to guide experimental progress. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.
SUDDEN PHOTOSPHERIC MOTION AND SUNSPOT ROTATION ASSOCIATED WITH THE X2.2 FLARE ON 2011 FEBRUARY 15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuo; Liu, Chang; Deng, Na
2014-02-20
The Helioseismic and Magnetic Imager provides 45 s cadence intensity images and 720 s cadence vector magnetograms. These unprecedented high-cadence and high-resolution data give us a unique opportunity to study the change of photospheric flows and sunspot rotations associated with flares. By using the differential affine velocity estimator method and the Fourier local correlation tracking method separately, we calculate velocity and vorticity of photospheric flows in the flaring NOAA AR 11158, and investigate their temporal evolution around the X2.2 flare on 2011 February 15. It is found that the shear flow around the flaring magnetic polarity inversion line exhibits a sudden decrease,more » and both of the two main sunspots undergo a sudden change in rotational motion during the impulsive phase of the flare. These results are discussed in the context of the Lorentz-force change that was proposed by Hudson et al. and Fisher et al. This mechanism can explain the connections between the rapid and irreversible photospheric vector magnetic field change and the observed short-term motions associated with the flare. In particular, the torque provided by the horizontal Lorentz force change agrees with what is required for the measured angular acceleration.« less
On dealing with multiple correlation peaks in PIV
NASA Astrophysics Data System (ADS)
Masullo, A.; Theunissen, R.
2018-05-01
A novel algorithm to analyse PIV images in the presence of strong in-plane displacement gradients and reduce sub-grid filtering is proposed in this paper. Interrogation windows subjected to strong in-plane displacement gradients often produce correlation maps presenting multiple peaks. Standard multi-grid procedures discard such ambiguous correlation windows using a signal to noise (SNR) filter. The proposed algorithm improves the standard multi-grid algorithm allowing the detection of splintered peaks in a correlation map through an automatic threshold, producing multiple displacement vectors for each correlation area. Vector locations are chosen by translating images according to the peak displacements and by selecting the areas with the strongest match. The method is assessed on synthetic images of a boundary layer of varying intensity and a sinusoidal displacement field of changing wavelength. An experimental case of a flow exhibiting strong velocity gradients is also provided to show the improvements brought by this technique.
NASA Astrophysics Data System (ADS)
Zheng, Bin; Pleass, Charles M.; Ih, Charles S.
1993-11-01
A hybrid three-axis laser Doppler velocimeter system has been demonstrated in our laboratory. The system can monitor the motion of microorganisms in an unconstrained environment. During measurement, a computer system collects and processes time series data from the transit of a microorganism through the measurement volume. The fast Fourier transform of this data contains the motion signature of this microorganism. Because individual microorganisms can be selected from the field, ambiguity caused by multiscattering among two or more microorganisms can be avoided. Using this new system, we can obtain a feature vector that relates to features of the microorganism, such as its size, average translational velocity, rotation or wobbling, and its flagellum beat frequency. Such a vector appears to be a useful criterion for distinguishing the species using statistical pattern recognition. Successful experiments demonstrate that the new system and technique has some unique advantages.
Fermi arc plasmons in Weyl semimetals
NASA Astrophysics Data System (ADS)
Song, Justin C. W.; Rudner, Mark S.
2017-11-01
In the recently discovered Weyl semimetals, the Fermi surface may feature disjoint, open segments—the so-called Fermi arcs—associated with topological states bound to exposed crystal surfaces. Here we show that the collective dynamics of electrons near such surfaces sharply departs from that of a conventional three-dimensional metal. In magnetic systems with broken time reversal symmetry, the resulting Fermi arc plasmons (FAPs) are chiral, with dispersion relations featuring open, hyperbolic constant frequency contours. As a result, a large range of surface plasmon wave vectors can be supported at a given frequency, with corresponding group velocity vectors directed along a few specific collimated directions. Fermi arc plasmons can be probed using near-field photonics techniques, which may be used to launch highly directional, focused surface plasmon beams. The unusual characteristics of FAPs arise from the interplay of bulk and surface Fermi arc carrier dynamics and give a window into the unusual fermiology of Weyl semimetals.
Automation of the guiding center expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burby, J. W.; Squire, J.; Qin, H.
2013-07-15
We report on the use of the recently developed Mathematica package VEST (Vector Einstein Summation Tools) to automatically derive the guiding center transformation. Our Mathematica code employs a recursive procedure to derive the transformation order-by-order. This procedure has several novel features. (1) It is designed to allow the user to easily explore the guiding center transformation's numerous non-unique forms or representations. (2) The procedure proceeds entirely in cartesian position and velocity coordinates, thereby producing manifestly gyrogauge invariant results; the commonly used perpendicular unit vector fields e{sub 1},e{sub 2} are never even introduced. (3) It is easy to apply in themore » derivation of higher-order contributions to the guiding center transformation without fear of human error. Our code therefore stands as a useful tool for exploring subtle issues related to the physics of toroidal momentum conservation in tokamaks.« less
Active Brownian particles with velocity-alignment and active fluctuations
NASA Astrophysics Data System (ADS)
Großmann, R.; Schimansky-Geier, L.; Romanczuk, P.
2012-07-01
We consider a model of active Brownian particles (ABPs) with velocity alignment in two spatial dimensions with passive and active fluctuations. Here, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed to be independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account, for example, for thermal fluctuations. We derive a macroscopic description of the ABP gas with velocity-alignment interaction. Here, we start from the individual-based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse-grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here on the different impact of active and passive fluctuations on onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuations lead to an earlier breakdown of collective motion and to the emergence of a new bistable regime in the mean-field case.
A link between torse-forming vector fields and rotational hypersurfaces
NASA Astrophysics Data System (ADS)
Chen, Bang-Yen; Verstraelen, Leopold
Torse-forming vector fields introduced by Yano [On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo 20 (1944) 340-346] are natural extension of concurrent and concircular vector fields. Such vector fields have many nice applications to geometry and mathematical physics. In this paper, we establish a link between rotational hypersurfaces and torse-forming vector fields. More precisely, our main result states that, for a hypersurface M of 𝔼n+1 with n ≥ 3, the tangential component xT of the position vector field of M is a proper torse-forming vector field on M if and only if M is contained in a rotational hypersurface whose axis of rotation contains the origin.
Magnetic reconnection in terms of catastrophe theory
NASA Astrophysics Data System (ADS)
Echkina, E. Y.; Inovenkov, I. N.; Nefedov, V. V.
2017-12-01
Magnetic field line reconnection (magnetic reconnection) is a phenomenon that occurs in space and laboratory plasma. Magnetic reconnection allows both the change the magnetic topology and the conversion of the magnetic energy into energy of fast particles. The critical point (critical line or plane in higher dimensional cases) of the magnetic field play an important role in process of magnetic reconnection, as in its neighborhood occurs a change of its topology of a magnetic field and redistribution of magnetic field energy. A lot of literature is devoted to the analytical and numerical investigation of the reconnection process. The main result of these investigations as the result of magnetic reconnection the current sheet is formed and the magnetic topology is changed. While the studies of magnetic reconnection in 2D and 3D configurations have a led to several important results, many questions remain open, including the behavior of a magnetic field in the neighborhood of a critical point of high order. The magnetic reconnection problem is closely related to the problem of the structural stability of vector fields. Since the magnetic field topology changes during both spontaneous and induced magnetic reconnection, it is natural to expect that the magnetic field should evolve from a structurally unstable into a structurally stable configuration. Note that, in this case, the phenomenon under analysis is more complicated since, during magnetic reconnection in a highly conducting plasma, we deal with the non-linear interaction between two vector fields: the magnetic field and the field of the plasma velocities. The aim of our article is to consider the process of magnetic reconnection and transformation of the magnetic topology from the viewpoint of catastrophe theory. Bifurcations in similar configurations (2D magnetic configuration with null high order point) with varying parameters were thoroughly discussed in a monograph by Poston and Stewart.
An experimental technique for performing 3-D LDA measurements inside whirling annular seals
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.; Johnson, Mark C.; Deotte, Robert E., Jr.; Thames, H. Davis, III.; Wiedner, Brian G.
1992-01-01
During the last several years, the Fluid Mechanics Division of the Turbomachinery Laboratory at Texas A&M University has developed a rather unique facility with the experimental capability for measuring the flow field inside journal bearings, labyrinth seals, and annular seals. The facility consists of a specially designed 3-D LDA system which is capable of measuring the instantaneous velocity vector within 0.2 mm of a wall while the laser beams are aligned almost perpendicular to the wall. This capability was required to measure the flow field inside journal bearings, labyrinth seals, and annular seals. A detailed description of this facility along with some representative results obtained for a whirling annular seal are presented.
The Effect of Cross Flow on Slat Noise
NASA Technical Reports Server (NTRS)
Lockard, David P.; Choudhari, Meelan M.
2010-01-01
This paper continues the computational examination (AIAA Journal, Vol. 45, No. 9, 2007, pp. 2174-2186) of the unsteady flow within the slat cove region of a multi-element high-lift airfoil configuration. Two simulations have been performed to examine the effect of cross flow on the near-field fluctuations and far-field acoustics. The cross flow was imposed by changing the free-stream velocity vector and modifying the Reynolds number. The cross flow does appear to alter the dynamics in the cove region, but the impact on the noise seems to be more dependent on the flow conditions. However, separating out the true effects of the cross flow from those of the Mach and Reynolds number would require additional calculations to isolate those effects.
Whole arm manipulation planning based on feedback velocity fields and sampling-based techniques.
Talaei, B; Abdollahi, F; Talebi, H A; Omidi Karkani, E
2013-09-01
Changing the configuration of a cooperative whole arm manipulator is not easy while enclosing an object. This difficulty is mainly because of risk of jamming caused by kinematic constraints. To reduce this risk, this paper proposes a feedback manipulation planning algorithm that takes grasp kinematics into account. The idea is based on a vector field that imposes perturbation in object motion inducing directions when the movement is considerably along manipulator redundant directions. Obstacle avoidance problem is then considered by combining the algorithm with sampling-based techniques. As experimental results confirm, the proposed algorithm is effective in avoiding jamming as well as obstacles for a 6-DOF dual arm whole arm manipulator. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
A diagram for evaluating multiple aspects of model performance in simulating vector fields
NASA Astrophysics Data System (ADS)
Xu, Zhongfeng; Hou, Zhaolu; Han, Ying; Guo, Weidong
2016-12-01
Vector quantities, e.g., vector winds, play an extremely important role in climate systems. The energy and water exchanges between different regions are strongly dominated by wind, which in turn shapes the regional climate. Thus, how well climate models can simulate vector fields directly affects model performance in reproducing the nature of a regional climate. This paper devises a new diagram, termed the vector field evaluation (VFE) diagram, which is a generalized Taylor diagram and able to provide a concise evaluation of model performance in simulating vector fields. The diagram can measure how well two vector fields match each other in terms of three statistical variables, i.e., the vector similarity coefficient, root mean square length (RMSL), and root mean square vector difference (RMSVD). Similar to the Taylor diagram, the VFE diagram is especially useful for evaluating climate models. The pattern similarity of two vector fields is measured by a vector similarity coefficient (VSC) that is defined by the arithmetic mean of the inner product of normalized vector pairs. Examples are provided, showing that VSC can identify how close one vector field resembles another. Note that VSC can only describe the pattern similarity, and it does not reflect the systematic difference in the mean vector length between two vector fields. To measure the vector length, RMSL is included in the diagram. The third variable, RMSVD, is used to identify the magnitude of the overall difference between two vector fields. Examples show that the VFE diagram can clearly illustrate the extent to which the overall RMSVD is attributed to the systematic difference in RMSL and how much is due to the poor pattern similarity.
Scaling of plane-wave functions in statistically optimized near-field acoustic holography.
Hald, Jørgen
2014-11-01
Statistically Optimized Near-field Acoustic Holography (SONAH) is a Patch Holography method, meaning that it can be applied in cases where the measurement area covers only part of the source surface. The method performs projections directly in the spatial domain, avoiding the use of spatial discrete Fourier transforms and the associated errors. First, an inverse problem is solved using regularization. For each calculation point a multiplication must then be performed with two transfer vectors--one to get the sound pressure and the other to get the particle velocity. Considering SONAH based on sound pressure measurements, existing derivations consider only pressure reconstruction when setting up the inverse problem, so the evanescent wave amplification associated with the calculation of particle velocity is not taken into account in the regularized solution of the inverse problem. The present paper introduces a scaling of the applied plane wave functions that takes the amplification into account, and it is shown that the previously published virtual source-plane retraction has almost the same effect. The effectiveness of the different solutions is verified through a set of simulated measurements.
Emission of magnetosound from MHD-unstable shear flow boundaries
NASA Astrophysics Data System (ADS)
Turkakin, H.; Rankin, R.; Mann, I. R.
2016-09-01
The emission of propagating MHD waves from the boundaries of flow channels that are unstable to the Kelvin-Helmholtz Instability (KHI) in magnetized plasma is investigated. The KHI and MHD wave emission are found to be two competing processes. It is shown that the fastest growing modes of the KHI surface waves do not coincide with efficient wave energy transport away from a velocity shear boundary. MHD wave emission is found to be inefficient when growth rates of KHI surface waves are maximum, which corresponds to the situation where the ambient magnetic field is perpendicular to the flow channel velocity vector. The efficiency of wave emission increases with increasing magnetic field tension, which in Earth's magnetosphere likely dominates along the nightside magnetopause tailward of the terminator, and within earthward Bursty Bulk Flows (BBFs) in the inner plasma sheet. MHD wave emission may also dominate in Supra-Arcade Downflows (SADs) in the solar corona. Our results suggest that efficient emission of propagating MHD waves along BBF and SAD boundaries can potentially explain observations of deceleration and stopping of BBFs and SADs.
Fast Plane Wave 2-D Vector Flow Imaging Using Transverse Oscillation and Directional Beamforming.
Jensen, Jonas; Villagomez Hoyos, Carlos Armando; Stuart, Matthias Bo; Ewertsen, Caroline; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt
2017-07-01
Several techniques can estimate the 2-D velocity vector in ultrasound. Directional beamforming (DB) estimates blood flow velocities with a higher precision and accuracy than transverse oscillation (TO), but at the cost of a high beamforming load when estimating the flow angle. In this paper, it is proposed to use TO to estimate an initial flow angle, which is then refined in a DB step. Velocity magnitude is estimated along the flow direction using cross correlation. It is shown that the suggested TO-DB method can improve the performance of velocity estimates compared with TO, and with a beamforming load, which is 4.6 times larger than for TO and seven times smaller than for conventional DB. Steered plane wave transmissions are employed for high frame rate imaging, and parabolic flow with a peak velocity of 0.5 m/s is simulated in straight vessels at beam-to-flow angles from 45° to 90°. The TO-DB method estimates the angle with a bias and standard deviation (SD) less than 2°, and the SD of the velocity magnitude is less than 2%. When using only TO, the SD of the angle ranges from 2° to 17° and for the velocity magnitude up to 7%. Bias of the velocity magnitude is within 2% for TO and slightly larger but within 4% for TO-DB. The same trends are observed in measurements although with a slightly larger bias. Simulations of realistic flow in a carotid bifurcation model provide visualization of complex flow, and the spread of velocity magnitude estimates is 7.1 cm/s for TO-DB, while it is 11.8 cm/s using only TO. However, velocities for TO-DB are underestimated at peak systole as indicated by a regression value of 0.97 for TO and 0.85 for TO-DB. An in vivo scanning of the carotid bifurcation is used for vector velocity estimations using TO and TO-DB. The SD of the velocity profile over a cardiac cycle is 4.2% for TO and 3.2% for TO-DB.
Climate change velocity underestimates climate change exposure in mountainous regions
Solomon Z. Dobrowski; Sean A. Parks
2016-01-01
Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...
Subsonic Analysis of 0.04-Scale F-16XL Models Using an Unstructured Euler Code
NASA Technical Reports Server (NTRS)
Lessard, Wendy B.
1996-01-01
The subsonic flow field about an F-16XL airplane model configuration was investigated with an inviscid unstructured grid technique. The computed surface pressures were compared to wind-tunnel test results at Mach 0.148 for a range of angles of attack from 0 deg to 20 deg. To evaluate the effect of grid dependency on the solution, a grid study was performed in which fine, medium, and coarse grid meshes were generated. The off-surface vortical flow field was locally adapted and showed improved correlation to the wind-tunnel data when compared to the nonadapted flow field. Computational results are also compared to experimental five-hole pressure probe data. A detailed analysis of the off-body computed pressure contours, velocity vectors, and particle traces are presented and discussed.
Acoustic forcing of a liquid drop
NASA Technical Reports Server (NTRS)
Lyell, M. J.
1992-01-01
The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.
The influence of the self-consistent mode structure on the Coriolis pinch effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeters, A. G.; Camenen, Y.; Casson, F. J.
This paper discusses the effect of the mode structure on the Coriolis pinch effect [A. G. Peeters, C. Angioni, and D. Strintzi, Phys. Rev. Lett. 98, 265003 (2007)]. It is shown that the Coriolis drift effect can be compensated for by a finite parallel wave vector, resulting in a reduced momentum pinch velocity. Gyrokinetic simulations in full toroidal geometry reveal that parallel dynamics effectively removes the Coriolis pinch for the case of adiabatic electrons, while the compensation due to the parallel dynamics is incomplete for the case of kinetic electrons, resulting in a finite pinch velocity. The finite flux inmore » the case of kinetic electrons is interpreted to be related to the electron trapping, which prevents a strong asymmetry in the electrostatic potential with respect to the low field side position. The physics picture developed here leads to the discovery and explanation of two unexpected effects: First the pinch velocity scales with the trapped particle fraction (root of the inverse aspect ratio), and second there is no strong collisionality dependence. The latter is related to the role of the trapped electrons, which retain some symmetry in the eigenmode, but play no role in the perturbed parallel velocity.« less
Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping
2016-02-22
We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.
Construction of Solar-Wind-Like Magnetic Fields
NASA Technical Reports Server (NTRS)
Roberts, Dana Aaron
2012-01-01
Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.
Elderly fall risk prediction using static posturography.
Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan; McIlroy, William E
2017-01-01
Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years) stood quietly with eyes open and then eyes closed while Wii Balance Board data were collected. Range in anterior-posterior (AP) and medial-lateral (ML) center of pressure (CoP) motion; AP and ML CoP root mean square distance from mean (RMS); and AP, ML, and vector sum magnitude (VSM) CoP velocity were calculated. Romberg Quotients (RQ) were calculated for all parameters. Participants reported six-month fall history and six-month post-assessment fall occurrence. Groups were retrospective fallers (24), prospective all fallers (42), prospective fallers (22 single, 6 multiple), and prospective non-fallers (47). Non-faller RQ AP range and RQ AP RMS differed from prospective all fallers, fallers, and single fallers. Non-faller eyes closed AP velocity, eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity differed from multi-fallers. RQ calculations were particularly relevant for elderly fall risk assessments. Cut-off scores from Clinical Cut-off Score, ROC curves, and discriminant functions were clinically viable for multi-faller classification and provided better accuracy than single-faller classification. RQ AP range with cut-off score 1.64 could be used to screen for older people who may fall once. Prospective multi-faller classification with a discriminant function (-1.481 + 0.146 x Eyes Closed AP Velocity-0.114 x Eyes Closed Vector Sum Magnitude Velocity-2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum Magnitude Velocity) and cut-off score 0.541 achieved an accuracy of 84.9% and is viable as a screening tool for older people at risk of multiple falls.
Design of 2D time-varying vector fields.
Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene
2012-10-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.
Observation of Polarization-Locked Vector Solitons in an Optical Fiber
NASA Astrophysics Data System (ADS)
Cundiff, S. T.; Collings, B. C.; Akhmediev, N. N.; Soto-Crespo, J. M.; Bergman, K.; Knox, W. H.
1999-05-01
We observe polarization-locked vector solitons in a mode-locked fiber laser. Temporal vector solitons have components along both birefringent axes. Despite different phase velocities due to linear birefringence, the relative phase of the components is locked at +/-π/2. The value of +/-π/2 and component magnitudes agree with a simple analysis of the Kerr nonlinearity. These fragile phase-locked vector solitons have been the subject of much theoretical conjecture, but have previously eluded experimental observation.
Fuel spray data with LDV. [solar laser morphokinetomer capabilities in combustion research
NASA Technical Reports Server (NTRS)
Rohy, D. A.; Meier, J. G.
1979-01-01
Droplet size and two component velocities in the severe environment of an operating gas turbine combustor system can be measured simultaneously using the solar laser morphokinetomer (SLM) which incorporates the following capabilities: (1) measurement of a true two-dimensional velocity vector with a range of + or - (0.01-200 m/sec); (2) measurement of particle size (range 5 to 300 micron m) simultaneously with the measurement of velocity; (3) specification of probe volume position coordinates with a high degree of accuracy (+ or - 0.5 mm); (4) immediate on-line data checks; and (5) rapid computer storage of acquired data. The optical system of the SLM incorporates an ultrasonic beam splitter to allow the measurement of a two-dimensional velocity vector simultaneously with particle size. A microprocessor with a limited storage capability permits immediate analysis of test data in the test cell.
NASA Astrophysics Data System (ADS)
Wilkin, J.; Hunter, E. J.
2016-12-01
An extensive CODAR HF-radar network has been acquiring observations of surface currents in the Mid Atlantic Bight (MAB) continental shelf ocean for several years. The fundamental CODAR observation is the component of velocity in the radial direction of view from a single antenna, geo-located by range and azimuth. Surface velocity vectors can be computed by combining radials observed by multiple sites. We exploit the concave geometry of the MAB coastline and the many possible radial views from numerous antennae to select transects that are substantially along or across isobaths, and compute wavenumber spectra for both along-shelf and across-shelf components of velocity. Comparing spectra computed from radial velocities to spectra for the same vector component extracted from the total vectors we find that the optimal interpolation combiner significantly damps energy for wavenumbers exceeding 0.03 km-1. This has ramifications for our error model in 4DVAR assimilation of CODAR total velocity. We further computed wavenumber spectra for altimeter SSHA from CryoSat-2 for ensembles of tracks in the same region of the MAB that were predominantly across- or along-shelf. Velocity spectra exhibit power law dependence close to k-5/3 down to the limit of resolution, while SSHA spectra are somewhat steeper. The constraint that bathymetry exerts on circulation on this broad, shallow shelf could influence the spectral characteristics of variability, as could winter well mixed versus summer strongly stratified conditions. Velocity and SSHA spectra are being compared to similar spectral estimates from model simulations as an assessment of convergence of the model resolution, and to explore theories of surface quasi-geostrophic turbulence that might explain the observed spectral characteristics.
3-component time-dependent crustal deformation in Southern California from Sentinel-1 and GPS
NASA Astrophysics Data System (ADS)
Tymofyeyeva, E.; Fialko, Y. A.
2017-12-01
We combine data from the Sentinel-1 InSAR mission collected between 2014-2017 with continuous GPS measurements to calculate the three components of the interseismic surface velocity field in Southern California at the resolution of InSAR data ( 100 m). We use overlapping InSAR tracks with two different look geometries (descending tracks 71, 173, and 144, and ascending tracks 64 and 166) to obtain the 3 orthogonal components of surface motion. Because of the under-determined nature of the problem, we use the local azimuth of the horizontal velocity vector as an additional constraint. The spatially variable azimuths of the horizontal velocity are obtained by interpolating data from the continuous GPS network. We estimate both secular velocities and displacement time series. The latter are obtained by combining InSAR time series from different lines of sight with time-dependent azimuths computed using continuous GPS time series at every InSAR epoch. We use the CANDIS method [Tymofyeyeva and Fialko, 2015], a technique based on iterative common point stacking, to correct the InSAR data for tropospheric and ionospheric artifacts when calculating secular velocities and time series, and to isolate low-amplitude deformation signals in our study region. The obtained horizontal (East and North) components of secular velocity exhibit long-wavelength patterns consistent with strain accumulation on major faults of the Pacific-North America plate boundary. The vertical component of velocity reveals a number of localized uplift and subsidence anomalies, most likely related to hydrologic effects and anthropogenic activity. In particular, in the Los Angeles basin we observe localized uplift of about 10-15mm/yr near Anaheim, Long Beach, and Redondo Beach, as well as areas of rapid subsidence near Irvine and Santa Monica, which are likely caused by the injection of water in the oil fields, and the pumping and recharge cycles of the aquifers in the basin.
Dynamics of liquid slug using particle image velocimetry technique
NASA Astrophysics Data System (ADS)
Siddiqui, M. I.; Aziz, A. Rashid A.; Heikal, M. R.
2016-11-01
Two phase liquid-gas slug flow is a source of vibration and fatigue on pipe walls and downstream equipment. This paper examines the effect of inlet conditions on the stream-wise velocity profiles and on the shear stresses induced by the liquid phase on the pipe wall during the slug flow. Instantaneous velocity vector fields of the liquid-gas (water-air) slug flow regime were obtained using particle image velocimetry (PIV) technique at various inlet conditions. A 6-m long Plexiglas pipe having an internal diameter 74-mm with a slight inclination of about 1.16° was considered for the visualization of the flow pattern. Test section was employed at a point 3.5m from the inlet, mounted with optical correction box filled with water to minimize the curvature effect of pipe on the PIV snapshots. Stream-wise velocity profiles are obtained at the wake of the liquid slug and the effect of inlet conditions were analyzed. A direct relationship was observed in between superficial gas velocity and the liquid stream-wise velocity at wake section of the slug flow. Further, the lower wall shear stresses were obtained using PIV velocity profiles at liquid film and the slug wake sections in a unit slug. The wall shear stress remained higher in the liquid slugy body as compared to the liquid film. Moreover, an increase in the wall shear stress was observed by increasing the gas superficial velocities.
NASA Astrophysics Data System (ADS)
Lumme, E.; Pomoell, J.; Kilpua, E. K. J.
2017-12-01
Estimates of the photospheric magnetic, electric, and plasma velocity fields are essential for studying the dynamics of the solar atmosphere, for example through the derivative quantities of Poynting and relative helicity flux and using the fields to obtain the lower boundary condition for data-driven coronal simulations. In this paper we study the performance of a data processing and electric field inversion approach that requires only high-resolution and high-cadence line-of-sight or vector magnetograms, which we obtain from the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO). The approach does not require any photospheric velocity estimates, and the lacking velocity information is compensated for using ad hoc assumptions. We show that the free parameters of these assumptions can be optimized to reproduce the time evolution of the total magnetic energy injection through the photosphere in NOAA AR 11158, when compared to recent state-of-the-art estimates for this active region. However, we find that the relative magnetic helicity injection is reproduced poorly, reaching at best a modest underestimation. We also discuss the effect of some of the data processing details on the results, including the masking of the noise-dominated pixels and the tracking method of the active region, neither of which has received much attention in the literature so far. In most cases the effect of these details is small, but when the optimization of the free parameters of the ad hoc assumptions is considered, a consistent use of the noise mask is required. The results found in this paper imply that the data processing and electric field inversion approach that uses only the photospheric magnetic field information offers a flexible and straightforward way to obtain photospheric magnetic and electric field estimates suitable for practical applications such as coronal modeling studies.
Validation and application of Acoustic Mapping Velocimetry
NASA Astrophysics Data System (ADS)
Baranya, Sandor; Muste, Marian
2016-04-01
The goal of this paper is to introduce a novel methodology to estimate bedload transport in rivers based on an improved bedform tracking procedure. The measurement technique combines components and processing protocols from two contemporary nonintrusive instruments: acoustic and image-based. The bedform mapping is conducted with acoustic surveys while the estimation of the velocity of the bedforms is obtained with processing techniques pertaining to image-based velocimetry. The technique is therefore called Acoustic Mapping Velocimetry (AMV). The implementation of this technique produces a whole-field velocity map associated with the multi-directional bedform movement. Based on the calculated two-dimensional bedform migration velocity field, the bedload transport estimation is done using the Exner equation. A proof-of-concept experiment was performed to validate the AMV based bedload estimation in a laboratory flume at IIHR-Hydroscience & Engineering (IIHR). The bedform migration was analysed at three different flow discharges. Repeated bed geometry mapping, using a multiple transducer array (MTA), provided acoustic maps, which were post-processed with a particle image velocimetry (PIV) method. Bedload transport rates were calculated along longitudinal sections using the streamwise components of the bedform velocity vectors and the measured bedform heights. The bulk transport rates were compared with the results from concurrent direct physical samplings and acceptable agreement was found. As a first field implementation of the AMV an attempt was made to estimate bedload transport for a section of the Ohio river in the United States, where bed geometry maps, resulted by repeated multibeam echo sounder (MBES) surveys, served as input data. Cross-sectional distributions of bedload transport rates from the AMV based method were compared with the ones obtained from another non-intrusive technique (due to the lack of direct samplings), ISSDOTv2, developed by the US Army Corps of Engineers. The good agreement between the results from the two different methods is encouraging and suggests further field tests in varying hydro-morphological situations.
van den Aarssen, Laura G; Bringmann, Torsten; Pfrommer, Christoph
2012-12-07
The cold dark matter paradigm describes the large-scale structure of the Universe remarkably well. However, there exists some tension with the observed abundances and internal density structures of both field dwarf galaxies and galactic satellites. Here, we demonstrate that a simple class of dark matter models may offer a viable solution to all of these problems simultaneously. Their key phenomenological properties are velocity-dependent self-interactions mediated by a light vector messenger and thermal production with much later kinetic decoupling than in the standard case.
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
2D He+ Pickup Ion Velocity Distribution Functions: STEREO PLASTIC Observations
NASA Astrophysics Data System (ADS)
Drews, C.; Berger, L.; Peleikis, T.; Wimmer-Schweingruber, R. F.
2014-12-01
He+ pickup ions are either born from the ionization of interstellar neutral helium atoms inside our heliosphere, the so called interstellar pickup ions, or through the interaction of solar wind ions with small dust particles close to the Sun, the so called inner-source of pickup ions. Until now, most observations of He+ pickup ions were limited to reduced 1D velocity spectra, which are insufficient to study certain characteristics of the He+ Velocity Distribution Function (VDF). It is generally assumed that rapid pitch-angle scattering of freshly created pickup ions quickly leads to a fully isotropic He+ VDF. In the light of recent observations, this assumption has found to be oversimplified and needs to be re-investigated. Using He+ pickup ion data from the PLASTIC instrument on board the STEREO A spacecraft we reconstruct a reduced form of the He+ VDF in 2 dimensions (see figure). The reduced form of the He+ VDF allows us to study the pitch-angle distribution and anisotropy of the He+ VDF as a function of the solar magnetic field, B. Our observations show clear signs of a significant anisotropy of the He+ VDF and even indicates that, at least for certain configurations of B, it is not even fully gyrotropic. Our results further suggest, that the observed velocity and pitch-angle of He+ depends strongly on the solar magnetic field vector, B, the ecliptic longitude, λ, the solar wind speed, vsw, and the history of B. Consequently, we argue that reduced 1D velocity spectra of He+ are insufficient to study quantities like the pitch-angle scattering rate, τ, or the adiabatic cooling index γ.
Asymmetry in the Farley-Buneman dispersion relation caused by parallel electric fields
NASA Astrophysics Data System (ADS)
Forsythe, Victoriya V.; Makarevich, Roman A.
2016-11-01
An implicit assumption utilized in studies of E region plasma waves generated by the Farley-Buneman instability (FBI) is that the FBI dispersion relation and its solutions for the growth rate and phase velocity are perfectly symmetric with respect to the reversal of the wave propagation component parallel to the magnetic field. In the present study, a recently derived general dispersion relation that describes fundamental plasma instabilities in the lower ionosphere including FBI is considered and it is demonstrated that the dispersion relation is symmetric only for background electric fields that are perfectly perpendicular to the magnetic field. It is shown that parallel electric fields result in significant differences between the growth rates and phase velocities for propagation of parallel components of opposite signs. These differences are evaluated using numerical solutions of the general dispersion relation and shown to exhibit an approximately linear relationship with the parallel electric field near the E region peak altitude of 110 km. An analytic expression for the differences is also derived from an approximate version of the dispersion relation, with comparisons between numerical and analytic results agreeing near 110 km. It is further demonstrated that parallel electric fields do not change the overall symmetry when the full 3-D wave propagation vector is reversed, with no symmetry seen when either the perpendicular or parallel component is reversed. The present results indicate that moderate-to-strong parallel electric fields of 0.1-1.0 mV/m can result in experimentally measurable differences between the characteristics of plasma waves with parallel propagation components of opposite polarity.
NASA Astrophysics Data System (ADS)
Agui, Juan H.; Briassulis, George; Andreopoulos, Yiannis
2005-02-01
The unsteady interaction of a moving shock wave with nearly homogeneous and isotropic decaying compressible turbulence has been studied experimentally in a large-scale shock tube facility. Rectangular grids of various mesh sizes were used to generate turbulence with Reynolds numbers based on Taylor's microscale ranging from 260 to 1300. The interaction has been investigated by measuring the three-dimensional velocity and vorticity vectors, the full velocity gradient and rate-of-strain tensors with instrumentation of high temporal and spatial resolution. This allowed estimates of dilatation, compressible dissipation and dilatational stretching to be obtained. The time-dependent signals of enstrophy, vortex stretching/tilting vector and dilatational stretching vector were found to exhibit a rather strong intermittent behaviour which is characterized by high-amplitude bursts with values up to 8 times their r.m.s. within periods of less violent and longer lived events. Several of these bursts are evident in all the signals, suggesting the existence of a dynamical flow phenomenon as a common cause. Fluctuations of all velocity gradients in the longitudinal direction are amplified significantly downstream of the interaction. Fluctuations of the velocity gradients in the lateral directions show no change or a minor reduction through the interaction. Root mean square values of the lateral vorticity components indicate a 25% amplification on average, which appears to be very weakly dependent on the shock strength. The transmission of the longitudinal vorticity fluctuations through the shock appears to be less affected by the interaction than the fluctuations of the lateral components. Non-dissipative vortex tubes and irrotational dissipative motions are more intense in the region downstream of the shock. There is also a significant increase in the number of events with intense rotational and dissipative motions. Integral length scales and Taylor's microscales were reduced after the interaction with the shock in all investigated flow cases. The integral length scales in the lateral direction increase at low Mach numbers and decrease during strong interactions. It appears that in the weakest of the present interactions, turbulent eddies are compressed drastically in the longitudinal direction while their extent in the normal direction remains relatively the same. As the shock strength increases the lateral integral length scales increase while the longitudinal ones decrease. At the strongest interaction of the present flow cases turbulent eddies are compressed in both directions. However, even at the highest Mach number the issue is more complicated since amplification of the lateral scales has been observed in flows with fine grids. Thus the outcome of the interaction strongly depends on the initial conditions.
NASA Technical Reports Server (NTRS)
Horton, B. E.; Bowhill, S. A.
1971-01-01
This report describes a Monte Carlo simulation of transition flow around a sphere. Conditions for the simulation correspond to neutral monatomic molecules at two altitudes (70 and 75 km) in the D region of the ionosphere. Results are presented in the form of density contours, velocity vector plots and density, velocity and temperature profiles for the two altitudes. Contours and density profiles are related to independent Monte Carlo and experimental studies, and drag coefficients are calculated and compared with available experimental data. The small computer used is a PDP-15 with 16 K of core, and a typical run for 75 km requires five iterations, each taking five hours. The results are recorded on DECTAPE to be printed when required, and the program provides error estimates for any flow field parameter.
Velocity control as a tool for optimal plume containment in the Equus Beds aquifer, Kansas
Heidari, M.; Sadeghipour, J.; Drici, O.
1987-01-01
A ground-water-management model was developed to investigate the best management options for the containment of an oil-field-brine plume in the Equus Beds aquifer in south-central Kansas. The main purpose of the management model was to find the optimal locations and minimum rates of pumpage of a set of plume-interception wells, to successfully reverse the velocity vectors at observation wells located along the plume front, and also to satisfy freshwater demands from supply wells. The effects of the calculated minimum withdrawals from the interception wells on the migration of contaminants throughout the ground-water system were evaluated utilizing a solute-transport model. This latter analysis was carried out to ensure the containment of the plume. Whereas application of the management model to the study area achieves the management objectives, the implementation of the results is believed to be impractical and expensive.
Anomalous group velocity at the high energy range of real 3D photonic nanostructures
NASA Astrophysics Data System (ADS)
Botey, Muriel; Martorell, Jordi; Lozano, Gabriel; Míguez, Hernán; Dorado, Luis A.; Depine, Ricardo A.
2010-05-01
We perform a theoretical study on the group velocity for finite thin artificial opal slabs made of a reduced number of layers in the spectral range where the light wavelength is on the order of the lattice parameter. The vector KKR method including extinction allows us to evaluate the finite-size effects on light propagation in the ΓL and ΓX directions of fcc close-packed opal films made of dielectric spheres. The group is index determined from the phase delay introduced by the structure to the forwardly transmitted electric field. We show that for certain frequencies, light propagation can either be superluminal -positive or negative- or approach zero depending on the crystal size and absorption. Such anomalous behavior can be attributed to the finite character of the structure and provides confirmation of recently emerged experimental results.
1991-07-01
nose bodyj Top view of velocity probe PropllerRotating shaft ’V Generator Aerodynamic shape like a small elevator RPV’s attitude Irrespctiveduring...28 Part It: Maximizing Thrust-Vectoring Control Power and Agility Metrics ............ 29 Laboratory & Flight...8217Ideal Standards’ - Ba- ror maximizing PST-TV-aglilty/rIlght-control power , iI - Extracting new TV-potentials to further reduce any righter’s optical
NASA Technical Reports Server (NTRS)
Pfaff, R.; Freudenreich, H.; Bromund, K.; Klenzing, J.; Rowland, D.; Maynard, N.
2010-01-01
Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. Finally, the data set includes a wide range of ELF/VLF/HF oscillations corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning-induced sferics. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics and irregularities inherent to the Earth's low latitude ionosphere.
NASA Astrophysics Data System (ADS)
Sharma, Dinesh Kumar; Sharma, Anurag; Tripathi, Saurabh Mani
2017-11-01
The excellent propagation properties of square-lattice microstructured optical fibers (MOFs) have been widely recognized. We generalized our recently developed analytical field model (Sharma and Sharma, 2016), for index-guiding MOFs with square-lattice of circular air-holes in the photonic crystal cladding. Using the field model, we have studied the propagation properties of the fundamental mode of index-guiding square-lattice MOFs with different hole-to-hole spacing and the air-hole diameter. Results for the modal effective index, near and the far-field patterns and the group-velocity dispersion have been included. The evolution of the mode shape has been investigated in transition from the near to the far-field domain. We have also studied the splice losses between two identical square-lattice MOFs and also between an MOF and a traditional step-index single-mode fiber. Comparisons with available numerical simulation results, e.g., those based on the full-vector finite element method have also been included.
NASA Astrophysics Data System (ADS)
Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.
2010-01-01
The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.
NASA Astrophysics Data System (ADS)
Zhao, Gang; Li, Shuxin; Hu, Haixiao; Zhong, Yucheng; Li, Kun
2018-01-01
Carbon fiber reinforced composite materials have been widely used in aerospace and other high-tech fields because of their excellent performance. However barely visible impact damage can be introduced by low velocity impact, which might bring out tremendous risk. In this paper, a new method is proposed to predict the position of low velocity impact. The dynamic strain signal that is caused by low velocity impact is obtained by the fiber Bragg grating (FBG) sensor. The amplitude of the first K order natural frequency is extracted by Fast Fourier Transform (FFT). The amplitude data is normalized, and then establish k order vector matrix model is established. It is proposed that K order sum of squares of deviations can be used as the basis to predict positioning. Two different validation tests were performed. The experimental model was made of different layers. FBG were used to embed and paste type method, experiments were conducted with impact of different energy levels. The results show that proposed method is feasible.
Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath
NASA Astrophysics Data System (ADS)
Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia
2017-04-01
Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.
Volumetric three-component velocimetry measurements of the turbulent flow around a Rushton turbine
NASA Astrophysics Data System (ADS)
Sharp, Kendra V.; Hill, David; Troolin, Daniel; Walters, Geoffrey; Lai, Wing
2010-01-01
Volumetric three-component velocimetry measurements have been taken of the flow field near a Rushton turbine in a stirred tank reactor. This particular flow field is highly unsteady and three-dimensional, and is characterized by a strong radial jet, large tank-scale ring vortices, and small-scale blade tip vortices. The experimental technique uses a single camera head with three apertures to obtain approximately 15,000 three-dimensional vectors in a cubic volume. These velocity data offer the most comprehensive view to date of this flow field, especially since they are acquired at three Reynolds numbers (15,000, 107,000, and 137,000). Mean velocity fields and turbulent kinetic energy quantities are calculated. The volumetric nature of the data enables tip vortex identification, vortex trajectory analysis, and calculation of vortex strength. Three identification methods for the vortices are compared based on: the calculation of circumferential vorticity; the calculation of local pressure minima via an eigenvalue approach; and the calculation of swirling strength again via an eigenvalue approach. The use of two-dimensional data and three-dimensional data is compared for vortex identification; a `swirl strength' criterion is less sensitive to completeness of the velocity gradient tensor and overall provides clearer identification of the tip vortices. The principal components of the strain rate tensor are also calculated for one Reynolds number case as these measures of stretching and compression have recently been associated with tip vortex characterization. Vortex trajectories and strength compare favorably with those in the literature. No clear dependence of trajectory on Reynolds number is deduced. The visualization of tip vortices up to 140° past blade passage in the highest Reynolds number case is notable and has not previously been shown.
Flow noise of an underwater vector sensor embedded in a flexible towed array.
Korenbaum, Vladimir I; Tagiltsev, Alexander A
2012-05-01
The objective of this work is to simulate the flow noise of a vector sensor embedded in a flexible towed array. The mathematical model developed, based on long-wavelength analysis of the inner space of a cylindrical multipole source, predicts the reduction of the flow noise of a vector sensor embedded in an underwater flexible towed array by means of intensimetric processing (cross-spectral density calculation of oscillatory velocity and sound-pressure-sensor responses). It is found experimentally that intensimetric processing results in flow noise reduction by 12-25 dB at mean levels and by 10-30 dB in fluctuations compared to a squared oscillatory velocity channel. The effect of flow noise suppression in the intensimetry channel relative to a squared sound pressure channel is observed, but only for frequencies above the threshold. These suppression values are 10-15 dB at mean noise levels and 3-6 dB in fluctuations. At towing velocities of 1.5-3 ms(-1) and an accumulation time of 98.3 s, the threshold frequency in fluctuations is between 30 and 45 Hz.
Accumulation of electric currents driving jetting events in the solar atmosphere
NASA Astrophysics Data System (ADS)
Vargas Domínguez, S.; Guo, Y.; Demoulin, P.; Schmieder, B.; Ding, M.; Liu, Y.
2013-12-01
The solar atmosphere is populated with a wide variety of structures and phenomena at different spatial and temporal scales. Explosive phenomena are of particular interest due to their contribution to the atmosphere's energy budget and their implications, e.g. coronal heating. Recent instrumental developments have provided important observations and therefore new insights for tracking the dynamic evolution of the solar atmosphere. Jets of plasma are frequently observed in the solar corona and are thought to be a consequence of magnetic reconnection, however, the physics involved is not fully understood. Unprecedented observations (EUV and vector magnetic fields) are used to study solar jetting events, from which we derive the magnetic flux evolution, the photospheric velocity field, and the vertical electric current evolution. The evolution of magnetic parasitic polarities displaying diverging flows are detected to trigger recurrent jets in a solar regionon 17 September 2010. The interaction drive the build up of electric currents. Observed diverging flows are proposed to build continuously such currents. Magnetic reconnection is proposed to occur periodically, in the current layer created between the emerging bipole and the large scale active region field. SDO/AIA EUV composite images. Upper: SDO/AIA 171 Å image overlaid by the line-of-sight magnetic field observed at the same time as that of the 171 Å image. Lower: Map of photospheric transverse velocities derived from LCT analysis with the HMI magnetograms.
Signatures of Relativistic Helical Motion in the Rotation Measures of Active Galactic Nucleus Jets
NASA Astrophysics Data System (ADS)
Broderick, Avery E.; Loeb, Abraham
2009-10-01
Polarization has proven to be an invaluable tool for probing magnetic fields in relativistic jets. Maps of the intrinsic polarization vectors have provided the best evidence to date for uniform, toroidally dominated magnetic fields within jets. More recently, maps of the rotation measure (RM) in jets have for the first time probed the field geometry of the cool, moderately relativistic surrounding material. In most cases, clear signatures of the toroidal magnetic field are detected, corresponding to gradients in RM profiles transverse to the jet. However, in many objects, these profiles also display marked asymmetries that are difficult to explain in simple helical jet models. Furthermore, in some cases, the RM profiles are strongly frequency and/or time dependent. Here we show that these features may be naturally accounted for by including relativistic helical motion in the jet model. In particular, we are able to reproduce bent RM profiles observed in a variety of jets, frequency-dependent RM profile morphologies, and even the time dependence of the RM profiles of knots in 3C 273. Finally, we predict that some sources may show reversals in their RM profiles at sufficiently high frequencies, depending upon the ratio of the components of jet sheath velocity transverse and parallel to the jet. Thus, multi-frequency RM maps promise a novel way in which to probe the velocity structure of relativistic outflows.
Non-overlapped P- and S-wave Poynting vectors and their solution by the grid method
NASA Astrophysics Data System (ADS)
Lu, Yongming; Liu, Qiancheng
2018-06-01
The Poynting vector represents the local directional energy flux density of seismic waves in geophysics. It is widely used in elastic reverse time migration to analyze source illumination, suppress low-wavenumber noise, correct for image polarity and extract angle-domain common-image gathers. However, the P- and S-waves are mixed together during wavefield propagation so that the P and S energy fluxes are not clean everywhere, especially at the overlapped points. In this paper, we use a modified elastic-wave equation in which the P and S vector wavefields are naturally separated. Then, we develop an efficient method to evaluate the separable P and S Poynting vectors, respectively, based on the view that the group velocity and phase velocity have the same direction in isotropic elastic media. We furthermore formulate our method using an unstructured mesh-based modeling method named the grid method. Finally, we verify our method using two numerical examples.
The kinematic component of the cosmological redshift
NASA Astrophysics Data System (ADS)
Chodorowski, Michał J.
2011-05-01
It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to solve this problem properly, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant cosmic time. We find that the resulting relation between the transported velocity and the redshift of arriving photons is not given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well-known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational one. We perform such a decomposition for arbitrary large redshifts and derive a formula for the kinematic component of the cosmological redshift, valid for any Friedman-Lemaître-Robertson-Walker (FLRW) cosmology. In particular, in a universe with Ωm= 0.24 and ΩΛ= 0.76, a quasar at a redshift 6, at the time of emission of photons reaching us today had the recession velocity v= 0.997c. This can be contrasted with v= 0.96c, had the redshift been entirely kinematic. Thus, for recession velocities of such high-redshift sources, the effect of deceleration of the early Universe clearly prevails over the effect of its relatively recent acceleration. Last but not the least, we show that the so-called proper recession velocities of galaxies, commonly used in cosmology, are in fact radial components of the galaxies' four-velocity vectors. As such, they can indeed attain superluminal values, but should not be regarded as real velocities.
NASA Astrophysics Data System (ADS)
Tan, Jianguo; Zhang, Dongdong; Li, Hao; Hou, Juwei
2018-03-01
The flow behaviors and mixing characteristics of a supersonic mixing layer with a convective Mach number of 0.2 have been experimentally investigated utilizing nanoparticle-based planar laser scattering and particle image velocimetry techniques. The full development and evolution process, including the formation of Kelvin-Helmholtz vortices, breakdown of large-scale structures and establishment of self-similar turbulence, is exhibited clearly in the experiments, which can give a qualitative graphically comparing for the DNS and LES results. The shocklets are first captured at this low convective Mach number, and their generation mechanisms are elaborated and analyzed. The convective velocity derived from two images with space-time correlations is well consistent with the theoretical result. The pairing and merging process of large-scale vortices in transition region is clearly revealed in the velocity vector field. The analysis of turbulent statistics indicates that in weakly compressible mixing layers, with the increase of convective Mach number, the peak values of streamwise turbulence intensity and Reynolds shear stress experience a sharp decrease, while the anisotropy ratio seems to keep quasi unchanged. The normalized growth rate of the present experiments shows a well agreement with former experimental and DNS data. The validation of present experimental results is important for that in the future the present work can be a reference for assessing the accuracy of numerical data.
Ion acceleration by Alfvén waves on auroral field lines
NASA Astrophysics Data System (ADS)
Bingham, Robert; Eliasson, Bengt; Tito Mendonça, José; Stenflo, Lennart
2013-05-01
Observations of ion acceleration along auroral field lines at the boundary of the plasma sheet and tail lobe of the Earth show that the energy of the ions increases with decreasing density. The observations can be explained by ion acceleration through Landau resonance with kinetic Alfvén waves (KAWs) such that kA·vi = ωA, where kA is the wave vector, vi is the ion resonance velocity and ωA is the Alfvén wave frequency. The ion resonance velocities are proportional to the Alfvén velocity which increases with decreasing density. This is in agreement with the data if the process is occurring at the plasma sheet tail lobe boundary. A quasi-linear theory of ion acceleration by KAWs is presented. These ions propagate both down towards and away from the Earth. The paths of the Freja and Polar satellites indicate that the acceleration takes place between the two satellites, between 1Re and 5Re. The downward propagating ions develop a horseshoe-type of distribution which has a positive slope in the perpendicular direction. This type of distribution can produce intense lower hybrid wave activity, which is also observed. Finally, the filamentation of shear Alfvén waves is considered. It may be responsible for large-scale density striations. In memory of Padma Kant Shukla, a great scientist and a good friend.
Dispersion curve estimation via a spatial covariance method with ultrasonic wavefield imaging.
Chong, See Yenn; Todd, Michael D
2018-05-01
Numerous Lamb wave dispersion curve estimation methods have been developed to support damage detection and localization strategies in non-destructive evaluation/structural health monitoring (NDE/SHM) applications. In this paper, the covariance matrix is used to extract features from an ultrasonic wavefield imaging (UWI) scan in order to estimate the phase and group velocities of S0 and A0 modes. A laser ultrasonic interrogation method based on a Q-switched laser scanning system was used to interrogate full-field ultrasonic signals in a 2-mm aluminum plate at five different frequencies. These full-field ultrasonic signals were processed in three-dimensional space-time domain. Then, the time-dependent covariance matrices of the UWI were obtained based on the vector variables in Cartesian and polar coordinate spaces for all time samples. A spatial covariance map was constructed to show spatial correlations within the full wavefield. It was observed that the variances may be used as a feature for S0 and A0 mode properties. The phase velocity and the group velocity were found using a variance map and an enveloped variance map, respectively, at five different frequencies. This facilitated the estimation of Lamb wave dispersion curves. The estimated dispersion curves of the S0 and A0 modes showed good agreement with the theoretical dispersion curves. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Pline, Alexander D.
1991-01-01
The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.
Plasma-based polarizer and waveplate at large laser intensity
NASA Astrophysics Data System (ADS)
Lehmann, G.; Spatschek, K. H.
2018-06-01
A plasma photonic crystal consists of a plasma density grating which is created in underdense plasma by counterpropagating laser beams. When a high-power laser pulse impinges the crystal, it might be reflected or transmitted. So far only one type of pulse polarization, namely the so-called s wave (or TE mode) was investigated (when the electric field vector is perpendicular to the plane of incidence). Here, when investigating also so-called p waves (or TM modes, where the magnetic field vector is perpendicular to the plane of incidence), it is detected that the transmission and reflection properties of the plasma photonic crystal depend on polarization. A simple analytic model of the crystal allows one to make precise predictions. The first conclusion is that in some operational regime the crystal can act as a plasma polarizer for high-intensity laser pulses. Also, differences in phase velocities for grazing incidence between s and p polarization are found. Thus, secondly, the crystal can be utilized as a waveplate, e.g., transforming linearly polarized laser light into circular polarization. All these processes extend to laser intensities beyond the damage intensities of so far used solid state devices.
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Pline, Alexander D.
1991-01-01
The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.
Jafarpour, Farshid; Angheluta, Luiza; Goldenfeld, Nigel
2013-10-01
The dynamics of edge dislocations with parallel Burgers vectors, moving in the same slip plane, is mapped onto Dyson's model of a two-dimensional Coulomb gas confined in one dimension. We show that the tail distribution of the velocity of dislocations is power law in form, as a consequence of the pair interaction of nearest neighbors in one dimension. In two dimensions, we show the presence of a pairing phase transition in a system of interacting dislocations with parallel Burgers vectors. The scaling exponent of the velocity distribution at effective temperatures well below this pairing transition temperature can be derived from the nearest-neighbor interaction, while near the transition temperature, the distribution deviates from the form predicted by the nearest-neighbor interaction, suggesting the presence of collective effects.
Rotation invariants of vector fields from orthogonal moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bo; Kostková, Jitka; Flusser, Jan
Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less
Huygens' optical vector wave field synthesis via in-plane electric dipole metasurface.
Park, Hyeonsoo; Yun, Hansik; Choi, Chulsoo; Hong, Jongwoo; Kim, Hwi; Lee, Byoungho
2018-04-16
We investigate Huygens' optical vector wave field synthesis scheme for electric dipole metasurfaces with the capability of modulating in-plane polarization and complex amplitude and discuss the practical issues involved in realizing multi-modulation metasurfaces. The proposed Huygens' vector wave field synthesis scheme identifies the vector Airy disk as a synthetic unit element and creates a designed vector optical field by integrating polarization-controlled and complex-modulated Airy disks. The metasurface structure for the proposed vector field synthesis is analyzed in terms of the signal-to-noise ratio of the synthesized field distribution. The design of practical metasurface structures with true vector modulation capability is possible through the analysis of the light field modulation characteristics of various complex modulated geometric phase metasurfaces. It is shown that the regularization of meta-atoms is a key factor that needs to be considered in field synthesis, given that it is essential for a wide range of optical field synthetic applications, including holographic displays, microscopy, and optical lithography.
Rotation invariants of vector fields from orthogonal moments
Yang, Bo; Kostková, Jitka; Flusser, Jan; ...
2017-09-11
Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less
Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.
1987-06-08
A field effect transistor comprises a semiconductor having a source, a drain, a channel and a gate in operational relationship. The semiconductor is a strained layer superlattice comprising alternating quantum well and barrier layers, the quantum well layers and barrier layers being selected from the group of layer pairs consisting of InGaAs/AlGaAs, InAs/InAlGaAs, and InAs/InAlAsP. The layer thicknesses of the quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice which has a superlattice conduction band energy level structure in k-vector space. The layer thicknesses of the quantum well layers are selected to provide a superlattice L/sub 2D/-valley which has a shape which is substantially more two-dimensional than that of said bulk L-valley. 2 figs.
Ro, Richard; Halpern, Dan; Sahn, David J; Homel, Peter; Arabadjian, Milla; Lopresto, Charles; Sherrid, Mark V
2014-11-11
The hydrodynamic cause of systolic anterior motion of the mitral valve (SAM) is unresolved. This study hypothesized that echocardiographic vector flow mapping, a new echocardiographic technique, would provide insights into the cause of early SAM in obstructive hypertrophic cardiomyopathy (HCM). We analyzed the spatial relationship of left ventricular (LV) flow and the mitral valve leaflets (MVL) on 3-chamber vector flow mapping frames, and performed mitral valve measurements on 2-dimensional frames in patients with obstructive and nonobstructive HCM and in normal patients. We compared 82 patients (22 obstructive HCM, 23 nonobstructive HCM, and 37 normal) by measuring 164 LV pre- and post-SAM velocity vector flow maps, 82 maximum isovolumic vortices, and 328 2-dimensional frames. We observed color flow and velocity vector flow posterior to the MVL impacting them in the early systolic frames of 95% of obstructive HCM, 22% of nonobstructive HCM, and 11% of normal patients (p < 0.001). In both pre- and post-SAM frames, we measured a high angle of attack >60° of local vector flow onto the posterior surface of the leaflets whether the flow was ejection (59%) or the early systolic isovolumic vortex (41%). Ricochet of vector flow, rebounding off the leaflet into the cul-de-sac, was noted in 82% of the obstructed HCM, 9% of nonobstructive HCM, and none (0%) of the control patients (p < 0.001). Flow velocities in the LV outflow tract on the pre-SAM frame 1 and 2 mm from the tip of the anterior leaflet were low: 39 and 43 cm/s, respectively. Early systolic flow impacts the posterior surfaces of protruding MVL initiating SAM in obstructive HCM. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor
NASA Astrophysics Data System (ADS)
Kagawa, Naoki; Wada, Osami; Koga, Ryuji
1999-05-01
This paper describes a velocimetry system using scintillation of a laser-beam with spatial filters based on sensor arrays for a laser- based gas flux monitor. In the eddy correlation method, gas flux is obtained by mutual relation between the gas density and the flow velocity. The velocimetry system is developed to support the flow velocity monitor portion of the laser-based gas flux monitor with a long span for measurement. In order to sense not only the flow velocity but also the flow direction, two photo diode arrays are arranged with difference of a quarter period of the weighting function between them; the two output signals from the sensor arrays have phase difference of either (pi) /2 or -(pi) /2 depending on the sense of flow direction. In order to obtain the flow velocity and the flow direction instantly, an electronic apparatus built by the authors extracts frequency and phase from crude outputs of the pair of sensors. A feasibility of the velocimetry was confirmed indoors by measurement of the flow- velocity vector of the convection. Measured flow-velocity vector of the upward flow agreed comparatively with results of an ultrasonic anemometer.
Head-Mounted and Head-Up Display Glossary
NASA Technical Reports Server (NTRS)
Newman, Richard L.; Allen, J. Edwin W. (Technical Monitor)
1997-01-01
One of the problems in head-up and helmet-mounted display (HMD) literature has been a lack of standardization of words and abbreviations. Several different words have been used for the same concept; for example, flight path angle, flight path marker, velocity vector, and total velocity vector all refer to the same thing. In other cases, the same term has been used with two different meanings, such as binocular field-of-view which means the field-of-view visible to both left and right eyes according to some or the field-of-view visible to either the left or right eye or both according to others. Many of the terms used in HMD studies have not been well-defined. We need to have a common language to ensure that system descriptions are communicated. As an example, the term 'stabilized' has been widely used with two meanings. 'Roll-stabilized' has been used to mean a symbol which rotates to indicate the roll or bank of the aircraft. 'World-stabilized' and 'head-stabilized' have both been used to indicate symbols which move to remain fixed with respect to external objects. HMDs present unique symbology problems not found in HUDs. Foremost among these is the issue of maintaining spatial orientation of the symbols. All previous flight displays, round dial instruments, HDDs, and HUDs have been fixed in the cockpit. With the HMD, the flight display can move through a large angle. The coordinates use in transforming from the real-world to the aircraft to the HMD have not been consistently defined. This glossary contains terms relating to optics and vision, displays, and flight information, weapons and aircraft systems. Some definitions, such as Navigation Display, have been added to clarify the definitions for Primary Flight Display and Primary Flight Reference. A list of HUD/HMD related abbreviations is also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobbins, T. J., E-mail: tdobbins@wisc.edu; Kumar, S. T. A.; Anderson, D. T.
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. In order to compare the experimental results with theoretical models it is important to accurately model the beam width effects. A synthetic diagnostic has been developed for this purpose. This synthetic diagnostic calculates the effect of spot sizemore » and beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.
2016-08-03
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
Delbridge, Brent G.; Burgmann, Roland; Fielding, Eric; Hensley, Scott; Schulz, William
2016-01-01
In order to provide surface geodetic measurements with “landslide-wide” spatial coverage, we develop and validate a method for the characterization of 3-D surface deformation using the unique capabilities of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne repeat-pass radar interferometry system. We apply our method at the well-studied Slumgullion Landslide, which is 3.9 km long and moves persistently at rates up to ∼2 cm/day. A comparison with concurrent GPS measurements validates this method and shows that it provides reliable and accurate 3-D surface deformation measurements. The UAVSAR-derived vector velocity field measurements accurately capture the sharp boundaries defining previously identified kinematic units and geomorphic domains within the landslide. We acquired data across the landslide during spring and summer and identify that the landslide moves more slowly during summer except at its head, presumably in response to spatiotemporal variations in snowmelt infiltration. In order to constrain the mechanics controlling landslide motion from surface velocity measurements, we present an inversion framework for the extraction of slide thickness and basal geometry from dense 3-D surface velocity fields. We find that the average depth of the Slumgullion Landslide is 7.5 m, several meters less than previous depth estimates. We show that by considering a viscoplastic rheology, we can derive tighter theoretical bounds on the rheological parameter relating mean horizontal flow rate to surface velocity. Using inclinometer data for slow-moving, clay-rich landslides across the globe, we find a consistent value for the rheological parameter of 0.85 ± 0.08.
1984-12-01
Octol** explosive. The experimental charges were lightly confined with aluminum bodies and had cone diameters of 84mm. The charges modelled using HEMP...solved using the following relationships: .Final Final V 0 1 IV sin 9, where Voz aj i teailcmpnn fj~Fnl n Final F where V is the adial component of Fnan h...velocity vector is equal to the vector addition of the flow and 8. MMiles L. Lampson, "The Influence of Convergence - Velocity Gradients on the Formation
NASA Technical Reports Server (NTRS)
Battin, R. H.; Croopnick, S. R.; Edwards, J. A.
1977-01-01
The formulation of a recursive maximum likelihood navigation system employing reference position and velocity vectors as state variables is presented. Convenient forms of the required variational equations of motion are developed together with an explicit form of the associated state transition matrix needed to refer measurement data from the measurement time to the epoch time. Computational advantages accrue from this design in that the usual forward extrapolation of the covariance matrix of estimation errors can be avoided without incurring unacceptable system errors. Simulation data for earth orbiting satellites are provided to substantiate this assertion.
Evolution of passive scalar statistics in a spatially developing turbulence
NASA Astrophysics Data System (ADS)
Paul, I.; Papadakis, G.; Vassilicos, J. C.
2018-02-01
We investigate the evolution of passive scalar statistics in a spatially developing turbulence using direct numerical simulation. Turbulence is generated by a square grid element, which is heated continuously, and the passive scalar is temperature. The square element is the fundamental building block for both regular and fractal grids. We trace the dominant mechanisms responsible for the dynamical evolution of scalar-variance and its dissipation along the bar and grid-element centerlines. The scalar-variance is generated predominantly by the action of the mean scalar gradient behind the bar and is transported laterally by turbulent fluctuations to the grid-element centerline. The scalar-variance dissipation (proportional to the scalar-gradient variance) is produced primarily by the compression of the fluctuating scalar-gradient vector by the turbulent strain rate, while the contribution of mean velocity and scalar fields is negligible. Close to the grid element the scalar spectrum exhibits a well-defined -5 /3 power-law, even though the basic premises of the Kolmogorov-Obukhov-Corrsin theory are not satisfied (the fluctuating scalar field is highly intermittent, inhomogeneous, and anisotropic, and the local Corrsin-microscale-Péclet number is small). At this location, the PDF of scalar gradient production is only slightly skewed towards positive, and the fluctuating scalar-gradient vector aligns only with the compressive strain-rate eigenvector. The scalar-gradient vector is stretched or compressed stronger than the vorticity vector by turbulent strain rate throughout the grid-element centerline. However, the alignment of the former changes much earlier in space than that of the latter, resulting in scalar-variance dissipation to decay earlier along the grid-element centerline compared to the turbulent kinetic energy dissipation. The universal alignment behavior of the scalar-gradient vector is found far downstream, although the local Reynolds and Péclet numbers (based on the Taylor and Corrsin length scales, respectively) are low.
Non-Colinearity of Angular Velocity and Angular Momentum
ERIC Educational Resources Information Center
Burr, A. F.
1974-01-01
Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)
Space Technology 5 Multi-point Measurements of Near-Earth Magnetic Fields: Initial Results
NASA Technical Reports Server (NTRS)
Slavin, James A.; Le, G.; Strangeway, R. L.; Wang, Y.; Boardsen, S.A.; Moldwin, M. B.; Spence, H. E.
2007-01-01
The Space Technology 5 (ST-5) mission successfully placed three micro-satellites in a 300 x 4500 km dawn-dusk orbit on 22 March 2006. Each spacecraft carried a boom-mounted vector fluxgate magnetometer that returned highly sensitive and accurate measurements of the geomagnetic field. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of approximately 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness and current density. In doing so, we demonstrate two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit; 1) the "standard method," based upon s/c velocity, but corrected for FAC current sheet motion, and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data set and expand to include geomagnetic field gradient analyses as well as field-aligned and ionospheric currents.
A trade-off between model resolution and variance with selected Rayleigh-wave data
Xia, J.; Miller, R.D.; Xu, Y.
2008-01-01
Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (??? 2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. First, we employed a data-resolution matrix to select data that would be well predicted and to explain advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher mode data are normally more accurately predicted than fundamental mode data because of restrictions on the data kernel for the inversion system. Second, we obtained an optimal damping vector in a vicinity of an inverted model by the singular value decomposition of a trade-off function of model resolution and variance. In the end of the paper, we used a real-world example to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher mode data in inversion can provide better results. We also calculated model-resolution matrices of these examples to show the potential of increasing model resolution with selected surface-wave data. With the optimal damping vector, we can improve and assess an inverted model obtained by a damped least-square method.
NASA Astrophysics Data System (ADS)
Choi, David S.; Banfield, D.; Gierasch, P. J.; Showman, A. P.
2006-09-01
We have produced mosaics of the Great Red Spot (GRS) using images taken by Galileo in May 2000, and have measured the winds of the GRS using an automated algorithm that does not require manual cloud tracking. Our technique yields a high-density, regular grid of wind velocity vectors that is advantageous over a limited number of scattered wind vectors that result from manual cloud tracking. The high-velocity collar of the GRS is clearly seen in our velocity vector map, and highest wind velocities are measured to be 166.4 m/s. The high resolution of the mosaics have also enabled us to map turbulent eddies inside the chaotic central region of the GRS, similar to those mapped by Sada et al. (1996) and Vasavada et al. (1998). We have also discovered a narrow ring of cyclonic vorticity that surrounds the main anti-cyclonic high-velocity collar. This narrow ring appears to correspond to a ring surrounding the GRS that is bright in 5-um (Terrile et al. 1979). It appears that this cyclonic ring is not a transient feature of the GRS, as we have discovered it in a re-analysis of Galileo images from 1996, first analyzed by Vasavada et al. (1998). Cyclonic rings around Jovian anti-cyclones have also appeared in numerical modeling studies by Showman (2006). We also calculate how absolute vorticity changes as a function of latitude along particle trajectories around the GRS and compare these measurements to similar ones performed by Dowling & Ingersoll (1988) using Voyager data. From this comparison, we show no dramatic evolution in the structure of the GRS since the Voyager era. This work was supported by NASA Planetary Atmospheres grants to APS and PJG, along with support from Cornell Presidential Research Scholars.
Fractal vector optical fields.
Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2016-07-15
We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field.
ORPC RivGen Hydrokinetic Turbine Wake Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Jim; Guerra, Maricarmen
Field measurements of mean flow and turbulence parameters at the Kvichak river prior to and after the deployment of ORPC's RivGen hydrokinetic turbine. Data description and turbine wake analysis are presented in the attached manuscript "Wake measurements from a hydrokinetic river turbine" by Guerra and Thomson (recently submitted to Renewable Energy). There are three data sets: NoTurbine (prior to deployment), Not_Operational_Turbine (turbine underwater, but not operational), and Operational_Turbine. The data has been quality controlled and organized into a three-dimensional grid using a local coordinate system described in the paper. All data sets are in Matlab format (.mat). Variables available inmore » the data sets are: qx: X coordinate matrix (m) qy: Y coordinate matrix (m) z : z coordinate vector (m) lat : grid cell latitude (degrees) lon: grid cell longitude (degrees) U : velocity magnitude (m/s) Ux: x velocity (m/s) Vy: y velocity (m/s) W: vertical velocity (m/s) Pseudo_beam.b_i: pseudo-along beam velocities (i = 1 to 4) (m/s) (structure with raw data within each grid cell) beam5.b5: 5th-beam velocity (m/s) (structure with raw data within each grid cell) tke: turbulent kinetic energy (m2/s2) epsilon: TKE dissipation rate (m2/s3) Reynolds stresses: uu, vv, ww, uw, vw (m2/s2) Variables from the Not Operational Turbine data set are identified with _T Variables from the Operational Turbine data set are identified with _TO« less
Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen
2015-09-20
Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.
A note on φ-analytic conformal vector fields
NASA Astrophysics Data System (ADS)
Deshmukh, Sharief; Bin Turki, Nasser
2017-09-01
Taking clue from the analytic vector fields on a complex manifold, φ-analytic conformal vector fields are defined on a Riemannian manifold (Deshmukh and Al-Solamy in Colloq. Math. 112(1):157-161, 2008). In this paper, we use φ-analytic conformal vector fields to find new characterizations of the n-sphere Sn(c) and the Euclidean space (Rn,<,> ).
Mapping the magnetic field vector in a fountain clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertsvolf, Marina; Marmet, Louis
2011-12-15
We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
Distractor interference during smooth pursuit eye movements.
Spering, Miriam; Gegenfurtner, Karl R; Kerzel, Dirk
2006-10-01
When 2 targets for pursuit eye movements move in different directions, the eye velocity follows the vector average (S. G. Lisberger & V. P. Ferrera, 1997). The present study investigates the mechanisms of target selection when observers are instructed to follow a predefined horizontal target and to ignore a moving distractor stimulus. Results show that at 140 ms after distractor onset, horizontal eye velocity is decreased by about 25%. Vertical eye velocity increases or decreases by 1 degrees /s in the direction opposite from the distractor. This deviation varies in size with distractor direction, velocity, and contrast. The effect was present during the initiation and steady-state tracking phase of pursuit but only when the observer had prior information about target motion. Neither vector averaging nor winner-take-all models could predict the response to a moving to-be-ignored distractor during steady-state tracking of a predefined target. The contributions of perceptual mislocalization and spatial attention to the vertical deviation in pursuit are discussed. Copyright 2006 APA.
Initiation of small-satellite formations via satellite ejector
NASA Astrophysics Data System (ADS)
McMullen, Matthew G
Small satellites can be constructed at a fraction of the cost of a full-size satellite. One full-size satellite can be replaced with a multitude of small satellites, offering expanded area coverage through formation flight. However, the shortcoming to the smaller size is usually a lack of thrusting capabilities. Furthermore, current designs for small satellite deployment mechanisms are only capable of love deployment velocities (on the order of meters per second). Motivated to address this shortcoming, a conceived satellite ejector would offer a significant orbit change by ejecting the satellite at higher deployment velocities (125-200 m/s). Focusing on the applications of the ejector, it is sought to bridge the gap in prior research by offering a method to initiate formation flight. As a precursor to the initiation, the desired orbit properties to initiate the formation are specified in terms of spacing and velocity change vector. From this, a systematic method is developed to find the relationship among velocity change vector, the desired orbit's orientation, and the spacing required to initiate the formation.
Estimating Variances of Horizontal Wind Fluctuations in Stable Conditions
NASA Astrophysics Data System (ADS)
Luhar, Ashok K.
2010-05-01
Information concerning the average wind speed and the variances of lateral and longitudinal wind velocity fluctuations is required by dispersion models to characterise turbulence in the atmospheric boundary layer. When the winds are weak, the scalar average wind speed and the vector average wind speed need to be clearly distinguished and both lateral and longitudinal wind velocity fluctuations assume equal importance in dispersion calculations. We examine commonly-used methods of estimating these variances from wind-speed and wind-direction statistics measured separately, for example, by a cup anemometer and a wind vane, and evaluate the implied relationship between the scalar and vector wind speeds, using measurements taken under low-wind stable conditions. We highlight several inconsistencies inherent in the existing formulations and show that the widely-used assumption that the lateral velocity variance is equal to the longitudinal velocity variance is not necessarily true. We derive improved relations for the two variances, and although data under stable stratification are considered for comparison, our analysis is applicable more generally.
Bruinsma, Robijn; Grosberg, Alexander Y; Rabin, Yitzhak; Zidovska, Alexandra
2014-05-06
Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory-the two-fluid model-in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model-the Maxwell fluid-for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Bruinsma, Robijn; Grosberg, Alexander Y.; Rabin, Yitzhak; Zidovska, Alexandra
2014-01-01
Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory—the two-fluid model—in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model—the Maxwell fluid—for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity. PMID:24806919
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempka, S.N.; Strickland, J.H.; Glass, M.W.
1995-04-01
formulation to satisfy velocity boundary conditions for the vorticity form of the incompressible, viscous fluid momentum equations is presented. The tangential and normal components of the velocity boundary condition are satisfied simultaneously by creating vorticity adjacent to boundaries. The newly created vorticity is determined using a kinematical formulation which is a generalization of Helmholtz` decomposition of a vector field. Though it has not been generally recognized, these formulations resolve the over-specification issue associated with creating voracity to satisfy velocity boundary conditions. The generalized decomposition has not been widely used, apparently due to a lack of a useful physical interpretation. Anmore » analysis is presented which shows that the generalized decomposition has a relatively simple physical interpretation which facilitates its numerical implementation. The implementation of the generalized decomposition is discussed in detail. As an example the flow in a two-dimensional lid-driven cavity is simulated. The solution technique is based on a Lagrangian transport algorithm in the hydrocode ALEGRA. ALEGRA`s Lagrangian transport algorithm has been modified to solve the vorticity transport equation and the generalized decomposition, thus providing a new, accurate method to simulate incompressible flows. This numerical implementation and the new boundary condition formulation allow vorticity-based formulations to be used in a wider range of engineering problems.« less
Anderst, William J; Tashman, Scott
2010-03-22
A new technique is presented that utilizes relative velocity vectors between articulating surfaces to characterize internal/external rotation of the tibio-femoral joint during dynamic loading. Precise tibio-femoral motion was determined by tracking the movement of implanted tantalum beads in high-speed biplane X-rays. Three-dimensional, subject-specific CT reconstructions of the femur and tibia, consisting of triangular mesh elements, were positioned in each analyzed frame. The minimum distance between subchondral bone surfaces was recorded for each mesh element comprising each bone surface, and the relative velocity between these opposing closest surface elements was determined in each frame. Internal/external rotation was visualized by superimposing tangential relative velocity vectors onto bone surfaces at each instant. Rotation about medial and lateral compartments was quantified by calculating the angle between these tangential relative vectors within each compartment. Results acquired from 68 test sessions involving 23 dogs indicated a consistent pattern of sequential rotation about the lateral condyle (approximately 60 ms after paw strike) followed by rotation about the medial condyle (approximately 100 ms after paw strike). These results imply that axial knee rotation follows a repeatable pattern within and among subjects. This pattern involves rotation about both the lateral and medial compartments. The technique described can be easily applied to study human knee internal/external rotation during a variety of activities. This information may be useful to define normal and pathologic conditions, to confirm post-surgical restoration of knee mechanics, and to design more realistic prosthetic devices. Furthermore, analysis of joint arthrokinematics, such as those described, may identify changes in joint mechanics associated with joint degeneration. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, David S.; Banfield, Don; Gierasch, Peter; Showman, Adam P.
2007-05-01
We have produced mosaics of the Great Red Spot (GRS) using images taken by the Galileo spacecraft in May 2000, and have measured the winds of the GRS using an automated algorithm that does not require manual cloud tracking. Our technique yields a high-density, regular grid of wind velocity vectors that is advantageous over a limited number of scattered wind vectors that result from manual cloud tracking. The high-velocity collar of the GRS is clearly seen from our velocity vector map, and highest wind velocities are measured to be around 170 m s -1. The high resolution of the mosaics has also enabled us to map turbulent eddies inside the chaotic central region of the GRS, similar to those mapped by Sada et al. [Sada, P.V., Beebe, R.F., Conrath, B.J., 1996. Icarus 119, 311-335]. Using the wind velocity measurements, we computed particle trajectories around the GRS as well as maps of relative and absolute vorticities. We have discovered a narrow ring of cyclonic vorticity that surrounds the main anti-cyclonic high-velocity collar. This narrow ring appears to correspond to a ring surrounding the GRS that is bright in 5 μm [Terrile, R.J., Beebe, R.F., 1979. Science 204, 948-951]. It appears that this cyclonic ring is not a transient feature of the GRS, as we have discovered it in a re-analysis of Galileo data taken in 1996 first analyzed by Vasavada et al. [Vasavada, A.R., and 13 colleagues, 1998. Icarus 135, 265-275]. We also calculate how absolute vorticity changes as a function of latitude along a trajectory around the GRS and compare these measurements to similar ones performed by Dowling and Ingersoll [Dowling, T.E., Ingersoll, A.P., 1988. J. Atmos. Sci. 45, 1380-1396] using Voyager data. We show no dramatic evolution in the structure of the GRS since the Voyager era except for additional evidence for a counter-rotating GRS core, an increase in velocity in the main velocity collar, and an overall decrease in the length of the GRS.